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Maximum Likelihood Estimation of
Linear Time-Varying Pilot-Vehicle System Parameters

M. Kers,∗D. M. Pool,†Q. P. Chu,‡M. M. van Paassen,§ and M. Mulder¶

Delft University of Technology, P.O. Box 5058, 2600 GB Delft, The Netherlands

In this paper a time-domain identification procedure based on maximum likelihood estimation is intro-
duced for the estimation of time-varying pilot-vehicle system parameters. The parameter estimation is per-
formed using simulated data of a control task containing human operator and vehicle dynamics in which the
time-varying parameters are modeled with Boltzmann sigmoids. Simulated data is generated for different
amounts of human operator remnant. During the estimation, different sets of initial parameter values are
used. The proposed method returns accurate results when no human operator remnant is present and when
the initial parameter values are chosen close to the values used to set up the simulation. The results, however,
indicate that the proposed method is sensitive to the presence of remnant, but even more sensitive to the choice
of initial parameter values. Additionally, the results show that the procedure is influenced by local minima.
The proposed method is promising, but to deal with the mentioned issues it is necessary to adapt the estimation
method in future research.

Nomenclature

At target sinusoid amplitude, deg
e tracking error signal, deg
ft target forcing function, deg
Hc vehicle dynamics
Hn human operator remnant shaping filter
Hol open-loop dynamics
Hnm human operator neuromuscular dynamics
Hp human operator pilot dynamics
j imaginary unit
Kc vehicle dynamics gain
Kn shaping filter gain
Kv human operator visual-perception gain
k number of discrete instants
L likelihood function
MΘΘ Fisher information matrix
m number of measurements
n human operator remnant signal, deg
np remnant variance percentage, %
nt target forcing function integer factor
Q covariance, deg2

s Laplace operator
Tc vehicle dynamics time constant, s
Tl human operator visual-lead time constant, s
Tm measurement time, s
Tn shaping filter time constant, s
t time, s
t1 begin time of Boltzmann sigmoid, s
t2 end time of Boltzmann sigmoid, s
thalf Boltzmann sigmoid halfway time, s
ti time step, s
u human operator control signal, deg
û estimated human operator control signal, deg
w white noise signal, deg
y system output signal, deg

Symbols

α line-search parameter
ε prediction error, deg

∗MSc Student, Control and Simulation Division, Faculty of Aerospace Engineering, P.O. Box 5058, 2600 GB Delft, The Netherlands;
m.kers@tudelft.nl.

†PhD Student, Control and Simulation Division, Faculty of Aerospace Engineering, P.O. Box 5058, 2600 GB Delft, The Netherlands;
d.m.pool@tudelft.nl. Member AIAA.

‡Associate Professor, Control and Simulation Division, Faculty of Aerospace Engineering, P.O. Box 5058, 2600 GB Delft, The Netherlands;
q.p.chu@tudelft.nl. Member AIAA.

§Associate Professor, Control and Simulation Division, Faculty of Aerospace Engineering, P.O. Box 5058, 2600 GB Delft, The Netherlands;
m.m.vanpaassen@tudelft.nl. Member AIAA.

¶Professor, Control and Simulation Division, Faculty of Aerospace Engineering, P.O. Box 5058, 2600 GB Delft, The Netherlands;
m.mulder@tudelft.nl. Member AIAA.
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ζnm neuromuscular damping ratio
Θ parameter vector
Θ̂ parameter estimates vector
Θ̂ML maximum likelihood parameter estimates vector
θ parameter
θ̂ estimated parameter
θ0 true parameter
θp parameter variance percentage, %
σu control signal standard deviation, deg

σn remnant signal standard deviation, deg
τv human operator visual-perception time delay, s
φt target sinusoid phase shift, rad
ω frequency, rad/s
ωc crossover frequency, rad/s
ωm measurement base frequency, rad/s
ωnm neuromuscular frequency, rad/s
ωt target sinusoid frequency, rad/s

I. Introduction

Human manual control behavior is a nonlinear, time-varying, and closed-loop process. The time-varying aspect of
this behavior is the primary reason that traditional system identification methods are of limited use for contemporary
research in comparison to adaptive methods. Proper system identification can help explain the effects of different
perceptual modalities on a human’s control behavior through the determination of model parameters, such as weighing
gains and time delays, from experimental data. This knowledge can for example be used to design advanced manual
control systems for cars, aircraft, and spacecraft.

In the past, human time-invariant manual control methods have been successfully employed.1–3 Although human
manual control behavior is time-varying in nature, much of the knowledge about it still comes from time-invariant
analysis. In Ref. 1 a foundation is laid for these time-invariant models by treating the pilot-vehicle system as a closed-
loop entity. A new method for identification of human control behavior with linear time-invariant models is proposed
in Ref. 2. Ref. 3 proposes an output error method for time-invariant models using Maximum Likelihood Estimation
(MLE) augmented with a genetic algorithm. These studies show that the accuracy of such time-invariant models is,
however, often affected by biases and the control tasks require highly specific demands.

To reduce the disadvantages associated with time-invariant models, more recent research focuses on time-varying
estimation methods.4–6 A time-varying estimation technique using wavelets is proposed in Ref. 4 for estimating time-
variant neuromuscular admittance. In Ref. 5 the wavelet method is compared to a sliding time window MLE method
for estimating human operator parameters. The results from this study show that wavelets are more sensitive to
measurement noise, but that the proposed MLE method cannot detect fast changes in human control behavior. Lastly,
in Ref. 6 two identification methods, an output error method and a sliding window Fast Fourier Transform method, are
successfully used for estimation of time-varying human operator parameters.

This paper presents the results of a study on parameter estimation of time-varying pilot model parameters using
a MLE method in the time-domain. A human operator (i.e., a pilot) controlling a vehicle will be modeled with time-
varying parameters to generate simulated data. The control task performed by the human operator starts with single-
integrator dynamics after which a transition to double-integrator dynamics takes place. The transition between the two
different dynamics is parametrized with so-called Boltzmann sigmoids. The proposedMLEmethod is used to estimate
the time-varying parameters in the time-domain from the simulated data. In comparison with linear time-invariant and
wavelet methods, which both require an additional step in the frequency domain for parameter estimation,3 MLE only
uses a single step in the time-domain, which contributes to a significant reduction of bias and variance.5 The proposed
method differs from earlier MLE approaches in the sense that the parameters are estimated as a function of time.

Finally, the MLE method in this paper will be compared with a sliding time window MLE method as considered
in Ref. 5 for analyzing and identifying time-varying pilot dynamics. To be able to compare the two methods, the
control task in this study is modeled after the control task in Ref. 5. In accordance with this approach, the following
hypothesis will be tested in this paper: The time-varying time-domain identification procedure as proposed in this
paper will return more accurate parameter estimates in comparison with the windowed MLE method proposed in
Ref. 5.

This paper is structured as follows. In Sec. II the control task model used to generate simulation data is explained.
The theory on MLE, the proposed MLE method, and the sliding time window method of Ref. 5 will be discussed in
Sec. III. The results of the parameter estimation will be given in Sec. IV, followed by a discussion of the results in
Sec. V. Finally, Sec. VI gives an overview of the conclusions of this study.
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II. Simulation Setup

For this study, the choice is made to use simulated data instead of experimental data, because the values that
will be estimated can be set for a control task that is used to generate such simulated data. The control task and its
corresponding dynamics are described in this section.

II.A. Simulated Control Task

In this paper, the problem of identifying time-varying pilot dynamics is considered for a simulated manual control
task similar to the one considered in Ref. 5. In Fig. 1 the closed-loop process for a human operator controlling a
vehicle is shown. Here the operator is actively controlling the vehicle dynamics Hc, while following a target signal
ft. This forcing function ft is used for excitation of the system, which is usually a multisine signal in human operator
research.3, 5, 7, 8 The error signal e between the target forcing function ft and the system output y can for example be
displayed on a screen, so that the operator can see the error, minimize it and ultimately optimize his control behavior.
The operator’s control signal u consists of the human operator response Hp, which is combined with a remnant n
to account for nonlinear control behavior of the human operator. The remnant is generated by passing a zero-mean
Gaussian white noise signal w through shaping filter Hn. The time-varying aspect of the simulated control task as
considered in this paper represents a human controller who is initially controlling a system with single-integrator
dynamics when the controlled element dynamicsHc are then changed to double-integrator dynamics.

nw

filter, Hn

shaping

ft e

human operator

pilot u vehicle y

dynamics, Hp dynamics, Hc−

++ +

Figure 1. Closed-loop manual control task.

For the vehicle dynamics Hc(s,t) Eq. (1) is used. This equation contains a time-varying gain Kc(t) and a time
constant Tc(t).

Hc(s, t) =
Kc(t)

Tc(t)s2 + s
(1)

Below a break frequency of 1/Tc, the vehicle dynamics act as a single-integrator system (Kc(t)/s). Above the break
frequency, the vehicle dynamics emulate a double-integrator system ((Kc(t)/Tc(t))/s2). The corresponding human
operator response Hp(s, t), which is representative for the change in pilot dynamics that would be required in this
case, is defined by Eq. (2) and consists of a time-varying visual-perception gainKv(t), a time-varying visual-lead time
constant Tl(t), a visual-perception time delay constant τv and neuromuscular dynamicsHnm(s).

Hp(s, t) = Kv(t) (Tl(t)s+ 1) e−sτvHnm(s) (2)

The neuromuscular dynamics of the human operator are defined in Eq. (3) with neuromuscular frequency ωnm and
neuromuscular damping ζnm.

Hnm(s) =
ω2
nm

s2 + 2ζnmωnms+ ω2
nm

(3)

The low-pass shaping filter Hn(s, t) for the zero-mean Gaussian white noise signal w is defined in Eq. (4). In this
equation Kn(t) is a time-varying gain and Tn a time constant. The resulting human operator remnant n is added to
the output signal of Hp. The shaping filter is used to make sure that the human operator remnant signal variance
percentage np = (σ2

n/σ
2
u) · 100% for the single-integrator and double-integrator dynamics remain representative of the

noise levels typically found in manual control.
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Hn(s, t) =
Kn(t)

Tns+ 1
(4)

II.B. Model parametrization

It is important for the parameter estimation to be aware that there are different ways of parametrizing the linear time-
varying parameters of the model. In this section three different ways of parametrization are described: linear functions,
polynomials, and Boltzmann sigmoids. As described in Sec. II.A, the human operator changes his control behavior
from single-integrator dynamics to double-integrator dynamics. The time-varying parameters define the transition
between these two forms of behavior. Examples of the three forms of parametrization are shown in Fig. 2. These
figures all start with constant single-integrator dynamics, which end at t1. Between t1 and t2 the transition with the
respective linear, polynomial, or sigmoid function takes place. At t2 the transition is completed and constant double-
integrator dynamics are reached.

(a) Linear function.
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Figure 2. Three different functions are shown in this figure that can be used for parametrization of the linear time-varying parameters. The
figures start with constant single-integrator dynamics (SI). After t1 the transition with the specific function takes place. At t2 the constant
double-integrator dynamics (DI) are reached.

To show how the parametrization of a linear time-varying parameter takes place, gainKv(t) is used as an example.
For a linear function in accordance with Fig. 2a,Kv(t) is parametrized according to Eq. (5). The parametersKv0 and
Kv1 are constants that define the slope and y-intercept of the linear function, respectively. Note that a linear function
is in fact a first-order polynomial. In this case, the total of single-integrator dynamics, double-integrator dynamics,
and the linear transition forms a ramp signal.

Kv(t) = Kv0 +Kv1t (5)

The polynomial function plotted in Fig. 2b is an example of a fourth-order polynomial, which is the highest order
polynomial used for this research. Second-order and third-order functions are also evaluated in this study to see what
the effects of the different orders are on the parameter estimation. A fourth-order polynomial parametrization ofKv(t)
is given in Eq. (6) with constantsKv0 , Kv1 ,Kv2 ,Kv3 , andKv4 , which determine the polynomial’s shape.

Kv(t) = Kv0 +Kv1t+Kv2t
2 +Kv3t

3 +Kv4t
4 (6)

Finally, the linear time-varying parameters are parametrized with a Boltzmann sigmoid as in Fig. 2c. In Eq. (7) the
definition of the Boltzmann sigmoid is stated, together with its parametrization. The choice is made to parametrize
top − bottom as one parameter K∗

v0
in order to avoid problems with parameter estimation when the bottom-value

surpasses the top-value. Kv1 defines the bottom of the sigmoid, whereas Kv2 sets the halfway time thalf of the
sigmoid, andKv3 fixes the sigmoid’s slope.

Kv(t) = bottom+
top− bottom

1 + exp
(

thalf−t

slope

) = Kv1 +
K∗

v0

1 + exp
(

Kv2−t

Kv3

) (7)

For the control task in this paper, parametrizationwith the linear function and the polynomials turns out to be disad-
vantageous to parameter estimation. The main advantage of a linear function is that it only has two parameters, which
ensures that the estimation problem stays relatively simple. The human operator, however, operates as a nonlinear
system. Higher-order polynomials provide an opportunity to model nonlinear behavior, but for each additional order,
the constants used to shape the polynomial rapidly decrease to very small values. When the visual-perception gain
is modeled as a fourth-order polynomial, for example, the polynomial contains three constants with values between
10−4 and 10−8. The size of and the differences between these small constants give rise to mathematical problems
during parameter estimation. Therefore, in this study the Boltzmann sigmoid is selected for parametrization of the
linear time-varying parameters. In addition, the Boltzmann sigmoid provides a gradual transition between two types
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of dynamics. This is exactly the type of time-varying dynamics that is required for this study. It is, however, likely
that there will be more appropriate or alternative functions to model this kind of time-varying behavior.

II.C. Simulated Control Task Dynamics

A single simulation run is set to last 81.92 s. This is based on 213 samples and a sampling rate of 100 Hz as to retain an
acceptable frequency resolution. The value of 81.92 s equals one measurement time Tm, a value related to the target
forcing function which will be explained in Sec. II.D. Parameter estimation will only be performed on the second
simulation run in order to avoid transient behavior. For the control task in Fig. 1 the human operator gain Kv(t),
the human operator lead time constant Tl(t), the shaping filter gain Kn(t), the vehicle dynamics gain Kc(t), and the
vehicle dynamics time constant Tc(t) are modeled as Boltzmann sigmoids. Note that the parameters are based on the
parametrization in Ref. 5. The sigmoids are plotted in Fig. 3.
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Figure 3. Time-varying parameters modeled as Boltzmann sigmoids in accordance with Equation Eq. (7).

Table 1. The parameter values for the control task. The parameters in the left column are the parameters that will be estimated.

Pilot Dynamics Parameters Other Parameters

Parameter Value Parameter Value

Kv0 sigmoid top gain constant 0.70 - Kc0 sigmoid top gain constant 6.00 -
Kv1 sigmoid bottom gain constant 0.40 - Kc1 sigmoid bottom gain constant 5.00 -
Kv2 sigmoid thalf gain constant 40.96 s Kc2 sigmoid thalf gain constant 40.96 s
Kv3 sigmoid slope gain constant -2.30 - Kc3 sigmoid slope gain constant 2.02 -
Tl0 sigmoid top time constant 4.00 - Tc0 sigmoid top time constant 4.00 -
Tl1 sigmoid bottom time constant 0.00 - Tc1 sigmoid bottom time constant 0.01 -
Tl2 sigmoid thalf time constant 40.96 s Tc2 sigmoid thalf time constant 40.96 s
Tl3 sigmoid slope time constant 1.77 - Tc3 sigmoid slope time constant 1.77 -
τv time delay constant 0.20 s Kn0 sigmoid top gain constant 4.13 -
ωnm neuromuscular frequency 10.00 rad/s2 Kn1 sigmoid bottom gain constant 0.68 -
ζnm neuromuscular damping 0.20 - Kn2 sigmoid thalf gain constant 40.96 s

Kn3 sigmoid slope gain constant 1.79 -
Tn shaping filter time constant 0.20 s

The parameters θ are held constant at the single-integrator dynamics values until a t1 of 20.96 s, which is the instance
when the sigmoids start. The sigmoids are halfway at a thalf of 40.96 s–exactly in the middle of the simulation run–
and end 20 s later at a t2 of 60.96 s. After this the double-integrator dynamics values are reached and the parameters
are constant again. The corresponding parameter values of the sigmoids are given in Table 1 together with the time-
invariant values of the time delay constant τv , the neuromuscular frequency ωnm, the neuromuscular damping ratio
ζnm, and the shaping filter time constant Tn. The parameters that will be estimated are stated in the left column of this
table. Note that the values of the shaping filter gain Kn(t) are chosen such that the remnant variance percentage of
both the single-integrator and double-integrator dynamics parts has a value of 10%. The values of the human operator
lead time constant Tl(t) and the vehicle time constant Tc(t) are almost equal, so that near-perfect human operator
compensation is assumed for the double-integrator vehicle dynamics at higher frequencies.5 For perfect compensation
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Tc1 should also have a value of zero, but the state-space equations used to simulate the vehicle dynamics contain a
division by Tc1 . It can thus not have a value of zero. This is, however, not an issue, as the resulting controlled element
dynamics still approximate a pure single-integrator system over the entire frequency range. Finally, it should be noted
that when the sigmoids are modeled, there will always exist a small gap at t1 and t2 where the sigmoid connects to
the constant dynamics. To make sure that this gap has no significant contribution, the difference between the constant
dynamics and the sigmoid at these instances has a value that is in the order of 10−5 or lower.

II.D. Target Forcing Function

A target forcing function ft is used to excite the system in Fig. 1. This target forcing function is taken from Ref. 3.
The forcing function, a multisine, is based on sine waves with different frequencies as in Eq. (8). The sine wave
frequencies are defined as integer multiples of the experimental measurement time base frequency,ωm = 2π/Tm with
Tm = 81.92 s (based on 213 samples and a simulation sampling frequency of 100 Hz). Table 2 shows the values for
integer factors nt, target sinusoid frequency ωt, target sinusoid amplitude At, and target sinusoid phase shift φt. This
multisine is plotted in Fig. 4a.

ft(t) =
10
∑

k=1

At(k)sin(ωt(k)t+ φt(k)) (8)

Table 2. Properties of multisine target forcing function ft.

k, - nt, - ωt, rad/s At, deg φt, rad

1 6 0.460 0.698 1.288
2 13 0.997 0.488 6.089
3 27 2.071 0.220 5.507
4 41 3.145 0.119 1.734
5 53 4.065 0.080 2.019
6 73 5.599 0.049 0.441
7 103 7.900 0.031 5.175
8 139 10.661 0.023 3.415
9 194 14.880 0.018 1.066
10 229 17.564 0.016 3.479

Table 3. System I & II parameter values.

Parameter System I System II

Kv 0.70 - 0.40 -
Tl 0.00 s 4.00 s
Kc 5.00 - 6.00 -
Tc 0.01 s 4.00 s
Kn 0.68 - 4.13 -
Tn 0.20 s 0.20 s
τv 0.20 s 0.20 s
ωnm 10.00 rad/s2 10.00 rad/s2

ζnm 0.20 - 0.20 -

II.E. Simulated Time Traces

Before parameter estimation is performed, the simulated data is validated by an analysis of the system’s time traces.
In Fig. 4 the time traces of the system are plotted. From Fig. 4a it becomes clear that the system output y accurately
follows target forcing function ft. In the period of time where single-integrator dynamics are controlled, the vehicle
closely follows the ft while rapidly adapting to shoot-overs. During the transition from single-integrator to double-
integrator dynamics it is harder to follow ft especially after thalf at 40.96 s. For the double-integrator dynamics the
vehicle follows ft quite accurately again, but the human operator adapts slower to the changes in ft as is expected for
this more difficult, controlled element. The same behavior can be deduced from the plot of tracking error e in Fig. 4b.
In Fig. 4c control signal u is plotted together with the remnant n. The human operator requires less effort for the
single-integrator dynamics in comparison with the double-integrator dynamics. This change in the control behavior
from single-integrator to double-integrator dynamics is clearly visible in this figure between t1 and t2. The figure also
shows that the human operator remnant n is smaller for the single-integrator dynamics compared with the remnant for
the double-integrator dynamics. This is caused by the shaping filter gainKn, which keeps the remnant signal variance
percentage np at 10%.

To better understand the dynamics of the system, the system is split-up in two parts in accordance with Table 3:
System I (single-integrator dynamics) and System II (double-integrator dynamics) corresponding to the data before
t1 and after t2, respectively. The data in Table 3 can also be deducted from Table 1, but is explicitly shown again to
show the difference between System I and II, and moreover, to indicate that only constant values are used instead of
sigmoids. In Fig. 5 the Power Spectral Density (PSD) of ft, y, e, and u is plotted for System I and System II. It can
be observed that system output y and tracking error e have more power at higher frequencies for the single-integrator
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(a) Target forcing function ft plotted with the
system output signal y.
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(c) Control signal u plotted with the remnant
signal n.
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Figure 4. Time traces of the simulated signals. The Boltzmann sigmoid begins at t1 (20.96 s) and ends at t2 (60.96 s).

(a) Sys. I PSD of ft and y.
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(c) Sys. I PSD of u.
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(d) Sys. II PSD of ft and y.
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Figure 5. Power Spectral Densities of target forcing function ft (black), output signal y (gray), error signal e, and control signal u. The
frequencies ωt, which belong to target forcing function ft, are highlighted by the black and gray circles at the peaks of the spectra.

dynamics, which is expected after the analysis of the time traces. The power for ft is equal for System I and II over
the entire frequency range, as there is no difference for ft between the two systems. The power for u is comparable
for System I and II over the entire frequency range. Finally, in Fig. 6 the analytical frequency responses are plotted for
Hp(jω),Hc(jω), andHol(jω). The difference between the single-integrator dynamics and double-integrator dynamics
is clearly visible from these figures. The open-loop gain crossover frequency ωc for System I has a value of 4.14 rad/s,
for System II ωc has a value of 2.55 rad/s. The differences in these crossover frequencies explain the peaks that can be
observed in the PSD plots of System I in Fig. 5.
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(a) Sys. I & II |Hp(jω)|.
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Figure 6. Frequency responses ofHp(jω), Hc(jω), andHol(jω) for System I and System II as defined by Table 3.

III. Time-Varying Time-Domain Identification Procedure

MaximumLikelihood Estimation (MLE) is a statistical parameter estimation method introduced by Ronald Aylmer
Fisher in 1912.9 In the past, MLEmethods for the estimation of human operatormodel parameters have been studied3, 5
and applied.10 In this section, the MLE time-domain identification procedure augmented with a Gauss-Newton (GN)
algorithm–a gradient-based optimization method–will be explained. In addition to the MLE method proposed in this
study, a sliding time window MLE method5 will be introduced to which the proposed method is compared.

III.A. Maximum Likelihood Estimation Theory

MLE maximizes a likelihood function L to find a vector of estimates Θ̂ of parameter vector Θ. All unknown model
parameters that are intended to be estimated, should be part of this parameter vector. Next, the estimate Θ̂ of parameter
vectorΘ can be found by maximizing the likelihood functionL(Θ) in Eq. (9), which is defined as the joint conditional
Probability Density Function (PDF) of the prediction error ε(k) form measurements of a control signal u(k).

L(Θ) = f(ε(1), ε(2), . . . , ε(k), . . . , ε(m) | Θ) (9)

In Eq. (9) the prediction error ε(k) (i.e., the residual) is the difference between the measured control signal u(k) and the
estimated control signal û(k) at discrete time instants k. Assuming the remnant n is an additive zero-mean Gaussian
white noise signal, the conditional PDF for one measurement of prediction error ε(k) is given in Eq. (10).

f(ε(k) | Θ) =
1

√

2πσ2
n

e
− ε2(k)

2σ2
n (10)

In this equation σn is the standard deviation of the remnant signal n. To maximize the conditional PDF, the negative
natural logarithm is minimized, which provides a more straightforward optimization problem. When a global mini-
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mum of the negative log-likelihood is found, the resulting parameter vector Θ̂ML is the maximum likelihood estimate,
which is stated in Eq. (11).

Θ̂ML = arg min
Θ

[−lnL(Θ)] = arg min
Θ

[

m

2
lnσ2

n +
1

2σ2
n

m
∑

k=1

ε2(k)

]

(11)

Eq. (11) summarizes the maximum likelihood parameter estimation problem. Depending on the application (e.g.
model or data) Eq. (11) can represent a linear or a highly nonlinear optimization problem.

The GN algorithm is used to optimize the parameter estimation by finding Θ̂ML. The GN algorithm is one of the
most used algorithms in combination with MLE and further optimizes the negative log-likelihood of the likelihood
function L.11 It is a gradient-based method and Eq. (12) is its iterative parameter update equation. Note that the
combination of MLE with the nonlinear GN method is an output error method, which requires the system to be written
in state-space form. For this purpose the transfer functions in Sec. II.A are rewritten in their controller canonical form.

Θ̂(k + 1) = Θ̂(k)− α(k)M−1
ΘΘ(Θ̂(k))

∂L(Θ̂(k))

∂Θ
(12)

The line-search parameter α in this equation has a value 0 ≤ α ≤ 1, and is updated before each iteration to ensure
optimal minimization of likelihood function L along the vector defined by M−1

ΘΘ(Θ̂(k))∂L(Θ̂(k))
∂Θ . The nonlinear

estimation problem under consideration in this paper yields a high number of local minima.12 The GN algorithm is
very sensitive to these local minima in the sense that when it converges to a certain local minimum, finding the global
minimum is impossible. The incorporation of a line-search in the GN method is advocated in Ref. 13 to increase GN
algorithm stability and the chance of convergence to the global minimum. The line-search used for this purpose always
starts at α0 = 0 and α1 = 1. Now, with αi = {1 . . . k}, when

L(α0) > L(αi) −→ L = L(αi)

and, when

L(α0) < L(αi) & L(α0) > L

(

α0 + αi

2

)

−→ L = L

(

α0 + αi

2

)

.

However, when

L(α0) < L(αi) & L(α0) < L

(

α0 + αi

2

)

−→ αi+1 =
α0 + αi

2

the line-search algorithm starts from the beginning but now with αi = αi+1. The line-search vector stops and selects
the lowest likelihood value when the ratio (L(α0)− L(αi)) /L(αi) drops below a value of 10−3. The stopping
criterion of the GN algorithm is defined by (L(Θ̂(k)) − L(Θ̂(k + 1)))/L(Θ̂(k + 1)) and is fixed at a value of 10−6.
In Eq. (12) the Fisher information matrixMΘΘ is defined by Eq. (13) and should be symmetrical and positive definite
to be inverted for Eq. (12).

MΘΘ =
1

σ2
n

m
∑

k=1

(

∂ε(k)

∂Θ

)2

(13)

To calculate the ∂ε(k)/∂Θ-term of the Fisher information matrix, it is necessary to determine the so-called sensitivity
matrices. The sensitivity matrices show how the coefficients in the state-space matrices change when the value of
a certain parameter also changes. The sensitivity of the entries of the state-space matrices A(t), B(t), C(t) and
D(t) to changes in each parameter in Θ are calculated and used to determine bothMΘΘ and the likelihood gradient
∂L(Θ̂(k))/∂Θ. The necessity of writing the system in state-space form is hampered by the presence of time delay τv,
which occurs as an exponential term in Eq. (2). The exponential time delay term is therefore included as a fifth-order
Padé approximation, as is done in Ref. 3.

III.B. Comparing Two Time-Varying Maximum Likelihood Estimation Methods

In this paper a time-domain identification procedure based on maximum likelihood estimation is proposed for the
estimation of time-varying pilot vehicle system parameters. To see how well this time-varyingMLE method compares
to other methods, it will be compared to the sliding time window MLE method used in Ref. 5. In this section both
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methods will be briefly introduced. It is possible to compare the methods relative to each other with the use of the
Variance Accounted For (VAF). The VAF is used to compare the estimated control signal û of one of the methods to
the corresponding control signal u. If the estimated control signal equals the simulated control signal, the VAF will be
100%. Note that the line-search algorithm as proposed in Sec. III.A is used for both methods.

III.B.1. Method 1: Time-Varying Model Identification

For the time-varying model identification procedure the entire data set of a single simulation run of 81.92 s will be
used. As discussed in Sec. II.C, for the control task in this paper, data from the second simulation run is used to avoid
transient behavior in the first simulation run. The parameters related to the linear human operator response, stated in
the left column of Table 1, will be estimated. Consequently, the parameter vector contains eleven parameters as stated
in Eq. (14).

Θ =
[

K∗
v0

Kv1 Kv2 Kv3 T ∗
l0

Tl1 Tl2 Tl3 τv ωnm ζnm
]" (14)

Before the identification procedure is initiated, initial values have to be given to the parameters, which are used for
the first parameter estimation iteration. Although a randomization of these initial values is usually applied, the choice
is made to offset each parameter with an equal percentage from the true values that were used to create the simulated
data. This is done in order to make it easier to compare the results. The true values are labeled as 100%, so when
all parameters are subjected to a positive offset of 10% this equals a parameter variance θp of 110%. Note that Tl1

has a value of zero. To be able to give Tl1 an offset, it is set to 0.01 for the instances that it is given an offset by θp.
Next to giving all parameters an equal offset of θp, another experiment will be done in which all parameters, except
for one, are held at the true values. This will be done to check if varying the initial value of each single parameter has
a significant effect on the parameter estimation.

III.B.2. Method 2: Sliding Time Window Identification

In Ref. 5 the sliding time window MLE method is described as follows:

To estimate time-varying human operator model parameters in the current study, the MLE optimization is performed
at every time step ti using a sliding time window of length ∆t. Choosing a ∆t that is too small will decrease the
accuracy of estimated parameters related to low-frequency dynamics. A ∆t that is too large will reduce the method’s
ability to detect small variations in human operator model parameters. In the current study, the length of the time
window is chosen to be 20 s.
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Figure 7. Sliding time window MLE method.

The sliding time window MLE method in Ref. 5 is performed every 2 s, and because of the width of the window it is
initiated at t = 12.0 s and stops at t = 80.0 s. To compare the sliding time window MLE method with the proposed
method in this paper, the sliding time window method will be performed according to the definition in Ref. 5, but on
the simulated data generated by control task defined in Sec. II. In Fig. 7 a representation of the sliding time window
MLE method is given as defined by Ref. 5. Because of the sliding time window, this method only observes a certain
part of the data and the parameters are assumed to have constant values for the data in ∆t. The parameter vector in
Eq. (15), therefore, only consists of five parameters.
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Θ = [Kv Tl τv ωnm ζnm]! (15)

In Ref. 5 the initial parameter set was constructed from the simulated pilot model parameters at each time step.
Because only Kv(t) and Tl(t) are considered in this parameter estimation problem and because the proposed time-
varying model MLE method only uses one initial parameter which is set at the beginning instead of at each time step,
it is chosen to set the initial values of the sliding time window method to the average of the top and bottom values of
these sigmoids multiplied by the same parameter variance θp that is chosen for the proposed MLE method.

IV. Results

With the simulated data from the control task in Sec. II and the MLE methods in Sec. III, parameter estimation
is performed. The results of this estimation will be discussed in this section. Simulations were performed for three
different noise realizations with different parameter variance percentages θp and different remnant variance percentage
np. Following these results, the outcome of further investigation on the influence of the remnant n and the initial
parameter values will be discussed and the results of an evaluation on the effect of local minima will be examined.

IV.A. Parameter Estimation Results

The results of parameter estimation are plotted in Fig. 8. The plots show the results obtained by setting the initial
parameter values to a parameter variance θp of 110%. For the estimation, simulated data is used, which is generated
by the control task in Sec. II without a remnant (np = 0%). The four estimated sigmoid parameters for both Kv(t)
and Tl(t) were used to plot the sigmoids in Fig. 8a and Fig. 8b. For the proposed MLE method (indicated by MLE1)
the sigmoidal shape is clearly visible. Without any human operator remnant signal, the parameter estimation with the
sigmoids is perfect. The sliding time windowMLE method (indicated by MLE2) also produces estimates which come
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(d) Neuromuscular frequency ωnm.
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(e) Neuromuscular damping ζnm.
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Figure 8. Parameter estimation results for the proposed MLE method (MLE1) and the sliding time window MLE method (MLE2). For the
estimation, the initial parameter values were all subjected to a θp of 110%.
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close to the values provided by the simulated data, but it shows a lot of peaks and fluctuation around these values.
An evaluation of MLE1 and MLE2 for the estimation of the fixed, time-invariant parameters in Fig. 8c, Fig. 8d, and
Fig. 8e shows similar results. With a VAF1 of 100% and a VAF2 of 82.3% the proposed method is significantly better
than the sliding time window method. Note that VAF1 is only calculated for the measurement time that the sliding
time windowmethod acts (from 12 s to 80 s). VAF2 is calculated by averaging the total sum of the VAFs for each time
window estimation instance.

When the remnant variance percentage np is increased, however, a clear difference with the system without rem-
nant can be seen. To show this, Kv(t) and Tl(t) are plotted in Fig. 9 for estimation performed on simulated data with
remnant variance percentages of 0%, 5%, and 10%. The figures show that both MLE methods return worse estimation
results when the remnant contribution is increased. For the results with an np of 5% and 10%, the top-value of Kv(t)
and the bottom-value of Tl(t) seem to be estimated correctly, but their respective bottom- and top-values do not follow
the simulated sigmoids. The sliding time window MLE method seems to have similar problems when estimating the
changing behavior (between 20.96 s and 60.96 s), but rapidly stabilizes and starts fluctuating around the simulated
values after 60.96 s. The plots of the fixed values τv , ωnm, and ζnm are not shown here, but indicate good results for
MLE1. Despite the fact that MLE2 shows a lot of peaks and fluctuation around the fixed values, the estimation for the
fixed values is also adequate. With a VAF1 of 95.5% and a VAF2 of 76.6% for a np of 5%, the proposed method still
produces better results. For a np of 10% this is also the case, with a value of 90.8% for VAF1 and a value of 71.0% for
VAF2. In conclusion, the addition of a remnant to the system has adverse effects on the parameter estimation. There is
a clear difference in performance between the two methods and MLE1 consistently performs better. It is notable that
with an increase in human operator remnant, the∆VAF between the two methods also increases.

The results obtained for parameter estimation up until now are based on simulation data in which the time-varying
parameters are modeled as Boltzmann sigmoids. It is important to understand that for the parameter estimation in
this case, the time-varying parameters are estimated as Boltzmann sigmoids. The time-varying dynamics that can
be modeled with a sigmoid are expected to be representative for a transition in human control behavior between two

(a)Kv , 0% remnant variance percentage.
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(b)Kv , 5% remnant variance percentage.

Pi
lo
tv
isu
al
-p
er
ce
pt
io
n
ga
in
,-

Time, s
0 10 20 30 40 50 60 70 80 90

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c)Kv , 10% remnant variance percentage.
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(d) Tl, 0% remnant variance percentage.
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(e) Tl , 5% remnant variance percentage.
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(f) Tl , 10% remnant variance percentage.
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Figure 9. Parameter estimation results for sigmoids Kv and Tl under the influence of different amounts of remnant variance percentage
np. For the estimation, the initial parameter values were all subjected to a θp of 110%.
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dynamic systems. However, it is interesting to see in what way the proposed estimation method with sigmoids will
react on simulation data in which the time-varying parameters are not modeled as a Boltzmann sigmoid. To check this,
the Boltzmann sigmoid in the simulation data is replaced with a linear transition as depicted by Fig. 2a and estimated
with the proposed estimation method. The parameter estimation results of both the proposed method MLE1 and the
sliding time window method MLE2 are shown in Fig. 10 forKv and Tl with remnant variance percentages np of 0%,
5% and 10%. The results are comparable to those of Fig. 9, except for the results of Kv with an np of 0% in which
the sigmoid seems to be influenced by biases. It is also worth mentioning that the sliding time window method MLE2

seems to perform better than MLE1 for Tl. In general, however, the proposed method still performs better in terms of
the VAF. For an np of 0%, VAF1 equals 96.4% and VAF2 equals 84.8%. For an np of 5%, VAF1 has a value of 95.5%
and VAF2 has a value of 79.8%. And, consequently, for an np of 10%, VAF1 amounts to 91.6% and VAF2 to 75.4%.
The big differences between the VAFs are not directly visible from Fig. 10, but are more evident from the estimation
of the fixed values τv , ζnm, and ωnm where MLE2 performs drastically worse for this simulation data set.

(a)Kv , 0% remnant variance percentage.
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(b)Kv , 5% remnant variance percentage.
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(c)Kv , 10% remnant variance percentage.
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(d) Tl, 0% remnant variance percentage.
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(e) Tl , 5% remnant variance percentage.
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(f) Tl , 10% remnant variance percentage.
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Figure 10. Parameter estimation results for ramp signalsKv and Tl under the influence of different amounts of remnant variance percent-
age np. For the estimation, the initial parameter values were all subjected to a θp of 110%.

IV.B. Influence of Remnant and Initial Parameter Values

In Sec. IV.A it became clear that there are two important factors that have an influence on the accuracy of the pa-
rameter estimation results: the amount of remnant signal in the simulated data (the remnant variance percentage np)
and the offset given to the initial parameter values for parameter estimation (the parameter variance percentage θp).
Although a larger remnant has a detrimental effect on the results, the parameter variance percentage θp showed to have
a small effect on parameter estimation. To verify this, and to understand how the remnant variance percentage and the
parameter variance percentage influence the proposed MLE method, twelve sets of simulation data for three different
white noise realizations are generated. Table 4 gives an overview of the characteristics of these twelve simulation data
sets. For the complete control task as defined in Sec. II, six sets are generated: three closed-loop system sets and three
open-loop system sets. The difference in these sets of three is the way in which white noise w is added to the system:
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Table 4. Overview of the characteristics of twelve packages of simulation data. Closed-loop is abbreviated to ‘CL’ and open-loop to ‘OL’.

Complete System System I∗ System II∗

CL filtered noise OL filtered noise CL filtered noise CL filtered noise
CL varying white noise OL varying white noise CL varying white noise CL varying white noise
CL constant white noise OL constant white noise CL constant white noise CL constant white noise

Table 5. System I∗ & II∗ parameter values.

Parameter System I∗ System II∗

Kv0 0.70 - 0.70 -
Kv1 0.40 - 0.40 -
Kv2 122.88 s 122.88 s
Kv3 -2.30 - -2.30 -
Tl 0.00 s 4.00 s
Kc 5.00 - 6.00 -
Tc 0.01 s 4.00 s
Tn 0.20 s 0.20 s
τv 0.20 s 0.20 s
ωnm 10.00 rad/s2 10.00 rad/s2

ζnm 0.20 - 0.20 -

as filtered noise through the shaping filter (i.e., the remnant), as a zero-mean Gaussian white noise signal multiplied by
a time-varying sigmoidKn to keep the remnant variance percentage of the single-integrator dynamics equal to that of
the double-integrator dynamics, or as a time-invariant zero-mean Gaussian white noise signal. Two other sets of three
are generated to see if MLE is influenced by the number of parameters, and to see if the single-integrator (System I∗)
and double-integrator (System II∗) dynamics behave different from the complete system. Compared to Sec. IV.A the
number of parameters is reduced as Tl is now set to a fixed value. The system parameters for System I∗ and System
II∗ are given in Table 5. Note that System I∗ and System II∗ differ from System I and System II, as for the former
systems, Kv(t) is modeled as a sigmoid. Furthermore, the values ofKn(t) are not given in the table, as the values are
dependent on the kind of noise and the remnant variance percentage np for each set in Table 4.

The twelve simulation data sets are evaluated by estimating parameters for a θp between 70% and 130%, and for a
np ranging from 0% to 20%. For each parameter a three-dimensional plot is made, where θp and np are set out against
the percentual difference∆θ of estimated parameter θ̂ in comparison with the true parameter value θ0. In Fig. 11 the
parameter estimation results for the lead time constant parameter Tl0 are shown.

When Fig. 11a is compared with Fig. 11b and Fig. 11c, a clear difference can be seen between the filtered noise
closed-loop system and the white noise systems: while the white noise systems show U-shaped plots in the direction
of the np-axis, the filtered noise system shows a disordered plot. Filtering the noise thus has an adverse effect on
parameter estimation. From the results in Sec. IV.A it was expected that a higher np would have a significant influence
on the estimation result. This is true, as for all plots (except for Fig. 11g) a gradual increase in ∆θ can be seen with
an increase in np (with some exceptions at low values of θp). Unexpected, however, are the large differences that are
introduced to the system by θp. In general, it seems that a θp between 90% and 110% gives the best results. Below
and above these values, the percentual difference in parameter value ∆θ rapidly increases towards very large values.
When the open-loop system plots in Fig. 11d, Fig. 11e, and Fig. 11f are compared to the closed-loop system plots,
the open-loop systems show better results, especially for a θp above 120%. The results for System I∗ in Fig. 11g,
Fig. 11h, and Fig. 11i illustrate that ∆θ becomes very large for the single-integrator dynamics. Because parameter
estimation returned so-called ‘not a number’ (NaN) values–in this instance unrepresentably large values–in the case
of constant white noise, the plot in Fig. 11i is not complete. At the location where NaNs were found, empty spots
are visible in this figure. This indicates that the constant white noise band has a contribution that is too big for the
single-integrator dynamics. When the double-integrator dynamics are evaluated, Fig. 11j shows that∆θ grows rapidly
when θp is not 100%. This is even more clear from Fig. 11l. For System II∗, ∆θ rapidly increases with an increasing
np. The varying white noise results for System II∗ are unexpected: the estimation of the single-integrator dynamics
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in Fig. 11h is much harder than the estimation of the double-integrator dynamics in Fig. 11k. In addition, the plots
of all parameters for closed-loop System II∗ with varying white noise are very similar to Fig. 11k, whereas normally
some differences can be seen between the parameters. This indicates that for a varying white noise, parameters of the
double-integrator dynamics are easily estimated above a θp of 80% even though an increasing np has a slight negative
effect on the estimation. Although the influence of System I∗ on ∆θ seems big in comparison to that of System II∗,
the contribution in the complete closed-loop and complete open-loop systems seems mostly to originate from System
II∗ due to similar shapes of the plots. Note that for System I∗ & II∗ parameter Tl0 is a fixed, time-invariant value.

(a) Closed-loop compl. system filtered noise.
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(b) Closed-loop compl. system varying white noise.
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(c) Closed-loop compl. system const. white noise.
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(d) Open-loop compl. system filtered noise.
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(e) Open-loop compl. system varying white noise.
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(f) Open-loop compl. system const. white noise.
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(g) Closed-loop Sys. I∗ filtered noise.
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(h) Closed-loop Sys. I∗ varying white noise.
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(i) Closed-loop Sys. I∗ const. white noise.
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(j) Closed-loop Sys. II∗ filtered noise.
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(k) Closed-loop Sys. II∗ varying white noise.
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(l) Closed-loop Sys. II∗ const. white noise.
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Figure 11. Percentual parameter difference ∆θ of Tl0 performed on twelve packages of different simulation data according to Table 4
plotted for a range of parameter variance percentages θp and remnant variance percentages np.
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However, when the plots of Tl0 are compared to the results for the sigmoid constants ofKv(t) of System I∗ & II∗, no
real difference can be found.

In addition to the twelve simulation data sets in Table 4, another eleven data sets are created. In each of these data
sets one specific parameter is varied for θp, whereas the other parameters are held at their true values (θp = 100%) as
explained in Sec. III.B. From the parameter estimation results of these data sets it becomes clear that the variation of a
single parameter with θp has an effect on all parameters. This indicates a correlation between the parameters. Except
for the individual θp variation data sets of Tl1 , Tl2 , and ωnm, all data sets show similar results in terms of ∆θ. As the
results for the Tl1 data set can be attributed to giving Tl1 a value of 0.01 instead of zero (as explained in Sec. III.B),
the only significant effects on ∆θ can be assigned to the variation of θp for Tl2 and ωnm. Considering that the only
effects for these two parameters are observed at θps of 70% and 130%, it can be concluded that within a range of 80%
to 120% for θp these two parameters show estimation results similar to the other parameters. This means that within
this range no single parameter has a significantly larger contribution to the parameter estimation. Simultaneously, it
can be concluded that an increase in human operator variance percentage np results in a similar increase in ∆θ for
each of the eleven data sets. This once again leads to the conclusion that a higher amount of human operator remnant
has a negative effect on the parameter estimation results in general.

IV.C. Local Minima

As mentioned in Sec. III.A, the nonlinear estimation problem under consideration in this paper yields a high number of
local minima. When parameter estimation is performed, the GN algorithm repeatedly fails to find the global minimum,
because it ends up at a local minimum. To show that local minima form a problem, the negative log-likelihood and a
comparison of remnant n with prediction error ε(k) are plotted in Fig. 12. Fig. 12a, Fig. 12c, and Fig. 12e show the
results of parameter estimation, done with a θp of 110%, for the closed-loop control task as defined in Sec. II with a np

of 10%. The negative log-likelihood in Fig. 12a steadily decreases to a value of 5905. The first and last iteration of the
GN algorithm are plotted in Fig. 12c and Fig. 12e. The difference in prediction error and remnant at the first iteration
is neatly reduced at the seventh iteration, indicating that there is a high probability that the global minimum is found.

(a) Negative log-likelihood for a control task with a θp of 110%.
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(b) Negative log-likelihood for a control task with a θp of 130%.
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(c) Remnant signal and prediction error for a control task with a θp of 110%.
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(d) Remnant signal and prediction error for a control task with a θp of 130%.
iteration 0, Q = 1.1545 deg2
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(e) Remnant signal and prediction error for a control task with a θp of 110%.
iteration 7,Q = 0.21748 deg2
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(f) Remnant signal and prediction error for a control task with a θp of 130%.
iteration 4, Q = 0.31871 deg2
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Figure 12. Negative log-likelihood and prediction error results of two parameter estimation runs with a np of 10% on simulated data of a
closed-loop control task with θps of respectively 110% and 130%.
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The small differences that are still visible in Fig. 12e between the prediction error and the remnant are caused by minor
differences in the simulation of the data in Simulink R© and the parameter estimation in MATLAB R©. The differences
are related to the fourth-order Runge-Kutta method used for integration. In Fig. 12b, Fig. 12d, and Fig. 12f the results
of parameter estimation, done with a np of 10%, on data of a closed-loop control task with a θp of 130% are shown.
The negative log-likelihood for this parameter estimation, plotted in Fig. 12b, erratically reduces to a value of 7625.
As this is the same closed-loop control task data set, the negative log-likelihood is expected to drop to a value of 5905
as well. The final value of 7625 indicates that the GN algorithm converged to a local minimum. This is also visible
from Fig. 12d and Fig. 12f, as at iteration 4 the prediction error still depicts a distinct difference from the remnant
signal.

To understand how the local minima problem relates to the parameter variance percentage θp and the remnant
variance percentage np, the negative log-likelihood values of the final GN iterations for the closed-loop control task
are averaged for the three noise realizations that were used before in Sec. IV.B. The results are plotted in Fig. 13. Each
of the lines represents a system with a certain amount of remnant np. Optimal parameter estimation for each system
would result in convergence to the global minimum. From these figures it becomes clear that the global minimum is
usually found when θp has a value between 90% and 110%. Below and above these values, the negative log-likelihood
is higher than the value of the global minimum, which leads to the conclusion that the GN algorithm reduces to a
local minimum. It thus seems that a clear relation exists between the initial parameter values and finding the global
minimum. When the influence of the remnant is evaluated, it becomes clear that an increasing remnant makes the
U-shaped plots flatter, indicating that the difference between the global minimum and local minima becomes smaller.
This is especially true for higher values of θp. Note that there is a big difference between the system without remnant
(np = 0%) and the system with a remnant variance percentage np of 5%. This suggests that for systems with remnant
variance percentages below 5% the difference between the global minimum and the local minima rapidly reduces.
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Figure 13. The negative log-likelihood for different parameter variance percentages θp and different remnant variance percentages np.

In Fig. 14 similar results are shown for the estimation in which only one initial parameter is varied with θp, whereas
all other initial parameter values are held at their true values (θp = 100%). All parameters, except for Tl2 and ωnm,
show near-constant lines for the negative log-likelihood as shown forKv0 in Fig. 14a. This indicates that if only one of
these parameters is varied, the probability that the global minimum is found is likely, even at high and low parameter
variance percentages. A cause for this might be that ten out of eleven parameters start with the true value as their initial
value. In Fig. 14b and Fig. 14c, the results for Tl2 and ωnm are shown. For Tl2 local minima are found below a θp of
90% and above a θp of 120%. For ωnm local minima are found below a value of 80% for θp. A higher np especially
has positive effects for ωnm as its lines become flatter with higher remnant variance percentages. These results for Tl2

and ωnm are consistent with the results in Sec. IV.B, where Tl2 and ωnm also showed to have detrimental effects on
the parameter estimation results. Note, that in Sec. IV.B the boundaries, in which parameter estimation still seems to
return proper results, are identified to range from for 80% to 120% for θp. Here, these limits seem to be even smaller
with values of 90% and 120%. From these results it can be concluded that for the estimation problem considered
in this study, the parameters Tl2 and ωnm contribute in a negative way to the local minima problem, especially for
parameter variance percentages that are further removed from the true values at 100%.
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(a) θp varied forKv0 .
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(b) θp varied for Tl2 .
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(c) θp varied for ωnm.
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Figure 14. The negative log-likelihood for different parameter variance percentages θp and different remnant variance percentages np.
For the estimations in the figures only the respective parameter is varied for θp, all other parameters are held at a θp of 100%.

V. Discussion

Parameter estimation with a proposed time-varying time-domain MLE identification procedure was done on simu-
lated data of a closed-loop manual control task. The results of the proposedMLEmethod were compared to the results
of the sliding time windowMLE method proposed by Ref. 5. A comparison of the respective VAF values of the meth-
ods leads to the conclusion that the proposed method performs better than the sliding time window method. The tested
hypothesis in Sec. I can thus be confirmed. Because the MLE method proposed in this paper uses Boltzmann sigmoids
to model the time-varying dynamics, the estimation results in a much smoother signal for the estimated time-varying
parameters in comparison to the sliding time window MLE method, which often returns rapidly changing results.
When regarding computational effort, the proposed method is much faster than the sliding time window method.

The smooth shape of the Boltzmann sigmoids also has its drawbacks in the sense that the Boltzmann sigmoid must
be rather steep for the sigmoid to start at the same values of the single-integrator at t1 and to end at the double-integrator
dynamics values at t2. Although the entire Boltzmann sigmoid is modeled over 40 s, a rapid change occurs in a very
short period of time. This is not a big problem, as it is expected that a human operator adapts his or her control behavior
rapidly from one set of dynamics to another set. However, if a more gradual transition between the dynamics needs to
be modeled, the Boltzmann sigmoid might not be suitable. Furthermore, the choice of a Boltzmann sigmoid imposes
restrictions on the shape of the transition between different sets of dynamics, if parameter estimation on polynomials
would pose less problems, this might be a better choice due to the innate freedom of a polynomial’s shape. Finally, the
Boltzmann sigmoid introduces four parameters to the parameter estimation problem for each time-varying parameter
that needs to be estimated. It thus rapidly increases the complexity of the estimation problem.

The results of the estimation problem are heavily influenced by the human operator remnant, by the choice of the
initial parameter values, and by local minima. Due to the nonlinear behavior of the human operator, the addition of a
remnant is unavoidable to model a realistic control task. It is therefore difficult to reduce the negative contribution the
remnant has on the proposed MLE method. It should be noted that the research in this study was done by giving all
parameters an equal offset with θp. This was done to be able to easily compare the results to each other. It might be
useful to study what the effects are of taking randomized values of the initial parameter values. The problem related
to the initial parameter values can be reduced by, for example, using a genetic algorithm as proposed in Ref. 3. A
major drawback of such a genetic algorithm is the amount of computational time needed and the fact that there is
no guarantee that the result reduces to initial parameter values that enhance the parameter estimation results. A clear
correlation was found between the initial parameter values and finding the global minimum. Increasing the chance
of finding acceptable initial parameter values thus decreases the local minima problem. The local minima problem is
also related to the gradient-based GN output error method used in this study. Other methods such as convexification,12
a random search, interval analysis,14 or simulated annealing could help resolve the local minima problem. The results
in this study clearly show that the presence of expected levels of human operator remnant signal has a severe negative
effect on the parameter estimation results. Therefore, the estimation method needs to be adjusted to be able to cope
with these remnant signal levels. For future research it is thus recommended to study a filter error method15 which
combines the output error method with a Kalman filter. Although a filter error method is mathematical more complex
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and computationally intensive, it seems to be a promising method for solving the local minima problem encountered
in this study. The filter error method can also help with estimating part of the remnant, which might result in better
parameter estimates.

Finally, simulated data was used for the reason that it is easy to know what the true values–and thus the optimal
parameter estimates–of the original dynamic system are. Comparing the results of simulated data generated with a
Boltzmann sigmoid and a linear function leads to the conclusion that a different transition between single-integrator
and double-integrator dynamics influences the proposed estimation method. Therefore, future research should also
focus on using experimental data to understand the effect of the proposed MLE method on the difference between a
real-life and a simulated system.

VI. Conclusions

In this paper a maximum likelihood estimation method is proposed for the estimation of linear time-varying pilot-
vehicle system parameters in the time-domain. The parameter estimation is performed on simulated data of a closed-
loop manual control task, which contains time-varying human operator dynamics as well as time-varying vehicle
dynamics. The time-varying system behavior is modeled utilizing Boltzmann sigmoids. The proposed method is
compared to a sliding time windowmaximum likelihood estimation method. Although the proposed method performs
better than the sliding time window method, it is heavily influenced by the human operator remnant, by the choice of
the initial parameter values, and by local minima. Because improvements can be made for each of these influential
factors, future research is recommended.
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Chapter 1

Introduction

Human manual vehicle control behavior is a nonlinear, time-varying, closed-loop process.
The time-varying aspect of this behavior is the primary reason that traditional system
identification methods are of limited use for contemporary research in comparison to
adaptive methods. Proper system identification can help explain the effects of different
perceptual modalities on a human’s control behavior through the determination of model
parameters (e.g. weighing gains and time delays) from experimental data. This knowledge
can, for example, be used to design advanced manual control systems. It is thus important
to investigate time-variant system identification techniques. The current challenge in the
research area is to discover and understand suitable human control behavior parameter
estimation methods to further quantify human time-varying manual control. In the past
decades the Control and Simulation (C&S) division at DUT has been researching control
systems for both aerospace and automotive applications. Effective time-variant parameter
estimation methods can significantly help advance research done at the division. Recent
research on pilot control behavior by Zaal [2011] and on time-variant neuromuscular
admittance by Verspecht [2011] verify and advocate the need for time-varying system
identification methods. To understand what aspects of time-varying system identification
this thesis aspires to highlight, the research goals are described in Section 1-1 followed by
the outline of this thesis in Section 1-2.

1-1 Preliminary Thesis Objectives

The main objective of this thesis is to use Maximum Likelihood Estimation (MLE),
a time-domain parameter estimation method, to get an advanced understanding of
time-varying parameter estimation and to study the effects of the human muscles tensing
on a control device, which will be modeled as a time-variant system.

Maximum Likelihood Estimation of Linear Time-Varying Pilot-Vehicle System Parameters M. Kers



28 Introduction

1-2 Preliminary Thesis Outline

This preliminary report provides the reader with a model proposal for the simulations to be
done and with background information required to understand the model. In Chapter 2, a
concise overview of relevant system identification theory will be provided. Chapter 3 gives
a more in-depth discourse on the MLE system identification and parameter estimation
method. An overview of relevant literature is given in Chapter 4. The model proposed
for the simulations that are done for this research and the associated considerations are
specified in Chapter 5. Finally, some initial conclusions will be drawn in Chapter 6.
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Chapter 2

System Identification Fundamentals

To clarify why the research in this report focuses on MLE as a system identification
technique, and to give some practical background information on system identification
in general, this chapter provides an overview of commonly used mathematical system
identification notions necessary for the research in this thesis. Note that it is not intended
to give a complete overview of the field in this chapter.

System identification techniques are used to develop parametric models of dynamic systems
by solely using experimental data sequences of such a system’s input and output quantities
[Ledin, 2003]. Two renowned contributions to the research area of system identification
are [Ljung, 1999] and [Pintelon & Schoukens, 2001], which are recommended for readers
interested in more elaborate and in-depth theories. The information provided in this
chapter is divided into three sections. In Section 2-1 the fundamental differences between
nonlinear systems and a variety of linear system classes will be described. The important
difference between open-loop and closed-loop systems within system identification is
discussed in Section 2-2. Section 2-3 explains the differences between working in the
frequency-domain and time-domain for parameter estimation methods and gives a concise
overview of parametric and nonparametric methods in both domains.

2-1 Nonlinear and Linear Systems

In this section the differences between nonlinear and linear systems will be
described. As stated before, human manual vehicle control behavior is a nonlinear,
time-varying, closed-loop process. Contemporary system identification research
methods frequently consider this process as (quasi-)linear and time-invariant. As in
[Nieuwenhuizen et al., 2008] the process is often modeled with Linear Time-Invariant (LTI)
models, such as the parametric Autoregressive Exogenous (ARX) model
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(Time-Varying Autoregressive Exogenous (TVARX) models also exist). However, as
mentioned in [Zaal et al., 2009] the accuracy of LTI models is often affected by biases
and the control tasks require highly specific demands. Therefore, it is useful to explore
whether or not other models, such as time-varying or parameter-varying ones, might be
able to reduce these shortcomings. For the system identification research in this report
it is helpful to investigate various system classes: those for nonlinear and linear systems.
The state-space description of a nonlinear system with state variables x(t), input u(t) and
time t can be written as:

ẋ(t) = f(x(t), u(t), t) (2-1)

y(t) = g(x(t), u(t), t) (2-2)

where ẋ(t) is referred to as the state equation and y(t) as the output equation. The input
signal u in this chapter should not be confused with the pilot control output u used in
chapter 1. For the prevalent LTI class the state-space equations are

f(x(t), u(t), t) = Ax(t) + Bu(t) (2-3)

g(x(t), u(t), t) = Cx(t) +Du(t) (2-4)

where the A, B, C and D matrices define the system. Compare Equations (2-3) and (2-4)
with the set of Equations for an Linear Time-Varying (LTV) system:

f(x(t), u(t), t) = A(t)x(t) + B(t)u(t) (2-5)

g(x(t), u(t), t) = C(t)x(t) +D(t)u(t) (2-6)

where the differences with an LTI system obviously are the time-dependent state-space
matrices A(t), B(t), C(t) and D(t). LTV systems are created when a nonlinear system
is linearized about a time-varying operating point [Sanyal et al., 2005]. Finally, for
the Linear Parameter-Varying (LPV) class the state-space matrices are dependent on a
time-varying parameter vector Θ(t), as becomes clear in Equations (2-7) and (2-8).

f(x(t), u(t),Θ(t), t) = A(Θ(t))x(t) + B(Θ(t))u(t) (2-7)

g(x(t), u(t),Θ(t), t) = C(Θ(t))x(t) +D(Θ(t))u(t) (2-8)

The state-space equations for the LTI, LTV and LPV classes as discussed here, are based
on those mentioned in [Apkarian et al., 1993]. Another significant observation made in this
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article is that for utilization of LTI and LTV classes the state-space data A, B, C and D
or A(t), B(t), C(t) and D(t) need to be known beforehand, whereas the LPV class relies
on information of the time-varying parameter vector Θ(t).

2-2 Open-Loop and Closed-Loop Control Task

In Figure 2-1 the general closed-loop process for a human operator controlling a vehicle is
shown. Here the operator is actively controlling the vehicle dynamics Hc, while following a
target signal ft. This forcing function ft is used for excitation of the system, and is usually
modeled as a multisine signal. The error signal e between the target forcing function ft
and the output y can be displayed on a screen, so that the operator can see the error,
minimize it and ultimately optimize his control behavior. The operator’s control signal
u consists of the linear response Hp, which is combined with a remnant n, a white noise
signal, to account for nonlinear behavior.

ft e

operator

linear

n

u vehicle y

response, Hp dynamics, Hc−

Figure 2-1: Closed-loop manual control task.

With the system identification techniques, the operator part of this simulation is
particularly of interest. This is enclosed in the dashed line in Figure 2-1, and is represented
as an open-loop process in Figure 2-2. Note that the error e and the operator control
output signal u are uncorrelated in the open-loop process, while they are correlated in
the closed-loop process due to the feedback loop. Because of this correlation difference,
and the application of parameter estimation on the open-loop, while actually working in a
closed-loop model, it is important to check whether or not the results from the open-loop
output error methods are realistic within the closed-loop.

2-3 Frequency- and Time-Domain Parameter Estimation

This section contains a discussion on the utilization of parameter estimation methods.
The advantages and disadvantages of system identification in the frequency-domain and
the time-domain will be compared. Also, an initial explanation will be given on the choice
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e

operator

linear

n

u

response, Hp

Figure 2-2: The output error open-loop process.

of MLE for the research in this report. Although nonparametric estimation methods are
included in an overview of methods in this section, they will not be discussed in detail,
because the research focuses on parametric MLE.

System identification can be performed in two complementary domains: in the
frequency-domain and in the time-domain. One of the main advantages of the
frequency-domain mentioned by Ljung [2007] is that it is, in certain cases, able to handle
continuous-time data, which is not directly possible in the time-domain. Two other
important advantages are that no a priori information, such as system order and sources
of noise, is needed, and that spectral analysis in the frequency domain can be done with
relatively fast computation.

In the time-domain, time measurements are sampled and represented by discrete values.
A key advantage of the time-domain is that the noise can be separated from signals,
due to the utilization of a priori information. Moreover, as noted by Ljung & Glover
[1981] the time-domain offers a wide range of different models, because almost any a priori
information about the system can be used to select a model set with a small number of
estimation parameters relative to the number of parameters needed to describe a frequency
response function. Although this limited number of parameters might lead to more
complex estimation procedures, it oftentimes is one of the main reasons why identification
in the time-domain is preferred over the identification in the frequency-domain. From
these advantages and disadvantages it becomes clear that there is a delicate balance in
considering either the frequency-domain or the time-domain in system identification in
terms of the main purpose of the system under consideration.

Beside the consideration of identification in one of the domains, a relevant discrimination
can be made of parameter estimation in the frequency-domain or parameter estimation in
the time-domain as shown in Figure 2-3. This figure shows the steps needed for parameter
estimation of pilot models. From [Zaal et al., 2009] and [Zaal & Sweet, 2011] it becomes
clear that when fitting of a parametric model is desired, frequency-domain techniques, such
as wavelet transformation, require two steps. First, a frequency response estimation is done
in the time-domain, followed by the parameter estimation in the frequency-domain. On the
other hand, parameter estimation can be performed immediately in the time-domain with
time-domain techniques such as MLE. Direct estimation in the time-domain is deemed
advantageous, but the Fourier Coefficients (FC) used to estimate the nonparametric
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frequency response in the additional step can function as a useful tool to check if the
results obtained from time-domain methods are correct.

Figure 2-3: Comparison of pilot model parameter estimation methods. [Zaal et al., 2009].

A great number of different methods exist within system identification to perform
estimation. These methods have been extensively described in system identification
literature, but no clear overview is given due to the ambiguity of some terms used.
Moreover, it is difficult to group the methods correctly: beside nonparametric and
parametric methods, semiparametric and hybrid methods have also been proposed. In
Table 2-1 an attempt is made to provide a general overview of estimation methods
used for nonparametric estimation and parametric estimation in the frequency-domain
and time-domain. The methods in the table are described by Ljung [1999] and
Pintelon & Schoukens [2001]. Fan & Yao [2005] also provide relevant, in-depth information
on the individual methods in the table. As the research in this thesis focuses on parameter
estimation in the time-domain, Table 2-1 shows that making the choice of working with
parameter estimation methods in the time-domain, one is left with just two options: the
MLE and Least Squares Estimation (LSE) methods. LSE and MLE are related in the
sense that LSE can be seen as a form of MLE when the experimental prediction errors
have a normal distribution. In this thesis only MLE will be evaluated. In chapter 3 a more
extensive explanation of the MLE method will be given.
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Table 2-1: Overview of the utilization of nonparametric and parametric estimation methods
in the frequency- and time-domain.

Frequency-Domain Time-Domain

Nonparametric Methods Impulse Response Analysis Impulse Response Analysis
Step Response Analysis Step Response Analysis
Correlation Analysis Correlation Analysis
Spectral Analysis Direct Estimation
Wavelet Analysis Maximum Likelihood Estimation

Least Squares Estimation
Parametric Methods Maximum Likelihood Estimation Maximum Likelihood Estimation

Least Squares Estimation Least Squares Estimation
Spectral Analysis
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Chapter 3

Maximum Likelihood Estimation

Maximum Likelihood Estimation is a statistical parameter identification method
introduced by Ronald Aylmer Fisher in 1912. In this study, it will be applied to estimate
parameters of dynamic models. Both [Zaal et al., 2009] and [Zaal & Sweet, 2011] provide
elaborate descriptions of the method, which will be used to introduce the MLE method
in Section 3-1. The quality assessment of the MLE can be done with the Cramér-Rao
Inequality discussed in Section 3-2. For optimization of estimation methods a variety
of smoothing algorithms is available as clearly depicted by Morrison [1969]. In Section
3-3 the Gauss-Newton (GN) algorithm is described for optimization of the MLE method,
because this gradient-based optimization method is the classical approach for solving MLE
problems [Zaal et al., 2009].

3-1 Definition of the Method

The first step that needs to be taken to find an estimate of model parameters with MLE,
is the definition of a parameter vector Θ as in Equation (3-1).

Θ = [unknown parameters]" (3-1)

All unknown model parameters that are intended to be estimated, should be stated in this
parameter vector. Next, the estimate Θ̂ of parameter vector Θ can be found by maximizing
the likelihood function L(Θ) in Equation (3-2), which is defined as the joint conditional
Probability Density Function (PDF) of the prediction error for m measurements of a
control signal u(k).

L(Θ) = f(ε(1), ε(2), . . . , ε(k), . . . , ε(m) | Θ) (3-2)
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In Equation (3-2) the residuals or prediction error ε(k) is the difference between the
measured control signal u(k) and the estimated control signal û(k) at discrete instants k.
Assuming the measurement noise n is an additive zero-mean Gaussian white noise signal
(this assumption will be explained in Section 3-2), the conditional probability density
function for one measurement of prediction error ε(k) is given in Equation (3-3).

f(ε(k) | Θ) =
1√

2πσn
2
e
−

ε2(k)

2σ2
n (3-3)

In this Equation σn is the standard deviation for the measurement noise signal n. To
maximize the conditional probability density function, the negative natural logarithm is
minimized, which provides a more straightforward optimization problem. When a global
minimum of the negative log-likelihood is found, the resulting parameter vector Θ̂ML is
the maximum likelihood estimate. Doing this for all prediction errors in L(Θ) results in
Equation (3-4).

Θ̂ML = arg min
Θ

[−lnL(Θ)] = arg min
Θ

[

m

2
ln σn

2 +
1

2σ2
n

m
∑

k=1

ε2(k)

]

(3-4)

As noted by Zaal et al. [2009] Equation (3-4) summarizes the parameter estimation problem
with MLE. Depending on the application (e.g. model or data) Equation (3-4) can represent
a linear or a highly nonlinear optimization problem.

3-2 The Cramér-Rao Inequality

The quality of the identified parameters obtained with an MLE method can be
assessed with the Cramér-Rao Inequality. If the additive measurement noise n from
Figures 2-1 and 2-2 has an unbiased Gaussian distribution, it is possible to use the
Mean Square Error (MSE) matrix, which is formulated as the probability in Equation (3-5)
according to [Ljung, 1999].

P = E

(

[

Θ̂(ε(k))−Θ0

][

Θ̂(ε(k))−Θ0

]"
)

(3-5)

Here Θ̂ is the estimated parameter vector and Θ0 is the true value of the parameter
vector. The probability in Equation (3-5) can only be calculated if the true value Θ0 of
the parameter vector is known, and thus imposes a prerequisite for using the MSE matrix.
The Cramér-Rao Inequality states that the covariance matrix of any unbiased estimator is
at least as high as the inverse of the Fisher Information Matrix (FIM) MΘΘ as shown in
Equation (3-6). An unbiased estimator of which the variance asymptotically approaches
this so-called Cramér-Rao Lower Bound (CRLB) when the sample size increases, is said

M. Kers Maximum Likelihood Estimation of Linear Time-Varying Pilot-Vehicle System Parameters



3-3 Gauss-Newton Optimization 37

to be efficient. Because of this, MLE is conceived as the best possible estimator for large
sample sizes. The FIM MΘΘ is stated in Equation (3-7), is symmetrical, and should
be positive definite, meaning that the matrix has full rank, to be inverted for the GN
optimization described in Section 3-3.

E

(

[

Θ̂(ε(k))−Θ0

][

Θ̂(ε(k))−Θ0

]"
)

≥ M−1
ΘΘ (3-6)

MΘΘ = E

(

[

∂

∂Θ
lnL(Θ)

][

∂

∂Θ
lnL(Θ)

]"
)
∣

∣

∣

∣

∣

Θ=Θ0

=

(3-7)

−E

[

∂2

∂Θ2
lnL(Θ)

]

∣

∣

∣

∣

∣

Θ=Θ0

When the joint conditional PDF of Equation (3-3) is substituted in the likelihood function
L(Θ) of Equation (3-7), the relation in Equation (3-8) can be obtained for the FIM, as
stated in [Zaal et al., 2009].

MΘΘ =
1

σ2
n

m
∑

k=1

(

∂ε(k)

∂Θ

)2

(3-8)

3-3 Gauss-Newton Optimization

In this section the GN algorithm will be introduced to optimize parameter estimation
of unconstrained problems with MLE. As mentioned in [Chu, 1987] the GN method is
probably one of the most used algorithms in combination with MLE and further optimizes
the negative log-likelihood of the likelihood function L. It is a gradient-based method and
Equation (3-9) is its iterative parameter estimate update equation.

Θ̂(k + 1) = Θ̂(k)− α(k)M−1
ΘΘ(Θ̂(k))

∂L(Θ̂(k))

∂Θ
(3-9)

The line-search parameter α in this equation has a value 0 ≤ α ≤ 1, and is updated before
each iteration to ensure optimal minimization of the likelihood function L along the vector

defined by M−1
ΘΘ(Θ̂(k))∂L(Θ̂(k))

∂Θ . The nonlinear estimation problems under consideration
in this thesis yield a high number of local minima [Ljung, 2010]. The GN algorithm is
very sensitive to these local minima in the sense that when it converges to a certain local
minimum, finding the global minimum is impossible. The incorporation of a line-search in
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the GN method is advocated in [Fletcher, 2000] to increase the chance of convergence to the
global minimum. Fletcher [2000] mentions two problems related to utilization of the GN
algorithm. First of all, rank deficiency can occur in the state-space matrices of the system,
which may cause the algorithm to fail, for example by converging to a non-stationary
limit-point. A second cause of failure or extremely slow convergence is contributed to large
residual problems (i.e. large initial parameter estimates), which primarily affect nonlinear
problems with small-sized samples. Despite these problems, the line-search GN method
remains a straightforward steepest-descent approach and has, up until now, provided
satisfactory results in combination with MLE. Hybrid methods with the GN algorithm
can also be used to obtain better results. In the case a hybrid method is used, the GN
descent is usually applied in the final stage of optimization [Grouffaud et al., 1997].
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Chapter 4

Literature on Parameter Estimation

An assortment of papers will be considered in this chapter to provide a background for
the research this thesis is contributing to. Blanchard [2010] very accurately describes
the importance of parameter estimation: Parameter estimation is an important problem,
because in many instances parameters cannot be physically measured, or cannot be measured
with sufficient accuracy in real time applications. Rather, parameter values must be inferred
from available measurements of different aspects of the system response. In Section 4-1
parameter estimation methods are discussed based on a numerous amount of papers.
Section 4-2 starts with a concise history of the research area of pilot control behavior
and gives a short description of three papers that are essential for the further research
done in this thesis considering pilot control behavior. In each of these three sections the
model used, the parameter estimation method and the results of the respective papers will
be discussed. The conclusions on the literature study in this chapter are given in Section
4-3.

4-1 Time-Varying Parameter Estimation Methods

Parameter estimation is oftentimes subject to a high computational load, due to the large
amount of parameters that needs to be estimated. This is especially true for LTV systems,
where the linearization of time-varying parameters add to the amount of parameters that
need to be estimated. An assortment of search and selection algorithms has thus been
developed to determine which parameters are most significant for a good estimation.
Due to extensive research done in the field of parameter estimation in LTV systems, a
considerable amount of literature has been written. In this section the most important
parameter estimation methods and their aspects will be given with a focus on methods for
LTV systems. To solve basic parameter estimation problems a wide variety of methods has
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been proposed. In Section 4-1-1 an indirect estimation method is discussed: orthogonal
functions. Direct parameter estimation methods for LTV systems are also plentiful.
Bayesian approaches are often used for parameter estimation, where PDFs are being
considered representations of uncertainty [Blanchard, 2010]. Chan & Zhang [2011] broadly
classify the direct estimation methods into three categories: adaptive filtering or Kalman
filtering (Section 4-1-2 and Section 4-1-3 respectively), Basis Expansion Modeling (BEM)
(Section 4-1-4), and Weighted Least Squares (WLS) (Section 4-1-5).

4-1-1 Orthogonal Functions

One of the most comprehensively discussed methods is the utilization of orthogonal
functions. This can be traced back to Chen & Hsiao [1975] and Rao & Sivakumar [1975]
who used Walsh functions for parameter estimation in LTI systems, where Tzafestas
[1978] applies Walsh functions to a time-varying system with parameters modeled as a
finite-order polynomial. The main advantage of orthogonal functions is that they transform
the integration of signals into a simpler integration of these functions by making use of
the so-called operational matrix of integration of the corresponding orthogonal functions
[Rémond et al., 2008]. The orthogonal functions in Table 4-1 are mainly used for parameter
estimation and mainly focus on LTI systems.

Table 4-1: Overview of frequently used orthogonal functions for parameter estimation with
corresponding references to some examples of research.

Orthogonal Functions Examples of Research

Block-Pulse functions Kwong & Chen [1981]
Palanisamy & Bhattacharya [1981]
Hwang & Guo [1984a]

Chebyshev polynomials Paraskevopoulos [1983]
Paraskevopoulos & Kekkeris [1983]
Shih [1983]

Fourier series Paraskevopoulos et al. [1985]

Hermite polynomials Paraskevopoulos & Kekkeris [1988]

Laguerre polynomials Paraskevopoulos & King [1976]
Clement [1982]
Hwang & Shih [1982]

Legendre polynomials Chang & Wang [1983]
Hwang & Guo [1984b]
Paraskevopoulos [1985]

Walsh functions Rao & Sivakumar [1975]
Tzafestas [1978]
Chen & Hsiao [1975]

Many of the functions used for parameter identification turn out to be (hypergeometric)
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orthogonal polynomials. These polynomials are applied to solve the state equations of
a linear system. The state and forcing functions of the system identification problem
are usually replaced by a series of one of these polynomials together with their expansion
coefficients in the differential equations. The differential equations of the state space system
which govern the dynamic behavior of the system are then transformed in a set of algebraic
equations which are relatively easy to solve. This transformation is the main difficulty,
which is solved by the integration properties of the orthogonal functions. Because of the
importance of orthogonal polynomials in parameter estimation research and because of the
opaqueness of the links between these polynomials, Appendix A provides a concise overview
of how these polynomials relate to each other. In more recent research, many of these
orthogonal functions have been applied to parameter estimation in mechanical systems,
for example in [Pacheco & Steffen Jr., 2002], [Rémond et al., 2008] and [Morais et al.,
2008]. Due to the transformation performed by the orthogonal functions, the functions
can be classified as an indirect method of parameter estimation. Orthogonal functions
are also frequently used in time-varying nonlinear estimation problems in addition to the
Volterra series, Wiener series and Polynomial Chaos (PC), three other nonlinear estimation
methods.

4-1-2 Adaptive Estimation

Adaptive estimation (or filtering) makes use of past measurements, which is exactly the
reason that the convergence speed is limited. Examples of adaptive estimation are the
Least Mean Squares (LMS) and Recursive Least Squares (RLS) methods, which estimate
parameters recursively from the input and measured output. As discussed in Chapter 2
LSE can be seen as a form of MLE when the errors have a normal distribution. In this
broad classification MLE thus also belongs to adaptive estimation. As MLE was already
discussed in Chapter 3 it will not be further discussed in this section. In more recent
years, Local Polynomial Modeling (LPM) techniques have successfully been introduced to
the field of engineering, for example by Y. Zhu & Pagilla [2003] and Chan & Zhang [2011].
LPM was originally applied as a nonparametric method, but these papers show that it
can be a useful method for linear parametric systems as well. Y. Zhu & Pagilla [2003] give
a clear explanation of how the method works: Local polynomial approximation in a finite
time interval is used to represent the unknown time-varying parameters. The coefficients of
the polynomials are estimated locally instead of the unknown time-varying parameter. The
accuracy of the approximation depends on the order of the polynomial and the width of the
time interval, which can be chosen. The paper also shows how LSE and gradient algorithms
can be modified to include the LPM method. The results of [Chan & Zhang, 2011],
which uses LPM combined with a Variable Bandwidth Selection (VBS), show superior
performance in comparison with conventional recursive LSE and generalized random walk
Kalman Filters (the latter will be discussed in Section 4-1-3). Because of the positive
results and the possibility to augment the LPM method, it might be useful to see if
this can be implemented for the MLE method. In this section the most prevalent
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methods of adaptive estimation have been discussed. Other methods for LPV system
identification have also been proposed. Some examples are: modeling parameters with
smoothing splines [H. Zhu & Wu, 2007], wavelet methods [Verspecht, 2011], ensemble
methods [MacNeil et al., 1992], neural network methods [J. Guo & Dong, 2011], forgetting
factor methods [Asutkar et al., 2009a] and hybrid methods.

4-1-3 Kalman Filtering

The Kalman Filter (KF) is an optimal recursive estimator for linear systems with
Gaussian noise based on Linear Dynamical System (LDS) theory. The KF originated
as an alternative to the static Wiener Filter (WF). It is a Bayesian method, and
estimates the state of a system using the state-space method from the input measurement
data under influence of noise. Important contributions to the research on KFs
include [Nahi, 1969], [Brown, 1983] and [Gelb, 1999]. Another type of filter is the
Extended Kalman Filter (EKF), which is used for parameter estimation in nonlinear
systems. A qualitative study on the properties of KFs is done by L. Guo [1990], who
notes that the parameter tracking errors with a KF are small when parameter variation
and noise are small. The main drawback of KFs and EKFs is that they do not give
good results when the parameters are varying too fast, which is usually the case with
a human operator. A solution to this problem has been proposed by Wittenmark
[1979] by combining a conventional KF with a coarse estimator to estimate time-varying
parameters. Asutkar et al. [2009b] also show that fast-varying parameters can successfully
be estimated using a KF when the system is modeled as a TVARX system. Another
problem often encountered in parameter estimation is the large amount of data that
has to be processed, resulting in heavy computational loads to solve the problem. The
Ensemble Kalman Filter (EnKF) is designed with Monte Carlo approximation theory in
such a way that it can handle large problems [Evensen, 2009]. KFs are also often
combined with generalized random walks, which describe the variations of the system
state [Chan & Zhang, 2011]. These generalized random walk KFs are frequently used in
real applications because of their simplicity and efficiency.

4-1-4 Basis Expansion Modeling

In BEM, time-varying parameters are expressed as a weighted sum of basis vectors and
approximated by a linear combination of known basis functions. The basis functions
used for the estimation are dominant in terms of the performance of the estimation
[Chan & Zhang, 2011]. An optimal selection is, however, not always possible and the basis
functions usually have to be chosen before the identification. An advantage of the BEM
is that it is able to handle fast-varying parameters. In [Sanyal et al., 2005] temporal basis
expansion approaches are used for parameter estimation in an LTV system: the dynamic
stiffness of the elbow is estimated. The authors note that a major disadvantage of BEM is

M. Kers Maximum Likelihood Estimation of Linear Time-Varying Pilot-Vehicle System Parameters



4-2 Pilot Control Behavior 43

the large increase in the number of parameters that must be estimated. A term selection
algorithm, variously called Least Absolute Shrinkage and Selection Operator (LASSO) or
Basis Pursuit Denoising (BPDN), eliminates unnecessary terms and is used to mitigate this
large number of parameters. In [Sanyal et al., 2005] a smooth variation of the parameters
is achieved by modeling the variations with orthogonal polynomials such as the Chebyshev
or Legendre polynomial (also refer to Appendix A). Periodic variations are then expanded
onto sinusoids, and sharp variations of the parameters are modeled throughWalsh functions
or Haar wavelets (square-shaped wavelets). The LASSO algorithm functioned correctly,
but unfortunately the setup of this BEM experiment led to experimental data lacking time
variations. A recommendation was to use Laguerre filters for the basis functions, which
might be able to cope with the transient changes. Although more focused on adaptive
estimators, Abu-Naser & Williamson [2006] discuss the convergence of basis functions and
define the Persistent Excitation (PE) condition. This PE condition together with passivity
are requirements for the basis function algorithms to converge. That these conditions hold
for LTV systems is shown in [Abu-Naser & Williamson, 2007].

4-1-5 Weighted Least Squares

The WLS method is similar to conventional LSE, but employs kernels or windows to
assign larger weights to local data and smaller weights to remote data. The method is
shortly discussed by Chan & Zhang [2011]. The time-varying parameters are estimated
by minimizing a weighted sum-of-square estimation errors. Key to the performance of the
WLS method is the selection of the window size or kernel bandwidth. Although attempts
have been made to improve the WLS method [Campi, 1994], automatic data-driven
kernel-bandwidth selection for WLS remains a difficult problem, which hinders its practical
implementation.

4-2 Pilot Control Behavior

4-2-1 A Short History of Pilot Control Behavior

The research done in [McRuer et al., 1965] and [McRuer & Jex, 1967] on quasi-linear
pilot models and the crossover theorem form the so-called cornerstones of the research
on pilot control behavior. McRuer’s ideas gradually developed during the 1970s, and other
researchers contributed by focusing on single- and multi-loop identification methods in both
the frequency- and time-domains. A focus on time series analysis, started in the 1970s, and
continued in the early 80s, in for example, [Altschul et al., 1984] and [Biezad & Schmidt,
1984]. The research area, however, suffered from a lack of new, innovative contributions,
due to the limitations in system identification theory, a shortfall of significant insights in
human pilot behavior, and the modeling thereof. This continued until the 1990s when new
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developments in the area of system identification by Ljung [1999] and Pintelon & Schoukens
[2001] on the one hand, and a particular focus on pilot control behavior at DUT on the
other, resulted in new contributions on topics such as model validation, identification with
FC, and LTI models. Due to limitations of these methods, contemporary research now
shows a shift from LTI models to LTV and LPV models. Nowadays, research is also being
done on system identification methods that have not previously been combined with pilot
model parameter estimation, such as LSE, wavelet, and MLE techniques.

4-2-2 Linear-Time Invariant Model Estimation

In this section, the paper of [Nieuwenhuizen et al., 2008] on human multichannel perception
and control in LTI systems will be reviewed to provide a background for the perception and
control with MLE, which will be discussed in Section 4-2-3. In the paper a new two-step
identification method using LTI is compared with the conventional FC method. According
to the paper, the use of FC introduces certain limitations in terms of the resolution in
the frequency domain, the variance of the identified frequency response functions, and the
design of the forcing functions, which are reduced with the LTI method. In Figure 4-1 the
closed-loop manual control task is shown, with forcing function ft, tracking error signal e,
state signal x, error frequency response functionHpe, state frequency response functionHpx,
remnant signal n, control signal u, disturbance forcing function fd and system dynamics
Hc. The proposed identification method consists of the following steps:

1. Estimating the frequency response functions Hpe and Hpx;

2. Determining the multichannel model parameters and fitting them to the estimated
frequency response functions.

As mentioned in Section 1-1, one of the goals of this thesis is to decrease the measurement
time needed to come up with estimation results of equivalent quality. A relevant notion in
this paper is that for estimation long measurement times are needed to observe sufficiently
low frequencies.

The paper compares the proposed LTI identification method with the conventional FC,
validates them offline with Monte Carlo simulations and applied to experimental data from
the SIMONA Research Simulator (SRS). The LTI method turned out to be significantly
better in estimating the pilot model parameters, due to the assumption of a model structure
and the incorporation of the pilot remnant n. The proposed method was also better in
handling higher levels of pilot remnant in comparison to the FC method, and also resulted
in a lower variance of the parameter estimates.
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Figure 4-1: Multiloop closed-loop manual control task. Based on [Nieuwenhuizen et al.,
2008].

4-2-3 Genetic Maximum Likelihood Estimation

Following the paper of [Nieuwenhuizen et al., 2008], the importance of researching new
identification methods for human control behavior was underlined. In [Zaal et al., 2009]
a new MLE method augmented with a Genetic Algorithm (GA) is introduced to increase
the probability of finding the global minimum of the nonlinear optimization problem. The
classical MLE method, uses a gradient-based algorithm, and is very dependent on the
initial parameter guess. Experimental data of a disturbance-rejection task for aircraft
pitch attitude control is used in this paper for application of the MLE method. In this
section the paper will be discussed, and to illustrate the parameter estimation problem the
multichannel pilot model will be described in detail. The closed-loop aircraft pitch control
task is shown in Figure 4-2 and can easily be compared to Figure 4-1.

ft e

n

u
Hθ,δe−−

Pilot

Hpe

Hpθ

fd

θ

θ
Kδe,u

δe

Figure 4-2: Multiloop closed-loop aircraft pitch control task. Based on [Zaal et al., 2009].

In this paper the MLE method is used as a time-domain technique, which results in
less restrictions on the design of forcing functions. In order to use spectral analysis for
comparison of the results, the decision was made to use the sums of 10 sine waves, so-called
multisines, for the target forcing function ft and disturbance forcing function fd in Figure
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4-2:

ft(t) =
10
∑

k=1

At(k)sin(ωt(k)t+ φt(k)) (4-1)

fd(t) =
10
∑

k=1

Ad(k)sin(ωd(k)t+ φd(k)) (4-2)

where At and Ad are the sinusoidal amplitudes, ωt and ωd the sinusoidal frequencies, and φt

and φd the sinusoidal phase shifts. The pitch control dynamics Hθ,δe are controlled by the
pilot, which consists of linear frequency response functions Hpe and Hpθ as in Equations
(4-3) and (4-4).

Hpe(jω) = Kv

(1 + jωTlead)2

(1 + jωTlag)
e−jωτvHnm(jω) (4-3)

Hpθ(jω) = (jω)2Hsc(jω)Kme
−jωτmHnm(jω) (4-4)

Equation (4-3) describes the pilot response to visual motion cues and is similar to the error
frequency response function Hp in Figure 2-1. The equation contains visual-perception gain
Kv, visual-lead time constant Tlead, visual-lag time constant Tlag and visual-perception
delay τv. The neuromuscular system is modeled as a second-order mass-spring-damper
system with transfer function Hnm in Equation (4-5).

Hnm(jω) =
ω2
nm

ω2
nm + 2ζnmωnmjω + (jω)2

(4-5)

Here ωnm is the neuromuscular natural frequency and ζnm the neuromuscular damping
ratio. The pitch-motion perception channel Hpθ in Equation (4-4), which in fact is the
state frequency response Hpx from Figure 4-1 for pitch, contains a transfer function for
the semicircular canals of the vestibular system Hsc, a motion-perception gain Km, and a
motion-perception time delay τm. The semicircular-canal dynamics are given in the paper
by Equation (4-6) with semicircular-canal time constants Tsc1 = 0.11s and Tsc2 = 5.9s.

Hsc(jω) =
1 + jωTsc1

1 + jωTsc2

(4-6)

Other relevant parameters in Figure 4-2 are the tracking error signal e, pitch angle θ, pilot
remnant signal n, control signal u, pitch stick gain Kδe,u, and elevator deflection δe. The
parameter vector Θ in Equation (4-7) contains the eight parameters that will be estimated.

Θ = [Kv Tlead Tlag τv Km τm ζnm ωnm]
" (4-7)
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The MLE method is applied to the model given in Figure 4-2. To achieve a higher
probability of finding the global minimum of the optimization problem a stochastic search
technique, the GA, is used. Search techniques like the GA were developed to avoid problems
associated with local minima by searching broad regions of the parameter space at the cost
of greatly increased convergence time [Westwick & Kearney, 2003]. A GA is based on the
principle of survival of the fittest, as considered in evolutionary biology, by application
of random genetic functions such as selection, mating, crossover, and mutation. Due to
these functions, the population evolves toward increasingly better solutions, which means
they have a better fit to the optimization problem. In Figure 4-3 the GA is visualized
based on the paper. A population of parameter sets is shown depicted by circles with
different radii indicating their respective values. From this population a selection is made,
where the members with highest fitness have higher probability of being selected. The
parameters of each member are then coded into binary genes within their lower and upper
bounds, which are taken to be 0 and 2 respectively in this example. For each parameter
set two members mate. During mating random crossover of the genes occurs with a certain
probability, usually set to 0.7. The offspring will then mutate with a certain probability,
which is typically very low (0.01 in this case). After decoding all offspring from binary
codes into real values, a new population is selected based on their fitness. The genetic
optimization continues until a specified number of iterations have been performed. A
bigger population results in more accurate results, but in that case the GA also needs
more computational power. Therefore, the gene pool is usually limited in size and the
resulting parameter estimates are relatively inaccurate. Furthermore, the GAs are not
deterministic and provide different results each time they are used. Because of these
reasons the paper indicates that GAs should not be used as the sole estimation method
for pilot model parameter estimation.

To enhance the parameter estimates, the GN algorithm as described in Section 3-3 is used
to get even closer to the global minimum. Application of the GA also prevents possible
unstable behavior of the GN algorithm, which might occur with large initial parameter
errors.

The genetic MLE method is evaluated by estimating parameters of a pilot model from an
experiment in the SRS at DUT. The results in this paper establish that the augmentation
of the GA significantly increases the usefulness of the GN algorithm, as the GN algorithm,
on its own, only finds the global minimum in 20% of all tested initial conditions. While
more computational power is needed with the GA, it ensures more accurate parameter
estimates. On the other hand, GN optimization clearly increases the accuracy after the
GA is applied. The genetic and GN algorithm thus create mutual benefits, and the global
minimum was found in 90% of the cases. This paper also investigates the robustness of
the method when introduced to increasing levels of pilot remnant. The results show that
the average biases of the parameters stay within the 99% confidence interval, but increase
for higher levels or remnant. This is partly attributed to the fact that for high levels of
remnant the remnant is colored instead of pure white noise. The experimental results in
the paper also show that the PDF of the remnant signal has an almost perfect Gaussian
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Figure 4-3: Schematic representation of the different steps of the genetic algorithm used to
minimize the likelihood function. Based on [Zaal et al., 2009].

distribution with zero mean, which is necessary to use the MSE matrix as described in
Section 3-2.

4-2-4 Estimating Time-Varying Pilot Model Parameters

To get closer to more realistic human control behavior [Zaal & Sweet, 2011] take a step
away from the stationary human control elements and compare two methods for estimating
time-varying parameters: a two-step wavelet method and a windowed MLE method. The
aim of discussing this paper in this literature research is to qualitatively compare MLE with
another parameter estimation method. The wavelet method uses the often used Morlet
wavelet. The method is described in detail in the paper and it is not necessary to further
elaborate on its mathematical theory in this chapter to provide a qualitative assessment.
The closed-loop manual control task with time-dependent transfer function is shown in
Figure 4-4.

The forcing function ft is chosen to be designed as a multisine signal equal to Equation
(4-1). This choice is straightforward, as it is easier to perform spectral analysis and
compare the frequency-domain wavelet method with the time-domain MLE method. The
time-varying vehicle dynamics Hc(s,t) of the control task are given in Equation (4-8).

Hc(s, t) =
Kc(t)

Tc(t)s2 + s
(4-8)
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Figure 4-4: Simulated closed-loop compensatory control task. Based on [Zaal & Sweet,
2011].

Here Kc(t) is a time-varying gain and Tc(t) a time-varying time constant. The vehicle
dynamics act as a single integrator below the break frequency of 1/Tc(t) rad/s and as
a double integrator above this frequency. The time-varying pilot dynamics are given by
Equation (4-9), and are comparable to Equation (4-3).

Hp(s, t) = Kv(t)(1 + Tlead(t)s)e
−sτvHnm(s) (4-9)

In Equation (4-9) the pilot visual gain Kc(t) and the pilot lead time constant Tlead(t) are
time-dependent. To imitate a realistic time-varying pilot remnant n, an unbiased Gaussian
white noise signal w is fed through the time-varying low-pass filter Hn(s,t) as in Equation
(4-10):

Hn(s, t) =
Kn(t)

Tns+ 1
(4-10)

where Kn(t) is a time-varying pilot remnant gain and Tn a fixed time constant. For the
experiment, the pilot remnant gain was calculated to keep a certain pre-set power ratio
between remnant and control signal (Pn = σ2

n/σ
2
u) for the entire simulation. The other four

time-varying parameters Kv(t), Tlead(t), Kc(t) and Tc(t) are kept constant for the first 30
s of the run, after which they either increase or decrease linearly in value for the next 40 s.
At 70 s the parameters are kept at a constant value again. The to-be-estimated parameters
are found in parameter vector Θ of Equation (4-11).

Θ = [Kv(t) Tlead(t) τv ζnm ωnm]
" (4-11)

The windowed MLE method used in this study is performed at every time step ti using a
sliding time window of length ∆t. Choosing a too small ∆t negatively affects the accuracy
of the parameter estimates, but a ∆t too large has a negative effect on the detection of
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small variations in pilot model parameters. In this paper 20 seconds is chosen as the length
of the time window. To reduce computational efforts the GA as introduced in section 4-2-3
is omitted and only the GN algorithm is used. As discussed in earlier sections, the GN
algorithm on its own is very dependent on the initial parameter errors, and is unable to
recover when it becomes unstable under influence of large initial parameter errors. The
initial parameter sets are constructed for every time step from the simulated pilot model
parameters in this paper.

The two-step wavelet method and the windowed MLE method are assessed by applying
them to simulated data. To evaluate the effect of the pilot remnant on the parameter
estimates, simulations of 90 s are done with and without pilot remnant signal applied to
the model. The results are compared by looking at the frequency responses and their
respective magnitude and phase plots. For the case without pilot remnant, the wavelet
method shows unwanted edge effects and oscillatory behavior in time at higher frequencies.
Compared to the wavelet method, MLE has difficulty handling the rapid transition from
constant to linear at 30 s. It shows a more gradual change, which is mainly attributed to the
averaging of the values with the sliding time window. This effect is confirmed by data of the
crossover frequency and phase margin. Because the rate of change of the vehicle dynamics
is lower at 70 s, the MLE method accurately estimates the change at this particular instant.
Adding the pilot remnant to the simulation resulted in significant adverse effects for the
parameters estimated with the wavelet method, even for a low remnant-to-control-signal
power ratio Pn. For higher levels of pilot remnant the bias and variance of the estimates
of the wavelet method were too high. No parameter estimates could be obtained with the
wavelet method, while the MLE algorithm produced reliable estimates. This paper opts
to enhance the MLE method by estimating the parameters as a function of time directly
to get around the slow response to rapid changing dynamics created by the sliding time
window. While the two-step wavelet method did not respond well to pilot remnant, many
things can still be changed to try to improve the method in more extensive research.

4-3 Literature Study Conclusions

From the literature study performed in this chapter several conclusions can be drawn.
These conclusions will serve as a foundation for the further research done in this thesis. It
has become clear that the research on pilot model parameter estimation can be traced back
to the 1960s, and has evolved in the succeeding decades. In contemporary research two
trends are identified. The first one is a shift towards time-varying and parameter-varying
systems. The second one is a necessity of evaluating an assortment of parameter estimation
methods to seek solutions for the limitations present-day scholars face in their research.
Four categories of parameter estimation methods useful for LTV systems have been defined:
orthogonal functions, adaptive estimation or KF, BEM, and WLS. From the overview this
classification provides, it becomes clear that a variegated number of methods exist with
their own advantages and disadvantages. MLE is an adaptive estimation method and it
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would be wise for future studies to compare the performance of other methods with the
results of the MLE method that will be obtained by this study. The pioneering work done
in the past few years in the field of pilot model parameter estimation has led to practical
insights. In [Nieuwenhuizen et al., 2008] LTI systems show a superior performance of
estimating pilot model parameters compared to the utilization of FC. From [Zaal et al.,
2009] it becomes clear that MLE in the time-domain is a promising algorithm for pilot
model parameter estimation. Combined with a GA (computational intensive) and a GN
algorithm (unstable on its own under influence of large initial parameter errors), the MLE
algorithm has a high chance of finding the global minimum and consequently returns
accurate estimates. To let the models realistically approach the human operator even more,
[Zaal & Sweet, 2011] make a tentative attempt at investigating time-varying pilot model
parameters. Their comparison of a two-step Morlet wavelet method and a windowed MLE
method resulted in bad results for the wavelet method under influence of a pilot remnant,
while the MLE provides accurate results. The drawback of the windowed MLE method is
that the method fails to act on rapid changes of the time-varying parameters. The main
reason for this is the use of a sliding time window, and not because of the MLE algorithm
itself. Keeping these studies in mind, the MLE algorithm seems promising for extended
research with nonlinear time-varying parameters.
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Chapter 5

Methodology

In this chapter the scientific methodology for the research will be described in order to
work towards the goals set in Section 1-1. Before going into detail, a practical roadmap is
provided in Table 5-1 to exhibit the three steps that will be taken in the research.

Table 5-1: Roadmap: the three steps that will be taken to reach the thesis objectives.

Step 1 An open-loop neuromuscular model will be set up to generate data. One parameter will be
modeled as a first-order polynomial. MLE will be applied to the generated data to estimate the
parameters of the first-order polynomial. After these simulations the order of the polynomial
will be increased.

Step 2 The open-loop neuromuscular model will be extended to an open-loop pilot model to generate
data. In the beginning one parameter will be modeled as a polynomial. MLE will be applied
to the generated data to estimate the parameters of the first-order polynomial. Depending
on the results, more parameters will be modeled as polynomials. The pilot model will be
extended to a closed-loop model.

Step 3 A multimodal pilot model will be made to generate data with a selection of time-varying
parameters modeled as polynomials. MLE will be applied to the generated data to estimate
the parameters of the first-order polynomial.

Step 2 and Step 3 in Table 5-1 are more or less extensions of Step 1 and are dependent
on the results found during their respective preceding step. The execution and simulation
of all three steps will be discussed in Chapter 7.
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Chapter 6

Conclusions and Recommendations

In the past few years MLE has been investigated and has also been successfully applied to
linear pilot models for parameter estimation in time-invariant and time-varying systems.
The MLE method has shown to be reliable and consistent in comparison with classical
system identification methods, and has shown to perform better than certain wavelet
methods. However, no significant research into the estimation of pilot model parameters
has been performed.

The purpose of this thesis is to get a better understanding of the performance of the MLE
method when applied to simulated data of a human operator.

For immediate reaction of the control systems on certain control behavior, too much data
is currently needed to accurately estimate the necessary parameters, and to subsequently
determine what reaction of the system is needed. To achieve both goals, an initial
open-loop model structure has been setup consisting of an multisine excitation signal, the
neuromuscular system, an optional pilot remnant, and a simple set of vehicle dynamics. It
is certain that further extension of this model will take place, but in what manner this will
happen is dependent on the results of the initial simulation runs. The nonlinear parameters
will be introduced in this first model by using third-order polynomials for parameters in
the transfer function for the neuromuscular system. The MLE algorithm can be applied
directly or via a sliding window method. The latter has shown to bring along unfavorable
averaging effects, which makes windowed MLE less accurate compared to direct application.
It is also decided to apply both the genetic and GN algorithms in the initial runs, to see
what happens. If the genetic algorithm requires too much computational power, in terms
of how fast the parameter estimation will take place, it might be considered to only use
the GN algorithm in a later stage.

There are many ways of designing a pilot model. As the scope of this research is limited,
a foundation for different recommendations has already manifested from the preliminary
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research. Although the effect of different excitation functions on pilot model systems has
already been researched in [Zaal et al., 2008], more research on the effects of the MLE
method and different systems needs to be done. Also, more research should be done on
the modeling of the pilot remnant signal. For basic research it might be enough to look
at zero-mean Gaussian white noise signals, but as shown by Zaal & Sweet [2011] more
advanced and accurate pilot remnant signals can be created for a more realistic model.
Finally, it will be interesting to look at identification of LPV systems as the research area
develops. For the fundamentals of LPV systems in general [Tóth, 2010] is a good reference.
For current research looking at the research area of statistical learning theory might be
beneficial to the research on MLE and optimization through regression. A starting point
for this would be [Vapnik, 1998] and [Schölkopf & Smola, 2002].
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Chapter 7

Preliminary Simulation Model and
Estimation Results

In this chapter the step-by-step process of setting up the simulation and the execution
of the simulations will be described. In Section 7-1 the initial simulation model, with
a time-varying neuromuscular frequency ωnm(t), is described. An adjusted simulation
is discussed in Section 7-2. For this adjusted simulation a system representing typical
neuromuscular dynamics time-varying gain K(t) is modeled using polynomial and sigmoid
functions. To illustrate how the simulations operate, interim results will be discussed
throughout this entire chapter. Note, however, that the results of the complete simulation
will be discussed in Chapter 8.

7-1 Initial Simulation Model: A Time-Varying Neuromuscular
Frequency

For Step 1 as defined in Chapter 5, a simple single-input, single-output open-loop system
model is proposed in Figure 7-1. This model has two purposes. First of all, it will act
as a foundation on which, depending on the simulation results, further augmentation can
be performed to make the model more complex. A second goal is to understand what
happens at the core of the time-varying, parametric MLE. This is done by looking at how
time-varying dynamics can be estimated using simulated data. The simulation will be set
up in MATLAB R© and SimulinkR©. In Chapter 4 it became clear that careful design of
such a model is important. The crucial parts of this model are the control task with the
corresponding target forcing function and the time-varying dynamics.
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ft

operator

Hp(s, t)
u

Figure 7-1: Open-loop control task limited to the dynamics of the operator. The addition
of nonlinear human behavior to this model will be discussed in Section 7-1-1.

7-1-1 Generating Simulation Data

Before parameter estimation can be performed, data is needed to perform the estimation
on. For the research in this thesis this data will be generated by simulating the model of
Figure 7-1. This section describes how this data was generated. The parameter estimation
of this data will be discussed in Chapter 7-1-2.

Defining the Forcing Function

The target forcing function ft used to excite the system in Figure 7-1 is taken from
Zaal et al. [2009]. This forcing function, a multisine, is based on sine waves with different
frequencies as in Equation (4-1). The sine wave frequencies are defined as integer multiples
of the experimental measurement time base frequency, ωm = 2π/Tm with Tm = 81.92
seconds. Table 7-1 shows the values for integer factors nt, target sinusoid frequency ωt,
target sinusoid amplitude At and target sinusoid phase shift φt. This multisine is plotted
in Figure 7-2.

Table 7-1: Properties of multisine target forcing function ft.

k, - nt, - ωt, rad/s At, deg φt, rad

1 6 0.460 0.698 1.288
2 13 0.997 0.488 6.089
3 27 2.071 0.220 5.507
4 41 3.145 0.119 1.734
5 53 4.065 0.080 2.019
6 73 5.599 0.049 0.441
7 103 7.900 0.031 5.175
8 139 10.661 0.023 3.415
9 194 14.880 0.018 1.066
10 229 17.564 0.016 3.479
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Figure 7-2: The multisine target forcing function ft.

Varying the Neuromuscular Frequency ωnm in Time

The operator responseHp was modeled as visual responseHpe or motion perception channel
Hpθ in Section 4-2-3. The underlying basic system in the Equations for Hpe and Hpθ

is the human Neuromuscular System (NMS), which can be modeled as a second-order
mass-spring-damper system as in Equation (4-5). Because the NMS is one of the aspects
of human control behavior where time-varying dynamics occur [Zaal et al., 2009], Hp will
be set equal to Hnm, while varying ωnm over time t. If this works, it is intended to make
ζnm time-varying as well at a later stage. The operator response Hp(s,t) in Figure 7-1 with
only ωnm(t) as a time-varying parameter, is stated in Equation (7-1).

Hp(s, t) = Hnm(s, t) =
ω2
nm(t)

s2 + 2ζnmωnm(t)s+ ω2
nm(t)

(7-1)

For this first setup ωnm(t) is modeled as a first-order polynomial with constants ωnm0 and
ωnm1 as in Equation (7-2).

ωnm(t) = ωnm0 + ωnm1t (7-2)

To simulate the data, a state-space system—as defined by Equations (2-5) and (2-6)—is
created with matrices A(t), B(t), C(t) and D(t) in Equations (7-3), (7-4), (7-5) and (7-6)
respectively.

A(t) =

[

−2ζnmωnm(t) −(ωnm
2(t))

1 0

]

(7-3)

B(t) =
[

1 0
]"

(7-4)

C(t) =
[

0 ωnm
2(t)
]

(7-5)

D(t) =
[

0
]

(7-6)

In the A(t) and C(t) matrices the ωnm is defined by Equation (7-2), which makes the
matrices in the state-space system time-varying. Note that only the A(t) and C(t) in fact
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have time-dependent entries. The matrices B(t) and D(t) consist of constant entries. For
the state-space system to generate the control signal vector u, the control system in Figure
7-3 is used, where 1/s serves as an integrator.

ft

A(t)

B(t) C(t)

D(t)

1

s

u

Figure 7-3: Control system used to simulate control signal u based on state-space matrices.

To check whether the data from the state-space method is generated correctly, another
method is used to generate the exact same data. Based on Equation (7-7) the control
system in Figure 7-4 is created.

X(s) = s2 + 2ζnmωnm(t)s+ ω2
nm(t) (7-7)

ft ü u̇ u
1

s
1

s

2ζnmωnm(t)

ω2
nm(t)

−−

Figure 7-4: Control system used to simulate control signal u based on the system input.

Adding Noise to the Simulation

To add white noise to the simulation, as in Figure 2-2, the Random Number block in
Simulink R© is used. This block generates a preset sequence of normally distributed random
numbers. When noise is added to the simulation, sequences with a mean µ of 0 and a
variance σ2 of 1 will be used. If it is necessary to add different sequences of noise to the
simulation, a different Seed can be chosen in the Random Number block. This can, for
example, be useful in the comparison of different noise additions. To scale the noise to an
appropriate level, each value of the sequence generated by the Random Number block is
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multiplied by a scalar so that the variance percentage of the control signal with noise u
and the control signal without noise has a value between 10% to 15%. This means that u
will vary between 10% to 15% from the control signal without noise, which compares to
experimental results according to [Zaal & Sweet, 2011].

7-1-2 Estimating Parameters

With the simulated control signal data that was generated in the previous section, it is now
possible to estimate the parameters. The parameter vector Θ at this instance is stated in
Equation (7-8).

Θ =
[

ωnm0 ωnm1 ζnm
]"

(7-8)

It is necessary to set a priori initial parameter estimation values for each parameter.
Furthermore, the state-space matrices from Equations (7-3), (7-4), (7-5) and (7-6) need
to be known. From these matrices, the so-called sensitivity matrices can be determined.
Sensitivity matrices show how the coefficients in the state-space matrices change when the
value of a certain parameter also changes. The sensitivity of the entries of the state-space
matrices A(t), B(t), C(t) and D(t) to changes in each parameter in Θ are calculated. This
is done by taking the partial derivative with respect to each model parameter matrix entry
ai,j∗ in the i-th row and the j∗-th column of a certain matrix as in Equation (7-9).

S =
[

∂ai,j∗

∂Θ(p)

]

(7-9)

The sensitivity matrices for state-space matrices A(t) and C(t) from Equations (7-3) and
(7-5) with ωnm as in Equation (7-2) are stated in Equations (7-10) to (7-15). Note that
the sensitivity matrices for B(t) and D(t) from Equations (7-4) and (7-6) consist of zeros
in this case and are therefore not stated.

SAωnm0
(t) =

[

∂A1,1(t)
∂ωnm0

∂A1,2(t)
∂ωnm0

∂A2,1(t)
∂ωnm0

∂A2,2(t)
∂ωnm0

]

=

[

−2ζnm −2ωnm0 − 2ωnm1t
0 0

]

(7-10)

SAωnm1
(t) =

[

∂A1,1(t)
∂ωnm1

∂A1,2(t)
∂ωnm1

∂A2,1(t)
∂ωnm1

∂A2,2(t)
∂ωnm1

]

=

[

−2ζnmt −2ωnm0t− 2ωnm1t
2

0 0

]

(7-11)

SAζnm
(t) =

[

∂A1,1(t)
∂ζnm

∂A1,2(t)
∂ζnm

∂A2,1(t)
∂ζnm

∂A2,2(t)
∂ζnm

]

=

[

−2ωnm0 − 2ωnm1t 0
0 0

]

(7-12)
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SCωnm0
(t) =

[

∂C1,1(t)
∂ωnm0

∂C1,2(t)
∂ωnm0

]

=
[

0 2ωnm0 + 2ωnm1t
]

(7-13)

SCωnm1
(t) =

[

∂C1,1(t)
∂ωnm1

∂C1,2(t)
∂ωnm1

]

=
[

0 2ωnm0t+ 2ωnm1t
2
]

(7-14)

SCζnm
(t) =

[

∂C1,1(t)
∂ζnm

∂C1,2(t)
∂ζnm

]

=
[

0 0
]

(7-15)

These sensitivity matrices are needed to calculate Equation (7-16), which upon integration
can be used in Equation (7-17).

dẋ(t)

dΘ(p)
= SAΘ(p)

x(t) + A(t)
dx(t)

dΘ(p)
+ SBΘ(p)

u(t) (7-16)

dy(t)

dΘ(p)
= SCΘ(p)

x(t) + C(t)
dx(t)

dΘ(p)
+ SDΘ(p)

u(t) (7-17)

The prediction error ε(k) as defined in Section 3-1 can be used to calculate the covariance
matrix Q of the prediction error as in Equation (7-18) for m measurements and k
parameters.

Q =
1

m

m
∑

k=1

ε(k)"ε(k) (7-18)

With the inverse of the covariance matrix Q—also known as the precision matrix—the
likelihood gradient dL and the FIM can be calculated according to Equations (7-19) and
(7-20). Note that Equation (7-20) is a special form of Equation (3-8) used for signals with
an unbiased Gaussian distribution.

dL =

(

−
dy(t)

dΘ(p)

)"

Q−1ε(k) (7-19)

MΘΘ =

(

−
dy(t)

dΘ(p)

)"

Q−1

(

−
dy(t)

dΘ(p)

)

(7-20)

The likelihood function L can be calculated according to Equation (3-4). After a first
run through the estimation procedures with the a priori initial parameter estimate values,
the updated parameter estimate values are found through Equation (3-9). As mentioned
in Section 3-3 it is possible to use an algorithm and a line-search vector to increase the
accuracy of the parameters. For this first simulation the GN algorithm is used with a
line-search vector α that looks at the likelihood for a starting value α0 and an end value
αi. The line-search always starts at α0 = 0 and α1 = 1. Now, with αi = {1 . . . k}, when
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L(α0) > L(αi) −→ L = L(αi)

and, when

L(α0) < L(αi) & L(α0) > L

(

α0 + αi

2

)

−→ L = L

(

α0 + αi

2

)

.

However, when

L(α0) < L(αi) & L(α0) < L

(

α0 + αi

2

)

−→ αi+1 =
α0 + αi

2

the line-search algorithm starts from the beginning but now with αi = αi+1.

7-1-3 Initial Simulation Results

The creation of simulation data according to Section 7-1-1 is now done using the values in
Table 7-2. These values are based on [Nieuwenhuizen et al., 2008], where the neuromuscular
frequency ωnm has a value of 12.0 rad/s and the neuromuscular damping ζnm is set to 0.3.
McRuer et al. [1965] indicated values of 16.5 rad/s for ωnm and 0.12 for ζnm, so the values
used in [Nieuwenhuizen et al., 2008] are reasonable. With the neuromuscular frequency
constants in Equation (7-2), the value of 12.0 rad/s is approximated by using ωnm0 as a
starting value and a slope with the value of ωnm1 , so that after t = Tm = 81.92 seconds
the value of 12.0 rad/s is achieved. Note that this does not necessarily approach a realistic
time-variation of ωnm in an experimental situation. A more realistic time-variation can be
modeled at a later stage when the polynomial increases to a higher-order.

Table 7-2: Model Parameter Values.

Parameter Value

ωnm0
neuromuscular frequency constant 0 0.0100 rad/s

ωnm1
neuromuscular frequency constant 1 0.1464 rad/s2

ζnm neuromuscular damping 0.3000 -

In Figures 7-3 and 7-4 two different methods were shown to generate the same simulation
data. The results of generating the data for control signal u from both methods with the
values of Table 7-2 are plotted in Figure 7-5. From the plot it becomes clear that the signals
overlap, and are thus equal to each other proving the data generated for the simulation is
correct. The Simulink R© model used to generate this data can be found in Appendix B. In
the first 20 seconds of the plot of Figure 7-5 the transient—which results from simulating
the model with a zero initial state—has a substantial influence on the model response.
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Because this transient behavior will influence the parameter estimation, the signal was
generated for twice Tm and the first part (one time Tm) (from 0 seconds to 81.92 seconds
in Figure 7-5) will not be used for the parameter estimation. This kind of omittance is
also performed for parameter estimation with real experimental data to ensure that the
transient behavior—resulting from the initial stabilization that is typically found in human
operators—has no contribution to the final parameter estimation on the one hand, and to
omit having to estimate the initial state of the model on the other hand. If the plot for the
neuromuscular frequency ωnm is taken in account, as in Figure 7-6, a problem arises: for
that part of the data used for the MLE, the part with the white background, starts at ωnm

= 12 rad/s and ends at ωnm = 24 rad/s. To solve this problem and to let the polynomial
end at ωnm = 12 rad/s instead, the polynomial is changed. As it is not necessary to vary
ωnm from 0 seconds to 81.92 seconds, ωnm is held constant at 5 rad/s as can be seen in
Figure 7-7. The appropriate values for the polynomial constants can be found in Table
7-3. Because the parameter estimation starts after t = Tm = 81.92 seconds, ωnm0 is not
equal to 5 rad/s, but is set to -2 rad/s.
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Figure 7-5: Control signal data generated with state-space matrices and system input
respectively. Transient behavior is clearly visible in the first 20 seconds of these plots.
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Figure 7-6: Neuromuscular frequency ωnm according to Equation (7-2) with values from
Table 7-2.

MLE can now be performed for the neuromuscular frequency ωnm as in Figure 7-7 and
neuromuscular damping ζnm with values according to Table 7-3. In Table 7-4 various
simulation results are displayed. Three sets of initial conditions are used to estimate
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Figure 7-7: Neuromuscular frequency ωnm with values from Table 7-3 and held constant for
the first 81.92 seconds.

Table 7-3: Model Parameter Values.

Parameter Value

ωnm0
neuromuscular frequency constant 0 -2.0000 rad/s

ωnm1
neuromuscular frequency constant 1 0.0854 rad/s2

ζnm neuromuscular damping 0.3000 -

Table 7-4: Parameter Estimation Values: the plots in the last column show the number of
iterations of the GN algorithm versus the value of the negative log-likelihood at each iteration.

Parameter True Value Initial Value Estimated Value

ωnm0
-2.0000 rad/s -2.0000 rad/s -1.7432 rad/s

ωnm1
0.0854 rad/s2 0.0800 rad/s2 0.0817 rad/s2

ζnm 0.3000 - 0.3000 - 0.3133 -

ωnm0
-2.0000 rad/s -1.0000 rad/s -0.8609 rad/s

ωnm1
0.0854 rad/s2 0.0200 rad/s2 0.0183 rad/s2

ζnm 0.3000 - 0.2000 - 0.2496 -

ωnm0
-2.0000 rad/s 0.2000 rad/s 0.2000 rad/s

ωnm1
0.0854 rad/s2 0.2000 rad/s2 0.2000 rad/s2

ζnm 0.3000 - 0.2000 - 0.2000 -

Negative Log-Likelihood

0 1 2 3 4 5 6
−34950

−15642

0 1 2 3 4 5 6
9035

34906

0 1 2 3 4 5 6

−8201

the true (simulated) values. The parametric MLE is performed in such a way that the
estimation stops when the difference between the negative log-likelihood values of an
iteration is smaller than 1.00. From Table 7-4 it becomes apparent that somewhat accurate
results are only obtained when initial values that are very close to the true values are chosen.
The results of the second set of values in Table 7-4 are of the same order of magnitude as
the true values, but the estimations are not very accurate. Moreover, the likelihood for
the second set of values is much higher compared to the likelihood of the first set. For the
third initial condition in Table 7-4 the GN algorithm already stops after one iteration, thus
returning the initial values as a result. The estimated values in the first and second set are
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in the neighborhood of the true value. MLE on simulated data with the addition of noise
resulted in similar results: there is almost no difference between estimation with or without
noise. These results are expected as the used model in Figure 2-2 is a strongly simplified
model with only one set of dynamics—the Hnm dynamics—and pure white noise. The
simulated data in this case is limited to a time frame, but for a longer time frame more
accurate results are expected: in theory the estimated value should be reached exactly
when the simulated data is generated for an infinite time.
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Figure 7-8: Different neuromuscular frequencies ωnm with varying ωnm0 and ωnm1. The
frequencies are held constant for the first 81.92 seconds and correspond to the respective
control signal responses in 7-9 and 7-10.

To check whether the parameters ωnm and ζnm contain enough variation for parameter
estimation to have effect, the values of the parameters are changed to see how much
difference this yields in terms of the control signal u. For the neuromuscular frequency ωnm

different values are plotted in Figure 7-8. The gray lines are neuromuscular frequencies
held constant at 5 rad/s, with different slopes—only ωnm1 is varied in this case—starting
from 81.92 seconds. This results in neuromuscular frequencies with different slopes ranging
from ωnm = 11 rad/s to ωnm = 17 rad/s. In Figure 7-9 the simulated model output u is
plotted with the true model parameters from Table 7-3 (black line). The corresponding
control signal output u under influence of these variations in ωnm is also plotted in Figure
7-9 (gray lines). The dashed, black lines in Figure 7-8 are held constant for the first 81.92
seconds at values of 2 rad/s and 8 rad/s respectively, after which they vary. The plot in
Figure 7-10 shows the control output u according to Table 7-3 (black line) together with
the control outputs of these variations (dashed black lines). The influence of ωnm1 seems
very small, as there is almost no visible variation in the control outputs in Figure 7-9.
The plot in Figure 7-10 shows some variation in the first 30 seconds, after which almost no
significant variation in u is visible. This means that varying ωnm0 only has a minimal effect,
which mostly affects the transient part. The control output u has almost no variation due
to ωnm and this result poses a serious problem for qualitative parameter estimation. In
Figure 7-11, the value for ζnm from Table 7-3 is plotted (black line) against values ranging
from ζnm = 0.1 to ζnm = 1.0. The difference with the effect of varying ωnm on the model
output is clearly visible. It can be concluded that ωnm does not contain enough variation
for parameter estimation to have effect. Although varying ζnm as a polynomial (instead of
ωnm) seems relatively promising, a different approach is taken which will be explained in
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Section 7-2. Note that as MLE is performed with the data from t = 81.92 seconds to t =
163.84 seconds, only the data for this period of time was used for creating Figures 7-9 and
7-11. The plots have been relabeled to range from t = 0 seconds to t = 90 seconds.
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Figure 7-9: The control signal u as defined by Table 7-3 (black line) plotted with the
control signal u for varied neuromuscular frequency constants corresponding to the gray lines
in Figure 7-8.
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Figure 7-10: The control signal u as defined by Table 7-3 (black line) plotted with the
control signal u for varied neuromuscular frequency constants corresponding to the dashed,
black lines in Figure 7-8.
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Figure 7-11: The control signal u as defined by Table 7-3 (black line) plotted with the
control signal u for varied neuromuscular damping ζnm with constant values between 0.1 and
8.0 (gray lines).
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7-2 Redefining the Simulation Model: A Time-Varying
Gain

Because of the lack of variation in the simulated model output due to variations in the
neuromuscular frequency ωnm, as described in Section 7-1-3, a different approach will be
taken in this Section to redefine the proposed model. The neuromuscular frequency ωnm

and neuromuscular damping ζnm will be kept constant and a time-varying gain K(t) will
be added to Equation (7-1) to obtain Equation (7-21). This is done to ensure that the
model output u is more strongly affected by the applied time-varying model dynamics.

Hp(s, t) = K(t)Hnm(s) = K(t)
ω2
nm

s2 + 2ζnmωnms+ ω2
nm

(7-21)

Note that, excluding a delay term, Equation (7-21) resembles a human operator model
appropriate for control of a system with NMS dynamics [McRuer et al., 1965].

7-2-1 Estimating Parameters with the Gain as a Polynomial

For the time-varying gain K(t), polynomials with different orders of magnitude were
created to understand how the MLE will be influenced by varying the order of a polynomial
and the number of parameters. This is important because, ultimately, the modeled
signal should be representative for time-varying human manual control behavior. In
this thesis, the transition between two constant sets of control behavior is studied: the
human controller changes its behavior from single-integrator dynamics to double-integrator
dynamics. The approximation of such a transition between two sets of dynamics becomes
more accurate with higher-order polynomials. The polynomials modeled starting at
K(81.92 s) = 0.8 and ending at K(163.84 s) ≈ 0.3 are displayed in Figure 7-12, with
their accompanying constant values in Table 7-5. With these values the gain K(t) is
modeled after the pilot visual gainKv(t) in [Zaal & Sweet, 2011]. The polynomial constants
are defined according to Equation (7-22). The parameter vector Θ for a fourth-order
polynomial is stated in Equation (7-23). Note that the fourth-order polynomial in Figure
7-12b is the highest-order polynomial in this set, thus providing the best representation
of an experimental ramp-like signal. The sensitivity matrices for the model, given by
Equation (7-21), are calculated for all parameters in Equation (7-22).

K(t) = K0 +K1t+K2t
2 +K3t

3 +K4t
4 (7-22)

Θ =
[

K0 K1 K2 K3 K4 ωnm ζnm
]"

(7-23)

Using the first-, second-, third- and fourth-order polynomials for K(t) with Equation
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Table 7-5: True values for K(t) polynomials according to Equation (7-22) and plotted in
Figure 7-12.

Parameter First-Order Values Second-Order Values Third-Order Values Fourth-Order Values

K
0

1.2997 0.7693 0.7576 0.8508
K

1
-0.0061 0.0039 0.0048 -0.0128

K
2

0.0000 -4.3035 x 10−5 -5.6568 x 10−5 4.0498 x 10−4

K
3

0.0000 0.0000 5.2427 x 10−8 -4.1238 x 10−6

K
4

0.0000 0.0000 0.0000 1.2146 x 10−8

(a) First-order polynomial
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Figure 7-12: Gain signals K(t) used in Equation (7-21) and modeled as polynomials with
different orders of magnitude. Only the part in white is used for MLE to avoid transient
behavior.

(7-22) in a model according to Figure 2-2 data is generated with a noise n signal according
to Section 7-1-1. The parameters are then estimated from model simulation data using
the proposed MLE procedure. To check whether or not the prediction errors ε(k) have a
zero-mean Gaussian distribution, the PDFs are checked using Seeds ranging from 0 to 19.
As the PDFs all show similar results with the expected zero-mean Gaussian distribution,
one plot with Seed 19 is available in Figure 7-13. The parameter estimation results of one
of the MLE runs are shown in Table 7-6. For this run, the initial values are set to a value
of 1 in the same order of magnitude of the true value. Although the negative log-likelihood
already approaches the minimum after one iteration for each polynomial-set and stops after
six iterations for each set, the results in Table 7-6 show that the estimated values of the
polynomial coefficients deteriorate when a higher-order polynomial is used in the model.
This can be seen by comparing the true values with the estimated values in the table. The
estimated values of the time-invariant parameters, however, approach the true values for
each polynomial-set in Table 7-6 (with an exception for the value of ζnm in the fourth-order
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polynomial set).

Table 7-6: Parameter Estimation Values: the plots in the last column show the number of
iterations of the GN algorithm versus the value of the negative log-likelihood at each iteration.
The noise n for this data set is generated with σ2

n = 0.15 deg2 and Seed 19.

Parameter True Value Initial Value Estimated Value

K
0

1.2997 x 100 - 1.0000 x 100 - 1.2904 x 100 -
K

1
-0.0061 x 100 - -0.0010 x 100 - -0.0061 x 100 -

ωnm 12.0000 x 100 rad/s 10.0000 x 100 rad/s 11.6190 x 100 rad/s
ζnm 0.3000 x 100 - 0.1000 x 100 - 0.3233 x 100 -

K
0

0.7693 x 100 - 0.1000 x 100 - 0.8189 x 100 -
K

1
0.0039 x 100 - 0.0010 x 100 - 0.0029 x 100 -

K
2

-4.3035 x 10−5 - -1.0000 x 10−5 - -3.9137 x 10−5 -
ωnm 12.0000 x 100 rad/s 10.0000 x 100 rad/s 11.5675 x 100 rad/s
ζnm 0.3000 x 100 - 0.1000 x 100 - 0.3232 x 100 -

K
0

0.7576 x 100 - 0.1000 x 100 - -0.8506 x 100 -
K

1
0.0048 x 100- 0.0010 x 100 - 0.0028 x 100 -

K
2

-5.6568 x 10−5 - -1.0000 x 10−5 - -4.3739 x 10−5 -
K

3
5.2427 x 10−8 - 1.0000 x 10−8- 2.8762 x 10−5 -

ωnm 12.0000 x 100 rad/s 10.0000 x 100 rad/s 11.6239 x 100 rad/s
ζnm 0.3000 x 100 - 0.1000 x 100 - 0.3227 x 100 -

K
0

0.8508 x 100 - 0.1000 x 100 - 2.6590 x 100 -
K

1
-0.0128 x 100 - -0.0100 x 100 - -0.0727 x 100 -

K
2

4.0498 x 10−4 - 1.0000 x 10−4 - 0.0011 x 100 -
K

3
-4.1238 x 10−6 - -1.0000 x 10−6 - -8.0117 x 10−6 -

K
4

1.2146 x 10−8 - 1.0000 x 10−8 - 1.9815 x 10−8 -
ωnm 12.0000 x 100 rad/s 10.0000 x 100 rad/s 11.6248 x 100 rad/s
ζnm 0.3000 x 100 - 0.1000 x 100 - 0.2496 x 100 -

Negative Log-Likelihood

1 2 3 4 5 6
−4293
1956

1 2 3 4 5 6
−4293
3551

1 2 3 4 5 6
−4293
3227

1 2 3 4 5 6
−4294
14943

Seed: 19

−0.5 0 0.5
0

3

Figure 7-13: Probability Density Function of the prediction errors ε(k) for a model using a
fourth-order polynomial gain K(t) according to Table 7-5. The noise n for this data set is
generated with σ2

n = 0.15 deg2 and Seed 19.

Performing different MLE runs of the third- and fourth-order polynomial data sets showed
that many matrices used for the calculations suffered from singularity problems. This can
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be traced back to the decreasing order of magnitude in the gain constants for higher-order
polynomials—i.e. the gain constants become very small—and the mathematical accuracy
of MATLAB R©. When very small constants are considered and used for calculations in
the sensitivity matrices, the resulting values are even smaller. MATLAB R© only has a
finite amount of accuracy and runs into problems with very small values. Although the
polynomials in Figure 7-12 are modeled to start at a value of 0.8 and descend to a value
of approximately 0.3, a range of different signals with different start and ending values
was also tested to see what effect this would have on parameter estimation. This resulted
in the notion that higher-order polynomials with coefficients in the order of magnitude of
10−10 and lower give rise to an ill-conditioned FIM. Obtaining good estimates with MLE
in these cases is not possible, which forms a new problem for the simulation, as multiple
time-varying parameters are needed for extended simulation models. Another problem
worth noting is that with higher-order polynomials it becomes increasingly difficult to set
the a priori initial values for the parameters. Ideally, any a priori value should be able
to give an accurate estimate. In practice, the a priori information not only influences the
number of iterations needed to minimize the negative log-likelihood, but can even make it
impossible to perform a MLE in cases where the a priori values for certain parameters are
chosen too far away from the true values.

7-2-2 Estimating Parameters with the Gain as a Boltzmann Sigmoid

Although higher-order polynomials are suitable to accurately model the type of
time-variation in model parameters that is expected for experimental measurements, the
problems related to the small constants of these polynomials led to the decision to look at
another suitable mathematical function: the Boltzmann sigmoid, a function often used in
biology and environmental analysis [Motulsky & Christopoulos, 2004]. During the selection
of the Boltzmann sigmoid, the requirement that the function should be differentiable
in order for parameter estimation to take place was taken into account. A plot of the
Boltzmann sigmoid can be found in Figure 7-14 and this sigmoid is defined in Equation
(7-24) as implemented for modeling the time variation of the gain K(t) of the same model
considered in Section 7-2-1. The corresponding parameter vector Θ is stated in Equation
(7-25).

slope

thalf

bottom

top

Figure 7-14: The Boltzmann sigmoid.

K(t) = bottom+
top− bottom

1 + exp
(

thalf−t

slope

) = K1 +
K0 −K1

1 + exp
(

K2−t
K3

) (7-24)
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Θ =
[

K0 K1 K2 K3 ωnm ζnm
]"

(7-25)

An advantage of the Boltzmann sigmoid in comparison to higher-order polynomials is that
it always has a maximum of four parameters that need to be estimated: the top, the bottom,
the time at which the sigmoid is halfway, and the slope of the sigmoid. The possibility to
merge two sigmoidal signals—a so-called double sigmoid—might also be useful for modeling
time-varying parameters. The restriction to a sigmoidal shape can, however, also bring
along disadvantages when human control behavior with sudden changes is considered.
In Figure 7-15 the Boltzmann sigmoid is used to generate a gain signal similar to that
considered in Section 7-2-1. The corresponding values of the Boltzmann sigmoid are stated
in Table 7-7. A rather steep slope is chosen in comparison to the polynomial gain signal in
Figure 7-12b because the sigmoid would otherwise not exactly reach the top and bottom
values at t = 81.92 seconds and t = 163.84 seconds, which is important in this case because
these parameters need to be estimated.
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Figure 7-15: Gain signal K(t) modeled as a Boltzmann sigmoid with Equation (7-24). Only
the part in white is used for MLE to avoid transient behavior.

Table 7-7: Boltzmann Sigmoid Model Gain Parameter Values.

Parameter Value

K
0

sigmoid top gain constant 0.80 -
K

1
sigmoid bottom gain constant 0.30 -

K
2

sigmoid thalf gain constant 122.88 s
K

3
sigmoid slope gain constant -4.12 -

ωnm neuromuscular frequency 12.00 rad/s2

ζnm neuromuscular damping 0.30 -

Using the Boltzmann sigmoid for K(t) from Figure 7-15 in a model according to Figure 2-2,
data is generated with a noise signal n in accordance with Section 7-1-1. The MLE that
was performed on this data failed: because the first iteration only returned NaN values for
all parameter estimates. The plots in Figure 7-16 were created to check if the parameters
used for data generation contain enough variation. The plots show that each parameter
contains enough variation. The fading of K0 and strengthening of K1 with a switch point
around 40.96 seconds can be attributed to the shape of the sigmoid, as K0 describes the
top and K1 describes the bottom. For K2 and K3 the variation is small and only apparent
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around 40.96 seconds where the thalf and slope are important for the sigmoidal shape. The
variations in the parameters for the sigmoidal K(t) are, however, adequate, so the problem
concerning the MLE failure must be found elsewhere.

The problem was found to be related to the sensitivity matrices and the mathematical
top − bottom parameter relationship in Equation (7-24) that was used for describing the
time-varying gain parameter. To avoid this problem, Equation (7-24) is replaced with
Equation (7-26).

K(t) = bottom+
top− bottom

1 + exp
(

thalf−t

slope

) = K1 +
K∗

0

1 + exp
(

K2−t
K3

) (7-26)

Note that Equation (7-26) only replaces Equation (7-24) in the MLE to generate a different
set of sensitivity matrices. This implies that a different model parametrization. Running
the simulation to generate data is still done with Equation (7-24). The MLE performed
with Equation (7-26) produced satisfactory results. To check whether or not the prediction
errors ε(k) have a zero-mean Gaussian distribution, the PDF is checked using Seeds ranging
from 0 to 19. The PDFs all showed similar results with the expected zero-mean Gaussian
distribution. The parameter estimation results of one of the MLE runs (Seed 19) are shown
in Figures 7-17 and 7-18. Take into account that, for this example, K∗

0 has a true value of
0.5, with K0 = 0.8 and K1 = 0.3 from Table 7-7. For this run the initial values were set to
a value of 1 in the same order of magnitude as the true value. The negative log-likelihood is
plotted per iteration in Figure 7-17 and clearly shows that it decreases towards a minimum
value. Figure 7-18 shows the convergence of all parameters to their respective true values.
In Figure ?? the convergence of the prediction error ε(k) to the noise signal n is clearly
visible. The values for covariance Q, accompanying each plot per iteration, show how
the covariance decreases from Q ≈ 0.031 deg2 to a value of Q ≈ 0.025 deg2, which—as
expected—is close to the value of the variance σ2

n = 0.025 deg2 used to generate the noise
for the simulated data. With the analysis done in this Section, it can be concluded that
the gain K(t) can be correctly modeled as a Boltzmann sigmoid with the proposed model
parametrization. The Boltzmann sigmoid will thus be used for this purpose.
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Figure 7-16: The control signal u as defined by Table 7-7 (black line) plotted with the
control signal u for varied gain constants (gray lines). Noise was generated with σ2

n = 0.025
deg2 and Seed 19.
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Figure 7-17: Negative log-likelihood for
a simulation with the Boltzmann sigmoid.
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Figure 7-18: Estimated parameter values compared to their true values for a simulation with
the Boltzmann sigmoid.
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7-3 Expanding the Simulation Model

The Boltzmann sigmoid used to simulate a time-varying gain K(t) in Section 7-2-2
demonstrated that it is possible to estimate the parameters of such a sigmoid rather
accurately. Therefore, based upon [Zaal & Sweet, 2011], the choice was made to use the
Boltzmann sigmoid to expand the model with another time-varying parameter: the lead
time constant Tlead. This will be discussed in Section 7-3-1. In Section 7-3-2 the human
operator part of the simulation model is completed by adding a time delay. With the
addition of the lead time constant Tlead and the time delay, the transfer function for the
human operator Hp is equal to Equation (4-9). This resembles a human operator model
appropriate for NMS dynamics.

7-3-1 Adding a Boltzmann Sigmoid for the Lead Time Constant

In this section the lead time constant Tlead will be added to the human operator model. The
addition of Tlead will change Equation (7-1) into Equation (7-27). Gain K is written as Kv

in this equation, because it represents the human operator visual gain. The time-varying
lead time constant Tlead will be modeled according to Equation (7-24) with constants Tlead0 ,
Tlead1 , Tlead2 and Tlead3 respectively. This results in parameter vector Θ in Equation (7-28).

Hp(s, t) = Kv(t) (Tlead(t)s+ 1)
ω2
nm

s2 + 2ζnmωnms+ ω2
nm

(7-27)

Θ =
[

Kv0 Kv1 Kv2 Kv3 Tlead0 Tlead1 Tlead2 Tlead3 ωnm ζnm
]"

(7-28)

The lead time constant Tlead is modeled to reflect the variation in this parameter considered
in [Zaal & Sweet, 2011]. Both sigmoids for the visual gain Kv and the lead time constant
Tlead are plotted in Figure 7-19. The corresponding Boltzmann sigmoid values of the lead
time constant are given in Table 7-8.
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Figure 7-19: Lead time constant signal Tlead(t) modeled as a Boltzmann sigmoid in
accordance with Equation (7-24). Only the part in white is used for MLE to avoid transient
behavior.
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Table 7-8: Boltzmann Sigmoid Model Lead Time Parameter Values.

Parameter Value

Tlead0
sigmoid top time constant 4.00 -

Tlead1
sigmoid bottom time constant 0.10 -

Tlead2
sigmoid thalf time constant 122.88 s

Tlead3
sigmoid slope time constant 3.12 -

The simulation data with both Kv and Tlead was created with Seed 19 and variance σ2
n

of 0.07 deg2 to maintain a remnant variance percentage np = (σ2
n/σ

2
u) · 100% of 10%.

Parameter estimation is now performed with initial values of 1 in the same order of
magnitude as the true value of each parameter in Θ. The results of this estimation are
shown in Figures 7-20, 7-21 and 7-22. Although the likelihood in Figure 7-21 steadily
decreases towards a minimum, and the prediction error ε(k) in Figure 7-22 becomes more
equal–but not fully equal–to the noise n, the estimated values of the parameters of gain
sigmoid Kv diverge from the true values at iteration 4. The resulting estimated parameters
for this sigmoid therefore become useless. At the same time the parameters of the lead time
constant Tlead stay close to their true values: Tlead1 converges to its true value at the fourth
iteration, while Tlead2 and Tlead3 show a small bias in comparison to the parameters of Kv.
In Figure 7-22 a difference is also clearly visible. In the plot of iteration 3 there are some
distinct peaks in the prediction error between 35 and 50 seconds, these peaks disappear at
iteration 4, but the relatively accurate prediction error from 50 to 81.92 seconds at iteration
3 is less accurate at iteration 4. Note that the covariance Q lowers, but does not get near to
a σ2

n of 0.07 deg2. The problem with the parameter estimation was traced back to the initial
parameter value of the thalf parameter of each sigmoid, in this case Kv2 and Tlead2 . When
one of these values drops below 110 seconds, the parameter estimation does not converge
to the true parameter values. The same happens when an initial value of 135 seconds or
higher is chosen. This suggests that there is leeway for approximately 12 seconds below and
above the true value in which the chosen initial parameter value of Kv2 and Tlead2 results
in appropriate parameter estimation. The upper and lower bound of this parameter are
thus important for parameter estimation. To show that the parameter estimation works,
Figures 7-23, 7-24 and 7-25 display the results of the parameter estimation done with initial
values of 1 in the same order of magnitude as the true value of each parameter in Θ, except
for Kv2 and Tlead2 , which were both set to a value of 134 seconds.

7-3-2 Adding a Time Delay

The last step in completing the human operator model, as proposed by Zaal & Sweet
[2011], is to add a time delay. Compare Equation (7-27) used in the previous section with
Equation (4-9). The only difference between these equations is the time delay e−sτv . In
[Zaal & Sweet, 2011] a value of 0.20 seconds is given to the visual-perception time delay
τv. This value will be used here as well. As mentioned in [Jones, 2004] the time-delay
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Figure 7-20: Estimated parameter values compared to their true values for a simulation with
the Boltzmann sigmoid.
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Figure 7-21: Negative log-likelihood for
a simulation with the Boltzmann sigmoid.
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Figure 7-22: The prediction error
ε(k) compared to the noise n for a
simulation with the Boltzmann sigmoid.
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Figure 7-23: Estimated parameter values compared to their true values for a simulation with
two Boltzmann sigmoids.
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Figure 7-25: The prediction error ε(k) compared to the noise n for a simulation with two
Boltzmann sigmoids. (σ2

n = 0.07 deg2)
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is a special structure parameter that when unknown greatly complicates the identification
problem. Although the time delay is known for the simulated data in this research, during
parameter estimation it is assumed to be unknown. It is thus important keep in mind that
adding a time delay might complicate the parameter estimation.

For simulating the data, a Transport Delay block is used in Simulink R©. There is an option
to set the order of a Padé approximation for linearization in the Transport Delay block,
which will not be used, as the Transport Delay block generates a more accurate time delay
without the linearization. For the parameter estimation, however, a Padé approximation is
necessary to avoid the irrational e−sτv term from causing mathematical problems. The Padé
approximation is used to approximate an exponential time delay transfer function with a
rational transfer function. The Padé approximation used for the parameter estimation is
defined in Equation (7-29) as a ratio between two polynomials:

e−sτv ≈ Hpade(s) =
1− h1sτv + h2s2τv2 + . . .± hkskτvk

1 + h1sτv + h2s2τv2 + . . .+ hkskτvk
(7-29)

where hk is the Padé approximation coefficient at discrete instant k. For the modeling
of delays associated with human manual control behavior, a fifth-order of approximation
is usually chosen for sufficient approximation of the time delay [Zaal et al., 2009]. In
Equation (7-30) the transfer function for the human operator used for parameter estimation
is stated. The order of approximation of Hpade influences the number of states used during
parameter estimation. The state-space matrices and the sensitivity matrices increase in size
as the order of the Padé approximation increases, resulting in a more complex parameter
estimation problem.

Hp(s, t) = Kv(t)(1 + Tlead(t)s)Hpade(s)Hnm(s) (7-30)

Parameter estimation can now be performed on simulation data generated with a
model containing Hp(s,t) as defined by (7-30). For the first run, a first-order Padé
approximation is chosen. The effect of adding a time delay is–even with a first-order
Padé approximation–apparent: the initial values of Kv1 , Tlead0 , τv, ωnm and ζnm need to
be very close to the true values for parameter estimation to produce good results. The
upper and lower bounds of these initial values are thus very close to each other, which
forms an important drawback. When parameter estimation is performed with a first-order
Padé approximation it was also noted that the parameter estimation often suffers from
local minima in the likelihood function.
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Chapter 8

Final Simulation Model: A Closed-Loop
System

In Chapter 7 a step-by-step approach is used to build and expand the simulation model,
while explaining the corresponding interim results. In this chapter, the completed
simulation model and the associated results will be discussed. In Section 8-1 the system
will be augmented with the correct vehicle dynamics. Problems related to integration and
time delays will be discussed in Section 8-2 and Section 8-3, respectively. In Section 8-4
an explanation will be given on how zero-mean Gaussian white noise will be converted to
a time-varying human operator remnant signal. Following this, a short explanation will be
given for changing the values of ωnm and ζnm in Section 8-5. Finally, the final simulation
model will be analyzed by checking its time traces, its Power Spectral Density (PSD) plots,
and its frequency responses in Section 8-6.

The final simulation model is modeled after Figure 4-4 with Equation (4-9) representing
the system. The Simulink R© model used to execute the simulation with its corresponding
subsystems can be found in Appendix B. This section is structured as follows. In Section
8-1 vehicle dynamics are added to the open-loop system, after which the system can
be closed with a feedback loop. Section 8-2 explains the shift from integration of the
state-space equations with the Euler method towards integration with a fourth-order
Runge Kutta method. Some important issues related to time delays in the closed-loop
system are discussed in Section 8-3. In Section 8-4 the utilization of a low-pass filter for
the noise is explained. To get the model in line with the model used in [Zaal & Sweet,
2011], in Section 8-5 the neuromuscular frequency and damping values are set equal to
the values used by Zaal & Sweet [2011]. Finally, Section 8-6 is intended to give the
reader additional information about the system by discussing the system’s time traces
and frequency responses.
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8-1 Adding Vehicle Dynamics

First of all, to complete the model, the vehicle dynamics Hc are added. The vehicle
dynamics are defined as in Equation (4-8) with a time-varying gainKc(t) and a time-varying
vehicle dynamics time constant Tc(t). These two time-varying parameters will be modeled
as Boltzmann sigmoids as plotted in Figure 8-1 with the values in Table 8-1. The sigmoids
were modeled after the vehicle dynamics parameters in [Zaal & Sweet, 2011]. With the
added vehicle dynamics it is possible to form a closed-loop system by subtracting the
system output signal y from the target forcing function ft to calculate the tracking error
e, which is used as input for the system. Although the open-loop system with added
vehicle dynamics resulted in the expected results, the results of the closed-loop system
indicated that the system becomes unstable. After analysis, the problem was traced back
to the lead generation of the human operator in Hp. Zaal & Sweet [2011] correctly note
that the values for the lead time constants of the vehicle and pilot model dynamics are
equal throughout the run. This means that a perfect pilot compensation is assumed for the
double-integrator vehicle dynamics at higher frequencies; that is, the open-loop dynamics
(Hol = HpHc) have single-integrator characteristics for the entire frequency range. This is
correct, but the generation of lead with a Tlead1 as small as 0.01 seconds for the portions
of the simulation where Kc/s dynamics are controlled in this research, results in unstable
system behavior. It is therefore chosen to set Tlead1 to a value of zero. When Tc1 is set to
a value of zero or a small value such as 0.01 seconds, the system also becomes unstable.
This difference is caused by the definition of the state-space systems of Hp and Hc of the
model. For the state-space system of Hc, fractions with divisions by Tc are used. It is
therefore not possible to set Tc to zero. The state-space system of Hp does not suffer from
such a mathematical relation. To ensure a stable system, the value of Tc1 is thus held at
0.01 seconds, which means that the vehicle dynamics Hc are under influence of a minor
contribution of double integration dynamics in comparison with the Hp dynamics. The
slope constant of the sigmoids, Kc3 and Tc3 respectively, were chosen in such a way that
the top and bottom were reached at 20 seconds before and after thalf : at 102.88 seconds
and 142.88 seconds, or at 20.96 seconds and 60.96 seconds when the first realization of Tm

is not considered. Note that all other sigmoids in this chapter will be modeled to reach
the top and bottom values at these instances.

8-2 From Euler to Fourth-Order Runge-Kutta Integration

When data was generated with the final simulation model for the first time, the control
signal u diverges to infinite values as a sinusoid that becomes increasingly larger over
time. The problem was traced back to the integration of the state-space and sensitivity
equations. The integration of these equations for the data generated in Chapter 7 was
done with the Euler method–the simplest form of the Runge-Kutta method. Because of
the extra complexity the feedback loop in the final simulation model adds, utilization of the

M. Kers Maximum Likelihood Estimation of Linear Time-Varying Pilot-Vehicle System Parameters



8-2 From Euler to Fourth-Order Runge-Kutta Integration 87

 

 

Tc

Kc

K
c
,
-
an

d
T
c
,
s

t, s
0 40 80 120 160

0
1
2
3
4
5
6
7

Figure 8-1: The vehicle dynamics gain signal Kc(t) and the vehicle dynamics time constant
signal Tc(t) modeled as Boltzmann sigmoids in accordance with Equation (7-24). Only the
part in white influences the MLE, as to avoid transient behavior.

Table 8-1: Boltzmann Sigmoid Model Vehicle Dynamics Gain and Time Constant Parameter
Values.

Parameter Value

Kc0
sigmoid top gain constant 6.00 -

Kc1
sigmoid bottom gain constant 5.00 -

Kc2
sigmoid thalf gain constant 122.88 s

Kc3
sigmoid slope gain constant 2.02 -

Tc0
sigmoid top time constant 4.00 -

Tc1
sigmoid bottom time constant 0.01 -

Tc2
sigmoid thalf time constant 122.88 s

Tc3
sigmoid slope time constant 1.77 -

Euler method resulted in incorrect results. To solve this problem, the fourth-order method
of Runge-Kutta is chosen. In SimulinkR© this is easily done by changing the configuration
parameters. For the parameter estimation, however, the Runge-Kutta method has to be
implemented manually. The fourth-order method of Runge-Kutta is defined by Equations
(8-1) and (8-2) according to Vuik et al. [2007] and is used for the integrations needed to
calculate the state-space equations (Equation (2-5)) and the sensitivity equations (Equation
(7-16)). Vuik et al. [2007] mention that the fourth-order Runge-Kutta method also has
attractive stability properties.

yk+1 = yk +
1

6
[krk1 + 2krk2 + 2krk3 + krk4 ] (8-1)

In Equation (8-1), the four krk parameters are predictors, which are given by Equation
(8-2). Also, h∗ is the size of the interval.
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krk1 = h∗f(tk, yk)

krk2 = h∗f(tk +
1

2
h∗, yk +

1

2
krk1) (8-2)

krk3 = h∗f(tk +
1

2
h∗, yk +

1

2
krk2)

krk4 = h∗f(tk + h∗, yk + krk3)

The necessity of using this fourth-order Runge-Kutta method brings along severe
disadvantages in terms of mathematical complexity, which increases the time needed for
calculation.

8-3 Time Delay Issues

Because of the closed-loop system, the time delay is now also indirectly fed back and
processed with the system input. As mentioned in Section 7-3-2 the introduction of a
time delay often comes with drawbacks. During data simulation with the current system
it proved impossible to obtain a variance percentage of 10% between control signal u with
noise and the signal before noise was added. The variance percentage reaches a maximum
value between 4% and 5%. When the Transport Delay block–used in SimulinkR© to induce
the time delay–is removed from the system, the 10% variance percentage is easily obtained
by using a gain to get the noise up to this value. The problem was traced back to the
values used to generate the visual-perception gain Kv and the phase margin φm. In Section
7-2-2 Kv0 and Kv1 were set to values of 0.8 and 0.3 respectively. In the final system, the
open-loop phase margin φm is equal to 8.24 degrees for a Kv0 of 0.8. The phase margin
reaches a value of zero when Kv0 is 0.82. Because the chosen value of 0.8 contributes to a
phase margin close to zero, the system shows highly oscillatory behavior, which is the cause
of the problem with the variance percentage. In [Zaal & Sweet, 2011] the values of Kv were
delicately chosen as 0.7 and 0.4 to generate the system. When these values are used for the
Kv sigmoid, the system poses no problems for scheduling the variance percentage to the
desired 10%. The open-loop phase margin φm has a value of 28.92 degrees for the system
with Kv0 is 0.7. Using the values from [Zaal & Sweet, 2011], the newly defined Kv sigmoid
is plotted in Figure 8-2 and its corresponding values are available in Table 8-2. Note that
the new visual-lead time sigmoid, which was also changed in Section 8-1, is also plotted
in Figure 8-2. The corresponding values of the visual-lead time sigmoid are also stated in
Table 8-2.

Another issue posed by the time delay, is found in the difference between the time delay
the Transport Delay block in Simulink R© generates, compared to the Padé approximation
used during parameter estimation. First of all, an offset of 0.02 seconds is added to the
parameter estimation initial value for the time delay to compensate for the difference with
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Figure 8-2: The new visual-perception gain signal Kv(t) and the new visual-lead time signal
Tlead(t) modeled as a Boltzmann sigmoid in accordance with Equation (7-24). Only the part
in white is used for MLE to avoid transient behavior.

Table 8-2: The New Parameter Values for the Visual-Perception Gain and the Visual-Lead
Time Boltzmann Sigmoid.

Parameter Value

Kv0
sigmoid top gain constant 0.70 -

Kv1
sigmoid bottom gain constant 0.40 -

Kv2
sigmoid thalf gain constant 122.88 s

Kv3
sigmoid slope gain constant -2.30 -

Tlead0
sigmoid top time constant 4.00 -

Tlead1
sigmoid bottom time constant 0.00 -

Tlead2
sigmoid thalf time constant 122.88 s

Tlead3
sigmoid slope time constant 1.77 -

the time delay of the Transport Delay block while the other initial values are all set to
their true values. The value of the Transport Delay block time delay is still 0.20 seconds,
but for the parameter estimation initial value a time delay of 0.21 seconds is used as
the ‘true value’ instead. The respective control signals are plotted in Figure 8-3. Just
like before, to avoid transient behavior only the area between 81.92 seconds and 163.84
seconds is used. At first sight, it might seem that the control signal from the simulation
and control signal from parameter estimation completely overlap. They do most of the
time, but sometimes there is a small difference due to the difference in calculation of the
time delay. This difference becomes bigger around the change in dynamics for the part
where control of double integrator dynamics is considered. Although the Transport Delay
block has an option to linearize the delay with a Padé approximation, this did not help
in reducing the difference. An attempt to solve this problem was made to replace the
Transport Delay block with the Padé approximation from the parameter estimation. This,
however, resulted in results with highly oscillatory behavior attributed to the integration in
Simulink R©. Because of the difference between the Transport Delay block of the model and
the Padé approximation used during parameter estimation, an analysis is done to determine
what the significance of the difference between the time delay for the simulated data and
the time delay used for parameter estimation is. The prediction error ε(k) between the
estimated control signal û and the simulated control signal u without noise is plotted in
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Figure 8-4. Note that 0 seconds in this plot corresponds to 81.92 seconds in Figure 8-3,
as the first 81.92 seconds are cut off because this signal is not used. The same prediction
error ε(k) is plotted in Figure 8-5 to illustrate that it is small compared to an amount of
filtered noise n (the addition of filtered noise will be further explained in Section 8-4). It is
notable that the prediction error is smaller than 0.05 degrees for the first 30 seconds, until
it nears the sigmoid’s thalf value, which is equal to 40.96 seconds. It thus seems that the
difference between the Transport Delay of Simulink R© and the Padé approximation used in
the parameter estimation becomes larger when the sigmoids start altering the dynamics.
From the plot it also becomes clear that the error from 0 to 30 seconds is somewhat bigger
compared to the error after 50 seconds. Because the prediction error is small compared to
the noise, as can be verified from Figure 8-5, the effect due to this modeling difference is
neglected.
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Figure 8-3: Control signal data from the simulation and from parameter estimation (without
noise).
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Figure 8-4: The prediction error plotted
here is the difference between the
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Figure 8-5: The prediction error from
Figure 8-4 plotted against filtered noise n.

8-4 Filtering the Noise: A Human Operator Remnant
Signal

Up until now, time-invariant white noise has been added to the control output u to simulate
a human operator remnant signal. However, pure static white noise does not exist in
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nature. To model a more realistic human operator remnant signal, the zero-mean Gaussian
white noise signal is passed through a time-varying low-pass filter in accordance with
[Zaal & Sweet, 2011] and Equation (4-10) with a Tn of 0.20 seconds. The time-varying
low-pass filter is necessary to keep the remnant variance percentage np around 10% for both
the single-integrator and the double-integrator dynamics part. The time-varying noise gain
Kn(t) is plotted in Figure 8-6. The corresponding values are available in Table 8-3 with
the top and bottom gain constants modeled to keep the remnant variance percentage np

at 10% before and after the change the sigmoids induce. Note that because the different
parameters change around thalf , the variance percentage around this thalf may deviate
from the 10% value. The remnant signal n was plotted before in Figure 8-5. Note the
difference of the filtered noise with the pure white noise band used in previous chapters.
For the generation of the remnant signal Seed 19 is used in Simulink R© with a variance σ2

n

of 1 deg2. Due to the dynamics of the low-pass filter, it is not expected that the variance
of the residuals for parameter estimation will tend to go to the value for σ2

n.
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Figure 8-6: The noise gain signal Kn(t) modeled as a Boltzmann sigmoid in accordance with
Equation (7-24). Only the part in white influences the MLE, as to avoid transient behavior.

Table 8-3: Boltzmann Sigmoid Model Noise Gain Values.

Parameter Value

Kn0
sigmoid top gain constant 4.13 -

Kn1
sigmoid bottom gain constant 0.68 -

Kn2
sigmoid thalf gain constant 122.88 s

Kn3
sigmoid slope gain constant 1.79 -

8-5 Changing the Neuromuscular Frequency and
Damping

To get the final model completely in line with the model used in [Zaal & Sweet, 2011],
the neuromuscular frequency ωnm and neuromuscular damping ζnm need to be changed
as well. In Chapter 7 values of 12.00 rad/s2 and 0.30 were used, respectively, based on
[Nieuwenhuizen et al., 2008]. However, in [Zaal & Sweet, 2011] a value of 10.00 rad/s2 is
used for ωnm and a value of 0.20 for ζnm. For clarity, these values are stated in Table 8-4.
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Table 8-4: Adjusted Neuromuscular Frequency and Damping Values.

Parameter Value

ωnm neuromuscular frequency 10.00 rad/s2

ζnm neuromuscular damping 0.20 -

8-6 Time Traces and Frequency Responses of the System

Now that the final simulation model is complete, simulation data can be generated and
the system created can be analyzed. The most important time traces of the system are
plotted in Figure 8-7. In Figure 8-7a the target forcing function ft is plotted together with
the system output signal y. From the plot it become clear that the human operator model
controls the vehicle in such a way that the target forcing function is followed. As expected
a difference is clearly visible between the single-integrator dynamics before the change
induced by the sigmoids at 20.96 seconds and the double-integrator dynamics after the
change induced by the sigmoids at 60.96 seconds. During the single-integrator dynamics,
the human operator causes overshoots, but adapts fast enough to follow the target forcing
function. After the change to double-integrator dynamics, it is clearly harder for the human
operator to let the vehicle follow the target forcing function. This is phenomenon is also
visible from the error e between the target forcing function and the system output signal.
This error is plotted in Figure 8-7b.

For the single-integrator dynamics, the error varies rapidly around zero degrees. After the
sigmoids have induced the change from single-integrator to double-integrator dynamics
at 60.96 seconds, the error is less often reduced to zero degrees, indicating that it is
harder for the human operator to reduce the error. Although it might seem that the
error for double-integrator dynamics does not vary around zero as much as the error for
the single-integrator dynamics, this is not the case. During tests with longer runs for
the double-integrator dynamics the error indeed seems to vary around the zero mean. In
addition, the drift in the error from it’s zero mean between 40 to 60 seconds is caused by the
sigmoid. In Figure 8-7c the control signal u (including remnant) is plotted together with
the remnant signal n. The difference between the dynamics before and after the change
induced by the sigmoids is clearly visible here. The control signal is relatively small during
the single-integrator dynamics and becomes bigger after the change due to the sigmoids.
With a variance percentage of approximately 10% over the complete signal, the remnant
signal n stays small in relation to the control signal u for both single- and double-integrator
dynamics.

For further analysis of the final system, the system is ‘split up’ into two systems: System I
describes the system with single-integrator dynamics before the sigmoids induce a change,
System II describes the system with double-integrator dynamics after the sigmoids have
induced a change. The corresponding parameter values per system are stated in Table
8-5. Note that the vehicle dynamics Hc in System I are under the influence of minor
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(a) The target forcing function ft plotted with the system output signal y.

 

 

y
ft

f t
an

d
y
,
d
eg

t, s
0 10 20 30 40 50 60 70 80

−2

0

2

(b) The error signal e.
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(c) The control signal u plotted with the remnant signal n.
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Figure 8-7: Time traces of the simulated signals.

double-integrator dynamics because of the value of Tc, which is very small: 0.01 seconds.
The reason to have a non-zero value for Tc is that the state-space matrices for the vehicle
dynamics consist of division by Tc. For the pilot dynamics Hp the zero value of Tlead does
not result in any problems.

Analysis of the two systems–which together compose the final system–can now be done.
In Figure 8-8 the PSD for the most important signals are plotted for System I and II.
The target forcing function ft clearly shows the distinct peaks for which the multisine
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was carefully constructed (explained in Section 7-1-1). The presence of the target forcing
function in the closed-loop system is also visible in the PSDs of the output signal y, the
error e and the control signal u.

Table 8-5: System I & II Parameter Values.

Parameter System I System II

Kv 0.70 - 0.40 -
Tlead 0.00 s 4.00 s
Kc 5.00 - 6.00 -
Tc 0.01 s 4.00 s
Kn 0.68 - 4.13 -
Tn 0.20 s 0.20 s
τv 0.20 s 0.20 s
ωnm 10.00 rad/s2 10.00 rad/s2

ζnm 0.20 - 0.20 -
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Figure 8-8: Power Spectral Densities of target forcing function ft (black), output signal y
(gray), error signal e and control signal u.

The difference between the single-integrator dynamics of System I and the
double-integrator dynamics of System II become visible from the frequency responses of the
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two systems, which are plotted in Figure 8-9. For the single-integrator dynamics |Hp(jω)| is
relatively flat compared to the double-integrator |Hp(jω)|, which has a steeper slope. The
difference between the single-integrator dynamics of System I and the double-integrator
dynamics of System II is most clearly visible from the steepness of the slopes of |Hc(jω)|.
The frequency responses of the pilot dynamics Hp(jω), vehicle dynamics Hc(jω) and the
open-loop dynamics Hol(jω) from the simulated data are plotted against the analytical
frequency response. The responses from the simulated data follow the analytical responses
quite neatly, which indicates that the simulated data is correct.
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Figure 8-9: Frequency responses of Hp(jω), Hc(jω), and Hol(jω) for System I and System
II as defined by Table 8-5.
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Chapter 9

Parameter Estimation Results

With the simulated data from the control task in Section 8, parameter estimation can be
performed. For comparison, the proposed MLE method is compared with a sliding time
window MLE method. Both methods will be discussed briefly in Section 9-1. The results
of the parameter estimations will be discussed in Section 9-2. Simulations were performed
for three different noise realizations with different parameter variance percentages θp and
different remnant variance percentage np. Following these results, the outcome of further
investigation on the influence of the remnant n and the initial parameter values will be
discussed in Section 9-3, and the results of an evaluation on the effect of local minima will
be examined in Section 9-4.

9-1 Comparing Two Time-Varying Maximum Likelihood
Estimation Methods

In this thesis, a time-domain identification procedure based on MLE is proposed for
the estimation of time-varying pilot vehicle system parameters. To see how well this
time-varying MLE method compares to other methods, it will be compared to the sliding
time window MLE method used in Zaal & Sweet [2011]. In this section both methods will
be briefly introduced. It is possible to compare the methods relative to each other with
the use of the Variance Accounted For (VAF). The VAF is used to compare the estimated
control signal û of one of the methods to the corresponding control signal u. If the estimated
control signal equals the simulated control signal, the VAF will be 100%. Note that the
line-search algorithm as proposed in Section 7-1-2 is used for both methods.
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9-1-1 Method 1: Time-Varying Model Identification

For the time-varying model identification procedure the entire data set of a single simulation
run of 81.92 s will be used. As discussed in Section 7-1, for the control task in this
thesis, data from the second simulation run is used to avoid transient behavior in the first
simulation run. The parameters that will be estimated are stated in the parameter vector
in (9-1).

Θ =
[

K∗
v0

Kv1 Kv2 Kv3 T ∗
lead0

Tl1 Tl2 Tl3 τv ωnm ζnm
]"

(9-1)

Before the identification procedure is initiated, initial values have to be given to the
parameters, which are used for the first parameter estimation iteration. Although a
randomization of these initial values is usually applied, the choice is made to offset each
parameter with an equal percentage from the true values that were used to create the
simulated data. This is done in order to make it easier to compare the results. The true
values are labeled as 100%, so when all parameters are subjected to a positive offset of
10% this equals a parameter variance θp of 110%. Note that Tlead1 has a value of zero. To
be able to give Tlead1 an offset, it is set to 0.01 for the instances that it is given an offset
by θ.

9-1-2 Method 2: Sliding Time Window Identification

In [Zaal & Sweet, 2011] the sliding time window MLE method is described as follows:

To estimate time-varying pilot model parameters in the current study, the MLE
optimization is performed at every time step ti using a sliding time window of length ∆t.
Choosing a ∆t that is too small will decrease the accuracy of estimated parameters related
to low-frequency dynamics. A ∆t that is too large will reduce the method’s ability to detect
small variations in pilot model parameters. In the current study, the length of the time
window is chosen to be 20 s.

The sliding time window MLE method in [Zaal & Sweet, 2011] is performed every 2
seconds, and because of the width of the window it is initiated at t = 12.0 seconds and stops
at t = 80.0 seconds. To compare the sliding time window MLE method with the proposed
method in this research, the sliding time window method will be performed according to
the definition in [Zaal & Sweet, 2011], but on the simulated data generated by control task
defined in this chapter. In Figure 9-1 a representation of the sliding time window MLE
method is given as defined by Zaal & Sweet [2011]. Because of the sliding time window,
this method only observes a certain part of the data and the parameters are assumed to
have constant values for the data in ∆t. The parameter vector in Equation 9-2, therefore,
only consists of five parameters.

Θ = [Kv Tl τv ωnm ζnm]
" (9-2)
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Figure 9-1: Sliding time window MLE method.

In [Zaal & Sweet, 2011] the initial parameter set was constructed from the simulated pilot
model parameters at each time step. Because only Kv(t) and Tlead(t) are considered in this
parameter estimation problem and because the proposed time-varying model MLE method
only uses one initial parameter which is set at the beginning instead of at each time step,
it is chosen to set the initial values of the sliding time window method to the average of
the top and bottom values of these sigmoids multiplied by the same parameter variance θp
that is chosen for the proposed MLE method.

9-2 Results

The results of parameter estimation are plotted in Figure 9-2. The plots show the results
obtained by setting the initial parameter values to a parameter variance θp of 110%. For
the estimation, simulated data is used, which is generated by the control task in Section 8
without a remnant (np = 0%). The four estimated sigmoid parameters for both Kv(t) and
Tlead(t) were used to plot the sigmoids in Figure 9-2a and Figure 9-2b. For the proposed
MLE method (indicated by MLE1) the sigmoidal shape is clearly visible. Without any
human operator remnant signal, the parameter estimation with the sigmoids is perfect.
The sliding time window MLE method (indicated by MLE2) also produces estimates
which come close to the values provided by the simulated data, but it shows a lot of
peaks and fluctuation around these values. An evaluation of MLE1 and MLE2 for the
estimation of the fixed, time-invariant parameters in Figure 9-2c, Figure 9-2d, and Figure
9-2e shows similar results. With a VAF1 of 100% and a VAF2 of 82.3% the proposed
method is significantly better than the sliding time window method. Note that VAF1 is
only calculated for the measurement time that the sliding time window method acts (from
12 seconds to 80 seconds). VAF2 is calculated by averaging the total sum of the VAFs for
each time window estimation instance.
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When the remnant variance percentage np is increased, however, a clear difference with the
system without remnant can be seen. To show this, Kv(t) and Tlead(t) are plotted in Figure
9-3 for estimation performed on simulated data with remnant variance percentages of 0%,
5%, and 10%. The plots show that both MLE methods return worse estimation results
when the remnant contribution is increased. For the results with an np of 5% and 10%,
the top-value of Kv(t) and the bottom-value of Tlead(t) seem to be estimated correctly, but
their respective bottom- and top-values do not follow the simulated sigmoids. The sliding
time window MLE method seems to have similar problems when estimating the changing
behavior (between 20.96 seconds and 60.96 seconds), but rapidly stabilizes and starts
fluctuating around the simulated values after 60.96 seconds. The plots of the fixed values
τv, ωnm, and ζnm are not shown here, but indicate good results for MLE1. Despite the fact
that MLE2 shows a lot of peaks and fluctuation around the fixed values, the estimation for
the fixed values is also adequate. With a VAF1 of 95.5% and a VAF2 of 76.6% for a np of
5%, the proposed method still produces better results. For a np of 10% this is also the case,
with a value of 90.8% for VAF1 and a value of 71.0% for VAF2. In conclusion, the addition
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Figure 9-2: Parameter estimation results for the proposed MLE method (MLE1) and the
sliding time window MLE method (MLE2). For the estimation, the initial parameter values
were all subjected to a θp of 110%.
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of a remnant to the system has adverse effects on the parameter estimation. There is a
clear difference in performance between the two methods and MLE1 consistently performs
better. It is notable that with an increase in human operator remnant, the ∆VAF between
the two methods also increases.
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Figure 9-3: Parameter estimation results for sigmoids Kv and Tlead under the influence
of different amounts of remnant variance percentage np. For the estimation, the initial
parameter values were all subjected to a θp of 110%.

The results obtained for parameter estimation up until now are based on simulation data
in which the time-varying parameters are modeled as Boltzmann sigmoids. It is important
to understand that for the parameter estimation in this case, the time-varying parameters
are estimated as Boltzmann sigmoids. The time-varying dynamics that can be modeled
with a sigmoid are expected to be representative for a transition in human control behavior
between two dynamic systems. However, it is interesting to see in what way the proposed
estimation method with sigmoids will react on simulation data in which the time-varying
parameters are not modeled as a Boltzmann sigmoid. To check this, the Boltzmann sigmoid
in the simulation data is replaced with a linear transition as depicted by Figure ?? and
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estimated with the proposed estimation method. The parameter estimation results of
both the proposed method MLE1 and the sliding time window method MLE2 are shown
in Figure 9-4 for Kv and Tlead with remnant variance percentages np of 0%, 5% and 10%.
The results are comparable to those of Figure 9-3, except for the results of Kv with an np

of 0% in which the sigmoid seems to be influenced by biases. It is also worth mentioning
that the sliding time window method MLE2 seems to perform better than MLE1 for Tlead.
In general, however, the proposed method still performs better in terms of the VAF. For
an np of 0%, VAF1 equals 96.4% and VAF2 equals 84.8%. For an np of 5%, VAF1 has
a value of 95.5% and VAF2 has a value of 79.8%. And, consequently, for an np of 10%,
VAF1 amounts to 91.6% and VAF2 to 75.4%. The big differences between the VAFs are
not directly visible from Figure 9-4, but are more evident from the estimation of the fixed
values τv, ζnm, and ωnm where MLE2 performs drastically worse for this simulation data
set.
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Figure 9-4: Parameter estimation results for ramp signals Kv and Tlead under the influence
of different amounts of remnant variance percentage np. For the estimation, the initial
parameter values were all subjected to a θp of 110%.
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9-3 Influence of Remnant and Initial Parameter Values

In Section 9-2 it became clear that there are two important factors that have an influence
on the accuracy of the parameter estimation results: the amount of remnant signal in
the simulated data (the remnant variance percentage np) and the offset given to the
initial parameter values for parameter estimation (the parameter variance percentage θp).
Although a larger remnant has a detrimental effect on the results, the parameter variance
percentage θp showed to have a small effect on parameter estimation. To verify this, and to
understand how the remnant variance percentage and the parameter variance percentage
influence the proposed MLE method, twelve sets of simulation data for three different
white noise realizations are generated. Table 9-1 gives an overview of the characteristics
of these twelve simulation data sets. For the complete control task as defined in Section 8,
six sets are generated: three closed-loop system sets and three open-loop system sets. The
difference in these sets of three is the way in which noise is added to the system: as filtered
noise through the shaping filter (i.e., the remnant), as a zero-mean Gaussian white noise
signal multiplied by a time-varying sigmoid Kn to keep the remnant variance percentage
of the single-integrator dynamics equal to that of the double-integrator dynamics, or as a
time-invariant zero-mean Gaussian white noise signal. Two other sets of three are generated
to see if MLE is influenced by the number of parameters, and to see if the single-integrator
(System I∗) and double-integrator (System II∗) dynamics behave differently from the
complete system. Compared to Section 9-2, the number of parameters is reduced as Tlead is
now set to a fixed value. The system parameters for System I∗ and System II∗ are given in
Table 9-2. Note that System I∗ and System II∗ differ from System I and System II, as for
the former systems, Kv(t) is modeled as a sigmoid. Furthermore, the values of Kn(t) are
not given in the table, as the values are dependent on the kind of noise and the remnant
variance percentage np for each set in Table 9-1.

Table 9-1: Overview of the characteristics of twelve packages of simulation data. Closed-loop
is abbreviated to ‘CL’ and open-loop to ‘OL’.

Complete System System I∗ System II∗

CL filtered noise OL filtered noise CL filtered noise CL filtered noise
CL varying white noise OL varying white noise CL varying white noise CL varying white noise
CL constant white noise OL constant white noise CL constant white noise CL constant white noise

The twelve simulation data sets are evaluated by estimating parameters for a θp between
70% and 130%, and for a np ranging from 0% to 20%. For each parameter a
three-dimensional plot is made, where θp and np are set out against the percentual difference
∆θ of estimated parameter θ̂ in comparison with the true parameter value θ0. The plots
for all twelve sets can be found in Appendix C. Note that from Figure C-13 to Figure C-13
in this appendix, another set of plots can be found. For each of these plots, all parameters,
except one, are kept at a θp of 100%. From these plots it can be deduced that changing
one parameter also has its influence on other parameters. To illustrate the main findings
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(h) Closed-loop Sys.
I∗ varying white noise.
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(k) Closed-loop Sys.
II∗ varying white noise.
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Figure 9-5: Percentual parameter difference ∆θ of Tlead0 performed on twelve packages of
different simulation data according to Table 9-1 plotted for a range of parameter variance
percentages θp and remnant variance percentages np.
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Table 9-2: System I∗ & II∗ parameter values.

Parameter System I∗ System II∗

Kv0
0.70 - 0.70 -

Kv1
0.40 - 0.40 -

Kv2
122.88 s 122.88 s

Kv3
-2.30 - -2.30 -

Tlead 0.00 s 4.00 s
Kc 5.00 - 6.00 -
Tc 0.01 s 4.00 s
Tn 0.20 s 0.20 s
τv 0.20 s 0.20 s
ωnm 10.00 rad/s2 10.00 rad/s2

ζnm 0.20 - 0.20 -

from the estimation results of the twelve sets of Table 9-1, the parameter estimation results
for the lead time constant parameter Tlead0 are shown in Figure 9-5. When Figure 9-5a
is compared with Figure 9-5b and Figure 9-5c, a clear difference can be seen between
the filtered noise closed-loop system and the white noise systems: while the white noise
systems show U-shaped plots in the direction of the np-axis, the filtered noise system
results in a disordered plot. Filtering the noise thus has an adverse effect on parameter
estimation. From the results in Section 9-2 it was expected that a higher np would have
a significant influence on the estimation result. This is true, as for all plots (except for
Figure 9-5g) a gradual increase in ∆θ can be seen with an increase in np (with some
exceptions at low values of θp). Unexpected, however, are the large differences that are
introduced to the system by θp. In general, it seems that a θp between 90% and 110% gives
the best results. Below and above these values, the percentual difference in parameter
value ∆θ rapidly increases towards very large values. When the open-loop system plots in
Figure 9-5d, Figure 9-5e, and Figure 9-5f are compared to the closed-loop system plots,
the open-loop systems show better results, especially for a θp above 120%. The results for
System I∗ in Figure 9-5g, Figure 9-5h, and Figure 9-5i illustrate that ∆θ becomes very
large for the single-integrator dynamics. Because parameter estimation returned so-called
‘not a number’ (NaN) values–in this instance unrepresentably large values–in the case of
constant white noise, the plot in Figure 9-5i is not complete. At the location where NaNs
were found, empty spots are visible in this plot. This indicates that the constant white
noise band has a contribution that is too big for the single-integrator dynamics. When
the double-integrator dynamics are evaluated, Figure 9-5j shows that ∆θ grows rapidly
when θp is not 100%. This is even more clear from Figure 9-5l. For System II∗, ∆θ
rapidly increases with an increasing np. The varying white noise results for System II∗ are
unexpected: the estimation of the single-integrator dynamics in Figure 9-5h is much harder
than the estimation of the double-integrator dynamics in Figure 9-5k. In addition, the plots
of all parameters for closed-loop System II∗ with varying white noise are very similar to
Figure 9-5k, while normally some differences can be seen between the parameters. This
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indicates that for a varying white noise, parameters of the double-integrator dynamics are
easily estimated above a θp of 80% even though an increasing np has a slight negative effect
on the estimation. Although the influence of System I∗ on ∆θ seems big in comparison to
that of System II∗, the contribution in the complete closed-loop and complete open-loop
systems seems mostly to originate from System II∗ due to the similar shapes of the plots.
Note that for System I∗ & II∗ parameter Tlead0 is a fixed, time-invariant value. However,
when the plots of Tlead0 are compared to the results for the sigmoid constants of Kv(t) of
System I∗ & II∗, no real difference can be found.

In addition to the twelve simulation data sets in Table 9-1, another eleven data sets are
created. In each of these data sets one specific parameter is varied for θp, whereas the other
parameters are held at their true values (θp = 100%) as explained in Section 9-1. From
the parameter estimation results of these data sets it becomes clear that the variation of
a single parameter with θp has an effect on all parameters. This indicates a correlation
between the parameters. Except for the individual θp variation data sets ofTlead1 , Tlead2 ,
and ωnm, all data sets show similar results in terms of ∆θ. As the results for the Tlead1

data set can be attributed to giving Tlead1 a value of 0.01 instead of zero (as explained in
Section 9-1), the only significant effects on ∆θ can be assigned to the variation of θp for
Tlead2 and ωnm. Considering that the only effects for these two parameters are observed
at θps of 70% and 130%, it can be concluded that within a range of 80% to 120% for θp
these two parameters show estimation results similar to the other parameters. This means
that within this range no single parameter has a significantly larger contribution to the
parameter estimation compared to other parameters. Simultaneously, it can be concluded
that an increase in human operator variance percentage np results in a similar increase in
∆θ for each of the eleven data sets. This once again leads to the conclusion that a higher
amount of human operator remnant has a negative effect on the parameter estimation
results in general.

9-4 Local Minima

As mentioned in Section 3-3, the nonlinear estimation problem under consideration in this
study yields a high number of local minima. When parameter estimation is performed,
the GN algorithm repeatedly fails to find the global minimum, because it ends up at a
local minimum. To show that local minima form a problem, the negative log-likelihood
and a comparison of remnant n with prediction error ε(k) are plotted in Figure 9-6. Figure
9-6a, Figure 9-6c, and Figure 9-6e show the results of parameter estimation, done with
a θp of 110%, for the closed-loop control task as defined in Section 8 with a np of 10%.
The negative log-likelihood in Figure 9-6a steadily decreases to a value of 5905. The first
and last iteration of the GN algorithm are plotted in Figure 9-6c and Figure 9-6e. The
difference in prediction error and remnant at the first iteration is neatly reduced at the
seventh iteration, indicating that there is a high probability that the global minimum is
found. The small differences that are still visible in Figure 9-6e between the prediction error

M. Kers Maximum Likelihood Estimation of Linear Time-Varying Pilot-Vehicle System Parameters



9-4 Local Minima 107

(a) Negative log-likelihood for a control task
with a θp of 110%.

−
ln

L
,
-

iteration k, -
0 1 2 3 4 5 6 7

5000

6000

7000

8000

(b) Negative log-likelihood for a control task
with a θp of 130%.

−
ln

L
,
-

iteration k, -
0 1 2 3 4

×104

0.5

1

1.5

(c) Remnant signal and prediction error for a
control task with a θp of 110%.

iteration 0, Q = 0.34519 deg2

n
an

d
ε(
k
),
d
eg

0 20 40 60 80
−3
−2
−1
0
1
2
3

(d) Remnant signal and prediction error for a
control task with a θp of 130%.

iteration 0, Q = 1.1545 deg2

n
an

d
ε(
k
),
d
eg

0 20 40 60 80
−3
−2
−1
0
1
2
3

(e) Remnant signal and prediction error for a
control task with a θp of 110%.

iteration 7, Q = 0.21748 deg2

n
an

d
ε(
k
),
d
eg

t, s
0 20 40 60 80

−3
−2
−1
0
1
2
3

(f) Remnant signal and prediction error for a
control task with a θp of 130%.

iteration 4, Q = 0.31871 deg2

n
an

d
ε(
k
),
d
eg

t, s
0 20 40 60 80

−3
−2
−1
0
1
2
3

Figure 9-6: Negative log-likelihood and prediction error results of two parameter estimation
runs with a np of 10% on simulated data of a closed-loop control task with θps of respectively
110% and 130%.

and the remnant are caused by minor differences in the simulation of the data in Simulink R©

and the parameter estimation in MATLAB R© as explained in Section 8-3. In Figure 9-6b,
Figure 9-6d, and Figure 9-6f the results of parameter estimation, done with a np of 10%, on
data of a closed-loop control task with a θp of 130% are shown. The negative log-likelihood
for this parameter estimation, plotted in Figure 9-6b, erratically reduces to a value of 7625.
As this is the same closed-loop control task data set, the negative log-likelihood is expected
to drop to a value of 5905 as well. The final value of 7625 indicates that the GN algorithm
converged to a local minimum. This is also visible from Figure 9-6d and Figure 9-6f, as at
iteration 4 the prediction error still depicts a distinct difference from the remnant signal.

To understand how the local minima problem relates to the parameter variance percentage
θp and the remnant variance percentage np, the negative log-likelihood values of the final
GN iterations for the closed-loop control task are averaged for the three noise realizations
that were used before in Section 9-3. The results are plotted in Figure 9-7. Each of the lines
represents a system with a certain amount of remnant np. Optimal parameter estimation
for each system would result in convergence to the global minimum. From these plots it
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Figure 9-7: The negative log-likelihood for different parameter variance percentages θp and
different remnant variance percentages np.

becomes clear that the global minimum is usually found when θp has a value between 90%
and 110%. Below and above these values, the negative log-likelihood is higher than the
value of the global minimum, which leads to the conclusion that the GN algorithm reduces
to a local minimum. It thus seems that a clear relation exists between the initial parameter
values and finding the global minimum. When the influence of the remnant is evaluated,
it becomes clear that an increasing remnant makes the U-shaped plots flatter, indicating
that the difference between the global minimum and local minima becomes smaller. This
is especially true for higher values of θp. Note that there is a big difference between the
system without remnant (np = 0%) and the system with a remnant variance percentage
np of 5%. This suggests that for systems with remnant variance percentages below 5% the
difference between the global minimum and the local minima rapidly reduces.

In Figure 9-8 similar results are shown for the estimation in which only one initial parameter
is varied with θp, whereas all other initial parameter values are held at their true values (θp =
100%). All parameters, except for Tlead2 and ωnm, show near-constant lines for the negative
log-likelihood as shown for Kv0 in Figure 9-8a (plotted for all parameters in Appendix D).
This indicates that if only one of these parameters is varied, the probability that the global
minimum is found is likely, even at high and low parameter variance percentages. A cause
for this might be that ten out of eleven parameters start with the true value as their
initial value. In Figure 9-8b and Figure 9-8c, the results for Tlead2 and ωnm are shown.
For Tlead2 local minima are found below a θp of 90% and above a θp of 120%. For ωnm

local minima are found below a value of 80% for θp. A higher np especially has positive
effects for ωnm as its lines become flatter with higher remnant variance percentages. These
results for Tlead2 and ωnm are consistent with the results in Section 9-3, where Tlead2 and
ωnm also showed to have detrimental effects on the parameter estimation results. Note,
that in Section 9-3 the boundaries, in which parameter estimation still seems to return
proper results, are identified to range from for 80% to 120% for θp. Here, these limits seem
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to be even smaller with values of 90% and 120%. From these results it can be concluded
that for the estimation problem considered in this study, the parameters Tlead2 and ωnm

contribute in a negative way to the local minima problem, especially for parameter variance
percentages that are further removed from the true values at 100%.
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Figure 9-8: The negative log-likelihood for different parameter variance percentages θp
and different remnant variance percentages np. For the estimations in the figures only the
respective parameter is varied for θp, all other parameters are held at a θp of 100%.
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Chapter 10

Discussion

Parameter estimation with a proposed time-varying time-domain MLE identification
procedure was done on simulated data of a closed-loop manual control task. The results of
the proposed MLE method were compared to the results of the sliding time window MLE
method proposed by Zaal & Sweet [2011]. A comparison of the respective VAF values
of the methods leads to the conclusion that the proposed method performs better than
the sliding time window method. Because the MLE method proposed in this thesis uses
Boltzmann sigmoids to model the time-varying dynamics, the estimation results in a much
smoother signal for the estimated time-varying parameters in comparison to the sliding
time window MLE method, which often returns rapidly changing results. When regarding
computational effort, the proposed method is much faster than the sliding time window
method.

The smooth shape of the Boltzmann sigmoids also has its drawbacks in the sense that the
Boltzmann sigmoid must be rather steep for the sigmoid to start at the same values of the
single-integrator at 20.96 seconds and to end at the double-integrator dynamics values at
60.96 seconds. Although the entire Boltzmann sigmoid is modeled over 40 seconds, a rapid
change occurs in a very short period of time. This is not a big problem, as it is expected
that a human operator adapts his or her control behavior rapidly from one set of dynamics
to another set. However, if a more gradual transition between the dynamics needs to
be modeled, the Boltzmann sigmoid might not be suitable. Furthermore, the choice of a
Boltzmann sigmoid imposes restrictions on the shape of the transition between different
sets of dynamics, if parameter estimation on polynomials would pose less problems, this
might be a better choice due to the innate freedom of a polynomial’s shape. Finally, the
Boltzmann sigmoid introduces four parameters to the parameter estimation problem for
each time-varying parameter that needs to be estimated. It thus rapidly increases the
complexity of the estimation problem.

The results of the estimation problem are heavily influenced by the human operator
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remnant, by the choice of the initial parameter values, and by local minima. Due to
the nonlinear behavior of the human operator, the addition of a remnant is unavoidable to
model a realistic control task. It is therefore difficult to reduce the negative contribution
the remnant has on the proposed MLE method. It should be noted that the research in
this study was done by giving all parameters an equal offset with θp. This was done to
be able to easily compare the results to each other. It might be useful to study what the
effects are of taking randomized values of the initial parameter values. The problem related
to the initial parameter values can be reduced by, for example, using a genetic algorithm
as proposed in [Zaal et al., 2009]. A major drawback of such a genetic algorithm is the
amount of computational time needed and the fact that there is no guarantee that the result
reduces to initial parameter values that enhance the parameter estimation results. A clear
correlation was found between the initial parameter values and finding the global minimum.
Increasing the chance of finding acceptable initial parameter values thus decreases the local
minima problem. The local minima problem is also related to the gradient-based GN
output error method used in this study. Other methods such as convexification [Ljung,
2010], a random search, interval analysis [Kampen, 2010], or simulated annealing could help
resolve the local minima problem. The results in this study clearly show that the presence
of expected levels of human operator remnant signal has a severe negative effect on the
parameter estimation results. Therefore, the estimation method needs to be adjusted to be
able to cope with these remnant signal levels. For future research it is thus recommended
to study a filter error method [Raol et al., 2004] which combines the output error method
with a Kalman filter. Although a filter error method is mathematical more complex and
computationally intensive, it seems to be a promising method for solving the local minima
problem encountered in this study. The filter error method can also help with estimating
part of the remnant, which might result in better parameter estimates.

Finally, simulated data was used for the reason that it is easy to know what the true
values–and thus the optimal parameter estimates–of the original dynamic system are.
Future research should also focus on using experimental data to understand the effect of
the proposed MLE method on the difference between a real-life and a simulated system.
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Chapter 11

Conclusions

In this thesis a Maximum Likelihood Estimation method is proposed for the estimation
of linear time-varying pilot-vehicle system parameters in the time-domain. The parameter
estimation is performed on simulated data of a closed-loop manual control task, which
contains time-varying human operator dynamics as well as time-varying vehicle dynamics.
The time-varying system behavior is modeled utilizing Boltzmann sigmoids. The proposed
method is compared to a sliding time window Maximum Likelihood Estimation method.
Although the proposed method performs better than the sliding time window method,
it is heavily influenced by the human operator remnant, by the choice of the initial
parameter values, and by local minima. Because improvements can be made for each
of these influential factors, future research is recommended.
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Back Matter
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Appendix A

Orthogonal Polynomial Overview

Orthogonal functions are often used in LTV and nonlinear parameter estimation
problems. A subclass of these orthogonal functions are the orthogonal polynomials, which
have traditionally been divided into classical and nonclassical orthogonal polynomials.
Especially for nonlinear system identification problems the product property of the
polynomials is advantageous [Rémond et al., 2008]. Some frequently used classical
orthogonal polynomials are the Hermite, Laguerre, and Jacobi polynomials. Gegenbauer
polynomials, a special subclass of the Jacobi polynomials, include Legendre and
Chebyshev polynomials. This classification of polynomials was deemed narrow-minded
by [Andrews & Askey, 1985] and resulted in the development of the so-called Askey
Scheme. The extended scheme in Figure A-1 gives an overview of the relations between
different groups of hypergeometric orthogonal polynomials. This extended scheme was
taken from [Koekoek et al., 2010] with written permission from the author and only shows
the set of classical orthogonal polynomials, which are special or limiting cases of either
the Askey-Wilson polynomials or the q-Racah polynomials. For the the q-Askey Scheme
with the q-analogues included and an extensive explanation of the relations between the
hypergeometric orthogonal polynomials, please refer to [Koekoek et al., 2010]. Figure
A-1 shows different levels of which the notation will be clarified by the definition of
hypergeometric functions. A hypergeometric function rFs is defined by Equation (A-1).

rFs(a1, . . . , ar; b1, . . . , bs; z) :=
∞
∑

k=0

(a1, . . . , ar)k
(b1, . . . , bs)k

zk

k!
(A-1)

where

(a1, . . . , ar)k := (a1)k . . . (ar)k. (A-2)
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Figure A-1: Askey Scheme of Hypergeometric Orthogonal Polynomials. [Koekoek et al.,
2010].
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Simulink Models
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C-1 Closed-Loop Filtered Noise Complete System
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Figure C-1: Parameter difference ∆Θ from true values θ0 over a range of pilot remnant
variance percentages np and a range of different initial parameter offsets θp. MLE executed
on simulated data of the complete, closed-loop, filtered noise system.
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C-2 Closed-Loop Sigm. White Noise Complete System
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Figure C-2: Parameter difference ∆Θ from true values θ0 over a range of pilot remnant
variance percentages np and a range of different initial parameter offsets θp. MLE executed
on simulated data of the complete, closed-loop, sigmoidal white noise system.
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C-3 Closed-Loop Const. White Noise Complete System
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Figure C-3: Parameter difference ∆Θ from true values θ0 over a range of pilot remnant
variance percentages np and a range of different initial parameter offsets θp. MLE executed
on simulated data of the complete, closed-loop, constant white noise system.
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C-4 Open-Loop Filtered Noise Complete System
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Figure C-4: Parameter difference ∆Θ from true values θ0 over a range of pilot remnant
variance percentages np and a range of different initial parameter offsets θp. MLE executed
on simulated data of the complete, open-loop, filtered noise system.
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C-5 Open-Loop Sigm. White Noise Complete System
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Figure C-5: Parameter difference ∆Θ from true values θ0 over a range of pilot remnant
variance percentages np and a range of different initial parameter offsets θp. MLE executed
on simulated data of the complete, open-loop, sigmoidal white noise system.
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C-6 Open-Loop Const. White Noise Complete System
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Figure C-6: Parameter difference ∆Θ from true values θ0 over a range of pilot remnant
variance percentages np and a range of different initial parameter offsets θp. MLE executed
on simulated data of the complete, open-loop, constant white noise system.
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C-7 Closed-Loop Filtered Noise System I
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Figure C-7: Parameter difference ∆Θ from true values θ0 over a range of pilot remnant
variance percentages np and a range of different initial parameter offsets θp. MLE executed
on simulated data of complete, closed-loop, filtered noise System I.
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C-8 Closed-Loop Sigm. White Noise System I

(a) Parameter Kv0
.

∆
θ
,
%

θp, % np, %

0
5

10
15

20

70
100

130

0
7.5
15

22.5
30

(b) Parameter Kv1
.

∆
θ
,
%

θp, % np, %

0
5

10
15

20

70
100

130

0
7.5
15

22.5
30

(c) Parameter Kv2
.

∆
θ
,
%

θp, % np, %

0
5

10
15

20

70
100

130

0
2.5
5

7.5
10

(d) Parameter Kv3
.

∆
θ
,
%

θp, % np, %

0
5

10
15

20

70
100

130

0
20
40
60
80

(e) Parameter Tlead0
.

∆
θ
,
%

θp, % np, %

0
5

10
15

20

70
100

130

0
150
300
450
600

(f) Parameter τv.

∆
θ
,
%

θp, % np, %

0
5

10
15

20

70
100

130

0
10
20
30
40

(g) Parameter ωnm.

∆
θ
,
%

θp, % np, %

0
5

10
15

20

70
100

130

0
7.5
15

22.5
30

(h) Parameter ζnm.

∆
θ
,
%

θp, % np, %

0
5

10
15

20

70
100

130

0
7.5
15

22.5
30

Figure C-8: Parameter difference ∆Θ from true values θ0 over a range of pilot remnant
variance percentages np and a range of different initial parameter offsets θp. MLE executed
on simulated data of closed-loop, sigmoidal white noise System I.
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C-9 Closed-Loop Const. White Noise System I
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Figure C-9: Parameter difference ∆Θ from true values θ0 over a range of pilot remnant
variance percentages np and a range of different initial parameter offsets θp. MLE executed
on simulated data of closed-loop, constant white noise System I.
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C-10 Closed-Loop Filtered Noise System II
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Figure C-10: Parameter difference ∆Θ from true values θ0 over a range of pilot remnant
variance percentages np and a range of different initial parameter offsets θp. MLE executed
on simulated data of closed-loop, filtered noise System II.
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C-11 Closed-Loop Sigm. White Noise System II
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Figure C-11: Parameter difference ∆Θ from true values θ0 over a range of pilot remnant
variance percentages np and a range of different initial parameter offsets θp. MLE executed
on simulated data of closed-loop, sigmoidal white noise System II.
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C-12 Closed-Loop Const. White Noise System II
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Figure C-12: Parameter difference ∆Θ from true values θ0 over a range of pilot remnant
variance percentages np and a range of different initial parameter offsets θp. MLE executed
on simulated data of closed-loop, constant white noise System II.
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C-13 Varied Kv0 Closed-Loop Filtered Noise System.
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Figure C-13: Parameter difference ∆Θ: all parameter values are kept on the true values
except Kv0 which is varied over a range of parameter offsets ∆Kv0 and a range of remnant
variance percentages np. MLE executed on complete, closed-loop, filtered noise system data.
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C-14 Varied Kv1 Closed-Loop Filtered Noise System.
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Figure C-14: Parameter difference ∆Θ: all parameter values are kept on the true values
except Kv1 which is varied over a range of parameter offsets ∆Kv1 and a range of remnant
variance percentages np. MLE executed on complete, closed-loop, filtered noise system data.
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C-15 Varied Kv2 Closed-Loop Filtered Noise System.
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Figure C-15: Parameter difference ∆Θ: all parameter values are kept on the true values
except Kv2 which is varied over a range of parameter offsets ∆Kv2 and a range of remnant
variance percentages np. MLE executed on complete, closed-loop, filtered noise system data.
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C-16 Varied Kv3 Closed-Loop Filtered Noise System.
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Figure C-16: Parameter difference ∆Θ: all parameter values are kept on the true values
except Kv3 which is varied over a range of parameter offsets ∆Kv3 and a range of remnant
variance percentages np. MLE executed on complete, closed-loop, filtered noise system data.
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C-17 Varied Tlead0 Closed-Loop Filtered Noise System.
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Figure C-17: Parameter difference ∆Θ: all parameter values are kept on the true values
except Tlead0 which is varied over a range of parameter offsets∆Tlead0 and a range of remnant
variance percentages np. MLE executed on complete, closed-loop, filtered noise system data.
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C-18 Varied Tlead1 Closed-Loop Filtered Noise System.
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Figure C-18: Parameter difference ∆Θ: all parameter values are kept on the true values
except Tlead1 which is varied over a range of parameter offsets∆Tlead1 and a range of remnant
variance percentages np. MLE executed on complete, closed-loop, filtered noise system data.

Maximum Likelihood Estimation of Linear Time-Varying Pilot-Vehicle System Parameters M. Kers



142 Parameter-Remnant Plots

C-19 Varied Tlead2 Closed-Loop Filtered Noise System.
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Figure C-19: Parameter difference ∆Θ: all parameter values are kept on the true values
except Tlead2 which is varied over a range of parameter offsets∆Tlead2 and a range of remnant
variance percentages np. MLE executed on complete, closed-loop, filtered noise system data.
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C-20 Varied Tlead3 Closed-Loop Filtered Noise System.
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Figure C-20: Parameter difference ∆Θ: all parameter values are kept on the true values
except Tlead3 which is varied over a range of parameter offsets∆Tlead3 and a range of remnant
variance percentages np. MLE executed on complete, closed-loop, filtered noise system data.

Maximum Likelihood Estimation of Linear Time-Varying Pilot-Vehicle System Parameters M. Kers



144 Parameter-Remnant Plots

C-21 Varied τv Closed-Loop Filtered Noise System.
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Figure C-21: Parameter difference ∆Θ: all parameter values are kept on the true values
except τv which is varied over a range of parameter offsets ∆τv0 and a range of remnant
variance percentages np. MLE executed on complete, closed-loop, filtered noise system data.
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C-22 Varied ωnm Closed-Loop Filtered Noise System.
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Figure C-22: Parameter difference ∆Θ: all parameter values are kept on the true values
except ωnm which is varied over a range of parameter offsets ∆ωnm0 and a range of remnant
variance percentages np. MLE executed on complete, closed-loop, filtered noise system data.
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C-23 Varied ζnm Closed-Loop Filtered Noise System.
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Figure C-23: Parameter difference ∆Θ: all parameter values are kept on the true values
except ζnm which is varied over a range of parameter offsets ∆ζnm0 and a range of remnant
variance percentages np. MLE executed on complete, closed-loop, filtered noise system data.
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Appendix D

Negative Log-Likelihood and Variance
Percentages Plots
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Figure D-0: The negative log-likelihood for different parameter variance percentages θp
and different remnant variance percentages np. For the estimations in the figures only the
respective parameter is varied for θp, all other parameters are held at a θp of 100%.
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Rémond, D., Neyrand, J., Aridon, G., & Dufour, R. (2008, July-August). On the Improved
Use of Chebyshev Expansion for Mechanical System Identification. Mechanical Systems
and Signal Processing , 22 , 390-407.

Sanyal, S., Kukreja, S. L., Perreault, E. J., & Westwick, D. T. (2005, September).
Identification of Linear Time Varying Systems using Basic Pursuit. Proceedings of the
2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai,
China.

Schölkopf, B., & Smola, A. J. (2002). Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press.

Shih, Y. M. (1983). Application of Chebyshev Polynomials in Analysis and Identification
of Linear Systems. Journal of the Chinese Institute of Engineers , 6 (2), 135-140.
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