
Lagrangian Methods
for Inviscid 
Barotropic Flow
Higher-Order Mimetic Discretization on 
a Space-Time Grid

Mukthesh Mahadev



Lagrangian Methods
for Inviscid Barotropic

Flow
Higher-Order Mimetic Discretization on a

Space-Time Grid

by

Mukthesh Mahadev

to obtain the degree of Master of Science

in Aerospace Engineering at the Delft University of Technology,

to be defended publicly on Monday the 31st of March, 2025 at 11:00 AM.

Student number: 5805120

Project duration: 1st May 2024 - 4th March 2025

Thesis committee: Dr.ir. M.I. Gerritsma Supervisor TU Delft-Faculty of Aerospace Engineering
Ir. S. Shreshta Supervisor TU Delft-Faculty of Aerospace Engineering
Dr.ir. A.H. (Alexander) van Zuijlen Chair TU Delft-Faculty of Aerospace Engineering
Dr. A. (Artur) Palha da Silva Clérigo Examiner TU Delft-EEMCS, Applied Mathematics
Dr. N. Valle Marchante Additional TU Delft-Faculty of Mechanical Engineering

cover: Created with the assistance of
DALL∙E 2



Preface

Before I begin my exposition on the work I have been conducting over the past nine months, I would like to express my
heartfelt gratitude to those who have guided, supported, and encouraged me during this journey. First and foremost,
I want to thank my supervisor, Dr.ir. M.I.Gerritsma, for his unwavering support and guidance throughout my research.
He generously made time to meet with me, and our discussions were both intellectually stimulating and lighthearted,
featured by his witty jokes that never failed to brighten our meetings. I am also deeply appreciative of my co-supervisor,
Suyash Shrestha, whose insightful feedback and suggestions were invaluable in helping me refine my research.
Finally, to my family and friends: your unwavering support kept me fueled throughout this demanding journey. Thank
you for being my sounding board and occasional reality-checkers. This work wouldn’t have been possible without
you.

Mukthesh Mahadev
Delft, March 2025

i



Abstract

This study proposes a novel approach, developing and analyzing a higher-order, structure-preserving discretization
method for inviscid barotropic flows from a Lagrangian perspective. The discretization encodes flow variables as
discrete differential forms on a space-time mesh, using principles from differential geometry and algebraic topology.

Unlike standard Lagrangian methods, which are prone to mesh distortion, this framework computes fluid deformations
in a reference configuration and systematically maps them to the physical domain. This structure-preserving design
ensures that fundamental conservation laws for mass, momentum, and energy hold up to machine precision. It also
efficiently handles low-Mach number flows without specialized fixes for stiff pressure waves.

Numerical experiments on expansion and compression flows confirm the discretization’s accuracy, stability, and con-
servation properties. The formulation naturally couples with structural solvers, enabling fluid-structure interaction and
other multi-physics applications. By uniting spectral accuracy with a geometry-aware design, this approach serves
as a first step toward a complete Lagrangian spectral element solver.
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1
Introduction

In modern computational fluid dynamics (CFD), significant effort has been devoted to the development of numerical
methods that accurately represent the underlying physics of fluid flow while preserving crucial conservation properties.
Many approaches excel at matching experimental data for specific test cases yet may struggle to conserve invariants
such as energy, momentum, or mass when integrated over long time intervals. Consequently, there is a growing
interest in structure-preserving numerical frameworks that capture both the geometric and variational foundations of
fluid behavior. These frameworks are particularly relevant for flows governed by variational or Hamiltonian principles,
where numerical errors can accumulate and degrade the fidelity of simulations if the discrete scheme fails to respect
the inherent symplectic or multisymplectic nature of the governing equations.

One class of flows that benefits substantially from structure-preserving approaches is inviscid barotropic flow, where
pressure depends solely on fluid density. This type of flow arises in many geophysical, aerospace, and industrial
contexts, often involving compressible fluids under conditions in which thermal gradients have a reduced or secondary
influence. By describing the flow in a Lagrangian viewpoint/perspective , it becomes possible to track individual fluid
parcels through space and time, rather than examining velocities at fixed points in a spatial domain. The Lagrangian
formulation offers several advantages:

1. Natural Material Tracking. Tracking fluid particles makes it straightforward to account for moving interfaces,
free surfaces, or deforming fluid domains.

2. Variational Clarity. The Lagrangian description defined through a variational formulation simplifies the pre-
sentation of symplectic or multisymplectic structures, ensuring that physical invariants can be identified and
systematically preserved in the discrete formulation.

3. Streamlined Coupling with Other Physics. Many structural and solid mechanics solvers use a Lagrangian
description to follow material points. As a result, a Lagrangian fluid solver naturally facilitates fluid–structure
interaction (FSI) by aligning coordinate systems, thereby simplifying the interface treatment and promoting
consistent momentum and energy exchange. This property also benefits more general multi-physics scenar-
ios, including magnetohydrodynamics or reactive flows, in which a unified variational foundation can enhance
numerical stability and physical fidelity.

Despite these advantages, purely Lagrangian methods typically involve a computational mesh that deforms with
the fluid parcels in physical space, leading to potential mesh distortion and numerical instability. In contrast, the
approach presented in this work employs a novel strategy: fluid variables are associated with the physical (deformed)
configuration are evaluated in the reference configuration thus avoiding mesh deformations. Central to this strategy
is the first Piola–Kirchhoff tensor, which describes how fluid stresses or fluxes computed in the reference space map
to the current physical space. This technique mitigates some of the issues encountered by standard moving-mesh
approaches in CFD and draws inspiration from solid mechanics, where a similar mapping has been used to connect
reference and deformed domains.

Another significant challenge addressed in this work relates to the behavior of Low-Mach-number compressible flows
(where M � 1) pose significant computational challenges because the governing equations become stiff and ill-
conditioned as the flow speed is much smaller than the speed of sound [6, 11]. Physically, acoustic waves travel at

1



1.1. Research Question 2

high speeds relative to the low flow velocity, forcing very small time steps when explicit time-integration methods are
used [10]. At the same time, density variations are weak, making the system nearly incompressible and prone to
numerical inaccuracies [3]. These difficulties can cause either excessive numerical dissipation or very high compu-
tational cost due to the disparity in characteristic speeds. By leveraging the Lagrangian formulation in a variational
setting, the approach introduced here handles low-Mach regimes naturally, without the need to incorporate additional
preconditioning or sound-speed modifications. This characteristic further underscores the versatility and robustness
of the proposed scheme.

Recent progress in multisymplectic and mimetic (also known as compatible) numerical methods suggests that long-
standing issues of instability can be mitigated [38, 41]. Multisymplectic formulations extend symplectic integrators
originally designed for time integration into the space-time domain, ensuring that essential phase-space structures
are respected throughout both temporal and spatial dimensions. Meanwhile, mimetic approaches leverage concepts
from differential geometry and algebraic topology to replicate the fundamental identities of vector calculus on discrete
grids. These techniques provide discrete analogs of divergence, curl, and gradient operators that rigorously satisfy
their associated identities, thereby yielding conservation properties that mirror those in the continuous theory.

The present study constitutes a first step toward a full fledged spectral element solver designed for barotropic flows
under a Lagrangian, multisymplectic framework. Higher-order spectral frameworks are known for superior conver-
gence and accuracy when the solution is sufficiently smooth, while mimetic principles ensure that essential geometric
and topological features of the flow are preserved. In addition to laying the theoretical groundwork, this investigation
demonstrates that the methodology can be extended to incorporate pressure boundary or free boundary conditions.
The resulting solver not only maintains discrete analogs of key conservation laws such as linear momentum, angular
momentum, energy, and mass but also holds potential for unification with Lagrangian solid mechanics or related
physics modules. This unified viewpoint simplifies fluid–structure interaction (FSI) by sharing a common Lagrangian
description, reducing interface complexity, and improving the consistency of momentum and energy transfer across
the fluid-solid boundary.

1.1.Research Question

Against this backdrop, a central question emerges:

Can the inviscid barotropic flow, formulated in the Lagrangian framework via a multisymplectic
variational principle, be discretized with a space-time numerical method in a higher-order mimetic
setting?

To investigate the main question, several more specific points are addressed:

1. Does the proposed method correctly handle pressure and free boundary conditions, and does it converge to a
limit deformation as the polynomial order is increased?

2. Does the discrete scheme preserve the symmetries associated with the multisymplectic formulation specifically
the conservation of linear momentum, angular momentum, energy, and mass?

These sub-questions provide a clear roadmap for assessing whether the methodology lives up to the theoretical
promise of unified structure preservation and high accuracy.

1.2.Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2 – Introduction to Mimetic Discretisation: Presents the theoretical foundation of mimetic or compatible
methods, focusing on how physical variables can be assigned to different geometric entities. Emphasis is placed on
preserving topological relationships in the discrete context and ensuring that discrete versions of divergence, curl,
and gradient remain exact.

Chapter 3 – Mathematical Framework into Mimetic Methods: Introduces the relevant concepts from differential
geometry and algebraic topology. Manifolds, differential forms, exterior derivatives, and the Hodge ∗ operator are
explained, with attention to how these ideas underpin the structure-preserving goals of the numerical formulation.



1.3. Contributions 3

Chapter 4 – Discrete Setting and Spectral Implementation: Describes how to translate continuous geometric and
topological concepts into a fully discrete environment using higher-order spectral elements. Topics include Gauss–
Lobatto–Legendre (GLL) nodes, nodal and edge polynomial basis functions, primal and dual variables, incidence
matrices, and discrete Hodge star operators.

Chapter 5 – Lagrangian Formulation of Barotropic Flow: Details the derivation of the governing equations under
a Lagrangian perspective via a Lagrangian variational formulation , including the barotropic assumption and the fun-
damental multisymplectic structure. The influence of Noether’s theorem on discrete conservation laws is addressed.

Chapter 6 – Weak Formulation and the Full Discrete System: Develops a weak (variational) form of the equa-
tions, treating both spatial and temporal discretizations in an integrated manner. This chapter also covers the discrete
enforcement of pressure boundary conditions, as well as the computational implementation of the nonlinear pressure
term.

Chapter 7 – Numerical Experiments and Results: Presents numerical experiments designed to assess perfor-
mance under different pressure boundary conditions. Convergence behavior is examined as the polynomial order
increases, and key conservation properties (mass, momentum, and energy) are evaluated to determine whether the
discrete scheme preserves the multisymplectic symmetries introduced in earlier chapters.

Chapter 8 – Conclusion and Future Work: Summarizes the principal findings regarding convergence, boundary-
condition handling, and discrete symmetry preservation. Further applications are proposed, including fluid–structure
interaction (FSI) and other multi-physics extensions, highlighting how the Lagrangian perspective naturally aligns
with standard structural mechanics codes and can unify diverse physical phenomena within a single computational
framework.

1.3.Contributions

The contributions of this research can be summarized as follows:

1. Framework Definition: Establishment of a higher-order mimetic scheme for inviscid barotropic flow in a La-
grangian, multisymplectic context, forming a solid foundation for a future full spectral element solver.

2. Boundary Condition Treatment and Convergence: Demonstration that pressure boundaries can be handled
effectively while maintaining accuracy and stability, and verification of convergence behavior as polynomial
order increases.

3. Low-Mach-Number simulations: Inclusion of a formulation that captures low-Mach-number compressible
flows naturally, avoiding the need for specialized preconditioning, artificial sound-speed manipulation, or acous-
tic filtering, thus enhancing computational efficiency and numerical stability.

4. Symmetry and Conservation: Validation that the discrete system preserves important conservation proper-
ties — namely, linear momentum, angular momentum, energy, and mass—by leveraging multisymplectic and
mimetic principles.

5. Pathway to Multi-Physics: Provision of a formulation that can integrate fluid flow with structural mechanics or
other physics, facilitating fluid–structure interaction in a common Lagrangian framework and ensuring consistent
conservation across coupled domains.

In summary, this investigation seeks to unify higher-order structure-preserving algorithms, and the advantages of a
Lagrangian description, thereby laying groundwork for advanced CFD capabilities that can seamlessly interface with
solid mechanics solvers and handle low mach number compressible flows. Such a cohesive methodology aims to
address the rising demand for geometry-aware simulations of both single-physics and multi-physics processes in
modern engineering and scientific research.



2
Introduction to Mimetic Discretisation

2.1.Geometric structure of Physics

Continuum physics revolves around observable quantities such as displacement, velocity, etc. We explore how
these quantities interact over space and time to understand physical phenomena. In the framework of vector calcu-
lus, these variables are classified as scalars or vectors, but this classification can be misleadingly simple. Consider
scalar quantities as an example. A scalar potential φ(x, y, z) is defined at each point in the space, which means it
directly represents a value at that point. A similar distinction appears in vector fields; a velocity field u(x, y, z)may be
traced along paths or contours, while a flux (i.e. u.n dA) is more naturally defined across an area or surface. These
examples show that standard vector calculus does not always capture the subtle geometric contexts in which these
quantities appear in continuum physics.

Tonti [34] argues that describing physical quantities as field variables often obscures their geometric nature, especially
when using differential formulations derived through limiting processes. For instance as shown in [30], consider the
example of conservation of mass, which states that the total mass within a fixed volume V is given by,

∫
V

ρ dV . Thus

according to the conservation principle, any change in the total mass inside V results from the net flux of mass across
its boundary ∂V :

∫
V

ρ(t+∆t) dV −
∫
V

ρ(t) dV +∆t

∫
∂V

ρu · n dS = 0.

Dividing by ∆t and letting ∆t → 0, and then applying the divergence theorem converts the surface integral to a
volume integral:

∫
V

∂ρ

∂t
dV +

∫
V

∇ · (ρu) dV = 0.

Since this equation holds for any arbitrary volume V , the differential form of the mass conservation law becomes:

∂ρ

∂t
+∇ · (ρu) = 0.

Now, the sense of volume associated to the density in it’s integral formulation is lost when the differential formulation
is obtained following the process of taking a limit. This example highlights that, original geometric interpretation can
be lost in the process of transformation from, the integral to the differential form.

4



2.2. Global Variables and Their Geometric Association 5

Continuing from Tonti’s [34] discussion, it is evident that transitioning from integral to differential forms of physical
laws involves an abstraction that can hide the original geometric meaning of the quantities involved. The process of
taking limits, as seen in the derivation of differential forms of equations, is a mental construct that introduces a level
of idealization beyond what can be achieved in practice. The notion of a limit is central to calculus, defining concepts
like instantaneous velocity or point-wise density. However, in the physical world, quantities are measured with finite
precision. Measurement tools record data in discrete steps and within specific error margins, so the precision sug-
gested by mathematical limits is simply not achievable. By applying a limit, we smooth over the naturally steplike
nature of real-world data, giving an illusion of continuity that does not reflect actual observations.

Computers, limited by finite arithmetic precision , cannot handle true infinitesimal quantities or exact limits, relying
instead on approximations, which replace derivatives with discrete changes and integrals with summations over
small elements. This reveals that computational physics is inherently discrete, making it more natural to formulate
problems using global variables like total mass, or displacement, which relate to extended spatial or temporal regions
and are directly measured in experiments without involving limits instead of field variables employed in conventional
vector calculus. These global variables retain geometric and topological information that differential formulations often
conceal. They also provide an algebraic structure well-suited for numerical methods, which align with the discrete
nature of physical measurements by operating on finite regions such as mesh cells.

2.2.Global Variables and Their Geometric Association

The previous section highlighted while differential equations describe local, pointwise relationships, many physical
quantities are naturally measured over finite domains of space and time. We call these global variables: total mass,
flux through a surface, circulation along a path, etc. Such variables emphasize the geometry of the region or boundary
under consideration, aligning with geometric construction of physical laws. Instead of deriving densities or rates by
taking limits, we work directly with what is measured in practice: averages, totals, or net transfers over finite, oriented
’chunks’ of space and time.

Each global variable naturally attaches to a geometric entity of specific dimension:

• A 0-dimensional entity is a point P . Certain global scalars, such as position or temperature, are measured at
points.

• A 1-dimensional entity is a line L. Circulation of a velocity field and total displacement are typical examples.
• A 2-dimensional entity is a surface S. Heat flux and mass flux are all measured across surfaces.
• A 3-dimensional entity is a volume V . Quantities such as total mass and change in energy are measured over
volumetric regions.

Similarly in time, measurement is over intervals T (1-dimensional time element) or at discrete instants I (0-dimensional
time element).

2.2.1. Classification of Global Variables

A concise way to organize physical variables, following Tonti [34], is to classify them as configuration, source, or
intermediate. Configuration variables describe the geometry or arrangement of the system (e.g., displacement fields,
electromagnetic potentials), while source variables capture external stimuli (e.g., forces, charges). Intermediate vari-
ables bridge these two categories and often appear in tensorial pairs, such as stress–strain or electric–magnetic
fields, reflecting how the system responds to external inputs.

From this classification emerge three key types of governing equations. Definition equations express intermedi-
ate variables as derivatives of configuration variables, for example strain defined by the gradient of displacement .
Balance equations relate source variables to intermediate variables via fluxes or divergences, as in the continuity
equation for mass. Finally, constitutive equations tie pairs of intermediate variables together or link them to source
variables using material properties (e.g., stress–strain laws in elasticity or electric displacement–field relationships in
electromagnetism).

This viewpoint preserves the geometric and causal structure of physical models, aligning naturally with integral (global)
forms that measure finite regions or boundaries rather than relying solely on differential (pointwise) formulations.
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2.3.Orientations and Its Necessity

A critical subtlety in describing many physical laws is the orientation of the geometric element on which a variable
is measured. Each dimension—point (0D), line (1D), surface (2D), volume (3D)—can carry two distinct kinds of
orientation:

1. Inner orientation :

Inner orientation refers to orientation within the geometric element. For a 1D line element (edge) in space, an
inner orientation indicates the ‘forward’ direction of the line. For a 2D surface element (face), an inner orientation
selects a consistently oriented boundary direction according to the right-hand rule or similar. For a 3D volume
element (cell), an inner orientation is typically the orientation that ensures a consistent boundary orientation for
its enclosing faces. Physically, variables that require an inner orientation are often configuration variables.

2. Outer orientation :

Outer orientation refers to orientation around the geometric element. A line with outer orientation may be used in
measuring, for instance, a boundary trace of flux. A surface with an outer orientation is usually the standard flux
orientation, where the vector normal points outward and a volume with outer orientation is used in measuring
divergence within the volume. Variables that need an outer orientation are often source variables (like forces,
fluxes, or intensities).

Though [34] recommends to follow these associations, there is no rule that relates configuration variables to inner
orientation and the source variables to outer orientation as long as the made associations are consistently respected
throughout the entire formulation. The geometric notion of orientation is what permits us to define consistent signs
for physical quantities. If we were to ignore or mix up orientations, we would lose the ability to state the direction of
flow, net in/out flux, and other essential physical details. Consider a simple flux balance in fluid mechanics

∫
∂V

f ·n dS,

where f is a flux vector (mass flux etc.) and n is the unit normal. The overall sign of this integral depends crucially on
the outer orientation of the surface ∂V . Reversing the orientation (inward vs. outward) changes the sign of the result
and hence changes the interpretation from outflow to inflow. All such fundamental constructs of continuum physics
rely on orientation to define directionality unambiguously. Figure 2.1 shows the associated inner and outer orientation
of geometric objects in R3.

Point

Point

Line

Line

Surface

Surface

Inner Oriented

Outer Oriented

Volume

Volume

Figure 2.1: Inner and Outer orientations of geometric objects
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2.4.Linking to Differential Geometry and Algebraic Topology

Differential geometry and algebraic topology offer powerful, coordinate-free tools to connect these global, integral
perspectives with local, pointwise formulations. By emphasizing orientation, connectivity, and discrete cell complexes,
they unify physical measurements with the underlying geometric and topological structure of space, ensuring that both
integral and differential forms of the laws remain consistent and transparent.

2.4.1. From Global to Local: The Role of Differential Geometry

When finite regions shrink to infinitesimal size when the limiting process occurs in classical vector calculus, it is
marked by the appearance of operators ∇·, ∇×, and ∇. In the language of differential geometry, the same process
corresponds to taking the exterior derivative of differential forms. Concretely, a 0-form (function) (evaluated at points)
becomes a 1-form upon applying d, thereby measuring variations along one-dimensional lines. Similarly, a 1-form
(integrated along lines) produces a 2-form that can be integrated over surfaces, and so forth.

2.4.2. From Global to Discrete: The Role of Algebraic Topology

Numerical methods do not employ true differentials or infinitely refined partitions. Instead, space and time are dis-
cretized into cell complexes:

• A primal complex (points, edges, faces, volumes) with a particular orientation inner or outer depending on the
choice of discretisation.

• A dual complex with a complementary orientation to the primal complex, offset so that each dual cell intersects
the corresponding primal cell of complementary dimension.

In algebraic topology, these discrete elements (0-cells, 1-cells, 2-cells, 3-cells) are the basic building blocks for global
variables. Approaches such as mimetic or compatible discretizations [20, 23] implement:

• Chains: formal sums of oriented cells.
• Cochains: assignments of values (the global quantities) to those oriented cells.

The coboundary operator is then the discrete analog of the exterior derivative, encoding how values on boundaries
and interiors must relate—thus mirroring classical relations involving ∇·, ∇×, and ∇.

From this algebraic-topological perspective, one can:

1. Directly form a discrete (algebraic) system suitable for computations .
2. Recover the usual differential forms by letting the cells shrink to zero size and assuming sufficient smoothness

in the underlying fields.

This chapter outlined the geometric and topological concepts that connect to continuum physics, stating the impor-
tance of global variables, orientations, and how they connect to local, differential representations. These insights
form the motivation of mimetic discretisation techniques, which aim to preserve physical and geometric properties
within numerical computations.

The next chapter will present a more formal introduction to differential geometry and algebraic topology. These
mathematical frameworks offer a systematic way to handle orientations, boundaries, and connectivity, forming a
foundation for the development of mimetic discretisation methods.



3
Mathematical Framework Into Mimetic

Methods

This chapter presents foundational concepts from differential geometry and algebraic topology that serve as the
skeleton for mimetic discretization methods. It begins by defining manifolds and discussing tangent and dual spaces,
then introduces differential forms along with the principal metric-independent operators acting on them—the exterior
derivative and the generalized Stokes theorem. The discussion continues with the inner product, the Hodge star
operator, and the structure of de Rham complexes, concluding with an overview of how algebraic topology bridges
these continuous concepts to discrete meshes in numerical methods

3.1.Manifolds

A manifold is a space that ”locally” looks like a subset of Euclidean space. Formally, as mentioned in [9] an n-
dimensional manifoldM consists of a topological space together with a collection of coordinate maps ϕU : U → Rn,
each defined on an open neighbourhood U ⊂ M . These maps must coverM (i.e., every point inM is contained in
at least one such neighbourhood), and their images in Rn are open sets.

This local resemblance allows one to define differentiability and integration in a manner analogous to that on Rn

without necessitating a global metric. As [27] emphasizes, this ”coordinate-free” approach is particularly well-suited
for formulating physical laws in a geometric framework where quantities are naturally associated with geometric
objects rather than with a predefined co-ordinate system.

3.2.Tangent Vector Spaces and Dual Spaces

A fundamental concept in differential geometry is that each point p on a smooth manifoldM admits a tangent space
TpM . Intuitively, TpM captures all possible ”directions” in which one can move from p. Formally, a tangent vector is
a derivation at p: a linear operator on the space of smooth real-valued functions near p that satisfies the Leibniz rule.
In local coordinates {x1, x2, . . . , xn}, a tangent vector Xp ∈ TpM often appears as

Xp(f) =

n∑
j=1

Xj ∂f

∂xj

∣∣∣∣∣
p

, (3.1)

where f is a smooth function defined at p, the coefficients Xj determine the vector’s components, and ∂
∂xj

∣∣
p
form a

basis of TpM . In physical applications, such a vector can model a velocity, displacement, or any quantity that has a
direction and magnitude.

The dual space at p, denoted T ∗
pM , is the space of all linear functionals that act on TpM . Elements of T ∗

pM are

8
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called covectors or 1-forms. In local coordinates, a covector α ∈ T ∗
pM can be expressed as

α =

n∑
i=1

αi dx
i,

where {dxi} is the dual basis satisfying
dxi
(

∂
∂xj

)
= δij .

Accordingly, when a covector α acts on a vector X,

α(X) =

n∑
i=1

αiX
i, (3.2)

giving a real number. Notably, vectors and covectors follow different transformation rules under a change of coordi-
nates: vectors transform contravariantly, whereas covectors transform covariantly. This distinction underlies many
physical interpretations, such as velocity (vector) versus gradient or force (covector), and ensures that their pairing
remains a well-defined scalar.

3.2.1. Vector Bundles and Bundle-Valued Forms

From a global perspective, one collects all tangent spaces TpM into the tangent bundle TM . Likewise, all dual
spaces T ∗

pM form the cotangent bundle T ∗M . A vector bundle is, in general, any smooth family of vector spaces
(one for each point p ∈ M ) that ”fit together” coherently over M . A section of a vector bundle picks out one vector
from each fibre, so a classical vector field onM is precisely a section of TM .

When discretising a PDE it is advantageous to consider not just scalar-valued differential forms but also those taking
values in a vector bundle (often the tangent or cotangent bundle). Such objects are known as bundle-valued forms
[7, 27, 32]. Concretely, if ω is a k-form onM and E is a vector bundle overM , then a E-valued k-form is a multilinear,
antisymmetric map into E rather than into the real numbers.

Unified Representation. In two-dimensional (Cartesian) space, any vector- or covector-valued physical quantity has
two components (one in the x-direction and another in the y-direction). Instead of treating these as separate scalar
fields, a bundle-valued form stores both components together as a single mathematical entity, reflecting the intrinsic
geometry.

Discrete Implementation. When discretizing vector or covector fields in finite element (FE) methods, one often
places degrees of freedom (DoFs) on geometric entities (cells, edges, vertices) of a single mesh. Treating the field
as a bundle-valued form naturally associates all vector components to the same mesh elements, simplifying both the
assembly of system matrices and the enforcement of PDE constraints or boundary conditions.

3.3.Differential Forms: Concepts and Applications

Differential forms provide a robust framework for both the analysis and integration of functions onmanifolds, extending
classical calculus into a coordinate-free context. Formally a differential k-form on an n-dimensional manifoldM is a
multilinear, antisymmetric map that takes k tangent vectors and produces a real number ω : V k → R. In practical
terms, a 0-form is simply a smooth function acting on real numbers, a 1-form is a linear functional on the tangent
vector space, and higher-order forms can be expressed as the wedge (or exterior) product of 1-forms.

In local coordinates (x1, . . . , xn), a typical k-form ω is written as:

ω =
∑

i1<···<ik

fi1...ik(x) dx
i1 ∧ · · · ∧ dxik , (3.3)

where the functions fi1...ik are smooth on M . The wedge product ∧ is central to the theory, it combines differential
forms in a bilinear, associative, and distributive manner and if ω is a k-form and η is an l-form, then their product
ω ∧ η is a (k + l)-form and satisfies the skew-symmetry property:
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ω ∧ η = (−1)kl η ∧ ω. (3.4)

Extending these notions to bundle-valued differential forms allows one to handle objects whose components each
behave like forms but collectively transform as sections of a vector bundle.

3.3.1. The Exterior Derivative

The exterior derivative extends the familiar concept of differentiation to differential forms. It is defined as a linear
operator

d : Λk(M)→ Λk+1(M),

which increases the degree of a differential form by one. In local coordinates, the action of the exterior derivative is
illustrated as follows:

• For a 0-form (a smooth function) f , the exterior derivative is given by

df =

n∑
j=1

∂f

∂xj
dxj . (3.5)

• For a 1-form α =
∑

i αi dx
i, the exterior derivative is expressed as

dα =
∑
i,j

∂αi

∂xj
dxj ∧ dxi. (3.6)

The operator d generalizes several well-known differential operators from vector calculus in Cartesian co-ordinates,
when applied to a 0-form, d recovers the gradient, for a 1-form in three dimensions, d corresponds to the curl (or
rotation in two dimensions) and when applied to a 2-form in three dimensions, d yields the divergence. A fundamental
characteristic of the exterior derivative is its nilpotency:

d ◦ d = 0. (3.7)

This property underlies classical identities which are naturally encapsulated within the framework of differential forms,
such as ∇× (∇f) = 0 and ∇ · (∇×A) = 0.

3.3.2. Integration and Stokes' Theorem

Differential forms are ideally suited for integration over manifolds. If ω is an n-form defined on an n-dimensional
oriented manifoldM , then the integral

∫
M

ω (3.8)

is well-defined and independent of the chosen coordinate system. This setting naturally leads to the generalized
Stokes theorem:

∫
M

dω =

∫
∂M

ω, (3.9)

which unifies several classical results, including the Fundamental Theorem of Calculus, the Divergence Theorem,
and the Kelvin–Stokes Theorem.
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3.4.The Hodge ⋆ and Inner Product

3.4.1. Hodge ⋆ Operator

LetM be an n-dimensional oriented Riemannian manifold with volume form ωn. The Hodge ? operator is the linear
mapping

? : Λk(M) −→ Λn−k(M)

that assigns to each k-form its dual (n− k)-form. This duality is characterized by the relation

η ∧ λ = 〈?η, λ〉ωn, (3.10)

for all η ∈ Λk(M) and λ ∈ Λn−k(M), where 〈·, ·〉 denotes the inner product on forms induced by the metric [9, 27].

In three-dimensional Euclidean space with standard coordinates (x1, x2, x3), the Hodge ? operates as follows:

• For a 0-form f :
?f = f dx1 ∧ dx2 ∧ dx3.

• For a 1-form:
?dx1 = dx2 ∧ dx3, ?dx2 = dx3 ∧ dx1, ?dx3 = dx1 ∧ dx2.

• For a 2-form:
?(dx2 ∧ dx3) = dx1, ?(dx3 ∧ dx1) = dx2, ?(dx1 ∧ dx2) = dx3.

• For the 3-form:
?(dx1 ∧ dx2 ∧ dx3) = 1.

These examples illustrate the one-to-one correspondence between k-forms and (n− k)-forms in Rn, consistent with
the combinatorial fact that the number of basis elements is given by

(
n
k

)
=
(

n
n−k

)
. An important property of the Hodge

? operator is its behavior under successive application:

? ? α(k) = (−1)k(n−k)α(k), ∀α(k) ∈ Λk(M). (3.11)

Unlike the exterior derivative, which is a topological operator, the Hodge ? is metric dependent. The metric enters
through the definition of the volume form ωn and the inner product on forms.

Geometrically, the Hodge ? relates the orientations of differential forms. InR3, a 1-form (a covector) is dual to a 2-form
representing an oriented area, which in turn corresponds to the normal direction of the plane [37]. More generally,
Hodge duality encapsulates the idea that a k-dimensional volume can be described equivalently by its complementary
(n− k)-dimensional structure. That is, the Hodge ? operator encodes the distinction between inner and outer orien-
tations. As discussed by Mattiussi [14] and Bossavit [15], this distinction plays a crucial role in mimetic discretization
methods, where computational models aim to preserve underlying geometric structures without introducing spurious
numerical artifacts. In the previous chapter, configuration and source variables were introduced, along with three
types of equations arising from them—balance laws, constitutive relations, and compatibility conditions. The Hodge
? operator the conversion between these variables by mapping differential forms from the configuration space into
their dual source space, thereby incorporating metric information into the formulation.

3.4.2. Inner Product on k-Forms

The inner product on the space of k-forms is closely connected with the Hodge ? operator. For two k-forms a, b ∈
Λk(M), one common definition is to require that

a ∧ ?b = 〈a, b〉ωn, (3.12)

where ωn denotes the volume form onM . In local orthonormal coordinates, the inner product reduces to the familiar
Euclidean form:

〈a, b〉 =
∑
i

aibi.
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Further in the forthcoming sections, it can be seen this relation plays a crucial role in the derivation of weak formula-
tions. When one takes the inner product of a differential equation with a test function and integrates over the domain,
the resulting volume form naturally fits under the integral sign, ensuring that the geometric structure is preserved. This
property also uniquely determines the wedge product on the space of k-forms. Although this approach is somewhat
abstract, it highlights the geometric significance of the wedge product. For example, consider the case of vectors in
R3. If u and v are vectors with corresponding 1-forms u♭ and v♭, then the Euclidean inner product can be expressed
via differential forms as

u · v = ?
(
u♭ ∧ ?v♭

)
,

and the familiar cross product is given by
u× v = ?

(
u♭ ∧ v♭

)
.

These identities reflect the geometric interpretation of the Hodge star: it converts a 1-form into a form whose wedge
product with another 1-form creates a volume element, thus encoding the notion of perpendicularity and area.

3.5.De Rham Complexes

The de Rham complex unifies differential forms of varying degrees via the exterior derivative, providing a natural
framework for many geometric and physical phenomena. It underpins de Rham cohomology, which characterizes
the topological properties of manifolds.

Concretely, the exterior derivative dmaps a k-form to a (k+1)-form and satisfies d◦d = 0. This implies that the range
of d always lies in the null space (kernel) of the subsequent d. On contractible domains (those without “holes”) the
range of d exactly matches the null space, making the complex exact. In domains with non trivial topology, however,
the range of d is only a subspace of the null space of the next d.

R −→ Λ0(M)
d−→ Λ1(M)

d−→ Λ2(M)
d−→ Λ3(M) −→ 0.

Further by incorporating the Hodge ? operator—which maps a k-form to an (n − k)-form—the de Rham complex
extends to include dual spaces. In three dimensions, this double complex is represented by:

R ↪→ Λ0(M)
d−→ Λ1(M)

d−→ Λ2(M)
d−→ Λ3(M)→ 0

↓ ? ↓ ? ↓ ? ↓ ?
0 ←− Λ̃3(M)

d̃←− Λ̃2(M)
d̃←− Λ̃1(M)

d̃←− Λ̃0(M)←↩ R,

where Λ̃k(M) denotes the dual spaces under the Hodge ?. Here, the horizontal maps in the primal space are given by
d, the vertical maps represent the Hodge ? operator and the change in orientations to dual space and d̃ represents the
exterior derivative in the dual space when the boundary conditions are all zero . In three dimensions, as mentioned
in previous sections, the exterior derivative recovers the classical vector calculus operators such as gradient,curl and
divergence and satisfies identities, such as ∇× (∇f) = 0 and ∇ · (∇×A) = 0, which are direct consequences of
d ◦ d = 0 and can clearly be seen that the De Rham complex outlines these properties as well.

Up to this point, key concepts of manifolds, tangent and dual spaces, differential forms, and the operators d,? and
(, ) have been introduced in a purely continuous setting, providing the theoretical backbone for mimetic methods.
However, actual implementations of these methods require a transition from the continuous viewpoint to a discrete
one, where preserving the essential geometric and topological properties is crucial for stability and accuracy.In the
next chapter, the focus shifts to the discrete setting, explaining how these foundational ideas can be implemented in
a spectral element context. By utilizing principles from Finite Element Exterior Calculus [26], which draw on concepts
from Algebraic Topology, the exactness and duality inherent to the continuous theory are preserved.



4
Discrete Setting and Spectral

Implementation

Mimetic discretizations combine continuous geometric concepts with carefully chosen discrete analogs to preserve
critical structural properties at the discrete level. In algebraic topology, a manifold is replaced by a cell complex
(often simplicial or polyhedral), whose sets of points, edges, faces, and volumes form the building blocks known
as chains. Integrated differential forms then become cochains, which assign numerical values to these discrete
elements via a reduction processes. The resulting framework mirrors the continuous manifold in a piecewise-linear
fashion, preserving essential topological and geometric features.

Within this discrete setting, the incidence matrices associated with the cell complex serve as the counterpart to the
exterior derivative, maintaining properties such as exactness and nilpotency. Consequently, relations akin to the
generalized Stokes theorem naturally emerge: for instance, summing cochain values around the boundary of a col-
lection of cells mirrors the continuous integral identities. Metric-dependent operators, by contrast, are approximated
rather than preserved exactly. Specifically, discrete analogs of the Hodge ? operator often take the form of mass
matrices and introduce the main source of numerical error [23]. This arises because ? encodes the local geometry
(e.g., distances and angles) that can vary significantly over a discrete mesh.

4.1. Mesh - Discrete Manifold

The continuous manifold described in the previous chapter can be discretized by constructing a mesh, which in
algebraic-topological language is a cell complex composed of 0-cells (points), 1-cells (edges), 2-cells (surfaces), and
3-cells (volumes). Assigning orientations and defining boundary relations on these cells creates a discrete analog of
the continuous geometry, allowing for the representation of differential forms in a piecewise manner. In high-order
spectral element methods (SEM), additional structure is introduced by placingGauss–Lobatto–Legendre (GLL) nodes
within each cell, facilitating precise numerical integration and interpolation. This combination of oriented cells, carefully
chosen nodal distributions, and boundary mappings lays the groundwork for robust and accurate approximations of
partial differential equations while retaining essential geometric and topological features.

A cell complex is built by specifying how individual p-dimensional objects, or p-cells, connect and adjoin [30]. For
instance:

• 0-cells: Points or vertices in the mesh.
• 1-cells: Edges or line segments bounded by two vertices.
• 2-cells: Surface patches enclosed by one or more edges.
• 3-cells: Three-dimensional volumes bounded by 2-cells (in 3D problems).

A sum of p-cells with integer or real coefficients is referred to as a p-chain [14]. Orientation is assigned to each cell to
keep track of sign conventions in discrete integrals, boundary operations, and flux directions. For example, choosing
a direction along an edge fixes whether a traversal from one endpoint to the other is considered positive.

13
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4.1.1. Primal and Dual Meshes

In many mimetic and spectral element methods, the mesh is subdivided into primal and dual grids, reflecting the con-
cept of dual spaces introduced in the previous chapters. The primal mesh typically represents the physical geometry
directly, while the dual mesh is constructed so that its cells intersect those of the primal mesh in a staggered ar-
rangement. This nomenclature is tied to the orientation schemes outlined by Tonti [33] where configuration variables
reside on the primal (inner-oriented) mesh, whereas source variables are associated with the dual (outer-oriented)
mesh generally, though there is no out-right rule stating this order. By distributing complementary degrees of freedom
across these two grids, the discrete model preserves topological invariants such as ∂ ◦ ∂ = 0 where ∂ is the discrete
counter part of the exterior derivative.

4.1.2. Spectral Element Grids and Gauss-Lobatto-Legendre (GLL) Nodes

A typical spectral element method (SEM) builds each mesh element from high-order polynomial expansions rather
than just straight-edged or bilinear shapes. A common choice in these methods is to place collocation points at
Gauss–Lobatto–Legendre (GLL) nodes [29, 30, 36, 43]. These nodes {ξ0, ξ1, . . . , ξN} lie in the interval [−1, 1] and
include the endpoints. Specifically, ξ0 = −1, ξN = 1, and ξi are the roots of,

(1− ξi) L′
N (ξ) = 0 for − 1 ≤ ξi ≤ 1 and i = 1, . . . , N − 1, (4.1)

where LN (ξ) is the N -th Legendre polynomial and L′
N its derivative. GLL nodes facilitate accurate numerical in-

tegration and interpolation in both one-dimensional and multi-dimensional problems. In one dimension, these GLL
points include the interval endpoints as well as interior collocation points. In two or three dimensions, tensor-product
constructions extend this idea so that 0-forms (nodal variables) reside at vertices, while 1-forms might reside along
edges, and 2-forms on surfaces and 3-forms on volumes, all at appropriately chosen GLL locations. This approach
can be implemented for both primal and dual meshes which will be further detailed in the following sections. The
Figure 4.1 below illustrate such GLL meshes in R2 for a polynomial order of N = 3.

Figure 4.1: Primal, dual and staggered GLL grids in R2

4.2.Reduction and Reconstruction in a Spectral Framework

The reduction and reconstruction operators are central to linking continuous differential forms with their discrete
analogs (cochains) in high-order mimetic and spectral element methods. This section introduces these two opera-
tors and shows how nodal and edge basis functions often constructed using Gauss-Lobatto-Legendre (GLL) nodes
facilitate accurate polynomial approximations.
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4.2.1. Reduction Operator

Let α(p) be a differential p-form defined on a domain Ω that has been partitioned into p-cells making up a cell complex.
The reduction operator R maps α(p) to a p-cochain by integrating α(p) over each p-cell C(p). Formally [18],〈

Rα(p), C(p)
〉

:=

∫
C(p)

α(p), (4.2)

where 〈·, ·〉 denotes evaluation of the cochain on a chain. By linearity, the above definition extends to any p-chain
composed of multiple cells.

A crucial property is that reduction commutes with the exterior derivative d and the discrete boundary operator δ:

R ◦ d = δ ◦ R.

Hence, one may either first apply d in the continuous setting and then reduce, or first reduce and then apply δ, with
no discrepancy in the outcome.

4.2.2. Reconstruction Operator

While reduction converts forms to cochains, the reconstruction operator I reverses this process by mapping a p-
cochain back to an approximate differential p-form. It is a left-inverse of R, meaning

R ◦ I = Id,

where Id is the identity on p-cochains. This guarantees that reconstructing a form from cochain data and then immedi-
ately reducing it recovers the same cochain values. However, I is only an approximate right-inverse: the composition
I ◦R approximates the identity on sufficiently smooth forms up to a chosen polynomial order. Additionally, it is often
required that I commutes with d and δ, namely I ◦ δ = d ◦ I, to preserve the structure of the de Rham complex in
the discrete setting [30].

4.2.3. Nodal (Lagrange) Basis for 0-Forms

For discretizing scalar fields (0-forms), one typically uses the Lagrange basis associated with the GLL points. Let
{ξ0, ξ1, . . . , ξN} be the set of GLL nodes on [−1, 1] then the associated nodal Lagrange basis is defined as,

hi(ξ) =
∏

0≤ j ≤N
j ̸= i

ξ − ξj
ξi − ξj

, i = 0, 1, . . . , N. (4.3)

These polynomials satisfy the Kronecker delta property hi(ξj) =

{
1, if i = j

0, if i 6= j
If a 0-cochain Φ stores function

values Φi at each node ξi, its reconstructed polynomial Φh(ξ) can be written as,

Φh(ξ) =

N∑
i=0

Φi hi(ξ). (4.4)

4.2.4. Edge Basis for 1-Forms

When handling vector fields or covector fields (1-forms), a suitable basis must reflect line integrals along edges. The
construction of edge basis functions ei(ξ) according to [28] is done such that∫ ξj

ξj−1

ei(ξ) dξ = δij , (4.5)

meaning each ei(ξ) integrates to one only on the edge [ξi−1, ξi] and zero elsewhere. A practical way to define ei(ξ)
uses the nodal polynomials from (4.3) as shown in [28]

ei(ξ) = −
i−1∑
k=0

d

dξ

[
hk(ξ)

]
, i = 1, . . . , N. (4.6)
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In this form, each basis function ei achieves the line-integral property given in (4.5). If a 1-cochain Ψ stores integral
values Ψi over each sub-interval [ξi−1, ξi], its reconstructed 1-form Ψh(ξ) can be expressed as

Ψh(ξ) =

N∑
i=1

Ψi ei(ξ). (4.7)

Under reduction, Ψh(ξ) integrates to Ψi on the i-th edge, that is Ψi =
ξi∫

ξi−1

Ψ(ξ) dξ recovering the original cochain

data. These cochain values Ψi and Φi in the above examples, are generally known as the degrees of freedom of
the discretised PDE in Finite Element formulations. The plots of both the nodal and edge basis in one-dimension are
shown in the figure 4.2 below.
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Figure 4.2: 1D basis functions for polynomial degree N = 4

4.2.5. Multi-Dimensional Polynomial Basis in Three Dimensions

In higher dimensions, the discrete spaces for differential forms (cochains) are built by taking tensor products of the one-
dimensional (1D) nodal and edge polynomials introduced in Sections 4.2.3 and 4.2.4. A k-form basis in d-dimensions
is formed by choosing exactly k factors of the edge polynomials (differentiated Lagrange polynomials) and d − k
factors of the nodal polynomials (undifferentiated Lagrange polynomials). Concretely:

• 0-form bases (for scalar fields) use nodal polynomials in every direction,
• 1-form bases have one edge direction and nodal polynomials in the other directions,
• 2-form bases have two edge directions and nodal polynomials in the remainder,
• …up to d-form bases, which involve an edge polynomial in each of the d directions.

This tensor-product approach ensures that each discrete k-form basis function integrates (or evaluates) to a Kro-
necker delta on the corresponding k-dimensional sub-cell (edge, face, volume, etc.), mirroring the 1D properties of
Eqs. (4.5)–(4.6).

Consider the 3D reference domain Ωref = [−1, 1]3 with coordinates (ξ, η, τ). Let {ξ0, . . . , ξN}, {η0, . . . , ηN}, and
{τ0, . . . , τN} be the Gauss–Lobatto–Legendre (GLL) nodes partitioning each interval [−1, 1] in the ξ, η, and τ di-
rections. Recall from Sections 4.2.3 and 4.2.4 that hi(·) denotes the nodal (Lagrange) polynomial basis, while ei(·)
denotes the edge polynomial basis.

0-form basis in 3D. A discrete 0-form (scalar field) in three dimensions is approximated using only nodal polyno-
mials in each direction:

Φ
(0)
h (ξ, η, τ) =

N∑
i=0

N∑
j=0

N∑
k=0

Φi,j,k

(
hi(ξ) ⊗ hj(η) ⊗ hk(τ)

)
. (4.8)
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Here, Φi,j,k is the value of the field at the nodal point (ξi, ηj , τk). As in 1D or 2D, these 3D tensor-product nodal basis
functions satisfy a pointwise Kronecker-delta property at each nodal triple.

1-form basis in 3D. A discrete 1-form in three dimensions has three components, one associated with each coor-
dinate direction:

• ξ-component:

Ψ
(1,ξ)
h (ξ, η, τ) =

N∑
i=1

N∑
j=0

N∑
k=0

Ψ
(ξ)
i,j,k

(
ei(ξ) ⊗ hj(η) ⊗ hk(τ)

)
, (4.9)

• η-component:

Ψ
(1,η)
h (ξ, η, τ) =

N∑
i=0

N∑
j=1

N∑
k=0

Ψ
(η)
i,j,k

(
hi(ξ) ⊗ ej(η) ⊗ hk(τ)

)
, (4.10)

• τ -component:

Ψ
(1,τ)
h (ξ, η, τ) =

N∑
i=0

N∑
j=0

N∑
k=1

Ψ
(τ)
i,j,k

(
hi(ξ) ⊗ hj(η) ⊗ ek(τ)

)
. (4.11)

In each component, there is exactly one edge polynomial factor (e.g. ei(ξ)) and two nodal polynomial factors (e.g.
hj(η), hk(τ)). By construction, the coefficient Ψ

(ξ)
i,j,k represents the integral of the field along the ξ-edge bounded by

(ξi−1, ξi) at fixed (ηj , τk), and similarly for the η- and τ -components.

2-form basis in 3D. A discrete 2-form (surface-like field) in 3D has three possible orientations (normals in the ξ,
η, or τ direction). Consequently, each 2-form component contains two edge polynomial directions and one nodal
direction. For instance, the component normal to ξ is

Φ
(2,ξ)
h (ξ, η, τ) =

N∑
i=0

N∑
j=1

N∑
k=1

Φ
(2,ξ)
i,j,k

(
hi(ξ) ⊗ ej(η) ⊗ ek(τ)

)
. (4.12)

Analogously, one constructs Φ
(2,η)
h and Φ

(2,τ)
h by using e(·) basis in the appropriate pairs of directions (with h(·) in

the remaining one). Here, each coefficient Φ(2,ξ)
i,j,k represents the surface integral value across the rectangular face at

ξi spanned by (ηj−1, ηj)× (τk−1, τk).

3-form basis in 3D. Lastly, a discrete 3-form in three dimensions (think of a volumetric field) must involve edge
polynomials in all three directions:

Θ
(3)
h (ξ, η, τ) =

N∑
i=1

N∑
j=1

N∑
k=1

Θ
(3)
i,j,k

(
ei(ξ) ⊗ ej(η) ⊗ ek(τ)

)
. (4.13)

The coefficient Θ(3)
i,j,k is the integral of Θ

(3)
h over the hexahedral sub-cell [ξi−1, ξi]× [ηj−1, ηj ]× [τk−1, τk].

In all cases, these tensor-product basis functions inherit the pointwise or integral Kronecker-delta properties from
their 1D building blocks, ensuring that the expansion coefficients directly represent nodal values, edge fluxes, face
fluxes, or volume integrals. Hence, the discrete degrees of freedom match physically meaningful quantities, making
this construction mimetic (or compatible). For additional details, see, for example, [18, 26, 28, 35, 42]

4.3.Relation to Classical Finite Element Spaces

In finite element theory [19, 21, 24, 42], a finite element on a domain K ⊂ Rd is classically specified by:

• a topologically simple subdomain K with Lipschitz boundary (e.g. a GLL-meshed interval, quadrilateral, or
hexahedron in this work),

• a finite-dimensional function space P (often polynomials of degree ≤ N ),
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• a set of linear functionals {Ni} (the degrees of freedom) acting on P that define a bijection P → RN .

The polynomial-based cochain perspective in Sections 4.2 and 4.2.3–4.2.5 matches this setup naturally by identifying:

(i) K = [−1, 1]d, (ii) P = polynomial basis up to degree N, (iii) Ni = nodal or integral cochains.

A key property of these polynomial basis functions is that they mimic the Sobolev spaces found in finite elements:

H1(Ω), H(curl; Ω), H(div; Ω), L2(Ω)

Concretely in R3 for example, 0-form basis correspond to H1-conforming elements embedded in , 1-form basis to
H(curl) conforming elements , 2-form basis toH(div) - conforming spaces, and 3-form basis to L2(Ω) . In summary,
the “edge” and “nodal” polynomials introduced above form precisely the building blocks for high-order spectral element
basis that also realize classical finite element spaces on GLL meshes.

4.4.Incidence Matrices - Discrete Exterior Derivative

Incidence matrices are fundamental to mimetic discretization methods because they encode the topological connec-
tivity and orientation of a mesh. They serve as the discrete analogs of the exterior derivative ’d’ from differential
geometry and enable the exact implementation of differential operators (such as the gradient, curl, and divergence)
in the discrete setting.

Consider a Gauss–Lobatto–Legendre (GLL) mesh in R2 with polynomial order N = 2, as illustrated in Figure 4.3.
This mesh comprises:

• 9 nodes ((N + 1)2), depicted as pi
• 12 edges (2N(N + 1)), depicted as ei
• 4 surfaces (N2), depicted as si

Each of these geometrical elements is labelled following a lexicographic order. Additionally, the mesh elements are
endowed with an inner orientation: nodes act as sinks, edges have positive orientations aligned with their respective
axes, and surfaces are oriented clockwise.

p2

p3
p4 p5

p8p7p6

p0 p1
e0 e1

e2 e3

e4 e5

e6 e7 e8

e9 e10

s0 s1

s2 s3
e11

Figure 4.3: GLL Mesh of Polynomial Order N = 2

Let a scalar function ϕ be discretized on the above mesh using a nodal (0-form) expansion. The approximate function
ϕh(ξ, η) is written as

ϕh(ξ, η) =

N∑
i=0

N∑
j=0

ϕi,j hi(ξ)hj(η), (4.14)
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where

• hi(ξ) and hj(η) denote the nodal basis functions,
• ϕi,j represent the nodal degrees of freedom (0-form cochain values).

As mentioned earlier, for notational convenience, a lexicographic indexing is adopted: the point with coordinates
(ξi, ηj) is denoted by pi(N+1)+j .

From previous chapters, it is known that the exterior derivative acting on 0-forms produces 1-forms, corresponding to
the gradient in the continuous setting. In the discrete framework, the resulting 1-forms are represented as integrated
quantities along the edges of the mesh.

Applying the generalized Stokes theorem locally on an edge , E1 with endpoints p0 and p1 for example, yields∫
E1

dϕ =

∫ p1

p0

ϕ = ϕ(p1)− ϕ(p0). (4.15)

Since ϕ is expanded as in Eq. (4.14), the point evaluation ϕ(pi) corresponds directly to the nodal value ϕi.

By applying the Stokes theorem to all edges of the mesh, the contributions from the nodal degrees of freedom
are assembled into a matrix that defines the discrete gradient operator acting on the degrees of freedom (i.e. the
expansion coefficient) , denoted by E1,0 as shown below. The superscripts indicate that the operator maps nodal
values (0-cochains) to edge-integrated values (1-cochains).



∫
E1

∇ ϕ dE1∫
E1

∇ ϕ dE2

...∫
E12

∇ ϕ dE12


=



−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 1 0
−1 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 −1 1 0 0
0 0 0 0 0 0 0 −1 1




ϕ0

ϕ1
...
ϕ8

 (4.16)

Geometrically, considering the example of E1, the default orientation of the edge is in the positive ξ-direction, con-
necting nodes p0 and p1, which are sink-like. In this orientation, the edge enters the sink at p1 and exits the sink at p0,
meaning it has the same orientation as the edge at p1 and an opposing orientation at p0. This relationship is reflected
in the incidence matrix, where the corresponding entries are +1 and −1, respectively.

Each row of E1,0 corresponds to an edge, with the entries in that row representing the contribution of the nodal values
at the edge’s endpoints. The signs are determined by the relative orientation between the edge and the nodes:

• +1 if the edge enters a sink-like node.
• −1 if the edge leaves a sink-like node.

This convention ensures that the incidence matrix correctly encodes the orientation and connectivity of the mesh.
An alternative approach to deriving the incidence matrix E1,0 involves polynomial expansions. Instead of relying on
discrete geometric arguments, this approach constructs incidence matrices by analyzing the structure of polynomial
basis functions and their derivatives. By expressing a function in terms of nodal basis polynomials, the differentiation
process naturally leads to a structured transformation of degrees of freedom and the basis. In the one-dimensional
case, nodal values determine the coefficients of basis polynomials, while differentiation introduces relationships be-
tween adjacent nodal degrees of freedom, forming a structured difference pattern. This pattern can be encoded as
an incidence matrix that maps nodal values to integral edge degrees of freedom. The same idea extends to multiple
dimensions, for additional details, see [28, 42].

Having defined the discrete gradient E1,0, we now construct the next incidence matrix, E2,1, which acts as the discrete
curl operator in two dimensions. It maps integral edge values (1-cochains) to integral surface values (2-cochains).
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By applying the generalized Stokes theorem (cf. §4.4) on each 2-cell (surface/face),∫
S

(
∇× u

)
· n̂ dS =

∮
∂S

u · t̂ d`, (4.17)

we see that the integrated curl of u over a face S is exactly the sum of the fluxes on its boundary edges ∂S. Following
the same oriented-incidence convention as before, each row of E2,1 collects the contribution of the edges bounding
a particular face, with ±1 signs determined by the relative orientations of those edges. In the above mesh, there are
four cells/surfaces and twelve edges, giving a (4× 12) matrix E2,1.

E2,1 =


−1 0 1 0 0 0 0 1 −1 0 0 0 0
0 −1 0 1 0 0 0 0 1 −1 0 0 0
0 0 −1 0 1 0 0 0 0 0 1 −1 0
0 0 0 −1 0 1 0 0 0 0 0 1 −1

 (4.18)

The incidencematricesE1,0 andE2,1 introduced earlier are also known as coboundary operators in algebraic topology.
These matrices connect cochains of consecutive degrees (0-forms to 1-forms, and 1-forms to 2-forms) and preserve
the fundamental topological property that the “boundary of a boundary is zero.” In the discrete setting, this property
is expressed through the exactness relations

E2,1 E1,0 = 0, and more generally Ek+1,k Ek, k−1 = 0,

which mirror the continuous identities ∇× (∇ϕ) = 0 and ∇ · (∇× u) = 0. Together with suitable projectors, these
coboundary matrices form the core of a discrete de Rham complex, preserving essential geometric and topological
structures at the discrete level.

The discussion so far has considered an inner orientation, where nodes function as sinks and surfaces are oriented
clockwise. As a result, the discrete gradient (E1,0) and discrete curl (E2,1) operators have been introduced. However,
the divergence operator in 2D or 3D typically requires an outer-orientation, which will be for the associated dual mesh,
in which surface normals point outward. Consequently, the corresponding incidence matrix for divergence has not yet
been presented. This topic will be addressed in the following sections, where a dual (outer) orientation is introduced,
along with a construction of Ẽ2,1 on that dual mesh to recover the standard notion of divergence.

4.5.Discrete Hodge ⋆ Operator

In the continuous setting, the Hodge-? operator (sometimes denoted ? or ∗) acts as an isomorphism between k-forms
and (n− k)-forms by switching both dimension and orientation. Specifically, it transforms inner-oriented objects into
outer-oriented ones (and vice versa) while also incorporating the metric of the underlying manifold. In the discrete
setting, this principle translates into a map between k-cochains and (n− k)-cochains that carry the opposite orienta-
tion.

A k-cochain in a cell complex is an assignment of real values to k-dimensional geometric elements (oriented in a
certain way). Applying the discrete Hodge operator ? changes both the dimension and the orientation type of those
elements, yielding (n−k)-cochains. Topological operators such as the boundary or co-boundary (incidence matrices)
do not fully capture this switch in orientation, since those operators are independent of metric data. By contrast, the ?
operator is metric-dependent, reflecting the geometric attributes (e.g., distances and angles) of the manifold or mesh.

4.5.1. Mass Matrix as the Discrete Hodge in Galerkin Formulations

In the Galerkin approach, a continuous partial differential equation typically takes the form

Lω(k−1) = 0, ω(k−1) ∈ Λk−1(Ω), (4.19)

where L is a linear operator (e.g., involving first order derivatives) acting on a k − 1-form ω(k−1). To derive its weak
(Galerkin) form, a test k-form β(k) is chosen from the same functional space as the solution and multiplied through
the equation, followed by a wedge product with ∗β(k) and an integral over the domain Ω. Symbolically,



4.6. Dual Basis Functions and Differential Operators on the Dual Grid 21

∫
Ω

(
Lω(k−1)

)
∧
(
∗β(k)

)
= 0. (4.20)

Depending on the nature of L, an integration-by-parts step may be invoked to move derivatives off of ω(k−1) onto β(k),
producing boundary terms or flux-like expressions that must be handled by suitable boundary or interface conditions.

After applying these steps (Lω(k−1) = α(k)), the formulation involves integrals of the form

∫
Ω

α(k) ∧
(
∗β(k)

)
, (4.21)

In this weak formulation, ? denotes the continuous Hodge star and α(k), β(k) are both k-forms. A high-order finite or
spectral element approach then approximates α(k) and β(k) within a finite-dimensional subspace spanned by basis
functions {ψ(k)

j }. Specifically,

α
(k)
h =

∑
j

αj ψ
(k)
j , β

(k)
h =

∑
i

βi ψ
(k)
i . (4.22)

Substituting these expansions into the weak form leads to a system of algebraic equations in the unknown degrees
of freedom {αj}. The integrals that arise in these equations are consistent with the metric-dependent inner product
(wedge product in L2) and produces a mass matrix M(k) defined by

M(k)[i, j] =

∫
Ω

ψ
(k)
j ∧

(
?ψ

(k)
i

)
, (4.23)

As a result, the matrix M(k) fulfills the role of the discrete Hodge star applied to the degrees of freedom.

?α
(k)
h ←→ M(k) αi. (4.24)

Hence, if αi collects the integral values associated with the k-form, thenM(k) αi provides the co-chain values of the
(n − k)-form, thereby encoding the dimension and orientation change in the discrete setting. Earlier sections intro-
duced the idea that constitutive equations commonly relate k-forms and (n− k)-forms in a metric-sensitive manner.
For example, in fluid dynamics, a constitutive law may pair velocity (a 1-form in 2d-spacetime R2+1) with momentum
(a 2-form) through a material-dependent metric (Density/Mass). In the mimetic spectral element framework, the mass
matrix (discrete Hodge) encodes this pairing: the ? operator translates a co-chain of degree k (inner-oriented) into
its complementary co-chain of degree (n− k) (outer-oriented). Thus, the same matrix that arises in the weak formu-
lation as the discrete Hodge operator also enforces the constitutive relation that depends on the metric or material
properties.

When using a spectral element approach, the basis functionsψ(k)
j typically originate frommapping a reference domain

(such as [−1, 1]n) onto each physical element of Ω. This mapping incorporates a Jacobian determinant and a metric
tensor, both of which enter into the definition of ?. Consequently, each element’s local contribution to the mass matrix
includes metric-dependent factors such as the determinant of the Jacobian of the mapping

√
det(g) and directional

scaling terms. High-order Gauss–Lobatto–Legendre quadrature is commonly employed to evaluate these integrals
with the necessary precision [42]. Further details regarding the construction and properties of mass matrices in
high-order settings can be found in [35, 36, 42, 43].

4.6.Dual Basis Functions and Differential Operators on the Dual Grid

In finite element methods the choice of basis functions is critical for both the accuracy and efficiency of the numerical
solution. Typically, one begins with a primal finite element basis discussed in the previous sections. However, when
constructing discrete differential operators or enforcing constraints via weak formulations, it can be advantageous
to work with a dual basis that is bi-orthogonal to the primal basis. The dual basis is obtained by a transformation
involving the mass matrix, which plays a role analogous to the Hodge star operator in differential geometry as shown
in the previous section.
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The general formula for obtaining the dual basis function is given by

Ψ̃(n−k) = Ψk
[
Mk
]−1

, (4.25)

where Ψk represents the vector of basis functions associated with an oriented k-form, and Ψ̃(n−k) denotes its dual,
corresponding to the complementarily oriented (n− k)-form. For a more rigorous derivation of dual basis functions,
refer to [42].

4.6.1. Dual Nodal Basis

These basis functions are dual to the edge functions e(ξ), which are defined on the edges of the primal grid. The
dual nodal basis functions are instead defined on the nodes of the dual grid as follows in 1D:

h̃(ξ) = e(ξ)
[
M1
]−1

, (4.26)

where the mass matrix M(1) is given by

M(1)
ij =

ξi∫
ξi−1

ei(ξ)ej(ξ) dξ for i = 1, 2, . . . , N. (4.27)

4.6.2. Dual Edge Basis

These basis functions are dual to the nodal functions h(ξ), which are defined at the nodes of the primal grid. The
dual edge basis functions are instead defined on the edges of the dual grid as follows in 1D:

ẽ(ξ) = h(ξ)
[
M0
]−1

, (4.28)

where the mass matrix M(0) is given by

M(0)
ij =

ξi∫
ξi−1

hi(ξ)hj(ξ) dξ for i = 0, 1, . . . , N. (4.29)
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Figure 4.4: 1D Dual basis functions for polynomial degree N = 4
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Beyond their importance in defining degrees of freedom, dual basis functions play a crucial role in constructing discrete
differential operators on the dual grid [42], when applying integration by parts in a weak formulation, the appearance
of the mass matrix naturally leads to expressions involving the dual basis functions. In a primal (nodal) setting, we
typically have basis functions {ψi} that allow for a strong (pointwise) derivative:

d

dξ
uh(ξ) =

N∑
i=0

ui h
′
i(ξ), (4.30)

or in higher dimensions,
∇uh(x) =

∑
i

ui∇ψi(x).

In contrast, a field defined in the dual setting (for example, an element inH(div)-like discrete spaces, when the primal
grid is inner oriented) often has integral-type degrees of freedom:

ũi =

∫
Ṽi

u dV, (4.31)

where Ṽi is an element of the dual mesh (often a cell associated to a node, an edge, or a face, depending on the
dimension and the PDE). Such fields lack a local pointwise representation in the same sense and thus require a weak
derivative in the finite element assembly process. Consider a generic term from a conservation law discretized on a
2D grid, that involves a divergence of a dual variable. The continuous integration by parts identity is:∫

Ω

v∇ · ũ dV = −
∫
Ω

∇v · ũ dV +

∫
∂Ω

v ũ · n dS, (4.32)

where n is the outward normal on ∂Ω. Discretizing, one obtains a matrix equation that can be interpreted as:

Ẽ2,1 =
[
−E2,1

]T
+ N2,1, (4.33)

where:

• E2,1 is the primal curl or gradient operator (depending on context),

• E2,1T is its transpose acting on dual forms,
• N2,1 is a boundary inclusion matrix enforcing the fluxes (or tangential components) at the boundary.
• Ẽ2,1 represents the discrete divergence operator on the dual grid.

4.7.Discrete De Rham complex

A useful way to encapsulate the behavior of differential operators in both the continuous and discrete settings is via the
De Rham complex. The continuous one was detailed in the previous chapter, now that all the ingredients required to
define the discreet counterpart are defined in this chapter, thus in 2-dimensions it can be constructed in the following
way :

R Λ
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h (M) Λ

(1)
h (M) Λ

(2)
h (M) 0

0 Λ̃
(0)
h (M) Λ̃
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h (M) Λ̃
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h (M) R

E 1,0 E 2,1

Ẽ 1,0 Ẽ 2,1

M(0) M(1) M(2)

Figure 4.5: Discrete De Rham complex in two dimensions

The top row shows the finite-dimensional spaces of differential forms, while the bottom row depicts their dual spaces.
Horizontal arrows represent discrete exterior derivatives, and vertical arrows indicate mass-matrix mappings.



5
Lagrangian Formulation of Barotropic

Flow

5.1.Flow Description in the Lagrangian Viewpoint

To derive the barotropic flow equations in the Lagrangian framework, it is essential first to establish the concepts
of reference configuration, flow maps, and deformed configuration, along with the associated deformation gradient.
These definitions provide the basis for understanding the transformation of fluid configuration and enable a systematic
approach to formulating the governing equations via the variational principle discussed in the coming sections.

5.1.1. Reference Configuration

The reference configuration, denoted as the undeformed or initial state of the fluid, is represented by its spatial
configuration at t = 0. This configuration can be described as a compact domain B ⊂ Rn, where each point X ∈ B
corresponds to a unique particle label. This particle labelX identifies the position of fluid particle within the reference
configuration, effectively marking its location before any deformation or motion occurs. By establishing this initial
layout, we create a basis from which we can track the deformation and displacement of fluid particles over time as
they transition from the reference configuration to the deformed configurations throughout the flow process.

5.1.2. Deformed Configuration and Flow Map

φ(t,X)

t = 0 t = to

Xi
xi = φ(to,Xi)

B M

Figure 5.1: Reference and Deformed Configurations with Flow Map φ(t,X)
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The flow map, ϕ : B → M, is a one-to-one isomorphic mapping that describes the motion of fluid particles over
time. As illustrated in the figure 5.1, given a particle labeled by X ∈ B in the reference configuration B, the flow
map provides its position x = ϕ(t,X) at any time t within the deformed configuration. The deformed configuration
at time t is thus the spatial layout of the fluid as it has moved or deformed from its initial state. This configuration,
represented as the regionM = ϕ(t,B) ⊂ Rn, shows the transformed positions of all fluid particles from the reference
configuration.

5.1.3. Deformation Gradient

The deformation gradient quantifies the deformation in the reference configuration of the fluid, by considering the

change in the flow map. Considering a 2D example with the fluid particle labelX =
2∑

i=1

Xiei, where ei represent the

orthonormal basis for R2, Then the deformation gradient tensor F (t,X) is given by,

F (t,X) =


∂ϕ1

∂X1

∂ϕ1

∂X2

∂ϕ2

∂X1

∂ϕ2

∂X2


Now, in general the deformation gradient can be represented as, F = ∇φ, with each individual elements given by,

Fij =
∂ϕi

∂Xj
= ϕi

,j = ∇jϕ
i. (5.1)

The quantity J(t,m) = det F (t,X) of the flow configuration is the determinant of the deformation gradient, which
provides the deformation of ϕ at x, hence J can be considered as the ratios of densities at reference configuration
ρo to the deformed configuration ρ.

J = det F (t,X) =
ρo

ρ(t,X)
. (5.2)

5.2.Barotropic Fluids

A fluid is termed barotropic when its density fluctuations are solely the result of pressure changes, establishing a
direct correlation between the fluid’s density and its pressure. Which means that for any given value of pressure,
there is a corresponding and unique density value, and vice versa. Consequently, in a barotropic fluid, isobaric
surfaces (surfaces of constant pressure) and isopycnic surfaces (surfaces of constant density) coincide. This property
simplifies the analysis of fluid motion because the state of the fluid can be described by a single variable (either
pressure or density).

p = p(ρ), U = U(ρ),

Where U represents the internal energy of the fluid, which is a function of reference density ρo and deformation
gradient J , since ρ = ρ(ρo, J), thus internal energy is related to volume change during deformation. From the first
law of thermodynamics, the change in internal energy of the fluid can be written as,

dU = dQ− dW.

Where W represents the work done on the fluid, further in the absence of heat exchange or viscous dissipation
(dQ = 0), and any other form of work except the work due to deformation, the equation reduces to,

dU = −dW, dU = −(PW )dV,
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Where PW is the material pressure and V represents the volume of the fluid, considering the change with respect to
deformation J ,

∂U

∂J
= −PW

∂V

∂J
, PW = −∂U

∂J

∂J

∂V
,

Obtaining the final expression for the material pressure in terms of change in internal energy,

PW (ρo, J) = −ρo
∂U(ρo, J)

∂J
. (5.3)

5.3.Lagrangian Variational Formalism

The equations governing barotropic fluid dynamics are derived through the application of Hamilton’s principle, this
requires finding the configuration for which the action integral, formulated from the Lagrangian representing the sys-
tem’s kinetic and potential energy, which is stationary.

The Lagrangian density L = T − V of a barotropic fluid with kinetic energy, T = 1
2ρo |ϕ̇|

2 , internal energy U(ρo, J)
and potential energy Π(ϕ) , such that V = ρoU(ρo, J) + ρoΠ(ϕ) is described as in [38],

L(ϕ, ϕ̇,∇ϕ) = 1

2
ρo |ϕ̇|2 − ρoU(ρo, J)− ρoΠ(ϕ). (5.4)

The Hamilton’s principle states that,

δ

T∫
0

∫
B

L(ϕ, ϕ̇,∇ϕ) dt dX = 0. (5.5)

Now the above equation 5.5 can be solved by applying the Euler-Lagrange equations from variational calculus (refer
to Appendix A), to minimize the functional L(ϕ, ϕ̇,∇ϕ) , For arbitrary variations of ϕ vanishing at t = 0 and t = T we
obtain,

∂

∂t

(
∂L
∂ϕ̇

)
+

∂

∂Xj

(
∂L

∂∇jϕi

)
− ∂L
∂ϕ

= 0. (5.6)

Similar to the temporal boundary, the variations of the flow configuration are set to zero on the spatial boundary,
resulting in a natural boundary condition,

∂L
∂∇jϕi

.nj .δϕ
i = 0. (5.7)

by substituting 5.4 in 5.6 we obtain,

∂

∂t
(ρoϕ̇) +

∂

∂Xj

(
∂

∂∇jϕi
(−ρoU(ρo, J))

)
− ∂

∂ϕ
(−ρoΠ(ϕ)) = 0,

ρoϕ̈+
∂

∂Xj

(
−ρo

∂U

∂J

∂J

∂∇jϕi

)
+ ρo

∂Π

∂ϕ
= 0.
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The term
∂J

∂∇jϕi
in the above equation represents the derivative of the determinant of a matrix with respect to its

elements. This is given by Jacobi’s formula for the derivative of a determinant. Refer to Appendix B for the complete
derivation.

∂ det(A)

∂Aij
= det(A) ·

(
A−1

)
ji

(5.8)

∂J

∂∇jϕi
=
∂(det(F ))

∂Fij
= det(F ).(F−1)ji = JF−T .

Further from 5.3 we know thatPW (ρo, J) = −ρo
∂U(ρo, J)

∂J
, by substituting the above two results we get the Barotropic

Fluid equations in the Lagrangian description, along with the natural boundary conditions,

ρoϕ̈i +
∂

∂Xj

(
PWJF−T

)
ij
+ ρo

∂Π

∂ϕi
= 0. (5.9)

Along with the associated natural boundary conditions,

PWJ(F−T )jiniδϕ
i = 0 on ∂B (5.10)

The above equations translate to a pressure condition PW = 0 on the boundary. Thus, to prescribe nonzero pressure
boundary conditions, the Lagrangian should be modified by introducing the external pressure Pext (boundary) in the
internal energy expression, such that:

PW (ρo, J) = −ρo
∂U

∂J
= Pf − Pext,

where Pf is the fluid barotropic pressure, thereby equation 5.10 would lead to,

(Pf − Pext)JF−T .n δϕi = 0, thus Pf = Pext on ∂B. (5.11)

5.3.1. Piola-Kirchoff Stress Tensor

The well known, Cauchy stress tensor is the fundamental measure of stress in the current configuration (deformed) of
a continuum. It specifies the traction that one part of the continuum exerts on another across an infinitesimal surface.
In a barotropic fluid where viscosity and other deviatoric stresses are negligible, the Cauchy stress tensor reduces to

T = − p I, (5.12)

where p is the pressure, and I is the identity tensor. This representation highlights the isotropic character of pressure
in an inviscid or ideal fluid. Although T is measured with respect to surfaces and normals in the current configuration,
Lagrangian fluid-mechanics formulations include a stress measure defined on the reference (undeformed) config-
uration. The first Piola–Kirchhoff stress tensor P accomplishes this by providing the force acting in the deformed
configuration per unit area in the reference configuration. Continuum-mechanics texts [25, 39] often define P as:

P =
∂W

∂F
, (5.13)

where W (F ) = ρ0 U
(
ρ0, J

)
is the internal (or strain) energy density, expressed in Lagrangian coordinates. For a

barotropic fluid, as shown in the previous section, this takes the form of

P = −PWJF−T (5.14)
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The scalar Jacobian determinant J accounts for local volumetric changes, and F−T ensures the transformation from
the reference to current configuration is included correctly. Transformations of surface elements from the reference
domain B to the current domain are governed by Nanson’s formula. If dA0 is an oriented surface element in the
reference domain with outward normal N , then its corresponding oriented surface element in the current domain is

dA = JF−T dA0. (5.15)

This identity shows how measuring force per unit area in the reference configuration (P) differs from measuring
it in the deformed configuration (T ). Thus the first Piola-Kirchoff stress tensor can also be obtained by applying
this Nanson’s Formula to the Cauchy stress tensor, effectively switching from ”true” (current-configuration) stress to
”nominal” (reference-configuration) stress,

P = −JT F−T . (5.16)

Essentially, the first Piola-Kirchhoff tensor P captures how a given material volume element in the reference configu-
ration develops forces that appear as the isotropic pressure forces in the current configuration. The tensorP appears
naturally via the variational formulation for barotropic fluids in the Lagrangian coordinates, as shown in the previous
sections. From a differential-geometric standpoint, P corresponds to the one-sided pullback of the Cauchy stress
tensor T [22]. In this construction, the area element is measured in the reference configuration, while the forces
themselves are still considered in the deformed configuration.

5.4.From Lagrangian to Hamiltonian Description

The Euler–Lagrange equations governing barotropic fluid flow were derived in earlier sections by starting from the
Lagrangian density, applying Hamilton’s principle, and obtaining

ρo ϕ̈i +
∂

∂xi

(
PW J F−T

)i
+ ρo

∂Π

∂ϕi
= 0, (5.17)

as in Equation 5.9. The next step is to recast these equations in a Hamiltonian framework by means of a Legendre
transform in time, following the analogy with finite-dimensional Hamiltonian mechanics. A canonical momentum π
(per unit reference volume) conjugate to ϕ is introduced through the standard relation

π(X, t) =
∂L
∂ϕ̇

= ρ0 ϕ̇, (5.18)

where L is the Lagrangian density,

L
(
ϕ, ϕ̇,∇ϕ

)
=

1

2
ρ0
∣∣ϕ̇∣∣2 − ρ0 U

(
ρ0, J

)
− ρ0 Π

(
ϕ
)
, (5.19)

and ϕ̇ ≡ ∂ϕ/∂t. The definition of π is analogous to the finite-dimensional expression p = ∂L/∂q̇ in classical
mechanics. A Legendre transform of L with respect to ϕ̇ produces the Hamiltonian density H. Specifically, the
definition is

H
(
ϕ,π,∇ϕ

)
= π · ϕ̇ − L

(
ϕ, ϕ̇,∇ϕ

)
. (5.20)

Since ϕ̇ = π/ρ0, substitute this relation back to find

H
(
ϕ,π,∇ϕ

)
=

1

2 ρ0

∣∣π∣∣2 + ρ0 U
(
ρ0, J

)
+ ρ0 Π

(
ϕ
)
. (5.21)

The Hamiltonian density then depends on π and on ∇ϕ (through J = det(∇ϕ)), reflecting the usual split between
coordinates and momenta in time. The function H can be interpreted physically as the total energy density of the
barotropic fluid. When integrated over the reference domain B, it yields the total energy. More explicitly,

E =

∫
B
H
(
ϕ,π,∇ϕ

)
dnX, (5.22)

which represents the sum of kinetic, internal, and potential energies. For the barotropic flow considered here,

E =

∫
B

(
1

2 ρ0
|π|2 + ρ0 U(ρ0, J) + ρ0 Π(ϕ)

)
dnX. (5.23)

This quantity remains constant in time if the Lagrangian density does not explicitly depend on time and if appropriate
boundary conditions are satisfied.
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5.5.Noether’s Theorem and Conservation Laws

Noether’s theorem provides a connection between continuous symmetries in a physical system and conserved quan-
tities. In practical terms, if a barotropic fluid’s Lagrangian does not change under some continuous transformation
(for example, shifting time or shifting positions in space), the equations of motion imply that a corresponding physical
quantity remains constant. Consider an action functional

A =

∫ t=T

t=0

∫
B
L
(
ϕ, ∂tϕ,∇ϕ

)
dnX dt (5.24)

that determines how a barotropic fluid evolves. If changing the time variable by a small shift t 7→ t+ δt has no effect
on A (other than possibly rewriting boundary terms), then energy cannot be created or destroyed. As a result, the
total energy of the fluid remains constant in time. Similarly, if the action does not change under small shifts of space
X 7→X + δa, then the total (linear) momentum must be constant.

In the mathematical formulation, the key object is a Noether current, which can be viewed as a localized measure of
the conserved quantity. The statement of Noether’s theorem shows that this current satisfies a continuity equation,
indicating that the quantity in question can neither spontaneously appear nor vanish within the fluid domain.

Time-translation symmetry. A barotropic fluid’s Lagrangian typically does not include any explicit time dependence
(aside from the evolving fields). This leads to an exact conservation of total energy, reflecting kinetic, internal, and
potential contributions.

Space-translation symmetry. If the fluid domain and governing equations are uniform in space, then shifting po-
sitions leaves the action unchanged. This symmetry implies linear momentum conservation. In practice, it manifests
as a momentum balance law that can be written in either material (Lagrangian) or spatial (Eulerian) coordinates.

Rotational symmetry. In isotropic fluids, the Lagrangian remains the same under rotations of the reference or
spatial coordinates. The outcome is angular momentum conservation. Physically, this means any net spinning or
rotational effect remains constant unless forces or torques act at the boundary.

The transition from a Lagrangian to a Hamiltonian description, and further to a multi-symplectic formulation, reveals
deeper geometric structures in barotropic fluid flow. The Lagrangian and Hamiltonian approaches clarify canonical
momentum, energy, and the way variational principles specify the equations of motion. A multi-symplectic repre-
sentation then allows time and space to be treated symmetrically, leading to local conservation of symplectic forms
in multiple dimensions. Noether’s theorem connects continuous symmetries of the action with physically significant
conservation laws, including energy, momentum, and angular momentum.

When applied in numerical practice, preserving geometric or symmetry-based invariants often improves stability and
accuracy, especially over long simulations. Multi-symplectic methods, in particular, impose a discrete version of the
symplectic conservation law across space–time grids, ensuring that numerical approximations respect core physical
properties inherent to barotropic flows.



6
Weak Formulation and the Full Discrete

System

6.1.Strong Form and Classification

In the previous chapter, we derived the strong form of the Lagrangian inviscid barotropic flow equations via a varia-
tional formulation. Neglecting the gravitational potential term, the resulting strong form is:

ρoϕ̈+
∂

∂Xj

(
PWJF−T

)
j
= 0. (6.1)

where, ϕ is the flowmap, ρ0 is the (constant) reference density, PW is the material pressure of the fluid, F is the
deformation gradient, J = det(F) is the determinant of the deformation gradient. The above equation can be re-
written, to classify and separate the equation into Balance, constitutive and Definition equations as follows,



∂πi

∂t
− ∂

∂Xj
(P )ij = 0 Balance Equation

πi = ρ0
∂ϕi

∂t
Constitutive Equation

Pij = −PWJF−T
ij Constitutive Equation

Fij =
∂ϕi

∂Xj
Definition Equation

(6.2)

Here, π is the linear momentum density, P is the first Piola-Kirchhoff stress tensor. These four sets of equations
respectively represent the local form of momentum balance, two constitutive relationships (one for the momentum π
and another for the stress P ), and the definition of the deformation gradient.

6.2. Variable Representation in Two Dimensional Space and Time R2+1

In a two-dimensional Cartesian space, any vector- or covector-valued physical quantity naturally splits into two
components—one along the x-axis and one along the y-axis—and these often appear in separate momentum bal-
ance and constitutive equations. Nevertheless, using bundle-valued forms defined on a single space-time manifold
M allows both components to be discretized coherently on the discrete counterpart of the manifold. Thus the vari-
ables pertaining to the problem are represented as follows,

30
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Flow map - φ : The flow map is described as a vector-valued 0-form in both space and time belonging to Λ(0)(M).

φ(0) = ∂x ⊗ ϕ(0)
x (ξ, η, τ) + ∂y ⊗ ϕ(0)

y (ξ, η, τ). (6.3)

Velocity - V : Velocity is described as a vector-valued 0-form in space and a 1-form in time belonging to Λ(1)(M).

V (0) = ∂x ⊗ V (1)
x (ξ, η, τ) dt+ ∂y ⊗ V (1)

y (ξ, η, τ) dt. (6.4)

V (0)
x =

∂ϕ
(0)
x

∂t
, V (0)

y =
∂ϕ

(0)
y

∂t
.

Deformation Gradient - F : It is described as a vector-valued 1-form in space and a 0-form in time belonging to
Λ(1)(M).

F (1) = ∂x ⊗
(
F (1)
xx (ξ, η, τ) dx+ F (1)

xy (ξ, η, τ) dy
)
+ ∂y ⊗

(
F (1)
yx (ξ, η, τ) dx+ F (1)

yy (ξ, η, τ) dy
)

(6.5)

F (1)
xx =

∂ϕ
(0)
x

∂x
, F (1)

xy =
∂ϕ

(0)
x

∂y
, F (1)

yx =
∂ϕ

(0)
y

∂x
, F (1)

yy =
∂ϕ

(0)
y

∂y
.

Momentum - π : Momentum is described as a co-vector valued 2-form in space and a 0-form in time belonging to
Λ̃(2)(M)

π(2) = (dx⊗ π(2)
x (ξ, η, τ) + dy ⊗ π(2)

y (ξ, η, τ)) dx ∧ dy. (6.6)

First Piola-Kirchoff Stress - P : It is described as a co-vector valued 2 space-time form, that is, a 1-form in space
and a 1-form in time belonging to Λ̃(2)(M).

P (2) = dx⊗
(
P (2)
xx (ξ, η, τ) dy − P (2)

xy (ξ, η, τ) dx
)
∧ dt+ dy ⊗

(
P (2)
yx (ξ, η, τ) dy − P (2)

yy (ξ, η, τ) dx
)
∧ dt (6.7)

6.3.Discretisation on the Mesh

The first step in discretisation involves classifying the variables into Configuration and Source variables. From the
definitions in the previous chapter and sections, it is trivial that the flow map, velocity and deformation gradient act as
the configuration variables and the momentum and Piola-Kirchoff stress act as the source variables.

6.3.1. Primal and Dual Grid

In a Lagrangian framework, the fundamental configuration variablesφ naturally appear in the Lagrangian(L(ϕ, ϕ̇,∇ϕ))
defining the spatial arrangement of fluid elements. Since the primal grid provides the first, direct discrete represen-
tation of the fluid domain, it is characteristic to place these vector-valued configuration fields on the primal mesh. In
contrast, covector-valued source variables such as forces, momentum, or stresses do not define geometry but rather
act upon the configuration thus they are defined on a dual grid, further it can be seen that their influence is analogous
to the dual grid, which remains concealed (its points may not coincide with physical locations). Although neither the
source variables nor the dual cells are directly observed, their interaction is manifested in the changes induced in the
visible (primal) configuration.
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6.3.2. Orientation

In many geometric and topological approaches to numerical partial differential equations, the primal grid is assigned
an inner orientation, whereas the dual grid is given an outer orientation [13, 26]. This choice indicates how gradient-
and divergence-like operations are naturally represented in a discrete setting. First, because the primal mesh has
the configuration variables (e.g., position, displacement, or velocity potentials), the definition equations involving
gradients are discretised on it, thus having it as an inner-oriented mesh makes it convenient to define the discrete
gradient operator. Meanwhile, the divergence operator is closely linked to outward-pointing normals on boundary
surfaces. Assigning an outer orientation to the dual cells simplifies the representation of fluxes and balance laws,
since each dual face inherits a naturally outward-pointing normal that is used in discrete divergence computations.
Thus, the divergence—or more generally, the flux balance—finds a natural setting on the outer-oriented dual mesh.
Finally, coupling an inner-oriented primal grid for gradients with an outer-oriented dual grid for divergences allows
both discrete operators to mimic their continuous counterparts in a geometrically compatible way. This alignment
often leads to better stability and conservation properties in numerical simulations.

6.3.3. Geometric Association

Once the primal and dual associations, orientation selection, and variable representations are established, associat-
ing physical variables with the geometric elements of the mesh becomes straightforward. The table below illustrates
this relationship, where N denotes the spatial polynomial order and Nt denotes the temporal polynomial order of the
spectral GLL grid.

Integral Quantities / DOFs Geometry Grid Number of elements

ϕ̄ Nodes Primal (Nt + 1)(N + 1)2

F̄ Spatial Edges Primal 2(Nt + 1)N(N + 1)

V̄ Temporal Edges Primal Nt(N + 1)2

π̄ Spatial Faces Dual Nt(N + 1)2

P̄ Spatio-Temporal Faces Dual 2(Nt + 1)N(N + 1)

Table 6.1: Geometric association of physical variables on the Primal and Dual Grid

The figure below shows both the primal and dual GLL grid, along with the associated variables for a spatial polynomial
order of N = 2 and temporal polynomial order of Nt = 1. Here ξ corresponds to X direction, η to y and τ denotes
the temporal direction.

Figure 6.1: Primal Grid along with the representation of associated variables
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Figure 6.2: Spatio-temporal surfaces depicting the Piola-Kirchoff
stress DOFs on the dual grid

Figure 6.3: Spatial surfaces depicting the momentum DOFs on
the dual grid

�x , �y

Pxx , Pyx

Pxy , Pyy

~ ~

~ ~

~ ~

Figure 6.4: Dual Grid along with the representation of associated variables

6.3.4. Spectral Basis Expansion

For the R(2+1) grid shown above, the basis functions used to expand the above discussed variables, can be con-
structed at the Gauss-Lobatto-Legendre (GLL) co-ordinates (ξ, η, τ):

ξ = ξ0, ξ1, . . . , ξN+1, η = η0, η1, . . . , ηN+1, τ = τ0, τ1, . . . , τNt+1

using tensor products of one-dimensional basis functions, as previously discussed. Specifically, they are formulated
as follows:

Primal Nodal Basis: The primal nodal basis functions Ψ0, are defined as the tensor product of one-dimensional
nodal Lagrange basis functions, and belong to the discrete space Λ

(0)
h (B × T ) which can also be interpreted as the

space H1(B × T ) ⊂ L2(B × T ).

Ψ0 = h(ξ)⊗ h(η)⊗ h(τ) (6.8)

which, in index notation, expands to Ψ0 = hi(ξ) hj(η) hk(τ), ∀ i, j = 0, 1, . . . , N, k = 0, 1, . . . , Nt.

Primal Edge Basis: The edge basis are obtained similarly by tensor product of combination of edge basis in that
respective direction and nodal basis in remaining directions. They belong to the discrete space Λ

(1)
h (B × T ) which

can also be interpreted as the space H (grad ; B × T ).
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Ψ1 =

e(ξ)⊗ h(η)⊗ h(τ) 0 0
0 h(ξ)⊗ e(η)⊗ h(τ) 0
0 0 h(ξ)⊗ h(η)⊗ e(τ)

 (6.9)

which in index notation expands to:

• Edge in the ξ-direction : Ψξ
1 = ei(ξ) hj(η) hk(τ), ∀ i = 1, 2, . . . , N, j = 0, 1, . . . , N, k = 0, 1, . . . , Nt.

• Edge in the η-direction : Ψη
1 = hi(ξ) ej(η) hk(τ), ∀ i = 0, 1, . . . , N, j = 1, 2, . . . , N, k = 0, 1, . . . , Nt.

• Edge in the τ -direction : Ψτ
1 = hi(ξ) hj(η) ek(τ), ∀ i, j = 0, 1, . . . , N, k = 1, 2, . . . , Nt.

Dual Surface Basis: The dual surface basis functions are constructed by taking the tensor product of a dual edge
basis function in two coordinate directions and a nodal basis in the perpendicular direction. They belong to the discrete
space Λ̃

(2)
h (B × T ) which can also be interpreted as the space H (div ; B × T ).

Ψ̃2 =

h̃(ξ)⊗ ẽ(η)⊗ ẽ(τ) 0 0

0 ẽ(ξ)⊗ h̃(η)⊗ ẽ(τ) 0

0 0 ẽ(ξ)⊗ ẽ(η)⊗ h̃(τ)

 (6.10)

which in index notation, expands to:

• Surface ⊥ to the ξ-direction :

Ψξ
2 = h̃i(ξ) ẽj(η) ẽk(τ), ∀ i = 0, 1, . . . , N, j = 1, 2, . . . , N, k = 1, 2, . . . , Nt.

• Surface ⊥ to the η-direction :

Ψη
2 = ẽi(ξ) h̃j(η) ẽk(τ), ∀ i = 1, 2, . . . , N, j = 0, 1, . . . , N, k = 1, 2, . . . , Nt.

• Surface ⊥ to the τ -direction :

Ψτ
2 = ẽi(ξ) ẽj(η) h̃k(τ), ∀ i = 1, 2, . . . , N, j = 1, 2, . . . , N, k = 0, 1, . . . , Nt.

Based on the above definitions, the discrete physical variables are spectrally expanded as follows,

Flowmap ϕ: Flowmap is associated to primal nodes, thus it is expanded using the primal nodal basis and the
associated degrees of freedom φ̄x and φ̄y as follows,

ϕh
x (ξ, η, τ) := φ̄x Ψ0 =

N∑
i=0

N∑
j=0

Nt∑
k=0

ϕ̄x
ijk hi(ξ) hj(η) hk(τ) (6.11)

ϕh
y (ξ, η, τ) := φ̄y Ψ0 =

N∑
i=0

N∑
j=0

Nt∑
k=0

ϕ̄y
ijk hi(ξ) hj(η) hk(τ) (6.12)

Deformation Gradient F : The deformation gradient is associated with Primal Spatial edges, thus it will be ex-
panded usingΨξ

1 andΨη
1 edge basis functions along with the respective degrees of freedom F̄xx, F̄xy, F̄yx and F̄yy

which are integral values of the deformation along the edges.

Fh
xx (ξ, η, τ) := F̄xx Ψξ

1 =

N∑
i=1

N∑
j=0

Nt∑
k=0

F̄ xx
ijk ei(ξ) hj(η) hk(τ) (6.13)

Fh
xy (ξ, η, τ) := F̄xy Ψη

1 =

N∑
i=0

N∑
j=1

Nt∑
k=0

F̄ xy
ijk hi(ξ) ej(η) hk(τ) (6.14)



6.4. Continuous Weak Formulation 35

Fh
yx (ξ, η, τ) := F̄yx Ψξ

1 =

N∑
i=1

N∑
j=0

Nt∑
k=0

F̄ yx
ijk ei(ξ) hj(η) hk(τ) (6.15)

Fh
yy (ξ, η, τ) := F̄yy Ψη

1 =

N∑
i=0

N∑
j=1

Nt∑
k=0

F̄ yy
ijk hi(ξ) ej(η) hk(τ) (6.16)

Velocity V : Velocity is associated to primal or temporal edges, thus it is expanded using Ψτ
1 edge basis and the

associated degrees of freedom V̄x and V̄y, which are the integral values of the velocity along the temporal edges.

V h
x (ξ, η, τ) := V̄x Ψτ

1 =

N∑
i=0

N∑
j=0

Nt∑
k=0

V̄ x
ijk hi(ξ) hj(η) hk(τ) (6.17)

V h
y (ξ, η, τ) := V̄y Ψτ

1 =

N∑
i=0

N∑
j=0

Nt∑
k=1

V̄ y
ijk hi(ξ) hj(η) ek(τ) (6.18)

Momentum π̃ The momentum is associated to dual surfaces, thus it is expanded using the dual spatial surface
basis Ψ̃τ

2 and the degrees of freedom π̃x and π̃y which are the integral values of the momentum along the respective
surfaces.

πh
x (ξ, η, τ) := π̃xΨ

τ
2 =

N∑
i=1

N∑
j=1

Nt∑
k=0

π̃x
ijk ẽi(ξ) ẽj(η) h̃k(τ) (6.19)

πh
y (ξ, η, τ) := π̃yΨ

τ
2 =

N∑
i=1

N∑
j=1

Nt∑
k=0

π̃y
ijk ẽi(ξ) ẽj(η) h̃k(τ) (6.20)

First Piola-Kirchoff stress P : It is associated with dual spatio-temporal surfaces, and thus is expanded using
the dual surface basis Ψξ

2 and Ψη
2 along with the degrees of freedom P̃xx, P̃xy, P̃yx and P̃yy, which are the integral

values of the stress along the respective surfaces.

Ph
xx (ξ, η, τ) := P̃xx Ψ̃ξ

2 =

N∑
i=0

N∑
j=1

Nt∑
k=1

P̃ xx
ijk h̃i(ξ)̃ ej(η) ẽk(τ) (6.21)

Ph
xy (ξ, η, τ) := P̃xy Ψ̃η

2 =

N∑
i=1

N∑
j=0

Nt∑
k=1

P̃ xy
ijk ẽi(ξ) h̃j(η) ẽk(τ) (6.22)

Ph
yx (ξ, η, τ) := P̃yx Ψ̃ξ

2 =

N∑
i=0

N∑
j=1

Nt∑
k=1

P̃ yx
ijk h̃i(ξ) ẽj(η) ẽk(τ) (6.23)

Ph
yy (ξ, η, τ) := P̃yy Ψ̃η

2 =

N∑
i=1

N∑
j=0

Nt∑
k=1

P̃ yy
ijk ẽi(ξ) h̃j(η) ẽk(τ) (6.24)

6.4.Continuous Weak Formulation

The momentum balance equation, expressed in terms of differential bundle forms, is given by

dt π
(2) − d P (2) = 0, (6.25)

where dt denotes the temporal component of the exterior derivative acting on 2-forms, akin to a temporal divergence,
and d represents the spatial component, acting as a spatial divergence.
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To derive the weak form, as discussed in previous chapters, the strong form is tested by taking the wedge product with
the Hodge dual of an arbitrary test form ? η(3), which belongs to the same space of forms as the solution, Λ(3)(M).
Integrating over the domain yields:

∫
M

dtπ
(2) ∧ ? η(3) −

∫
M

dP (2) ∧ ? η(3) = 0, ∀ η(3) ∈ Λ̃(3)(M). (6.26)

Following a similar approach, the weak form of the momentum-velocity constitutive equation is obtained as:

∫
M

1

ρo
π(2) ∧ ?α(2) +

∫
M

dtφ
(0) ∧ ?α(2), ∀ α(2) ∈ Λ̃(3)(M). (6.27)

6.5.Discrete Weak Formulation

In the previous section, the test form used in the weak formulation of the linear momentum balance was the Hodge of
an arbitrary form, ?η(3), belonging to the solution (dual) space of the equation. Since applying the Hodge maps this
form to the space of primal 0-forms, which coincides with the space where the flow map is defined, the test function in
the discrete setting is chosen as an arbitrary function from the same space as the flow map, i.e.ϕ̃ ∈ H1(B×T ). Here,
B × T represents the discrete counterpart of the continuous space-time manifold, M. Note that the ’tilde’ symbol
over the test function indicates that the function is a test function, and it is not related to the dual representation.

∫
B×T

∂π

∂t
φ̃ d(B × T ) −

∫
B×T

(∇ · P ) φ̃ d(B × T ) = 0, ∀ φ̃ ∈ H1(B × T ). (6.28)

By switching the derivatives from the dual variable to the test function via integration by parts and the divergence
theorem as,

∫
B×T

∂

∂t
(π φ̃) d(B × T ) =

∫
B×T

(
∂π

∂t
φ̃+ π

∂φ̃

∂t

)
d(B × T ),

∫
B×T

∂π

∂t
φ̃ d(B × T ) = −

∫
B×T

π
∂φ̃

∂t
d(B × T ) +

∫
B×∂T

(π · nt) φ̃ d(B × ∂T ).

∫
B×T

∂π

∂t
φ̃ d(B × T ) = −

∫
B×T

π
∂φ̃

∂t
d(B × T ) +

∫
B×∂T

(π · nt) φ̃ d(B × ∂T ). (6.29)

Similarly,

∫
B×T

∇ · (P φ̃) d(B × T ) =

∫
B×T

(
(∇ · P ) φ̃+ P · ∇φ̃

)
d(B × T ),

∫
B×T

(∇ · P ) φ̃ d(B × T ) = −
∫

B×T

P · ∇φ̃ d(B × T ) +
∫

∂B×T

(P · n) φ̃ d(∂B × T ).

∫
B×T

(∇ · P ) φ̃ d(B × T ) = −
∫

B×T

P · ∇φ̃ d(B × T ) +

∫
∂B×T

(P · n) φ̃ d(∂B × T ). (6.30)

Substituting the results obtained from equations 6.30 and 6.29 in equation 6.37, and further neglecting the spatial
boundary integral, the discrete form of the linear momentum balance is obtained as,
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−
∫

B×T

π
∂φ̃

∂t
d(B × T ) +

∫
B×∂T

(π · nt) φ̃ d(B × ∂T ) +

∫
B×T

P · ∇φ̃ d(B × T ) = 0. (6.31)

In this form, all derivatives are transferred to the test functions. From the definition of the first Piola-Kirchhoff stress
tensor, P = PWJF−T , and by denoting the gradient of the test function ∇φ̃ as F̃ , the above equation can be
expressed in inner product notation as follows:

−

(
π ,

∂φ̃

∂t

)
B×T

+
(
π · nt , φ̃

)
B×∂T

+
(
PWJF−T : F̃

)
B×T

= 0. (6.32)

Here, the colon (:) denotes the component-wise product of two tensors, so A : B =
∑

i,j AijBij , further the first
and second terms are fairly straightforward since they involve the inner product of primal and dual basis which are
orthogonal to each other and lead to Kronecker delta upon taking the inner product (note that in the trace space of π,
their basis functions are orthogonal to the basis of φ̃) and thus leaving just degrees of freedom. The interesting term
is the third term which involves basis functions from the same space thereby leading to a Hodge matrix as follows:

(
PWJF−T

x : F̃x

)
B×T

= ϕT
x E1,0T

x HPw
E1,0
y φ̄y − ϕT

x E1,0T

y HPw
E1,0
x φ̄y.

(
PWJF−T

y : F̃y

)
B×T

= − ϕT
y E1,0T

x HPw E1,0
y φ̄x + ϕT

y E1,0T

y HPw E1,0
x φ̄x. (6.33)

Substituting the above results in equation 6.32, and writing the remaining terms as well in terms of the degrees of
freedom, the final discrete equation for the linear momentum balance is obtained as:

ϕT
x E1,0T π̃x + ϕT

x Nππ̂x − ϕT
x E1,0T

x HPw
E1,0
y φ̄y + ϕT

x E1,0T

y HPw
E1,0
x φ̄y = 0. (6.34)

ϕT
y E1,0T π̃y + ϕT

y Nππ̂y + ϕT
y E1,0T

x HPw E1,0
y φ̄x − ϕT

y E1,0T

y HPw E1,0
x φ̄x = 0. (6.35)

Here, the matrix Nπ is the connectivity matrix which maps the temporal boundary degrees of freedom of the momen-
tum to the equation behaving as a trace matrix. Further for any arbitrary test function the above equations reduce
to,

E1,0T π̄x + Nππ̂x − E1,0T

x HPw
E1,0
y φ̄y + E1,0T

y HPw
E1,0
x φ̄y = 0.

E1,0T π̄y + Nππ̂y + E1,0T

x HPw
E1,0
y φ̄x − E1,0T

y HPw
E1,0
x φ̄x = 0.

(6.36)

In a similar fashion, the discrete weak form of the constitutive equation is obtained by testing it with an arbitrary
function ṽ ∈ H(grad ;B × T ) belonging to the space where the velocity is defined.

∫
B×T

π ṽ d(B × T ) −
∫

B×T

ρo
∂ϕ

∂t
ṽ d(B × T ) = 0, ∀ ṽ ∈ H1(grad ;B × T ). (6.37)

ṽT π̄ − ṽT

 ρo ∫
B×T

(Ψτ
1)

T Ψτ
1 d(B × T )

 E(1,0)
t φ̄ = 0. (6.38)

The integral within the square brackets is the density Hodgematrix and is denoted asHρo
, whichmaps primal temporal

edge DOFs of the velocity to the dual spatial surface DOFs of the momentum, thus the full discrete form of the
momentum constitutive equation can be obtained as :
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H−1
ρo

π̄x − E1,0
t φ̄x = 0

H−1
ρo

π̄y − E1,0
t φ̄y = 0

(6.39)

The equations in 6.36 and 6.39 can be assembled into a final matrix form system of equations as:



H−1
ρ0

0 −E1,0
t 0 0 0

0 H−1
ρ0

0 −E1,0
t 0 0

E1,0T

t 0 0 −DPK Nπ 0

0 E1,0T

t DPK 0 0 Nπ





π̄x

π̄y

φ̄x

φ̄y

π̂x

π̂y


=



0

0

0

0


. (6.40)

where DPK = E1,0T

x HPw
E1,0
y − E1,0T

y HPw
E1,0
x , to simplify the matrix representation.

6.5.1. Initial Conditions and Time stacking

As of now the system matrix defined above is not a square system, the reduction of the matrix is done via the pre-
scription of initial conditions. Firstly the initial momentum is prescribed in a strong sense by multiplying the respective
columns with the known initial degrees of freedom of the momentum π̂to

x and π̂to
y at the initial time level and taking it

over to the right hand side. Next the flow map ϕ at the initial time level, ϕ(X, t0), is prescribed by adding an extra set
of equations rather than by eliminating the associated degrees of freedom by directly setting ϕ(X, t0) = X. This as
mentioned before, introduces an additional constraint equation of the form∫

B×To

λ
[
ϕ(x, t0)− ϕo

]
d(B × T0) = 0, (6.41)

where λ is a Lagrange multiplier field. In the discrete setting, this approach augments the global system with extra
unknowns (the components of λ), while the coupling to the flow map ϕ is typically realized through a connectivity
matrix such as NT

π .

From a Hamiltonian perspective, the Lagrange multiplier enforcing a constraint on position (in this case, the flow map)
can be interpreted as the conjugate momentum. Imposing the condition ϕ(X, t0) = X in a weak sense guarantees
that the reaction force (encoded in the multiplier λ) enforces the initial positioning of each material point. When the
fully time-stacked system is solved, these additional unknowns λ naturally appear in the solution vector at the final
time level. In other words, the multiplier associated with enforcing the flow map acts as the momentum at the next
(or final) time level [40].
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Figure 6.5: Prescription of initial flow map
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......

Figure 6.6: Time stacking
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Next, the time stepping proceeds by stacking the space-time grids (treated as single spectral elements) sequentially
in time. The computed flow map and momentum at the final time level of one element are then prescribed as the
initial conditions for the subsequent time element in the same way as explained above. Thus incorporating the above
discussed initial conditions results in complete square matrix form of the discrete system of equations for a single
time interval spectral grid describing the Lagrangian barortropic flow as shown below.



H−1
ρ0

0 −E1,0
t 0 0 0

0 H−1
ρ0

0 −E1,0
t 0 0

E1,0T

t 0 0 −DPK −Nt
π 0

0 E1,0T

t DPK 0 0 −Nt
π

0 0 Nto T
π 0 0 0

0 0 0 Nt0 T
π 0 0





π̄x

π̄y

φ̄x

φ̄y

π̂t
x

π̂t
y


=



0

0

−Ntoπ̂to
x

−Ntoπ̂to
y

ϕxo

ϕyo


. (6.42)

6.5.2. Pressure Hodge Matrix Non-linearity

The weak form described of the pressure Hodge matrix HPw , in the previous section yields an integral expression

Pw(ρ0, J)

∫
B×T

(
Ψξ

1

)T
Ψη

1 d(B × T ).

which, maps the primal (edge) degrees of freedom of the deformation gradient F to the dual (surface) degrees of
freedom corresponding to the Piola–Kirchhoff stress. The term Pw(ρ0, J) serves as a spatial and temporal weight,
where ρ0 is the reference density and J = det(F) depends on the solution ϕ via F = ∇ϕ.

Since Pw(ρ0, J) depends on J , and thus on ϕ, the matrix HPw becomes nonlinear in the solution. This nonlinearity
is handled through a Picard (fixed-point) iteration. The procedure begins with an initialization step, where a suitable
initial guess ϕ(0) is chosen. A typical choice is the converged solution from the previous time step or the initial
conditions at the start of the solve.

Once the iteration starts, the deformation gradientF(k) is computed from the current estimateϕ(k), and its determinant
J (k) is evaluated. The pressure weight Pw(ρ0, J

(k)) is then updated to reflect the current values of J (k). The pressure
HodgematrixHPw

is reassembled accordingly, so that the newweight is integrated alongside the basis functions using
the quadrature weights. With this updated matrix, the system is solved for a new flowmap, ϕ(k+1).

A convergence check is performed by comparing the trace of F(k+1) and J (k+1) against those from the previous
iteration. The iteration continues until these values fall below a specified tolerance, indicating that the solution has
converged with the consistent dependence of Pw on J . The final ϕ and its corresponding F are then used as an
initial guess for the next time step.

6.6.Conservation of Linear Momentum

To check that total linear momentum is conserved, a test function that represents a rigid-body translation of the flow
map is chosen, for instance

φ̃(x, t) = c,

where c is a constant vector (e.g., c = (1, 0)T or (0, 1)T in 2D). Substituting φ̃ = c into the weak form leads to

−
∫

B×T

π
∂c

∂t
d(B × T ) +

∫
B×∂T

(π · nt) c d(B × ∂T ) +

∫
B×T

P · ∇c d(B × T ) = 0. (6.43)

Because c is constant, ∇c = 0 and ∂c
∂t = 0, so the first and the third term (stress) vanishes, leading to :
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c ∫
B

π dB


t=0

=

c ∫
B

π dB


t=T

(6.44)

The above relation shows that the linear momentum at the start of the time step is equal to the linear momentum at
the end of the time step, in other words the net integral rate of change of linear momentum is zero, implying the total
linear momentum of the system is constant in time. If no external body forces or tractions act on the domain, there
is no source of net momentum gain or loss, so the integral of π over the domain cannot change. Hence, the system
conserves linear momentum.

6.7.Conservation of Angular Momentum

To check if the angular momentum is conserved in the above discussed formulation, The weak form of the linear
momentum balance equation derived in the previous sections is considered.

−
∫

B×T

π
∂φ̃

∂t
d(B × T ) +

∫
B×∂T

(π · nt) φ̃ d(B × ∂T ) +

∫
B×T

P · ∇φ̃ d(B × T ) = 0. (6.45)

Since the choice of the test function is arbitrary since the momentum equation should hold for all variations, thus
choosing a test function corresponding to a rotation of the flow map.

φ̃ =

[
ϕy

−ϕx

]
. (6.46)

The term P : ∇ φ̃ involves the product PW J F−T and the gradient of φ̃. When the specific rotated test function is
inserted,

∇ φ̃ =

[
∂(ϕy)/∂x ∂(ϕy)/∂y

∂(−ϕx)/∂x ∂(−ϕx)/∂y

]
,

substituting this in the inner the product representation,

(
PW

[
Fyy −Fyx

−Fxy Fxx

]
:

[
Fyx Fyy

−Fxx −Fxy

])
B×T

Further expanding the inner product components,

∫
B×T

PW (����Fyy Fyx − ����Fyx Fyy + ����Fxy Fxx − ����Fxx Fxy ) d(B × T ) = 0 (6.47)

By using the skew-symmetric structure imposed by φ̃ = [ϕy,−ϕx], the net contribution simplifies in such a way that
the integrated effect of ∇ · P against the rotation of ϕ vanishes as shown above. This leads to the remaining term

∫
B

(πxϕy − πyϕx)
∣∣t=T

t=0
dB +

T∫
0

∫
B

(
πxϕ̇y − πyϕ̇x

)
dB dt = 0. (6.48)

Further the discrete momentum-velocity relationship is given by πx = H−1
ρo
ϕ̇x and πy = H−1

ρo
ϕ̇y, inserting this in the

above expression,

∫
B

(πxϕy − πyϕx)
∣∣t=T

t=0
dB + ������

ϕ̇T
y H−1

ρo
ϕ̇x −������

ϕ̇T
x H−1

ρo
ϕ̇y = 0. (6.49)
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∫
B

(πxϕy − πyϕx) dB


t=0

=

∫
B

(πxϕy − πyϕx) dB


t=T

(6.50)

The above equation shows that if the system starts with a certain amount of angular momentum, and no external
torques act upon it, the angular momentum remains fixed in time.

6.8.Conservation of Energy

Conservation of energy can be shown by taking the material velocity evaluated at the primal nodes as the choice of
test function φ̃ = ∂φ

∂t = ϕ̇ , which is the time derivative of the flow map.

∫
B×T

π
∂ϕ̇

∂t
d(B × T ) −

∫
B×T

(
∇ · P

)
· ϕ̇ d(B × T ) = 0. (6.51)

Since π = ρ0
∂φ
∂t , the first integral can be written as∫

B×T

∂

∂t

(∂ϕ
∂t

)
· ρ0

∂ϕ

∂t
d(B × T ),

this expression simplifies to ρ0
∂2ϕ

∂t2
· ∂ϕ
∂t
. Further considering the scalar product and applying the product rule and

rearranging,

∂

∂t

(
∂ϕ

∂t
· ∂ϕ
∂t

)
= 2

(
∂2ϕ

∂t2
· ∂ϕ
∂t

)
,

∂2ϕ

∂t2
· ∂ϕ
∂t

= 1
2

∂

∂t

(∂ϕ
∂t
· ∂ϕ
∂t

)
.

Hence, the original integral, can be rewritten as,

∫
B×T

ρ0
1

2

∂

∂t

(∂ϕ
∂t
· ∂ϕ
∂t

)
d(B × T ) =

∫
B×T

∂

∂t

(
1

2
ρo
∥∥∂φ

∂t

∥∥2) d(B × T ) (6.52)

which is precisely the integral of the rate of change of the (kinetic) energy density in the material configuration (as-
suming that ρ0 is constant and B is the reference domain).

Considering the second integral, upon transferring the derivative via integration parts and neglecting the boundary
integral yields,

−
∫
B×T

(
∇ · P

)
· ∂ϕ
∂t

d(B × T ) =
∫
B×T

P : ∇
(∂ϕ
∂t

)
d(B × T ) =

∫
B×T

P :
∂

∂t

(
∇ϕ
)
d(B × T ).

For an inviscid barotropic assumption, the first piola-kirchoff stress tensor can be written as the the derivative of the
internal energy with respect to deformation gradient, this gives [22, 25]

P : Ḟ =
∂W

∂F
: Ḟ =

∂

∂t
W (F ),

whereW (F ) is the internal-energy density. Combining the integrals back,∫
B×T

∂

∂t

(
1

2
ρ0
∥∥∂ϕ
∂t

∥∥2︸ ︷︷ ︸
Kinetic Energy

+ W (F )︸ ︷︷ ︸
Internal Energy

)
d(B × T ) = 0. (6.53)
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Hence, the sum of the kinetic and internal (potential) energies remains constant in time, demonstrating conservation
of mechanical energy in the discrete Lagrangian formulation. Boundary or external force terms, if present, would
appear on the right-hand side and represent energy input or output, yielding an energy balance rather than strict
conservation.

Finally, in the discrete system (as described in the momentum weak form), selecting the velocity (or partial derivative
of the flow map) evaluated at nodes as the test function and taking the inner product with the discrete matrices, leads
to the same integral identities.

6.8.1. Relation to Noether's Theorem

The preceding discussion of Noether’s theorem in the previous chapter, highlighted how continuous symmetries of the
Lagrangian give rise to conserved quantities, including energy, linear momentum, and angular momentum. According
to Noether’s theorem, small shifts in time, space, or coordinate rotations leave the action unchanged, which translates
into the conservation of energy, linear momentum, and angular momentum at the continuous level.

In the discrete or weak formulations for the barotropic fluid, these same conservations are enforced through specific
choices of test functions. For angular momentum, selecting a rotational test function ensures no net torque arises
from the internal stress. For linear momentum, a translational test function demonstrates the absence of net force on
the domain, implying constant total momentum. For energy, multiplying the momentum equation by the velocity (or
partial derivative of the flow map) isolates the kinetic and potential contributions, revealing that their sum is constant
unless there is external work or boundary traction.

Verifying these properties through weak-form checks therefore mirrors the symmetries identified by Noether’s the-
orem in the continuum theory. When the boundary conditions are properly handled and external forcing is absent,
the integral forms of the momentum and energy equations confirm that no momentum or energy is lost or gained.
This consistency between the continuous geometric invariants and their discrete counterparts not only validates the
numerical approach but also promotes stable and accurate simulations over time.

6.9.Multisymplectic Nature of the Discretization

Symplectic geometry arises naturally in systems governed by Hamiltonian equations, where a single time variable
drives the evolution of generalized coordinates . In that setting, equations of motion can be expressed using a
skew-symmetric matrix, frequently denoted J , that encodes the conservation of a certain geometric “area” (or higher-
dimensional volume) in phase space [4, 8].

For partial differential equations (PDEs), that is equations in which the Lagrangian (thereby the associated Hamilto-
nian) depends both on the derivatives in space and time, instead of conventional Hamiltonian differential equations
(ODEs), multiple spatial coordinates and time typically appear [1, 2]. A direct Legendre transform that only accounts
for time derivatives may obscure key structure in the spatial derivatives. Multi-symplectic theory addresses this gap
by introducing several skew-symmetric operators, one for each unbounded coordinate (including time), as in [12]. In
a setting with one spatial dimension x and time t, the PDE might be expressed as

M(z)
∂z

∂t
+ K(z)

∂z

∂x
= ∇S(z),

where z describes the necessary variables (such as displacement and velocity), and S plays a role similar to a Hamil-
tonian potential [2, 12]. The operators M and K are skew-symmetric and generalize the single-operator scenario
encountered in classical Hamiltonian systems .

A multi-symplectic framework uses multiple symplectic forms, one for each independent variable, so both space and
time derivatives appear symmetrically. This framework generalizes classical symplectic geometry from time-only
Hamiltonian dynamics to PDEs with additional coordinates [12, 17]. The approach ensures that contributions from
each spatial direction are placed on the same geometric footing as contributions from time.

In conclusion, multi-symplectic theory extends the single-time Hamiltonian idea to PDEs involving multiple coordi-
nates. Each coordinate, including time, is accompanied by a skew-symmetric operator that generalizes the concept
of symplectic geometry [12]. The resulting framework highlights geometric invariants and clarifies the interplay of
space and time in conservation laws. This perspective has proven advantageous for studying dispersive equations,
free-surface fluid models, and other engineering applications [1, 12].
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6.9.1. Multisymplectic Formulation of the Barotropic Fluid Equations

As stated previously PDE system in two spatial dimensions is said to possess a multisymplectic structure if it can be
written in the form

M
∂Z

∂t
+ K

∂Z

∂X
+ L

∂Z

∂Y
= ∇Z H(Z), (6.54)

where Z is a vector of state variables, and M,K,L are constant skew-symmetric matrices. The function H(Z) is a
Hamiltonian, and the intention here is to demonstrate that the barotropic fluid equations can indeed be expressed in
this framework, allowing the equations to be obtained directly from the multi-symplectic form.

The Hamiltonian for the barotropic fluid as obtained in the previous sections (neglecting gravity) is,

H(Z) =
1

2 ρ0
‖π‖2 + ρ0 U

(
ρ0, J

)
(6.55)

where U(ρ0, J) is an internal energy function and Π(ϕ) represents potential energy contributions from an external
field and Z is vector of the associated canonical varibles,

Z =


ϕ

π

Fx

Fy

 =
(
ϕx, ϕy, πx, πy, Fxx, Fyx, Fxy, Fyy

)T
,

Multisymplectic matrices. In two spatial dimensions, Z has eight components. As a result,M,K,L become 8× 8
skew-symmetric block matrices of the form

M =


0 −I 0 0
I 0 0 0
0 0 0 0
0 0 0 0

 , K =


0 0 −I 0
0 0 0 0
I 0 0 0
0 0 0 0

 , L =


0 0 0 −I
0 0 0 0
0 0 0 0
I 0 0 0

 , (6.56)

acting on the blocks (ϕ,π,Fx,Fy) with the RHS,

∇Z H(Z) =

[
∂H

∂ϕ
,
∂H

∂π
,
∂H

∂Fx
,
∂H

∂Fy

]T
.

Now, considering each row of the matrices shown above leads to the definition of the PDEs involved in the system.
In the second row-block ofM, the entry (I,0,0,0) acting on ∂Z

∂t contributes ∂
∂t (ϕx, ϕy) on the left-hand side of (6.54).

On the right-hand side, the derivative of H with respect to (πx, πy) is 1
ρ0
(πx, πy). Equating these terms implies:

∂

∂t

(
ϕx

ϕy

)
=


πx
ρ0
πy
ρ0

 , ϕ̇x =
πx
ρ0
, ϕ̇y =

πy
ρ0
. (6.57)

In the third and fourth block rows ofK and L. The rows corresponding to (Fxx, Fyx) inK and (Fxy, Fyy) in L lead to

∂

∂X

(
ϕx

ϕy

)
=


∂H

∂Fxx

∂H

∂Fyx

 ,
∂

∂Y

(
ϕx

ϕy

)
=


∂H

∂Fxy

∂H

∂Fyy

 . (6.58)

Since H depends on Fx and Fy only through J = det(F), computing these derivatives identifies them with compo-
nents of the first Piola–Kirchhoff stress. For instance,
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∂H

∂Fx
= ρ0

∂U

∂J

∂J

∂Fx
= −PW

∂J

∂Fx
, PW := − ρ0

∂U

∂J
.

By using the Jacobi’s formula,

∂H

∂Fx
= −PW J (F−T )x,

∂H

∂Fy
= −PW J (F−T )y.

The top row-block in all three matrices M,K,L together produces

− ∂

∂t

(
πx
πy

)
− ∂

∂X

(
Fxx

Fyx

)
− ∂

∂Y

(
Fxy

Fyy

)
=

∂H

∂ϕ
= 0

(
since H has no explicit ϕ-dependence

)
.

Substitution of the stress derivatives from above and collecting terms yields the standard momentum equation for a
barotropic fluid in Lagrangian form:

ρ0 ϕ̈i +
∂

∂Xj

(
PW J F−T

)
ij

= 0.

Each row of (6.54) thus matches one PDE in the barotropic system, confirming that the barotropic flow equations
are captured by and can be derived from the multi-symplectic formulation. Thus by choosing Z , H(Z)) and using
the skew-symmetric block matrices in (6.56) as shown above, the Lagrangian form of the barotropic fluid equations
can be organised into a multi-symplectic system (6.54). In particular, each PDE (including momentum balance) is
recovered by matching a block row on the left-hand side to the corresponding functional derivative on the right-hand
side.

6.10.Multi-Symplectic Structure in the Final Discrete Formulation

The fully discrete system derived in (6.40)–(6.42) has the same geometric hallmarks as a multi-symplectic PDE [12,
16], although large and block-structured, the system can be interpreted as the discrete multi-symplectic form of the
barotropic flow equations.



H−1
ρ0

0 −E1,0
t 0 0 0

0 H−1
ρ0

0 −E1,0
t 0 0

E1,0T

t 0 0 −DPK Nπ 0

0 E1,0T

t DPK 0 0 Nπ

0 0 Nto T
π 0 0 0

0 0 0 Nt0 T
π 0 0





π̄x

π̄y

φ̄x

φ̄y

π̂t
x

π̂t
y


=



0

0

−Ntoπ̂to
x

−Ntoπ̂to
y

ϕxo

ϕyo


, (6.59)

In particular, each partial derivative with respect to time or space appears in off-diagonal matrix blocks, paired with
blocks that are the negative transpose, reminiscent of the skew-symmetric operatorsM,K, L in the continuous setting.

• The blocks

[
H−1

ρ0
0

0 H−1
ρ0

]
and

[
0 −E1,0

t

E1,0T

t 0

]
combine tomimicM ∂/∂t. The negative transpose off-diagonal

structure is reminiscent of the continuous skew form MT = −M.
• The block DPK is paired with E1,0

x , E1,0
y and −E1,0T

x , −E1,0T

y to encode spatial derivatives (i.e. enforcing
F = ∇ϕ and the divergence of the stress). This arrangement is analogous to K ∂/∂x or L ∂/∂y in multi-
symplectic PDEs.

Thus, each partial derivative in time or space direction lives in an off-diagonal block that has a corresponding negative-
transpose block. These pairwise blocks are how the discrete scheme enforces the balance and definition equations
with signs that match the continuous multi-symplectic structure. Furthermore, the appearance ofH−1

ρ0
andHPw (inside



6.10. Multi-Symplectic Structure in the Final Discrete Formulation 46

DPK ) is analogous to the continuous setting where a metric-like or “Hodge” operator arises in the symplectic form.
In multi-symplectic integrators, it is typical that one has a symmetric mass or metric matrix that partially modifies the
perfect skew-symmetry. Nevertheless, the essential block pattern remains intact.



7
Numerical Experiments and Results

This chapter presents computational experiments designed to test the proposed discretization’s handling of pressure
boundary conditions under inviscid barotropic flow and low-Mach scenarios. Two specific cases are examined: one
with a higher external pressure and another with a lower external pressure. The primary goal is to demonstrate that
key conservation properties— of quantities such as linear momentum, angular momentum, energy, and mass.

Since benchmark solutions are unavailable for the chosen setup, validation proceeds by examining the solution’s
convergence as the polynomial order increases. Of particular interest is the deformation up-to a limit time for increas-
ing polynomial order, which serves as an indicator of solution convergence in the absence of an analytical reference.
These tests also explore the discretization’s behavior at low Mach numbers, where the dynamics depend on the
pressure gradient rather than the absolute magnitude of the pressure. The fluid is therefore initialized with relatively
low-pressure values. The ensuing sections detail the computational setup and the observed outcomes for each test
scenario.

7.1.Computational Setup

7.1.1. Physical Parameters and Boundary Conditions

The fluid simulated is a two-dimensional domain Ω = [0, Lx] × [0, Ly] is used, with Lx = Ly = 1m at t = 0s. The
fluid has density ρ = 1.25 kg/m3 and specific heat ratio γ = 1.4. A reference pressure Pref = 1Pa is imposed, and
each boundary is subjected to pressure Penv = α × Pref where α < 1 causes expansion at the boundary, and
α > 1 imposes a compressive condition. In this discussion, α = 0.85 and α = 1.15 are considered for the mentioned
two cases. The spatial discretization uses polynomial degrees N = 2, 3, 4, 5, while the time dimension employs
a polynomial order Nt = 1. Time integration proceeds for Et uniform steps of size ∆t = 0.01 s, yielding a total
simulated duration of Et ×∆t.

7.1.2. Nonlinear Iteration and Stopping Criterion

Each time step involves a Picard (fixed-point) iteration to resolve the nonlinear dependence of the pressure Hodge
matrix on the Jacobian determinant, as previously described. In brief, the deformation gradient F is updated from the
current estimate of φ, and its determinant J is used to evaluate the spatial weight function Pw(ρ0, J). The pressure
Hodge matrix HPw is then reassembled using the updated weight, and the system is solved for a new flow map.
This process repeats until changes in J and trace(F) lie below a set tolerance, indicating convergence. The final
converged state serves as the initial guess in the next time step. A maximum of Imax = 100 iterations is allowed per
time step. The iteration terminates when changes in the Jacobian determinant of the deformation (J) and the trace
of the deformation gradient, fall below the set tolerance of tol = 10−12. The table 7.1 shown belwo summarises the
the simulation parameters

47
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Parameter Symbol Value
Fluid density ρ 1.25 kgm−3

Specific heat ratio γ 1.4
Reference pressure Pref 1Pa
Boundary pressure ratio α 0.85, 1.15
Spatial polynomial orders N 2, 3, 4, 5
Temporal polynomial order Nt 1
Maximum Iterations Imax 100
Convergence tolerance tol 10−12

Time step size ∆t 0.01 s
Number of time steps Et 700
Total simulated time Et ×∆t 7 s

Table 7.1: Summary of key simulation parameters.

7.2.Results

This section presents the evolution of key flow variables, including the Lagrangian flow map, pressure, Mach number,
and discrete conservation properties. Plots are shown for polynomial degrees N = 3 and N = 5; corresponding
results for other values of N appear in the appendix. Time snapshots are selected to illustrate the progression of the
deformation, and a simulation video provides a continuous view of the flow’s development.

Following these visualizations, the convergence of the limiting deformation with respect to increasing polynomial order
is examined. The discussion first covers the case α < 1, which leads to expansion at the boundary, and then turns
to α > 1, illustrating compressive behaviour.

7.2.1. Expansion Case: α = 0.85 , N = 3

For this test case, the boundary pressure is set to Penv = αPref = 0.85 × 1Pa = 0.85Pa, thus imposing a
lower external pressure relative to the interior. The resulting outward (expansion) flow is examined at several time
snapshots and through discrete conservation properties.

FlowMapEvolution Figure 7.1 shows the evolution of the flowmap (i.e., deformed configuration of the fluid domain)
at selected times. At t ≈ 2.34 s, the deformation is already observable near the boundary but remains small. By
t ≈ 4.67 s, the expansion is more pronounced, and the boundary continues to move outward through t = 7 s. The
final configuration clearly exhibits a larger domain than the unit square at t = 0, consistent with the lower external
pressure driving fluid expansion.

Because this is in a low-Mach setting, no shocks arise. The deformation is relatively smooth and only driven by the
pressure differential.
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Figure 7.1: Snapshots of the flow map for α = 0.85 and N = 3 at various times.

Pressure and Mach Number Fields Figures 7.2 and 7.3 show the pressure and Mach number distributions, re-
spectively. The boundary is held at 0.85Pa, while the fluid interior starts at 1Pa. Initially, small-amplitude pressure
waves (expansion) propagate from the boundary into the higher-pressure interior. Because there is no dissipation
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mechanism, these waves continue to reflect at the domain boundaries, travelling back and forth and causing os-
cillations. Consequently, the ”square bubble” expands and once the pressure waves reflect, it contracts and this
motion is repeated in time as long as the simulation is run with a net expansion compared to the initial configuration,
this behaviour can be seen better in the videos of the same simulation attached in the appendix ??. Further, the
Mach number remains low (typically ≲ 0.2), illustrating that the flow evolves smoothly without strong shock waves or
compressible effects.
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Figure 7.2: Pressure snapshots (in Pa) for α = 0.85 and N = 3 at various times. The pressure field gradually relaxes toward the boundary
value of 0.85Pa.
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Figure 7.3: Mach number snapshots for α = 0.85 and N = 3 at various times. The values remain low (≲ 0.2), confirming a subsonic regime.

Conservation of Linear Momentum Figure 7.4 plot the total linear momentum in x- and y-directions, respectively,
over the entire simulation. The curves remain effectively constant at values near machine precision, indicating no
artificial linear momentum creation or loss. Small round-off deviations on the order of 10−17 to 10−18 reflect numerical
precision limits rather than physical phenomena.
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Figure 7.4: Total linear momentum in the x and y -direction for α = 0.85, N = 3.

Conservation of Angular Momentum and Mass Figure 7.5a shows the evolution of total angular momentum.
Much like linear momentum, angular momentum remains nearly constant, deviating only by 10−15 during the entire
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simulation. This invariance up to the machine precision highlights the structure-preserving nature of the discretization
in reproducing the rotational symmetries inherent to inviscid barotropic flow. Figure 7.5b illustrates the total mass of
the system over time for. The vertical axis shows the difference between the instantaneous massM(t) and its initial
value M0, in kilograms. In an inviscid, closed system without mass sources or sinks, total mass should remain
constant and this can be seen in the plot shown below.
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Figure 7.5: Total angular momentum and change in mass for α = 0.85, N = 3.

Energy Conservation Figure 7.6 shows the change in total energy over time. It remains zero again up to the order
of machine precision. Since no external work or dissipative mechanisms are modelled, the total energy should remain
invariant; the near-flat curve confirms the discretization does not introduce spurious energy gains or losses.
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Figure 7.6: Change in total energy for α = 0.85, N = 3.

For α = 0.85, the fluid expands outward from the boundaries over 7 s, driven by the reduced external pressure. The
flow remains subsonic, as evidenced by the lowMach numbers, and the structure-preserving discretization accurately
maintains momentum (both linear and angular) and total energy within machine precision. Although the results for
N = 3 show consistent performance, the polynomial order is still relatively low, so the boundary deformation is not
yet fully captured. In contrast, subsequent results at higher polynomial order (N = 5) reveal a smoother boundary
deformation that better approximates the expansion.

7.2.2. Expansion Case: α = 0.85 , N = 5

This section examines the expansion scenario for a higher spatial polynomial order, N = 5. As before, the boundary
pressure is set to Penv = αPref = 0.85 × 1Pa = 0.85Pa, leading to a lower external pressure relative to the
interior. Increasing the polynomial degree improves the resolution of the flow map and related fields, resulting in a
smoother depiction of the boundary expansion and refined flow variables.

FlowMap Evolution Figure 7.7 shows snapshots of the flow map at the same representative times used in theN =
3 case. With N = 5, the outward deformation is captured with higher accuracy, clearly visible near the boundaries.
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Figure 7.7: Snapshots of the flow map for α = 0.85 and N = 5 at various times.

Pressure and Mach Number Fields Figures 7.8 and 7.9 depict the pressure and Mach number fields, respectively.
As in the lower-order case, the boundary is maintained at 0.85Pa while the interior begins at 1Pa. The refinement
afforded by N = 5 reveals a slightly more uniform pressure gradient transitioning from the interior to the boundary,
confirming that the higher-degree polynomial basis better resolves the flow. The Mach number still remains well below
unity (i.e., ≲ 0.2), reinforcing the subsonic nature of the expansion.
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Figure 7.8: Pressure snapshots (in Pa) for α = 0.85 and N = 5 at various times.
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Figure 7.9: Mach number snapshots for α = 0.85 and N = 5 at various times.

Conservation of Linear Momentum Figure 7.10 shows the total linear momentum in the x- and y-directions. As
withN = 3, no net gain or loss of linear momentum is observed beyond machine-precision limits. The discretization’s
structure-preserving nature ensures this invariant remains valid even at higher spatial resolution.
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Figure 7.10: Total linear momentum in the x- (left) and y- (right) directions for α = 0.85, N = 5.

Conservation of Angular Momentum and Mass Figures 7.11(a) and 7.11(b) show the evolution of total angular
momentum and total mass, respectively. As with the N = 3 case, both quantities are conserved to within the order
of 10−15 to 10−17 . The small deviations within this order are attributed to floating-point limitations and the iterative
solver tolerance, rather than any physical loss or gain.
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Figure 7.11: Total angular momentum and mass for α = 0.85, N = 5.

Energy Conservation Figure 7.12 plots the change in total energy over the entire simulation window. Just as in
the N = 3 case, energy remains essentially unchanged.
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Figure 7.12: Change in total energy for α = 0.85, N = 5.

In summary, increasing the polynomial order fromN = 3 toN = 5 results in a more refined resolution of the boundary
expansion and flow variables without compromising conservation properties. The flow remains subsonic, with low
Mach numbers, and all key invariants linear momentum, angular momentum, mass, and energy are preserved to
machine accuracy. These findings demonstrate that the proposed space-time spectral method not only respects
the fundamental physics of inviscid barotropic flow but also continues to converge to a smoother solution at higher
polynomial orders.



7.2. Results 53

Deformation Convergence Figure 7.13 compares the final deformation of the fluid domain at selected times for
four spatial polynomial degrees, N = 2, 3, 4, 5. These snapshots illustrate how the boundary shape and interior
deformation change with increasing polynomial order. At early times, such as t = 2.34 s, the discrepancies between
different N values are visible but remain small. As the simulation progresses (e.g. t = 4.67 s), the higher-order
solutions capture a smoother, more refined expansion. By the final time t = 7.00 s, the domain deformations for
N = 4 and N = 5 closely match, suggesting that the limiting shape has nearly been reached at higher polynomial
orders.

This behavior confirms that the proposed space-time spectral method converges to a consistent deformation profile
as N increases under boundary conditions causing expansion of the flow.
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Figure 7.13: Comparison of flow-map deformations at t = {0.01, 2.34, 4.67, 7.00} s for N = 2, 3, 4, 5.

7.2.3. Compression Case: α = 1.15 , N = 3

For the compression test case, the boundary pressure is set to Penv = αPref = 1.15Pa, which is higher than the
fluid interior’s initial pressure 1.0Pa. Consequently, a compression wave travels inward from the boundary, reducing
the domain’s volume over time.

Flow Map Evolution. Figure 7.14 shows snapshots of the flow map at selected times. At t = 0.01 s, the boundary
has just begun to move, and the domain still appears nearly unchanged. By t = 1.40 s, a clear compression is
visible, with bulges near the midpoints of each side and corners pushed inward. This wavelike behaviour continues
as the initially square bubble transitions toward a more circular shape, reducing in volume by t = 4.67 s and t = 7 s.
Throughout this process, the compression proceeds relatively smoothly due to the inward pressure gradient, resulting
in a significantly smaller final configuration compared to the initial unit square.
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Figure 7.14: Flow map snapshots for α = 1.15 and N = 3 at various times.

Pressure and Mach Number Fields. Figures 7.15 and 7.16 illustrate the corresponding pressure and Mach num-
ber fields. With a higher boundary pressure of 1.15Pa, the interior pressure rises and eventually settles closer to
the boundary level as time advances. Small compression waves reflect within the domain and due to the lack of
dissipation they keep reflecting driving oscillatory behaviour as long as the simulation is run.
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Figure 7.15: Pressure snapshots (in Pa) for α = 1.15, N = 3.
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Figure 7.16: Mach number snapshots for α = 1.15, N = 3.

Conservation of Linear Momentum. As shown in Figure 7.17, the total linear momentum in the x- and y-directions
remains nearly constant, with variations only in the order of machine precision. Despite the boundary pushing inward,
due to symmetry of the motion in both x and y direction, no net momentum is introduced or removed from the system.
This is reflected in the plots, confirming that the scheme preserves linear momentum for this compressive flow.
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Figure 7.17: Total linear momentum in the x (left) and y (right) directions for α = 1.15, N = 3.

Angular Momentum and Mass Conservation. Figure 7.18 (a) shows that angular momentum throughout the
simulation, deviating only at 10−15 levels. Meanwhile, Figure 7.18 (b) indicates that mass remains constant to within
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floating-point tolerance, consistent with an inviscid fluid model lacking sources or sinks.
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Figure 7.18: Total angular momentum and mass for α = 1.15, N = 3.

Energy Conservation. Lastly, Figure 7.19 shows the change in total energy over time. Since no external work
is introduced apart from maintaining a constant boundary pressure, and no dissipation mechanisms exist, the total
energy thus remains unchanged. The small numerical fluctuations (on the order of 10−16) validate that the method
does not add or remove energy.
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Figure 7.19: Change in total energy for α = 1.15, N = 3.

7.2.4. Compression Case: α = 1.15 , N = 5

For this higher-order test, the boundary pressure remains Penv = αPref = 1.15Pa, driving fluid compression from
the boundaries toward the interior. Increasing the polynomial degree to N = 5 enhances the spatial resolution and
yields a smoother representation of the inward boundary motion compared to the N = 3 case.

Flow Map Evolution. Figure 7.20 shows the flow map snapshots, a more sharply resolved boundary displacement
can be observed for this case, with rest of the behaviour being the same as the previous case.
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Figure 7.20: Snapshots of the flow map for α = 1.15 and N = 5 at various times.
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Pressure and Mach Number Fields. Figures 7.21 and 7.22 show the pressure and Mach number distributions,
respectively. Similar to the N = 3 scenario, the boundary at 1.15Pa compresses the interior from all sides. Because
no dissipation is modeled, compression waves reflect throughout the domain; however, the higher polynomial order
provides a more refined view of these waves as they move inward.
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Figure 7.21: Pressure snapshots (in Pa) for α = 1.15, N = 5 at various times.
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Figure 7.22: Mach number snapshots for α = 1.15, N = 5.

Conservation of Linear Momentum. As shown in Figure 7.23, the total linear momentum in both the x- and y-
directions remains essentially constant. This result mirrors the N = 3 case.
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Figure 7.23: Total linear momentum in the x and y directions for α = 1.15, N = 5.
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Angular Momentum and Mass Conservation. Figures 7.24(a) and 7.24(b) confirm that angular momentum and
mass remain constant over the simulation.
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Figure 7.24: Angular momentum and mass for α = 1.15, N = 5.

Energy Conservation. Finally, Figure 7.25 shows the total energy. As in previous cases, the absence of external
work or dissipation leads to nearly perfect energy conservation, with only minor numerical fluctuations in the order of
machine precision.
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Figure 7.25: Change in otal energy for α = 1.15, N = 5.

Deformation Convergence Increasing the polynomial order from N = 3 to N = 5 yields a more refined represen-
tation of the inward boundary motion and the associated compression waves. The flow remains subsonic, and the
scheme continues to preserve linear momentum, angular momentum, mass, and energy. These observations con-
firm that the proposed space-time spectral discretization behaves robustly under compressive boundary conditions,
converging to a smoothly resolved solution as the polynomial degree increases.
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Figure 7.26: Comparison of the convergence of flow map deformations for various polynomial orders..



8
Conclusion and Future Work

8.1.Conclusion

This thesis revisits the challenges in computational fluid dynamics (CFD): representing inviscid barotropic flow in a
Lagrangian perspective, while preserving key conservation properties such as mass, momentum, and energy. The
motivation stems from the fact that, although many existing methods match experimental data in specific test cases,
they often fail to conserve invariants over long simulation times. Another key motivation for adopting a Lagrangian
perspective comes from recognizing that, in many aerospace and aeronautical applications, for example the wing is
usually kept stationary in both wind tunnel setups and conventional (Eulerian) CFD analyses. This simplification is
made so that the flow ”moves” past a fixed object. However, in a more realistic flight condition, the wing itself is moving
(translating and/or rotating), while the flow is otherwise unbounded. Thus from a purely physical standpoint, it is more
accurate to treat the moving body and the parcel-based fluid motion in a single, coherent Lagrangian framework,
rather than freezing the wing and letting only the flow move.

By formulating inviscid barotropic flow in a Lagrangian perspective and employing a multisymplectic variational princi-
ple, a pathway emerges for constructing a higher-order mimetic scheme that addresses these limitations. The primary
research question whether the proposed methodology can discretize inviscid barotropic flow on a space–time grid
while preserving essential symmetries and conservation laws has guided each stage of this investigation.

The key results and observations of this thesis can be summarized as follows:

• A higher-order discretization is defined for inviscid barotropic flow using the first Piola–Kirchhoff tensor, which
plays a central role in mapping stresses from the reference to the deformed domain. This approach avoids the
problematic mesh distortions often encountered in purely physical-space Lagrangian methods.

• Boundary conditions, including free and pressure boundaries, are incorporated in a way that maintains stability
and accuracy without relying on artificial techniques.

• The scheme is shown to preserve linear momentum, angular momentum, and energy in the order of machine
precision, by leveraging multisymplectic and mimetic principles. This aligns the discrete model with the geo-
metric and topological foundations of the continuous system.

• The method consistently captures low-Mach-number regimes without special preconditioning or artificial adjust-
ments to the speed of sound.

• Finally, the work lays a foundation for extending the approach to multi-physics scenarios, particularly fluid–
structure interaction (FSI), within a unified Lagrangian setting.

Numerical experiments confirm that pressure and free boundary conditions can be accurately imposed, leading to
convergent deformations as the polynomial order is increased. In addressing the research questions, the results
affirm that, yes, an inviscid barotropic flow governed by a multisymplectic Lagrangian formulation can indeed be
discretized with a higher-order mimetic method on a space-time grid, including free and pressure boundaries while
preserving essential symmetries and conservation laws.
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8.2.Future Work

There are several directions for extending and refining the present framework. A first direction involvesmoving beyond
a single-element configuration toward a hybrid finite element formulation that accommodates multiple elements in the
same computational domain to allow for more complex simulations and geometries.

A second major step is extending the current space-time Lagrangian formulation to three-dimensional domains, an
essential requirement for many engineering and scientific problems. However, because visual interaction with fully
4D (3D space + 1D time) meshes is not feasible, the necessary incidence matrices must be computed algebraically.
Moreover, constructing the basis functions demands treatment of complex tensor products in four dimensions. These
complications, combined with the increased dimensionality, significantly increases the computational requirements,
necessitating high-performance computing strategies such as parallelization or GPU-accelerated implementations.
Equally important is preserving topological consistency and the underlying symplectic structure in the 4D mesh to
ensure accuracy and stability over long integration times.

Beyond purely inviscid dynamics, a third direction involves the inclusion of dissipative terms based on either the
metriplectic 4-bracket formulation proposed by [5, 44] or the variational framework for extended irreversible thermo-
dynamics introduced by [45]. These frameworks integrate dissipation while preserving significant parts of the system’s
underlying geometric structure. Incorporating such mechanisms would allow the numerical method to capture fluid
behaviors such as viscosity, or thermal effects without resorting to arbitrary damping terms. This addition could lead
to a balanced scheme that sustains an overall symplectic core while mimicking physically relevant energy losses.

Finally, a fourth extension is to couple the present solver with a solid mechanics solver to enable fluid–structure
interaction (FSI) simulations. Since solid mechanics often employs a Lagrangian view of material points, the same
mimetic and multisymplectic principles can be applied to both solvers, allowing fluid and structure to be tracked
on an equal footing. This unified viewpoint would ensure consistent momentum and energy exchange across the
fluid-structure interface, offering a more direct and faithful representation of phenomena such as aeroelastic wing
deformation or biomechanical flows. Nevertheless, ensuring that each side’s distinct conservation properties are
retained in a combined solver remains a key challenge for future research.
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A
Variational Analysis: Euler-Lagrange

Equations

This appendix presents an introduction to the Euler–Lagrange equations via a variational argument on the action
integral. For a more detailed discussion of classical variational methods, see [31].

Formulation of the Action and its Variation: Consider a Lagrangian density L(ϕ, ϕ̇,∇ϕ) defined on a spatio-
temporal domain B × [0, T ]. The associated action functional is

S[ϕ] =
∫ T

0

∫
B
L(ϕ, ϕ̇,∇ϕ) dX dt. (A.1)

Let δϕ be a small perturbation of ϕ. The principle of stationary action requires δS = 0 for all admissible variations δϕ
that vanish at t = 0 and t = T .

Variation with respect to the time derivative φ̇ : The term∫ T

0

∫
B

∂L
∂ϕ̇i

δϕ̇i dX dt (A.2)

is integrated by parts in time: ∫ T

0

∫
B

∂L
∂ϕ̇i

δϕ̇i dX dt = −
∫ T

0

∫
B

d

dt

(
∂L
∂ϕ̇i

)
δϕi dX dt, (A.3)

noting that δϕ vanishes at the initial and final times.

Variation with respect to the spatial gradient ∇φ : The portion of the action involving ∇ϕ can be written as∫
B

∂L
∂(∇jϕi)

δ(∇jϕ
i) dX. (A.4)

Applying the divergence theorem:∫
B

∂L
∂(∇jϕi)

δ(∇jϕ
i) dX =

∫
∂B

∂L
∂(∇jϕi)

nj δϕ
i dS −

∫
B

∂

∂Xj

(
∂L

∂(∇jϕi)

)
δϕi dX, (A.5)

where nj is the outward normal on ∂B. Collecting these contributions into δS leads to

δS =

∫ T

0

∫
B

[
∂L
∂ϕi
− ∂

∂t

(
∂L
∂ϕ̇i

)
− ∂

∂Xj

(
∂L

∂(∇jϕi)

)]
δϕi dX dt+

∫ T

0

∫
∂B

∂L
∂(∇jϕi)

njδϕ
i dS dt. (A.6)
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Since δϕ is otherwise arbitrary (except for the requirement that it vanish at t = 0 and t = T ), the stationarity condition
δS = 0 implies that

∂L
∂ϕi
− ∂

∂t

(
∂L
∂ϕ̇i

)
− ∂

∂Xj

(
∂L

∂(∇jϕi)

)
= 0, (A.7)

∂L
∂(∇jϕi)

nj = 0 on ∂B. (A.8)

Equations (A.7) and (A.8) are the standard Euler-Lagrange equation and its associated natural boundary condition.
Further conditions, such as a specified boundary traction or pressure, would adjust the boundary term accordingly.



B
Jacobi's Formula for the Derivative of the

Determinant

Jacobi’s formula provides a way to compute the derivative of the determinant of a matrix A(t) that depends on a
parameter t. It states:

d

dt
det(A(t)) = det(A(t)) tr

(
A(t)−1 dA(t)

dt

)
(B.1)

Here, tr denotes the trace of a matrix, which is the sum of its diagonal elements. Now consider the matrix A(t) as a
perturbation of A:

A(t) = A+ tEij (B.2)

where Eij is a matrix with a 1 in the (i, j) position and 0 elsewhere. This matrix Eij represents a small perturbation
to the (i, j) element of A.

The derivative of A(t) with respect to t and evaluated at t = 0 is:

dA(t)

dt

∣∣∣∣
t=0

= Eij (B.3)

Applying Jacobi’s formula, we get:

d

dt
det(A(t))

∣∣∣∣
t=0

= det(A) tr
(
A−1Eij

)
(B.4)

The trace of the product A−1Eij is:
tr
(
A−1Eij

)
= (A−1)ji (B.5)

This is because Eij has a 1 only at the (i, j) position, so when multiplying A−1 with Eij , the only non-zero element
of the resulting matrix will be at the (j, i) position, which is (A−1)ji. The trace, which is the sum of diagonal elements,
will then just be this single non-zero element.

d

dt
det(A(t))

∣∣∣∣
t=0

= det(A) (A−1)ji (B.6)

Therefore, the partial derivative of the determinant of A with respect to its (i, j) element is:

∂ det(A)

∂Aij
= det(A) (A−1)ji (B.7)
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