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Abstract

Asteroid Reflection Model (ARM) is a newly developed model that simulates reflected radiation and polariza-
tion on an asteroid’s surface. The working principle behind the model is radiative transfer using Fourier se-
ries expansions of reflection matrices. Input models and parameters are: a triangle polyhedron shape model
of an asteroid, a surface scattering model, and the desired asteroid location and orientation and the phase
angle. Output parameters are the reflected Stokes vector and the degree and direction of polarization, for
each individual surface facet and disk-integrated. ARM is fully verified. Generated phase-polarization curves
are validated using polarimetric data of four asteroids, including (3200) Phaethon, for which various surface
scattering models are deployed. These phase-polarization curves are fit to the Phaethon data, but this did
not result in a good match for any of the surface scattering models, since they fail to simulate the opposition
effect. However, the effect of the shape, orientation and the rotational motion is clearly visible in the results,
as is the relation between wavelength and polarization. Finally, it was concluded that the polarization is fa-
vored over the flux when determining an asteroid’s surface characteristics and shape, and that both flux and
polarization can be used together when determining its size.
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Introduction

The field of asteroid polarimetry exists already since the 1930’s with discoveries like the negative polarization
of the prominent asteroids (1) Ceres and (4) Vesta in 1934 (Dollfus et al., 1989) and the opposition effect of
(20) Massalia (Gehrels, 1956). It has been a slowly developing field until the late 1980’s when, amongst other
developments, narrow opposition effects for (44) Nysa and (64) Angelina were observed (Harris et al., 1989),
the coherent backscattering effect established to contribute to asteroid polarimetric effects at small phase
angles (Muinonen, 1989; Shkuratov et al., 1994) and generally more polarimetry observations of telescopes
became available for interpretation. Mechanisms like these and, for example, multiple-scattering, causing
the negative polarization of asteroids, have been subject of research through modeling and observations for
the past few decades (Muinonen et al., 2002). Even after the research summary by Muinonen et al. in Aster-
oids III (Bottke, 2002) was published, yet another fruitful decade of research has passed. Many more observa-
tion surveys have been carried out, made possible by the Very Large Telescope (VLT, operative since 2005) and
other large telescopes (Belskaya et al., 2015). Observations of near-Earth asteroids (NEA’s) (Delbo et al., 2007),
some main-belt asteroids (Cellino et al., 2010, 2014), Jupiter Trojans (Belskaya et al., 2014), trans-Neptunian
objects (TNO’s) (Bagnulo et al., 2008) and more (See Asteroids IV (Michel et al., 2015) for a research summary
since 2002), have been done. Furthermore, the Dawn mission has visited (1) Ceres and (4) Vesta, the latter
of which has served as a ground truth for regional asteroid surface polarimetry (Cellino et al., 2016) because
of the complete polarimetric map of the surface and the observed rotational phase-dependency that were
established by earlier observations.

Many new findings have been done with these new observations and techniques for asteroid polarimetry
have shed light on asteroid surface properties of interest, improving our general knowledge of asteroid com-
positions and their ages and origins. A limitation to the current vast amount of observations is that almost
all of them are done with Earthly telescopes or space-based telescopes orbiting the Earth. For all asteroids
except NEA’s and rare asteroids with elliptical orbits, this means that the maximum achievable phase angle
is about 30◦ and rapidly decreases for far away asteroids like TNO’s. A harsh limitation indeed, obstructing
further mapping of complete phase-polarization curves and obtaining results from those. Because of this,
there is still a lot of relevant information untouched. Moreover, hardly any asteroid has been observed with a
dedicated spacecraft polarimeter, providing the possibility of increased phase angles and, obviously, a higher
spatial resolution if the spacecraft gets close enough (Muinonen et al., 2002). Fortunately, the Spectropo-
larimeter for Planetary EXploration (SPEX) is a good candidate for this purpose (Snik et al., 2010; Voors et al.,
2011; van Harten, 2014).

Modeling asteroid polarimetry with SPEX was de first and most important driver for this thesis, therefore it is
thoroughly discussed in the literature review associated with this thesis (Sibbing, 2017). The research objec-
tive of this literature review was “to contribute to the SPEX polarimetry instrument by defining requirements
and design specifications for its specific application to asteroid observations”. The application of SPEX to as-
teroid observations is still quite conceptual, though, and it was decided during this research that modeling
asteroid polarimetry, in combination with the analysis of available polarimetric data, is a more suitable topic
at this time, and very much related to the previous topic. Hence the Asteroid Reflection Model (ARM) was
developed, theoretically based on the Planetary Reflection Model (PRM) for (exo)planets (Rossi et al., 2018).
ARM aims to model the reflected radiation and polarization of an asteroid of any shape and size, using an
arbitrary surface scattering model. Doing so, it can simulate and fit available polarimetric data of an asteroid
and support conclusions regarding these data. No model such as ARM, that take into account the asteroid
shape (as opposed to a spherical shape) and calculate the polarization, exists at this time, which makes this
work novel.

The research objective of this thesis is to determine the influence of the surface, shape and orientation of an
asteroid on its reflected radiation and polarization by modeling it and fitting it to available polarimetric ob-
servations. The first part of this research objective is covered by ARM. The second part is realized by ana-
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2 Introduction

lyzing polarimetric data of multiple asteroids, including Phaethon, of which data was acquired as recent as
in December 2017 by Cellino et al. (2018). Analyzing these data and fitting them is a very interesting early
application of ARM which proves its usability in the field of asteroid polarimetry.

The structure of this thesis, supporting the research objective, is as follows. Chapter 1 describes the essential
theory used in ARM and its working principles. It is subdivided into Section 1.1, where the theory of polar-
ization (Hansen and Travis, 1974) and radiative transfer (De Haan et al., 1987; Rossi et al., 2018) is discussed,
Section 1.2, where the asteroid’s shape model is discussed, and Section 1.3, where a modeled instrument
detector and additional ARM functionalities are introduced. Chapter 2 discusses the verification of ARM in
five verification tests, subdivided into tests regarding the model fundamentals (Section 2.1) and the output in
terms of polarization (Section 2.2). Chapter 3 finally assesses the results of ARM as generated here. First, in
Section 3.1, the surface scattering models used in the simulations, are discussed. Next, in Section 3.2 and Sec-
tion 3.3, the spatially resolved results and the phase-polarization results, following from ARM, are discussed
respectively. Last, in Section 3.4, the special case of asteroid Phaethon is discussed, again including both spa-
tially resolved and phase-polarization results and this time also phase-flux results. Finally, conclusions are
drawn and recommendations are given adequately.



1
Modeling asteroid polarimetry

This chapter discusses ARM in three steps. The theoretical basis for polarization and the radiative transfer
method is discussed in Section 1.1, covering material from Rossi et al. (2018), which has served as an impor-
tant impulse for this thesis. The model that allows any asteroid of which a polyhedron model is available to
serve as input for ARM, is discussed in Section 1.2, including the principles used to implement the effect of
self-shading on an asteroid model. Section 1.3 assesses the transition from asteroid model to detector (effec-
tively modeling SPEX) and additional features that make ARM generally more useful for its applications.

1.1. Radiative transfer with reflection matrices

1.1.1. Reference systems and translations

In order to use the radiative transfer method correctly and efficiently, several reference systems will be defined
here and referred to later on. It will be shown that this is necessary to calculate fundamental angles and the
translation to a modeled detector for reflected radiation.

• Asteroid body reference system. This reference system follows directly from the shape model. Princi-
ple x-, y- and z-axes are given through the coordinates of the vertices of the polyhedron.

• Heliocentric ecliptic reference frame. With the Sun at the origin and the ecliptic as the x y-plane, this
reference system is convenient for positions with regard to the Solar System. The z-axis is directed to
the celestial north pole. See Wakker (2015, p.250-251).

• Local meridian plane system. The origin coincides with the center of mass of the asteroid and the
x-axis coincides with the asteroid-observer vector, r̂AO. The y-axis lies 90◦ away in the direction of
the facet normal and such that the facet normal, n̂facet, lies in the x y-plane. The z-axis completes the
right-handed system, thus pointing in the direction of r̂AO ∧ n̂facet.

• Planetary scattering plane system. The origin coincides with the center of mass of the asteroid and
the x-axis coincides with r̂AO. The y-axis lies 90◦ away such that the asteroid-Sun vector, r̂AS, lies in the
x y-plane. The z-axis completes the right-handed system such that it lies in the northern hemisphere
of the heliocentric ecliptic reference system (‘above’ the Earth’s orbital plane).

• Planetary scattering plane system (Sun-faced). The origin coincides with the center of mass of the
asteroid and the x-axis coincides with r̂AS. The y-axis lies 90◦ away such that the asteroid-observer
vector, r̂AO, lies in the x y-plane. The z-axis completes the right-handed system such that it lies in the
northern hemisphere of the heliocentric ecliptic reference system. This reference system is effectively
the planetary scattering plane system rotated by ±α around the z-axis.

3



4 1. Modeling asteroid polarimetry

1.1.2. Principles of polarization

The basics of polarization of radiation have all been discussed in the literature study associated with this
thesis (Sibbing, 2017) and in Rossi et al. (2018), which has served as an example for this work in many ways.
The same conventions regarding polarization parameters and the Stokes vector are used here. In Hansen and
Travis (1974), the definitions of the different radiation intensities are given as follows, consisting of terms for
linear part, Il p , and the circular part, Icp . See Equation 1.1.

Ipol =
(
I 2

l p + I 2
cp

)1/2
(1.1)

The degrees of linear and circular polarization come from the Stokes vector, I, consisting of Stokes parameters
I , Q, U , and V . Parameter I is the total radiance, Q and U represent the linearly polarized radiance and V the
circularly polarized radiance, all in units W m−2 sr−1. The irradiance, πF, with units W m−2, is an alternative
representation of the Stokes vector containing terms analogous to those in I and is given in Equation 1.2. This
convention of the Stokes vector is used from here onward.

πF =π


F
Q
U
V

 (1.2)

Expressing the linear and circular degrees of polarization in elements from the Stokes vector of Equation 1.2
leads to Equation 1.3 to Equation 1.5.

Ptotal =
√

Q2 +U 2 +V 2

F
(1.3)

Pl =
√

Q2 +U 2

F
(1.4)

Pc = V

F
(1.5)

where Pl and Pc are the degrees of linear and circular polarization, respectively.

Parameters Q and U require a reference system with respect to which they are defined. In this reference
system, Q is then defined as the horizontally polarized irradiance minus the vertically polarized irradiance,
or, Q = F0◦ −F90◦ . Similarly, U is defined as U = F45◦ −F135◦ , rotated 45◦ compared to Q. Initially, Q and U
are defined locally, for each facet, in the local meridian plane system. Since each facet has its own reference
system, all have to be translated to the planetary scattering plane system.

The angle between these two reference systems is β, which can be calculated using projections of a surface
facet’s normal vector, n̂facet, and rAS, both in the observer direction. The angle between these two vectors in
the described projection plane (the y z-plane of the planetary scattering plane system) is β, which is defined
as rotating clockwise when looking from the observer to the asteroid. The limits for β are 0◦ ≤β< 180◦, which
effectively means that 180◦ should be subtracted from β if the surface facet normal has a negative z-value
in the planetary scattering plane system (which is the case for the entire southern hemisphere of a spherical
body).

Rotating the Stokes vector along an angle β is done using the rotation matrix L (Hovenier and Van der Mee,
1983), given in Equation 1.6.

L(β) =


1 0 0 0
0 cos2β sin2β 0
0 −sin2β cos2β 0
0 0 0 1

 (1.6)

The degree of polarization Ptotal comes with a direction (or angle) of polarization, χ. This angle depends on
the chosen reference system, which would be the planetary scattering plane system when considering the
polarization integrated over a body. By definition, χ is given by:

tan2χ= U

Q
(1.7)
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where χ is from 0◦ ≤ χ< 180◦ such that cos2χ has the same sign as Q (Hansen and Travis, 1974). Because of
the tan2χ in Equation 1.7, there are always two solutions to this equation within the limits of χ: 90◦ can be
added to or subtracted fromχ in order to fulfill the Q-sign convention. In the case of U = 0, the two options are
perpendicular polarization (Q < 0 with χ= 90◦) and parallel polarization (Q > 0 with χ= 0◦). Because the sum
of squares in Equation 1.4 would shroud the sign of Q, an alternative expression for the linear polarization is
used if U = 0. See Equation 1.8

Pl =
−Q

F
(1.8)

1.1.3. The reflected Stokes vector

In order to calculate the reflected Stokes vector, formulations for the incident Stokes vector, including refer-
ence frames, have been discussed so far. According to Hansen and Travis (1974), the general equation for the
reflected Stokes vector is:

I(µ,µ0,φ−φ0) =µ0R(µ,µ0,φ−φ0)F0 (1.9)

with πF0 the Stokes flux vector of the incident light and R the 4×4 reflection matrix. Incidence and reflection
parameters, µ0 and µ, respectively, are derived from the angles of incidence and reflection for each facet, θ0

and θ, and are defined as µ0 = cosθ0 and µ= cosθ.

A convenient way to calculate µ0 and µ is through the dot product of the facet normal with r̂AS and r̂AO,
respectively, after which θ0 and θ follow. See Equation 1.10 to Equation 1.13.

µ0(n) = n̂facet(n) · r̂AS (1.10)

µ(n) = n̂facet(n) · r̂AO (1.11)

θ0(n) = arccosµ0 (1.12)

θ(n) = arccosµ (1.13)

The azimuthal difference angle in Equation 1.9, φ−φ0, is defined as 180◦ minus the angle between the local
vertical plane of incidence (hence φ0) and the local vertical plane of reflection (hence φ), clockwise when
looking from the observer to the asteroid. In this way, the azimuthal difference angle is limited to −180◦ ≤
φ−φ0 ≤ 180◦, with negative values occurring when the angle between the local planes exceeds 180◦, keeping
to the clockwise convention. In the simple case of specular reflection, reflection in the half of the plane
containing the Sun, results in φ−φ0 =±180◦. Reflection in the other half results in φ−φ0 = 0◦.

The incident sunlight is assumed to be unpolarized, therefore the Stokes vector F0 equals F0[1,0,0,0]T, F0

being the incident flux parallel to the direction of incidence, divided by π (Hansen and Travis, 1974). Because
of the three zero terms in F0, the columns of R corresponding to those zero terms can be ignored. The only
column of importance is the first one, denoted by R1. The elements of R1 are provided by an external program
(Fourier Series Program, see Rossi et al. (2018)) that makes use of Fourier expansions for R1, as discussed
by De Haan et al. (1987). The simplified version of Equation 1.9, using parameters R1 and F0, is given in
Equation 1.14.

I(µ,µ0,φ−φ0) =µ0R1(µ,µ0,φ−φ0)F0 (1.14)

To determine which fraction of this reflected flux arrives at the observer, the distance between the asteroid
and the observer, d , is needed. See Equation 1.15. For each surface facet, the incident and reflected flux are
calculated separately. Elements of the Stokes vector are only added later to obtain the disk-integrated values.

πFobserver =
1

d 2µI(µ,µ0,φ−φ0)dA = 1

d 2µµ0R1(µ,µ0,φ−φ0)F0dA (1.15)

where A represents the area. The factor with which I(µ,µ0,φ−φ0) was multiplied in order to scale it to the
observer thus amounts to 1

d 2 µdA. The disk-integrated Stokes vector arriving at the observer is then obtained
by integrating over all the facets and is given in Equation 1.16 (from Stam et al. (2006)).

πFobserver, disk =π

∫
A

Fobserver =
1

d 2

∫
A
µµ0R1(µ,µ0,φ−φ0)F0dA (1.16)
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Still, πFobserver, disk is in units W m−2.

Both planetary (or asteroid) surfaces and planetary atmospheres are accounted for in the Fourier Series Pro-
gram and they are dealt with separately. The reflection principles for an asteroid surface are relatively simple
as compared to a hypothetical atmosphere. Consider a smooth and clean surface without regolith and the
reflection can be approximated by Lambertian reflection, isotropically and unpolarized, if the incident light
was indeed unpolarized as well. Another option is Fresnel reflection, which is non-isotropic and results in
polarized radiation. This option, however, has not been included in the Fourier Series Program as of yet.
Apart from the reflection model, the surface albedo can be set and is defined as the ratio of surface reflected
radiation to surface incident radiation.

The physics of atmospheric reflection are relevant to the application of the Fourier Series Program to asteroids
because a potential regolith sheet can be modeled as an extremely dense and thin atmosphere of some kind
of composition. The program distinguishes gas molecules and (solid) aerosol particles, which are the regolith
particles in this case. The single scattering matrix for Rayleigh scattering of gas molecules is described by
(Hansen and Travis, 1974), see Equation 1.17.

Fm(Θ) =


am

1 (Θ) bm
1 (Θ) 0 0

bm
1 (Θ) am

2 (Θ) 0 0
0 0 am

3 (Θ) 0
0 0 0 am

4 (Θ)

 (1.17)

with coefficients for am(Θ) and bm(Θ) as follows:

am
1 (Θ) = 1− 1

4
∆(1−3cos2Θ)

am
2 (Θ) = 3

4
∆(1+cos2Θ)

am
3 (Θ) = 3

2
∆cosΘ

am
4 (Θ) = 3

2
∆∆′ cosΘ

bm
1 (Θ) =−3

4
∆sin2Θ

with

∆= 1−ρ
1+ρ/2

and ∆′ = 1−2ρ

1+ρ/2

where ρ represents the depolarization factor, which depends on the wavelength (Bates, 1984). The coeffi-
cients as stated above themselves are not provided by the Fourier Series Program, instead, the Fourier ex-
pansion coefficients of Fm(Θ) are given. The atmospheric model allows for multiple atmospheric layers, each
with a gaseous extinction optical thickness, bm

ext, which is a sum of the scattering optical thickness, bm
sca, and

the absorption optical thickness, bm
abs, all defined in the vertical direction.

Similar to the molecule single scattering matrix is the particle single scattering matrix, Fp(Θ), see Equa-
tion 1.18.

Fp(Θ) =


ap

1 (Θ) bp
1 (Θ) 0 0

bp
1 (Θ) ap

2 (Θ) 0 0
0 0 ap

3 (Θ) bp
2 (Θ)

0 0 −bp
2 (Θ) ap

4 (Θ)

 (1.18)

Again, the model provides Fourier elements rather than the coefficients in Equation 1.18. Also similar to the
case of molecule single scattering, extinction, scattering and absorption optical thicknesses are given by bp

ext,
bp

sca and bp
abs, respectively, where the extinction optical thickness is the sum of the other two. The single scat-

tering albedo of the particles, analogous to the asteroid surface albedo, is given by the ratio bp
sca/(bp

sca +bp
abs).

Potential wavelength dependence of one or more of the particle layers is incorporated in with wavelength
dependence of the particles the layer is composed of. The algorithm in the Fourier Series Program accepts
either particles that are spherical, that have a plane of symmetry in an arbitrary orientation or particles that
are asymmetrical and arbitrarily oriented while each particle has a mirror particle. In the latter case, one half
of the particles mirrors the other half.
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Finally, combining Equation 1.17 and Equation 1.18 to define a single matrix for the atmosphere or regolith
layer, is done through Equation 1.19.

F(Θ) = bm
scaFm(Θ)+bp

scaFp(Θ)

bm
sca +bp

sca

(1.19)

The single scattering albedo is combined through Equation 1.20.

a = bm
sca +bp

sca

bm
sca +bp

sca +bm
abs +bp

abs

(1.20)

1.1.4. Fourier series expansion of R1

In Section 1.1.3, it was discussed that only the first column of reflection matrix R is needed: R1. In De Haan
et al. (1987), an equation to expand such a reflection matrix into a Fourier series is shown. This equation is
rewritten as follows, as to keep only the first column of R.

R1(µ,µ0,φ−φ0) = B+0(φ−φ0)R0
1(µ,µ0)+2

M∑
m=1

B+m(φ−φ0)Rm
1 (µ,µ0) (1.21)

with Rm
1 (µ,µ0) the first column of the mth Fourier series matrix, with (0 ≤ m ≤ M), and B+m a diagonal matrix

containing terms for mφ as follows:

B+m(φ) =


cosmφ 0 0 0

0 cosmφ 0 0
0 0 sinmφ 0
0 0 0 sinmφ

 (1.22)

An advantage of using the terms Rm
1 (µ,µ0) in the expansion of Equation 1.21 is that all are independent of the

azimuthal difference φ−φ0, which is relocated entirely to the equation of B+m(φ), in Equation 1.22.

Next, Equation 1.9, Equation 1.21 and Equation 1.22 can be combined into relations for the four Stokes vector
elements as follows.

I (µ,µ0,φ−φ0)/µ0F0 = R0
11(µ,µ0)+2

M∑
m=1

cosm(φ−φ0)Rm
11(µ,µ0) (1.23)

Q(µ,µ0,φ−φ0)/µ0F0 = R0
21(µ,µ0)+2

M∑
m=1

cosm(φ−φ0)Rm
21(µ,µ0) (1.24)

U (µ,µ0,φ−φ0)/µ0F0 = 2
M∑

m=1
sinm(φ−φ0)Rm

31(µ,µ0) (1.25)

V (µ,µ0,φ−φ0)/µ0F0 = 2
M∑

m=1
sinm(φ−φ0)Rm

41(µ,µ0) (1.26)

where the subscripts 11 to 41 of R0 and Rm denote the 1st to 4th element of the vectors R0
1 and Rm

1 , respectively.
These elements are finally provided by the Fourier Series Program, for (0 ≤ m ≤ M). The calculations of these
elements follow from the adding-doubling algorithm (De Haan et al., 1987).

The adding-doubling algorithm is an algorithm based on dividing an atmosphere into layers for which sep-
arate upward and downward scattering matrices are calculated. First, of each layer, the reflection and trans-
mission properties have to be known. Two adjacent layers can be combined into one layer as follows. The
top layer is assumed to be illuminated from above. Part of the light is already absorbed by the top layer, part
is transmitted to the bottom layer once it encounters the boundary, and part is reflected by the bottom layer
back into the top layer. The events of transmission and reflection repeat itself in the top layer and bottom
layer several times, after which the total transmission and reflection of the combined layer can be calculated.
Following this approach, the newly combined layer can be combined with an adjacent layer, after which yet
another layer can be added and so on. Hence the adding method. A requirement for the adding method is that
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both atmospheric layers are homogeneous: scattering properties may only vary with optical thickness. How-
ever, the layers don’t need to be identical, which is what the doubling method is for. The doubling method is
meant to double a homogeneous layer with known scattering properties. Again, the adding method is used
to add an identical layer which results in the same atmospheric layer with double the optical thickness. This
process can be repeated as often as needed. Doubling thus is a simplification of adding. For the complete
adding method, see De Haan et al. (1987).

The Fourier Series Program database contains Fourier coefficients for various predefined values of µ and
µ0, values that correspond to Gaussian abscissae used in the adding-doubling algorithm to integrate over
all scattering directions. For a given number of abscissae, nabscissa, the number of (µ,µ0) combinations is
n2

abscissa, which makes it not very computationally attractive to make this number to high. In practice, only
the Fourier coefficients of an abscissa that corresponds exactly to a (µ,µ0) combination can be used directly.
For all other combinations, interpolation of abscissae, and thus of Fourier coefficients, has to be used. The
interpolation as used here is spline interpolation (Press et al., 1996, p. 1044-1045). The (µ,µ0) combinations
have a default range of 0 < (µ,µ0) < 1 so an extra abscissa is added to include µ,µ0 = 1, to facilitate in this
very common value. All other abscissae are distributed such that the spacing between abscissae is according
to a Gaussian distribution: near µ,µ0 = 0 and µ,µ0 = 1, the spacing is small, and it increases from both sides
symmetrically towards a maximum spacing around µ,µ0 = 0.5.

The accuracy of the radiative transfer computations depends on the number of Gaussian abscissae and the
scattering properties of the surface scattering models that are used. Strongly varying scattering properties
will need to be compensated by many abscissae, whereas smooth scattering properties will result in the same
accuracy using fewer abscissae. Adding abscissae locally could be used as a method to improve the accuracy
where the scattering properties vary most, if this is known upfront or through practice.

1.2. Asteroid polyhedron model

The topic of this section is to introduce the way in which an asteroid’s shape is incorporated in ARM and to
introduce the method of calculating self-shading of an asteroid model.

1.2.1. Polyhedron geometry

An important requirement for an asteroid model with which surface reflection can be modeled, is that the
surface faces are 2-dimensional. Polyhedrons are a family of 3-dimensional geometrical objects consisting
of many 2-dimensional polygons in such a way that there are no empty spaces in its boundary surface. Part
of this family are polyhedrons consisting only of triangles of different sizes. Since many existing asteroid
models use this convention, it is very convenient to choose this type of model as a basis for the cause of mod-
eling polarimetry. The DAMIT database (Ďurech et al., 2010; Ďurech, 2018) contains many of these asteroid
polyhedron models, computed using inversion techniques. The Planetary Data System contains radar shape
models and optical shape models (Neese, 2004; NASA, 2018) both of which can be used in addition to the
DAMIT database models.

The asteroid models come with an array of x-, y- and z-coordinates for the vertices of the polyhedron and an
array of groups of 3 integers giving the numbers of the vertices that form a facet of the polyhedron. Obviously,
every vertex is used at least in one facet or it would be redundant. Several interesting parameters regarding
this asteroid model can be calculated relatively easily: the center of each facet, cfacet, the normal vector of
each facet, n̂facet, the area of each facet, afacet, the facet radius (the distance from the barycenter of the aster-
oid to the facet center), rfacet, and the maximum facet radius, as a measure for a hypothetical sphere in which
the entire asteroid would fit, rfacet,max. These parameters will prove themselves very useful throughout the
rest of the Asteroid Reflection Model (ARM). Table 1.1 gives an overview of these parameters and their equa-
tions. The only non-trivial equation is the equation for the facet area, which is a variant of Heron’s formula
(Weisstein, 2018b).

The asteroid shape model that is obtained so far can be put in a location in space in different ways. Looking
ahead to the directions of incident and reflected sunlight, discussed shortly, one would like to be able to set
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Table 1.1: An overview of the geometrical parameters derived from parameters from the asteroid polyhedron model, their symbols,
dimensions and the equation with which they are calculated. The equation for the facet area comes from Heron’s formula (Weisstein,
2018b).

Parameter Symbol Dimensions Equation
Vertices vfacet 3×nfacet -
Facet coordinates ffacet 3×3×nfacet -
Facet center cfacet 3×nfacet

cfacet(n) = 1

3

3∑
i=1

ffacet(:, i ,n)

Facet normal n̂facet 3×nfacet

n̂facet(n) =
{(ffacet(:,2,n)− ffacet(:,1,n))∧ (ffacet(:,3,n)− ffacet(:,1,n))}/

||(ffacet(:,2,n)− ffacet(:,1,n))∧ (ffacet(:,3,n)− ffacet(:,1,n))||

Facet sides sfacet 3×nfacet

sfacet(i1,n) =
√√√√ 3∑

j=1
(ffacet( j , i1,n)− ffacet( j , i2,n))2

with {i1, i2} = {1,2}, {2,3} and {3,1}

Facet area afacet 1×nfacet

afacet(n) = 1

4
{(sfacet(1,n)+sfacet(2,n)−sfacet(3,n))

(sfacet(1,n)−sfacet(2,n)+sfacet(3,n))

(−sfacet(1,n)+sfacet(2,n)+sfacet(3,n))

(sfacet(1,n)+sfacet(2,n)+sfacet(3,n))}1/2

Facet radius rfacet 1×nfacet

rfacet(n) =
√√√√ 3∑

i=1
(cfacet(i ,n))2

Maximum rfacet rfacet,max 1
rfacet,max = max(rfacet(n)) with n = 1...nfacet

the phase angle, α, to a certain value. Realistically, though, it would make sense to just set the location of
the asteroid and the location of the observer to certain values. As a result, two different input methods are
distinguished. The Sun’s location is at the barycenter of the Solar System and the asteroid is at some realistic
fixed location at about 1 AU distance of the Sun. Next, in the first case, the observer is at some distance,
typically half the distance between the Sun and the asteroid, with an adjustable phase angle. In the second
case, the observer’s location is completely free and the phase angle follows from it. The orientation and
rotation of the asteroid in its body reference system are discussed in Section 1.3.

1.2.2. Self-shading

Many asteroids have shapes so irregular that shading from one facet onto another is likely to occur. This
phenomenon of self-shading finds itself somewhere between the geometry and the radiative transfer parts
of ARM. The shading that is taken into account is exclusively first order shading: only a facet which directly
blocks incoming sunlight casts a shadow on another facet. No shading as a result of higher order scattering is
incorporated in ARM. Since the calculations in the model are very much geometry-based, it is discussed here.
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The process to determine the correct facets that are both illuminated and observable by the observer, taking
into account self-shading, has been implemented in four phases, two for incident and two for reflected radia-
tion. Each phase removes a certain number of facets from the considered pool of possibly illuminated facets
under certain conditions, keeping only the truly illuminated facets in the end. The first phase removes about
half of the facets by imposing the condition µ0 > 0. Those facets that are not facing the Sun are removed.

The second phase calculates self-shading in the Sun-asteroid direction. For each facet i that is left after phase
one, a semi-infinite volume stretching behind the facet in the Sun-asteroid direction with a base equal to
a projection of this facet in the Sun-asteroid direction, is searched for values of cfacet( j ). The search for a
point in the interior of a 2-dimensional triangle is done using barycentric coordinates (Weisstein, 2018a).
The equations for the coordinates of barycentric triangle 4t1t2t3, are given as a function of the coordinates
of Cartesian triangle 4p1p2p3, in Equation 1.27 to Equation 1.29. The point to be searched for is indicated
by p.

t1 =
(p2,y −p3,y )(pz −p3,z )+ (p3,z −p2,z )(py −p3,y )

(p2,y −p3,y )(p1,z −p3,z )+ (p3,z −p2,z )(p1,y −p3,y )
(1.27)

t2 =
(p3,y −p1,y )(pz −p3,z )+ (p1,z −p3,z )(py −p3,y )

(p2,y −p3,y )(p1,z −p3,z )+ (p3,z −p2,z )(p1,y −p3,y )
(1.28)

t3 = 1− t1 − t3 (1.29)

The constraints for point p to lie within the boundaries of triangle 4t1t2t3 are: t1 > 0, t2 > 0 and t3 > 0. The
constraints for cfacet( j ) to lie within the shading volume of facet i thus are the previously mentioned three
and the constraint that cfacet( j ) lies behind cfacet(i ) in the Sun-asteroid direction. All the facets found in this
way are removed from the pool of considered facets after this phase is completed.

The third phase continues with the facets left after phase two and removes all the facets with µ < 0, facets
that are illuminated by the Sun but that are not facing the observer. The fourth phase completes the algo-
rithm by searching a similar self-shading volume as in phase two, this time in the observer-asteroid direction.
Typically, phase one removes 50% of the facets, phase three removes a percentage proportional to 1

2 sinα
and phase two and four remove another 0-5% each, depending on the irregularity of the asteroid shape and
surface.

Irregardless of the effectiveness, this search algorithm is quite inefficient because the number of operations
that is executed in phase two equals the number of facets left after phase one, squared, and in phase four
the number of facets left after phase three, squared. For large asteroid shape models, this algorithm quickly
becomes the bottle neck of the entire simulation. Another inevitability is that a facet near the edge of the
Sun-asteroid projection of the asteroid could be blocked for up to almost 50% and still have its center outside
the searched volume. It is considered to be fully illuminated as a result. Similarly, a facet which is blocked for
just over 50% is considered to be fully shaded, due to the location of cfacet.

A possible solution to this problem is to consider facets in greater detail by dividing them into sub-facets.
One could indeed create a more detailed model by splitting some or all facets into multiple sub-facets. The
problem with this method, however, is that all sub-facets then have the same normal direction as their parent
facet, which means that this newly created polyhedron does not offer the accuracy one would want from
a polyhedron model with actually more facets (including realistic normal directions). Although solutions
could be found to solve this, these would amount to estimating a more detailed polyhedron model instead of
actually having it at one’s disposal. For example, the normal direction of a sub-facet could be set to an average
value of the normal direction of the parent facet and the nearest neighboring facet. Further investigating the
accuracy and realisticness of polyhedron models is beyond the scope of this research.

1.3. Transition to instrument and additional features

In Section 1.1, relations have been discussed to determine the Stokes vector using reflection matrices, which
is done adequately per surface facet of the asteroid shape model, discussed in Section 1.2. The next step is to
make the transition to the instrument’s detector. This and other features incorporated in ARM, are discussed
in this section.
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1.3.1. Interpretation by a detector

After the reflected light from the asteroid has arrived at the observer, it is finally measured by the modeled
detector of the instrument. Both to simplify this aspect of ARM and to keep with a realistic design of SPEX,
as discussed in Sibbing (2017, Sec. 2.2.1), the modeled detector consists of n×n squared pixels. The detector
is located at the observer’s position, pO, and its horizontal and vertical axes follow the conventions of the y-
and z-axes of the planetary scattering plane system. The 2-dimensional detector does not allow for a third
dimension, which is why the x-axis of the reference system is ignored and the detector effectively interprets
a projection of the planetary scattering plane system in its y z-plane. The horizontal and vertical coordinates
of the centers of the pixels are indicated by ypixel and zpixel, respectively.

The algorithm of ARM translating from facets to pixels starts with a double loop over the pixels, covering the
horizontal and vertical dimension. Next, a loop over all the facets checks whether the current facet finds its
center, cfacet, within the boundaries of the current pixel. See Equation 1.30 and Equation 1.31. Here, ∆ypixel

and ∆zpixel are the width and height of a pixel, respectively.

ypixel −
1

2
∆ypixel ≤ cfacet,y < ypixel +

1

2
∆ypixel (1.30)

zpixel −
1

2
∆zpixel ≤ cfacet,z < zpixel +

1

2
∆zpixel (1.31)

Various parameters are kept track of during the algorithm and are checked afterwards to ensure that all the
facets are divided over the detector: the total number of pixels that are non-empty, a list of indexed pixels that
are non-empty, a list of indexed facets per pixel, the total number of facets per pixel and the total projected
area of facets falling on a pixel. These parameters can be used to determine the Stokes elements F , Q, U and
V for a pixel by summing the Stokes elements of the facets falling within that pixel. See Equation 1.32.

πFpixel(m) = ∑
facets n per pixel m

πFfacet(n) (1.32)

The degree and direction of polarization per pixel, Ppixel and χpixel, can be calculated next using Equation 1.3
and Equation 1.7 for πFpixel(m).

In practice, the area which a detector can cover and the related spatial resolution depends on the distance
to the object, the aperture of the instrument, the number of pixels used and more instrument-related vari-
ables. It is hard to tell what a realistic spatial resolution will be for SPEX, because none of these variables is
known in this phase of the design. However, since almost all currently available polarimetry data is spatially
unresolved, or disk-integrated, any resolution which shows some resolved features of the asteroid is already
an improvement.

Unlike in the case of real observations, there is an optimum for the number of pixels, other than as many as
possible, which depends on the number of facets of the shape model. If the resolution is too high, the ability
to resolve features will not improve any further. Instead, the discrete difference between i or i + 1 facets
per pixel and the corresponding difference in Stokes elements between pixels will be increasingly visible for
adjacent pixels. In its extremity, this effect will lead to only one or two facets per every so many pixels, the rest
of them being empty. It becomes clear that the approach of checking the values of cfacet for each pixel, which
is part of the cause of this problem, is not ideal for high spatial resolutions.

Bearing in mind minimizing this discrete difference problem, the spatial resolution needs to be maximized
to find an optimal value for the number of pixels along one dimension of the detector, npixel. In order to solve
this two-parameter optimization problem, the facet-to-pixel ratio, f , is introduced. The error for the discrete
difference problem is then proportional to 1/ f , so ε1 ∝ n2

pixel/nfacet. Maximizing the spatial resolution, dic-

tated by npixel, is translated to minimizing ε2 ∝ 1/npixel. Hence, if ε1 and ε2 have equal weight, the solution is
to find the minimum of the root sum of squares of both. See Equation 1.33.

εtotal =
√
ε2

1 +ε2
2 =

√√√√(
n2

pixel

nfacet

)2

+
(

1

npixel

)2

(1.33)
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Finding the minimum through the derivative of Equation 1.33 results in

npixel =
(

1

2
n2

facet

)1/6

(1.34)

where it is important to mention that nfacet represents only the number of illuminated facets, not all of them.
Equation 1.34 is clearly an indication for the optimum number of pixels and not an exact value because it is
not an integer for all values of nfacet. This is further discussed in chapter 2, when various number of pixels are
used.

1.3.2. Asteroid orientation changes

Without further adjusting it, the asteroid’s orientation follows directly from the DAMIT database: all vertices
are expressed in the asteroid body reference system from where translations can be made to other refer-
ence systems. If one is interested in data from different orientations of the asteroid, it can be rotated using
a rotation matrix. The standard rotation matrices for rotations around the x-, y- and z-axes are given in
Equation 1.35 to Equation 1.37 (Weisstein, 2018c), where α is the rotation angle.

Rx (α) =
1 0 0

0 cosα sinα
0 −sinα cosα

 (1.35)

Ry (α) =
cosα 0 −sinα

0 1 0
sinα 0 cosα

 (1.36)

Rz (α) =
 cosα sinα 0
−sinα cosα 0

0 0 1

 (1.37)

If various rotations along different axes are desired, rotation matrices can be multiplied in the order from the
first rotation on the right to last rotation on the left. See Equation 1.38.

Rtotal = R2(α2)R1(α1) (1.38)

Finally, any vector v can be rotated from the old reference system to the new reference system using Equa-
tion 1.39.

vnew = Rtotalvold (1.39)

To apply this rotation to ARM, parameters vfacet, cfacet(n) and n̂facet(n) have to be rotated to redefine them in
the asteroid body reference system.

ARM applies these rotations at the very beginning of the program in such a way that various orientations can
be predefined in terms of elevation, εorientation, and azimuth, φorientation, with respect to the initial orienta-
tion. Across these different orientation runs, the mean and variance of the pixel-wise Stokes elements are
calculated as follows.

πµF = 1

norientation

∑
norientation

πFpixel(m) (1.40)

(πσF)2 = 1

norientation

∑
norientation

(πFpixel(m)−πµF)2 (1.41)

where πµF and (πσF)2 are the mean and the variance of the Stokes vector, given per element. The mean
values of the degree and direction of polarization can be determined via relations derived from Equation 1.3
and Equation 1.7:

Ptotal, mean =
√
µ2

Q +µ2
U +µ2

V

µF
(1.42)

tan2χmean = µU

µQ
(1.43)
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The pixel-wise mean is a relevant parameter, because this would correspond to what the detector can mea-
sure during several observations of an asteroid within a period of time of the order of magnitude of the aster-
oid’s rotation.

1.3.3. Disk-integrated Stokes vector elements

To compare results from ARM with real observations, both time averages, as discussed in Section 1.3.2, and
disk-integrated values of the Stokes vector, are interesting. Moreover, even the time average of the disk-
integrated values can be calculated, to rule out both temporal and spatial extreme values. The equation for
the disk-integrated Stokes vector that is used in ARM follows from Equation 1.16.

πFobserver, disk =
1

d 2

∫
A
µµ0R1(µ,µ0,φ−φ0)F0d A

≈ 1

d 2

∑
facet i

µiµ0,i R1(µi ,µ0,i ,φi −φ0,i )F0,i Ai =
∑

facet i
πFobserver,i

(1.44)

Substituting the result from Equation 1.44 into Equation 1.40 and Equation 1.41 gives the orientation average
of the disk-integrated values of the Stokes vector and its associated variance.





2
ARM verification

In this chapter, the verification of is found in is discussed. To verify the correctness of output variables such
as the Stokes elements, the degree and direction of polarization and important angles such as rotation angle
β from Equation 1.6 and azimuthal angle φ−φ0, a spherical polyhedron model consisting of 8,192 facets is
used. This model was generated using a sphere generation algorithm from Bourke (1992). The algorithm
allows for the choice of an exponent such that the total number of facets is 8 ·4n . Hence, 512, 2,048 and 8,192
facets are logical choices in comparison to the number of facets of the available asteroid shape models. For
the sake of accuracy, the latter was chosen and is used throughout this section. Table 2.1 shows an overview
of is found in verification tests that will be discussed hereafter.

Table 2.1: Overview of is found in verification tests that have been performed specifying the shape model, the surface scattering model,
the used phase angle(s) and the parameter(s) specified by the color of each of the associated figures.

# Shape model Surface scattering model Phase angle(s) Parameter(s)
1 Sphere Lambertian reflection 0◦, 45◦ F
2 Sphere Independent 0◦, 45◦ β, φ−φ0

3 Sphere Lambertian reflection 0◦, 45◦ Fpixel

4 Sphere martian analog 0◦ F , Q, U , Ptotal, χ
5 (216) Kleopatra martian analog 0◦ F , Ptotal, φorientation

2.1. Model fundamentals

2.1.1. Shape model and radiation flux

The first verification test amounts testing the shape model, the radiation flux, F , and the effect of different
phase angles, α. The surface scattering model that is used here is Lambertian reflection, which does not
allow for polarization effects. Hence, Stokes elements Q, U and V as well as the degree of polarization Ptotal

are all zero. The Lambertian scattering model has a surface albedo of A = 0.20 and consists of 31 Gaussian
abscissae, including the added abscissa at opposition. Figure 2.1 depicts the unscaled radiation flux for values
of α = 0◦ (left) and α = 45◦ (right). Recall that the planetary scattering plane system has its x-axis coincide
with the asteroid-observer direction, which is the viewer direction in all figures from now on. In (right), the
asteroid-Sun vector is directed to the right-hand side.

The pattern for the flux is as expected: the effect of µ0 and µ is dominant and creates a maximum on the
sphere between the observer direction and the Sun direction (which coincide in Figure 2.1 (left)). More pre-
cisely, the product µ0µ from Equation 1.15 dictates the portion of the flux arriving at the observer, which
explains both the maxima in the center and the minima near the edge in Figure 2.1 (left and right). Note that
(left) is point-symmetric around the center and (right) is plane-symmetric in xz-plane. For the latter figure,

15
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Figure 2.1: The spherical shape model in the planetary scattering plane system as seen with zero phase angle (left) and 45◦ phase angle
(right). The colors represent the unscaled Stokes element F . The surface scattering model is the model for Lambertian reflection.

this includes the zero-value crescent on the left, which indicates that in that area, either µ0 < 0 or µ< 0 or the
area suffers from self-shading.

2.1.2. Azimuthal and reference frame angles

Figure 2.2: Top: rotation angle β as occurred before in Equation 1.6, shown per facet in the planetary scattering plane system, evaluated
with zero phase angle (left) and 45◦ phase angle (right). Bottom: azimuthal angle φ−φ0 as is discussed in Section 1.1.3, evaluated with
zero phase angle (left) and 45◦ phase angle (right). The zero-value crescent on the left in the two right-hand side figures represents an
area on the sphere that is not illuminated. The patterns for β and φ−φ0 are independent of the surface scattering model.

The second verification test checks the definitions of the rotation angle,β, which rotates from the local merid-
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ian plane system to the planetary scattering plane system, and of the azimuthal angle, φ−φ0, both of which
are fundamental for the correct values of Ptotal later on. Since these angles are independent of the surface
scattering model, they can already be tested during a simulation with the Lambertian reflection scattering
model. Plots for β and φ−φ0 (top, bottom) for 0◦ and 45◦ phase angle (left, right) are shown in Figure 2.2.

By definition, β is the angle between the local meridian plane and the planetary scattering plane, rotating
clockwise as seen from the observer’s position. Since the planetary scattering plane is an ambiguous phe-
nomenon when α = 0◦, it is defined as if the phase angle is infinitesimally small and r̂AS lies in the positive
y-direction. This keeps the definition of the planetary scattering plane and the behavior of β consistent with
cases where the phase angle is non-zero.

The azimuthal angle φ−φ0 is by definition 180◦ minus the angle between plane of incidence and plane of
reflection, again rotating clockwise as seen by the observer. As is shown in Figure 2.2 (bottom right), φ−φ0 is
zero or ±180◦ at the equator, positive in the northern hemisphere and negative in the southern hemisphere,
due to the convention of clockwise rotation. In follow-up verification tests, it will be shown that the degree of
polarization behaves as expected using these conventions for β and φ−φ0.

2.1.3. Detector view

The third verification test considers the detector view of the spherical shape model, while varying the number
of pixels. All input parameters of the model are identical to the ones used in the first verification test, of which
the results were shown in Figure 2.1. In Section 1.3.1, it was discussed that there exists an optimal facet-to
pixel ratio for the detector. Deviating too much from this optimum results in very bad spatial resolution (too
few pixels) or a large portion of the pixels left empty (too many pixels). It appears that there is yet another
effect which dictates the optimal number of pixels: the pattern in the positions of the facets. Both effects are

Figure 2.3: Four examples of non-ideal representations of a detector view of Figure 2.1 (left), using various numbers of pixels along one
dimension: npixel = 5, 15, 40, 100, (top left, top right, etc.). Associated facet-to-pixel ratios are f = 164, 18.2, 2.56, 0.410, respectively.
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shown in Figure 2.3.

Figure 2.3 shows four examples of non-ideal choices for the amount of pixels: npixel = 5,15,40,100. The
npixel = 5 pixel detector (top left) has facet-to-pixel ratio f = 4,096/25 = 164, when only illuminated facets
are considered. This results in a very coarse spatial resolution and it can hardly be concluded that the ob-
served object is actually a sphere. The npixel = 15 pixel detector (top right) shows a better spatial resolution
but has some peculiar horizontal features across four different rows of pixels. These lines are caused by the
pattern of the facets (see Figure 2.1) on the sphere, an effect which is unavoidable because the pattern on the
sphere is constant everywhere. This problem will not occur when using an (irregular) asteroid shape model.
The npixel = 40 and npixel = 100 detectors (bottom) have f = 2.56 and f = 0.410, respectively. These are values
for which increasing numbers of pixels will be completely empty and the discrete difference between 1, 2 or
3 facets per pixel is dominant over the individual flux contributions of the facets. Both effects make these
detector simulations useless.

In Equation 1.34, a theoretically supported optimal value for npixel was given. The equation is repeated here
for convenience. The problem with the horizontal features of Figure 2.3 (top right) is ignored for reasons
mentioned before.

npixel =
(

1

2
n2

facet

)1/6

(2.1)

Evaluating this equation for nfacet = 4,096 gives npixel ≈ 14. The detector view with npixel = 15, shown in
Figure 2.3 (top right) thus is close to ideal according to Equation 2.1. It is unfortunate that the undesired
horizontal features ruin the quality of the image.

Now that npixel = 14 is available as an initial guess, a solution without the horizontal stripes should be close.
Figure 2.4 shows detector views with npixel = 10, for phase angles zero (left) and 45◦ (right), resulting in facet-
to-pixel ratios of f = 41.0 and f = 31.6, respectively. From Figure 2.4 (left) it can be concluded that the ob-
served object has a circular or almost circular projection given the current orientation. In practice, if more
images of different orientations could be captured, the object might turn out to be spherical or almost spher-
ical. A similar hypothetical analysis can be performed on Figure 2.4 (right), taking into account the phase
angle.

Figure 2.4: Two detector view representations of Figure 2.1 where phase angles are α = 0◦ (left) and α = 45◦ (right) and npixel = 10 for
both. This value for npixel is close to the optimal value of npixel = 14, derived from Equation 2.1.

2.2. Polarization

2.2.1. Stokes elements and polarization

The fourth verification test introduces a different surface scattering model than the model for Lambertian
reflection, namely the martian analog model. This model does not ignore Q and U any longer and generates
polarization as a result. Unfortunately for the negative polarization, coherent backscattering and shadow hid-
ing are not accounted for in this model. Due to the absence of these effects, the resulting polarization pattern
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has more similarities with a gaseous planet’s polarization pattern than an asteroid’s. However, for verification
means, this is not important. The scattering matrix elements are provided by the Amsterdam Light Scattering
Database (Muñoz et al., 2012; Volten et al., 2012) under the name ‘martian analog (palagonite)’ (Laan et al.,
2009).

Where the number of Gaussian abscissae was not an important parameter in the Lambertian scattering
model, it is for the martian analog. Fewer abscissae will result in coarser interpolations between values of
µ and µ0, thus harming the accuracy of the simulation. On the other hand, too many Gaussian abscissae will
increase the computational effort quadratically. Several numbers of abscissae, nabscissa, are tested for their
resulting accuracy within the framework of this verification test.

Figure 2.5: Stokes elements Q (top left) and U (top right), the degree of polarization, Ptotal, (bottom left) and the direction of polarization,
χ, (bottom right), using the martian analog model and α= 0◦. The number of Gaussian abscissae is 60.

Figure 2.5 depicts the Stokes elements Q and U and the degree and direction of polarization, Ptotal and χ,
respectively. The unscaled flux has a pattern identical to the flux with Lambertian reflection, shown in Fig-
ure 2.1 (left), therefore it is not repeated here. The patterns for Q and U are largely symmetrical along the y-
and z-axes (Q) and along y = z and y =−z lines (U ), which is understandable for a sphere. The polarization,
as a result, is rotationally symmetric and has a minimum in the center. There the flux is highest and Q and U
are low which makes the degree of polarization vanish according to Equation 1.3. The maximum values near
the edge of Figure 2.5 (bottom left) correspond to polarization behavior of gaseous planetary atmospheres
such as Jupiter’s (Dollfus, 1957; Schmid et al., 2011). For asteroids, there is no concrete knowledge of this
effect. Disk-integrated values for Q, U and Ptotal all equal zero due to the symmetry. The direction of polar-
ization shown in Figure 2.5 (bottom right) supports this, for it indicates that for each facet, the polarization
lies in the radial direction in the y z-plane. The number of Gaussian abscissae used in this simulation was 61,
including one added abscissa at opposition.

As has been mentioned before, too few Gaussian abscissae will harm the accuracy of the Fourier coefficients,
Rm

1 (µ,µ0), used in determining the reflection matrix R1(µ,µ0,φ−φ0). Through trial-and-error, it was found
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Figure 2.6: Plots of Stokes element Q simulated using α = 45◦ and different numbers of Gaussian abscissae in calculating the Fourier
coefficients: 20 (left) and 80 (right). The left plot has unwanted circular features around the Sun direction and observer direction.

that at least 60 Gaussian abscissae is enough to suppress unwanted features in the figures for Ptotal, as shown
in Figure 2.5. However, more abscissae will increase the accuracy further. Figure 2.6 depicts two different
plots of Stokes element Q with α = 45◦, using only 20 abscissae (left) and as much as 80 abscissae (right).
The color scheme is different from the one used before, to indicate the alternating features near µ0 = 1 and
µ= 1 better. The circular features only occur at up to about 40 Gaussian abscissae and are caused by coarse
interpolation between values of µ and µ0. Obviously, if and where this behavior occurs, is specific to the
surface scattering model, for each model has its own relations for R1(µ,µ0,φ−φ0). In the current situation,
apparently the number of abscissae between µ,µ0 = 0.9 and µ,µ0 = 1 is insufficient although the spacing
between abscissae is already highest there following the Gaussian distribution. The result is that Q, U and
Ptotal all have circular features around µ,µ0 = 1.

2.2.2. Asteroid polyhedron model

The fifth verification test finally uses an asteroid polyhedron model instead of the spherical model which is
only meant for verification purposes. The goal of this verification is to assess the effect of different orienta-

Table 2.2: Summary and conclusions of the five performed verifications as given in Table 2.1.

# Conclusion
1 The polyhedron model functions correctly and the evaluation of F using a simple Lambertian scat-

tering model with various phase angles, is as expected. Each facet’s individual parameters, as were
introduced in Table 1.1 are calculated correctly.

2 Important angles β and φ−φ0 are evaluated correctly according to their definitions and behave as
expected under different phase angles.

3 Detector views are often not very accurate as soon as the number of pixels deviates a lot from the
optimal number given in Equation 2.1. However, ideal or near-ideal numbers of pixels do result in
a representative detector image, based upon which some conclusions can be drawn with respect to
the observed object.

4 It was verified that the martian analog scattering model generates values for Stokes elements Q and
U and the degree of polarization Ptotal. The polarization pattern of having low values in the center
and higher values at the edge were recognized as globally resembling the polarization pattern of a
gaseous planet such as Jupiter (Dollfus, 1957; Schmid et al., 2011). Furthermore, the effect of different
numbers of Gaussian abscissae was discussed. Depending on the desired accuracy of Q and U , a
minimum number of abscissae should be used in the simulations.

5 The asteroid polyhedron model of Kleopatra gives the expected results for all Stokes elements and
the degree of polarization. is found in assesses self-shading correctly and indeed neglects non-
illuminated facets. Also, changing the orientation of the asteroid over sequential simulations, works.
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tions of the shape model on the flux and degree of polarization and evaluate self-shading in these orienta-
tions. Here, again, the martian analog scattering model is used. The phase angle isα= 45◦ with the position of
the Sun in the right-hand side of the plot, in order for self-shading to occur. Figure 2.7 (top to bottom)depicts
asteroid (216) Kleopatra in three different orientations, where the orientation azimuth, φorientation, equals 0◦,
36◦ and 72◦ and the orientation elevation remains constant. Colors represent the unscaled flux (left) and
the degree of polarization (right). The large dark areas on the left-hand side of Figure 2.7 (top) indicate that
those facets are not illuminated at all, due to failing at least one of the four requirements of the self-shading
algorithm, discussed in Section 1.2.2. Especially the area on the top side of the asteroid in Figure 2.7 (top)
experiences self-shading of the large hump on the right-hand side, as has been verified by assessing the dif-
ferent steps of the self-shading algorithm. Note that the shaded area occurred before, in Figure 2.1 (right),
where the phase angle was 45◦ as well. Despite this, the role of the shape model and the orientation appar-
ently is more dominant than the role of the phase angle, in the case of Kleopatra, which can be concluded
from the significant differences between flux plots in Figure 2.7 (left). The reason for both effects is that the
distribution of µ0 and µ values across the asteroid’s surface is far from uniform such as with the sphere.

Figure 2.7: Plots for the flux (left) and the degree of polarization (right) as seen on asteroid (216) Kleopatra using α = 45◦ and three
different orientations. The asteroid polyhedron model originates from the Small Body Radar Shape Models database of the Planetary
Data System (Ostro et al., 2004; Neese, 2004). The azimuth angles of the orientations, φorientation, are 0◦, 36◦ and 72◦ (top to bottom).

Practically all the functionalities and output parameters of is found in have been verified at this point. Ta-
ble 2.2 gives an overview of the conclusions that can be drawn based upon these past verifications. What
remains is the validation of disk-integrated Stokes elements and polarization values with available polari-
metric data. This is one of the topics of Section 3.3.
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ARM results and application

In this chapter, all kinds of results as generated with ARM are discussed, using different surface scattering
models that have not been presented so far. Associated results will be evaluated and compared with one an-
other. In chapter 2, only spatially resolved results were presented as means of verification, not disk-integrated
results. One would like to generate disk-integrated phase-polarization plots as well, because this relation
is commonly found in databases for historical polarimetric observations of asteroids. Comparing phase-
polarization plots of historical observations with ARM-generated phase-polarization plots is a promising way
of validating a certain surface scattering model for it to fit to a certain asteroid’s surface. Spatially resolved
results and phase-polarization curves are assessed in Section 3.2 and Section 3.3, respectively. First, various
surface scattering models are discussed in Section 3.1 and the choices for them are supported adequately.

3.1. Realistic surface scattering models

To generate realistic surface scattering models, multiple sources can be used that contain data which fi-
nally result in Fourier expansions serving as input for ARM (see Section 1.1.3, the program that produces the
Fourier expansions is referred to as Fourier Series Program). Sources for scattering matrix elements of spe-
cific materials are the Amsterdam Light Scattering Database (Muñoz et al., 2012; Volten et al., 2012), which
is where the martian analog data originates from, and the Granada Light Scattering Database (Muñoz et al.,
2012; Muñoz, 2018). Both databases are operated by a cooperation of people from two institutes, hence the
Amsterdam-Granada database. Another method is to calculate the scattering matrix elements of a certain
sample using the SIRIS program (Muinonen and Nousiainen, 2003), of which the use and functionalities will
be discussed shortly. Using one of these sources, the scattering matrix elements can be converted to scatter-
ing coefficients which can in turn be used as input for the Fourier Series Program. To balance accuracy and
computational effort, the number of Gaussian abscissae that is used in the Fourier Series Program, is 60 for
all materials discussed below.

Table 3.1: An overview of SIRIS input parameters and the associated materials the parameters are based on. All particle sizes are 100 µm.

# Material Wavelength (λ) Size parameter (x) Refractive index (m)
1 Artificial 628.3 nm (Red) 1000.0 1.3000+ i 9.9 ·10−3

2 Artificial 628.3 nm (Red) 1000.0 1.5000+ i 9.9 ·10−3

3 Artificial 628.3 nm (Red) 1000.0 1.7000+ i 9.9 ·10−3

4 Hematite 435.3 nm (Blue) 1443.4 2.7387+ i 0.9628
5 Hematite 547.7 nm (Visible) 1147.2 2.9210+ i 0.4674
6 Hematite 634.9 nm (Red) 989.6 2.7877+ i 0.1146
7 Hematite 879.7 nm (Infrared) 714.2 2.5491+ i 0.05703
8 Olivine 628.3 nm (Red) 1000.0 1.6200+ i 1.0 ·10−5

23
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The SIRIS program can be used conveniently to simulate light scattering by a sample of particles of a certain
shape and size. The program’s algorithm is based on Monte Carlo ray-tracing ray optics. The number of pa-
rameters to be set in order to simulate the desired sample is quite extensive. For a single particle, these include
the radiation wavelength, λ, the refractive index, m, the particle size distribution (radius’ mean and standard
deviation), the areal fraction of Lambertian diffusion and settings for the shape of the particle. For the sample
as a whole, parameters include the number of particles, the number of radiation rays, the accuracy of the ray
tracing, the number of the scattering angles, the accuracy of the scattering and azimuthal angles, and more.
Here, only the particle settings were adjusted but the sample settings were constant. Finally, SIRIS uses two
different bases for the particle shape: Gaussian random sphere geometry and randomly oriented polyhedral
particles. Here, the first option was used. Table 3.1 gives an overview of the particle input parameters that
were used and the associated materials based upon which the parameters were chosen. The wavelength and

Figure 3.1: Single scattering elements of the artificial materials (top), hematite variants for various wavelengths (middle) and the martian
analog and olivine (bottom). Details are given in Table 3.1.
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the size parameter are coupled through the relation x = 2πr
λ where r is the mean particle radius. The mean

particle radius is indeed set to 100 µm, which results in the values for x as given here. The output in terms of
scattering matrix elements F11 and −F12/F11 of these materials is depicted in Figure 3.1, where F11 and F12

are elements (1,1) and (1,2) of Equation 1.18, respectively. The depicted (relative) elements F11 and −F12/F11

are generated by SIRIS and smoothed with a linear interpolation function (MATLAB, 2018a) and a smoothing
spline function (MATLAB, 2018b), respectively. Exceptions are the martian analog elements, which originate
from the Amsterdam Light Scattering Database and are used unaltered.

There is a multitude of reasons for the specific set of materials in Table 3.1. First, the Amsterdam Light Scat-
tering Database has an aerosol section in which the martian analog, hematite and olivine are included, which
makes the scattering matrices for these materials easily accessible. Hematite is known for its extreme refrac-
tive index, which varies strongly with wavelength, making it an interesting example to use if the effect of
wavelength on the degree of polarization is to be investigated. Second, an extraordinary high degree of po-
larization is observed for asteroid (3200) Phaethon (discussed in Section 3.4), values that a hematite sample
with a large x could match, judging from Figure 3.1 (middle right). Even higher degrees of polarization are
met through using artificial materials with a range of refractive indices around m = 1.5000+ i 9.9 ·10−3 and a
size parameter of at least x = 1000 (Escobar-Cerezo, 2018). Single scattering F12 elements such as depicted
in Figure 3.1 (top right) and (middle right) typically give high degrees of polarization: the farther to the right
the peak is located, the higher the overall expected polarization is. In his thesis, Escobar-Cerezo distinguishes
highly absorbing (m = 1.5000+i 9.9 ·10−3) and weakly absorbing (m = 1.5000+i 9.9 ·10−5) particles (also vary-
ing in x for both) of which the first one results in an overall higher degree of polarization. Olivine loosely
represents the weakly absorbing particle here, with scattering matrix element −F12/F11 of the same order of
magnitude as the martian analog’s, see Figure 3.1 (bottom right). Because the olivine polarization is not high
enough to fit to Phaethon’s data, it is only used as an illustration of weakly absorbing particles here.

3.2. Spatially resolved results

In Section 2.2, the final verification covered the martian analog-covered shape model of asteroid (216) Kleopa-
tra in three different orientations, showing flux and degree of polarization behavior. The hypothesis is that
this scattering model does not match with an asteroid’s, which one would like to confirm during the valida-
tion of the output results of ARM. The type of asteroid polarimetry data with respect to which validation could
be done, is a phase-polarization curve for a target asteroid, for which sources with vast amounts of data exist.
This is the topic of Section 3.3. Here, spatially resolved results of ARM are discussed, for various asteroids that
are candidates for validation.

Trivial choices for validation asteroids are asteroid for which significant validation data is available. In sim-
ulations with ARM, the range of phase angles per asteroid is tailored to the available validation data phase
angles. The asteroids used for this validation are (7) Iris, (4) Vesta, (216) Kleopatra and (25143) Itokawa be-
cause for three out of four of these asteroids, many polarimetric observations are available in the Asteroid
Polarimetric Database (APD). The last one, Kleopatra, was originally chosen for its peculiar shape and as-
sociated self-shading and it is continued to be used for this reason. The polyhedron model for Iris is found
in the DAMIT database (Ďurech et al., 2010; Ďurech, 2018), Vesta is found in the Small Body Optical Shape
Models database of the Planetary Data System (PDS) (NASA, 2018; Thomas et al., 1997), Kleopatra is found in
the Small Body Radar Shape Models database of the PDS (Ostro et al., 2000, 2004) and Itokawa is found in the
Gaskell Itokawa Shape Model library (Gaskell et al., 2008), although Itokawa is also available in the Small Body
Radar Shape Models database. However, the latter shape model originates from observations acquired before
the Hayabusa mission (which is where the Gaskell Itokawa Shape Model library originates from) and thus is
obsolete. The format for the Vesta model is (latitude, longitude, radius) so the translation to (vertices, facets)
had to be made using a custom MATLAB® script. The shapes of these four asteroids are shown in Figure 3.2.
Regarding the surface scattering model used with the four aforementioned asteroids, only the martian analog
is used, although the results that can be generated using this model are limited. The materials and associated
scattering models that were discussed in Section 3.1 are used only with asteroid (3200) Phaethon for reasons
discussed in Section 3.4.

Degree of polarization patterns across asteroids Iris, Vesta and Itokawa are shown in Figure 3.3 for two phase
angles each. Polarization patterns for Kleopatra were already shown in Figure 2.7 for a 45◦ phase angle and
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Figure 3.2: Polyhedron shape models of asteroids (7) Iris, (4) Vesta, (216) Kleopatra and (25143) Itokawa (top to bottom), as viewed
with φorientation = 0◦ (left) and φorientation = 90◦ (right). The number of facets per polyhedron are (top to bottom) nfacet =
{2,040; 5,184; 4,092; 49,152}. The units of the axes are [km], revealing that Itokawa is indeed three orders of magnitude smaller
than the other three.
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various asteroid orientations. Here, instead, the phase angle varies and the orientation does not, except for
a rotation as a result of the phase angle (the orientation is kept constant with respect to the direction to the
Sun instead of the observer). The chosen phase angles match phase angles that are found in the polarimetric
data, which are 15◦, 30◦ for Iris and Vesta and 50◦, 70◦ for Itokawa. For Kleopatra, there is only one available
polarimetric observation which makes it impossible to fit a curve to the data. Polarimetric data for the other
three asteroids are discussed in Section 3.3.

Across the three asteroids in Figure 3.3, both similarities and differences can be noted. All show zero degree
of polarization values in the center, low values around the center and high values near the edge, in a near-
circularly symmetric way. Depending on the amount of facets of the polyhedron model, larger or smaller
areas are green/orange (for example, top right compared to middle right). A main difference between aster-

Figure 3.3: Plots for Pl as seen on the surfaces of asteroid (7) Iris, (4) Vesta and (25143) Itokawa (top to bottom). Phase angles are (left to
right) 15◦, 30◦ for both Iris and Vesta and 50◦, 70◦ for Itokawa, approximately according to the phase angles for which validation data is
available. The surface scattering model is martian analog (Muñoz et al., 2012; Volten et al., 2012).
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oids and phase angles is the magnitude of the degree of polarization. Between Iris and Vesta, the polarization
scale difference as indicated by the colorbar values gives away that the maximum degree of polarization for
a single facet is higher with Vesta. For α = 15◦,30◦, these maxima are 2.74%, 1.63% for Vesta against 1.91%,
1.60% for Iris. This difference is easily explained by the fact that the Vesta polyhedron model is more refined
than Iris in the area where the polarization is maximum, such that a single facet is allowed to reach a higher
degree of polarization. The difference in maximum value between phase angles is explained by the area where
the maximum is located. In Figure 3.3 (top left, middle left), this area is the edge on the left around the y-axis,
whereas in Figure 3.3 (top right, middle right) these areas are the edge to the top and bottom around the z-
axis. Apparently, the highly polarizing area to the left is shaded as soon as the phase angle passes a certain
value between 15◦ and 30◦. This shaded area effect was seen for Kleopatra as well, in Figure 2.7 (right). For
Itokawa, the shaded area is more than half of the depicted area in Figure 3.3 (top), because the phase angles
are well above 45◦. Maximum facet-specific degree of polarization values are 5.63%, 9.41% for α = 50◦,70◦,
such that the colorbar values are 0 to 10. Even for these high phase angles, the areas that polarize most are
still the top and bottom areas as defined before. It is not unexpected that a higher phase angle results in a
higher degree of polarization. Phase-polarization curves for ARM results and for polarimetric data are further
discussed in Section 3.3.

3.3. Phase-polarization curves

Validating ARM output means disk-integrated degree of polarization values have to be calculated for phase
angles that match the phase angles of available data. A renown source for polarimetric data is the APD
(Lupishko, 2014), where data can be found in the format (asteroid number, asteroid name, observation date,
filter (radiation wavelength), phase angle, degree of polarization, direction of polarization, proper degree of po-
larization, observatory, publication). The proper degree of polarization is described as “degree of polarization
in the proper coordinate system counted off from the perpendicular to the scattering plane: P (r ) = P cos2Q(r ),
where Q(r ) is the position angle in the proper coordinate system”, such that polarization values have a minus
sign if Q(r ) is around 90◦, which is a common value. These proper degree of polarization values and their
associated phase angles are used for validation purposes here.

In order to correctly cover the effect of the asteroid’s orientation in ARM, at least a couple of different orien-
tation simulations should be done of which the averaged disk- and time-integrated degree of polarization is
taken. Figure 3.4 (left) shows the disk-integrated ARM output for the four asteroids used in Section 3.2 and
the verification sphere from chapter 2. For all asteroids except Itokawa, for each phase angle, the 10 blue dots
represent 10 orientations withφorientation = {0◦, 36◦, 72◦, ... 324◦}, together covering one full azimuthal rotation.
Itokawa only has 6 blue dots per phase angle, due to the great computational effort the Itokawa polyhedron
requires, representing 6 orientations with φorientation = {0◦, 60◦, 120◦, ... 300◦}. The black dots represent the
disk- and orientation-integrated degrees of polarization, and are good candidates for comparison with the
validation data. For each asteroid, a third order polynomial curve has been fitted to the black dots to give
an impression of the general relation between polarization and phase angle for the martian analog scatter-
ing model. Figure 3.4 (right) shows the polarimetric data for asteroids (7) Iris, (4) Vesta and (25143) Itokawa
(Lupishko, 2014), the latter of which is chosen to include polarization behavior for large phase angles. Fol-
lowing these data, the distinction is made between data points acquired using different filters, indicated by
the colors of the dots. Additionally, for each asteroid, again a third order polynomial curve has been fitted to
the data, ignoring the filter. See the caption of Figure 3.4 for the explanation of the marker shapes and colors.
Additional references behind the polarimetric data for Iris are Zellner et al. (1974); Zellner and Gradie (1976);
Broglia and Manara (1990); Gil-Hutton et al. (2011), for Vesta are Zellner et al. (1974); Zellner and Gradie
(1976); Lupishko et al. (1989); Belskaya et al. (1987) and for Itokawa are Cellino et al. (2005).

A noticeable difference between the validation data and ARM output is that the validation data of Iris and
Vesta have significant negative parts for α < 30◦. As was thoroughly discussed in Sibbing (2017), this neg-
ative surge is very common for asteroid phase-polarization curves. ARM output has no negative values at
all, although the polynomial fits of Kleopatra, Itokawa and the sphere drop marginally below zero in a very
narrow interval. Another difference is that Itokawa’s validation data points reach as high as 5-7% for α≈ 70◦,
while ARM output only reaches its maximum of about 3% at α≈ 105◦, both for Itokawa itself and for Kleopa-
tra and the sphere. The lack of a negative surge for small phase angles and the slow increase for medium and
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Figure 3.4: Left: Phase plot of the degree of polarization for asteroids (7) Iris, (4) Vesta, (216) Kleopatra and (25143) Itokawa and the
verification sphere, as generated using the martian analog scattering model. Phase angles are 0◦ to 45◦ with steps of 5◦ for Iris and Vesta
and 0◦ to 120◦ with steps of 10◦ for Kleopatra, Itokawa and the sphere. For convenience, the phase plots for Iris, Vesta, Kleopatra and
Itokawa are vertically shifted by 4%, 3%, 2% and 1%, respectively. Right: Phase plot of the proper degree of polarization, as obtained from
the APD, for asteroids (7) Iris (circles), (4) Vesta (diamonds) and (25143) Itokawa (squares). The colors of the dots correspond to: pink -
UV (333 nm), purple - UV (362 nm), blue - Blue (435 nm), green - Green (518 nm), yellow - Visible (559 nm), orange - Orange (645 nm),
red - Red (685 nm), maroon - Near-infrared (883 nm), brown - Infrared (952 nm). For convenience, the data of Iris is vertically shifted by
2%.

large phase angles are major defects of the phase-polarization curve for this martian analog scattering model,
which leave room for improvement for the surface scattering model.

Putting the fit of ARM curve aside, there is another interesting aspect to the polarimetric data of Itokawa,
which is the wavelength dependency. On average, the values for UV (362 nm) are highest, followed by Blue
(435 nm), Visible (559 nm), Red (685 nm) and Infrared (952 nm). Even in the Iris data, the UV (362 nm) slightly
rises above the other wavelengths for phase angles between approximately 25◦ and 35◦, although this is less
clear than with Itokawa. A global correlation between short wavelength and high degree of polarization can
be concluded, a relation which can vary per asteroid, as will be shown for Phaethon in Section 3.4.

3.4. Fitting Phaethon polarimetric data

This section has been left out this version of the thesis, for reasons of publication by (Cellino et al., 2018).





Conclusions

Surface reflection measurements (flux and polarization) can detect many characteristics of an asteroid. Po-
larimetric observations, which are emphasized here, are useful to detect characteristics such as the surface
composition and the shape and orientation of the asteroid. The flux is decided by properties such as the size
and brightness of an asteroid and the distance from the observer to it. An advantage of the polarization is
that it does not depend on the size and distance to an asteroid. Both parameters are simulated here. No com-
plete model for the simulation of asteroid surface reflection and polarization existed as of yet (incorporating
irregular shape, as opposed to a spherical shape), which is why ARM is introduced adequately.

ARM is a useful tool to simulate polarization and flux observations of an asteroid, comet or dwarf planet, in
which the shape model is taken into account. For the implementation of ARM, the Planetary Reflection Model
was used as a basis (Rossi et al., 2018). Unlike the base code, ARM can compute the flux and polarization
signals of irregularly shaped bodies and use a triangle polyhedron shape model as input, including shape
models of a hypothetical asteroid of which the shape and size are not certain as of yet. Furthermore, ARM can
simulate any phase angle, any asteroid orientation, and a 2-dimensional pixel-based view of the reflected flux
and polarization signals, resembling the output that an instrument’s detector would give when observing the
object. To do this, the working principle of ARM is based on elementary theoretical work on polarization such
as Hansen and Travis (1974) and radiative transfer through the use of Fourier series expansions of reflection
matrices (De Haan et al., 1987). These Fourier series expansions are generated by an external program (Rossi
et al., 2018), called Fourier Series Program here.

The Fourier Series Program is of a level of importance that is not to be underestimated: the output of this
program defines the asteroid’s surface scattering model of each facet of the subject polyhedron, together
defining the polarization characteristics of the asteroid to a large extent. As input for this program, scattering
matrix elements of a certain sample material are used, which can either be found in databases such as the
Amsterdam-Granada Light Scattering Database (Muñoz et al., 2012) or can be generated through setting user-
defined material characteristics in a program such as SIRIS (Muinonen and Nousiainen, 2003). Both sources
were used here, creating surface scattering models for a martian analog material, an olivine rock sample, three
artificial materials with specifically chosen refractive indices and size parameters and four semi-artificial vari-
ants of the iron oxide called hematite. The resulting phase-polarization curves as generated with ARM, using
these surface scattering models, were used to fit polarimetric data of (7) Iris, (4) Vesta and (25143) Itokawa and
the recently acquired polarization data of (3200) Phaethon in greater detail. Finally, Asteroid (216) Kleopatra
was used in the verifications because of its irregular shape.

Results of ARM come in two forms:

• The first form consists of spatially resolved 3-dimensional flux and polarization images of the asteroid
under investigation in which the phase angle and the asteroid orientation are constant.

• The second form consists of disk-integrated phase-polarization or phase-flux curves in which a large
range of phase angles is shown and in which various orientations are compared. This is a convenient
form to compare asteroids and surface scattering models.

Results of the first form conveniently show the distribution of the flux or degree of polarization across the sur-
face of the asteroid and offer insight in the effect of the phase angle or an asteroids orientation on these two.
Also, these result can be compared to spatially resolved data, if available. Results of the latter form offer an
overview of differences between surface scattering models, asteroid orientations and the effect of the irreg-
ularity of an asteroid’s shape. Furthermore, they can be used to fit polarimetric data. Available polarimetric
data often come in a variety of radiation wavelengths. Among surface scattering models of the hematite vari-
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ants, this is incorporated adequately through the predefined material characteristics. As such, one is able to
analyze the effect of wavelength in phase-polarization and phase-flux curves.

Spatially resolved and phase-polarization results for Iris, Vesta, Kleopatra and Itokawa were all generated us-
ing the martian analog surface scattering model, which did not offer a good fit to the available polarimetric
data, as expected. The negative surge for small phase angles, which is common for many asteroids and also
appears in the polarimetric data of Iris and Vesta, was not seen in ARM phase-polarization curves. This surge
is caused by coherent backscattering and/or shadow hiding (Sibbing, 2017), effects which are not accounted
for in the surface scattering models used here. Apart from the missing negative surge, the degree of polar-
ization as generated by ARM is simply not high enough to fit to the data of any of the asteroids for medium
phase angles. Despite the bad fit of these results to the polarimetric data, the spatially resolved data show
some features worth mentioning. For small phase angles, the polarization pattern across different asteroid’s
surfaces is characterized by zero degree of polarization in the center, low around the center and high near
the edge of the asteroid, in a near-circularly symmetric way. With increasing phase angle, this pattern only
changes moderately: the degree of polarization in the center rises to the same level as the area around the
center but the edge still presents the highest values, especially the edges in the direction perpendicular to the
scattering plane. It is noted, however, that because these results are not so trustworthy, these features are not
necessarily seen in real observations.

Asteroid Phaethon was studied into greater detail, because of the newly acquired, still unpublished results of
Cellino et al. (2018). Phaethon is a small B-type asteroid with an extremely eccentric orbit (perihelion 0.14
AU, aphelion 2.40 AU) that crossed Earth’s orbit very close to Earth in December 2017. Its rotational period is
P = 3.603958 hours (Hanuš et al., 2016). A total of 96 data points observed in four wavelengths (infrared,
red, visible, and blue), under phase angles ranging from 36◦ to 116◦, offer interesting information about
Phaethon’s phase-polarization curves. Compared to other asteroid’s phase-polarization curves, Phaethon’s
is astoundingly steep, reaching Pl = 20% at 70◦ phase angle and Pl = 40% at 110◦ phase angle. Phaethon’s
data is analyzed both in its full range and in smaller groups, here. The data were acquired over the course of
seven evenings in December 2017, which makes seven groups of data collected over the period of a couple
of hours each. The larger of these groups typically contain 15-25 data points, enough to distinguish the four
wavelengths and fit a simple curve to data points of each wavelength within the group. The typical pattern
regarding results for different wavelengths is that infrared radiation shows the highest degree of polarization,
followed by red, visible and blue radiation, which all data points but five follow. Besides, in the curves for one
wavelength over the course of one and several night, the variations due to the rotational motion of Phaethon,
are seen.

Some seven different surface scattering models were evaluated in ARM to fit Phaethon’s data. The artificial
materials simulations resulted in three relatively good fits to the data, especially #1 for small and medium
phase angles and #2 for high phase angles (see Table 3.1). The degree of polarization for these surface scat-
tering models is overall only slightly lower than Phaethon’s. The hematite variants simulations have worse
fits: all four overall have significantly lower degrees of polarization. The hematite variants did, however, show
the same degree of polarization order among wavelength curves: infrared highest, blue lowest. This makes
the combination of both groups of surface scattering models probably the best: the refractive indices of the
artificial materials and the wavelength dependency of the hematite variants. Experimenting with additional
surface scattering models is discussed later. Like Phaethon’s data, ARM data were subdivided into groups for
each evening. On that scale, the differences between surface scattering models are similar to those for the
entire phase angle range. A more interesting feature is the periodicity in the degree of polarization due to
Phaethon’s rotational motion and shape and size variations, which all results show alike. During two nights,
results are simulated over a period long enough to cover a full rotation, which allows the detection of repet-
itive features in the phase-polarization curve. Also, across different nights, repetitive features appear again
after an integer number of rotations. Detecting these features for Phaethon requires at least about 20 data
points per rotation, or one data point each 10 minutes, given that Phaethon’s shape is moderately irregular.

Other results that were obtained by allowing 10 different orientations per phase angle, over a range of phase
angles that roughly coincides with the phase angle range of Phaethon data, are estimates of the mean, mini-
mum and maximum degree of polarization for a certain phase angle. These extremes, indicating the extremes
of the effect of the asteroid orientation, appear to scale with the degree of polarization. The last set of ARM
results consist of the flux-polarization curves of the seven surface scattering models, which generally appear
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to show less differences among them than the phase-polarization curves, even between the groups of artifi-
cial materials and hematite variants. On the scale of a single evening, however, the relative variation in one
phase-flux curve is larger than in one phase-polarization curve, apart from the flux too showing similar pe-
riodic features during one evening and across several evenings. In practice, the relative errors in the flux are
higher than in the polarization, which should mean that both the surface characteristics and the rotational
motion of Phaethon are easier to detect with polarization measurements than with flux measurements.





Recommendations

Many of the functionalities that were planned to be implemented in ARM within the framework of this thesis,
were indeed realized. Among them are: to use any (irregularly shaped) asteroid model, to use any surface
scattering model, to use any asteroid orientation and phase angle, to determine and remove self-shading
regions, to determine local surface reflection and polarization and to determine disk-integrated reflection
and polarization.

Most decisive for the polarization pattern of ARM output is the surface scattering model, acquired from the
Fourier Series Program. It was clear from ARM phase-polarization fits to polarimetric data, both for asteroids
Iris, Vesta and Itokawa and for special case Phaethon, that the correct surface scattering models for all of
them are yet to be found. This should be realized by implementing the correct physical properties of asteroid
polarization, resulting in negative polarization for small phase angles, which are currently missing in the
model. In order to correctly fit ARM data to the positive part of an asteroid’s phase-polarization curve, these
improvements are not needed. The fits to Phaethon were already very close, so one is invited to find a better
fit using the surface scattering models that can be generated at the moment.

For Phaethon, the most interesting fits were the close-ups in which the asteroid can be seen rotating around
its pole. It is recommended to try to improve these fits and produce additional, even more insightful plots.
In future polarimetric surveys, the extremes of the degree of polarization across orientations as a function
of the phase angle in these close-ups can be used to assess the correctness of the match of the surface scat-
tering model with the asteroid. Also, an alternative program to the ARM could be implemented to process
observational data and retrieve asteroid characteristics from them.

Apart from the aforementioned improvements, some aspects of ARM code could be improved as well. Below,
a summary of the discussed improvements and these ARM improvements, is given.

• Implement coherent backscattering and shadow hiding (together the physical causes of the opposition
effect), such that negative polarization can be simulated. Until a model with these improvements is
available, no asteroid’s negative surge in its phase-polarization curve can be modeled.

• Experiment with other surface scattering models than the currently used ones to find an even better fit
for medium and high phase angles. It is expected that changing the refractive index of the current best
fitting model only modestly should already lead to a better fit.

• Experiment with more than one surface scattering model combined on the surface of the asteroid
model, which should be very interesting and especially more realistic.

• Improve the close-up fits further by assuming the correct orientation instead of only the correct peri-
odicity of the rotation.

• Produce a series of curves with slightly different starting orientations but still the correct rotational
period, so to see the effect of these small orientation differences on the phase-polarization curve.

• Produce various extreme curves and fit them alongside each other for different wavelengths, to provide
an even more complete image of the expected phase-polarization curves.

• Extend ARM by adding an alternative program that estimates the shape and rotational period based on
polarimetric data. This so-called inversion technique already exists for flux measurements but not for
polarization measurements.

• Improve user-friendliness through improving the input method of the asteroid’s and observer’s loca-
tions for a single simulation and the input method of the asteroid orientation change over several sim-
ulations.
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• If data such as Phaethon’s is analyzed more often, improve ARM by adding complete coupling between
the asteroid’s orbit and orientation with respect to the observer and the observer’s orbit, whether the
observer’s location is Earth or a spacecraft.

• Regarding the computational efficiency of ARM, the part that should be improved first is the self-
shading algorithm. It has been stated that the number of iterations in this algorithm is currently the
number of facets that is left after excluding facets with µ0 < 0, squared, plus the number of facets that is
left after excluding facets with µ< 0, squared. The reason it is currently implemented in this way is that
it is a convenient and robust method, but not so efficient after all. As a result, large asteroid polyhedron
models are computationally very costly to process.

Regarding the Phaethon data, some recommendations are done, although this is hindsight. By having more
observations of the same wavelength in a short period of time, more information about the asteroid’s shape
and rotational period could be retrieved from the data. This should be a consideration if an observations sur-
vey is planned in the future for a certain asteroid of which the rotational period and the shape is unknown:
either observations in different wavelengths to gain information about the asteroid’s surface materials or
more observations for one wavelength to improve the shape estimate. Going for the latter option, the afore-
mentioned inversion technique could be used to solve for the shape.

Certainly, if a new asteroid is discovered and no knowledge whatsoever is available regarding it, except for
its orbit, one could choose to start with polarimetric observations instead of flux observations, the latter of
which is the more common path. As shown with ARM, both have a good record in resolving the shape of an
asteroid, if the relative error in both data is equal. However, if the presumed error in the flux is relatively large,
for example because the asteroid is very faint, polarimetric observations are a promising alternative. In those
measurements, one is able to cancel errors which are constant for all flux intensities used to calculate the
degree of polarization, because the polarization is a relative measure. Example errors that cancel as a result
are environmental/atmospheric errors and relative instrument errors. Unfortunately, one cannot detect the
size of an object using only the polarization, which is why the flux is needed eventually. The combination
of the two is ideal: polarization measurements can be used for the shape and surface composition of the
asteroid, and to fit the flux observations in order to retrieve the size of the asteroid.
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