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Abstract
When concrete is subjected to imposed deformations, stresses may develop. If at any point in time this
stress exceeds the tensile strength of the material, the concrete will crack. Early-age cracking of con-
crete structures may lead to problems with durability, serviceability and aesthetics. During hardening
of concrete the material properties are still in development. Therefore, to be able to predict the crack
width, understanding of the stress- and strength development is required. In addition, concrete is a
visco-elastic material which means that stresses are affected by phenomena such as creep or relax-
ation. If the design codes predict the crack width in concrete structures under imposed deformations
accurately remain subject of debate. The CROW report published in 2021 [9] provided the starting
point for this research.

The aim of this study was to gain more insight on the background of the design codes, and to explain
the fundamentals of the crack width prediction in case of imposed deformations. For this purpose, the
following research question was formulated:

”What is the applicability of the design codes regarding the crack width prediction of reinforced
concrete structures under imposed deformations?”

From the literature study it became clear that the main difference between the design codes was re-
lated to which boundary conditions and cracking theory were applied. The majority of the design codes
applied the well known tension bar model theory where both ends are fully restrained. In addition, there
were also codes using the continuous base restraining theory in which the tensile member is continu-
ously restrained along one edge. This made a huge difference in the prediction of the crack width.

From the finite element analysis which was performed, it turned out that there is a difference between
the steel stress development of imposed loading and imposed deformations. In addition, in case of
imposed loading less cracks were developed than under imposed deformations. However, from this
specific numerical analysis it turned out that the maximum crack spacing and crack width is smaller in
the imposed loading model in comparison to the imposed deformation model. The only explanation for
this is that in case of imposed loading the cracks are more evenly distributed.

A case study was used to simulate the hardening process of concrete in combination with autoge-
nous shrinkage as imposed deformation and compared with a finite element analysis. The goal was
to determine a set of model properties that are useful for future engineers. The accuracy of the input
parameters was verified with the experimental work carried out by M. Sule. Overall, when performing
a non-linear finite element analysis a lot of knowledge was required. It turned out that specific choices
such as the constitutive model type, the kinematic and equilibrium condition have a major impact on
the outcome. Using the modified Bar model of Lokhorst in combination with this numerical approach
resulted in good agreement with the experimental findings.

The parameter study showed that regarding the tension bar models, the bar diameter has the largest
influence on the crack width prediction. While with respect to the continuous models there was no one-
sided answer to the question which parameter had the largest influence on the crack width prediction.
In one of the design codes based on the continuous model theory named CIRIA [8] the degree of re-
straint clearly stands out as the most important parameter. Whereas in the another design code based
on this theory, namely the ICE [4], all parameters that were investigated in this thesis have limited effect
on the crack width prediction.
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Abstract iii

The design codes considered in this master thesis do not yet fully represent the crack width due to
the hardening of concrete or due to autogenous shrinkage. The design codes are applicable for the
crack width prediction of reinforced concrete structures under imposed deformations if conservative
assumptions such as a weak bond between concrete and steel reinforcement are taken into account.

It is clear that the problem treated in this report has more complexity than what one initially may think.
Opinions on how to determine the crack width of reinforced concrete tensile members under imposed
deformations differ. The difference is related to the type of restraint and the cracking theory which are
suggested in most used analytical design models. This report contributes to a better understanding of
the crack width development under imposed deformations through non-linear finite element analyses
and verification with experiments.

The results from this master thesis suggest that an approach to amore consistent crack width prediction
under imposed deformations should investigate how bond in the interface between concrete and steel
influences cracking. This has lacked attention in the current formulas in the design codes.
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1
Introduction

Concrete is the most widely used construction material in the world. The freedom of shape and the
high durability of concrete are characteristics that make designers choose for concrete so often. A
disadvantage of concrete is its low tensile strength and that is why it is used in combination with steel
bars, also known as reinforcement. Reinforced concrete structures are designed in such a way that
concrete cracks. However, in order to prevent and reduce durability problems, crack widths should be
controlled and limited. Concrete will crack at the moment that the tensile strain capacity is exceeded.
Due to the cracking of the concrete, stresses must be taken over by the reinforcement at the location
of the crack. Cracks occur throughout the whole life of a structure, and appear differently at an early
age and later on at mature age. Cracks are caused by imposed loads or under imposed deformations.
Imposed deformations are special forms of loading that get much less attention than mechanical load-
ing due to imposed loads. Imposed deformations are due to shrinkage of concrete and temperature
variations. The boundary conditions play an important role when analyzing stresses due to imposed
deformation. Generally, the analytical calculation of stresses and deformations caused by imposed
loads are straight forward. When cracks occur under imposed deformations, the situation becomes
more complex. The complexity is related to the interaction between the structural behaviour and the
magnitude of the forces caused by the imposed deformations. Cracking due to imposed deformations
at early age may be from autogenous shrinkage and thermal contractions, resulting from the chemical
reaction in the hydrating cement paste. At later age, imposed deformations may occur due to thermal
effects or from long-term drying shrinkage, which is caused by the external water loss during the drying
process. In addition to the analytical crack width prediction using design codes, there is a large variety
of finite element modelling (FEM) software to predict the crack width under imposed deformations. In
this thesis DIANA is chosen as FEM software because of the variety of cracking models to simulate
the complex mechanisms of reinforced concrete structure.

1.1. Problem statement
Design codes can be consulted to predict the crack width under imposed deformations. The infor-
mation provided in these codes is often very brief and condensed. The reason for this is most likely
that imposed deformations were almost never responsible for the collapse of a structure. In addition,
although there are many different types of crack width prediction methods, there is no consensus on
which one is the best. To solve this problem a CROW-CUR rapport 1:2020 has been set up. CROW is a
Dutch non profit institute on the design, construction and management of infrastructure. The aim of the
CROW committee [9] was to collect experimental data and to develop a uniform crack width prediction
approach in order to prevent errors. The report considered prediction methods which were often used
in the Netherlands and other European countries. This report provided the starting point regarding the
prediction models that should at least had to be taken into account in this research. The focus of this
thesis will be on the background of these models, and on trying to understand if there are fundamental
differences between crack width calculations in case of imposed loading or imposed deformations.

1
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1.2. Research questions and sub-questions
In this research, the focus is on reinforced concrete structures that are subjected to imposed loads and
to imposed deformations. Themain goal of this thesis is summarized in the following research question:

”What is the applicability of the design codes regarding the crack width prediction of reinforced
concrete structures under imposed deformations?”

In order to formulate an answer to this research question the following sub-questions have been stated:

• Which design codes are used to predict the maximum crack width under imposed loads and im-
posed deformations?

• Is there a difference in the steel stress and its growth at the location of cracks when cracking
occurs due to imposed loads or under imposed deformations?

• Which parameters are essential to simulate the hardening process of concrete in combination
with autogenous shrinkage as imposed deformations using finite element analyses?

• What are the most important parameters that influence crack prediction according to the design
codes?

• Is there a difference between the crack width predicted using the design codes and numerically
predicted crack width?
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1.3. Research strategy
For the structure of the thesis and in order to answer all the research questions a certain strategy is
followed. It is important to mention that regarding the numerical models the finite element analyses
(FEA) were performed using DIANA version 10.5. The thesis is subdivided in the following activities:

II A literature study is performed to gain more insight in the background of the different analytical
crack width prediction models. In addition, general assumptions and fundamental differences are
explained.

III Multiple finite element analyses are performed to find out what the differences are in the crack
width of a tensile bar loaded under imposed loading or loaded under imposed deformations.

IV To predict the early age cracking due to the hardening of concrete and autogenous shrinkage
a finite element analysis is performed. The goal here is to determine a set of model properties
that are useful for future engineers. The accuracy of the input parameters is verified with the
experimental work carried out by M. Sule [21].

V A parameter study is performed to determine which parameters influence the crack occurrence
the most. This study will also contribute to the comparison between the analytical and the nu-
merical models.

VI After the parameter study was performed, a comparison is made between the numerically calcu-
lated crack width prediction and the crack width prediction according to various design codes.

VII The results presented throughout this thesis, as well as the way they were obtained, were critically
analysed and discussed.

VIII The answers to the sub-questions were described. Thereafter, the main conclusions and the
answer on the research question were given. In the end some recommendations on the future
research were presented

Figure 1.1: Overview research strategy
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1.4. Outline
The previously discussed sub activities of the study are elaborated in different chapters in the report.
The outline of the total report is prescribed in this section.

Chapter 2 - Analytical crack width prediction models
Chapter 2 explains the concept of a tensile bar under imposed deformations. In addition, the cracking
theory and the different prediction models for calculating the crack width are individually discussed.
Finally, a comparison is made between the different models and the general assumptions and conclu-
sions are mentioned. The models included in the research are:

• EN 1992-1-1 (Eurocode 2)

• EN 1992-3 (Eurocode 2)

• Model Code 2010

• K. van Breugel (Pink book)

• CIRIA C660

• ICE 0706/012

Chapter 3 - Numerical crack width prediction (imposed loading versus imposed deformation)
The numerical analysis in chapter 3 is performed to find out whether there is a difference in the steel
stress, when cracking in a tensile bar model occurs due to imposed loads or under imposed deforma-
tions. In addition a validation with DIANA is performed to check what the relation between the crack
width and the deformation due to imposed loading or under imposed deformation is. These results will
later on also contribute to the comparison between the analytical and the finite element models.

Chapter 4 - Case study: numerical prediction of early age cracking due to hardening of concrete
In this chapter first the methodology and the main findings of the experimental work, carried out dur-
ing a Ph.D.thesis by M. Sule are highlighted. [16]. Thereafter, a finite element analysis is performed
to simulate the hardening process of concrete in combination with autogenous shrinkage as imposed
deformation. Finally, the experimental results are used to verify the accuracy of the input parameters.

Chapter 5 - Parameter study
Chapter 5 focuses on a parameter study which was carried out to determine which parameters influ-
ence the crack occurrence the most. The maximal crack widths and corresponding stresses and strains
are displayed by the use of spreadsheet models in Excel. The spreadsheets models contributed to the
comparison between the analytical crack width predictions models and the numerically predicted crack
width.

Chapter 6 - Comparison between numerical crack width prediction and crack width prediction
using design codes
This chapter compares the crack width prediction due autogenous shrinkage, calculated numerically
with the crack width prediction according to various design codes. The design codes included in the
comparison have been discussed earlier in chapter 2. In this part the influence of the assumptions
made earlier in the parameter study are discussed in more detail.

Chapter 7 - Discussion
In this chapter, the results presented throughout this thesis, as well as the way they were obtained, are
critically analysed and discussed.

Chapter 8 - Conclusions and recommendation
Finally, in chapter 8 the answers to the sub-question were given and the main conclusions and the
answer on the research question are drawn. In the end of the thesis recommendations are made for
further research needed.



2
Analytical crack width prediction models

This literature study is conducted to obtain a better understanding of the background of the different
crack width prediction models. First of all, the concept of a tensile bar under imposed deformations is
explained. Thereafter, the cracking theory and the different prediction models for calculating the crack
width are discussed individually. Finally, a comparison is made between the different models and the
general assumptions and conclusions are mentioned.

2.1. Description of imposed deformation
In this paragraph the concept of imposed deformations is described. The term imposed deformation
often gives rise to confusion andmisunderstanding. Therefore, the term ‘’restrained deformation’’ would
better reflect what is meant actually. Figure 2.1 shows what is meant with restrained deformation. In
figure 2.1a a prismatic bar with length 𝐿 is shown. The bar is fixed at one end and it is completely free
to deform at the other end. This figure emphasizes that if unrestrained changes in volume or length are
possible, no stresses will be generated and no cracks will appear. In figure 2.1b the bar is fixed at both
ends. In this case volume or length changes are restrained, which may cause cracks in the concrete if
the stress reaches the tensile strength. This case is denoted as ‘’imposed deformation’’. Since there is
no observable deformation of the bar, this may be confusing. To make the situation clearer a fictitious
cut is made at the end of the bar. In case (a), a shrinkage strain will cause the bar to shorten freely
by an increment Δ(𝜖𝑠ℎ𝑟) without any stresses in the bar. In case (b) the boundary conditions do not
allow the bar to shorten freely and a tensile force 𝑃 has to be introduced, in order to restore the original
situation. This force generates an elongation of the bar which is equal to:

Δ𝐿(Δ𝜖𝑠ℎ𝑟) + Δ𝐿(Δ𝑃) = 0 𝑜𝑟 ∶ (Δ𝜖𝑠ℎ𝑟) ⋅ 𝐿 + 𝑃 ⋅
𝐿
𝐸𝐴 = 0 → 𝑃 = −Δ𝜖𝑠ℎ𝑟 ⋅ 𝐸𝐴 (2.1)

Due to the restoring force 𝑃, there is a deformation of the bar Δ𝐿. This deformation by the force 𝑃 is
actually the imposed deformation. Therefore, the term ‘’imposed deformation’’ refers to the situation of
free deformation of the bar [24].

Figure 2.1: Schematic representation of a prismatic bar under imposed deformation (van Breugel et al., 2013)
a. Bar fixed at one end, shortened by imposed strain. No stresses.
b. Bar fixed at both ends, prevented to shorten under shrinkage strain

5
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2.2. Cracking theory (Tensile bar model)
In the previous paragraph the concept of imposed deformation is described using an example. In this
example the stiffness of the element was assumed to be constant. While in reality, the axial stiffness
𝐸𝐴, decreases if cracking occurs. For this reason, axial forces are reduced due to the formation of
cracks, at least in some part of the structures. How to deal with cracks caused by imposed deforma-
tions requires a clear understanding of the relationship between stiffness, deformation and cracking.
In this section, the cracking behaviour of a tensile bar under an imposed load is explained.

In general, most prediction models that are used to calculate the crack width are based on the basic
case of a prismatic reinforced concrete bar, subjected to axial tension. In figure 2.2 the basic behaviour
of a tensile bar subjected to increasing axial load is shown. At the location of the crack, the stress and
the elongation in the concrete is zero and the steel reinforcement has to carry the full tensile load. Due
to bond stresses between the steel and the concrete, acting at both sides of the crack, the concrete is
reactivated to carry the tensile force. At a transfer length 𝑙𝑡 at both sides of the crack, the undisturbed
area is reached again.

Figure 2.2: Behaviour of reinforced prismatic bar subjected to axial tension (Model Code, 2010)

The response of a reinforced concrete tensile bar to an axial load depends mainly on the cracking
behavior of the member. The characteristic response of a tensile bar is shown in figure 2.3 and can
be divided in four stages. In the next section the different stages and corresponding equations will be
explained.

I - Uncracked stage
The first stage is the uncracked stage. In this stage the tensile force is smaller than the cracking force
𝑁 < 𝑁𝑐𝑟 of the cross-section and no cracks will occur. In addition, there will be no strain difference
between the reinforcement steel and the concrete (𝜖𝑐 = 𝜖𝑠). The tensile force carried by the concrete
and reinforcement can be calculated with the following equation:

𝑁 = 𝑁𝑐 + 𝑁𝑠 = 𝐸𝑐 ⋅ 𝐴𝑐 ⋅ 𝜖𝑐 + 𝐸𝑠 ⋅ 𝐴𝑠 ⋅ 𝜖𝑠 = 𝜖𝑐 ⋅ 𝐸𝑐 ⋅ 𝐴𝑐 ⋅ (1 + 𝜌𝛼𝑒), (2.2)

where:

𝐸𝑐 Young’s modulus of concrete

𝐴𝑐 Area of concrete

𝜖𝑐 Concrete strain

𝐸𝑠 Young’s modulus of steel

𝐴𝑠 Area of reinforcement

𝜖𝑠 Steel strain

𝜌 Reinforcement ratio 𝐴𝑠
𝐴𝑐

𝛼𝑒 Young’s modulus ratio 𝐸𝑠
𝐸𝑐
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Figure 2.3: Load-deformation diagram of a reinforced concrete tensile bar (van Breugel et al., 2013)

II - Crack formation stage
Stage II is denoted as the crack formation stage. In this stage cracks will occur if the tensile force
reaches the cracking force 𝑁 = 𝑁𝑐𝑟. The tensile force does not increase, because after the occurrence
of a new crack, it falls back. If so many cracks have been formed that no intermediate areas (white
areas in figure 2.2) are left, the concrete cannot reach the tensile strength anymore, so no new cracks
will appear. The crack pattern is then fully developed. An important assumption is that the tensile force
is constant until the stabilized cracking stage is reached. In reality, the dashed line which corresponds
to the tensile force will not be horizontal but inclined ranging from a first crack for 5 percent fractile
tensile strength 𝑓𝑐𝑡,0.05 to an upper value of 95 percent fractile tensile strength 𝑓𝑐𝑡,0.95 [CEB-FIB]. This
assumption makes the calculation less complex because all cracks that occur at 𝑁 = 𝑁𝑐𝑟 have the
same theoretical crack width.

In figure 2.4 the force transmission in a distributed area next to a crack is shown. It is important to
note that the relationships are simplified by linearization. As can be seen, at the place of the crack the
stress in the concrete is zero. As a result of this all the forces in the crack must be transmitted by the
reinforcement. The stress in the reinforcement in the disturbed area can be calculated by dividing the
cracking force with the area of reinforcement. If, for simplicity, the calculations are based on the mean
concrete tensile strength 𝑓𝑐𝑡𝑚, the stress in the steel at the start of a new crack is:

𝜎𝑠 = 𝜎𝑠𝑟 =
𝑁𝑐𝑟
𝐴𝑠

= 𝜖𝑐𝑟 ⋅ 𝐸𝑐 ⋅ 𝐴𝑐
𝐴𝑠

(1 + 𝜌 ⋅ 𝛼𝑒) = 𝑓𝑐𝑡𝑚
𝜌 ⋅ (1 + 𝜌 ⋅ 𝛼𝑒), (2.3)

where 𝑓𝑐𝑡𝑚 is the mean axial tensile strength.

The steel stress in the concrete outside the disturbed area 𝜎𝑠𝑒 is directly proportional to the concrete
stress:

𝜖𝑐 = 𝜖𝑠 →
𝜎𝑠𝑒
𝐸𝑠

= 𝑓𝑐𝑡𝑚
𝐸𝑐

→ 𝜎𝑠𝑒 = 𝑓𝑐𝑡𝑚 ⋅ 𝛼𝑒 , (2.4)

where 𝛼𝑒 is the young’s modulus ratio
𝐸𝑠
𝐸𝑐
.
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Figure 2.4: Cracking behaviour of concrete (Walraven et al., 2019)

Since the concrete tensile stress 𝜎𝑐𝑡 in a crack is zero and at the end of the transfer length the concrete
stress is 𝑓𝑐𝑡𝑚 (figure 2.4d), the force transmitted by bond over that length can be expressed as:

𝑁 = 𝐴𝑐 ⋅ 𝑓𝑐𝑡𝑚 (2.5)

Now the force is transmitted by bond over the transfer length 𝑙𝑡:

𝑁 = 𝜏𝑏𝑚 ⋅ 𝑙𝑡 ⋅ 𝑚 ⋅ 𝜋 ⋅ ∅, (2.6)
where

𝐴𝑐 Concrete area

m Number of reinforcing bars

∅ Diameter

𝜏𝑏𝑚 Mean bond stress

By combining equation 2.5 and 2.6 the transfer length 𝑙𝑡 can be determined:

𝜏𝑏𝑚 ⋅ 𝑙𝑡 ⋅ 𝜋 ⋅ ∅ = 𝐴𝑐 ⋅ 𝑓𝑐𝑡𝑚 (2.7)

𝜏𝑏𝑚 ⋅ 𝑙𝑡 ⋅ 𝜋 ⋅ ∅
𝐴𝑠

= 𝐴𝑐 ⋅ 𝑓𝑐𝑡𝑚
𝐴𝑠

= 𝑓𝑐𝑡𝑚
𝜌 , (2.8)

where 𝐴𝑠 =
1
4 ⋅ 𝑚 ⋅ 𝜋 ⋅ ∅

2

This results in the following expression for the transfer length:

𝑙𝑡 =
1
4
𝑓𝑐𝑡𝑚
𝜏𝑏𝑚

∅
𝜌 (2.9)



2.2. Cracking theory (Tensile bar model) 9

The crack width is defined as the difference of elongation between the steel and the concrete over a
disturbed area. The maximum length of the disturbed area is two times the transfer length.

𝑤 = 2 ⋅ 𝑙𝑡 ⋅ (𝜖𝑠𝑚 − 𝜖𝑐𝑚) (2.10)

where 𝜖𝑠𝑚 is the mean steel strain and 𝜖𝑐𝑚 the mean concrete strain along the transfer length 𝑙𝑡. The
development of the stresses at both sides of the crack is shown in figure 2.4. The strains can now be
calculated from these stresses. The mean steel strain is:

𝜖𝑠𝑚 =
1

2 ⋅ 𝐸𝑠
⋅ (𝜎𝑠𝑟 + 𝜎𝑠𝑒) (2.11)

Substituting equation 2.4 into this will give the following equation:

𝜖𝑠𝑚 =
1

2 ⋅ 𝐸𝑠
⋅ (𝜎𝑠𝑟 + 𝛼𝑒 ⋅ 𝑓𝑐𝑡𝑚) (2.12)

The mean concrete strain over the transfer length is:

𝜖𝑐𝑚 =
𝑓𝑐𝑡𝑚/2
𝐸𝑐

= 1
2 ⋅ 𝐸𝑠

⋅ 𝛼𝑒 ⋅ 𝑓𝑐𝑡𝑚 (2.13)

Substituting the mean steel strain and mean concrete strain from equation 2.12 and 2.13 in equation
2.10 will result in:

𝑤𝑚𝑎𝑥 =
1
4 ⋅

𝑓𝑐𝑡𝑚
𝜏𝑏𝑚

⋅ ∅𝜌 ⋅
1
𝐸𝑠
⋅ 𝜎𝑠𝑟 (2.14)

III - Stabilized cracking stage
Stage III is the stabilized cracking stage. This stage is reached when the tensile force is larger than
the cracking force 𝑁 > 𝑁𝑐𝑟 of the cross-section. An increase in tensile forces will not result in new
cracks but will widen the existing cracks. This means that the number of cracks remains the same.
The increase in the steel stress is then:

Δ𝜎𝑠 = 𝜎𝑠 − 𝜎𝑠𝑟 (2.15)

The increase of the steel stress can be converted to an increase of the crack width by the following
equation:

Δ𝑤 = 𝜎𝑠 − 𝜎𝑠𝑟 ⋅ 2𝑙𝑡
𝐸𝑠

(2.16)

Now the total crack width in the stabilized cracking stage can be obtained by adding equation 2.16 to
equation 2.14:

𝑤𝑚𝑎𝑥 =
1
2 ⋅

𝑓𝑐𝑡𝑚
𝜏𝑏𝑚

⋅ ∅𝜌 ⋅
1
𝐸𝑠
⋅ (𝜎𝑠 − 0, 5 ⋅ 𝜎𝑠𝑟) (2.17)

Since it is assumed that in the crack formation stage the steel stress 𝜎𝑠 is equal to the steel stress
directly after cracking 𝜎𝑠𝑟, equation 2.17 can be denoted as the general expression for the calculation
of the maximum crack width for both the stabilized cracking stage and the crack formation stage.

IV - Yielding stage
Stage IV starts when the yield strength of the steel is reached. Once the yield strength of the steel in
one of the cracks is reached, the deformation increases significantly, even if the load is kept constant.
This behaviour is shown by stage IV in figure 2.3.
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2.3. Crack width prediction models (Design Codes)
The following part of the literature explains how to determine the crack width for each prediction method.
In section 2.4 the fundamental differences are discussed. At the end of the literature study the general
conclusions are listed (2.5).

2.3.1. EN 1992-1-1
The first prediction model that will be explained is the EN1992-1-1 [1]. This code is part of Eurocode
2 and relates to the design of concrete buildings. In chapter 7 of the code, the checks for the service-
ability limit state (SLS) are given. This chapter covers the following three limit states: stress limitation,
crack control and deflection control. In this research, only the checks relating to the crack control are
discussed.

In the Eurocode some general considerations are made:

- Cracks must be limited in such a way that they do not affect the function and durability of the
structure.

- Cracks are normal in reinforced concrete structures that are subject to bending, shear, torsion or
stress as a result of direct loading.

- Cracks caused by other causes, such as plastic shrinkage or expansive chemical reactions are
beyond the scope of this section.

- If the cracks do not compromise the function of the structure, they may arise without control.

- For the calculated crack width 𝑤𝑘, a limit value, 𝑤𝑚𝑎𝑥, must be taken into account. The maximum
crack width is shown in figure 2.5 and depends on the exposure class and the reinforcement
conditions.

Figure 2.5: Recommended values of 𝑤𝑚𝑎𝑥 [mm] (Table 7.1N - Eurocode 2, 2004)

The code provides two methods to validate the crack width 𝑤𝑘.The first method determines the crack
width without direct calculation also known as the indirect method (EC2 art. 7.3.3). This method
provides the maximum bar diameter (figure 2.6) or the maximum bar spacing (figure 2.7). These stated
limit values depend only on the steel stress in the serviceability limit state. Assumptions have been
made to calculate the values in the table. If practical values deviate from these assumed values, the
bar diameter read from figure 2.6 must be corrected on the base of equation 2.4 and 2.19.
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Figure 2.6: Maximum bar diameter for crack control (Table 7.2N - Eurocode 2, 2004)

Figure 2.7: Maximum bar spacing for crack control (Table 7.3N - Eurocode 2, 2004)

In case of member loaded in bending the following equation should be used to determine the bar
diameter:

∅𝑠 = ∅∗𝑠
𝑓𝑐𝑡,𝑒𝑓𝑓
2.9

𝑘𝑐ℎ𝑐𝑟
(2(ℎ − 𝑑) , (2.18)

In case of member loaded in tension the following equation should be used to determine the maximum
bar diameter:

∅𝑠 = ∅∗𝑠
𝑓𝑐𝑡,𝑒𝑓𝑓
2.9

ℎ𝑐𝑟
(8(ℎ − 𝑑) , (2.19)

where

∅𝑠 Adjusted maximum bar diameter

∅∗𝑠 Maximum bar size given in figure 2.6

𝑓𝑐𝑡,𝑒𝑓𝑓 Effective mean concrete tensile strength

𝑘𝑐 Coefficient which takes into account of the stress distribution

ℎ Overall depth of the section

ℎ𝑐𝑟 Depth of the tensile zone immediately prior to cracking

𝑑 Effective depth to the centroid of the outer layer of reinforcement



2.3. Crack width prediction models (Design Codes) 12

The second method determines the crack width 𝑤𝑘 by calculating it directly. This approach is based
on the before mentioned hidden tensile member. The characteristic crack width 𝑤𝑘, can be determined
by integrating the strain difference between the reinforcement and concrete over the maximum crack
spacing.

𝑤𝑘 = ∫
𝑠𝑟,𝑚𝑎𝑥

0
(𝜖𝑠(𝑥) − 𝜖𝑐(𝑥))𝑑𝑥 = 𝑠𝑟,𝑚𝑎𝑥(𝜖𝑠𝑚 − 𝜖𝑐𝑚), (2.20)

𝑠𝑟,𝑚𝑎𝑥 = 𝑘3 ⋅ 𝑐 + 𝑘1 ⋅ 𝑘2 ⋅ 𝑘4 ⋅
∅

𝜌𝑝,𝑒𝑓𝑓
. (2.21)

𝜖𝑠𝑚 − 𝜖𝑐𝑚 =
𝜎𝑠 − 𝑘𝑡

𝑓𝑐𝑡,𝑒𝑓𝑓
𝜌𝑝,𝑒𝑓𝑓

(1 + 𝛼𝑒𝜌𝑝,𝑒𝑓𝑓)
𝐸𝑠

≥ 0, 6𝜎𝑠𝐸𝑠
. (2.22)

where

𝑤𝑘 Characteristic crack width.

𝑠𝑟,𝑚𝑎𝑥 Maximum crack spacing.

𝜖𝑠𝑚 Mean strain in the reinforcement under the relevant combination of loads.

𝜖𝑐𝑚 Mean strain in the concrete between cracks.

𝜎𝑠 stress in the tension reinforcement assuming a cracked section.

𝑓𝑐𝑡,𝑒𝑓𝑓 Effective concrete tensile strength.

𝜌𝑝,𝑒𝑓𝑓 Effective reinforcement percentage. 𝐴𝑠
𝐴𝑐,𝑒𝑓𝑓

.

𝐴𝑐,𝑒𝑓𝑓 Effective area of concrete in tension surrounding the reinforcement.

𝛼𝑒 Young’s modulus ratio 𝐸𝑠
𝐸𝑐𝑚

.

𝑘𝑡 Coefficient which takes into account the duration of the load.

𝑘1 Coefficient which takes into account the bond properties.

𝑘2 Coefficient which takes into account the distribution of strain.

𝑘3 Constant parameter which is defined for each country; 3,4 for the Netherlands.

𝑘4 Constant parameter which is defined for each country; 0,425 for the Netherlands.

𝑐 concrete cover

∅ Adjusted maximum bar diameter

2.3.2. EN 1992-3
The next prediction model is the EN-1992-3 [2]. This method is another part of the Eurocode 2 but this
code relates to the design of concrete liquid retaining and containment structures. In chapter 7 of the
code the checks for the serviceability limit state (SLS) are given. The code provides two methods to
determine the crack width. It makes a distinction between an indirect method and a method to calculate
the crack width due to restraint of imposed deformations. With regard to the indirect method the code
provides two figures where the maximum bar diameters (figure 2.8) and maximum spacing bar (figure
2.9) according to the service stress in the reinforcement are given. This approach is very similar to the
EN1992-1-1 [1]. The service stress in the reinforcement can be calculated from the following formula:

𝜎𝑠 =
𝑘𝑐 ⋅ 𝑘 ⋅ 𝑓𝑐𝑡,𝑒𝑓𝑓

𝜌𝑒𝑓𝑓
, (2.23)
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where:

𝑘𝑐 Coefficient which takes into account the stress distribution in the concrete

𝑘 Coefficient which takes into account self-equilibrating effects

𝑓𝑐𝑡,𝑒𝑓𝑓 Effective mean concrete tensile strength

𝜌𝑒𝑓𝑓 Effective reinforcement ratio

Figure 2.8: Maximum bar diameters in mm (Y-axis) for crack control in members subject to axial tension. Reinforcement stress
𝜎𝑠 in MPa (X-axis) (Figure 7.103N - EC2)

Figure 2.9: Maximum bar spacings in mm (Y-axis) for crack control in members subject to axial tension. Reinforcement stress
𝜎𝑠 in MPa (X-axis)(Figure 7.104N - EC2)

The maximum bar diameter given by figure 2.8 may be determined using the formula below:

∅𝑠 = ∅∗𝑠 ⋅
𝑓𝑐𝑡,𝑒𝑓𝑓
2.9 ⋅ ℎ

(10(ℎ − 𝑑) , (2.24)

where

∅𝑠 Adjusted maximum bar diameter

∅∗𝑠 Maximum bar size given in figure 2.8

𝑓𝑐𝑡,𝑒𝑓𝑓 Effective mean concrete tensile strength

ℎ Overall depth of the section

𝑑 Effective depth to the centroid of the outer layer of reinforcement
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In Annex M of the EN1992-3 the direct calculation of crack width due to restraint of imposed deforma-
tions is given. The code deals with two specific conditions of restraint as shown in Figure 2.10. The
forms of imposed deformation covered in this code are shrinkage and early thermal movements due to
cooling of members during the days immediately after casting.

Figure 2.10: Types of restraint to walls (Figure M1 - Eurocode 2, 2006)

EN1992-3 refers to EN1992-1-1 for the calculation of characteristic crack width. The general formula
is given in equation 2.20. This equation holds for both restraint conditions, the only difference is the
way the crack strain is estimated.

(a) The crack strain in case a member is restrained at both ends:

(𝜖𝑠𝑚 − 𝜖𝑐𝑚) =
0.5𝑘 ⋅ 𝑘𝑐 ⋅ 𝑓𝑐𝑡,𝑒𝑓𝑓 ⋅ 𝛼𝑒

𝐸𝑠
(( 1𝛼𝑒𝜌

+ 1). (2.25)

(b) The crack strain in case a member is restrained along one edge:

(𝜖𝑠𝑚 − 𝜖𝑐𝑚) = 𝑅𝑎𝑥 ⋅ 𝜖𝑓𝑟𝑒𝑒 , (2.26)

where

𝑅𝑎𝑥 Restraint factor

𝜖𝑓𝑟𝑒𝑒 Strain which would occur if the member was completely unrestrained

In Annex L of the EN 1992-3 different situations are given with a corresponding factor of restraint. It
states that the degree of restraint varies over the height of the structure. The variation depends on the
ratio between the length and the height 𝐿𝐻 . The code states that if

𝐿
𝐻 = 2 the restraint at the top equals

zero. While if 𝐿𝐻 > 8 the restraint at the top equals the restraint at the joint.
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2.3.3. fib Model Code 2010
The fibModel Code for Concrete Structures 2010 [10] is a recommendation for the design of reinforced
concrete which is intended to be a guidance document for future codes. It states that before the crack
width can be calculated, it must be determined which crack stage applies. According to the simplified
representation shown in figure 2.3 the stabilized cracking stage applies when the load is larger than
the cracking load (𝑁 > 𝑁𝑐𝑟). The crack formation stage applies when, for imposed deformation, the
strain 𝜖 satisfies the following condition:

𝜖𝑐𝑟 ≤ 𝜖 ≤ 𝜖𝑓𝑑𝑐𝑝, (2.27)

where the concrete strain at onset of cracking 𝜖𝑐𝑟 and the concrete strain at which the crack pattern is
fully developed 𝜖𝑓𝑑𝑐𝑝 can be calculated by the following equations:

𝜖𝑐𝑟 =
𝑓𝑐𝑡𝑚
𝐸𝑐

(2.28)

𝜖𝑓𝑑𝑐𝑝 =
𝑓𝑐𝑡𝑚 ⋅ (0.6 + 𝛼𝑒 ⋅ 𝜌)

𝐸𝑠 ⋅ 𝜌
(2.29)

The code assumes that in general, if only imposed deformation occurs, the crack formation stage ap-
plies. The crack width 𝑤𝑘 for all stages of cracking may be calculated by using the following equations:

𝑤𝑘 = 2 ⋅ 𝑙𝑠𝑡 ⋅ (𝜖𝑠𝑚 − 𝜖𝑐𝑚 − 𝜖𝑐𝑠), (2.30)

𝑙𝑠𝑡 =
1
4 ⋅

𝑓𝑐𝑡𝑚
𝜏𝑏𝑚

⋅ 𝜙𝑠𝜌𝑠
, (2.31)

𝜖𝑠𝑚 − 𝜖𝑐𝑚 − 𝜖𝑐𝑠 =
𝜎𝑠 − 𝛽 ⋅ 𝜎𝑠𝑟

𝐸𝑠
− 𝜂𝑟 ⋅ 𝜖𝑠ℎ (2.32)

where

𝑙𝑠𝑡 Length over which slip between concrete and steel occurs

𝑘 Empirical parameter to take the influence of the concrete cover into consideration (k = 1)

𝑐 Concrete cover

𝜖𝑠𝑚 Mean strain in the reinforcement

𝜖𝑐𝑚 Mean strain in the concrete

𝜖𝑐𝑠 Strain of the concrete due to shrinkage

𝜏𝑏𝑚 Mean bond stress

𝜙𝑠 Reinforcement bar diameter

𝜌𝑠 Reinforcement percentage

𝛽 Empirical coefficient to asses the mean strain

𝜂𝑟 Coefficient taking account of shrinkage condition

𝜖𝑠ℎ Shrinkage strain

𝜎𝑠 Steel stress in a crack

𝜎𝑠𝑟 Maximum steel stress in a crack in the crack formation stage
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The maximum steel stress 𝜎𝑠𝑟 in a crack in the crack formation stage is:

𝜎𝑠𝑟 =
𝑓𝑐𝑡𝑚
𝜌𝑠,𝑒𝑓𝑓

(1 + 𝛼𝑒 ⋅ 𝜌𝑠,𝑒𝑓𝑓) (2.33)

The maximum steel stress 𝜎𝑠,𝑐𝑟 in a stabilized cracking stage is:

𝜎𝑠,𝑐𝑟 =
𝑓𝑐𝑡𝑚
𝜌𝑠,𝑒𝑓𝑓

(1 + 𝛼𝑒 ⋅ 𝜌𝑠,𝑒𝑓𝑓) + 𝐸𝑠(𝜖 − 𝜖𝑓𝑑𝑐) (2.34)

The values for mean bond strength 𝜏𝑏𝑚 and the coefficients 𝛽 and 𝜂𝑟 are given in figure 2.11.

Figure 2.11: Values for 𝛽 and 𝜂𝑟 for deformed reinforcing bars (Model Code, 2010)

The Model Code 2010 also provides a method to determine the crack width without calculation. This
method will not be discussed because it largely corresponds to the indirect method of EN 1992-1-1
(see paragraph 2.3.1)

2.3.4. Van Breugel
One of the more comprehensive crack prediction models is that of Professor K. van Breugel [24]. Ac-
cording to Van Breugel, it is essential to check whether a member subjected to an imposed deformation
is indeed in the crack formation stage. In other words, it should be checked if the imposed strain is
larger than the cracking strain and smaller than the strain at which the fully developed crack pattern
is reached (𝜖𝑐𝑟 < 𝜖 < 𝜖𝑓𝑑𝑐𝑝). The strain at which the fully developed crack pattern is reached is
approximated with the following equation:

𝜖𝑓𝑑𝑐𝑝 ≈ (60 + 2, 4 ⋅ 𝜎𝑠𝑟) ⋅ 10−6 (2.35)

In case that the member is in the crack formation stage, the mean crack width𝑤𝑚𝑜 can be determined
by equation 2.36.

𝑤𝑚𝑜 = 2 ⋅ [
0, 4 ⋅ ∅

𝑓𝑐𝑚,𝑐𝑢𝑏𝑒 ⋅ 𝐸𝑠
⋅ (𝜎𝑐𝑟𝜌 )

2 ⋅ (1 + 𝛼𝑒 ⋅ 𝜌)]0,85 (2.36)

In equation 2.37 the mean crack width is given as function of the steel stress 𝜎𝑠𝑟 directly after cracking.

𝑤𝑚𝑜 = 2 ⋅ [
0, 4 ⋅ ∅

𝑓𝑐𝑚,𝑐𝑢𝑏𝑒 ⋅ 𝐸𝑠
⋅ 𝜎𝑠𝑟 ⋅ (𝜎𝑠𝑟 − 𝛼𝑒 ⋅ 𝜎𝑠𝑟)]0,85 (2.37)

where

∅ Bar diameter

𝑓𝑐𝑚,𝑐𝑢𝑏 Mean cube compressive strength

𝐸𝑠 Modulus of elasticity of steel

𝛼𝑒 Ratio of young moduli

𝜌 Reinforcement ratio

𝜎𝑐𝑟 Concrete tensile stress at onset of cracking
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From the force equilibrium in the cracked cross section it is possible to calculate the steel stress directly
after cracking. This equilibrium can be expressed as follows:

𝐴𝑐 ⋅ 𝜎𝑐𝑟 ⋅ (1 + 𝛼𝑒 ⋅ 𝜌) = 𝐴𝑠 ⋅ 𝜎𝑠,𝑐𝑟 (2.38)

The steel stress after cracking can now be determined:

𝜎𝑠,𝑐𝑟 =
𝜎𝑐𝑟
𝜌 ⋅ (1 + 𝛼𝑒 ⋅ 𝜌) (2.39)

Van Breugel states that the transfer length 𝑙𝑠𝑡 now can be calculated using the following formula:

𝑙𝑠𝑡 = 1, 2 ⋅ 𝑤𝑚𝑜 ⋅
𝐸𝑠
𝜎𝑠,𝑐𝑟

(2.40)

When the member is in the stabilized cracking stage which means that the crack pattern is fully de-
veloped, the crack spacing varies between 𝑙𝑠𝑡 and 2𝑙𝑠𝑡. It is assumed that the mean crack spacing
remains constant at about 1.5 ⋅ 𝑙𝑠𝑡 when the load further increases. The mean crack spacing is now:

𝑙𝑚 = 1, 8 ⋅ 𝑤𝑚𝑜 ⋅
𝐸𝑠
𝜎𝑠,𝑐𝑟

(2.41)

The mean crack width 𝑤𝑚𝑣 in case the member is in the stabilized cracking stage can be determined
with the following equation:

𝑤𝑚𝑣 =
𝑙𝑚
𝐸𝑠
⋅ (𝜎𝑠 − 0, 5 ⋅ 𝜎𝑠,𝑐𝑟) (2.42)

where

𝑙𝑚 mean crack spacing

𝜎𝑠 Steel stress in the crack (in SLS if 𝑁 > 𝑁𝑐𝑟)

𝜎𝑠,𝑐𝑟 Steel stress directly after cracking (for 𝑁 = 𝑁𝑐𝑟)

In case of a non fully developed crack pattern caused by an imposed deformation and a steel stress
𝜎𝑠 ≤ 295𝑁/𝑚𝑚2 the characteristic crack width is:

𝑤𝑘 = 𝑤𝑚0 ⋅ 𝛾𝑠 ⋅ 𝛾∞ (2.43)

In case of a fully developed crack pattern and 𝜎𝑠 ≤ 295𝑁/𝑚𝑚2 the characteristic crack width is:

𝑤𝑘 = 𝑤𝑚𝑣 ⋅ 𝛾𝑠 ⋅ 𝛾∞, (2.44)

where

𝛾𝑠 factor for scatter (crack formation stage 1.3; stab. cracking stage tension 1.5 and flexure 1.7)

𝛾∞ enhancement factor (𝜎𝑠 < 295 MPa = 1.3 and 𝜎𝑠 > 295 MPa = formula 2.45

Formula enhancement factor
𝛾∞ =

1
1 − 9 ⋅ 𝜎3𝑠 ⋅ 10−9

(2.45)
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2.3.5. CIRIA C660
The CIRIA C660 [3] is an English guideline that has been developed complimentary to the Eurocode
2. The main objective of the CIRIA C660 is to provide a method for the control of early-age crack-
ing, while also being adequate for controlling cracks that may develop due to long-term deformations
caused by temperature change and shrinkage.The CIRIA C660 makes a distinction between the follow-
ing situations: (I) a member restrained along one edge; (II) a member restrained at ends only. For both
situations the maximum crack spacing 𝑠𝑟,𝑚𝑎𝑥 can be calculated using equation 2.46. This equation
corresponds with the Eurocode 2.

𝑠𝑟,𝑚𝑎𝑥 = 𝑘3 ⋅ 𝑐 + 𝑘1 ⋅ 𝑘2 ⋅ 𝑘4 ⋅ ∅/𝜌𝑝,𝑒𝑓𝑓 (2.46)

I - For a member restrained along one edge, the crack width 𝑤𝑘 can be calculated using the following
equations:

𝑤𝑘 = 𝑠𝑟,𝑚𝑎𝑥 ⋅ 𝜖𝑐𝑟 (2.47)

𝜖𝑐𝑟 = 𝐾1(𝛼𝑐𝑇1 + 𝜖𝑐𝑎)𝑅1 + 𝛼𝑐𝑇2𝑅2 + 𝜖𝑐𝑑𝑅3 (2.48)

where

𝑇1 Early age temperature change in the concrete

𝑇2 Long term ambient temperature change

𝛼𝑐 Thermal expansion coefficient

𝜖𝑐𝑎 Autogenous shrinkage

𝜖𝑐𝑑 Drying shrinkage

𝐾1 Effect of creep on stress and strain relaxation

𝑅𝑖 Degree of restraint

II - For a member restrained at ends only the crack width 𝑤𝑘 is:

𝑤𝑘 = 𝑠𝑟,𝑚𝑎𝑥 ⋅ 𝜖𝑠𝑚 − 𝜖𝑐𝑚 (2.49)

(𝜖𝑠𝑚 − 𝜖𝑐𝑚) =
0.5𝑘 ⋅ 𝑘𝑐 ⋅ 𝑓𝑐𝑡,𝑒𝑓𝑓 ⋅ 𝛼𝑒

𝐸𝑠
(( 1𝛼𝑒𝜌

+ 1) (2.50)

This approach corresponds with the EN 1992-3 described in section 2.3.2

In CIRIA C660 the following formula is given to determine the degree of restraint 𝑅 when a member is
restrained along one edge:

𝑅𝑗 =
1

1 + (𝐴𝑛𝐴𝑜
𝐸𝑛
𝐸𝑜
)

(2.51)

where

𝐴𝑛 Cross sectional area of the new (restrained) concrete

𝐴𝑜 Cross sectional area of the old (restrained) concrete

𝐸𝑛 Modulus of elasticity of the new concrete

𝐸𝑜 Modulus of elasticity of the old concrete
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2.3.6. ICE 0706/012
The ICE 0706/012 [4] is a further development of the calculation method described in the EN 1992-3
and CIRIA C660. The ICE provides a unified approach that assumes that the maximum potential crack
width 𝑤𝑝 may only occur on conditions of end restraint, and in case a member is restrained along the
edge, a reduction in maximum potential crack width is assumed because of the following:

1. A part of the load is transferred from the concrete into the restraining member, so this reduces
the stress which should be transferred to the reinforcement.

2. The edge restraint inhibits the extent to which a crack can open. The higher the edge restraint,
the less strain relief can occur and therefore the smaller the crack width that may develop.

3. A new crack may be affected by the presence or lack of existing cracks which may determine the
degree of stress relaxation between the cracks.

The ICE method makes a distinction between two cracking stages. The first cracking stage starts when
the tensile strain capacity of the concrete 𝜖𝑐𝑡𝑢 is exceeded. In the first stage is assumed that the crack
opens instantaneously to a value 𝑤𝑘1. In this stage a part of the load is transferred from the concrete
to the steel. At the second stage, the crack gets wider by a value of 𝑤𝑘2, as the concrete is assumed
to continue to shrink relatively to the reinforcement. The full crack width can now be determined with
the following equation:

𝑤𝑘 = 𝑤𝑘1 +𝑤𝑘2 (2.52)

For the calculation of the crack width in stage 1, equations 2.53 and 2.54 are based on the current
methods for the members subject to end restraint with a modification factor (1 − 𝑅𝑒𝑑𝑔𝑒) to take into
account the effect of edge restraint in both attracting load and preventing crack opening (figure 2.13).
The code takes also the relative lengths of the cracked zone 𝑆 into account and the uncracked zone.

I - For a member restrained at ends only the crack width 𝑤𝑘1 in stage 1 is:

𝑤𝑘1 = 𝑠𝑟,𝑚𝑎𝑥 ⋅
0.5𝑘 ⋅ 𝑘𝑐 ⋅ 𝑓𝑐𝑡,𝑒𝑓𝑓 ⋅ 𝛼𝑒

𝐸𝑠
(( 1𝛼𝑒𝜌

+ 1) (2.53)

Figure 2.12: End restraint (Figure A2.1 - ICE 0706, 2010)
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II - For a member restrained along one edge, the crack width 𝑤𝑘1 in stage 1 can be calculated using
the following equation:

𝑤𝑘1 = 𝑠𝑟,𝑚𝑎𝑥 ⋅
0, 5𝐿 ⋅ 𝜖𝑐𝑡𝑢 ⋅ (1 − 𝑅𝑒𝑑𝑔𝑒)𝐵

1 − 𝑆⋅𝑅𝑒𝑑𝑔𝑒
𝑘𝐿⋅𝐻

[1 − 0, 5(𝐵 + 1
1−𝑅𝑒𝑑𝑔𝑒

)]
, (2.54)

where,

𝜖𝑐𝑡𝑢 Ultimate strain capacity of concrete in tension 𝜖𝑐𝑡𝑢 = 𝛼𝑒 ⋅
𝑓𝑐𝑡,𝑒𝑓𝑓
𝐸𝑠

B Strain relief 𝐵 = ( 𝑘⋅𝑘𝑐𝛼𝑒⋅𝜌
+ 1)

S Length of the cracked zone

(1 − 𝑅𝑒𝑑𝑔𝑒) Modification factor

Figure 2.13: Edge restraint (Figure A3.1 - ICE 0706, 2010)

The second cracking stage occurs as the concrete continues to contract after the development of the
crack. The steel in the cracked zone is maintained under stress by contraction of the concrete outside
the cracked zone. It is assumed that the concrete in the cracked zone contracts relatively to the steel,
causing the crack to grow (figure 2.14).

Figure 2.14: Development of second cracking stage (ICE 0706, 2010)

The restraint local to the crack, prevents contraction of the concrete in the cracked zone. The restraint
to contraction of the concrete is zero at the crack (the concrete is locally debonded) and it builds up
linearly to its pre-cracked value outside the cracking zone. The code states that the average restraint
within the cracking zone is therefore 0.5𝑅𝑒𝑑𝑔𝑒. The extra crack 𝑤𝑘2 will therefore be proportional to
(1 − 0.5𝑅𝑒𝑑𝑔𝑒). This results in the following equation:

𝑤𝑘2 = 𝑠𝑟,𝑚𝑎𝑥 ⋅ (1 − 0, 5𝑅𝑒𝑑𝑔𝑒)𝐾1(𝜖𝑓𝑟𝑒𝑒 −
𝜖𝑐𝑡𝑢

𝑅𝑒𝑑𝑔𝑒 ⋅ 𝐾1
) (2.55)
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2.4. Fundamental differences
In this section, the fundamental differences between the crack width prediction models will be contem-
plated. In this comparison, the focus is on the approach and the theoretical background on which the
models are based. In the parametric analysis (chapter 3) the influence of individual parameters are
discussed in more detail.

2.4.1. Direct versus indirect crack width prediction
From the literature study it turned out that the Eurocode 2 and Model Code 2010, make a distinction
between two different approaches to calculate the crack width. In the first approach the crack width
is calculated indirectly without direct calculations. The models provide tables or figures in which the
crack width criteria can be satisfied on the base of the maximum bar diameter or bar spacing according
to the service stress in the reinforcement. In these tables and figures assumptions have been made
to determine the maximum crack width. If practical values deviate, equations are given to determine
the maximum bar diameter and associated crack width. It must be taken into account that if cracks
occur due to imposed deformations the bar size criteria should be satisfied and the steel stress is the
value obtained immediately after cracking. While, in case cracks occur due to imposed loads either the
maximum bar size or the maximum bar spacing criteria must be complied with. In this case the steel
stress should be calculated assuming a cracked section.

The second approach implies that the crack width is calculated directly. The majority of the models
state that the characteristic crack width can be determined by multiplying the maximum crack spacing
with the difference between the reinforcement and concrete elongation (crack strain). This characteris-
tic crack width is limited by a maximum crack width. The maximum allowed crack width varies between
0,2 and 0,4 mm and depends on the exposure class and the reinforcement conditions.

The indirect approach is initially more convenient for engineers because it saves time. However, previ-
ous studies [17] have shown that the indirect methods turned out to be quite conservative. In addition,
none of the indirect approaches explains clearly the difference between cracks which occur due to
imposed loads or imposed deformations. Therefore, only the direct methods will be discussed in the
continuation of this thesis.

2.4.2. Tension bar model versus continuous restraining model theory
Figure 2.15 provides an overview of the crack width prediction models which were discussed in the
literature study. It turned out that a distinction can be made between prediction models which are
based on the tension bar model theory and models based on continuous restraining model theory.

Figure 2.15: Overview crack width prediction models
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As mentioned before the tension bar model is a theoretical model of a concrete tensile member with
one reinforcing bar in the middle subjected to a uniform tensile load. It is assumed that at the location
of the crack, the stress and strain in the concrete is zero and the steel reinforcement has to carry the
full tensile load. Over a certain transfer length, the stress is transferred from the steel reinforcement to
the concrete by means of bond. At the end of the transfer length, the axial strain of concrete matches
that of the reinforcement steel.

In case that the stabilized cracking stage is reached, the distances between the cracks, also called
the crack spacing, are all less than twice the transfer length. This indicates that there is no longer
a position along the tensile member where the axial strain of the concrete equals the cracking strain
𝜖𝑐𝑟. The crack width is determined by integrating the strain difference between the reinforcement and
concrete over the transfer length (crack formation stage) or over the crack spacing (stabilized cracking
stage). The differences between the prediction models in the way the strain difference and the transfer
length or crack spacing are determined is explained in section 2.4.3. Most of the prediction models
based on the tension bar theory assume a constant bond slip relationship, which translates into the
linear strain distribution as shown in figure 2.16.

Figure 2.16: Schematic representation of strain distribution of tensile member in crack formation stage (Y Zondag, 2021)
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The EN 1992-3-II, CIRIA C660-II and ICE apply the so called continuous restraining model. This model
has some similarities with the tension bar model. First of all, it also consists of a single reinforcement
bar surrounded by concrete and this reinforcement bar is also subjected to a uniform tensile load.
However, this member is continuously restrained along one edge as shown in figure 2.17.

Figure 2.17: Schematic representation of strain distribution of tensile member according to continuous restraining model (Y
Zondag, 2021)

Another difference with respect to the tensile bar model is that the continuous restraining model does
not take into account that the axial load is transferred from the concrete to the reinforcement steel due
to bonding [4]. This implies that the axial load is carried completely by the concrete and the mean strain
difference is equal to the axial strain of the tensile member being restrained. For this reason, it can
be concluded, once the crack strain is exceeded, that all the cracks will develop at the same time. No
matter what the degree of restraint is. [26].

Remarkably, only the ICE which is a further development of the CIRIA argues that part of the load is
transferred from the concrete into the restraining member, and this reduces the stress which should be
transferred to the reinforcement. It can be concluded that the ICE method combines the two theoretical
models. As mentioned before in section 2.3.6 this method considers two stages. The crack width in the
first stage is calculated on the basis of a revision of the tensile bar model which takes into account the
strain relief of the undisturbed area. While, the determination of the crack width in the second stage is
more in line with the continuous restraining model. In the second stage the cracks continuously develop
as the imposed deformation allows the concrete to continue to contract relatively to the reinforcement.
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2.4.3. Crack spacing theory
In paragraph 2.3 of the literature study it is emphasized that the crack widths are a function of the crack
spacing and the crack spacing depends mainly on the transfer length. According to Beeby [6], the
major differences between the prediction models can be explained on the basis of the following three
theories:

• ”slip” theory

• ”no slip” theory

• combinations of ”slip” and ”no slip” theory

In the following section, the three different theories will be explained and subsequently the differences
between the crack width prediction models will be discussed.

2.4.3.1 ”Slip theory”
The ”slip theory” is a theory that was proposed by prof. Salinger in 1936 for the first time. [22]. This
theory was developed for members which were subjected to pure tension, and in the theory it was as-
sumed that at each crack, bond failure occurs and that plane sections within the concrete remain plane.
Which means that cracks are formed parallel throughout the section thickness. According to the ”slip”
theory the crack width is equal to the elongation of the reinforcement relative to the concrete over a slip
length (transfer length) on either side of the crack as is illustrated in figure 2.18. The distribution of the
forces transferred between the concrete and the reinforcement interface is a function of the ultimate
bond strength 𝑓𝑏.

Figure 2.18: Schematic representation of the ”slip” cracking theory (Micallef, 2016)

As mentioned before in section 2.2, the force transmitted by bond over the slip length 𝑠0 can be ex-
pressed as:

𝐴𝑐𝑡 ⋅ 𝑓𝑐𝑡 = 𝑠0(𝜋∅𝑓𝑏) (2.56)

The reinforcement ratio is given by the following equation:

𝜌 = 𝐴𝑠
𝐴𝑐𝑡

= 𝜋∅2
4𝐴𝑐𝑡

(2.57)

Substituting equation 2.56 into equation 2.57 and rewriting it in the general form of the ”slip” theory will
result in the following expression:

𝑠0 = 𝐶1 ⋅
𝑓𝑐𝑡
𝑓𝑏
⋅ ∅𝜌 , (2.58)

where 𝐶1 is a coefficient which depends on the shape of the bond stress distribution and is derived
empirically. It can be concluded that according to the ”slip” theory the slip length (transfer length) is
proportional to ∅

𝜌 .
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2.4.3.2 ”No slip” theory
The ”no slip” theory is described in a report written by Base et al. in 1966 [5]. In contrast to the ”slip”
theory, this theory assumes that there is perfect bond between the concrete and the steel reinforcement.
According to the ”no slip” theory the transfer length of stresses is proportional to the concrete cover to
reinforcement. The transfer length 𝑠0 can be derived with the following equation:

𝑠0 = 𝐶2 ⋅ 𝑐, (2.59)

where 𝐶2 is a constant and 𝑐 is the concrete cover. This theory argues that the crack widths are minimal
at the bar surface and as they approach the concrete surface the crack width will increase. In figure
2.19 a schematic representation of the ”no-slip” cracking theory is shown.

Figure 2.19: Schematic representation of the ”no slip” cracking theory (Micallef, 2016)

2.4.3.3 Combined ”slip” and ”no slip” theory
In 1979, professor Beeby [6] argued that it would be more reasonable to combine the ”slip” and ”no slip”
cracking theories. He stated that the transfer length 𝑠0 had to be a function of both the ratio between
the bar diameter and the reinforcement percentage (∅𝜌 ) and the concrete cover to reinforcement. The
expression of the transfer length is given by the following equation:

𝑠0 = 𝐶3 ⋅ 𝑐 + 𝐶4 ⋅
∅
𝜌 , (2.60)

where 𝐶3 and 𝐶4 are non-dimensional coefficients. In figure 2.20 a schematic representation of the
combined cracking theories is given.

Figure 2.20: Schematic representation of the combined cracking theories (Micallef, 2016)
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2.4.3.4 Comparison between the prediction models
In figure 2.21 an overview of the applied formulas for the transfer length and maximum crack spacing
is given. It must be noted that the crack spacing mentioned here only refers to the stabilized cracking
stage. The reason for this is that the crack spacing in the crack formation stage is variable because new
cracks still develop. It can be concluded that all models with the exception of Van Breugel and theModel
Code apply the combined cracking theory. According to Van Breugel and the Model Code, the ”slip”
theory applies which means that the concrete cover will not influence the crack spacing. Furthermore,
it is remarkable that most of the prediction models assume a maximum crack spacing that exceeds the
theoretical upper limit of two times the transfer length. These models state that this is because of the
bond strength along the tensile member and due to the scatter in the crack stress causing the transfer
length to vary. The codes argue that this results in a larger crack spacing.

Figure 2.21: Transfer length and crack spacing equation of the crack width prediction models

2.5. General assumptions
In the Model Code 2010 and Van Breugel, which are the more comprehensive crack width predic-
tion models, is assumed that the crack width due to imposed deformations can also be determined
by the tensile member model as shown in figure 2.22. The assumption is that the starting point is
the horizontal axis. At a given imposed deformation, the response of the tensile member is found by
determining the intersection with the curve and reading the fictitious steel stress on the vertical axis.
This fictitious steel stress is used to determine the maximum crack width. However, the effect of an
imposed deformation in the crack formation stage is different from that in the stabilized cracking stage.

Figure 2.22: Load-deformation diagram of a reinforced concrete tensile member (van Breugel et al.,2013)
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If an imposed deformation occurs in the crack formation stage while simultaneously the external im-
posed strain remains constant, the number of cracks tends to increase. Since the external force can
not exceed the cracking load in the crack formation stage, the existing crack width will not increase.
The result is that only additional cracks will develop and the maximum crack width does not change.
The maximum crack width in the crack formation stage corresponds to the previously given equation
2.14 and is as follows:

𝑤𝑚𝑎𝑥 =
1
4 ⋅

𝑓𝑐𝑡𝑚
𝜏𝑏𝑚

⋅ ∅𝜌 ⋅
1
𝐸𝑠
⋅ 𝜎𝑠𝑟 (2.61)

While in the stabilized cracking stage, it is assumed that imposed deformations have influence on the
maximum crack width. Because in the stabilized cracking stage no new cracks are formed, and if
imposed deformations are present they cause widening of the existing cracks. The widening of the
cracks will cause an increase in the steel stress which can be defined as:

Δ𝜎𝑠 = 𝜖𝑖𝑚𝑝𝑜𝑠𝑒𝑑 ⋅ 𝐸𝑠 (2.62)

The general form of the equation for the maximum crack width in the stabilized cracking stage is as
follows:

𝑤𝑚𝑎𝑥 =
1
2 ⋅

𝑓𝑐𝑡𝑚
𝜏𝑏𝑚

⋅ ∅𝜌 ⋅
1
𝐸𝑠
⋅ (𝜎𝑠 − 𝛼 ⋅ 𝜎𝑠𝑟 + 𝛽 ⋅ 𝜖𝑖𝑚𝑝𝑜𝑠𝑒𝑑 ⋅ 𝐸𝑠) (2.63)

where 𝛼 depends on the duration of the load and the cracking stage and 𝛽 is taking account of the
imposed deformation condition.

In addition, it is important to emphasize that imposed deformations such as shrinkage strains are con-
sidered as long term constant loads. It is assumed that in case of short-term loading the bonding stress
between steel and concrete is equal to approximately two times the mean tensile strength of the con-
crete (𝜏𝑏𝑚 = 2 ⋅ 𝑓𝑐𝑡𝑚). While, under long term loading, it is stated that the bond stress decreases and
that this could result in an increase in the transfer length of approximately 25%.

2.6. Conclusion
The impact of imposed deformations is described in a limited scope in the EN 1992-1-1 and EN 1992-3.
Overall, both parts of the Eurocode are very vague and inconsistent in the determination of the effec-
tive tensile zone for cross-sections with multiple layers or varying reinforcement. In addition, the codes
do not take into account whether the cracks are formed in the crack formation stage or the stabilized
cracking but instead the codes make a distinction between the load duration (short or long term load-
ing). These aspects are described in more detail in the Model Code 2010 and Van Breugel and are
very important for the calculation of the crack width.

Only the EN 1992-3, CIRIA and ICE deal with the specific condition of a member which is restrained
along one edge (CM). It must be noted that in the EN 1992-3 and CIRIA it is assumed that in the area
beyond the maximum crack spacing there is no strain relief as result of the crack occurrence which
could lead to a different crack width. This may be acceptable with full edge restraint but in reality most
of the structures are only partially restrained and strain relief may occur. Only in the ICE the favourable
effect of member’s restrained edge on the reduction of crack spacing and crack width is taken into
account.

Another important point of criticism relates to the determination of the degree of restraint. In the EN
1992-3 only a few practical axial restraint factors for common situations are given. The EN 1992-3
states that in many cases it will be clear that no significant curvature could occur and recommends to
assume a restraint factor of 1,0. This assumption seems quite conservative and unrealistic. On the
other hand, CIRIA and ICE provide a formula to determine the degree of restraint which is based on
the relative size and stiffness of the restraint elements.



3
Numerical crack width prediction
(imposed loading versus imposed

deformation)

3.1. Introduction to finite element analysis (FEA)
This numerical analysis is performed to investigate the differences in crack width development in a ten-
sile member loaded under an imposed load or loaded under an imposed deformation. In this master
thesis the finite element analyses (FEA) are made with DIANA version 10.5. DIANA is an extensive
multi-functional finite element software package that is applied to a wide variety of problems encoun-
tered in civil engineering, including structural, geotechnical, tunneling, earthquake and oil and gas
engineering. This software has been developed by TNO which is a Dutch organization for applied
scientific research. DIANA is chosen because it is one of the most practical and commercial tools in
engineering practice.

When performing a non-linear finite element analysis (NLFEA), many choices have to be made such
as the constitutive model type, the kinematic and equilibrium conditions. In addition, there are different
options for modelling the bond and the behavior of the reinforcement. The finite element discretization
includes the element type and the element size applied. Solving the system is also subject to choices
about convergence criteria, load step size, and how many iterations are allowed. One of the difficulties
in applying NLFEA is that the analyst’s specific choices have a major impact on the outcome of the anal-
ysis. In [18] it was argued that the uncertainty of an NLFEA solution tends to increase as the analyst’s
skills and knowledge decline. This is the case for any analysis method, as there are always different
types of models available. However, some of these choices are prescribed in normative documents
such as the Dutch guideline for the assessment of existing concrete structures, the Rijkswaterstaat
Technical Document (RTD) [19], which was initiated by Rijkswaterstaat out of concern for the safety
of concrete bridges. Following this code procedure should reduce the scatter resulting from the user’s
choices.

The fib Model Code, a document published by the International Concrete Federation (fib), aims to help
development and updating of codes. It is a semi-normative document that also takes into account new
scientific developments. The 2010 edition [10] includes a section on NLFEA that focuses primarily on
how to deal with safety formats, but does not provide guidance in choosing a solution strategy. The fib
Model Code 2022 will include a comprehensive section on verification by non-linear analysis, where
the so-called model uncertainty is used to assess the reliability of a NLFEA solution strategy.

In this section, first, the material properties that are of interest and the choices that are made are
explained and elaborated.

28
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3.1.1. Cracking models
In DIANA a distinction can be made between multiple cracking models. The material models which
can be applied for cracking are the discrete and smeared cracking models. To apply discrete cracking
models, the expected location of the crack should be known. This is often not the case so in this master
thesis only smeared cracking models are discussed. Smeared cracking models are models in which
every element of the model can crack.

The cracks can be formed in different directions. Within the smeared cracking models, the following
two types are commonly used:

• Total strain crack model

• Multi directional fixed crack model

The total strain crack model is a constitutive model based on total strain that describes the stress as a
function of the strain. The model is called a rotating crack model when the stress-strain relationship is
evaluated in the principal direction of the strain vector. This type of modelling is eligible for reinforced
concrete structures [16]. In case the aim is to model a more physical nature crack, the fixed crack
model can be applied. This fixed crack model determines the cracks in a fixed coordinate system. If a
fixed crack model is used, an adequate shear retention model should be used.

The basis of the multi directional fixed crack model is the decomposition of the total strain [𝜖] into an
elastic strain [𝜖𝑒] and a crack strain [𝜖𝑐𝑟]. Due to the sub-decomposition of the crack strain, it is possible
to model cracks that occur simultaneously. The decomposition of the cracking strain is shown in figure
3.1. The multi directional fixed crack model is a combination of tension cut-off, tension softening and
shear retention. In this model the main focus lies on how the cracks initiate and rotate simultaneously
with the stresses.

In this master thesis it has been decided to apply the total strain crack model with a rotating crack
orientation. This choice is based on the recommendation in the Dutch guideline for the assessment of
existing concrete structure, the Rijkswaterstaat Technical Document (RTD) [19],

Figure 3.1: Plane stress element including its fixed crack coordinate system (Slobbe, 2015)
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3.1.2. Tensile behavior
With the help of a predefined tension softening function it is possible to model the tensile behavior of
the concrete in DIANA. The available tension softening curves which are available are shown in figure
3.2. In this master thesis, it is assumed that the concrete tensile stress reduces exponentially to zero
after cracking. The exponential-type softening diagrams such as the Hordijk relationship is preferred
because this diagram will result in more localized cracks and consequently will avoid large areas of
diffuse cracking [19].

Figure 3.2: Tensile behavior (DIANA FEA MANUAL, 2021)

The damage based Poisson’s ratio reduction option is selected, consequently the Poisson’s ratio de-
creases to 0 when the concrete cracks. This is used to prevent unrealistic compression strains in the
direction perpendicular to the crack, when large crack strains arise in the vicinity of the crack[25].
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3.1.3. Compressive behavior
The compressive behavior of the concrete can be determined by different predefined models within
DIANA. In this master thesis, as recommended in the RTD [19], the parabolic stress strain diagram
with a softening branch is applied (figure 3.3). The softening branch is based on the compressive
fracture energy 𝐺𝑐 value in order to reduce mesh size sensitivity during compressive strain localization
[19]. According to the RTD report [19], a value of 250 times the fracture energy 𝐺𝑓 is advised. This
value is based on research results from Nakamura and Higai [15].

Figure 3.3: Compressive behavior curve according to DIANA, the parabolic compression curve has been applied (DIANA FEA
MANUAL, 2021)

The length over which the strain localises is incorporated as an input parameter named the crack
bandwidth (ℎ) or also known as the equivalent length (ℎ𝑒𝑞). This could be conceived as the length of
the fracture process zone of the crack. Bandwidth for a few element-shapes and crack orientations are
depicted in figure 3.4.

Figure 3.4: Examples of crack bandwidth or equivalent length on element dimensions and crack direction (RTD, 2017)

Since the RTD [19] states that a reduction of the compressive strength resulting from lateral cracking
should be taken into account, the reduction model of Vecchio and Collins 1993 shown in figure 3.5 is
used.

Figure 3.5: Vecchio and Collins reduction factor due to lateral cracking (RTD, 2017)
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3.1.4. Bond-slip behavior
An important parameter to determine the crack width is the interaction between the concrete and rein-
forcement. In DIANA this interaction can be modelled using bond slip mechanisms. The Model Code
2010 slip relationship is applied for the bond-slip behavior in this master thesis. The Model Code 2010
[10] proposed a relation between the shear traction and slip with the back bone curve given in figure
3.6. The first section of the curve is from a slip of 𝑠0 up to 𝑠1 and can be formulated as a power function
with an exponent 𝛼. The second section is from 𝑠1 to 𝑠2 and is assumed as a constant value of 𝜏𝑚𝑎𝑥.
In the third section from 𝑠2 to 𝑠3, the bond stress reduces linearly until the ultimate bond-slip stress 𝜏𝑓
is reached. A constant value of 𝜏𝑓 is considered after 𝑠3. In this thesis, it is assumed that the bond
conditions were moderate and if the load is not perpendicular to the direction of the reinforcement the
concrete is assumed to be unconfined. The used parameters are listed in figure 3.9.

Figure 3.6: Bond-slip curve according to the Model Code 2010 (Model Code, 2010)

To calculate the normal and shear stiffness modulus of the interface for the bond-slip behavior the
following equations, as suggested by the professionals at DIANA FEA have been applied:

𝑘𝑛 = 100 ⋅
𝐸
𝑙 = 100 ⋅

32836
25 ≈ 130000 𝑁

𝑚𝑚3 (3.1)

𝑘𝑡 = 0.1 ⋅ 𝑘𝑛 = 0.1 ⋅ 130000 = 13000
𝑁
𝑚𝑚3 (3.2)

Where 𝑘𝑛 is the normal stiffness modulus, 𝑘𝑡 is the shear stiffness modulus, 𝐸 is the young’s modulus
and 𝑙 is the average element edge length.

3.1.5. Mesh size
According to the guideline for non-linear finite element analysis (NLFEA) from Rijkswaterstaat [19] the
maximum size of a 2D model is limited by the following rule:

maximum element size = 𝑚𝑖𝑛( 𝐿50 ;
ℎ
6 ) = 𝑚𝑖𝑛(

2000
50 ;

150
6 ) = 𝑚𝑖𝑛(40; 25) = 25𝑚𝑚.

In order to evaluate the models sensitivity to mesh refinements four different mesh sizes are tested and
the results are compared. The results obtained from mesh changes are summarized in figure 3.7. It
can be seen that increasing the mesh causes a larger crack width. However, the difference between a
mesh size of 25 and 30 mm is less than 5%. Due to this small difference and the significant reduction
of the calculation time a mesh size of 30 mm is applied in the numerical models.

Figure 3.7: Result of mesh sensitivity models
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3.2. Finite element analysis 1 - Imposed loading
Now the different model options have been discussed and chosen, the first analysis was carried out. In
the first analysis a single reinforced concrete tensile member is subjected to an imposed load. In this
part of the thesis 2D models were used in stead of 3D models. 3D models require a significant longer
calculation time and consume much more disk space. In addition, using 2D models has no effect on
the structural behavior. Important parameters for determining the structural behavior such as the bond
slip interface and the tensile material properties remain exactly the same in 2D as in 3D models and
therefore 3D modelling does not have significant benefits over 2D modelling.

3.2.1. Input geometrical and material properties
In figure 3.8 the model used for analysis 1 is given. The dimensions of the model are: length = 2000
mm, height = 150 mm and width = 150 mm. In this model a centrically placed reinforcement bar with a
diameter of 25 mm is applied. The tensile member is loaded by a prescribed deformation of the rebar
in the X-direction of 0.01 mm per load step. This prescribed deformation is considered as the imposed
load and is applied at the tip of the reinforcement. At both ends of the reinforcement the model is
restrained in X direction. At one end the model is restraint in Y-direction to prevent rotation. In the finite
element program DIANA it is required to place a support in the direction of the prescribed deformation.

Figure 3.8: Model analysis 1 - Single reinforced tensile member subjected to imposed load (DIANA FEA)

The concrete and steel properties which are used in the model are given in figure 3.9. The concrete
properties are given for concrete class C30. The steel properties are given for B500 reinforcement.

Figure 3.9: Material properties finite element analysis 1
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3.2.2. Load displacement diagram
In figure 3.10 the load-displacement diagram of a tensile bar subjected to an imposed load is shown.
It is important to note that this is the load taken by the steel at the support. It can be seen that the
diagram can be subdivided into three stages. The first stage is the uncracked stage. In this stage
there is no difference between the strain in the reinforcement and the concrete strain. Stage II is the
crack formation stage. During this stage individual cracks develop and at some places the strain in
the reinforcement and the concrete strain are different. Next, stage III is the stabilized cracking stage.
Now in all places there is a strain difference between the reinforcement and concrete. No new cracks
are formed but only existing cracks widen in this stage. This development is corresponding with the
cracking theory which is discussed earlier in section 2.2.

Figure 3.10: Load-displacement diagram model analysis 1 - imposed loading

3.2.3. Crack pattern and bond stress
In the following section the crack patterns and bond stress gradients are given and discussed. The
first through cracks occur at a prescribed deformation of 0.53 mm. When these cracks occur, the
tensile force of the concrete has to be carried by the reinforcement and therefore it can be seen that
on both sides of the crack the maximum bond stress is reached and at the location of the crack the
bond stress is zero. Important to mention is that micro cracks already developed earlier at a prescribed
deformation of 0.34 mm when the cracking strain was reached. However, these micro cracks were
negligibly small. Furthermore, it can be observed that the distance between the cracks and the ends
of the tensile member is exactly the same. This symmetry is caused by the fact that both end supports
have the same boundary conditions in the X-direction and the tensile load is applied centrically.

Figure 3.11: Crack pattern and bond stress crack 1 - load step 53 = Δ𝐿 = 0.53 mm (Crack Formation Stage)
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In figure 3.12 the crack pattern and bond stress gradient of the consecutive cracks are shown. It can
be seen that in addition to the first two cracks, two primary cracks have been developed in the middle
of the tensile member. The cracks have occurred at a prescribed deformation of 0.90 mm.

Figure 3.12: Crack pattern and bond stress crack 2 - load step 90 = Δ𝐿 = 0.90 mm (Crack Formation Stage)

Next, in figure 3.13 it can be seen that at a prescribed deformation of 1,4 mm, four new through cracks
have been developed. At this point the end of the crack formation stage has been reached. From now,
no new cracks should appear and only the existing cracks should widen.

Figure 3.13: Crack pattern and bond stress crack 3 - load step 140 = Δ𝐿 = 1.40 mm (Crack Formation Stage)

Figure 3.14 shows the crack pattern and the bond stress gradient at the end of the stabilized cracking
stage. It can be observed that no new cracks have developed and that only existing cracks have been
widened. This is in line with the cracking theory as discussed in section 2.2.

Figure 3.14: Crack pattern and bond stress end stabilized cracking stage - load step 450 = Δ𝐿 = 4.5 mm
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3.2.4. Steel stress development
In figure 3.15 the crack width contour plot (top) and the steel stress development in the cracks (bottom)
are shown. Due to symmetry only half of the contour plot of the tensile bar is presented. It is important
to emphasize that the blue line is the steel stress taken at the support. It can be seen that when
the first crack occurs, the steel stress in crack 1 increases (yellow line) and the steel stress at the
support decreases. The reason for this is that there must be always an equilibrium of forces. The
same phenomena can be seen in crack 2 (green line), 3a (red line) and crack 3b (blue dashed line).
Crack 3a and 3b are two different cracks which initiated at the same time in the model. When these
cracks develop, the steel stress increases and the stresses at the other points drop. In the stabilized
cracking stage, the steel stress is in all the cracks the same.

Figure 3.15: Steel stress in the cracks

3.2.5. Crack width development
In the top of figure 3.16 the contour plot of the crack pattern is shown. The location where the crack
width is measured is highlighted. In the bottom of the figure, the maximum crack width development
per individual crack is given. It can be observed that when crack 2 (green line) starts to open, the
crack width in crack 1 (yellow line) decreases. The same can be seen when cracks 3a (red line) and
3b (dashed blue line) open, the crack width in crack 1 and 2 drops. After crack 3a and 3b have been
developed the stabilized cracking stage is reached and the crack width in all cracks gradually increases.
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Figure 3.16: Crack width development

3.3. Verification with experiments of imposed loading model
To verify the accuracy and applicability of the finite element analysis in case of imposed loading, the
experimental results from A. Kwan [12] were used. Unfortunately no load-displacement curves were
given in Kwan’s research, therefore only the maximum crack width development and crack pattern are
used for the verification. In the experiment from A. Kwan two reinforced tensile members with a length
of 700 mm and a cross section of 70 x 70 mm were subjected to an imposed tensile load. The elements
were tensioned by a hydraulic press via reinforcement. The concrete and steel properties can be find
in figure 3.17 and 3.18.

Figure 3.17: Concrete properties of tension specimens (Kwan, 2016)

Figure 3.18: Steel properties of tension specimens (Kwan, 2016)

The test set-up is shown in the top of figure 3.19. It can be observed that at both ends of the tensile
bar a tension force T is applied. In the bottom of figure 3.19 the mesh size used in the finite element
model is shown. Due to the fact that in this simulation not a prescribed deformation is applied but a
prescribed tension force the boundary conditions are slightly different compared to the previous FEA.
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Figure 3.19: Test setup (Kwan, 2016)

3.3.1. Maximum crack width
In DIANA the crack width over an element is given as an output. It is important to emphasize that
DIANA gives the maximum crack width in an integration point. The maximum crack width is calculated
by multiplying the cracking strain in the integration point with the crack bandwidth of the total element.
For specimen D8-RA and D12-RA, the numerically predicted and measured maximum crack widths
are compared. The difference between these two models is the bar diameter which is respectively 8
and 12 mm.

Figure 3.20 presents the maximum crack width at different loading stages for specimen D8-RA. It can
be observed that the maximum crack width predicted numerically at the first loading stage (T=17 kN)
is 25% larger than the maximum crack width measured in the experiments. However at the next three
loading stages (T = 22.6; T = 28.3; T = 33.9 kN) it can be seen that the difference becomes smaller
up to 15%. In the final loading stage (T=39.5 kN), the numerically predicted maximum crack width
differs only 7% from the measured maximum crack width. So in this particular case, with an increasing
load the numerical results come closer to the experimentally measured maximum crack widths. This
is presented by the graph in figure 3.20. In order to make a complete comparison the crack width is
also calculated analytically according to the Model Code 2010. It can be seen that the design formula
in the Model Code 2010 tends to overestimate the maximum crack width as the steel stress increases.

Figure 3.20: Verification D8-RA
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For specimen D12-RA, the comparison between the numerically predicted and the experimentally mea-
sured maximum crack width is shown in figure 3.21. It can be seen that at the first three loading stages
(T = 11.3; T=22.6 and T=28.3 kN), the numerically predicted maximum crack width is significantly
larger than the measured maximum crack width. While in the last two loading stages (T = 33.9 and T
= 39.6 kN) this difference diminishes to 4 and 9% respectively. In this case it can be observed that the
maximum crack width prediction according to the Model Code 2010 in the first loading stage is quite
accurate. However, with increasing tensile load the maximum crack width is more overestimated. This
finding is also confirmed in Kwan’s study [12].

Figure 3.21: Verification D12-RA

Overall, it can be concluded that the numerically predicted and the experimentally measured maximum
crack widths are corresponding reasonably well at the final loading stages. The difference at the final
loading stage is only 9%. In addition, it can be seen that in general the numerically predicted results
and to a greater extent the analytical prediction overestimate the real maximum crack width. One of the
explanations for this overestimation is that when a crack is localised in one element, the cracking strain
in the integration point is only maximum at one side of the element. This maximum cracking strain is
used by DIANA to calculate the crack width. This approach might cause that the numerical calculated
crack widths are higher than the measured crack widths.

In addition, another explanation might be the accuracy of the bond slip curve. For a more accurate
prediction of the crack width of tensile members, the bond slip material properties must correspond
exactly to reality. In these models multiple assumptions given in the experiments of A. Kwan [12] are
used. These assumptions are related to the the maximum bond stress and the moment when the rebar
starts to slip.
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3.3.2. Crack pattern
After verifying the crack width, the number of cracks and crack patterns at different loading stages
obtained by the numerical analysis and the measured crack patterns are compared. In the figures
3.22, 3.23 and 3.24 the crack patterns measured and obtained numerically of specimen D12-RA are
shown. From figure 3.22, when the tensile load equals 20 kN, 5 cracks could be observed in the mea-
sured crack pattern while according to the numerical model only 4 cracks appeared. At T = 30 kN, the
measured crack number was 8 whereas the numerical crack number is 7. Finally, at T = 40 kN, the
measured number of cracks increased to 12 while according to numerical results the total number of
cracks became also 12.

Figure 3.22: Measured crack pattern (Kwan, 2016) and numerical predicted crack pattern at T = 20 kN

Figure 3.23: Measured crack pattern (Kwan, 2016) and numerical predicted crack pattern at T = 30 kN

Figure 3.24: Measured crack pattern (Kwan, 2016) and numerical predicted crack pattern at T = 40 kN

Overall the measured number of cracks agree quite well with the numerical predictions. However, the
measured crack patterns show more randomness compared to the numerical predicted crack patterns
where the cracks are more evenly distributed.
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3.4. Finite element analysis 2 - Imposed deformation
3.4.1. Input geometrical and material properties
In the second analysis exactly the same single reinforced concrete tensile member which is described
in section 3.2.1 is used. The difference compared to finite element analysis 1 is that in analysis 2 the
concrete is loaded under an imposed deformation. As imposed deformation a prescribed shrinkage
strain of -5 ⋅ 10−6 per load step is applied.

3.4.2. Load displacement diagram
In figure 3.25 the load-displacement diagram of finite element analysis 2 is presented. The blue line is
the load taken by the steel at the support. It can be observed that the diagram can be subdivided in
three stages. In stage I the concrete is uncracked. When the concrete starts cracking, stage II applies
which is denoted as the crack formation stage. And the final stage in the figure is stage III, this is the
stabilized cracking stage. A remarkable observation is that the force drops, while the imposed strain
increases and more cracks are developing. In the comparison in section 3.5 a possible explanation is
described.

Figure 3.25: Load - displacement diagram finite element analysis 2 - imposed deformation

3.4.3. Crack pattern and bond stress
In this section the crack patterns and bond stress gradients from finite element analysis 2 are presented.
In figure 3.26 the first through cracks occur at a prescribed deformation of 0.45 mm. Important to
mention is that micro cracks already developed earlier at a prescribed deformation of 0.34 mm when
the cracking strain was reached. However, these micro cracks were negligibly small.

Figure 3.26: Crack pattern and bond stress crack 1 - load step 45 = Δ𝐿 = 0.45 mm (Crack Formation Stage)
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In figure 3.27 the crack pattern and bond stress of the second moment of cracking are shown. It can
be seen that in addition to the first two cracks, one primary crack has been developed in the middle of
the tensile member. This crack was developed at a deformation of 0.77 mm.

Figure 3.27: Crack pattern and bond stress crack 2 - load step 77 = Δ𝐿 = 0.77 mm (Crack Formation Stage)

From figure 3.28 it can be observed that at a deformation of 1.21 mm two more cracks have been
developed.

Figure 3.28: Crack pattern and bond stress crack 3 - load step 121 = Δ𝐿 = 1.21 mm (Crack Formation Stage)

At a deformation of 1.50 mm two more cracks appeared. This point is assumed to be the end of the
crack formation stage, which means that there should be no more space for new cracks to develop and
the stabilized cracking stage starts.

Figure 3.29: Crack pattern and bond stress crack 4 - load step 150 = Δ𝐿 = 1.50 mm (Crack Formation Stage)

Figure 3.30 shows the crack pattern and the bond stress gradient at a deformation of 2.45 mm. It can be
observed that two new cracks have been developed in what was supposed to be the stabilized cracking
stage. According to the cracking theory this was not expected because in the stabilized cracking stage
no new cracks should appear and only existing cracks should widen. It is excluded that the development
of these two cracks is related to the convergence criteria because all steps of the analysis are fully
converged.
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Figure 3.30: Crack pattern and bond stress crack 5 - load step 245 = Δ𝐿 = 2.45 mm (Stabilized Cracking Stage)

Figure 3.31 shows the crack pattern and the bond stress gradient at the end of the stabilized cracking
stage. It can be observed that no new cracks have been developed and that only existing cracks have
been widened. This is in line with the cracking theory as earlier discussed in section 2.2.

Figure 3.31: Crack pattern and bond stress - load step 450 = Δ𝐿 = 4.50 mm (End Stabilized Cracking Stage)

3.4.4. Steel stress development
In figure 3.32 and 3.33 the contour plot and the steel stress development in the cracks are shown. Due
to symmetry only half of the contour plot of the tensile bar is presented. It can be observed that due to
the fact that the imposed deformation is restrained, this causes initial compressive stresses. When the
first crack occurs, the steel stress in crack 1 (yellow line) increases and the steel stress at the support
decreases. This is due to the equilibrium of forces in the reinforcement bar. This development was
also observed in the other cracks with the exception of crack 5 (black line). From the contour plot of
the crack pattern, is can be seen that crack 5 is really close located to crack 2 (green line). Therefore,
at the moment that the second crack starts to open there is already some steel stress development at
crack 5.

Figure 3.32: Crack width contour plot
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Figure 3.33: Steel stress and its growth at the location of the cracks

3.4.5. Crack width development
In figure 3.34 and 3.35 the contour plot and the maximum crack width development per individual crack
(bottom) are presented. It can be observed that when a new crack starts to open, the crack width of
the other cracks slightly drops.

Figure 3.34: Crack width contour plot

Figure 3.35: Crack width development
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3.5. Comparison imposed loading versus imposed deformation
As mentioned before, in practice, when cracks are formed due to imposed loading engineers apply
the tensile member model. The theory behind this model is explained in more detail in section 2.2.
However, in case that cracks are formed under imposed deformations, it is assumed that under certain
conditions and assumptions (section 2.5), the same tensile member model is applicable. From figure
3.36, which compares the numerically calculated steel stress development due to imposed loading and
imposed deformations, some important findings can be observed.

First of all, it can be seen that there is a significant difference in the steel stress and its growth when
cracking occurs due to imposed loads or under imposed deformations. The most remarkable difference
lies in the fact that under imposed loading the cracking load at the formation of each crack increases
while under imposed deformations it decreases as the process of crack formation goes on. One of
the main reasons for this is that when cracks are formed due to imposed deformations the degree
of restraint decreases. The lower the degree of restraint the more imposed strain disappears. The
decrease in the peak values is proportional to the stiffness of the reinforcement. It can be seen that the
load-displacement curve for the imposed loading case is in good agreement with the analytical curve.
In appendix E the analytical calculations regarding the cracking load, the cracking strain and the crack
spacing have been elaborated in more detail.

Figure 3.36: Load - deformation diagram under imposed loading or imposed deformation
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In figure 3.37 an overview of the numerically calculated results is presented. In case that the tensile
member was subjected to an imposed load eight cracks developed. While, in case the imposed de-
formation was applied, nine cracks developed. Consequently, it can be observed that the mean crack
spacing due to the imposed load was slightly larger than under an imposed deformation. However,
from this specific numerical analysis, it turned out that the maximum crack spacing is smaller in the im-
posed loading model in comparison to the imposed deformation model. In addition, the magnitude of
the maximum crack width at the end of the stabilized cracking stage due to imposed loading is smaller
than under imposed deformation, respectively 2,5 and 2,9 mm.

Figure 3.37: Comparison numerically calculated results imposed loading versus imposed deformation stabilized cracking stage

3.6. Conclusion
From this finite element analyses it can be concluded that there is a difference between the steel stress
development of imposed loading and imposed deformations. This steel stress development is also
confirmed by previous NLFEA research conducted by Camara and Luis [8]. The reason for this is
that when cracks are formed due to imposed deformations the degree of restraint decreases. The
lower the degree of restraint the more imposed strain disappears which results in a reduction of the
stress development. In addition, a difference was observed between the maximum crack width of rein-
forced concrete tensile members subjected to imposed loading and imposed deformations. According
to the numerical analyses, imposed loading resulted in fewer cracks, but the maximum crack spacing
was smaller, so the corresponding maximum crack width was also smaller. This result confirms the
assumption mentioned earlier by Van Breugel and the Model Code, that cracking due to imposed de-
formations, causes bond degradation and could result in an increase of the maximum crack width.

It should be taken into account that in the numerical models and analytical approach a very large
shrinkage strain of -2 ⋅ 10−3 is applied. According to multiple crack width prediction models such as the
Eurocode 2 and the Model Code 2010, the magnitude of this imposed deformation does almost never
occur in regular concrete. When looking at more common quantities of imposed deformations, these
results confirm that imposed deformations will almost never result in a fully developed crack pattern, or
in other words, will almost never reach the stabilized cracking stage.

However, nowadays many new concrete types are being developed, such as for example geopolymers
or strain-hardening cementitious composites (SHCC). These species have a much higher magnitude
of shrinkage and therefore it may happen more often in the future that imposed deformations cause
fully developed crack patterns.



4
Case study: numerical prediction of

early age cracking due to hardening of
concrete

In this chapter, first the methodology and main findings of the experimental work, carried out during a
Ph.D.thesis by M. Sule are highlighted. [16]. Thereafter, a FEA is performed to simulate the hardening
process of concrete in combination with autogenous shrinkage as imposed deformations. Finally, the
experimental results are used to verify the accuracy of the input parameters of FEA.

4.1. Experimental work by M. Sule
4.1.1. Introduction
This experimental work performed by M. Sule [21] during her PhD, consisted of several reinforced
concrete tensile members that were subjected to restrained early-age deformations. The tests were
carried out to measure only the thermal and autogenous deformations, therefore the experiments were
performed in a laboratory on sealed concrete specimens. Since drying shrinkage plays hardly a role
for through-cracking in early-age concrete this is not taken into account. For the determination of
the stress development due to restrained early-age deformations the development of the concrete
properties has to be known. In all experiments the concrete quality was determined by monitoring the
compressive cube strength. In addition, pull-out tests were performed to get more information about the
bond strength. Last but not least a Temperature Stress Testing Machine (TSTM) was used to obtain
the stress development and the moment of cracking of the reinforced concrete tensile members. In
figure 4.1 the experimental test set-up is schematically shown.

Figure 4.1: Schematic diagram of experimental setup (Sule, 2003)

47
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4.1.2. Geometry and reinforcement arrangement
Figure 4.2 shows an overview of the experiments performed in the TSTM. The concrete cross-sections
were 150 x 100 mm2 due to the limited load capacity of the TSTM. If one reinforcement bar was applied
it was located in the centre of the member and if 4 reinforcement bars were applied they were placed
in the corners with a concrete cover of 20 mm.

Figure 4.2: List of experiments performed in the TSTM (Sule, 2003)

4.1.3. Material properties
4.1.3.1 Concrete properties
In the experiments high strength concrete (HSC) was used. The main differences between normal
strength concrete and high strength concrete is the water-cement ratio and the type of cement used.
In addition, in practice, superplasticizers were added to HSC. The exact composition of the concrete
mixture was as follows:

• 125.4 kg/m3 water;

• 237.0 kg/m3 CEM III/B 42.5 LH HS;

• 238.0 kg/m3 CEM I 52.5 R;

• 50.0 kg/m3 Slurry micro silica (50/50);

• 1.0 kg/m3 Superplasticizer BV1 (based on lignosulfanate)

• 9.5 kg/m3 Superplasticizer FM951 (base on naftaleensulfanate)

• 973.5 kg/m3 Gravel 4 - 16 mm

• 796.5 kg/m3 Sand 0 - 4 mm

4.1.3.2 Reinforcement properties
The reinforcement in the experiments was made of hot rolled ribbed steel quality FeB 500. In the
research laboratory of Stuttgart the mechanical characteristics were determined. The characteristics
are given in figure 4.3 depending on the bar diameter.

Figure 4.3: Reinforcement properties (Sule, 2003)
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4.1.3.3 Curing temperature
All specimens were cured under the same conditions: semi-adiabatic or isothermal (20°C, 30°C, 40°C).
In addition, all specimens were cast in controlled moulds in order to obtain the desired temperature his-
tory. The semi-adiabatic curing conditions are often referred to as “realistic” curing conditions. For this
curing condition the temperature development was measured in one specimen and afterwards imposed
to the other specimen. As a result, the hydration process developed in all specimens at the same rate.
This ensured that the properties measured in the experiments involved the same degree of hydration.
When the specimens were cast under isothermal conditions, the temperature of the specimens was
directly controlled by the computer.

4.1.4. Experimental set-up
4.1.4.1 Autogenous Deformation Testing Machine (ADTM)
In this experimental research, two so called Autogenous Deformation Testing Machines (ADTM) were
used. These ADTM’s can determine the load-independent deformation during hardening of the con-
crete. In the first ADTM test, a plain specimen without any reinforcement was tested and in the second
test a reinforced specimen was tested. By using 2 linear variable differential transformers (LVDT’s)
at each long side of the ADTM, the deformations were measured. The LVDT’s are electromechanical
sensors used to convert mechanical motion or vibrations, into a variable electrical current, voltage or
electric signals, and the reverse. From figure 4.4 it can be seen that the LVDT’s were located on the
outside of the mould between two steel bars. These steel bars were embedded in concrete and passed
through the holes in the mould.

Figure 4.4: Left: installation of measuring bars and right: installation of LVDT’s after casting (Sule, 2003)

The measurements of the deformation could start as soon as the concrete had sufficient stiffness. This
could take 5 till 12 hours after the concrete was mixed. The exact time depended on the concrete
mixture and hardening temperature. After the mixture had sufficient stiffness, the wooden frame was
loosened and the placeholders were removed. Perpendicular to the outer end of the steel bars the
LVDT’s were placed . Next, the LVDT’s were attached to a quartz glass bar which was placed on top of
the two supports. One of these supports was fixed and the other one was a sliding support. Because
quartz glass has a very low coefficient of thermal dilatation, the length changes of the bar due to tem-
perature fluctuations were negligible. For each side, the deformation of the concrete was determined
by adding the displacements measured by two LVDT’s. The range of the LVDTs is 400 micrometer
with a theoretical resolution of 0.1 micrometer. Since the deformation was measured with 2 LVDT’s per
side, the resolution was 0.2 micrometer [21].



4.1. Experimental work by M. Sule 50

4.1.4.2 Temperature Stress Testing Machine (TSTM)
In figure 4.5 the schematic top view of a Temperature Stress Testing Machine (TSTM) is shown. This
machine consists of a horizontal frame in which the concrete specimens can be loaded in tension or in
compression under various hardening conditions. It is possible to perform both deformation-controlled
and load-controlled experiments. Any thermal condition can be realised because of temperature con-
trolled moulds. In this research all specimens were fully restrained.

Figure 4.5: Schematic top view of a TSTM (Sule, 2003)
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4.2. Finite element analysis
The geometry and concrete properties used in the finite element analysis are corresponding with the
experimental results from Sule which are described in section 4.1. In case concrete properties were
missing, the Guidelines for Nonlinear Finite Element Analysis for Concrete Structures from Rijkswater-
staat [19] and material characteristics from the Model Code 2010 [10] were applied.

4.2.1. Geometry and time independent concrete properties
An overview of the geometry and time independent material properties of concrete is given in figure 4.6.

Figure 4.6: Geometry and concrete properties

4.2.2. Time dependent concrete properties
In DIANA, a relatively easy method for modelling time dependent concrete properties is currently not
available. DIANA requires analytically determination of the time dependent concrete properties over
maturity. Therefore, in the following section the analytical calculations of the numerical input param-
eters are explained. These input parameters are all based on the degree of hydration. A schematic
representation of the degree of hydration concept is given below.

Figure 4.7: Schematic representation of the degree of hydration concept (Lokhorst, 2001)
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4.2.2.1 Adiabatic curve
Due to the fact that for the experiments no information is provided regarding the adiabatic heat develop-
ment, the adiabatic heat curve is determined using FEMMAS. FEMMAS is a software tool that predicts
concrete behavior. The course of the curve shown in figure 4.8 depends mainly on the water-cement
ratio and the type of cement.

Figure 4.8: Adiabatic heat development (FEMMAS, 2021)

4.2.2.2 Concrete temperature
In figure 4.9 the characteristic semi-adiabatic temperature development measured in the experiments
from Sule is shown. Due to the temperature differences in the concrete thermal deformations of the
concrete specimens were generated. This temperature development was used to determine the ma-
turity of concrete.

Figure 4.9: Temperature development in the tensile member measured by M. Sule (Sule, 2003)
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4.2.2.3 Maturity
As mentioned before, the development of time dependent material properties in concrete can be de-
scribed by the degree of hydration concept. Instead of the degree of hydration, an equivalent age is
calculated which indicates the hydration state of the concrete based on the temperature history, relative
to the development at a certain reference temperature. The maturity is therefore also known as the
equivalent age at reference curing temperature. For this finite element analysis the maturity of concrete
had to be determined, this is done by equation 4.1. This equation was developed by Arrhenius [23]
and takes into account the temperature history of the concrete.

𝑀(𝑡) = ∫
𝑡

0
exp

𝑄
𝑅 (

1
273 + 𝑇𝑟𝑒𝑓

− 1
𝑇(𝑡) + 273)𝑑𝑡 (4.1)

Where Q is the activation energy hydration. This factor takes into account the temperature sensitivity
of the hydration process. In this case a value of 33.5 kJ/mol was assumed. R is the universal gas
constant, 0.0083 kJ/mol K. The time dependent temperature of concrete was given by 𝑇(𝑡) and the
reference temperature with 𝑇𝑟𝑒𝑓. For the reference temperature a constant value of 20 °C was used.

Figure 4.10: Maturity development analytically calculated using equation 4.1

4.2.2.4 Degree of hydration
For this finite element analyses the strength properties such as the young’s modulus and the tensile
strength of concrete were determined on the base of the degree of hydration. In figure 4.11 the degree
of hydration corresponding with the experimental results is shown. In the experiment from Sule [21] the
degree of hydration was calculated using the program UCON. UCON is a software tool developed by
Van Beek (1995) for the determination of the degree of hydration by using the relative heat production.

Figure 4.11: Degree of hydration development in tensile member (Sule, 2003)
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4.2.2.5 Young’s modulus of concrete
In the experiment from Sule, the young’s modulus was estimated according to the degree of hydration
concept proposed by Rostasy [20]. The equation used for the estimation is as follows:

𝐸(𝛼) = 𝐸𝑚𝑎𝑥 ⋅ (
𝛼 − 0.1 ⋅ 𝛼0
1 − 0.1 ⋅ 𝛼0

)0.5 (4.2)

Where 𝐸𝑚𝑎𝑥 is assumed to be the maximum young’s modulus of elasticity of concrete (52 GPa). The
degree of hydration is named 𝛼 and for the critical degree of hydration (𝛼0) a value of 0.1 is used. In
figure 4.12 the young’s modulus development over time and maturity in the concrete is presented.

Figure 4.12: Calculated development of young’s modulus from experiments (left) and the input for the finite element analysis
(right)

4.2.2.6 Tensile behavior
In the experimental work from Sule, the tensile strength development was not given. Due to the fact that
the development of degree of hydration 𝛼 was known (figure 4.11), the tensile strength was determined
on the base of equation 4.3, which was proposed by Rostasy [20].

𝑓𝑐𝑡(𝛼) = 𝑓𝑐𝑡,𝑚𝑎𝑥 ⋅
𝛼 − 𝛼0
1 − 𝛼0

(4.3)

Where 𝑓𝑐𝑡,𝑚𝑎𝑥 is the fictitious maximum tensile strength. The critical degree of hydration is named 𝛼0
and the degree of hydration is 𝛼. In figure 4.13 the tensile strength development versus the time and
maturity are given.

Figure 4.13: Calculated development of tensile strength from experiments (left) and the input for the finite element analysis (right)
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4.2.2.7 Fracture energy
In the experiments from Sule the fracture energy was also unknown. For this reason the development
of the fracture energy was estimated with equation 4.4, which was based on experiments carried out
by Gutsch [11].

𝐺𝐹(𝛼) = 𝐺𝐹,𝑚𝑎𝑥 ⋅
𝛼 − 𝛼0
1 − 𝛼0

0.5
(4.4)

Where 𝐺𝐹,𝑚𝑎𝑥 is the fictitious maximum fracture energy in case of complete hydration. The critical
degree of hydration is named 𝛼0 and the degree of hydration is 𝛼. In figure 4.14 the fracture energy
development versus the time and maturity is given.

Figure 4.14: Calculated development of fracture energy from experiments (left) and the input for the finite element analysis (right)

4.2.2.8 Compressive behavior
Due to the fact that the compressive behavior, shown in figure 4.15 was not measured in the experi-
ments from Sule, the compressive strength was estimated with equation 4.5. This equation was based
on experiments and developed by Rostasy [20].

𝑓𝑐𝑚(𝛼) = 𝑓𝑐𝑚,𝑚𝑎𝑥 ⋅
𝛼 − 𝛼0
1 − 𝛼0

(4.5)

Where 𝑓𝑐𝑚,𝑚𝑎𝑥 is the fictitious maximum compressive strength. The critical degree of hydration is
named 𝛼0 and the degree of hydration is 𝛼. In figure 4.15 the compressive strength development
versus the time and maturity is given.

Figure 4.15: Calculated development of compressive strength from experiments (left) and the input for the finite element analysis
(right)
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4.2.2.9 Autogenous shrinkage
For the estimation of the autogenous shrinkage the Model Code 2010 provides the following equation:

𝜖𝑐,𝑎𝑠(𝑡) = 𝛽𝑎𝑠(𝑡) ⋅ 𝜖𝑐,𝑎𝑠(∞) (4.6)

Where 𝜖𝑐,𝑎𝑠(∞) is the ultimate autogenous shrinkage and 𝛽𝑎𝑠(𝑡) is a function which defines the time
dependent development of autogenous shrinkage. The background of this equation is described in
more detail in appendix C. For this analysis a concrete class of C70/85 is applied.

However, according to Sule, the autogenous shrinkage should be calculated with equation 4.7. This
equation is based on the experimental results and depends mainly on the degree of hydration.

𝜖𝑐,𝑎𝑠(𝛼) = −𝑎 ⋅ (𝛼 − 𝑏 ⋅
𝑇(𝛼)
20 ) (4.7)

Where 𝑎 is assumed as 0.5 and depends on the type of cement. For 𝑏 a constant value of 0.15 is
used. In figure 4.16, the measured autogenous shrinkage (𝜖𝑐𝑎𝑠) and the analytically estimations are
shown. It can be observed that equation 4.7 gives a much better approximation than the Model Code
2010. Consequently, in the finite element models this autogenous shrinkage was applied as input in
the model.

Figure 4.16: Autogenous shrinkage
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4.2.3. Mesh size and element types
According to the guideline for non-linear finite element analysis (NLFEA) from Rijkswaterstaat the max-
imum size of a 3D model is limited by the following rule: maximum element size = 𝑚𝑖𝑛( 𝐿50 ;

𝑏
6 ;

ℎ
6 ) ≈ 20

mm. The applied elements in this numerical model were mainly solid isoparametric quadrilateral ele-
ments. In DIANA, this type of element is named CHX60 (figure 4.17). This element is a twenty-node
isoparametric solid brick and it has three degrees of freedom. It is based on quadratic interpolation and
Gauss integration.

Figure 4.17: CHX60

In addition, BQ4HT elements were applied (figure 4.18). This is a four-node isoparametric quadrilateral
element. This element was applied to describe boundaries in three-dimensional general potential flow
analysis. It is based on linear interpolation and Gauss integration.

Figure 4.18: BQ4HT

4.2.4. Modelling approach
For the finite element analysis a staggered thermo-structural analysis was performed. This analy-
sis type should, according to DIANA FEA, result in a good approximation of the concrete strains and
stresses to simulate the cracking at early age due to hardening of concrete in combination with auto-
genous shrinkage. In this analysis the following aspects were considered:

• 3D plain concrete tensile member which is fully restrained at both ends.

• Interface boundary elements were used to model convection. Due to different phases (with and
without formwork) two time dependent interfaces were considered.

• As part of the heat flow analysis, an adiabatic heat curve was specified to simulate the hardening
of concrete.

• The external temperature was assumed equal to 20 °C.

• The initial temperature of the concrete was set equal to 20 °C.

• A transient staggered thermo-structural analysis was performed in order to investigate the hydra-
tion (i.e. degree of reaction and equivalent age), temperature variation in time, concrete strains
and stresses and the formation of cracks in the concrete.
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4.2.5. Analysis set up
For the staggered thermo-structural analysis, all iterations were done with a full Newton-Raphson,
meaning the stiffness matrix is updated with each iteration. The load steps and different values for the
convergence criteria are given in the following section.

4.2.5.1 Transient heat analysis
The temperature development and hydration process in the young concrete were studied with a tran-
sient nonlinear heat flow analysis. In this analysis, 72 load steps of one hour were executed and a
convergence tolerance (recommended by the RTD [19]) of 1e-06 was applied.

Figure 4.19: Analysis set-up transient heat

4.2.5.2 Non-linear structural analysis
Thereafter, a non-linear structural analysis was performed to study the strain and stress developments.
It was often difficult to reach convergence for this type of analysis because of the formation of domi-
nant cracks. In case that a concrete tensile member cracks, this leads to the loss of energy within the
structure. For this reason it was difficult for the program to find an equilibrium.

Regarding the equilibrium iteration, the maximum number of iterations is set to 500 and the conver-
gence criterion are chosen according to the RTD [19], which states that both energy and force norms
should be satisfied within a tolerance of 0.0001 and 0.01 respectively. The chosen tolerances are pre-
sented in figure 4.20.

Figure 4.20: Analysis set-up non-linear structural
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4.3. Results finite element analysis
In this section the finite element results are presented and verified using the experimental work from
Sule [21]. The specimen that was used for the verification was semi-adiabatically cured. Under semi-
adiabatic curing stresses develop due to autogenous shrinkage and thermal effects. In the experiments
from Sule, moulds were applied that were fully temperature controlled. While in the finite element anal-
ysis the temperature development was modelled using boundary interfaces. Consequently, the tem-
perature development in the finite element analysis depended mainly on the convection coefficients
and the adiabatic heat curve. For the verification, first of all, the temperature development was exam-
ined. Second, the maturity was verified. Finally, the results from the structural non-linear analysis were
given and compared with the analytically calculations and the experimental results.

4.3.1. Temperature development
Figure 4.21 shows the temperature development which generates thermal deformations of the con-
crete tensile bar members. It can be seen that in the experiment the starting temperature was about
20°C. Due to hydration the temperature rose until it reached about 50°C after 22 hours. Afterwards it
dropped until it reached again 25°C after about 72 hours. A difference can be observed between the
temperature development in the experiments and in the finite element model. In the experiments the
maximum temperature is 50°C while according to the finite element model it is 53°C. In addition, it can
be seen that in the finite element model the maximum peak hydration temperature is reached after 24
hours while in the experiments it is after 21 hours.

Although it should be taken into account that these differences may have consequences for the sub-
sequent results, they were now considered as acceptable. In Appendix G, an attempt was made to
optimize the temperature development by increasing the convection coefficient. However, the ad-
justments (G.1) did not result in a more realistic temperature development. Consequently, it can be
concluded that the difference was caused by the adiabatic temperature development. As mentioned
before in section 2.5.2.1, the adiabatic temperature development was unknown. Using a software tool
called FEMMAS a development that is as realistic as possible was used.

Figure 4.21: Verification temperature development

4.3.2. Maturity development
According to the DIANA FEA manual, for the determination of the maturity of concrete the following
expression is applied: 𝑡𝑒𝑞 = ∫

𝑡

0
exp (𝑐𝐴(

1
𝑇𝑟𝑒𝑓

− 1
𝑇(𝑡)))𝑑𝑡 (4.8)

Where 𝑐𝐴 is the Arrhenius constant and 𝑇𝑟𝑒𝑓 is the reference temperature (𝑇𝑟𝑒𝑓 = 293 K). In DIANA it is
possible to specify the Arrhenius constant as a fixed value or as a value which depends on temperature
and/or degree of hydration.
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From figure 4.22 it can be observed that the maturity in the finite element model is based on the exact
same Arrhenius function as is given and described earlier in section 5.2.2.3 (equation 4.1). It turned
out that the assumptions in the analytical calculation regarding the activation energy hydration and the
universal gas constant were correct.

Figure 4.22: Maturity development

4.3.3. Verification concrete strain development
During the hardening process of concrete, the cementitious materials undergo various deformations.
These deformations 𝜖𝑐𝑠 are load independent. Due to the fact that concrete specimens in the experi-
ments were sealed, no drying shrinkage was taken into account. Consequently, the load independent
deformations can be divided into thermal deformations 𝜖𝑐𝑇 caused by the hydration heat and autoge-
nous shrinkage 𝜖𝑐𝑎𝑠. The concrete strains due to thermal deformation 𝜖𝑐𝑇 were estimated analytically
with the following expression:

𝜖𝑐𝑇 = Δ𝑇(𝑡) ⋅ 𝛼𝑐𝑇(𝑡) (4.9)

Where Δ𝑇 is the temperature development in the concrete and 𝛼𝑐𝑇 is the coefficient of thermal ex-
pansion. Depending on the type of cement, the heat of hydration develops and the temperature in
the material rises, causing an expansion. After the concrete has reached the maximum temperature it
cools down which causes contraction. In figure 4.23 the concrete strains due to thermal deformation
are presented. It can be seen that the analytically calculated concrete strain corresponds exactly with
the results from the finite element model. In this case no experimental results were available to verify
the strain caused by thermal effects only.

Figure 4.23: Concrete strain due to thermal deformation
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4.3.4. Verification concrete stress development (without visco-elastic effects)
The total concrete stress due to the thermal deformations 𝜎𝑐𝑇 and autogenous shrinkage 𝜎𝑐𝑎𝑠 can be
estimated analytically by the following expression:

𝜎𝑐,𝑡𝑜𝑡𝑎𝑙 =∑𝜎𝑐𝑇(𝑡) + 𝜎𝑐𝑎𝑠(𝑡) (4.10)

In figure 4.24 the total concrete stress development is presented. Earlier in figure 4.23 it was shown
that in the beginning the temperature rise in the specimen caused thermal expansion. Because this
thermal expansion was restrained compressive stresses were generated. These compressive stresses
decrease as soon as the maximum temperature was reached. Due to the development of the modulus
of elasticity, compressive stresses turn into tensile stresses before the initial temperature is reached.
In addition, in this case autogenous deformations also contribute to the development of the tensile
stresses in the concrete cross section. The tensile stress in the concrete will increase until the crack
criterion was reached.

Figure 4.24: Total concrete stress without visco-elastic effects

Figure 4.24 shows that the analytically and numerically determined total concrete stresses are corre-
sponding well. Comparing these calculated total concrete stresses with the concrete stress measured
by Sule, a difference can be observed. According to the measurement from Sule, the maximum com-
pressive stresses are approximately 15% smaller than in the analytical and numerical calculations.
In addition, regarding the moment of the formation of the first crack, it can be seen that in the in the
experiments the first crack already developed after 38 hours, while according to the calculations, this
happens after 44 hours.

These differences can be explained by two reasons. First of all, previous results (figure 4.21) have
shown that there was a difference between the temperature development in the experiments and the
finite element model. Due to the fact that in the experiments the concrete cooled down faster, conse-
quently, the tensile stresses arose earlier and therefore the first cracks developed faster.

Secondly, it has to be taken into account that the visco-elastic behavior such as creep and relaxation is
not considered. The visco-elastic effect would reduce the compressive stresses and to a lesser extent
the tensile stress development. However, fitting the visco-elastic effects into the finite element model
of DIANA is rather complex. Therefore, in the next section an attempt is made to apply a reduction
factor to take into account the visco-elastic effects in the analytical calculations.
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4.3.5. Modified stress reduction due to creep and relaxation (Lokhorst)
Concrete as a material is subjected to two kinds of visco-elastic effects. The increase in deformation
over time under a constant load is defined as creep and the decrease in stress over time under a con-
stant deformation is known as relaxation. In all types of concrete, creep and relaxation occur.

Nowadays, different models have been applied for calculating the influence of creep and relaxation on
the stress development. Most of them are based on experimental data. Due to the fact that most cal-
culation procedures were not practical due to its high computational demands, Lokhorst [13] proposed
a fast and simple approach for estimating early-age stress development. The approach is based on
the instantaneous reduction of elastic stress increments with so-called stress reduction factors 𝑠ℎ. This
reduction factor depends on the degree of hydration and the composition of the concrete.

In the Bar model of Lokhorst (left figure 4.25) a water-cement ratio of 0.5 was assumed. In the experi-
ments from Sule which are used for the verification a water cement ratio of 0.33 was used. Therefore,
the Bar model must be modified. In order to determine the stress reduction factors that give the best
results, multiple assumptions were made. At the right of figure 4.25, the three different reduction factors
are presented.

Figure 4.25: Stress reduction factor for w/c ratio = 0.5 (left) and for w/c ratio = 0.33 (right). [21]

The following equations were used when the concrete specimen was under compression:

If 0 < 𝛼 < 0.3:

For reduction factor 1
𝑠ℎ(𝛼) =

8
3 ⋅ 𝛼 (4.11)

For reduction factor 2
𝑠ℎ(𝛼) = 0.1 +

5
3 ⋅ 𝛼 (4.12)

For reduction factor 3
𝑠ℎ(𝛼) = 0.65 ⋅ 𝛼 (4.13)

If 𝛼 > 0.3:

For reduction factor 1
𝑠ℎ(𝛼) = 0.2 + 𝛼 (4.14)

For reduction factor 2
𝑠ℎ(𝛼) = 0.3 + 𝛼 (4.15)

For reduction factor 3
𝑠ℎ(𝛼) = 2 ⋅ 𝛼 − 0.405 (4.16)
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In figure 4.26 the stress reduction factors according to Lokhorst [13] and the relation used in case that
the specimen is in tension for a water cement ratio of 0.33 are given.

Figure 4.26: Stress reduction factor for w/c ratio = 0.5 (left) and for w/c ratio = 0.33 (right). [21]

In case that the specimen is under tension, the following equations were used:

If 0 < 𝛼 < 0.6:

For reduction factor 1
𝑠ℎ(𝛼) = 0.4 + 0.75 ⋅ 𝛼 (4.17)

For reduction factor 2
𝑠ℎ(𝛼) = 0.55 + 0.6 ⋅ 𝛼 (4.18)

For reduction factor 3
𝑠ℎ(𝛼) = 0.2 + 𝛼 (4.19)
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4.3.6. Verification concrete stress development (with visco-elastic effects)
Taking into account the above mentioned reduction factors 𝑠ℎ the concrete stress can be calculated
with the following equation:

𝜎𝑐,𝑡𝑜𝑡𝑎𝑙 =∑(𝜎𝑐𝑇(𝑡) + 𝜎𝑐𝑎𝑠(𝑡)) ⋅ 𝑠ℎ(𝛼) (4.20)

In figure 4.27 the total concrete stress developments including visco-elastic effects such as creep and
relaxation are presented. It can be seen that the best results were obtained by applying the reduction
factor 2. That this reduction factor 2 gives the best approximation can be explained by the fact that
when the water cement ratio decreases, there is less early age relaxation so the reduction factor in-
creases.

It can be seen that in the first 24 hours, the magnitude of the compressive stresses is about the same
in the analytical calculation with reduction factor 2 as in the measurements from Sule [21]. In addition,
with regard to the moment of the formation of the first crack, in all cases still a difference was observed.
In the experiments the first crack already developed after 38 hours, while according to the calculations,
this happens after 44 hours. The reason for this has been stated before and is most likely due to the
fact that the temperature drops earlier in the experiment than in the calculations.

Figure 4.27: Total concrete stress with visco-elastic effects

4.4. Conclusion
Overall, when performing a non-linear finite element analysis for the simulation of the hardening pro-
cess of concrete in combination with autogenous shrinkage a lot of knowledge was required. It turned
out that the analyst’s specific choices such as the constitutive model type, the kinematic and equilibrium
condition have a major impact on the outcome of the analysis.

Furthermore, it turned out that it was essential to determine the time dependent material properties very
accurately. A small difference in the development of for example the elastic modulus of concrete would
cause a significant difference in the stress development. In addition, the temperature development was
of great importance. In the experiments the concrete cooled down faster than in the numerical analysis.
Consequently, the tensile stresses arose earlier and therefore the first cracks developed faster.

In addition, to perform a more adequate calculation the visco-elastic effects should be taken into ac-
count. Fitting the visco-elastic effects into the finite element model of DIANA is rather complex therefore
an analytical approach was applied. It turned out that using the modified Bar model of Lokhorst in com-
bination with the numerical approach was in close agreement with the experimental findings.



5
Parameter study

This parameter study is carried out to determine which parameters influence the crack width the most.
The maximal characteristic crack widths and corresponding parameters are processed in spreadsheet
models in Excel. In Appendix A an overview of the different prediction models and corresponding
formulas is given. The spreadsheets are given in Appendix B and these models will also contribute to
the comparison between the analytical and the numerical models.

5.1. Input parameters
To determine the most important parameters, the impact of the various input parameters is investigated.
In order to do this, initial values are defined. For this analysis a concrete tensile member is used with a
single eccentrically placed reinforcement bar. In all prediction models one parameter is changed within
a range of +/- 20% from the initial value while the values of the other parameters are kept constant. In
the results of the parameter study the influence of each parameter will be quantified and the different
models are compared. The parameters and initial values used for the analysis are:

Concrete cube strength 𝑓𝑐𝑘 = 30 MPa
Height h = 200 mm
Width b = 200 mm
Length L = 2000 mm
Bar diameter ∅ = 20 mm
Concrete cover c = 80 mm
Degree of restraint R = 0,5
Early age of cracking 𝑡0 = 3 days
Long term age of cracking t = 28 days
Temperature drop 𝑇1 = 40 ∘C
Long term temperature change 𝑇2 = 20 ∘C

For some parameters it may be not realistic that the deviations are in the range of −20% to +20%
of the initial values. However, the aim of the parameter study is only to compare the influence of the
different input parameters on the crack width. Therefore, it is more important to use the same range
instead of applying realistic deviations. The coefficients for the design codes were determined using
the following quite conservative assumptions. The influence of these assumptions is discussed in more
detail in chapter 6.

Cement type = Normal cement
Load duration = Long term loading
Bond properties = Smooth bars
Strain distribution = Tension
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5.2. Results with varying input parameters
In this section the results from the parameter study are presented and discussed. A distinction is made
between end restrained tension bar models (TBM’s) and continuous base restrained models (CM’s). It
is important to note, that in the CIRIA (I) a similar method is applied as in the EN 1992-3 (I), therefore the
CIRIA (I) is not shown in the results. For the non-linear finite element analysis (NLFEA) the modelling
choices described in chapter 3 are applied.

5.2.1. Concrete cube strength
5.2.1.1 Tension bar models
First of all, the influence of the concrete cube strength on the crack width is considered. In figures
5.1 and 5.2 , it is shown that according to all end restrained tension bar models, an increase in the
concrete cube strength also results in an increase in the crack width. This can be explained by the fact
that an increase in the concrete cube strength results in a increase in the concrete tensile strength,
which means that the crack strain increases. The larger the crack strain the larger the crack width.

Figure 5.1: Concrete cube strength versus crack width according to tensile bar models

Figure 5.2: Bar chart of the influence of concrete cube strength according to tensile bar models
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5.2.1.2 Continuous restraining models
In figures 5.3 and 5.4 the results of the continuous base restrained models are presented. It can be
seen that an increase in the concrete cube strength has almost no effect on the crack width. This
is because these models take into account two factors that have a contradicting effect on the crack
width. First, an increase in concrete cube strength results in an increase in concrete tensile strength,
which increases the crack strain. Second, the continuous restraining models take into account that an
increase in the concrete strength causes a decrease of the total shrinkage strain. Which means that
the autogenous and drying shrinkage are less. The lower the shrinkage strain the smaller the crack
width. From figure 5.4 it can be observed that the shrinkage is governing and therefore an increase in
the concrete cube strength results in a small decrease in crack width.

Figure 5.3: Concrete cube strength versus crack width according to continuous base restrained models

Figure 5.4: Bar chart of the influence of concrete cube strength according to continuous base restrained models
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5.2.2. Height
5.2.2.1 Tension bar models
From figures 5.5 and 5.6 it can be seen that the influence of the height ℎ on the crack width 𝑤𝑘 is
significant. According to all prediction models, an increase in height causes a larger crack width. All
models state that in case of full tension, an increase in height results in a larger effective tension area
𝐴𝑐,𝑒𝑓𝑓. Consequently, the reinforcement ratio 𝜌𝑠 decreases, which causes an increase of the transfer
length 𝑙𝑡 as shown by equation 5.2. From equation 5.1 it can be seen that with the increase of the
transfer length, the crack width will increase proportionally.

𝑤𝑘 = 𝑙𝑡 ⋅ (𝜖𝑠𝑚 − 𝜖𝑐𝑚), (5.1)

𝑙𝑡 =
1
4
𝑓𝑐𝑡𝑚
𝜏𝑏𝑚

∅
𝜌𝑠

(5.2)

It must be taken into account that in this parametric study, the amount of reinforcement 𝐴𝑠 is kept con-
stant. While, in general, if the height increases significantly the amount of reinforcement will increase
so that the reinforcement percentage is kept constant. As a result, the effect of height on crack width
will probably be smaller in practice than the results suggest.

Figure 5.5: Height versus crack width according to tensile bar models

Figure 5.6: Bar chart of the influence of height according to tensile bar models
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5.2.2.2 Continuous restraining models
Figures 5.7 and 5.8 display the results of the continuous models. It turned out that, according to the
continuous models an increase of the height causes a larger crack width. The reason for this is men-
tioned before in section 5.2.2.1 and is confirmed by equation 5.3 and 5.4. This shows that also in the
continuous restrained model the transfer length plays a crucial role in determining the crack width.

𝑤𝑘 = 𝑙𝑡 ⋅ 𝜖𝑐𝑟 (5.3)

𝑙𝑡 =
1
4
𝑓𝑐𝑡𝑚
𝜏𝑏𝑚

∅
𝜌𝑠

(5.4)

𝜖𝑐𝑟 = 𝐾1(𝛼𝑐𝑇1 + 𝜖𝑐𝑎)𝑅1 + 𝛼𝑐𝑇2𝑅2 + 𝜖𝑐𝑑𝑅3 (5.5)
In addition, from equation 5.5 it can be seen that in the continuous base restrained models the degree
of restraint influences the crack strain 𝜖𝑐𝑟. Therefore, it is important to note that previous research,
(appendix C.5), has shown that increasing the height causes a reduction of the degree of restraint
which influences the crack width. In section 5.2.7 the effect of the degree of restraint on the crack width
is investigated in more detail.

Figure 5.7: Height versus crack width according to continuous base restrained models

Figure 5.8: Bar chart of the influence of height according to continuous base restrained models
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5.2.3. Width
5.2.3.1 Tension bar models
From the literature study [2] it turned out that all tension bar models determine the effective concrete
area 𝐴𝑐,𝑒𝑓𝑓 by multiplying the effective height ℎ𝑐,𝑒𝑓𝑓 with the width 𝑏 of the member (equation 5.6).
This means that if all parameters are kept constant, an increase in width will result in a larger effective
area and thus a lower effective reinforcement percentage (equation 5.7). The lower the reinforcement
percentage, the larger the crack spacing, crack strain and the crack width.

𝐴𝑐,𝑒𝑓𝑓 = ℎ𝑐,𝑒𝑓𝑓 ⋅ 𝑏 (5.6)

𝜌𝑠,𝑒𝑓𝑓 =
𝐴𝑠

𝐴𝑐,𝑒𝑓𝑓
(5.7)

Figure 5.9: Width versus crack width according to tensile bar models

Figure 5.10: Bar chart of the influence of width according to tensile bar models
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5.2.3.2 Continuous restraining models
In figures 5.11 and 5.12 the influence of the width for the continuous base restrained models is shown.
It can be observed that an increase in the width causes a larger crack width. As mentioned before,
increasing the width causes a lower reinforcement percentage, and therefore a larger crack width. It
is important to emphasize that changing the width will affect the degree of restraint as is shown in
appendix C.5 and hence the crack width but this is not taken into account because all other parameters
are kept constant.

Figure 5.11: Width versus crack width according to continuous base restrained models

Figure 5.12: Bar chart of the influence of width according to continuous base restrained models
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5.2.4. Length
5.2.4.1 Tension bar models
In the tension bar models, the length is not taken into account in the crack width formulas at all.

5.2.4.2 Continuous restraining models
From figures 5.13 and 5.14 it can be concluded that in the continuous base restrained models, the
length has also no influence on crack width. However, the ICE-II takes into account the influence of
the length because this code applies a length coefficient 𝑘𝐿 which is always between 1 and 2. The
ICE states that if the degree of restraint is high, the length over which strain relaxation occurs (i.e.
zone of influence of the crack) will be less than if the degree of restraint is very low. Because in the
parameter study the degree of restraint has been assumed to be constant, the length coefficient 𝑘𝐿 is
also assumed as a constant of 1.5. For this reason, the influence of the length is not reflected in the
results.

Figure 5.13: Length versus crack width according to continuous base restrained models

Figure 5.14: Bar chart of the influence of length according to continuous base restrained models
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5.2.5. Reinforcement bar diameter
5.2.5.1 Tension bar models
The results in figure 5.15 and 5.16 show that the reinforcement bar diameter has a very large effect on
the size of the crack width. This can be explained by the fact that when the bar diameter increases this
results in a reduction of the average steel stress in the cracked sections because there is more steel
in the cross-section. In the tension bar models a larger bar diameter causes a decrease of crack strain
and crack spacing and therefore a lower characteristic crack width.

Figure 5.15: Bar diameter versus crack width according to tensile bar models

Figure 5.16: Bar chart of the influence of bar diameter according to tensile bar models
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5.2.5.2 Continuous restraining models
In the continuous models (figure 5.17 and 5.17) the influence is smaller because the reinforcement bar
diameter does not influence the restrained strain but only affects the crack spacing and therefore the
crack width.

Figure 5.17: Bar diameter versus crack width according to continuous base restrained models

Figure 5.18: Bar chart of the influence of bar diameter according to continuous base restrained models
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5.2.6. Concrete cover
5.6.2.1 Tension bar models
From figures 5.19 and 5.20 it can be seen that according to the Eurocode 2 (EN 1992-1-1 and EN
1992-3), increasing the concrete cover results in a larger crack width. While Van Breugel and the
Model Code 2010 state that the concrete cover does not have any influence on the crack width. The
reason for this is because these codes assume that at each crack, bond failure occurs and that plane
sections within the concrete remain plane. This means that cracks are formed parallel throughout the
section thickness and the concrete cover does not influence the crack width. This theory is also known
as the ”slip” theory and is described in more detail in section 2.4.3. Overall, it can be observed that the
NLFEA is less sensitive to the change of a single parameter. One reason for this is that the crack width
prediction depends on many more parameters than in the analytical models.

Figure 5.19: Concrete cover versus crack width according to tensile bar models

Figure 5.20: Bar chart of the influence of concrete cover according to tensile bar models
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5.6.2.2 Continuous restraining models
Figure 5.21 and 5.22 present the influence of the concrete cover according to the continuous restraining
models. It can be seen that according to CIRIA-II and ICE-II the crack width increases in case that the
concrete cover increases. This is because these models apply a combination of the ”slip” and ”no slip”
cracking theory. This means that the transfer length depends on the ratio between the bar diameter
and reinforcement percentage and the concrete cover.

Figure 5.21: Concrete cover strength versus crack width according to continuous base restrained models

Figure 5.22: Bar chart of the influence of Cconcrete cover according to continuous base restrained models
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5.2.7. Degree of restraint
5.2.7.1 Tension bar models
The literature study (chapter 2) showed that in the tension bar models, the degree of restraint is not
taken into account and therefore will not affect the crack width prediction.

3.2.7.2 Continuous restraining models
However, according to the continuous models the degree of restraint does have effect. The results in
figure 5.23 and 5.24 emphasize the remarkable contrast between the two prediction models. According
to CIRIA-II the crack width increases substantially when the the degree of restraint becomes larger.
While ICE-II assumes that an increase in the degree of restraint does not by definition lead to an
increase in the crack width. The explanation for this is because the ICE states that the higher the
degree of restraint the more force the restraining element will take and this will inhibit the growth of
cracks.

Figure 5.23: Degree of restraint versus crack width according to continuous base restrained models

Figure 5.24: Bar chart of the influence of degree of restraint according to continuous base restrained models
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5.3. Conclusion
5.3.1. Tension bar models
In figure 5.25 the percentage of change in predicted crack width for 20% decrease or increase in the
input parameter is given. A parameter is marked red if the change in predicted crack width is larger
than the change of the parameter.

It can be concluded that in all the prediction models which are based on the tensile member theory,
the bar diameter influences the crack width the most. Thereafter, the dimensions of the tension bar are
crucial for determining the crack width. The fact that the bar diameter has the most influence on the
crack width is easily explained by the fact that when the bar diameter increases this results in a reduction
of the average steel stress in the cracked sections because there is more steel in the cross-section. The
importance of the dimensions of the tension bar was also expected in advance. For larger dimensions,
not only the cracking force will increase but also the reinforcement ratio will decrease and this will have
a significant influence on the crack width. It has to be noted that in practice, when the dimensions of
the tension bar changes, the reinforcement ratio will be kept constant. If the reinforcement ratio is kept
constant, the influence of this parameter will be considerably smaller than the results suggest.

Figure 5.25: Percentage of change in predicted crack width for 20% decrease or increase in input parameter

5.3.2. Continuous restraining models
From figure 5.26 it can be seen that the influence of the degree of restraint remarkably varies between
the two prediction methods. According to CIRIA-II the crack width increases substantial when the
degree of restraint becomes larger. While ICE-II assumes that an increase in the degree of restraint
does not by definition lead to an increase in the crack width. The explanation for this is mentioned
before and is because the ICE-II states that the higher the degree of restraint, the more force the
restraining element will take and this will inhibit the growth of cracks.

Figure 5.26: Percentage of change in predicted crack width for 20% decrease or increase in input parameter



6
Comparison between numerical crack

width prediction and crack width
prediction using design codes

After the parameter study was performed, a number of findings were made that may relate to the fact
that certain ’conservative’ assumptions were made. In this chapter the influence of those assumptions
has been studied. Therefore, once again a comparison is made between the numerical calculated
crack width prediction and the crack width prediction according to various design codes. The model
choices described in chapter 3 were applied for the numerical calculations. The design codes included
in the comparison are all based on the tension bar model theory and have been discussed earlier in
chapter 2.

6.1. Introduction
In this comparison, two reinforced concrete tensile members were used. The difference between the
tensile members is the number of rebars and the reinforcement diameter as shown in figure 6.1. If one
reinforcement bar was applied it was located in the centre of the tensile member and if 4 reinforcement
bars were applied they were modelled in the corners with a concrete cover of 20 mm. In order to make
the most reliable comparison, only an autogenous shrinkage strain as an imposed deformation is ap-
plied. The material properties are as follows:

Concrete cube strength 𝑓𝑐𝑘 = 30 MPa
Height h = 150 mm
Width b = 100 mm
Length L = 1000 mm
Bar diameter ∅ = variable mm
Concrete cover c = variable mm
Steel stress 𝜎𝑠 = 300 MPa
Autogenous shrinkage strain 𝜖𝑎𝑠 = 500 𝜇𝜖

Figure 6.1: Overview amount of reinforcement and reinforcement configuration tensile members
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6.1.1. Coefficients Eurocode 2
For the comparison of both parts of the Eurocode 2 (EN 1992-1-1 and EN 1992-3) two cases were
considered, one with normal assumptions and one with conservative assumptions. The input values
for the Eurocode 2 [2] coefficients are given in figure 6.2

Figure 6.2: Input values normal and conservative assumptions for Eurocode 2 coefficients

6.1.2. Coefficients Model Code 2010
In figure 6.3 the input values used for the crack width calculation according to the Model Code 2010
are presented.

Figure 6.3: Input values for Model Code 2010 coefficients

6.1.3. Coefficients Van Breugel
Figure 6.4 shows two factors which are taken into account in the crack width calculation according to
Van Breugel.

Figure 6.4: Input values for Van Breugel coefficients
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6.2. Tension bar model 1
In figure 6.5 the cross-section and reinforcement configuration of tension bar model 1 (TBM-1) are
presented. In this model a centrically placed single reinforced bar with a diameter of 12 mm is applied.
In the contour plot of the crack width from DIANA it can be observed that after the applied shrinkage
strain 3 through cracks were developed. The maximum crack width and crack spacing are 0.71 and
420 mm respectively.

Figure 6.5: Cross-section TBM-1 (top) and contour plot of crack width (DIANA 10.5)

6.2.1. Eurocode 2
From figure 6.6 it can be seen that in case normal coefficients were applied the crack width according
to both parts of the Eurocode 2 were smaller than numerically was predicted. If the conservative
assumptions were used the crack width according to the EN 1992-1-1 is 63% larger than numerically
predicted. While according to the EN 1992-3 the predicted crack width is only 9% larger.

Figure 6.6: Comparison numerical crack width prediction versus Eurocode 2

In figure 6.7 an overview of the predicted crack spacing’s are given. It can be observed that the crack
spacing in both parts of the Eurocode 2 were the same and that if normal assumptions were made
the crack spacing’s are 16% smaller than numerically predicted. In addition, it can be seen that when
conservative assumptions were made the crack spacing is 85% larger. One of the explanations for
these large differences is that in the Eurocode 2 no upper limit value is applied for the maximum crack
spacing. If an upper limit would be applied, this will cause a better agreement with the numerical
predictions.

Figure 6.7: Comparison numerical crack spacing prediction versus Eurocode 2
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6.2.2. Model Code 2010 and Van Breugel
In figure 6.8 the comparison between the numerical prediction and the Model Code 2010 and Van
Breugel is presented. It can be seen that the crack width according to the Model Code 2010 is 25%
smaller than numerically predicted. The reasons for this difference can be explained by the fact the
crack spacing is also much smaller. The main expression for calculating the crack width according to
Model Code 2010 is based on the crack spacing and the differential mean strain between concrete and
reinforcement. Furthermore, it can be seen that for this specific case the crack with prediction according
to Van Breugel is in better agreement with the numerical result. Although the predicted crack spacing
is 36% lower, the crack width differs only 15% with the numerical result.

Figure 6.8: Comparison numerical prediction versus Model Code 2010 and Van Breugel

6.3. Tension bar model 2
In figure 6.9 the cross-section and reinforcement configuration of tension bar model 2 (TBM-2) are
presented. In this model four rebars with a diameter of 6 mm were applied. In the contour plot of the
crack width from DIANA it can be observed that due to autogenous shrinkage four through cracks were
developed.

Figure 6.9: Cross-section TBM-2 (top) and contour plot of crack width (DIANA 10.5)

6.3.1. Eurocode 2
From figure 6.10 it can be seen that in case normal coefficients were applied the crack width according
to both parts of the Eurocode 2 were much smaller than numerically was predicted. If the conservative
assumptions were used the crack width according to the EN 1992-1-1 is 34% larger than numerically
predicted. While, even with conservative assumption the EN1992-3 states that the predicted crack
width is 36% smaller than numerically predicted.

Figure 6.10: Comparison numerical crack width prediction versus Eurocode 2
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In figure 6.11 an overview of the predicted crack spacing’s are given. It can be observed that the crack
spacing in both parts of the Eurocode 2 were the same and that if normal assumptions were made the
crack spacing’s are 64% smaller than numerically predicted. In addition, it can be seen that even when
the conservative assumptions were made the crack spacing is 23% smaller than numerically predicted.

Figure 6.11: Comparison numerical crack spacing prediction versus Eurocode 2

6.3.2. Model Code 2010 and Van Breugel
In figure 6.12 the comparison between the numerical prediction and the Model Code 2010 and Van
Breugel is presented. It can be seen that the crack width according to the Model Code 2010 and Van
Breugel are smaller than numerically predicted, respectively 17 and 22%. An explanation for these
differences is related to the crack spacing. Important to note is that from earlier research (section
2.4.3.4) it turned out that for the calculation of the crack spacing, the Model Code 2010 and Van Breugel
were the only codes that applies the ”slip” theory. This theory states that the concrete cover will not
influence the crack spacing.

Figure 6.12: Comparison numerical prediction versus Model Code 2010 and Van Breugel

6.4. Conclusion
Visualizing the results from the design codes in figure 6.13 and 6.14 and disregarding the numerical
results for a moment, it becomes clear that there is a large discrepancy between the crack width pre-
diction of the codes. Between the largest and smallest predicted crack width there is a difference up to
a factor 3.

Figure 6.13: Comparison crack width prediction FEM versus design codes
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Figure 6.14: Comparison crack width prediction FEM versus design codes

Previous research conducted by Brattstrom and Hagman [7] stated that with respect to end-restrained
tensile members under imposed deformations the predicted crack width according to the EC2-3 is a
factor 1.4 lower than is predicted numerically using a non-linear finite element analysis. In addition,
from the PhD research on continuous base restrained walls from Micallef [14] it also turned out that
there was a large under estimation of the crack width due to imposed deformations up to 50%.

Overall, this indicates that there is an unreliability of these design codes and this makes the comparison
between the codes and finite element models even more difficult. The differences between the design
codes are explained in more detail in paragraph 2.4 but occur mainly due to the fact that all models use
different cracking approaches and are applying different empirical parameters.

It immediately stands out that in this research the crack widths that follow from the numerical analyses
are in general larger than predicted by the codes. One of the explanations for this difference may lie in
the way the crack width is determined in the finite element model. In the finite element model the strains
are first determined for all integration points, then these are converted into stresses, which are then
converted into internal forces. All internal and external forces together should result in an equilibrium
across the entire tensile member as long as the tensile strength is not exceeded. Since an equilibrium
of forces must be present everywhere, the finite element model is able to determine peak stress con-
centrations at for instance local disturbances. Analytically this is not possible, which may result in an
underestimation of the real crack width by the codes when assessing disturbed areas.

The only exceptions are the calculations according the Eurocode in which very conservative assump-
tions were made. Due to these conservative assumptions the crack width turned out to be larger than
numerically was predicted. In addition, in the finite element analysis, a very important parameter in the
crack width prediction is the bond between the reinforcement and concrete. In the design codes this
effect is taken into account in a limited way by using a reduction coefficient which might cause less
accurate predictions.



7
Discussion

In this chapter, the results presented throughout this thesis, as well as the way they were obtained,
are critically analysed and discussed. Per chapter, the calculations of the crack width prediction are
discussed, focusing on the consequence of the assumptions made on the accuracy and certainty of
the magnitude of cracking

7.1. Analytical crack width prediction model (design codes)
7.1.1. Codes based on the tension bar model theory
After the literature study had been performed it became clear that there were large differences be-
tween the crack width prediction of the concerned design codes. The impact of imposed deformation
on reinforced concrete structures was described in a limited scope in both parts of the Eurocode 2 (EN
1992-1-1 and EN 1992-3). In these codes only a general factor of 0,65 was assumed to account for
relaxation effects on stresses caused by imposed deformations. In addition, both parts of the Eurocode
2 were vague and inconsistent in the determination of the effective tensile zone for cross-sections with
multiple layers or varying reinforcement. Another point of discussion is that both codes state that the
crack width prediction according to the stabilize cracking stage is also applicable for the crack formation
stage. This assumption will cause the crack width to be overestimated more quickly.

In the Model Code 2010 and Van Breugel which are the more comprehensive crack width prediction de-
sign codes, a clear distinction is made between the cracking stage that applies and the type of loading.
In both codes it is stated that the effect of an imposed deformation in the crack formation stage was dif-
ferent form that in the stabilized cracking stage. If in the crack formation stage an imposed deformation
occurs while simultaneously the external imposed strain remains constant, the crack number tends to
increase. Since the external force can not exceed the cracking load in the crack formation stage, the
existing crack width will not increase. The result is that only additional cracks will develop and the max-
imum crack width does not change. While in the stabilized cracking stage, it is assumed that imposed
deformations do influence the maximum crack width. Because in the stabilized cracking stage no new
cracks are formed, and if imposed deformations are present they cause widening of the existing cracks.

In the end, it is important to realize that in case of short-term loading, the Model Code 2010 and Van
Breugel assume that the bonding stress between steel and concrete is equal to approximately two times
the mean tensile strength of concrete. While under long term loading, when imposed deformations are
present, it is stated that the bond stress decreases and that this could result in an increase in the transfer
length of approximately 25%. This value has been determined empirically and it is not supported by
the results from this thesis. The boundary conditions on which these empirical values are based are
unknown. Therefore, it might be that these values only apply under certain circumstances.
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7.1.2. Codes based on the continuous restraining model theory
Only the EN 1992-3, CIRIA and ICE deal with the specific condition of a member which is restrained
along one edge. These design codes are also known as the codes which are based on the continuous
restraining model theory. One of the most remarkable points of criticism is that in the EN 1992-3 and
CIRIA it is assumed that in the area beyond the maximum crack spacing there is no strain relief as a
result of the crack occurrence which could lead to a different crack width. This may be acceptable with
full edge restraint but in reality most of the structures are only partially restrained and strain relief may
occur. Only in the ICE the favourable effect of a member’s restrained edge on the reduction of crack
spacing and crack width is taken into account.

Another important point of discussion relates to the determination of the degree of restraint. In the EN
1992-3 only a few practical restraint factors for common situations are given. The EN 1992-3 states
that in many cases it will be clear that no significant curvature could occur and recommends to assume
a restraint factor of 1.0. This assumption seems quite conservative and unrealistic. The CIRIA and ICE
provide a formula to determine the degree of restraint which is based on the relative size and stiffness
of the restraint elements.

7.2. Numerical crack width prediction (imposed loading versus im-
posed deformations)

A point of criticism in applying NLFEA is that the analyst’s specific choices such as the constitutive
model type, the kinematic and equilibrium conditions have a major impact on the outcome of the anal-
ysis. To ensure a reliable and safe comparison, the boundary conditions and model choices in this
chapter have been made according to the Rijkswaterstaat Technical Document.

In addition, it should be taken into account that in the numerical models a very large shrinkage strain
of -2 ⋅ 10−3 is applied as an imposed deformation. The magnitude of the imposed deformation was
chosen in such a way that the crack pattern was fully developed. According to multiple crack width
prediction models such as the Eurocode 2 and the Model Code 2010, the magnitude of this imposed
deformation does almost never occur in regular concrete. When looking at more common quantities
of imposed deformations, these results confirm that imposed deformations will almost never result in a
fully developed crack pattern, or in other words, will almost never reach the stabilized cracking stage.

However, nowadays many new concrete types are being developed, such as for example geopolymers
or strain-hardening cementitious composites (SHCC). These species have a much higher magnitude
of shrinkage and therefore it may happen more often in the future that imposed deformations cause
fully developed crack patterns.

7.3. Case study: numerical prediction of early age cracking due to
hardening of concrete

The results in chapter 4 have shown that the maximum compressive stresses due to the hardening of
concrete in combination with the autogenous shrinkage were approximately 15% smaller in the mea-
surements from Sule [21], than in the finite element calculations. Regarding the moment of the forma-
tion of the first crack, it was observed that in the experiments the first crack developed a little earlier.

These differences can be explained by the following reasons. First of all, there was a small difference
between the temperature development in the tensile member according to the finite element analysis
and the temperature development measured in practice. Due to the fact that in the experiments the
concrete cooled down faster, consequently, the tensile stresses arose earlier and therefore the first
cracks developed faster. It was impossible to simulate the temperature development that was in com-
plete agreement with the experiments. The reason for this was that in the experiments the concrete
temperature was prescribed using temperature controlled moulds. While in the finite element analysis
the temperature development was depending on interface boundary elements (used to model the con-
vection) and an adiabatic heat curve. Both parameters for the concrete mixture used in the experiments
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were unknown. To be able to model the hardening process of a concrete structure even more accu-
rately, the temperature development according to the finite element analysis should correspond exactly
to the measured temperature development in practice. To achieve this, changes in the thermal prop-
erties of the concrete mixture and the thermal boundary conditions of the cross-section should bemade.

In addition, not taking into account the visco-elastic effects such as creep and relaxation in the finite
element analysis caused a difference in stress development. Fitting the visco-elastic effects into the
finite element model of DIANA is rather complex due to a lack of knowledge regarding the input param-
eters. An attempt was made to apply the Bar model of Lokhorst to take into account the visco-elastic
effects in an analytical way. In the Bar model of Lokhorst a water-cement ratio of 0.5 was assumed.
While, in the experiments from Sule, which are used for the verification, a water cement ratio of 0.33
was used. Therefore, the Bar model was modified. In order to determine the stress reduction factors
that give the best results, multiple assumptions were made. One of the explanations that the largest
reduction factor gave the best results might be that a decrease of the water cement ratio causes less
early age relaxation.

7.4. Parameter study
Regarding the tension bar models, the bar diameter has the largest influence on the crack width pre-
diction. This large influence can be explained. First of all, when the bar diameter increases this results
in a reduction of the average steel stress in the cracked sections because there is more steel in the
cross-section which causes a decrease of crack strain. In addition to the crack strain, the bar diameter
is also normative for the determination of the crack spacing. These two aspects form the basis for the
determination of the crack width in the tension bar models.

As far as the continuous models are concerned, there is no one-sided answer to this question. In the
prediction method of CIRIA the degree of restraint clearly stands out as the most important parameter
which influences the crack width prediction. This code even states that there is a linear relation between
the degree of restraint and the predicted crack width. While according to the ICE, the parameters that
were investigated in this thesis have limited effect on the crack width prediction. Important to conclude
is that the ICE assumes that an increase in the degree of restraint does not by definition result to an
increase in the crack width. The explanation for this is because the ICE states that the higher the de-
gree of restraint the more force the restraining element will take and this will inhibit the growth of cracks.

An important point of criticism is the approach of the parameter study. In all prediction models only one
parameter has been changed within a range of +/ − 20% from the initial value while the values of the
other parameters have been kept constant. This might have caused unrealistic situations. For exam-
ple, in practice, when the dimensions of the tension bar significantly increase the reinforcement ratio
will probably be kept constant. In this case, the influence of the bar dimensions will be considerably
smaller than the results suggest.

Furthermore, the influence of the length on the crack width can be discussed. In the parameter study
the degree of restraint has been assumed to be constant. For this reason the length coefficient, only
applied in the ICE, was also assumed to be constant. Consequently, the influence of the length is not
reflected in the results from this design code. The ICE states that if the degree of restraint is high, the
length over which strain relaxation occurs (i.e. zone of influence of the crack) will be less than if the
degree of restraint is very low. Consequently, an increase in length, reduces the degree of restraint,
causing a smaller crack width.

A third remark is the contradiction regarding the influence of the degree of restraint between CIRIA
and ICE. According to CIRIA the crack width increases substantially when the the degree of restraint
becomes larger. While ICE assumes that an increase in the degree of restraint does not by definition
lead to an increase in the crack width. The ICE states that the higher the degree of restraint the more
force the restraining element will take and this will inhibit the growth of cracks.
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7.5. Comparison between numerical crackwidth prediction and crack
width prediction using design codes

It immediately stands out that in this research the crack widths that follow from the numerical analyses
are in general larger than predicted by the codes. One of the explanations for this difference may lie in
the way the crack width is determined in the finite element model. In the finite element model the strains
are first determined for all integration points, then these are converted into stresses, which are then
converted into internal forces. All internal and external forces together should result in an equilibrium
across the entire tensile member as long as the tensile strength is not exceeded. Since an equilibrium
of forces must be present everywhere, the finite element model is able to determine peak stress con-
centrations at for instance local disturbances. Analytically this is not possible, which may result in an
underestimation of the real crack width by the codes when assessing disturbed areas.

One of the disadvantages of the advanced and complex finite element approach is that it is time con-
suming and the input parameters are difficult to quantify. Therefore, the reliability of this approach
might be in practice lower than the results suggest.



8
Conclusions and recommendations

8.1. Conclusions
In this chapter first of all, the answers to the sub-questions are described. Thereafter, the main conclu-
sions and the answer on the research question is given. In the end some recommendations on possible
future research are presented.

This master thesis addresses the following research questions:

I. Which design codes are used to predict the maximum crack width under imposed loads
and imposed deformations?
Worldwide there is a large number of design codes that predict the maximum crack width in
reinforced concrete structures. Based on the accessibility and language, in this master’s thesis
six different codes were considered. According to the CROW those codes are regularly used in
the Netherlands and other European countries. It turned out that a distinction was made between
design codes which are based on the tension bar model theory and codes based on continuous
restraining model theory. The Eurocode 2, Model Code 2010 and Van Breugel are codes which
are based on the tension bar model theory. While, CIRIA C660 and ICE 706 are based on the
continuous restraining model theory.

II. Is there a difference in the steel stress and its growth at the location of cracks when crack-
ing occurs due to imposed loading or due to imposed deformations?
There is a large difference in the steel stress and its growth when cracking occurs due to imposed
loads or under imposed deformations. The most remarkable difference lies in the fact that under
imposed loading the cracking load at the formation of each crack increases while under imposed
deformations it decreases as the process of crack formation goes on. This decrease in the peak
values is proportional to the stiffness of the reinforcement. In addition, when cracks are formed
due to imposed deformations the degree of restraint decreases. The lower the degree of restraint
the more imposed strain disappears resulting in a lower steel stress.

III. Which parameters are essential to simulate the hardening process of concrete in combina-
tion with autogenous shrinkage as imposed deformations using a finite element program?
Specific choices such as the constitutive model type, the kinematic and equilibrium condition
have a major impact on the outcome of the analysis. It is essential to determine the time depen-
dent material properties and the temperature development accurately. In addition, to perform a
adequate calculation the visco-elastic effects should be taken into account.
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IV. What are themost important parameters that influence crack prediction according to these
analytical design codes?
Regarding the tension bar models, the bar diameter has the largest influence on the crack width
prediction. As far as the continuous models are concerned, there is no one-sided answer to this
question. In the prediction method of CIRIA the degree of restraint clearly stands out as the most
important parameter which influences the crack width prediction. While according to the ICE, the
parameters that were investigated in this thesis have limited effect on the crack width prediction.

V. Is there a difference between the crack width predicted by the design codes and numeri-
cally predicted crack width using a finite element program?
It can be concluded, that the crack widths that follow from the verified finite element analyses
in DIANA were larger than predicted by the codes. The only exceptions are the calculations
according to the Eurocode in which very conservative assumptions were made. Due to these
conservative assumptions the crack width turned out to be larger than numerically was predicted.

Research question: What is the applicability of the design codes regarding the crack width pre-
diction of reinforced concrete structures under imposed deformations?

It turned out that the design codes considered in this master thesis do not yet fully represent the crack
width due to the hardening of concrete or due to autogenous shrinkage. The design codes are ap-
plicable for the crack width prediction of reinforced concrete structures under imposed deformations if
conservative assumptions are taken into account.

8.2. Recommendations
1. Observations in practice
It appeared that the material properties of the applied analyses in the finite element models are very
important and have uncertainties that can affect the validity. In order to improve the validation of the
finite element analysis and to assess the reliability of the crack width prediction, more crack width mea-
surements in practice should be performed. This will help to improve the analysis and the design.

2. Further analysis of the effect of creep
Attempts to implement creep in the numerical analyses was made rather late in the thesis. Factors such
as switching to a new numerical software, introducing time dependency and the overall complexity of
the problem have resulted in that no certain conclusions can be drawn. For a future report, it may be a
good idea to fully focus on the concept of creep. Further, it may be of interest to investigate the effect
of creep under varying climate such as temperature and relative humidity.

3. Investigation of autogenous shrinkage
In the Eurocode 2 and Model Code 2010 it is assumed that the autogenous shrinkage develops in-
stantly after the moment of casting of the concrete. This is however contradicted by the experimental
measurement which suggests that the period of autogenous swelling prior to the period of shrinkage
should also be taken into account. Taking the period of autogenous swelling into account influences
the stress development during hardening.

4. Conducting laboratory tests
In the end it can be concluded that it is the combination of the different material properties and model
parameters that determine the stress development during the hardening of concrete. For all parame-
ters the magnitude at early-ages is of high importance. It should therefore be considered to do more
laboratory tests on material properties at very early-ages (0-48 hours).



A
Overview crack width prediction models

A.1. EN 1992-1-1
General information

• Year: 2011

• Type: Code of practice

• Origin: Europe

• Theory: Tension bar model (restraint at both ends)

Effective height
ℎ𝑐,𝑒𝑓𝑓 = 𝑚𝑖𝑛(2, 5(ℎ − 𝑑); ℎ/2) (A.1)

Transfer length and crack spacing

𝑙𝑠𝑡 = 𝑠𝑟,𝑚𝑖𝑛 =
𝑠𝑟,𝑚𝑎𝑥

1, 33 ⋅ 1, 70 (A.2)

𝑠𝑟,𝑚𝑒𝑎𝑛 =
𝑠𝑟,𝑚𝑎𝑥
1, 70 (A.3)

𝑠𝑟,𝑚𝑎𝑥 = 3, 4 ⋅ 𝑐 + 0, 34 ⋅
∅

𝜌𝑝,𝑒𝑓𝑓
(A.4)

Crack width
𝑤𝑘 = 𝑠𝑟,𝑚𝑎𝑥 ⋅ (𝜖𝑠𝑚 − 𝜖𝑐𝑚), (A.5)

(𝜖𝑠𝑚 − 𝜖𝑐𝑚) =
𝜎𝑠 − 𝑘𝑡

𝑓𝑐𝑡,𝑒𝑓𝑓
𝜌𝑝,𝑒𝑓𝑓

(1 + 𝛼𝑒 ⋅ 𝜌𝑝,𝑒𝑓𝑓)
𝐸𝑠

≥ 0, 6𝜎𝑠𝐸𝑠
. (A.6)
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A.2. EN 1992-3 (1)
General information

• Year: 2006

• Type: Code of practice

• Origin: Europe

• Theory: Tension bar model (restraint at both ends)

Effective height
ℎ𝑐,𝑒𝑓𝑓 = 𝑚𝑖𝑛(2, 5(ℎ − 𝑑); ℎ/2) (A.7)

Transfer length and crack spacing

𝑙𝑠𝑡 = 𝑠𝑟,𝑚𝑖𝑛 =
𝑠𝑟,𝑚𝑎𝑥

1, 33 ⋅ 1, 70 (A.8)

𝑠𝑟,𝑚𝑒𝑎𝑛 =
𝑠𝑟,𝑚𝑎𝑥
1, 70 (A.9)

𝑠𝑟,𝑚𝑎𝑥 = 3, 4 ⋅ 𝑐 + 0, 34 ⋅
∅

𝜌𝑝,𝑒𝑓𝑓
(A.10)

Crack width
𝑤𝑘 = 𝑠𝑟,𝑚𝑎𝑥 ⋅ (𝜖𝑠𝑚 − 𝜖𝑐𝑚), (A.11)

(𝜖𝑠𝑚 − 𝜖𝑐𝑚) =
0.5𝑘 ⋅ 𝑘𝑐 ⋅ 𝑓𝑐𝑡,𝑒𝑓𝑓 ⋅ 𝛼𝑒

𝐸𝑠
(( 1𝛼𝑒𝜌

+ 1). (A.12)
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A.3. Model Code 2010
General information

• Year: 2010

• Type: Guideline

• Origin: Europe

• Theory: Tension bar model (restraint at both ends)

Effective height
ℎ𝑐,𝑒𝑓𝑓 = 𝑚𝑖𝑛(2, 5(ℎ − 𝑑); ℎ/2) (A.13)

Transfer length and crack spacing

𝑙𝑠𝑡 = 𝑠𝑟,𝑚𝑖𝑛 =
𝑠𝑟,𝑚𝑎𝑥
2, 0 (A.14)

𝑠𝑟,𝑚𝑒𝑎𝑛 =
𝑠𝑟,𝑚𝑎𝑥
1, 5 (A.15)

𝑠𝑟,𝑚𝑎𝑥 = 2𝑐 + 0, 28 ⋅
∅
𝜌𝑠

(A.16)

Crack width
Crack formation stage

𝑤𝑘 = 2 ∗ 𝑙𝑠𝑡 ⋅ (𝜖𝑠𝑚 − 𝜖𝑐𝑚), (A.17)

(𝜖𝑠𝑚 − 𝜖𝑐𝑚) =
𝜎𝑠 − 0, 6

𝑓𝑐𝑡,𝑒𝑓𝑓
𝜌𝑝,𝑒𝑓𝑓

(1 + 𝛼𝑒𝜌𝑝,𝑒𝑓𝑓)
𝐸𝑠

(A.18)

Stabilized cracking stage
𝑤𝑘 = 𝑠𝑟,𝑚𝑎𝑥 ⋅ (𝜖𝑠𝑚 − 𝜖𝑐𝑚), (A.19)

(𝜖𝑠𝑚 − 𝜖𝑐𝑚) =
𝜎𝑠 − 0, 4

𝑓𝑐𝑡,𝑒𝑓𝑓
𝜌𝑝,𝑒𝑓𝑓

(1 + 𝛼𝑒𝜌𝑝,𝑒𝑓𝑓)
𝐸𝑠

+ 𝜖𝑟 (A.20)
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A.4. Van Breugel
General information

• Year: 2016

• Type: Guideline

• Origin: The Netherlands

• Theory: Tension bar model (restraint at both ends)

Effective height
ℎ𝑐,𝑒𝑓𝑓 = 𝑚𝑖𝑛(𝑐 + 2∅ + 1, 2𝑙𝑠𝑡; ℎ/2) (A.21)

Transfer length and crack spacing

𝑙𝑠𝑡 = 𝑠𝑟,𝑚𝑖𝑛 =
𝑠𝑟,𝑚𝑎𝑥
2, 0 (A.22)

𝑠𝑟,𝑚𝑒𝑎𝑛 =
𝑠𝑟,𝑚𝑎𝑥
1, 5 (A.23)

𝑠𝑟,𝑚𝑎𝑥 = 2, 4 ⋅ 𝑤𝑚𝑜 ⋅
𝐸𝑠
𝜎𝑠,𝑐𝑟

(A.24)

Crack width
Crack formation stage

𝑤𝑚𝑜 = 2 ⋅ [
0, 4 ⋅ ∅

𝑓𝑐𝑚,𝑐𝑢𝑏𝑒 ⋅ 𝐸𝑠
⋅ (𝜎𝑐𝑟𝜌 )

2 ⋅ (1 + 𝛼𝑒 ⋅ 𝜌)]0,85 (A.25)

Stabilized cracking stage
𝑤𝑚𝑣 = 1, 8 ⋅ 𝑤𝑚𝑜 ⋅

𝜎𝑠
𝜎𝑠,𝑐𝑟

− 0, 5 (A.26)
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A.5. CIRIA C660 II
General information

• Year: 2007

• Type: Guideline

• Origin: United Kingdom

• Theory: Continuous model (restraint along one edge)

Effective height
ℎ𝑐,𝑒𝑓𝑓 = 𝑚𝑖𝑛(2, 5(ℎ − 𝑑); ℎ/2) (A.27)

Transfer length and crack spacing

𝑙𝑠𝑡 = 𝑠𝑟,𝑚𝑖𝑛 =
𝑠𝑟,𝑚𝑎𝑥

1, 33 ⋅ 1, 70 (A.28)

𝑠𝑟,𝑚𝑒𝑎𝑛 =
𝑠𝑟,𝑚𝑎𝑥
1, 70 (A.29)

𝑠𝑟,𝑚𝑎𝑥 = 3, 4 ⋅ 𝑐 + 0, 34 ⋅
∅

𝜌𝑝,𝑒𝑓𝑓
(A.30)

Crack width
𝑤𝑘 = 𝑠𝑟,𝑚𝑎𝑥 ⋅ 𝜖𝑐𝑟 , (A.31)

𝜖𝑐𝑟 = 𝐾1(𝛼𝑐𝑇1 + 𝜖𝑐𝑎)𝑅1 + 𝛼𝑐𝑇2𝑅2 + 𝜖𝑐𝑑𝑅3 (A.32)
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A.6. ICE 706
General information

• Year: 2010

• Type: Guideline

• Origin: United Kingdom

• Theory: Continuous model (restraint along one edge)

Effective height
ℎ𝑐,𝑒𝑓𝑓 = 𝑚𝑖𝑛(2, 5(ℎ − 𝑑); ℎ/2) (A.33)

Transfer length and crack spacing

𝑙𝑠𝑡 = 𝑠𝑟,𝑚𝑖𝑛 =
𝑠𝑟,𝑚𝑎𝑥

1, 33 ⋅ 1, 70 (A.34)

𝑠𝑟,𝑚𝑒𝑎𝑛 =
𝑠𝑟,𝑚𝑎𝑥
1, 70 (A.35)

𝑠𝑟,𝑚𝑎𝑥 = 3, 4 ⋅ 𝑐 + 0, 34 ⋅
∅

𝜌𝑝,𝑒𝑓𝑓
(A.36)

Crack width
𝑤𝑘 = 𝑤𝑘1 +𝑤𝑘2 (A.37)

𝑤𝑘1 = 𝑠𝑟,𝑚𝑎𝑥 ⋅
0, 5𝐿 ⋅ 𝜖𝑐𝑡𝑢 ⋅ (1 − 𝑅𝑒𝑑𝑔𝑒)𝐵

1 − 𝑆⋅𝑅𝑒𝑑𝑔𝑒
𝑘𝐿⋅𝐻

[1 − 0, 5(𝐵 + 1
1−𝑅𝑒𝑑𝑔𝑒

)]
, (A.38)

𝑤𝑘2 = 𝑠𝑟,𝑚𝑎𝑥 ⋅ (1 − 0, 5𝑅𝑒𝑑𝑔𝑒)𝐾1(𝜖𝑓𝑟𝑒𝑒 −
𝜖𝑐𝑡𝑢

𝑅𝑒𝑑𝑔𝑒 ⋅ 𝐾1
) (A.39)



B
Spreadsheets prediction models

The spreadsheet models of the following prediction methods are given in this appendix.

Tension bar models

B.1. EN 1992-1-1

B.2. EN 1993-2

B.3. Model Code 2010

B.4. Van Breugel

Continuous restraining models

B.5. CIRIA C660

B.6. ICE 0706
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B.1. EN 1992-1-1 
Input parameters Symbol Value Unit

Section details and material properties
Concrete quality = C30/37

Characteristic concrete cube strength fck = 30 MPa
Characteristic yield strength fyk = 500 MPa
Width b = 200 mm
Section thickness h = 200 mm
Length of the wall L = 1000 mm
Early age of cracking t0 = 3 days
Long term age of cracking t = 28 days
Cement type = R (S, N or R)
Load duration = L (S or L) S = Short term and L = Long term

Bond properties = H (H or L) H = High bond and L = Low bond

Strain distribution = T (B or T) B = Bending and T = Tension

Reinforcement details
Number of bars n = 1
Horizontal bar diameter øhor = 20 mm
Horizontal bar spacing shor = 0 mm
Vertical bar diameter øvert = 0 mm
Vertical bar spacing svert = 0 mm
Concrete cover 1 c1 = 20 mm
Concrete cover 2 c2 = 0 mm
Modulus of elasticity of steel Es = 200000 MPa
Calculations
Horizontal steel area per face As,hor = 314 mm2 n*Pi()/4 * øhor^2

Area of concrete Ac = 40000 mm2 (b*h) 

Reinforcement ratio ρ = 0,79 % As/Ac

Effective height hc,eff = 75 mm Min(2,5*(c1+øhor/2) ; h/2)

Effective tension area Ac,eff = 15000 mm2  hc,eff* b

Effective reinforcement ratio ρp,eff = 2,09 % As / Ac,eff

Concrete properties
Mean compressive strength at 28 days fcm = 38 MPa fck+8

Mean concrete compressive strength at an age of t days fcm (t) = 38 MPa βcc(t)*fcm

Mean concrete tensile strength fctm = 2,90 MPa 0,30*fck^(2/3)

Effective concrete tensile strength at an age of t days fct,eff (t) = 2,90 MPa βcc(t)^α * fctm

Coefficient which depends on the age of concrete βcc(t) = 1,00 exp(s(1-(28/t)^0,5))

α = 0,67 α = 1 for t < 28 and α = 2/3 for t=>28

Coefficient which depends on the type of cement s = 0,20 S = 0,38; N = 0,25; R = 0,20

Modulus of elasticity of concrete Ecm = 32837 MPa 22*(fcm)/10)^0,3 * 10^3

Modulus of elasticity of concrete at an age of t days Ecm (t) = 32837 MPa (((βcc(t)*fcm(t))/fcm(t))^0,3)*Ecm

Modular ratio αe = 6,1 Es\Ecm(t)

Coëfficients
Bond properties of reinforcement k1 = 0,80 high bond = 0,8 ; bars with effective plain surface = 1,6

Strain distribution in cross section k2 = 1,0 bending = 0,5 and pure tension = 1,0

Takes into account the cover k3 = 3,4
Takes into account the cross section of reinforcement k4 = 0,425
Effect of the load duration kt = 0,40 long term (L) = 0,4 and short term (S) = 0,6

Takes into account stress distribution kc = 1,00 pure tension = 1,0

Takes into account the effect of non-uniform equilibrium
stresses which lead to a reduction of restraint forces
Creep factor K1 = 0,65
Sustained load factor K2 = 0,8
Coefficient of thermal expansion of concrete αc = 11,8 με/˚C
Crack spacing and crack width
Cracking Force Ncr = 121 kN fct,eff * Ac * (1+ρ* αe)

Steel stress directly after cracking σs = σs,cr = 386 MPa Ncr/As

Transfer length lst = sr,min = 174 mm sr,mean / 1,33

Mean crack spacing sr,mean = 231 mm sr,max / 1,7

Max final crack spacing sr,max = 393 mm k3 * c + k1 * k2 * k4 * ø / ρp,eff

Strain difference εsm-εcm = 1932 με {σs - kt * fct,eff/ρ,eff (1+ αe ρ,eff) }/Es

Long term crack width wk = 0,759 mm sr,max * (εsm-εcm)

k = 1,00 h ≤ 300 = 1,0 and h > 800 = 0,65

Figure B.1: Spreadsheet EN 1992-1-1
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B.2. EN 1992-1-1 
Input parameters Symbol Value Unit

Section details and material properties
Concrete quality = C30/37

Characteristic concrete cube strength fck = 30 MPa
Characteristic yield strength fyk = 500 MPa
Width b = 200 mm
Section thickness h = 200 mm
Length of the wall L = 1000 mm
Early age of cracking t0 = 3 days
Long term age of cracking t = 28 days
Cement type = R (S, N or R)
Load duration = L (S or L) S = Short term and L = Long term

Bond properties = H (H or L) H = High bond and L = Low bond

Strain distribution = T (B or T) B = Bending and T = Tension

Reinforcement details
Number of bars n = 1
Horizontal bar diameter øhor = 20 mm
Horizontal bar spacing shor = 0 mm
Vertical bar diameter øvert = 0 mm
Vertical bar spacing svert = 0 mm
Concrete cover 1 c1 = 20 mm
Concrete cover 2 c2 = 0 mm
Modulus of elasticity of steel Es = 200000 MPa
Calculations
Horizontal steel area per face As,hor = 314 mm2 n*Pi()/4 * øhor^2

Area of concrete Ac = 40000 mm2 (b*h) 

Reinforcement ratio ρ = 0,79 % As/Ac

Effective height hc,eff = 75 mm Min(2,5*(c1+øhor/2) ; h/2)

Effective tension area Ac,eff = 15000 mm2  hc,eff* b

Effective reinforcement ratio ρp,eff = 2,09 % As / Ac,eff

Concrete properties
Mean compressive strength at 28 days fcm = 38 MPa fck+8

Mean concrete compressive strength at an age of t days fcm (t) = 38 MPa βcc(t)*fcm

Mean concrete tensile strength fctm = 2,90 MPa 0,30*fck^(2/3)

Effective concrete tensile strength at an age of t days fct,eff (t) = 2,90 MPa βcc(t)^α * fctm

Coefficient which depends on the age of concrete βcc(t) = 1,00 exp(s(1-(28/t)^0,5))

α = 0,67 α = 1 for t < 28 and α = 2/3 for t=>28

Coefficient which depends on the type of cement s = 0,20 S = 0,38; N = 0,25; R = 0,20

Modulus of elasticity of concrete Ecm = 32837 MPa 22*(fcm)/10)^0,3 * 10^3

Modulus of elasticity of concrete at an age of t days Ecm (t) = 32837 MPa (((βcc(t)*fcm(t))/fcm(t))^0,3)*Ecm

Modular ratio αe = 6,1 Es\Ecm(t)

Coëfficients
Bond properties of reinforcement k1 = 0,80 high bond = 0,8 ; bars with effective plain surface = 1,6

Strain distribution in cross section k2 = 1,0 bending = 0,5 and pure tension = 1,0

Takes into account the cover k3 = 3,4
Takes into account the cross section of reinforcement k4 = 0,425
Effect of the load duration kt = 0,40 long term (L) = 0,4 and short term (S) = 0,6

Takes into account stress distribution kc = 1,00 pure tension = 1,0

Takes into account the effect of non-uniform equilibrium
stresses which lead to a reduction of restraint forces
Creep factor K1 = 0,65
Sustained load factor K2 = 0,8
Coefficient of thermal expansion of concrete αc = 11,8 με/˚C
Crack spacing and crack width
Cracking Force Ncr = 121 kN fct,eff * Ac * (1+ρ* αe)

Steel stress directly after cracking σs = σs,cr = 386 MPa Ncr/As

Transfer length lst = sr,min = 174 mm sr,mean / 1,33

Mean crack spacing sr,mean = 231 mm sr,max / 1,7

Max final crack spacing sr,max = 393 mm k3 * c + k1 * k2 * k4 * ø / ρp,eff

Strain difference εsm-εcm = 390 με {0,5 * αe * k * kc * fct,eff (1+1/ αe *ρp,eff}/Es

Long term crack width wk = 0,153 mm sr,max * (εsm-εcm)

k = 1,00 h ≤ 300 = 1,0 and h > 800 = 0,65

Figure B.2: Spreadsheet EN 1992-3
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B.3. Model Code 2010
Input parameters Symbol Value Unit

Section details and material properties
Concrete quality = C30/37

Characteristic concrete cube strength fck = 30 MPa
Characteristic yield strength fyk = 500 MPa
Width b = 200 mm
Section thickness h = 200 mm
Length of the wall L = 1000 mm
Early age of cracking t0 = 3 days
Long term age of cracking t = 28 days
Cement type = R (S, N or R)
Load duration = L (S or L) S = Short term and L = Long term

Bond properties = H (H or L) H = High bond and L = Low bond

Strain distribution = T (B or T) B = Bending and T = Tension

Reinforcement details
Number of bars n = 1
Horizontal bar diameter øhor = 20 mm
Horizontal bar spacing shor = 0 mm
Vertical bar diameter øvert = 0 mm
Vertical bar spacing svert = 0 mm
Concrete cover 1 c1 = 20 mm
Concrete cover 2 c2 = 0 mm
Modulus of elasticity of steel Es = 200000 MPa
Calculations
Horizontal steel area per face As,hor = 314 mm2 n*Pi()/4 * øhor^2

Area of concrete Ac = 40000 mm2 (b*h) 

Reinforcement ratio ρ = 0,79 % As/Ac

Effective height hc,eff = 75 mm Min(2,5*(c1+øhor/2) ; h/2)

Effective tension area Ac,eff = 15000 mm2  hc,eff* b

Effective reinforcement ratio ρp,eff = 2,09 % As / Ac,eff

Concrete properties
Mean compressive strength at 28 days fcm = 38 MPa fck+8

Mean concrete compressive strength at an age of t days fcm (t) = 38 MPa βcc(t)*fcm

Mean concrete tensile strength fctm = 2,90 MPa 0,30*fck^(2/3)

Effective concrete tensile strength at an age of t days fct,eff (t) = 2,90 MPa βcc(t)^α * fctm

Coefficient which depends on the age of concrete βcc(t) = 1,00 exp(s(1-(28/t)^0,5))

α = 0,67 α = 1 for t < 28 and α = 2/3 for t=>28

Coefficient which depends on the type of cement s = 0,20 S = 0,38; N = 0,25; R = 0,20

Modulus of elasticity of concrete Ecm = 32837 MPa 22*(fcm)/10)^0,3 * 10^3

Modulus of elasticity of concrete at an age of t days Ecm (t) = 32837 MPa (((βcc(t)*fcm(t))/fcm(t))^0,3)*Ecm

Modular ratio αe = 6,1 Es\Ecm(t)

Coëfficients
Early age C F S S C S
Mean bond strenght between reinforcement and concrete τ = 5,2 5,2
Emperical coefficient to asses the mean strain over sr,max β = 0,6 0,6
Take into account contribution shrinkage ηr = 0,0 0,0

Long-term C F S S C S
Mean bond strenght between reinforcement and concrete τ = 3,9 5,2
Emperical coefficient to asses the mean strain over sr,max β = 0,6 0,4
Take into account contribution shrinkage ηr = 0,0 1,0
Model Code 10
Cracking force Ncr = 121 kN fct,eff * Act * (1+ρ * αe) 

Imposed deformation (imposed strain) εimp = 418 με Next/ (As  * Es)

Concrete strain at onset of cracking εcr = 88 με fctm/Ec

Concrete strain at onset of the fully devevelop crack pattern εfdc = 1195 με fctm * (0,6 + αe*ρ) / Es * ρ

Steel yielding strain εsy = 2174 με (fyk/1,15)/Es

Uncracked stage (εimp < εcr) N/A
Steel tensile stress σs = 84 MPa εimp * Es

Concrete tensile stress σc = 14 MPa εimp * Ecm

Crack formation stage (εcr< εimp < εfdc) Crack Formation Stage
Steel tensile stress in the crack/directly after cracking σs = σs,cr = 386 MPa Ncr/As

Transfer length lst = 177 mm 0,25 * (fctm/tbm) *(øeq/ρp,eff)

Mean crack spacing sr,mean = 236 mm (4/3)*lst

Maximum crack spacing sr,max = 354 mm 2*lst

Average strain εsm - εcm - εsh = 773 με (σs - β * σsr)/Es + ηr * εimp

Mean crack width wk = 0,27 mm sr,max *  (εsm - εcm - εcs)

Stabilzed cracking stage (εfdc < εimp < εsy) N/A
Steel stress in the crack σs = 231 MPa Ncr/As + Es (εimp - εfdcp)

Steel stress directly after cracking σs,cr = 231 MPa Ncr/As

Transfer length lst = 133 mm 0,25 * (fctm/tbm) *(øeq/ρp,eff)

Figure B.3: Spreadsheet Model Code 2010
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B.4. Van Breugel
Input parameters Symbol Value Unit
Section details and material properties
Concrete quality = C30/37

Characteristic concrete cube strength fck = 30 MPa
Characteristic yield strength fyk = 500 MPa
Width b = 200 mm
Section thickness h = 200 mm
Length of the wall L = 1000 mm
Early age of cracking t0 = 3 days
Long term age of cracking t = 28 days
Cement type = R (S, N or R)
Load duration = L (S or L) S = Short term and L = Long term

Bond properties = H (H or L) H = High bond and L = Low bond

Strain distribution = T (B or T) B = Bending and T = Tension

Reinforcement details
Number of bars n = 1
Horizontal bar diameter øhor = 20 mm
Horizontal bar spacing shor = 0 mm
Vertical bar diameter øvert = 0 mm
Vertical bar spacing svert = 0 mm
Concrete cover 1 c1 = 20 mm
Concrete cover 2 c2 = 0 mm
Modulus of elasticity of steel Es = 200000 MPa
Calculations
Horizontal steel area per face As,hor = 314 mm2 n*Pi()/4 * øhor^2

Area of concrete Ac = 40000 mm2 (b*h) 

Reinforcement ratio ρ = 0,79 % As/Ac

Effective height hc,eff = 75 mm Min(2,5*(c1+øhor/2) ; h/2)

Effective tension area Ac,eff = 15000 mm2  hc,eff* b

Effective reinforcement ratio ρp,eff = 2,09 % As / Ac,eff

Concrete properties
Mean compressive strength at 28 days fcm = 38 MPa fck+8

Mean concrete compressive strength at an age of t days fcm (t) = 38 MPa βcc(t)*fcm

Mean concrete tensile strength fctm = 2,90 MPa 0,30*fck^(2/3)

Effective concrete tensile strength at an age of t days fct,eff (t) = 2,90 MPa βcc(t)^α * fctm

Coefficient which depends on the age of concrete βcc(t) = 1,00 exp(s(1-(28/t)^0,5))

α = 0,67 α = 1 for t < 28 and α = 2/3 for t=>28

Coefficient which depends on the type of cement s = 0,20 S = 0,38; N = 0,25; R = 0,20

Modulus of elasticity of concrete Ecm = 32837 MPa 22*(fcm)/10)^0,3 * 10^3

Modulus of elasticity of concrete at an age of t days Ecm (t) = 32837 MPa (((βcc(t)*fcm(t))/fcm(t))^0,3)*Ecm

Modular ratio αe = 6,1 Es\Ecm(t)

Van Breugel
Cracking force Ncr = 121 kN fct,eff * Act * (1+ρ * αe) 

Imposed strain εimp = 418 με Next/ (As  * Es)

Concrete strain at onset of cracking εcr = 88 με fctm/Ec

Concrete strain at onset of the fully devevelop crack pattern εfdc = 987 με (60 + 2,4 *  σs,cr) * 10^-6

Steel yielding strain εsy = 2174 με (fyk/1,15)/Es

Uncracked stage (εs = εc = εimp < εcr) N/A
Steel tensile stress σs = 84 MPa εimp * Es

Concrete tensile stress σc = 14 MPa εimp * Ecm

Crack formation stage (εcr< εimp < εfdc) Crack Formation Stage
Steel tensile stress in the crack/directly after cracking σs = σs,cr = 386 MPa Ncr/As

Concrete tensile stress directly after cracking σcr = 2,9 MPa fctm

Mean crack width not fully developed crack pattern wm0 = 0,40 mm 2*{(0,4*øeq/fcm*Es)*(σcr/ρ)^2*(1+αe ρ)}^0,85

Factor for scatter γs = 1,3
Factor for sustained load/alternating load γ∞ = 1,3
Max crack width wmax = 0,67 mm γs * γ∞ * wm0

Stabilzed cracking stage ( εimp > εfdc) N/A
Steel tensile stress σs = 273 MPa Ncr/As + Es (εimp - εfdcp)

Steel tensile stress directly after cracking σs,cr = 386 MPa Ncr/As or fctm/ρ (1+αe * ρ)

Transfer length lst = 248 mm 1,2 * wm0 * Es / σs,cr

Mean crack spacing sr,mean = 372 mm 1,5 *lst

Maximum crack spacing sr,max = 495 mm
Mean crack width fully developed crack pattern wmv = 0,15 mm Sr,mean/Es * (σs - 0,5 * σs,cr)

Mean crack width not fully developed crack pattern wmv = 0,36 mm 1,8 * wm0 *(( σs/σs,cr) - 0,5)

Factor for scatter γs = 1,5 Tension = 1.5 and Flexure = 1.7

Factor for sustained load/alternating load γ∞ = 1,3
Max crack width wmax = 0,29 γs * γ∞ * wm0

Steel yielding stage ( εimp > εsy) N/A

Figure B.4: Spreadsheet Van Breugel
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B.5. CIRIA C660 - II 
Input parameters Symbol Value Unit

Section details and material properties
Concrete quality = C30/37

Characteristic concrete cube strength fck = 30 MPa
Characteristic yield strength fyk = 500 MPa
Width b = 200 mm
Section thickness h = 200 mm
Length of the wall L = 1000 mm
Early age of cracking t0 = 3 days
Long term age of cracking t = 28 days
Cement type = R (S, N or R)
Load duration = L (S or L) S = Short term and L = Long term

Bond properties = H (H or L) H = High bond and L = Low bond

Strain distribution = T (B or T) B = Bending and T = Tension

Reinforcement details
Number of bars n = 1
Horizontal bar diameter øhor = 20 mm
Horizontal bar spacing shor = 0 mm
Vertical bar diameter øvert = 0 mm
Vertical bar spacing svert = 0 mm
Concrete cover 1 c1 = 20 mm
Concrete cover 2 c2 = 0 mm
Modulus of elasticity of steel Es = 200000 MPa
Calculations
Horizontal steel area per face As,hor = 314 mm2 n*Pi()/4 * øhor^2

Area of concrete Ac = 40000 mm2 (b*h) 

Reinforcement ratio ρ = 0,79 % As/Ac

Effective height hc,eff = 75 mm Min(2,5*(c1+øhor/2) ; h/2)

Effective tension area Ac,eff = 15000 mm2  hc,eff* b

Effective reinforcement ratio ρp,eff = 2,09 % As / Ac,eff

Early age concrete properties
Mean compressive strength at 28 days fcm = 38 MPa fck+8

Mean concrete compressive strength at an age of t0 days fcm (t) = 25 MPa βcc(t)*fcm

Mean concrete tensile strength fctm = 2,90 MPa 0,30*fck^(2/3)

Effective concrete tensile strength at an age of t days fct,eff (t) = 1,92 MPa βcc(t)^α * fctm

Coefficient which depends on the age of concrete βcc(t) = 0,66 exp(s(1-(28/t)^0,5))

α = 1,00 α = 1 for t < 28 and α = 2/3 for t=>28

Coefficient which depends on the type of cement s = 0,20 S = 0,38; N = 0,25; R = 0,20

Modulus of elasticity of concrete Ecm = 32837 MPa 22*(fcm)/10)^0,3 * 10^3

Modulus of elasticity of concrete at an age of t days Ecm (t) = 29027 MPa (((βcc(t)*fcm(t))/fcm(t))^0,3)*Ecm

Modular ratio αe = 6,9 Es\Ecm(t)

Long term concrete properties
Mean concrete compressive strength at an age of t days fcm (t) = 38 MPa βcc(t)*fcm

Effective concrete tensile strength at an age of t days fct,eff (t) = 2,90 MPa βcc(t)^α * fctm

Coefficient which depends on the age of concrete βcc(t) = 1,00 exp(s(1-(28/t)^0,5))

α = 0,67 α = 1 for t < 28 and α = 2/3 for t=>28

Coefficient which depends on the type of cement s = 0,20 S = 0,38; N = 0,25; R = 0,20

Modulus of elasticity of concrete Ecm = 32837 MPa 22*(fcm)/10)^0,3 * 10^3

Modulus of elasticity of concrete at an age of t days Ecm (t) = 32837 MPa (((βcc(t)*fcm(t))/fcm(t))^0,3)*Ecm

Modular ratio αe = 6,1 Es\Ecm(t)

Coëfficients
Bond properties of reinforcement k1 = 0,80 high bond = 0,8 ; bars with effective plain surface = 1,6

Strain distribution in cross section k2 = 1,0 bending = 0,5 and pure tension = 1,0

Takes into account the cover k3 = 3,4
Takes into account the cross section of reinforcement k4 = 0,425
Effect of the load duration kt = 0,40 long term (L) = 0,4 and short term (S) = 0,6

Takes into account stress distribution kc = 1,00 pure tension = 1,0

Takes into account the effect of non-uniform equilibrium
stresses which lead to a reduction of restraint forces
Creep factor K1 = 0,65
Sustained load factor K2 = 0,8
Coefficient of thermal expansion of concrete αc = 11,8 με/˚C
Early age strain
Degree of restraint R1 = 0,5
Temperature drop T1 = 40 oC T 1  = Peak temperature - mean ambient temperature

Early age tensile strain capacity εctu(ea) = 81 με (fctm(t0)/Ecm) * (K2/K1)

Autogenous shrinkage εca(ea) = 15 με 2,5(fck-10) * (1-exp(-0,2*t0^0,5)

Early age free contraction εfree(ea) = 487 με αc * T1 + εca(ea)

Early age restraind contraction εr(ea) = 158 με R1 * K1 * (T1 * αc  + εca(ea)) 

Early age crack inducing strain εcr(ea) = 117 με R1 * K1 * (T1 * αc  + εca(ea)) - 0,5 εctu(ea)

Long term strain (excluding eary age strain)
Restraint to long term thermal strains R2 = 0,5
Restraint to drying shrinkage R3 = 0,5
Long term temperature change T2 = 20 oC
Drying shrinkage εcd = 385 με

k = 1,00 h ≤ 300 = 1,0 and h > 800 = 0,65

Figure B.5: Spreadsheet CIRIA C660 II
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B.6. ICE 0706 - II 
Input parameters Symbol Value Unit

Section details and material properties
Concrete quality = C30/37

Characteristic concrete cube strength fck = 30 MPa
Characteristic yield strength fyk = 500 MPa
Width b = 200 mm
Section thickness h = 200 mm
Length of the wall L = 1000 mm
Early age of cracking t0 = 3 days
Long term age of cracking t = 28 days
Cement type = R (S, N or R)
Load duration = L (S or L) S = Short term and L = Long term

Bond properties = H (H or L) H = High bond and L = Low bond

Strain distribution = T (B or T) B = Bending and T = Tension

Reinforcement details
Number of bars n = 1,0
Horizontal bar diameter øhor = 20 mm
Horizontal bar spacing shor = 0 mm
Vertical bar diameter øvert = 0 mm
Vertical bar spacing svert = 0 mm
Concrete cover 1 c1 = 20 mm
Concrete cover 2 c2 = 0 mm
Modulus of elasticity of steel Es = 200000 MPa
Calculations
Horizontal steel area per face As,hor = 314 mm2 n*Pi()/4 * øhor^2

Area of concrete Ac = 40000 mm2 (b*h) 

Reinforcement ratio ρ = 0,79 % As/Ac

Effective height hc,eff = 75 mm Min(2,5*(c1+øhor/2) ; h/2)

Effective tension area Ac,eff = 15000 mm2  hc,eff* b

Effective reinforcement ratio ρp,eff = 2,09 % As / Ac,eff

Early age concrete properties
Mean compressive strength at 28 days fcm = 38 MPa fck+8

Mean concrete compressive strength at an age of t0 days fcm (t) = 25 MPa βcc(t)*fcm

Mean concrete tensile strength fctm = 2,90 MPa 0,30*fck^(2/3)

Effective concrete tensile strength at an age of t days fct,eff (t) = 1,92 MPa βcc(t)^α * fctm

Coefficient which depends on the age of concrete βcc(t) = 0,66 exp(s(1-(28/t)^0,5))

α = 1,00 α = 1 for t < 28 and α = 2/3 for t=>28

Coefficient which depends on the type of cement s = 0,20 S = 0,38; N = 0,25; R = 0,20

Modulus of elasticity of concrete Ecm = 32837 MPa 22*(fcm)/10)^0,3 * 10^3

Modulus of elasticity of concrete at an age of t days Ecm (t) = 29027 MPa (((βcc(t)*fcm(t))/fcm(t))^0,3)*Ecm

Modular ratio αe = 6,9 Es\Ecm(t)

Strain relief B = 7,9 {(k*kc)/(αe*ρ,eff)} + 1

Long term concrete properties
Mean concrete compressive strength at an age of t days fcm (t) = 38 MPa βcc(t)*fcm

Effective concrete tensile strength at an age of t days fct,eff (t) = 2,90 MPa βcc(t)^α * fctm

Coefficient which depends on the age of concrete βcc(t) = 1,00 exp(s(1-(28/t)^0,5))

α = 0,67 α = 1 for t < 28 and α = 2/3 for t=>28

Coefficient which depends on the type of cement s = 0,20 S = 0,38; N = 0,25; R = 0,20

Modulus of elasticity of concrete Ecm = 32837 MPa 22*(fcm)/10)^0,3 * 10^3

Modulus of elasticity of concrete at an age of t days Ecm (t) = 32837 MPa (((βcc(t)*fcm(t))/fcm(t))^0,3)*Ecm

Modular ratio αe = 6,1 Es\Ecm(t)

Strain relief B = 8,8 {(k*kc)/(αe*ρ,eff)} + 1

Coëfficients
Bond properties of reinforcement k1 = 0,80 high bond = 0,8 ; bars with effective plain surface = 1,6

Strain distribution in cross section k2 = 1,0 bending = 0,5 and pure tension = 1,0

Takes into account the cover k3 = 3,4
Takes into account the cross section of reinforcement k4 = 0,425
Effect of the load duration kt = 0,40 long term (L) = 0,4 and short term (S) = 0,6

Takes into account stress distribution kc = 1,00 pure tension = 1,0

Takes into account the effect of non-uniform equilibrium
stresses which lead to a reduction of restraint forces
Lenght coefficient kL = 1,50 1 < kL < 2

Creep factor K1 = 0,7
Sustained load factor K2 = 0,8
Coefficient of thermal expansion of concrete αc = 11,8 με/˚C
Early age strain
Degree of restraint R1 = 0,5
Temperature drop T1 = 40 oC T 1  = Peak temperature - mean ambient temperature

Early age tensile strain capacity εctu(ea) = 81 με (fctm(t0)/Ecm) * (K2/K1)

Autogenous shrinkage εca(ea) = 15 με 2,5(fck-10) * (1-exp(-0,2*t0^0,5)

Early age free contraction εfree(ea) = 487 με αc * T1 + εca(ea)

Early age restraind contraction εr(ea) = 158 με R1 * K1 * (T1 * αc  + εca(ea)) 

Early age crack inducing strain εcr(ea) = 117 με R1 * K1 * (T1 * αc  + εca(ea)) - 0,5 εctu(ea)

Long term strain (excluding eary age strain)
Restraint to long term thermal strains R2 = 0,5
Restraint to drying shrinkage R3 = 0,5
Long term temperature change T2 = 20 oC
Drying shrinkage εcd = 385 με
Long term tensile strain capacity εctu(lt) = 109 με (fctm(t)/Ecm) * (K2/K1)

Increase in tensile strain capacity δεctu = 27 με εctu(lt) - εctu(ea) 

Autogenous shrinkage (residual up to 28 days) δεca(lt) = 18 με 2,5(fck-10) * (1-exp(-0,2*t0^0,5) - εca(ea) 

Long term free contraction εfree(lt) = 639 με δεca(lt) + αc * T2 + εca(lt)

Long term restraind contraction εr(lt) = 208 με K1 * (R2 * T2 * αc + R3 (δεca + εcd))

Long term crack inducing strain εcr(lt) = 181 με K1 * (R2 * T2 * αc + R3 (δεca + εcd)) - δεca(lt)

Total strain (early-age + long term)
Free contraction εfree(total) = 1126 με εfree(ea) + εfree(lt) 

Restrained contraction εr(total) = 366 με εr(ea) + εr(lt) 

Crack inducing strain εcr(total) = 298 με εcr(ea) + εcr(lt) 

Crack spacing and crack width
Transfer length lst = sr,min = 174 mm sr,mean / 1,33

Mean crack spacing sr,mean = 231 mm sr,max / 1,7

Max final crack spacing sr,max = 393 mm k3 * c + k1 * k2 * k4 * ø / ρp,eff

Early age crack width stage 1 wk1(ea) = 0,018 mm [0,5 * sr,max * εctu(ea)(1-Redge)B] / [1- sr,max Redge / kL * H (1-0,5 (B+1/(1-Redge))]

Early age crack width stage 2 wk2(ea) = 0,045 mm sr,max (1-0,5 R) *K1 * (εfree - εctu/Redge*K1)

Early age crack width wk(ea) = 0,063 mm wk1(ea) + wk2(ea)

Long term crack width stage 1 wk1(lt) = 0,024 mm [0,5 * sr,max * εctu(lt)(1-Redge)B] / [1- sr,max Redge / kL * H (1-0,5 (B+1/(1-Redge))]

Long term crack width stage 2 wk2(lt) = 0,152 mm sr,max (1-0,5 R) *K1 * (εfree - εctu/Redge*K1)

Long term crack width stage 2 wk(lt) = 0,176 mm wk1(lt) + wk2(lt)

k = 1,00 h ≤ 300 = 1,0 and h > 800 = 0,65

Figure B.6: Spreadsheet ICE 706
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Data required for design

During the design stage, there might be limited knowledge of the concrete to be used or the construction
process and therefore conservative assumptions should be made that may not be reflected in practice.
In addition, many aspects of performance such as usability, durability and structural integrity has to
be taken into account. The designer should be aware of implications such as minimizing the cement
content for durability reasons, because this may increase the risk of thermal cracking.

In this section the most important data which is required for the predictions of cracking is explained.

C.1. Estimating drying shrinkage
For the estimation of the drying shrinkage the Eurocode 2 provides a method which is based on the
strength class, the average ambient RH and the dimensions of the element. This estimation start with
the calculation of the nominal unrestrained drying shrinkage 𝜖𝑐𝑑,0. This value is based on the ambient
humidity and the strength class of the concrete.

𝜖𝑐𝑑,0 = 0, 85[(220 + 110 ⋅ 𝛼𝑑𝑠1) ⋅ 𝑒𝑥𝑝(−𝛼𝑑𝑠2 ⋅
𝑓𝑐𝑚
𝑓𝑐𝑚𝑜

] ⋅ 10−6 ⋅ 𝛽𝑅𝐻 , (C.1)

where:

𝛼𝑑𝑠1 coefficient which depends on the type of cement

= 3 for cement class S

= 4 for cement class N

= 6 for cement class R

𝛼𝑑𝑠2 coefficient which depends on the type of cement

= 0,13 for cement class S

= 0,12 for cement class N

= 0,11 for cement class R

𝑓𝑐𝑚 mean compressive strength

𝑓𝑐𝑚𝑜 10 MPa

𝑅𝐻 ambient relative humidity (%)

𝑅𝐻0 100 %

𝛽𝑅𝐻 = 1, 55[1 − ( 𝑅𝐻𝑅𝐻0 )
3]
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The codes takes into account the fact that the ultimate shrinkage will be lower in larger section by
implementing a coefficient 𝑘ℎ. This coefficient depends on the notional size of the cross-section ℎ0
according to the following equation:

ℎ0 =
2 ⋅ 𝐴𝑐
𝑢 , (C.2)

where

𝐴𝑐 concrete cross-sectional area

𝑢 perimeter of the part of the cross section which is exposed to drying

For walls that drying from two faces, it is assumed that ℎ0 is approximately equal to the wall thickness
ℎ. For walls or slabs drying from one face only, ℎ0 = 2 ⋅ ℎ. The relationship between the coefficient 𝑘ℎ
and the notional size ℎ0 is shown in figure X.

Figure C.1: Relationship between coefficient kh and notional size h0

The rate at which the shrinkage occur can be calculated with the following equation:

𝜖𝑐𝑑(𝑡) = 𝛽𝑑𝑠(𝑡, 𝑡𝑠) ⋅ 𝑘ℎ ⋅ 𝜖𝑐𝑑,0, (C.3)

where:

𝛽𝑑𝑠(𝑡, 𝑡𝑠) =
(𝑡−𝑡𝑠

(𝑡−𝑡𝑠)+0.04∗√(ℎ0)3

t age of the concrete at time (in days)

𝑡𝑠 age of concrete at beginning of drying (in days)

Figure C.2: Estimation of drying shrinkage implemented in spreadsheet
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C.2. Estimation of the autogenous shrinkage
For the estimation of the autogenous shrinkage does the Model Code 2010 also provide a method.
This method is only based on the strength class of the concrete.

𝜖𝑐𝑎(𝑡) = 𝛽𝑎𝑠(𝑡) ⋅ 𝜖𝑐𝑎(∞), (C.4)

where:

𝜖𝑐𝑎(𝑡) autogenous shrinkage at time t days

𝜖𝑐𝑎(∞) ultimate autogenous shrinkage = 2.5(𝑓𝑐𝑘 − 10) ⋅ 10−6

𝛽𝑑𝑠(𝑡) function which defines the time dependent development of autogenous shrinkage
=1 − 𝑒𝑥𝑝(−0, 2 ⋅ 𝑡0,5)

Figure C.3: Estimation of autogenous shrinkage implemented in spreadsheet

C.3. Estimating temperature drop T1
For the prediction of the temperature drop 𝑇1 the cement content is required. Values for 𝑇1 for CEM I
are given in Figure X for walls cooling from both sides.

C.4. Annual temperature drop T2
Over the long-term the concrete will respond to changing environmental conditions. This is taken into
account by applying 𝑇2. Before realistic assumption can be made the following has to be taken into
account:

• In general, is concrete cast during the day when the actual temperature is higher than the average
temperature.

• Changes in temperature within each month will result in periods when the ambient temperature
is significantly higher or lower than the monthly average temperature.

• The time of the year when the concrete is cast.

For the annual temperature changes the Eurocode recommend to assume for 𝑇2 a value of 10
C for concrete cast in the winter and a value of 20 C for concrete cast in the summer.
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C.5. Estimation degree of restraint

Figure C.4: Estimation degree of restraint



D
Mechanics of composite structures

In the following sections, the equations are given needed for the determination of stresses in composite
structures subjected to imposed deformations.

D.1. Theory
D.1.1. Cross-sectional properties

Figure D.1: Composite cross-section

The axial stiffness of one single layer 𝑖:
𝐾𝑖 = 𝐸𝑖 ⋅ 𝐴𝑖 (D.1)

The axial stiffness of a structure which consisting of 𝑛 layers:

(𝐸𝐴)𝑠 =
𝑛

∑
𝑖=1
𝑧𝑖 ⋅ 𝐸𝑖 ⋅ 𝐴𝑖 (D.2)

The position of the elastic centre of gravity of the composite structure:

𝑧𝑠 =
∑𝑛𝑖=1 𝑧𝑖 ⋅ 𝐸𝑖 ⋅ 𝐴𝑖

(𝐸𝐴)𝑠
(D.3)

The distance of the centre of gravity of an individual layer to that of the composite structure is:

𝑎𝑖 = 𝑧𝑠 − 𝑧𝑖 (D.4)

The flexural stiffness of an single layer 𝑖 is:
𝑆𝑖 = 𝐸𝑖 ⋅ 𝐼𝑖 (D.5)

The flexural stiffness of a structure which consisting of 𝑛 layers:

(𝐸𝐼)𝑠 =
𝑛

∑
𝑖=1
𝐸𝑖 ⋅ 𝐼𝑖 +

𝑛

∑
𝑖=1
(𝑧𝑖 − 𝑧𝑠)2 ⋅ 𝐸𝑖𝐴𝑖 (D.6)
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D.1.2. Response under external loading
In figure D.2 a composite cross-section which is subjected to a external axial force is shown. The axial
force acts in the elastic centre of gravity.

Figure D.2: Composite cross-section

The force in the individual layer is:

𝑁𝑖 = 𝑁0 ⋅
𝐸𝑖𝐴𝑖
(𝐸𝐴)𝑠

(D.7)

In figure D.3 a composite cross section which is subjected to a flexural moment is shown.

Figure D.3: Composite cross-section

Curvature of composite structure:

𝜅𝑠 =
|𝜖1| + 𝜖2

ℎ = 𝑀𝑜
(𝐸𝐼)𝑠

(D.8)

Strain 𝜖𝑖 and axial force 𝑁𝑖 in individual layer i

𝜖𝑖 = 𝑎𝑖 ⋅ 𝜅𝑠 = 𝑎𝑖 ⋅
𝑀𝑜
(𝐸𝐼)𝑠

(D.9)

𝑁𝑖 = 𝜖 ⋅ 𝐸𝑖 ⋅ 𝐴𝑖 = 𝑀𝑜 ⋅
𝑎𝑖 ⋅ (𝐸𝑖𝐴𝑖)
(𝐸𝐼)𝑠

(D.10)

Curvature 𝜅𝑖 and flexural moment 𝑀𝑖 in individual layer i

𝜅𝑖 =
𝑀𝑖
(𝐸𝑖𝐼𝑖

= 𝑀𝑜
(𝐸𝐼)𝑠

(D.11)

𝑀𝑖 = 𝑀𝑜 ⋅
(𝐸𝐼)𝑖
(𝐸𝐼)𝑠

(D.12)
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D.1.3. Response under imposed deformation
This paragraph explains the calculation procedure of stresses in case structures are subjected to im-
posed deformations. The imposed deformation is in this case a temperature drop of one single layer
as is shown in figure D.4a.

Figure D.4: Schematic overview of response under an imposed deformation (part 1)

For the determination of the stresses in the cross-section, the following procedure applies:

• First of all, it is assumed that the layer of which the temperature changes is able to deform freely.
The shortening of the layer is 𝜖𝑘. Then an axial force 𝑁∗ is applied to eliminate the temperature
induced deformation. This force is:

𝑁∗ = 𝜖𝑘 ⋅ (𝐸𝑘𝐴𝑘) (D.13)

After this force is applied, the layers are connected to each other again.

• Now the force 𝑁∗ is applied to the composite cross-section, it has to be noted that this force is
applied in the other direction (reverse sign) as is shown in figure D.5c.

• The force 𝑁∗ should moved to the elastic centre of gravity. This will cause a compensating mo-
ment 𝑀∗ as is illustrated in figure D.5d. This compensating moment can be determined by:

𝑀∗ = 𝑁∗ ⋅ 𝑒, (D.14)

where 𝑒 is the distance of the axis along which the axial force 𝑁∗ works to the centre of gravity
of the composite cross section.

Figure D.5: Schematic overview of response under an imposed deformation (part 2)

Now it is possible to determine the forces and moments in all layers. A distinction can be made between
the axial forces and bending moments in the layer which is subjected to the temperature drop (layer k)
and the other layers.



D.2. Case study - RC wall base restrained by steel section 111

Axial force in layer i due to force 𝑁∗

𝑁𝑖 =
𝐸𝑖𝐴𝑖
(𝐸𝐴)𝑠

⋅ 𝑁∗ (D.15)

Axial force in layer i due to moment 𝑀∗

𝑁𝑖 =
𝑀∗

(𝐸𝐼)𝑠
⋅ (𝐸𝐴)𝑖 ⋅ 𝑎𝑖 (D.16)

Bending moment in layer i

𝑀𝑖 = 𝑀∗ ⋅ 𝐸𝑖𝐼𝑖(𝐸𝐼)𝑠
(D.17)

Axial force in layer 𝑘

𝑁𝑘 = 𝑁∗ −
(𝐸𝐴)𝑘
(𝐸𝐴)𝑠

⋅ 𝑁∗ +𝑀 ∗ ⋅(𝐸𝐴)𝑘(𝐸𝐼)𝑠
⋅ 𝑎𝑘 (D.18)

Bending moment in layer 𝑘

𝑀𝑘 =
𝑀∗

(𝐸𝐼)𝑠
⋅ 𝐸𝑘 ⋅ 𝐼𝑘 (D.19)

D.2. Case study - RC wall base restrained by steel section
D.2.1. Introduction
To apply the theory from section D.1 a case study of a reinforced concrete wall which is base restrained
by a steel UC section is considered. The height of the wall is 500 mm and the wall thickness is 180
mm. The steel section is a 254x254x73 UC profile. In the following, a more general, straightforward
calculation procedure is shown. In this calculation, a lot of non-linearities that play an role in the stress
development in hardening concrete are not taken into account. As a result of this, the predicted stresses
are less accurate. However, the advantages of this method are its simplicity and speed of execution.

First of all, the situation short after casting of the concrete wall is considered. In this stage, because
of the liberation of the heat of hydration, the temperature of the wall increases. The stiffness and
strength of the wall also increases. After a while, the elastic modulus and the tensile strength have
significantly increase and the wall starts to cool down. In this case is the wall in axial direction restrained
by a steel section and as a result the tensile stresses starts to develop in the wall. In order to determine
the stresses in the wall, some simplification are required.

It is assumed that the elastic modulus of the wall one week after casting is 31882 MPa and its
mean tensile strength is 3.8 MPa. The elastic modulus of the steel is assumed to be 227000 MPa.
Furthermore, the temperature drop due to cooling of the wall is estimated at 40 °C. The following
quantities apply to the structure:

D.2.2. Calculation
Axial stiffness
Concrete wall

𝐸𝑐 ⋅ 𝐴𝑐 = 31882 ⋅ 90000 = 2.87 ⋅ 109𝑁 (D.20)

Steel section
𝐸𝑠 ⋅ 𝐴𝑠 = 227000 ⋅ 9310 = 2.11 ⋅ 109𝑁 (D.21)
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Flexural stiffness
Concrete wall

𝐸𝑐 ⋅ 𝐼𝑐 = 31882 ⋅
1
12 ⋅ 180 ⋅ 500

3 = 5.98 ⋅ 1013𝑁𝑚𝑚2 (D.22)

Steel section
𝐸𝑠 ⋅ 𝐼𝑠 = 22700 ⋅

1
12 ⋅ 180 ⋅ 500

3 = 5.98 ⋅ 1013𝑁𝑚𝑚2 (D.23)

Position of the centre of gravity, measured from the top side of the wall.

𝑧 = 𝐴𝑐 ⋅ 𝐸𝑐 ⋅ 𝑧2 + 𝐴𝑠 ⋅ 𝐸𝑠 ⋅ 𝑧1
𝐾1 + 𝐾2

= 90000 ⋅ 31882 ⋅ 250 + 9310 ⋅ 227000 ⋅ 627
(2.11 + 2.87) ⋅ 109 = 410𝑚𝑚 (D.24)

Figure D.6: Concrete wall cast on steel UC section

In first instance there is assumed that the wall is not connected to the steel section. The wall will then
shorten due to a temperature-induced shrinkage strain. This shrinkage strain is:

𝜖(Δ𝑇) = Δ𝑇 ⋅ 𝛼𝑐 = 40 ⋅ 1.18 ⋅ 10−5 = 0.472𝑚𝑚/𝑚 (D.25)

A force 𝑁∗ is required to restore its original length:

𝑁∗ = 𝜖(Δ𝑇) ⋅ 𝐸𝑐 ⋅ 𝐴𝑐 = 0.472 ∗ 10−3 ⋅ 31882 ⋅ 90000 = 1.35 ⋅ 106𝑁 (D.26)

Now, the wall is connected to the steel section again. The axial force 𝑁∗ is applied at the same height
but with opposite sign. In order to simplify calculation, the axial force is replaced by a combination of a
flexural moment 𝑀∗ and a axial force 𝑁∗ which acts in the centre of gravity of the composite structure.

𝑀∗ = 𝑁 ∗ ⋅𝑒 = 1.35 ⋅ 106 ⋅ (410 − 250) = 2.16 ⋅ 108𝑁𝑚𝑚 (D.27)



E
Comparison between analytical theory

and numerical models
In this section, a comparison is made between the analytical theory and the numerical results. The
comparison concerns the cracking load, the cracking strain and the crack spacing which are calculated
analytically.

3.2.6.1 Input parameters analytical calculations

Concrete properties
Concrete tensile strength 𝑓𝑐𝑡𝑚 = 2.9 MPa
Elastic modulus of concrete 𝐸𝑐 = 32836 MPa
Area of concrete 𝐴𝑐 = 22500 mm2

Stiffness of concrete (𝐸𝐴)𝑐 = 738810 kN

Steel properties
Steel yield strength 𝑓𝑠𝑦 = 500 MPa
Elastic modulus of steel 𝐸𝑠 = 200 GPa
Area of steel 𝐴𝑠 = 491 mm2

Stiffness of steel (𝐸𝐴)𝑠 = 98175 kN

Composite properties
Composite elastic modulus (𝐸)𝑐𝑠 = 𝐸𝑠⋅𝐴𝑠+𝐸𝑠⋅𝐴𝑠

𝐴𝑠+𝐴𝑐
= 36405 MPa

Composite area (𝐴)𝑐𝑠 = 𝐸𝑠⋅𝐴𝑠+𝐸𝑠⋅𝐴𝑠
𝐸𝑠+𝐸𝑐

= 3595 MPa

Composite stiffness (𝐸𝐴)𝑐𝑠 = 130867 kN
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3.2.6.1 Cracking load
For the analytical calculation of the cracking load which is described in more detail in section 2.3, the
following equation is applied:

𝑁𝑐𝑟 = 𝜖𝑐𝑟 ⋅ 𝐸𝑐 ⋅ 𝐴𝑐 ⋅ (1+𝛼𝑒 ⋅ 𝜌) = 8.8 ⋅ 10−5 ⋅ 32836𝑀𝑃𝑎 ⋅ 22500𝑚𝑚2 ⋅ (1+6.1 ⋅ 0.022) = 73.74𝑘𝑁 (E.1)

According to the numerical model, the cracking load at the beginning of the crack formation stage is
74.06 kN. This is in good agreement with the analytically calculated cracking load.

3.2.6.2 Cracking strain
For the analytical calculation of the cracking strain of the concrete the following equation is applied:

𝜖𝑐𝑟 =
𝑓𝑐𝑡
𝐸𝑐
= 2.9𝑀𝑃𝑎
32836𝑀𝑃𝑎 = 8.8 ⋅ 10

−5[−] (E.2)

In figure E.1 it can be observed that at a prescribed deformation of 0.34 mm, a strain of 8.86e-05 is
present in the concrete. At this deformation the first micro cracks occurred. This is in good agreement
with the analytical approximation. Important to mention is that the first through cracks developed at a
prescribed deformation of 0.53 mm.

Figure E.1: Cracking strain of concrete at prescribed deformation 0.34 mm according to DIANA

3.2.6.3 Crack spacing
The maximum crack spacing at the end of the crack formation stage can be determined analytically
with the following expression:

𝑠𝑟,𝑚𝑎𝑥 = 2 ̇𝑙𝑡 = 2 ⋅
1
4 ⋅

𝑓𝑐𝑡𝑚
𝜏𝑏𝑚

⋅ ∅𝜌 = 2 ⋅
1
4 ⋅

2.9𝑀𝑃𝑎
5.8𝑀𝑃𝑎 ⋅

25𝑚𝑚
0.022 = 284𝑚𝑚 (E.3)

From figure E.2 it can be observed that according to the numerical models the mean crack spacing is
approximately 225 mm. From this it can be concluded that the maximum crack spacing according to
the analytical theory is larger than numerically predicted.

Figure E.2: Crack spacing and crack width at the end of the crack formation stage



F
Results NLFEA using ATENA from J.

Camara and R. Luis
In figures F.1 and F.2 the response of a tensile member due to imposed loading and imposed defor-
mations according to the NLFEA using ATENA performed by J. Camara and R. Luis are presented.

Figure F.1: NLFEA result from J. Camara and R. Luis
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Figure F.2: NLFEA result from J. Camara and R. Luis



G
Influence of convection coefficient in

DIANA FEA

Figure G.1: Influence convection coefficient in DIANA FEA
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H
Input files DIANA FEA

Performing a non-linear analysis of a reinforced concrete structure can be a very effective tool to inves-
tigate the structural behavior. However, despite the fact that reinforced concrete structures have been
widely studied and modelled, modelling of these structures are still very complex and presents a lot of
challenges. To make the NLFEA reproducible, in this appendix the main challenges and the python
script which has been used to perform a non-linear finite element analysis, simulating the hardening
process of concrete in combination with autogenous shrinkage as imposed deformations are given.

H.1. Main challenges
• Modelling the concrete tensile behavior, tension stiffening and cracking in concrete (3.1.1)

• Modelling the bond-slip between the reinforcement and the concrete (3.1.4)

• Modelling the time dependent concrete material properties (4.2.2)

• Numerical convergence problems at cracking (4.2.5)

H.2. Python script
newProject( ”name”, 1000, )

Project settings
setModelAnalysisAspects( [ ”STRUCT”, ”HEATFL” ] )
setModelDimension( ”3D” )
setDefaultMeshOrder( ”QUADRATIC” )
setDefaultMesherType( ”HEXQUAD” )
setDefaultMidSideNodeLocation( ”LINEAR” )

Units
setUnit( ”LENGTH”, ”MM” )
setUnit( ”FORCE”, ”N” )
setUnit( ”TIME”, ”HOUR” )
setUnit( ”TEMPER”, ”CELSIU” )

Geometry concrete tensile member
createBlock( ”Concrete”, [ 0, 0, 0 ], [ 1000, 100, 150 ] )

Concrete material properties
addMaterial( ”Concrete”, ”CONCR”, ”TSCR”, [ ”HEATFL”, ”MATURI”, ”THERMA” ] )
setParameter( ”MATERIAL”, ”Concrete”, ”LINEAR/ELASTI/YOUNG”, 39283 )
setParameter( ”MATERIAL”, ”Concrete”, ”LINEAR/ELASTI/POISON”, 0.2 )
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setParameter( ”MATERIAL”, ”Concrete”, ”LINEAR/MASS/DENSIT”, 1.93e-16 )
setParameter( ”MATERIAL”, ”Concrete”, ”LINEAR/THERMA/THERMX”, 1e-05 )

Young’s modulus
setParameter( ”MATERIAL”, ”Concrete”, ”LINEAR/MATURI/MATYOU”, [ 0, 0, 2.01733, 150, 4.06923,
400, 6.17812, 1200, 8.38563, 12000, 10.7804, 17333.3, 13.6179, 20904.8, 17.4992, 23949.4, 22.4795,
27156.1, 28.5123, 29563.8, 35.4129, 31789.7, 42.8417, 33464, 50.5018, 34666.7, 58.1664, 35637.9,
65.6606, 36396.2, 72.8638, 36954.8, 79.7183, 37322.5, 86.2011, 37686.6, 92.3078, 37867.4, 103.435,
38047.3, 113.246, 38404.5, 117.722, 38581.9, 121.948, 38652.7, 125.949, 38758.5, 133.371, 38864.1,
136.832, 38934.3, 143.343, 39039.4, 149.395, 39109.3, 155.08, 39179.1, 160.468, 39283.5 ] )

Poisson ratio
setParameter( ”MATERIAL”, ”Concrete”, ”LINEAR/MATURI/MATPOI”, [ 0, 0.2, 2.01733, 0.2, 4.06923,
0.2, 6.17812, 0.2, 8.38563, 0.2, 10.7804, 0.2, 13.6179, 0.2, 17.4992, 0.2, 22.4795, 0.2, 28.5123,
0.2, 35.4129, 0.2, 42.8417, 0.2, 50.5018, 0.2, 58.1664, 0.2, 65.6606, 0.2, 72.8638, 0.2, 79.7183,
0.2, 86.2011, 0.2, 92.3078, 0.2, 103.435, 0.2, 113.246, 0.2, 117.722, 0.2, 121.948, 0.2, 125.949, 0.2,
133.371, 0.2, 136.832, 0.2, 143.343, 0.2, 149.395, 0.2, 155.08, 0.2, 160.468, 0.2 ] )

Thermal expansion coefficient
setParameter( ”MATERIAL”, ”Concrete”, ”LINEAR/MATURI/MATALP”, [ 0, 1e-05, 2.01733, 1e-05, 4.06923,
1e-05, 6.17812, 1e-05, 8.38563, 1e-05, 10.7804, 1e-05, 13.6179, 1e-05, 17.4992, 1e-05, 22.4795, 1e-
05, 28.5123, 1e-05, 35.4129, 1e-05, 42.8417, 1e-05, 50.5018, 1e-05, 58.1664, 1e-05, 65.6606, 1e-05,
72.8638, 1e-05, 79.7183, 1e-05, 86.2011, 1e-05, 92.3078, 1e-05, 103.435, 1e-05, 113.246, 1e-05,
117.722, 1e-05, 121.948, 1e-05, 125.949, 1e-05, 133.371, 1e-05, 136.832, 1e-05, 143.343, 1e-05,
149.395, 1e-05, 155.08, 1e-05, 160.468, 1e-05 ] )

Concrete tensile behavior
setParameter( ”MATERIAL”, ”Concrete”, ”MODTYP/TOTCRK”, ”ROTATE” )
setParameter( ”MATERIAL”, ”Concrete”, ”TENSIL/TENCRV”, ”HORDYK” )
setParameter( ”MATERIAL”, ”Concrete”, ”TENSIL/TENSTR”, 5.8 )
setParameter( ”MATERIAL”, ”Concrete”, ”TENSIL/GF1”, 0.09 )
setParameter( ”MATERIAL”, ”Concrete”, ”TENSIL/GF1”, 0.09 )

Tensile strength
setParameter( ”MATERIAL”, ”Concrete”, ”TENSIL/MATURI/MATTST”, [ 0, 0, 2.01733, 0, 4.06923, 0,
6.17812, 0, 8.38563, 0, 10.7804, 0.2422, 13.6179, 0.8478, 17.4992, 1.4533, 22.4795, 2.18, 28.5123,
2.7856, 35.4129, 3.3911, 42.8417, 3.8756, 50.5018, 4.2389, 58.1664, 4.5417, 65.6606, 4.7839, 72.8638,
4.9656, 79.7183, 5.0867, 86.2011, 5.2078, 92.3078, 5.2683, 103.435, 5.3289, 113.246, 5.45, 117.722,
5.5106, 121.948, 5.5348, 125.949, 5.5711, 133.371, 5.6074, 136.832, 5.6317, 143.343, 5.668, 149.395,
5.6922, 155.08, 5.7164, 160.468, 5.7528 ] )

Fracture energy
setParameter( ”MATERIAL”, ”Concrete”, ”TENSIL/MATURI/MATGF1”, [ 0, 0, 2.01733, 0, 4.06923, 0,
6.17812, 0, 8.38563, 0, 10.7804, 0.01467, 13.6179, 0.03111, 17.4992, 0.04299, 22.4795, 0.05483,
28.5123, 0.06351, 35.4129, 0.07147, 42.8417, 0.07743, 50.5018, 0.08171, 58.1664, 0.08516, 65.6606,
0.08786, 72.8638, 0.08984, 79.7183, 0.09115, 86.2011, 0.09245, 92.3078, 0.09309, 103.435, 0.09373,
113.246, 0.095, 117.722, 0.09564, 121.948, 0.09589, 125.949, 0.09627, 133.371, 0.09664, 136.832,
0.09689, 143.343, 0.09727, 149.395, 0.09752, 155.08, 0.09776, 160.468, 0.09814 ] )

Concrete compressive behavior
setParameter( ”MATERIAL”, ”Concrete”, ”COMPRS/COMCRV”, ”PARABO” )
setParameter( ”MATERIAL”, ”Concrete”, ”COMPRS/COMSTR”, 86 )
setParameter( ”MATERIAL”, ”Concrete”, ”COMPRS/GC”, 22.5 )

Compressive strength
setParameter( ”MATERIAL”, ”Concrete”, ”COMPRS/MATURI/MATCST”, [ 0, 0, 2.01733, 0, 4.06923,
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0, 6.17812, 0, 8.38563, 0, 10.7804, 3.63, 13.6179, 12.7, 17.4992, 21.77, 22.4795, 32.66, 28.5123,
41.73, 35.4129, 50.8, 42.8417, 58.06, 50.5018, 63.51, 58.1664, 68.04, 65.6606, 71.67, 72.8638, 74.39,
79.7183, 76.21, 86.2011, 78.02, 92.3078, 78.93, 103.435, 79.84, 113.246, 81.65, 117.722, 82.56,
121.948, 82.92, 125.949, 83.46, 133.371, 84.01, 136.832, 84.37, 143.343, 84.92, 149.395, 85.28,
155.08, 85.64, 160.468, 86.19 ] )

Heat flow settings
setParameter( ”MATERIAL”, ”Concrete”, ”HEATFL/CONDUC”, 108 )
setParameter( ”MATERIAL”, ”Concrete”, ”HEATFL/CAPACI”, 2.675 )
setParameter( ”MATERIAL”, ”Concrete”, ”HEATFL/HEATHY/HYDRAT”, ”PREPRS” )

Adiabatic heat curve
setParameter( ”MATERIAL”, ”Concrete”, ”HEATFL/HEATHY/ADIAB”, [ 0, 20, 2.4, 32.46, 4.8, 40.42,
7.2, 46.54, 9.6, 51.36, 12, 54.66, 14.4, 57.96, 16.8, 59.95, 19.2, 61.94, 21.6, 63.14, 24, 64.34, 36,
65.07, 48, 65.79, 60, 66.15, 72, 66.5 ] )
setParameter( ”MATERIAL”, ”Concrete”, ”HEATFL/HEATHY/ARRHEN”, 4000 )
setElementClassType( ”SHAPE”, [ ”Concrete” ], ”STRSOL” )
assignMaterial( ”Concrete”, ”SHAPE”, [ ”Concrete” ] )

Reinforcement properties
createLine( ”Rebar”, [ 0, 50, 75 ], [ 1000, 50, 75 ] )
addMaterial( ”Reinforcement”, ”REINFO”, ”REBOND”, [] )
setParameter( ”MATERIAL”, ”Reinforcement”, ”REBARS/ELASTI/YOUNG”, 200000 )
setParameter( ”MATERIAL”, ”Reinforcement”, ”REBARS/PLATYP”, ”VMISES” )
setParameter( ”MATERIAL”, ”Reinforcement”, ”REBARS/PLASTI/TRESSH”, ”KAPSIG” )
setParameter( ”MATERIAL”, ”Reinforcement”, ”REBARS/PLASTI/KAPSIG”, [ 0, 500, 1, 550 ] )
setParameter( ”MATERIAL”, ”Reinforcement”, ”RESLIP/DSNY”, 130000 )
setParameter( ”MATERIAL”, ”Reinforcement”, ”RESLIP/DSSX”, 13000 )
setParameter( ”MATERIAL”, ”Reinforcement”, ”RESLIP/SHFTYP”, ”BONDS6” )
setParameter( ”MATERIAL”, ”Reinforcement”, ”RESLIP/BONDS6/SLPVAL”, [ 5.5, 2.2, 0.1, 0.6, 0.601,
2.5, 0.4 ] )
addGeometry( ”Reinforcement”, ”RELINE”, ”REBAR”, [] )
setParameter( ”GEOMET”, ”Reinforcement”, ”REITYP”, ”REITRU” )
setParameter( ”GEOMET”, ”Reinforcement”, ”REITRU/RDITYP”, ”RDIAME” )
setParameter( ”GEOMET”, ”Reinforcement”, ”REITRU/DIAMET”, 16 )
setShapeType( ”REINFORCEMENTSHAPE”, ”Rebar” )
setReinforcementType( ”REINFORCEMENTSHAPE”, ”Rebar”, ”TRUSS BOND SLIP” )
assignMaterial( ”Reinforcement”, ”REINFORCEMENTSHAPE”, [ ”Rebar” ] )
assignGeometry( ”Reinforcement”, ”REINFORCEMENTSHAPE”, [ ”Rebar” ] )

Dead weight
addSet( ”GEOMETRYLOADSET”, ”Dead weight” )
createModelLoad( ”Dead weight”, ”Dead weight” )

Interface boundary elements to model convection
addMaterial( ”Lateral convection”, ”HEATFL”, ”BOUNDA”, [] )
setParameter( ”MATERIAL”, ”Lateral convection”, ”HTBOUN/CONPAR/CVTYPE”, ”TIMDEP” )
setParameter( ”MATERIAL”, ”Lateral convection”, ”HTBOUN/CONPAR/CONVEC”, 108 )
setParameter( ”MATERIAL”, ”Lateral convection”, ”HTBOUN/CONPAR/TIMDEP/TIMCNV”, [ 0, 0.108,
18, 0.108, 18.0001, 50.4, 144, 50.4 ] )
createConnection( ”Lateral convection”, ”BOUNDA”, ”SHAPEFACE” )
setParameter( ”GEOMETRYCONNECTION”, ”Lateral convection”, ”MODE”, ”CLOSED” )
setElementClassType( ”GEOMETRYCONNECTION”, ”Lateral convection”, ”HEABOU” )
assignMaterial( ”Lateral convection”, ”GEOMETRYCONNECTION”, ”Lateral convection” )
setParameter( ”GEOMETRYCONNECTION”, ”Lateral convection”, ”FLIP”, False )
attachTo( ”GEOMETRYCONNECTION”, ”Lateral convection”, ”SOURCE”, ”Concrete”, [ [ 573.573, 57.3573,
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150 ] ] )
attachTo( ”GEOMETRYCONNECTION”, ”Lateral convection”, ”SOURCE”, ”Concrete”, [ [ 573.573, 0,
63.96405 ] ] )
attachTo( ”GEOMETRYCONNECTION”, ”Lateral convection”, ”SOURCE”, ”Concrete”, [ [ 573.573, 100,
86.03595 ] ] )
attachTo( ”GEOMETRYCONNECTION”, ”Lateral convection”, ”SOURCE”, ”Concrete”, [ [ 426.427, 57.3573,
0 ] ] )

External temperature
addSet( ”GEOMETRYBCSET”, ”External temperature” )
createSurfaceBoundaryCondition( ”THERMAL”, ”External temperature”, ”External temperature” )
setParameter( ”GEOMETRYBC”, ”External temperature”, ”BOUTYP”, ”EXTEMP” )
setParameter( ”GEOMETRYBC”, ”External temperature”, ”EXTEMP/VALUE”, 20 )
setParameter( ”GEOMETRYBC”, ”External temperature”, ”EXTEMP/CONNEC”, [ ”Lateral convection”
] )

Intial temperature
addSet( ”GEOMETRYINIFIELDSET”, ”Initial temperature” )
createBodyInitialField( ”Initial temperature”, ”Initial temperature” )
setParameter( ”GEOMETRYINIFIELD”, ”Initial temperature”, ”INITYP”, ”TEMPER” )
setParameter( ”GEOMETRYINIFIELD”, ”Initial temperature”, ”TEMPER/VALUE”, 20 )
attach( ”GEOMETRYINIFIELD”, ”Initial temperature”, [ ”Concrete” ] )

Supports
createPointSupport( ”Support”, ”Support set 1” )
setParameter( ”GEOMETRYSUPPORT”, ”Support”, ”AXES”, [ 2, 2 ] )
setParameter( ”GEOMETRYSUPPORT”, ”Support”, ”TRANSL”, [ 1, 1, 1 ] )
setParameter( ”GEOMETRYSUPPORT”, ”Support”, ”ROTATI”, [ 0, 0, 0 ] )
attach( ”GEOMETRYSUPPORT”, ”Support”, ”Rebar”, [ [ 1000, 50, 75 ], [ 0, 50, 75 ] ] )

Mesh
setElementSize( [ ”Concrete” ], 20, 0.5, True )
setMesherType( [ ”Concrete” ], ”HEXQUAD” )
clearMidSideNodeLocation( [ ”Concrete” ] )
generateMesh( [] )
hideView( ”GEOM” )
showView( ”MESH” )

Transient staggered thermo-structural analysis
addAnalysis( ”Analysis1” )
addAnalysisCommand( ”Analysis1”, ”PHASE”, ”Phase” )
setActivePhase( ”Analysis1”, ”Phase” )

Transient heat analysis part
addAnalysisCommandDetail( ”Phased”, ”Transient heat transfer”, ”INITIA/TEMPER” )
setAnalysisCommandDetail( ”Phased”, ”Transient heat transfer”, ”INITIA/TEMPER”, True )
setAnalysisCommandDetail( ”Phased”, ”Transient heat transfer”, ”INITIA/ANATYP”, ”NONLIN” )
addAnalysisCommandDetail( ”Phased”, ”Transient heat transfer”, ”INITIA/NONLIN/HYDRAT” )
setAnalysisCommandDetail( ”Phased”, ”Transient heat transfer”, ”INITIA/NONLIN/HYDRAT”, True )
addAnalysisCommandDetail( ”Phased”, ”Transient heat transfer”, ”INITIA/NONLIN/EQUAGE” )
setAnalysisCommandDetail( ”Phased”, ”Transient heat transfer”, ”INITIA/NONLIN/EQUAGE”, True )
setAnalysisCommandDetail( ”Phased”, ”Transient heat transfer”, ”EXECUT/SIZES”, ”1(72)” )
setAnalysisCommandDetail( ”Phased”, ”Transient heat transfer”, ”EXECUT/NONLIN/ITERAT/MAXITE”,
25 )

Structural non-linear analysis part
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addAnalysisCommand( ”Analysis1”, ”NONLIN”, ”Structural nonlinear” )
removeAnalysisCommandDetail( ”Analysis1”, ”Structural nonlinear”, ”EXECUT(1)” )
setAnalysisCommandDetail( ”Analysis1”, ”Structural nonlinear”, ”EXECUT(1)/EXETYP”, ”TIME” )
setAnalysisCommandDetail( ”Analysis1”, ”Structural nonlinear”, ”EXECUT(1)/TIME/STEPS/EXPLIC/SIZES”,
”1.00000” )
setAnalysisCommandDetail( ”Analysis1”, ”Structural nonlinear”, ”EXECUT(1)/TIME/STEPS/EXPLIC/SIZES”,
”1(72)” )
setAnalysisCommandDetail( ”Analysis1”, ”Structural nonlinear”, ”EXECUT(1)/ITERAT/MAXITE”, 10 )
setAnalysisCommandDetail( ”Analysis1”, ”Structural nonlinear”, ”EXECUT(1)/ITERAT/MAXITE”, 500 )
addAnalysisCommandDetail( ”Analysis1”, ”Structural nonlinear”, ”EXECUT(1)/ITERAT/CONVER/ENERGY”
)
setAnalysisCommandDetail( ”Analysis1”, ”Structural nonlinear”, ”EXECUT(1)/ITERAT/CONVER/ENERGY”,
True )
setAnalysisCommandDetail( ”Analysis1”, ”Structural nonlinear”, ”EXECUT(1)/ITERAT/CONVER/ENERGY/NOCONV”,
”CONTIN” )
setAnalysisCommandDetail( ”Analysis1”, ”Structural nonlinear”, ”EXECUT(1)/ITERAT/CONVER/FORCE”,
True )
setAnalysisCommandDetail( ”Analysis1”, ”Structural nonlinear”, ”EXECUT(1)/ITERAT/CONVER/FORCE/NOCONV”,
”CONTIN” )
setAnalysisCommandDetail( ”Analysis1”, ”Structural nonlinear”, ”EXECUT(1)/ITERAT/CONVER/DISPLA”,
False )

Set User Output Crack width
setAnalysisCommandDetail( ”Analysis1”, ”Structural nonlinear”, ”OUTPUT(2)/SELTYP”, ”USER” )
renameAnalysisCommandDetail( ”Analysis1”, ”Structural nonlinear”, ”OUTPUT(2)”, ”Crack width” )
addAnalysisCommandDetail( ”Analysis1”, ”Structural nonlinear”, ”OUTPUT(2)/USER” )
addAnalysisCommandDetail( ”Analysis1”, ”Structural nonlinear”, ”OUTPUT(2)/USER/STRAIN(1)/CRKWDT”
)

Run analysis
runSolver( [ ”Analysis1” ] )
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