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Preface

In mathematics, our quest to understand often takes us on complex journeys where simple ideas reveal
complexities. One fascinating topic is the study of equidistributed sequences. These sequences help
us understand how numbers are spread out evenly, and they have important applications in various
fields.

Equidistributed sequences are sequences where the values are evenly spread out over an interval.
What makes these sequences fascinating is not just their definition but the many ways they appear in
different mathematical situations. They help us understand how numbers can be distributed in a way
that seems random but is actually uniform over large scales.

In this report, I look at both well-known discoveries and try to uncover new insights. My approach
combines theoretical study and practical (numerical) analysis. I also focus on the work of Nicolaas
Govert de Bruijn and Paul Erdös in their article ”Sequences of Points on a Circle.”

As I delve deeper into this subject, I must recognize the incredible guidance I’ve received. I am truly
grateful to my supervisor, Dr. R.J. (Robbert) Fokkink, whose knowledge and inspiration have been cru-
cial in shaping this work. His thoughtful feedback and constant support have been invaluable through-
out this journey.

I want to give a big thank you to Dr.ir. J.T. (Theresia) van Essen, the Bachelor End Project Coordi-
nator. Her dedication and availability have been incredibly helpful while I was writing this report. Her
support made finishing this project much easier, and I truly appreciate her guidance.

With this project, I am finishing my bachelor’s degree at TU Delft, marking both an end and a new
start in my academic journey. I hope this report shows the completion of my undergraduate studies
and the start of a lifelong journey in understanding mathematics.

Thank you.

Stephan Wellner
Delft, July 2024
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1
Introduction

In 1935, J.G. van der Corput asked a question about how to evenly distribute sequences of points [13].
By 1945, Van Aardenne-Ehrenfest found an answer, which encouraged more mathematical research.
The problem they explored was how to place points evenly on a circle and keep this even distribution
when adding new points. In other words, van der Corput wondered if points could be placed on a
line segment in such a way that any two subintervals of the same length would have almost the same
number of points. Van Aardenne showed that perfect equal distribution is impossible, leading to more
studies on the irregularities in point distribution in different areas of mathematics.

A lot of mathematical work has been done on studying sequences of points in the interval [0, 1) that are
evenly distributed. This report looks at the idea that a sequence is evenly distributed if its first n points
divide a circle into intervals that are roughly equal in length. The sequence Xk = log2(2k − 1) mod 1
(explained in section 2.2) was introduced by De Bruijn and Erdös in this context. We will show that the
way the gaps between points in this sequence are structured is uniquely optimal in a certain way.

This thesis aims to uncover new insights through a mix of theoretical and numerical studies. The
first sections focus on the work of Nicolaas Govert de Bruijn and Paul Erdös, especially their 1949 pa-
per ”Sequences of Points on a Circle” [5]. Later sections will present numerical findings and compare
different methods for achieving the best way to split a circle evenly.

In short, this thesis aims to reproduce mathematical theories about evenly distributed sequences and
the best ways to divide intervals. By merging these theories with new numerical techniques, it hopes
to provide a new viewpoint on a classic topic, inspiring more investigation and study in this fascinating
area of mathematics.
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2
Sequences of Points on a Circle

In this chapter, we explore De Bruijn and Erdös’s 1949 study on the lengths of subintervals created
when a circle is divided [5]. We reproduce and expand their findings. This involves focusing on the
sequence they introduced for optimal distribution, and analysing the distribution of consecutive intervals
resulting from the division of the circle. After that, we will answer a question posed by by A. Ostrowski
[10], [9] without knowing that De Bruijn and Erdös already had answered that question, and we give G.
H. Toulmin’s proof (found independently) to answer the question [14].

2.1. Introduction

Consider a circle with radius 1
2π . The circumference of the circle is 2π · 1

2π = 1. We call this the unit circle.
The unit circle is the set of all complex numbers with absolute value equal to 1. It can be parametrized
by angles θ (in radians), where each angle θ corresponds to the complex number cos(θ) + i sin(θ) on
the unit circle.

The set of numbers modulo 1 consists of real numbers in the range [0, 1), where any integer part is
removed. This set represents the fractional parts of real numbers.

The unit circle and the set of numbers modulo 1 are closely related concepts in mathematics.

There is an isomorphism between the complex numbers with absolute value 1 and the real numbers
modulo 1. This isomorphism is given by the exponential map θ → eiθ, which maps real numbers θ to
points eiθ on the unit circle (recall Euler’s formula: eiθ = cos(θ) + isin(θ)).

Consider sequences {a} of points a1, a2, a3, ... on the unit circle. The points a1, ..., an break the circle
into n sticks (they are intervals but we will call them sticks to help the reader visualise the process) with
total length equal to 1.

Let M1
n(a) and m1

n(a) be the length of the largest and smallest stick, respectively. The subscript n
indicates that we have broken the unit circle into n sticks, while the superscript 1 denotes that we look
at the maximum and minimum lengths of 1 such stick.

Proposition 1.
nM1

n(a) ≥ 1 ≥ nm1
n(a). (2.1)

Proof. The average length of one stick is 1
n . Therefore the length of the largest stick is greater than or

equal to 1
n (equal if the length of all the sticks are equal to 1

n ). While the length of the smallest stick is
lower than or equal to 1

n (again, equal if the length of all the sticks are equal to 1
n ). So,

M1
n(a) ≥

1

n
≥ m1

n(a)

and the claim follows by multiplying by n.

2



2.1. Introduction 3

In the same way,Mr
n(a) andmr

n(a) denote the maximum and minimum sum of lengths of r consecutive
sticks after dividing the unit circle into n sticks.

Proposition 2.
nMr

n(a) ≥ r ≥ nmr
n(a). (2.2)

Proof. The average length of r consecutive sticks is r
n . Hence we get,

Mr
n(a) ≥

r

n
≥ mr

n(a)

and the claim follows by multiplying by n.

Corollary 1. The bounds in (2.2) after dividing by r are tighter than the ones in (2.1).

Proof. Picking the longest segment of r consecutive sticks and dividing the total length by r will always
give us a number that’s smaller than the length of the longest individual stick. However, if the longest
segment of r consecutive sticks is made up of r sticks that are all the largest length of an individual
stick. Then the result of dividing their total length by r will be exactly the same as the length of each of
those sticks. That is,

Mr
n(a)

r
≤ M1

n(a).

It works analogously for the smallest stick length.

We set
lim sup
n→∞

nMr
n(a) = Λr(a)

lim inf
n→∞

nmr
n(a) = λr(a)

lim sup
n→∞

Mr
n(a)

mr
n(a)

= µr(a). (2.3)

We aim to find the greatest lower bound (g.l.b.) for Λ1(a), meaning inf Λ1(a) over all sequences (a),
and the largest upper bound (l.u.b.) for λ1(a), meaning supλ1(a) over all sequences (a). From this we
will be able to derive the greatest lower bound for µ1(a) easily.

We start with the greatest lower bound for Λ1(a). Let Λ1 = g.l.b. Λ1(a). Let I1n ≥ I2n ≥ ... ≥ Inn be the
stick lengths in decreasing order after breaking n times.

Proposition 3. For any 1 < k ≤ n we have Ikn ≤ Ik−1
n+1 .

Proof. Let’s say we break the j-th stick of the sequence. Two cases have to be considered here:

1. j > k.

By breaking the j-th stick of the sequence, both resulting parts will be shorter than Ijn (the length
of the original stick). Since the two parts of the broken j-th longest stick are shorter than Ijn, they
will be placed after the (j−1)-th position in the new sequence of stick lengths. The new sequence
of stick lengths is the sequence we obtain after breaking n+1 times. This leaves the first k sticks
unperturbed. Hence, they are the same in the original, and new sequences of stick lengths. This
means that Ikn+1 = Ikn. We also know, by how the sequence is defined, that Ik−1

n+1 ≥ Ikn+1. Putting
these two together we get that Ik−1

n+1 ≥ Ikn.
2. For j ≤ k, we consider 3 subcases:

(a) Both resulting parts are smaller than Ikn.

Then they will be placed behind in the new sequence. So Ikn becomes Ik−1
n+1 . Hence Ikn =

Ik−1
n+1 and the claim is true.
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(b) 1 resulting part is larger than Ikn and the other part is smaller.

Then the k-th longest stick stays the k-th longest stick in the new sequence. Hence, Ikn =
Ikn+1 and, by the definition of the sequence, Ik−1

n+1 ≥ Ikn+1. Putting these together we obtain
Ik−1
n+1 ≥ Ikn.

(c) Both resulting parts are larger than Ikn.

Then both parts will be in front of the k-th largest stick in the new sequence. Hence Ikn
becomes Ik+1

n+1 as there is one more stick in front of the original k-th longest stick now. So
Ikn = Ik+1

n+1 and, by the definition of the sequence, Ik−1
n+1 ≥ Ik+1

n+1. Putting these together we
obtain Ik−1

n+1 ≥ Ikn.

By induction, for any 1 ≤ k ≤ n we have

Ikn ≤ I1n+k−1 = M1
n+k−1.

Theorem 1. Let Λ1 = inf{Λ1(a) : sequences a}, then Λ1 ≥ 1
ln 2 .

Proof. Let Λ1,n = Max {kM1
k : n ≤ k < 2n}; then

1 =
n∑

k=1

Ikn ≤
n∑

k=1

M1
n+k−1 ≤ Λ1,n

n∑
k=1

1

n+ k − 1
.

To find
∑n

k=1
1

n+k−1 we use a known result [3]:
n∑

k=1

1

k
≈ lnn+ γ where γ ≈ 0, 577 is the Euler–Mascheroni constant.

We rewrite
∑n

k=1
1

n+k−1 as
2n−1∑
k=1

1

k
−

n−1∑
k=1

1

k

which tends to

ln(2n− 1) + γ − (ln(n− 1) + γ)

= ln(2n− 1)− ln(n− 1)

= ln
2n− 1

n− 1
→ ln 2 as n → ∞.

So as n → ∞ we have
n∑

k=1

1

n+ k − 1
→ ln 2

giving
lim sup
n→∞

Λ1,n ≥ 1

ln 2

which implies that
lim sup
n→∞

nM1
n(a) ≥

1

ln 2

as proved by [8]. Let Λ1 = g.l.b. Λ1(a), then we have found

Λ1 ≥ 1

ln 2
.
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For the largest upper bound for λr(a), A. Ostrowski [10], [9] has asked: what is the least number λ1(a)
for which we can say that

lim inf
n→∞

nm1
n(a) ≤ λ1(a)

for every sequence? He asked this without knowing that De Bruijn and Erdös already had solved this
[5]. He proved in [9], Theorem 1 that

λ1(a) ≤
1

ln 4
.

We provide the independent proof by G. H. Toulmin [14].

Lemma 1. Let λ1 = sup{λ1(a) : sequences a}, then given any ϵ > 0, there is an n0 such that

nm1
n(a) > λ1(a)− ϵ ∀ n ≥ n0. (2.4)

Proof. The proof follows directly from the definition of the limit inferior.

Definition 1. Then-th subdivision is the division of [0, 1] into n sticks by the points a2, a3, ..., an (a1 = 0)
arranged in order of magnitude; m1

n(a) denotes the length of the shortest stick of the n-th subdivision.
We have labeled I1n, I

2
n, ..., I

n
n as the stick lengths in decreasing order after breaking n times in Propo-

sition 3.

Let N be any integer ≥ n0 (to be chosen subsequently).

Lemma 2. For any integer r, 0 ≤ r ≤ N , we can choose 2r distinct sticks of the (N + r)-th subdivison
which have, respectively, lengths greater than the numbers

λ1(a)− ϵ

N + 1
,
λ1(a)− ϵ

N + 1
,
λ1(a)− ϵ

N + 2
,
λ1(a)− ϵ

N + 2
,
λ1(a)− ϵ

N + 3
, ...,

λ1(a)− ϵ

N + r
,
λ1(a)− ϵ

N + r
.

Proof. Apply induction. We prove, in fact, that we can choose the 2r sticks in such a way that any stick
of the (N+r)-th subdivision which is not chosen must have been already a stick of theN -th subdivision.

For r = 0 there are no sticks to choose, so the statement is trivially true.

Assume the lemma is true for r−1. That is, for the (N+r1)-th subdivision, we can choose 2(r1) distinct
sticks, satisfying the length conditions. We need to prove that the Lemma holds for r.

If aN+r does not lie in any of the sticks chosen at the (r − 1)-th stage, simply add the two new sticks
of which aN+r is an endpoint. Each of these new sticks has length greater than λ1(a)−ϵ

N+r , satisfying the
length condition.

If aN+r does lie in a stick previously chosen, still add the two new sticks of which it is an endpoint, and
replace the stick destroyed (by aN+r) by any stick not yet included in the set. We need 2r sticks, and
we have already chosen 2(r1) sticks. Therefore, the number of new sticks we need is 2r2(r1) = 2.
Since the total number of new sticks at stage N + r is N + r and we’ve chosen 2(r1) previously, there
are:

(N + r)− 2(r − 1) = N − r + 2 ≥ 2

sticks available to replace the destroyed one. The replacement stick must have been a stick in theN -th
subdivision. Hence, it has a length greater than λ1(a)−ϵ

N , satisfying the length condition.

To ensure the last r sticks are in the collection, consider the structure of the subdivision: each subdivi-
sion point ai generates two new sticks. By including the two new sticks at each step and ensuring any
replacement stick is chosen from those not yet included, the last r sticks will naturally be part of the
final collection because we are always including the latest sticks generated at each step. Therefore,
by induction, we ensure that for any 0 ≤ r ≤ N , we can choose 2r distinct sticks from the (N + r)-th
subdivision, satisfying the length conditions.

Theorem 2. Let λ1 = sup{λ1(a) : sequences a}, then λ1 ≤ 1
ln 4 .
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Proof. Since 1
N+r > 1

N+x for r < x ≤ r + 1,

N∑
r=1

1

N + r
>

∫ N+1

1

dx

N + x
= ln(N + x)|N+1

1 = ln
2N + 1

N + 1
= ln(2− 1

N + 1
), (2.5)

The expression ln(2− 1
N+1 ) gets closer to ln 2 as N increases because 1

N+1 becomes smaller. Specif-
ically,

lim
N→∞

ln(2− 1

N + 1
) = ln 2 >

ln 2

1 + 2ϵ ln 2
. (2.6)

The last inequality is true since the denominator 1+2ϵ ln 2 is greater than 1. From (2.5) and (2.6) there
must exist some sufficiently large N ≥ n0 such that

N∑
r=1

1

N + r
>

ln 2

1 + 2ϵ ln 2
. (2.7)

This holds as long as ϵ > 1
2 ln 2(N+1)−1 , the explanation for ϵ can be found in Appendix C.

Now apply Lemma 2 with r = N , since the 2N sticks chosen must in this case be all the sticks of the
division of the 2N -th subdivision, their total length is 1; hence Lemma 2 and (2.7) give

1 >

N∑
r=1

2(λ1(a)− ϵ)

N + r

⇔ 1

2(λ1(a)− ϵ)
>

N∑
r=1

1

N + r

>
ln 2

1 + 2ϵ ln 2

⇔ 2(λ1(a)− ϵ) ln 2

1 + 2ϵ ln 2
< 1

⇔ 2(λ1(a)− ϵ) ln 2 < 1 + 2ϵ ln 2

⇔ λ1(a)− ϵ <
1

2 ln 2
+ ϵ,

i.e.
λ1(a)− ϵ <

1

ln 4
+ ϵ;

but ϵ can be arbitrarily small, hence
λ1(a) ≤

1

ln 4

Let λ1 = l.u.b. λ1(a), then we have found
λ1 ≤ 1

ln 4
.

We can easily determine µ1 = g.l.b. µ1(a),

µ1 =
1

ln 2
1

ln 4

=
ln 4

ln 2
=

2 ln 2

ln 2
= 2.

2.2. A Sequence with Optimal Values

Let’s have a look at the sequence an = log2(2n − 1) reduced mod 1. The sequence a1, ..., an has n
terms:

log2(1) mod 1, log2(3) mod 1, log2(5) mod 1, ..., log2(2n− 1) mod 1. (2.8)
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Lemma 3. No two of the an’s are congruent modulo 1.

Proof. We start with the expression for the logarithms

an = log2(2n− 1)

log2(2n− 1) can be expressed as
log2(2n− 1) = kn + pn

where kn is an integer and pn ∈ [0, 1) is the fractional part. Hence, an = pn.

We need to show that no two an’s have the same fractional part. Assume for contradiction that there
exist two different terms ai and aj such that

log2(2i− 1) mod 1 = log2(2j − 1) mod 1.

This implies
log2(2i− 1) = ki + pi and log2(2j − 1) = kj + pj

where ki, kj are integers and pi, pj ∈ [0, 1) are fractional parts such that

pi = pj .

We can rewrite the above logarithmic equations in exponential form

2ki+pi = 2i− 1 and 2kj+pj = 2j − 1.

Given that pi = pj , we have
2ki+pi = 2kj+pj .

This can be rewritten as
2ki · 2pi = 2kj · 2pj

Since pi = pj :
2ki · 2pi = 2kj · 2pi

This simplifies to
2ki = 2kj .

The above equality 2ki = 2kj implies ki = kj , meaning ki and kj are the same integer. This in turn
implies that 2i− 1 = 2j− 1 (as the fractional parts pi and pj are also equal), or i = j, which contradicts
our assumption that i ̸= j.

We conclude that no two terms an in the sequence log2(2n− 1) mod 1 are congruent modulo 1.

Lemma 4. No two of the terms in

log2 n, log2(n+ 1), ..., log2(2n− 1) (2.9)

are congruent modulo 1.

Proof. For all x ∈ {n, n + 1, ..., 2n − 1} we can divide x by 2 until we end up in the interval (1, 2). Say
you have to divide k times. Then

x

2k
∈ (1, 2).

For all x ∈ {n, n + 1, ..., 2n − 1} this k is the same, as 2n − 1 < 2n. Only from 2n onwards you can
divide one more time by 2. Now we look at

n

2k
,
n+ 1

2k
, ...,

2n− 1

2k
.
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Which are pairwise not congruent modulo 1 as they are all in the interval (1, 2) and different:

n ̸= n+ 1 ̸= ... ̸= 2n− 1

hence
n

2k
̸= n+ 1

2k
̸= ... ̸= 2n− 1

2k
.

We can conclude that no pair of terms in (2.9) are congruent modulo 1.

Theorem 3. The an’s in (2.8) occur in the order of the terms in (2.9). That is, there exists a bijection
between

log2(1) mod 1, log2(3) mod 1, log2(5) mod 1, ..., log2(2n− 1) mod 1

and
log2 n, log2(n+ 1), ..., log2(2n− 1).

Proof. Sequence (2.8) contains 2n−1−1
2 +1 = n terms, and (2.9) contains 2n−1−n+1 = n terms as well.

Therefore, if we find an injection between the two sets of the same cardinality, it will be a bijection [2].
Moreover, in both sequences, no two numbers are congruent modulo 1. We find a bijection between
these two sequences: start at the end with the term log2(2n − 1), this term is (simply) mapped to
log2(2n− 1) mod 1. 2n− 2 is now even, hence divisable by 2, which gives n− 1. We map log2(2n− 2)
to log2(n − 1) mod 1. If we divide by 2 and the resulting term is still even, we continue dividing by 2
until we obtain an odd number. A pattern emerges as we observe this mapping process.

We establish a clear mapping between the elements of the two sequences. For x ∈ {n, n+1, ..., 2n−1}
the map is given by

f(log2(x)) = log2(
x

2m
) mod 1, with m being the largest power of 2 that divides x.

To prove that f(x) is injective, we need to show that if x ̸= y, then f(x) ̸= f(y).

Let k ̸= k′ ∈ the terms of (2.8). Assume for the sake of contradiction that k ̸= k′ and f(k) = f(k′).
Then

log2(
k

2m
) mod 1 = log2(

k′

2m′ ) mod 1 Assume f(k) = f(k′)

⇔ log2(
k

2m
) = log2(

k′

2m′ ) Lemma 3

⇔ k

2m
=

k′

2m′ WLOG k ̸> 2k′

⇔ 2m
′
· k = 2m · k′

⇔ k = 2(m−m′) · k′

Here is our contradiction as if m > m′ then k = 2(m−m′) · k′ implies that k′ is at least 2k. On the other
hand, if m = m′ then k = k′ which contradicts our assumption. We conclude that f(x) is injective,
hence bijective.

The lengths of the sticks defined by the an’s are

log2(n+ 1)− log2 n, log2(n+ 2)− log2(n+ 1), ..., log2(2n− 1)− log2(2n− 2), log2(2n)− log2(2n− 1)

= log2
n+ 1

n
, log2

n+ 2

n+ 1
, ..., log2

2n− 1

2n− 2
, log2

2n

2n− 1

Theorem 4. For the sequence an = log2(2n− 1) mod 1, Λ1(a) =
1

ln 2 .
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Proof. The longest stick is log2(
n+1
n ). Hence,

nM1
n(a) = n log2(

n+ 1

n
)

= n log2(1 +
1

n
)

= n
ln(1 + 1

n )

ln 2
.

For n → ∞, nM1
n(a) goes to the limit 1

ln 2 .

Theorem 5. For the sequence an = log2(2n− 1) mod 1, λ1(a) =
1

ln 4 .

Proof. The shortest stick is log2(
2n

2n−1 ). Hence,

nm1
n(a) = n log2(

2n

2n− 1
)

= n log2(1 +
1

2n− 1
)

= n
ln(1 + 1

2n−1 )

ln 2
.

For n → ∞, nm1
n(a) goes to the limit 1

2 ln 2 = 1
ln 4 .

Theorem 6. For the sequence an = log2(2n− 1) mod 1, µ1(a) = 2.

Proof. From Theorem 4 and Theorem 5 it follows that

M1
n(a)

m1
n(a)

goes to the limit
1

ln 2
1

ln 4

=
ln 4

ln 2
=

2 ln 2

ln 2
= 2.

We see that for this sequence we attain the bounds we have found in the previous section.

2.3. Lower Bound for Λr(a)

Now that we have analysed a sequence that attains the bounds if we look at the longest and shortest
stick; we can try and find bounds if we look at consecutive sticks. In this section, we recreate De
Bruijn and Erdös’s method [5] for finding the lower bound of Λr(a). We follow their general approach
but sometimes use different proofs. Some of the lemmas are presented for just one stick to make
them easier to understand. This is done to help prepare the reader for the more complex case of r
consecutive sticks.

Lemma 5. Let a1, a2, ..., an be a sequence, n ∈ N, and ρ is such that

kM1
k (a) < ρ (n ≤ k < 2n). (2.10)

Then
1 < ρ(

1

n
+

1

n+ 1
+ ...+

1

2n− 1
).
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Proof. Let the sticks broken by a1, a2, ..., an be I1, I2, ..., In arranged in descending order and their
corresponding lengths α1, α2, ..., αn, so that

α1 ≥ α2 ≥ ... ≥ αn (2.11)

and
α1 + α2 + ...+ αn = 1. (2.12)

Now we break n − 1 more times at an+1, an+2, ..., a2n−1. Any break splits up at most one stick Ii (i ∈
{1, ..., n}). Therefore, after breaking once more at an+1, the length of the largest stick is still α1 if an+1

is not in I1. If an+1 is in I1 then the largest stick is I2 with length α2. By repeating this train of thought,
after an+1, ..., an+p with 1 ≤ p ≤ n − 1 have been placed, at least one stick with length ≥ αp+1 is left
over. Thus

M1
n(a) ≥ α1 (2.13)

M1
n+1(a) ≥ α2

...
M1

2n−1(a) ≥ αn.

Now

1 = α1 + α2 + ...+ αn (2.12)
≤ M1

n(a) +M1
n+1(a) + ...+M1

2n−1(a) (2.13)

<
ρ

n
+

ρ

n+ 1
+ ...+

ρ

2n− 1
(2.10)

= ρ(
1

n
+

1

n+ 1
+ ...+

1

2n− 1
) factor out ρ

Lemma 6. For at least one k (n ≤ k < 2n) we have

kM1
k (a) ≥ (

1

n
+

1

n+ 1
+ ...+

1

2n− 1
)−1 = σn.

Proof.

1 = α1 + α2 + ...+ αn (2.12)
≤ M1

n(a) +M1
n+1(a) + ...+M1

2n−1(a) (2.13) for every αi

<
ρ

n
+

ρ

n+ 1
+ ...+

ρ

2n− 1
(2.10)

= ρ(
1

n
+

1

n+ 1
+ ...+

1

2n− 1
) factor out ρ (2.14)

so from (2.14),
(
1

n
+

1

n+ 1
+ ...+

1

2n− 1
)−1 < ρ

It follows that the claim is true for at least one k, otherwise the bound will never be attained.

We have σn < 1
ln 2 and σn → 1

ln 2 , so Λ1(a) ≥ 1
ln 2 . This holds for any sequence and the lower bound is

attained for the sequence in section 2.2.

We now prove the previous result (Lemma 6) for r consecutive sticks.

Lemma 7. For at least one k (rn ≤ k < (r + 1)n) we have

kMr
k (a) ≥ (

1

rn
+

1

rn+ 1
+ ...+

1

rn+ n− 1
)−1 = τn.
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Proof. Let
kMr

k (a) < ρ. (2.15)
Let I1, I2, ..., Irn be all the r-sticks, (i.e., every Ii consists of r sticks) arranged in descending order and
their corresponding lengths α1, α2, ..., αrn, so that

α1 ≥ α2 ≥ ... ≥ αrn (2.16)

and
α1 + α2 + ...+ αrn = r. (2.17)

Now by the same train of thought as in Lemma 5, after breaking p more times with 1 ≤ p ≤ n − 1, at
least one r-stick with length ≥ αrp+1 is left over. Thus,

Mr
rn(a) ≥ α1 (2.18)

Mr
rn+1(a) ≥ αr+1

...
Mr

rn+n−1(a) ≥ αr(n−1)+1.

Now

r = α1 + α2 + ...+ αrn (2.17)
≤ rMr

rn(a) + rMr
rn+1(a) + ...+ rMr

(r+1)n−1(a) (2.18)

< r
ρ

rn
+ r

ρ

rn+ 1
+ ...+ r

ρ

(r + 1)n− 1
(2.15)

= rρ(
1

rn
+

1

rn+ 1
+ ...+

1

(r + 1)n− 1
) factor out rρ

Hence,
(
1

rn
+

1

rn+ 1
+ ...+

1

(r + 1)n− 1
)−1 < ρ

It follows that the claim is true for at least one k, otherwise the bound will never be attained.

Lemma 8. 1
ln(1+ 1

r )
> r.

Proof. We need to show that ln(1 + 1
r ) <

1
r . To show this, we can use the Taylor series expansion for

ln(1 + x), which is valid for |x| < 1:

ln(1 + x) = x− x2

2
+

x3

3
− ...

For x = 1
r , the series becomes:

ln(1 +
1

r
) =

1

r
− 1

2r2
+

1

3r3
− ...

Since r > 0, the higher-order terms ( 1
2r2 ,

1
3r3 , etc.) are all positive and become increasingly smaller.

Therefore
ln(1 +

1

r
) <

1

r
.

Thus, the original inequality
1

ln(1 + 1
r )

> r

is proven to be true.

Theorem 7. Λr(a) ≥ 1
ln(1+ 1

r )
> r.

Proof. We have τn < 1
ln(1+1/r) and τn → 1

ln(1+1/r) , so Λr(a) ≥ 1
ln(1+1/r) . Together with Lemma 8 the

theorem is proven. This holds for any sequence.
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2.4. Upper Bound for λr(a)

This section explains the upper bound for λr(a) according to De Bruijn and Erdös [5]. We follow their
general method, but occasionally use different proofs. Additionally, some of the lemmas are stated for
just one stick, making them easier to grasp. This helps the reader for the more complicated scenario
involving r consecutive sticks.

Definition 2. For any set A, a function ϕ : A → A is called a Permutation of A if ϕ is bijective.

Definition 3. A Cyclic order is a way of arranging the elements of a set on a circle (with a chosen
direction, say clockwise or counterclockwise).

Lemma 9. Let n be a natural number, {a1, ..., a2n} be a sequence of points, {ak1
, ak2

, ..., ak2n
} the cyclic

order of these points on the circle (i.e., k1, ..., k2n is a permutation of 1, ..., 2n), and suppose that ρ is
such that

km1
k(a) > ρ (n < k ≤ 2n). (2.19)

Set k2n+1 = k1. If k∗i = Max {ki, ki+1, n+ 1}, then

1 > ρ

2n∑
i=1

1

k∗i
. (2.20)

Proof. The stick aki
, aki+1

is one of the sticks determined by a1, ..., ak∗
i
. It follows that its length is greater

than ρ
k∗
i
,

1 =

2n∑
i=1

[aki
, aki+1

]

≥
2n∑
i=1

m1
k∗
i

>

2n∑
i=1

ρ

k∗i
.

Where the last inequality follows from (2.19). This completes our proof.

Lemma 10. For at least one k (n < k ≤ 2n) we have

km1
k(a) ≤ (

2

n+ 1
+

2

n+ 2
+ ...+

2

2n
)−1 = κn.

Proof. We have n < k∗i ≤ 2n ∀ i, and any k (n + 1 < k ≤ 2n) occurs at most twice as it can be at the
left end or at the right end of a stick. We want to minimise

2n∑
i=1

1

k∗i
.

k∗i comes from from {n + 1, ..., 2n} where the denominators > n + 1 can occur at most twice. We
always choose the largest k as it is in the denominator and we want it to be as small as possible. Even
if {n+ 2, ..., 2n} are all chosen twice, we still have to add 2 more terms, we take 1

n+1 twice. Hence,
2n∑
i=1

1

k∗i
≥ 1

2n
+

1

2n
+

1

2n− 1
+

1

2n− 1
+ ...+

1

n+ 1
+

1

n+ 1

=
2

2n
+

2

2n− 1
+ ...+

2

n+ 1

=

2n∑
n+1

2

k
. (2.21)
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From Lemma 9 and (2.21) we get

ρ < (
2

n+ 1
+

2

n+ 2
+ ...+

2

2n
)−1

It follows that the claim is true for at least one k, otherwise the bound will never be attained.

We have κn > 1
ln 4 and κn → 1

ln 4 , so λ1(a) ≤ 1
ln 4 . This holds for any sequence and the upper bound is

attained for the sequence in section 2.2.

We will now repeat this approach (Lemma 9 and Lemma 10) for r consecutive sticks.

Lemma 11. Suppose that ρ is such that

kmr
k(a) > ρ (rn < k ≤ (r + 1)n). (2.22)

If k∗i = Max {ki, ki+1, rn+ 1}, then

r > ρ

(r+1)n∑
i=1

1

k∗i
. (2.23)

Proof. The r-stick aki
, aki+1

is one of the r-sticks determined by a1, ..., ak∗
i
. It follows that its length is

greater than ρ
k∗
i
,

r =

(r+1)n∑
i=1

[aki , aki+1 ]

≥
(r+1)n∑
i=1

mr
k∗
i

>

(r+1)n∑
i=1

ρ

k∗i
.

Where the last inequality follows from (2.22). This completes our proof.

Lemma 12. For at least one k (rn < k ≤ (r + 1)n) we have

kmr
k(a) ≤ r(

r + 1

nr + 1
+ ...+

r + 1

(r + 1)n− 1
)−1 = ωn.

Proof. We have rn < k∗i ≤ (r + 1)n ∀ i, and any k (rn+ 1 < k ≤ (r + 1)n) occurs at most r + 1 times
as it can be positioned at the end of each stick. When moving from left to right through the sticks, each
stick has a left end. k can be placed at the left end of each stick. Additionally, for the last stick, k can
also be at its right end. We want to minimise

(r+1)n∑
i=1

1

k∗i
.

k∗i comes from from {rn + 1, ..., (r + 1)n} where the denominators > rn + 1 can occur at most r + 1
times. We always choose the largest k as it is in the denominator and we want it to be as small as
possible. Even if {rn+2, ..., (r+1)n} are all chosen r+1 times, we still have to add r+1 more terms,
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we take 1
rn+1 , r + 1 times. Hence,

(r+1)n∑
i=1

1

k∗i
≥ 1

(r + 1)n
+

1

(r + 1)n
+

1

(r + 1)n
+ ...+

1

rn+ 1
+

1

rn+ 1

=
r + 1

(r + 1)n
+

r + 1

(r + 1)n− 1
+ ...+

r + 1

rn+ 1

=

(r+1)n∑
rn+1

r + 1

k
. (2.24)

From Lemma 11 and (2.24) we get

ρ < r(
r + 1

rn+ 1
+

r + 1

rn+ 2
+ ...+

r + 1

(r + 1)n
)−1

It follows that the claim is true for at least one k, otherwise the bound will never be attained.

Lemma 13. r
r+1/ ln(1 +

1
r ) < r.

Proof.
r

r + 1
/ ln(1 +

1

r
) =

r

(r + 1) · ln(1 + 1
r )

and
ln(1 + x) = x− x2

2
+

x3

3
− ...

which is the Taylor series expansion for ln(1 + x). This is valid for |x| < 1.

For x = 1
r , the series becomes:

ln(1 +
1

r
) =

1

r
− 1

2r2
+

1

3r3
− ...

Since r > 0, the higher-order terms ( 1
2r2 ,

1
3r3 , etc.) are all positive and become increasingly smaller.

Therefore,
ln(1 +

1

r
) <

1

r
.

Thus, we get
r

(r + 1) · ln(1 + 1
r )

<
r

(r + 1) · 1
r

=
r2

1 + r
= r · r

r + 1
< r · 1 = r

since r
r+1 < 1 for all r > 0.

Theorem 8. λr(a) ≤ r
r+1/ ln(1 +

1
r ) < r.

Proof. We have ωn > r
r+1/

1
ln(1+1/r) and ωn → r

r+1/
1

ln(1+1/r) , so λr(a) ≤ r
r+1/

1
ln(1+1/r) . Together with

Lemma 13 the theorem is proven. This holds for any sequence.

2.5. Lower Bound for µr

In this section we follow the proof of De Bruijn and Erdös [5] for finding a lower bound for µr.

Lemma 14. Let a1, a2, ..., an be a sequence of (breaking) points on a circle of circumference 1. For
r ≥ 1, n ≥ 1 we have

Mr
n(a)

mr
n+1(a)

≥ 1 +
1

r
. (2.25)
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Proof. Suppose that r > 1. Let I1, I2, ..., In be the sticks determined by a1, a2, ..., an. Let Ik0 be the
stick that an+1 breaks and let

Ik−r+1
, Ik−r+2

, ..., Ik0
, Ik1

, ..., Ikr−1
(2.26)

be consecutive on the circle. Note that if 2r − 1 > n the ki are not all different.

LetM1 be the maximum length of the sum of r consecutive sticks from the set (2.26). Denote the length
of stick Iki by βi. Let γ1 and γ2 be the lengths of the two sticks into which Ik0 breaks by an+1.

By the pigeonhole principle at least one of the lengths β−r+1, β−r+2, ..., β−1, β1, ..., βr−1, say βj is
≥ M1−β0

r−1 . The principle states that if n items are put into m containers, with n > m, then at least
one container must contain more than one item [4]. In this context, the pigeonhole principle helps us
understand that when distributing the total sum M1 − β0 among r − 1 sticks, at least one of the sticks
must be large enough to ensure that the total sum is achieved. We may suppose that j > 0. Now we
have

mr
n+1(a) ≤ βj−r+1 + βj−r+2 + ...+ β−1 + γ1 + γ2 + β1 + ...+ βj−1 (2.27)

and from βj ≥ M1−β0

r−1 we derive

βj ≥
M1

r − 1
− β0

r − 1

⇔ −βj ≤ − M1

r − 1
+

β0

r − 1

⇔ M1 − βj ≤ M1 −
M1

r − 1
+

β0

r − 1

≤ (r − 1)M1 −M1

r − 1
+

β0

r − 1

≤ r − 2

r − 1
M1 +

β0

r − 1

For the largest r-stick M1 containing Ik0
; Ikj

is positioned on the left or right side of the r-stick. After
breaking Ik0

, Ikj
is no longer part of the r-stick after n + 1 breaks. The smallest r-stick, after n + 1

breaks, is less than or equal to M1 − βj , where βj is the length of Ikj
.

Hence,
mr

n+1(a) ≤ M1 − βj ≤
r − 2

r − 1
M1 +

β0

r − 1
. (2.28)

On the other hand it follows from

mr
n+1(a) ≤ γ2 + β1 + ...+ βr−1 ≤ M1 − γ1

mr
n+1(a) ≤ β−r+1 + ...+ β−1 + γ1 ≤ M1 − γ2

that
2mr

n+1(a) ≤ 2M1 − β0

so
mr

n+1(a) ≤ M1 −
1

2
β0 (2.29)

Trivially we have, M1 ≤ Mr
n(a).
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If β0 ≤ 2M1

r+1 then from (2.28)

mr
n+1(a) ≤

r − 2

r − 1
M1 +

2M1

(r + 1)(r − 1)

=
r(r − 1)

(r − 1)(r + 1)
M1

=
r

r + 1
M1

≤ r

r + 1
Mr

n(a)

If β0 ≥ 2M1

r+1 then from (2.29)

mr
n+1(a) ≤ M1 −

1

2

2M1

r + 1

≤ M1 −
M1

r + 1

=
r

r + 1
M1

≤ r

r + 1
Mr

n(a).

Which is the same result. This proves (2.25) for r > 1 as in both cases the claim is proven to be true.

If r = 1, (2.25) follows from

mr
n+1(a) = m1

n+1(a) ≤ Min {γ1, γ2} ≤ 1

2
β0 ≤ 1

2
M1

n(a) =
1

2
Mr

n(a).

Since in this case (r = 1),

1 ≤1

2

Mr
n(a)

mr
n+1(a)

⇒1 +
1

r
= 2 ≤ Mr

n(a)

mr
n+1(a)

.

Lemma 15. For at least one k (nr ≤ k ≤ nr + n) we have

Mr
k (a)

mr
k(a)

≥
1 + 1

r

(1 + 1
k )

2
= δn.

Proof. Assume that n is a natural number and that for nr ≤ k ≤ nr + n we have

Mr
k (a)

mr
k(a)

<
1 + 1

r

(1 + 1
k )

2
. (2.30)

By (2.25)
mr

k+1(a)

Mr
k (a)

≤ r

r + 1
. (2.31)

Combining (2.30) and (2.31) we get for nr ≤ k < nr + n

mr
k+1(a)

mr
k(a)

<
1 + 1

r

(1 + 1
k )

2
· r

r + 1
=

1

(1 + 1
k )

2
=

1

(k+1
k )2

=
k2

(k + 1)2
. (2.32)
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By considering the product of the ratios of (2.32) over two consecutive steps

mr
k+2(a)

mr
k+1(a)

·
mr

k+1(a)

mr
k(a)

<
(k + 1)2

(k + 2)2
· k2

(k + 1)2
=

k2

(k + 2)2
.

This telescoping behavior helps in simplifying the product of ratios. We can generalize the telescoping
process over multiple steps. For any positive integer n, we have

mr
k+n(a)

mr
k(a)

<
k2

(k + n)2
.

Set k = rn. Then,
mr

rn+n(a)

mr
rn(a)

<
(rn)2

(rn+ n)2
=

r2n2

n2(r + 1)2
=

r2

(r + 1)2
. (2.33)

On the other hand, by (2.30)

mr
rn+n(a) >

(1 + 1
k )

2

1 + 1
r

·Mr
rn+n(a)

= (1 +
1

k
)2 · r

r + 1
·Mr

rn+n(a)

>
r

r + 1
·Mr

rn+n(a)

≥ r

r + 1
· r

rn+ n

=
r2

(r + 1)2
· 1
n
. (2.34)

By Proposition 2 we have mr
rn(a) ≤ 1

n , which gives

1

mr
rn(a)

≥ n. (2.35)

Combining (2.35) with (2.34) we get

mr
rn+n(a)

mr
rn(a)

>
r2

(r + 1)2
· 1
n
· n =

r2

(r + 1)2

which contradicts (2.33). Hence our assumption is false and the Lemma is proven to be true.

Theorem 9. µr ≥ 1 + 1
r .

Proof. We have δn < 1 + 1
r and δn → 1 + 1

r , so µr(a) ≥ 1 + 1
r .

With this proof we have reproduced all bounds provided by De Bruijn and Erdös [5]. Namely for µ, Λ,
and λ for single sticks and r consecutive sticks.

The problem of µr, Λr, and λr is closely related to a problem concerning ”just distributions” solved by
Mrs van Aardenne-Ehrenfest [1]. All De Bruijn and Erdös could prove is that µr ≥ 1+ 1

r and analogous
inequalities for Λr and λr. They conjecture that the expressions

r(µr − 1) , r(Λr − 1) , r(1− λr)

tend to infinity if r → ∞ (the expressions unbounded).



3
Numerical Findings

In this chapter, I use a powerful tool that Erdös and de Bruijn did not have: a computer. The primary
aim here is to uncover certain results through numerical methods. However, it’s important to recognize
that due to the limited numerical research conducted on this problem (and time constraints), not all
questions will have definitive answers within this text. Consequently, I will occasionally pose questions
for the reader to contemplate or investigate independently. My intention with this thesis is to encourage
readers to explore this subject further and contribute to its growing body of research.

We start with a circle of length 1. For simplicity, in our code, we will consider it as a line of length 1,
but keep in mind that it originates from a circle. This means the first and last sticks of our line are next
to each other. We will break this line into sticks, with the cutting points determined by various stick
breaking strategies.

Let’s first clarify what we are willing to find out. We want the largest length of two consecutive sticks to
be as close to the smallest length of two consecutive sticks as possible. In other words, minimise

M2
n(a)−m2

n(a).

This ensures to keep the distribution of two consecutive sticks as uniform as possible. We consider
four stick breaking strategies: Random Cutting (3.2), Maximum Stick Random Cutting (3.3), Maximum
Stick in Half Cutting (3.4), and Cutting at log2(2n − 1) mod 1 (3.5). Currently, we don’t know which
strategy will yield an even distribution of sticks.

Focusing on two consecutive sticks is convenient because extending the theory to r consecutive sticks
simply requires changing a few variables in the code. To compare the lengths of sticks, we define a
measure to evaluate the uniformity. Instead of analyzing µ2 (see (2.3)), the ratio between the longest
and shortest lengths of two consecutive sticks, we introduce a new measure, the R-value (see section
3.1). We analyze the R-values for the different stick breaking strategies. Our ultimate goal is to find
a strategy with a low R-value. The following section provides definitions and explanations leading to
how the R-value is defined and used in our analysis.

Definition 4. A 2-stick are two consecutive sticks, and a r-stick are r consecutive sticks.

Definition 5. M(n) is the longest 2-stick after n breaks, andm(n) is the shortest 2-stick after n breaks.

Definition 6. The R-value R(n) (after n breaks) of a stick-breaking strategy is defined as the length
of the longest 2-stick minus the length of the shortest 2-stick times the amount of breaks n,

R(n) = (M(n)−m(n)) ∗ n.

We multiply by n to normalise as otherwise R will be too small when we look at a large amount of
breaks.

18
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3.1. R-Value

Recall that the goal is to find a stick breaking strategy with an even distribution of 2-sticks. In order
to measure that we will use the R-value. An evenly distributed strategy would have M(n) and m(n),
defined as in Definition 6, very close to each other. This is the same as saying that their difference
should be as close as possible to zero, hence minimised. Our mission becomes analysing for which
strategy the R-values are as low as possible.

For every strategy, the calculate_r function in Appendix A computes the R-value as follows: the script
first sorts the stick-lengths in the correct order. Then it checks what sum of two consecutive sticks is
the largest. Note that I have introduced a Boolean variable (is_last_item) for when we arrive at the last
(single) stick. Because in that case our 2-stick consists of the last stick and the first stick.

Now that we have foundM(n) andm(n) we can compute our R-value by computing (M(n)−m(n))∗n.

Note that if n = 1, i.e., we cut our circle once, we will only have one stick of length 1. For one stick the
problem is not defined as we look at the length of two consecutive sticks. Therefore, I have hardcoded
that R(1) = 0 for one stick.

3.2. Strategy 1: Random Cutting

Put simply, this strategy consists of breaking the stick unformly at random. Then it computes the R-
value with the calculate_r function. This strategy is called random_cutting in the code in Appendix
A.

This is a plot of the R-values for the Random Cutting Strategy up to 50 cuts. We see no pattern or
recurring behaviour, and we did not expect any as everything is random in this strategy. We now will
look at more cuts with this strategy but we do not expect good (low) R-values.



3.3. Strategy 2: Maximum Stick Random Cutting 20

The R-values for the Random Cutting Strategy up to 1000 cuts are very fluctuating and hence not
convenient to watch in a graph. You can smooth it out by plotting the ”moving” maximum. For each cut
number n plot max R(m) for m < n, the highest R-value up to that point. This plot shows the ”moving”
maximum of the R-values till 1000 cuts. As expected this strategy gives us very high R-values with one
of them having an R-value over 700. We can imagine that for n → ∞ amount of cuts, the R- value will
shoot up to ∞ too. We conclude that this is a very bad strategy.

3.3. Strategy 2: Maximum Stick Random Cutting

This strategy operates in the same way as the previous strategy except that it cuts the first largest
single-stick instead of a random stick. More specifically, the code picks the first largest single-stick. If
there are more than one largest single-sticks, it picks the first one, meaning the one that is the closest
to zero. Then, it breaks this stick into 2 new sticks. For this it takes uniform at random a value between
0 and the length of the largest stick, say new_stick_length. The other stick length is naturally the length
of the largest stick minus new_stick_length. Now all we have to do is put our two new sticks back into
our list and compute the R-value with the calculate_r function. The strategy is called max_stick_cutting
in the code in Appendix A. This procedure is named Kakutani’s Splitting Procedure, the reader can find
more information about it in [6] and [11].
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The plot illustrates the R-values for the Maximum Stick Random Cutting Strategy up to 50 cuts. We
can already see that we have found a much better strategy as the R-values stay below 3, 7 compared
to a stunning R-value of 30 for the Random Cutting Strategy. This observation holds for up to 50 cuts.
Keep in mind that because we do some things randomly, we can obtain different R-values for the same
number of cuts if we run the code again. We still do not see any recurring behaviour on the graph.

This graph shows the ”moving” maxmimum R-values for the Maximum Stick Random Cutting Strategy
up to 1000 cuts. We can observe that all the maximum R-values stay below 4, 5. The R-values are
low for a few cuts and then rapidly increase to 4, 5 and then stay under this bound. A question that is
raised with this graph is the following: Do the R-values converge to 4, 5? Perhaps to 4? I will leave this
question open for my fellow mathematicians.

This is how far I will go with this strategy. However, I suggest a new strategy here: to cut somewhere in
the largest 2-stick. I believe this may improve the R-values as the largest single stick is not always part
of the largest 2-stick (and in the Maximum Stick Random Cutting Strategy we always cut in the largest
1-stick).

3.4. Strategy 3: Maximum Stick in Half Cutting

This strategy takes the largest (single-)stick and cuts it in half. Specifically, the code picks the first
largest stick. Then, it breaks this stick in half. Now we get two sticks of the same length which are half
the length of the largest stick. It remains to put our two new sticks back into our list of stick lengths and
compute the R-values with the calculate_r function. This strategy is called max_stick_in_half_cutting
in the code in Appendix A.
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This method is deterministic, and not at random. These are the ten (starting at 1) first R-values of this
method

0, 0,
3

4
, 0,

5

4
,
6

4
,
7

8
, 0, 1,

9

8
,
10

8

The graph illustrates the R-values for the Maximum Stick in Half Cutting Strategy up to 50 cuts. We
see a recurring behaviour. Analysing this, we start at R(n) = 0 for n = {0, 1, 2} cuts as expected. Then
we have a first spike of the R-value at 3 cuts. This is because the cutting process has resulted in sticks
of different lengths.

At n = 4, the R-value drops to zero again. This occurs because after the fourth cut, the sticks are of
equal lengths again, so M(4) = m(4). The pattern of spikes and drops to zero continues. Each time
the number of cuts results in unequal lengths of sticks, R(n) spikes. When the number of cuts results
in equal lengths, R(n) resets to zero.

For example, at n = 8, the R-value is zero again because all the parts are of the same length,
M(8) = m(8). Between the resets, the R-value increases linearly. This linear increase occurs be-
cause M(n)m(n) remains constant while n increases linearly.

The maximum R-value does not exceed 2. This is because the longest stick M can be at most twice
as long as the shortest stick m due to the halving nature of the cuts. The graph shows a repeating
behavior where spikes and resets alternate, reflecting the cyclical nature of stick lengths balancing out
after certain numbers of cuts. This pattern is expected to continue with more cuts.

Note that at n = 4 you have the numbers 0, 1/4, 1/2, 3/4. You have four choices to continue. Take the
first stick, then you get 0, 1/8, 1/4, 1/2, 3/4. The 2-sticks have lengths 1/4, 3/8, or1/2. Now you can
continue with 0, 1/8, 1/4, 3/8, 1/2, 3/4, but also with 0, 1/8, 1/4, 1/2, 5/8, 3/4. The second way gives a
better R-value. By cutting another (not the first) largest single-stick you get a better R-value. We do
not further investigate this thought.
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For more cuts we can smooth the graph out again via the ”moving” maximum. It seems logarithmic, so
we plot it on a logarithmic scale.

The graph shows the ”moving” maximum R-values for the Maximum Stick in Half Cutting Strategy up
to 1000 cuts. As anticipated, the behavior remains consistent with the pattern observed in the earlier
plot.

The cyclical pattern of spikes and resets in R-values persists (for the R-value graph, not the ”moving”
maximum graph). Moreover, The maximum R-value achieved is 2, which aligns with our expectation.
The strategy we use resembles the van der Corput method. For further reading and a deeper under-
standing of the underlying principles, I recommend reading [7].

3.5. Strategy 4: Cutting at log2(2n− 1) mod 1

Recall from Section 2.2 that the sequence log2(2n−1) gave the best possible µ1(a). It makes sense to
analyse this sequence and determine the R-values for this strategy. To program this, another approach
is needed. For every strategy up until now we knew directly what the lengths of the sticks where.
However, now we know where we cut our line (of length 1) but we don’t know what stick it breaks and
hence we don’t know its length.

First I have coded a ”dummy” function that simply returns the value of log2(2n−1)mod 1. This function
is called calculate_cut_place in Appendix A. I have made this function so that if the reader wants to
compute R-values for another function, he/she will simply have to modify the code in this ”dummy”
function.

To compute the R-value for a specific amount of cuts n we first have to compute log2(2n − 1) mod 1
for the values from 1 up until n. Once we got that, we sort them from the largest to the smallest (we
also include 1 which is the largest possible value), say this gives 1, l1, l2, ..., ln−1, ln, 0. Now computing
the lengths of the sticks is easy, the lengths are 1 − l1, l1 − l2, ..., ln − ln−1, and ln − 0. We swap the
lengths around, yielding ln − 0, ln − ln−1, ..., l1 − l2, 1− l. These are the lengths of the sticks in correct
order. Now we can compute the R-value with the calculate_r function. This process takes place in the
function cut_using_logaritm_algoritm in Appendix A.
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This plot displays the R-values for the Cutting at log2(2n − 1) mod 1 Strategy up to 50 cuts. The R-
values increase in a Logarithmic way and seem to be bounded by 1, 4. This sequence has optimal µ1

(for 1-sticks), hence it is very evenly distributed. It seems logic to think that it would also have a good
distribution of 2-sticks. This is true as there seem to be an asymptote at 1, 4 so we again have found a
better strategy. For 1000 cuts we do not expect much to change, the tail of the graph will probably look
like a horizontal line.

The plot shows the R-values for the Cutting at log2(2n − 1) mod 1 Strategy up to 1000 cuts (note that
the x-axis is lograithmic). The graph surely has passed the previously established asymptote of 1, 4. I
leave my fellow mathematicians explain why that happens and find the correct value of the asymptote.
I will not dive deeper in the analysis of the logarithmic strategy. However, it seems a good approach
to try things with this formula. Like changing the base of the logarithm, or changing the formula inside
the brackets. I will leave your imagination up to that.
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3.6. Conclusion

The plot above compares all of our strategies. We can see what has been discussed in previous
sections. The Random Cutting Strategy dominates the graph, making it difficult to observe the other
strategies in detail. For 1000 cuts it gets worse. Hence, I provided the graph which compares the
4 strategies for 1000 cuts in Appendix B. To better evaluate the remaining three strategies, we will
now remove the Random Cutting Strategy from the plot, allowing for a clearer and more insightful
comparison.

In this graph, we observe that among these three strategies, the Maximum Stick Random Cutting Strat-
egy performs the worst, as its R-values are consistently higher than those of the other two strategies.
This outcome is expected since this strategy involves randomly cutting the largest stick without much
thought or optimization.
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This graph extends the previous comparison to 1000 cuts, and the same explanation applies. The
behavior remains consistent, confirming that the Maximum Stick RandomCutting Strategy is ineffective.
We conclude that this strategy is not optimal.

Between the two remaining strategies, the Logarithmic strategy is the best. Even if the Maximum Stick
in Half Cutting strategy sometimes has lower R-values, it is about the limsup of R(n). Which is lowest
for the Logarithmic strategy.



4
Endnote

To conclude, the problem for single sticks is mostly solved, as shown by the mathematical proofs in
Chapter 2. However, when we look at consecutive sticks, it becomes clear that the stick breaking
problem still needs more research. I believe that for anyone interested in exploring this area further,
my report will be an essential starting point. Additionally, the code included in this report will be very
useful for researchers who want to dig deeper into this topic. With some modifications, the script can
be adapted to provide new insights and potentially discover more effective strategies for solving the
problem.

Although this research has its limitations, it provides a solid foundation for ongoing exploration in the
field. Future studies can build on the concepts and methods presented here, leading to a better under-
standing of stick breaking strategies and their distributions.

I am very grateful for the opportunity to work on this topic. This project has been a significant learning
experience, and I hope it will inspire further investigations and discoveries in this fascinating area of
study.
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A
Code

1 import pandas as pd
2 import math
3 import random

1 def calculate_r(sticks, amount_cuts = 4):
2 large_m = 0
3 small_m = 1
4

5 is_last_item = False
6

7 for index, stick in enumerate(sticks):
8 if(len(sticks) == 1):
9 return 0

10 if(index == len(sticks) - 1):
11 is_last_item = True
12

13 total = stick + sticks[0 if is_last_item else index+1]
14 if(total > large_m):
15 large_m = total
16 if(total <= small_m):
17 small_m = total
18

19 return (large_m - small_m) * amount_cuts

1 def random_cutting(amount_cuts = 4):
2 parts = [1]
3 for _ in range(amount_cuts):
4 parts_copy = parts.copy()
5 i = random.randrange(len(parts_copy))
6 stick_length = parts[i]
7 del parts[i]
8 new_stick_length = random.uniform(0, stick_length)
9 other_new_stick_length = stick_length - new_stick_length

10 parts = parts_copy[0:i] + [new_stick_length, other_new_stick_length] + parts_copy[i
+1:]

11

12 return calculate_r(parts, amount_cuts)

1 def max_stick_cutting(amount_cuts = 4):
2 parts = [1]
3 for _ in range(amount_cuts):
4 parts_copy = parts.copy()
5

6 stick_length = max(parts)
7 i = parts.index(stick_length)
8 parts.remove(stick_length)
9

10 new_stick_length = random.uniform(0, stick_length)
11 other_new_stick_length = stick_length - new_stick_length
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12

13 parts = parts_copy[0:i] + [new_stick_length, other_new_stick_length] + parts_copy[i
+1:]

14

15 return calculate_r(parts, amount_cuts)

1 def max_stick_in_half_cutting(amount_cuts = 4):
2 parts = [1]
3 for _ in range(1, amount_cuts):
4 parts_copy = parts.copy()
5

6 stick_length = max(parts)
7 i = parts.index(stick_length)
8 parts.remove(stick_length)
9

10 new_stick_length = stick_length / 2
11

12 parts = parts_copy[0:i] + [new_stick_length, new_stick_length] + parts_copy[i+1:]
13 return calculate_r(parts, amount_cuts)

1 def calculate_cut_place(amount_cuts):
2 return math.log2((2*amount_cuts)-1) % 1

1 def cut_using_logaritm_algoritm(amount_cuts = 4):
2 if(amount_cuts == 0):
3 return calculate_r([1], 0)
4

5 places_to_cut = [1]
6 all_sticks = []
7

8 for i in range(1, amount_cuts+1):
9 place_to_cut = calculate_cut_place(i)

10 places_to_cut.append(place_to_cut)
11 places_to_cut = sorted(places_to_cut)[::-1]
12

13 for index, val in enumerate(places_to_cut):
14 if(index == len(places_to_cut)-1):
15 break
16 all_sticks.append(val - places_to_cut[index+1])
17

18 all_sticks = all_sticks[::-1]
19 return calculate_r(all_sticks, amount_cuts)

1 # This code is simply to display the R-values in a simple table as sometimes it can be hard
to read the exact R-value from the plot. One column shows the exact R-values, and the
other shows the amount of cuts corresponding to it.

2 def show_r_values_in_range(amount_cuts):
3 df = pd.DataFrame(columns=['r_values', 'amount_of_cuts'])
4

5 for i in range(1, amount_cuts + 1):
6 r_value = cut_using_logaritm_algoritm(i)
7 df = pd.concat([df, pd.DataFrame({'r_values': [r_value], 'amount_of_cuts': [i]})],

ignore_index=True)
8

9 return df

1 import matplotlib.pyplot as plt
2 from main import random_cutting, max_stick_cutting, max_stick_in_half_cutting ,

cut_using_logaritm_algoritm
3

4 def generate_data_for_algorithm(func, amount_of_cuts = 4):
5 r_values = []
6 for i in range(amount_of_cuts + 1):
7 r_values.append(func(i)) # cut_using_logaritm_algoritm(2)
8 print(r_values)
9 return r_values

10

11 def create_plot():
12 amount_of_cuts = 20
13 data_random_cutting = generate_data_for_algorithm(random_cutting, amount_of_cuts)
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14 data_max_stick_cutting = generate_data_for_algorithm(max_stick_cutting, amount_of_cuts)
15 data_max_stick_in_half_cutting = generate_data_for_algorithm(max_stick_in_half_cutting ,

amount_of_cuts)
16 data_sequence_algoritm = generate_data_for_algorithm(cut_using_logaritm_algoritm ,

amount_of_cuts)
17

18 x_values = range(amount_of_cuts + 1)
19

20 plt.plot(x_values, data_random_cutting , label='Random␣Cutting', color='r')
21 plt.plot(x_values, data_max_stick_cutting , label='Max␣Stick␣Cutting', color='g')
22 plt.plot(x_values, data_max_stick_in_half_cutting , label='Max␣Stick␣in␣Half␣Cutting',

color='b')
23 plt.plot(x_values, data_sequence_algoritm , label='Sequence␣algorithm', color='y')
24

25 plt.xlabel('Cuts')
26 plt.ylabel('R-Value')
27 plt.title('Comparison␣of␣Stick␣Breaking␣Strategies')
28 plt.legend()
29 plt.show()
30

31 create_plot()



B
Comparing Strategies
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C
Finding ϵ

We first want to approximate ln(2 − 1
N+1 ) = ln 2 when N is large. When N is large, 1

N+1 is small. Let
x = 1

N+1 . Hence, we need to approximate ln(2− x) for small x.

The natural logarithm function ln(1 + y) for y close to 0 can be expanded using a Taylor series:

ln(1 + y) = y − y2

2
+

y3

3
− ...

For very small y, we often use the first-order approximation:

ln(1 + y) ≈ y.

We want to approximate ln(2− x). Rewrite it in a form that uses the series expansion for ln(1 + y):

ln(2− x) = ln(2(1− x

2
)).

Using the properties of logarithms, this can be split into:

ln(2− x) = ln 2 + ln(1− x

2
).

Since x is small, 2
x is also small. We can apply the first-order Taylor expansion to ln(1− x

2 ):

ln(1− x

2
) ≈ −x

2
.

Therefore,
ln(2− x) ≈ ln 2− x

2
.

Recall that x = 1
N+1 . Substituting x back, we get:

ln(2− 1

N + 1
) ≈ ln 2− 1

2(N + 1)
.
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This needs to be greater than ln 2
1+2ϵ ln 2 :

ln 2− 1

2(N + 1)
>

ln 2

1 + 2ϵ ln 2

1− 1

2(N + 1) ln 2
>

1

1 + 2ϵ ln 2

2 ln 2(N + 1)− 1

2(N + 1) ln 2
>

1

1 + 2ϵ ln 2

1 + 2ϵ ln 2 >
2(N + 1) ln 2

2 ln 2(N + 1)− 1

2ϵ ln 2 >
2(N + 1) ln 2

2 ln 2(N + 1)− 1
− 1

2ϵ ln 2 >
2(N + 1) ln 2− 2 ln 2(N + 1) + 1

2 ln 2(N + 1)− 1

ϵ >
1

2 ln 2(N + 1)− 1
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