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Abstract: Single-photon avalanche diode (SPAD) arrays can be used for single-molecule
localization microscopy (SMLM) because of their high frame rate and lack of readout noise.
SPAD arrays have a binary frame output, which means photon arrivals should be described as a
binomial process rather than a Poissonian process. Consequentially, the theoretical minimum
uncertainty of the localizations is not accurately predicted by the Poissonian Cramér-Rao lower
bound (CRLB). Here, we derive a binomial CRLB and benchmark it using simulated and
experimental data. We show that if the expected photon count is larger than one for all pixels
within one standard deviation of a Gaussian point spread function, the binomial CRLB gives a
46% higher theoretical uncertainty than the Poissonian CRLB. For typical SMLM photon fluxes,
where no saturation occurs, the binomial CRLB predicts the same uncertainty as the Poissonian
CRLB. Therefore, the binomial CRLB can be used to predict and benchmark localization
uncertainty for SMLM with SPAD arrays for all practical emitter intensities.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Single-photon avalanche diode (SPAD) arrays are image detectors capable of detecting single
photons at a rate of 100 kfps [1]. SPAD arrays are used for single-molecule localization
microscopy (SMLM) [2–5], single-molecule tracking [6], and fluorescence lifetime imaging
microscopy (FLIM) [7–9]. SPAD arrays lack readout noise, giving them an advantage over
sCMOS cameras. Individual SPADs are also able to time-stamp photons with picosecond
precision, which makes them viable options for time-of-flight (ToF) imaging [10,11].

A key feature of a SPAD array is its output of binary frames. A number of frames is aggregated
into an image to create contrast. The binary output is because SPADs work with a reverse-biased
p-n junction that is ultra-sensitive to incident photons. A photon triggers an avalanche in the
junction, which causes a current that can be measured. After the avalanche, the SPAD has
to recharge beyond its breakdown voltage. During this recharging the SPAD is insensitive to
incident photons as shown in Fig. (1(b)). Some SPADs are capable of measuring photons during
recharging, but this requires the SPAD to store the counts in a pixel memory, which lowers the
fill factor of a SPAD array. Therefore, we focus on SPADs that measure one photon maximum
per detection cycle, giving a binary output [12].

A fundamental problem in SMLM is determining and achieving the optimal precision with
which single molecules are localized. The theoretical minimum uncertainty can be calculated
using the Cramér-Rao lower bound (CRLB). The CRLB holds for an unbiased parameter
estimation problem such as maximum likelihood estimation (MLE), which is asymptotically
unbiased [13]. The CRLB is dependent on the image formation model. In the derivation of an
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Fig. 1. Experimental method for single-molecule localization using a SPAD array. (a)
The TIRF setup used for the experimental data in this paper. A green laser (532 nm) is
directed towards an objective such that it enters the sample at a critical angle, only exciting
the nanorulers close to the coverslip. The emitted light is filtered from the excitation light
using a dichroic mirror and magnified 2.7× by a 4f system before being focused on the
512×256 SPAD array using microlenses. An sCMOS camera was used to find the focal
plane and for imaging comparison. (b) A schematic of photon arrivals on the SPAD. The
SPAD is charged beyond its breakdown voltage at 1. An incident photon at 2 then triggers an
avalanche. The SPAD is then recharged at point 3. No photons are detected between 2 and
1, causing the binary behavior of the SPAD. (c) The SwissSPAD2, consisting of 512×256
active pixels. The pixels have a pitch of 16.38µm, and a low fill factor of 10.5% that was
increased to 50% using microlenses.

image formation model for SMLM with negligible readout noise, the photon count is modelled as
a Poisson process [14]. The Poisson process accounts for the discrete nature of photon arrivals.

Using a Poisson distribution to calculate the CRLB for SMLM with a SPAD array is inaccurate
as the SPAD array is unable to register more than one photon per exposure time period. Therefore,
if saturation occurs, there is no guarantee that a Poissonian CRLB derived by [13] holds for
experiments using a SPAD array. We consider a region of interest around an emitter to be
saturated if the expected photon count is larger than one in all pixels within one standard deviation
of a point spread function. Research into performing SMLM with SPAD arrays [2,6,15] has
refrained from using a CRLB. Therefore, applied SMLM methods cannot be benchmarked to a
theoretical minimum uncertainty.

Here, we derive the CRLB for SMLM applications when using a SPAD array. The output of
the SPAD array is modelled as a binomial distribution, thereby creating a physically accurate
representation of aggregating multiple binary SPAD array images. Additionally, we incorporate
a pixel-dependent dark count rate (DCR) in the estimation algorithm and CRLB. We validate this
model using simulations and empirical data. In these experiments we show that, if saturation
occurs, the binomial CRLB gives a higher theoretical uncertainty than the Poissonian CRLB.
Without saturation, the binomial CRLB predicts the same uncertainty as the Poissonian CRLB.
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2. Methods and data

2.1. Maximum likelihood estimation for a single-photon avalanche diode array

We use the maximum likelihood principle to obtain an estimate of the molecule position. For
the derivation of the image formation model needed to calculate the likelihood, molecules are
assumed to be excited by a uniform laser light and have a Gaussian point spread function [16].
This point spread function is summed with any background noise and discretized over the finite
size of the pixels of the SPAD. This yields the photon rate µk(θ⃗) in pixel k. θ⃗ is the parameter
vector containing the emitter position, intensity, and the background intensity. µk(θ⃗) is thereafter
referred to as µk. To account for the discrete nature of light, the photon arrivals are modelled as a
Poisson process with a rate equal to the expected photon count. This does not yet take the binary
behavior of the SPAD or SPAD particular noise into account.

The dark count rate (DCR) is a noise that is particular to SPADs. The DCR is caused by
spontaneous avalanches within the SPAD and can be modelled as a Poisson process over time [17].
As some SPADs in the array are highly vulnerable to DCR (10-100 times higher than the median
DCR), the DCR is pixel-dependent (see Supplement 1) and constant over time (see Supplement
1). DCRk is calculated for each pixel k by measuring the average dark counts per frame and
accounting for the binary behavior using a logarithmic correction formula (see Supplement
1). We sum the average DCR with the incident photon rate to obtain the expected photon rate.
Equation (1) shows the probability mass function of the photon detections if the SPAD array
output would be discrete. Here, ck is the photon count in pixel k and te is the exposure time.

P(Ck = ck) =
te (µk + DCRk)

ck e−te(µk+DCRk)

ck!
(1)

The SPAD has a binary output, therefore we sum the probabilities of observing more than
zero photons in one frame to get the probability of observing one photon. This probability is
equal to one minus the probability of observing zero photons, i.e. ck = 0. This transforms the
Poisson distribution into a Bernoulli distribution. The photon arrivals in a pixel thus follow a
binomial distribution when aggregating multiple binary frames. The likelihood of an observed
image c⃗N with n pixels is computed in Eq. (2), where cN,k is the number of photons in pixel
k, upon aggregating N frames. It is assumed that there is no correlation between pixels, i.e.
no crosstalk [18]. Equation (2) can be maximized to obtain a parameter estimate. We use the
Levenberg-Marquardt algorithm to maximize the likelihood (see Supplement 1). Note that the
average DCR is incorporated into the maximum likelihood as a constant as opposed to subtracting
it from the observed photon counts prior to the maximum likelihood estimation. In doing so, we
prevent potentially negative values in cN,k, which would cause numerical issues.

L(θ⃗ |c⃗N) =

n∏︂
k=1

⎛⎜⎝
N

cN,k

⎞⎟⎠ (1 − e−te(µk+DCRk))cN,k e−te(µk+DCRk)(N−cN,k) (2)

2.2. Cramér-Rao lower bound for a single-photon avalanche diode array

The CRLB gives the lowest possible uncertainty of the position of a molecule, given an image
formation model [13]. There are two main applications for the CRLB. First, it provides a bound
on the achievable resolution of an experiment beforehand, which can be used to design the
experiment. Second, it can be used to benchmark a particular localization approach. The CRLB
holds for unbiased estimators and is defined as the entries on the diagonal, i.e. i = j, of the
inverse of the Fisher information matrix [19]. Using the likelihood function in Eq. (2), the Fisher
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information matrix for the binomial CRLB is given in Eq. (3) (see Supplement 1).

Ii,j

(︂
θ⃗
)︂
=Nt2e

n∑︂
k=1

(︃
∂µk

∂θi

∂µk

∂θj

e−te(µk+DCRk)

1 − e−te(µk+DCRk)

)︃
CRLB

(︂
θ⃗
)︂
=I(θ⃗)−1

(3)

2.3. Simulation method

We performed simulations of emitter imaging at intensities where no saturation occurs (all pixels
have less than 1 expected photon per pixel) up to the point where heavy saturation occurs (4
expected photons for the center pixels). This gives a broad scope of the behavior of the achieved
and theoretical uncertainty when acquiring SMLM images using a SPAD array. Blinking behavior
of the emitters was neglected to have a constant intensity over the localizations. The background
intensity was kept constant for each frame in one simulation and at 3% of the emitter intensity in
another simulation.

The simulated frames are obtained using a Gaussian distribution for the point spread function
of a single emitter. The point spread function is given a standard deviation of 102 nm, which
is equal to the point spread function of the emitters in the experimental setup. The intensity is
varied over a range of photon counts, from 90 to 22,000 photons per emitter per image. DCR is
simulated using experimental SwissSPAD2 data acquired in a dark environment. Each frame is
made binary by first applying a Poissonian distribution on the calculated intensity for a pixel and
then setting all pixels with a value above one to one. Subsequently, N frames are aggregated to
get an image with a total exposure time of N × te.

Maximum likelihood estimation described in Section 2.1 estimates the optimal position and
intensity of the emitter, as well as the background intensity. Each intensity simulation is repeated
500 times. A Gaussian distribution is fitted on the x-coordinate and y-coordinate of the estimated
positions to obtain the standard deviation σx and σy, which is the uncertainty of the emitter
position.

2.4. Empirical method

An experimental setup was built to validate the proposed CRLB model. The used SPAD array is
the SwissSPAD2, shown in Fig. (1(c)). The SwissSPAD2 has an active array of 512×256 pixels
with a pitch of 16.38 µm. It has a photon detection probability of 45% at 562 nm and a fill factor
of 10.5%. The fill factor is increased to approximately 50% for this experiment through the use
of microlenses [20]. For this experiment the SwissSPAD2 is operated at an excess bias of 6.5V.
The SPAD array is connected to a field-programmable gate array (Opal Kelly XEM7360), which
is programmed with the imaging mode and handles the live data transfer via USB 3.0.

The SMLM setup used is a total internal reflection fluorescence (TIRF) microscope. A diagram
of the setup is shown in Fig. (1(a)). A 200 mW, 532 nm continuous-wave laser (Optoelelectronics
Tech. PSU-H-LED) is collimated and directed to a 60x objective (Olympus Apo N 60x/1.49Oil)
where it arrives off-center such that the light is deflected along the surface of the sample. The beam
can be moved further from or closer to the center using a mirror and a lens on a translation stage.
This causes only a fraction of the fluorophores, i.e. those close to the coverslip, to emit photons,
reducing the background noise. A dichroic mirror (Semrock, Di01-R405/488/532/635-25x36)
filters the emitted light from the sample prior to the tube lens (ThorLabs, AC508-180-AL-M). A
flip mirror (ThorLabs, TRF90/M) switches between an sCMOS camera (ANDOR Zyla 4.2) for
comparison and the SwissSPAD2. As the sCMOS camera has a pixel pitch of 6.5µm, a 4f system
(ThorLabs, AC508-075-AL-M and AC508-200-AL-M) with magnification 2.7x is added to the
SPAD trajectory. Consequentially, the SPAD array has a point spread function with a standard
deviation of 102 nm, equal to that imaged by the sCMOS camera. A quadband filter (Semrock,
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390/482/532/640 HC) on the imagers filters the remaining excitation light. DNA-Paint nanorulers
(Gattaquant PAINT 80RG) are used as the sample. The nanorulers consist of three binding sites
seperated linearly by 80 nm between each site. Fluorophores (ATTO542 and ATTO655) connect
to the binding sites for a varying amount of time until releasing again. This results in blinking
and thus sparse emitters which are capable of being localized using SMLM algorithms. The 532
nm laser source excites only the ATTO542 fluorophores, which emit light of wavelength 562 nm.
At this wavelenght the SwissSPAD2 is most sensitive for incident photons (see Supplement 1).

Experimental data is gathered at an exposure time of 15 µs. At this rate, the maximum field of
view is 128x256 pixels. These frames are then summed to create frames with exposure times
between 15 µs and 1.9 ms. Any pixel with a value above one is set to one. The frames are
then aggregated to create a total exposure time per image of 31 ms using a varying number
of aggregated frames N. N ranges from 16 to 2048 frames in 8 steps. At this total exposure
time the expected emitter intensity is approximately 650 photons per image. The SwissSPAD2
used for this paper experiences a higher DCR in one corner (see Supplement 1). Therefore, the
opposite quarter of the SPAD array was used for the nanoruler localizations (see Supplement 1).
Regions of interest (ROIs) are then identified in each image by placing a threshold on a Gaussian
(σ = σPSF) filtered image [21]. Estimates are obtained by maximizing the likelihood given in
Eq. (2). Many estimates do not represent an emitter, but dust on the sample or a cluster of hot
pixels. To filter these estimates, the χ2 value was calculated for an estimate and filtered above a
threshold (see Supplement 1). Additionally, only the localizations belonging to a nanoruler were
used to filter out any fluorophores floating into the focal plane without binding (see Supplement
1). Any drift in the estimates is removed using the redundant cross-correlation tool provided by
Picasso [22]. Finally, the estimates are clustered when they are within three times the expected
uncertainty from one another and not more than five frames apart [14]. Each cluster is fit with a
Gaussian distribution. The mean and standard deviation of the fitted distribution yield the final
emitter position and uncertainty, respectively.

3. Results

3.1. Simulated results

An emitter was simulated at 25 intensities, equidistantly spaced within
[︁
102, 104]︁ photons per

image. This was repeated for 255, 510 and 1275 aggregated frames per image. Figure (2) shows
the achieved uncertainty for the localization of this emitter as well as the theorized minimum
uncertainty calculated using the binomial and Poissonian CRLB. The intensity range was selected
such that a distinction can be made between the uncertainty theorized by both CRLB models.
Figure (2(a)) shows a constant background rate of 2.5 photons per pixel in each frame. At this rate,
almost no saturation occurs, which causes the binomial and Poissonian CRLB to be overlapping
for almost all intensities. The CRLB models start deviating notably at emitter intensities above
4000 photons per image, as is shown in the zoom in Fig. (2(b)). In this plot it becomes clear that
the binomial maximum likelihood estimator obtains the theoretical minimum uncertainty given
the data.

An additional simulation was performed while keeping the background intensity at 3% of the
emitter intensity. The Poissonian CRLB is now identical for all aggregation numbers. It can be
observed that the background contributes to the saturation and the difference between the CRLB
models is apparent at more than 2000 emitter photons per image. The vertical lines indicate the
point where saturation occurs for the different aggregation numbers. The theoretical minimum
uncertainty of the binomial CRLB is 46% higher than the theoretical minimum uncertainty of the
Poissonian model when saturation occurs. There is a fivefold difference between the binomial
CRLB and Poissonian CRLB, for the maximum simulated intensity of 20,000 emitter photons
per image. This occurs when there is heavy saturation in the simulated image due to more than
five expected photons in the center pixels, as shown in Fig. (2(d)). Aggregating more frames
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Fig. 2. Results of simulations at different intensities and aggregation. (a) Theorized and
achieved uncertaintyσx for simulated SPAD array images for different numbers of aggregated
frames (N) and constant background of 2.5 photons per pixel. The binomial and Poissonian
CRLB models are plotted, where the total exposure time is constant for each intensity .
The binomial and Poissonian CRLB are identical for all lower intensities. (b) Zoom of the
highest intensities in (a). At this point the binomial and Poissonian CRLB start deviating
while the estimated uncertainties follow the binomial CRLB. (c) Same setting as (a), but
with background noise equal to 3% of the emitter intensity, which causes the Poissonian
CRLB to be identical for all aggregations. Points A and B show the effect of aggregating
255 frames versus 1275 frames. The vertical lines show the intensity where the expected
photon count is larger than one for all pixels within one standard deviation of the Gaussian
point spread function. No saturation occurs for 1275 aggregated frames. (d-e) Examples of
one of the 500 simulated SPAD images of 255 and 1275 aggregated binary frames. The
scale bar gives the expected number of photons per frame. In A, the exposure time per frame
is five times higher than in B, resulting in more saturation. (f-g) 2D histograms of the 500
estimated positions based on simulated SPAD images for point A and B. The histograms
resemble a 2D Gaussian distribution. (h-i) 1D histogram of the estimated positions. The
standard deviation σx of the fitted Gaussian distribution is used as the uncertainty in plots
(a-c).
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lowers this difference as less saturation occurs. This is shown in Fig. (2(e)). Figures (2(f)) to
(2(i)) are 2-dimensional and 1-dimensional histograms of the estimated positions for points A
and B in Fig. (2(c)). These histograms show the effect of saturation on the estimated positions.
The standard deviation of the estimated positions is five times higher for the frames in point A
than in point B.

3.2. Empirical results

The empirical experiment was conducted at a constant total exposure time per image of 31 ms,
varying the ratio between the number of frame aggregations and exposure time per frame. For this

(a) (b) (c)

(e)

(f)

2 μm

(d)

80 nm 80 nm

Fig. 3. Results of empirical experiment with the SwissSPAD2. (a) 10µm field of view of
the SwissSPAD2 with 80 nm spaced nanorulers (see Supplement 1 for the complete field
of view). For this field of view an exposure time of 15 µs was used and 2048 frames were
aggregated. (b) Zoom in of (a) on one 80 nm spaced nanoruler with approximately 370
localizations. (c) The same nanoruler as in (b), but with an exposure time of 1.9 ms and
16 aggregated frames. (d) Localization histogram of the nanoruler in (b). The standard
deviation of the Gaussian fits is the uncertainty σx. (e) Localization histogram of the
nanoruler in (c). The standard deviation is higher than that in (d) and the localizations of the
middle binding spot are biased towards the nearby left binding spot. (f) The achieved mean
uncertainty for different frame rates and different aggregations, but a constant total exposure
time of 31 ms. The theorized minimum uncertainty was plotted using the binomial and
Poissonian model. The shaded area shows the distribution of the localization uncertainty and
the error bars represent the first and fourth quarter. The CRLBs overlap at high frame rates
and start differing below 128 aggregated frames. The SwissSPAD2 achieves the Cramér-Rao
lower bound for all frame rates.
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exposure time the average emitter intensity is 650 photons per image, which gives a theoretical
minimum uncertainty of 6.5 nm for 2048 aggregated frames. Figure (3(f)) gives the achieved
uncertainty for the localized emitters. The shaded area gives the density of the localization
uncertainty with the vertical bars depicting the interquartile range. The spread in the achieved
uncertainty is attributed to the different blinking durations of the emitters and thus different true
intensities. The Poissonian and binomial CRLB are plotted to give the theoretical uncertainty.
The two CRLBs start differing from one another below 4000 frames per second. A twofold
difference in uncertainty was measured for 16 aggregated frames at a frame rate of 660 frames
per second.

The sCMOS camera was used to benchmark the experimental results (see Supplement 1). The
same experimental setup was used as described in Section 2.4. The used exposure time was
set at 31 ms, equal to the total exposure time of the aggregated frames of the SPAD array. The
sCMOS camera has a photon detection efficiency of 80%, which is 3.5 times higher than that of
the SwissSPAD2. The SwissSPAD2 measured an average of 653 photons per image for each
emitter. The sCMOS camera measured 1845 photons per image for each emitter (see Supplement
1). Consequentially, the average achieved uncertainty of the sCMOS camera was 3.7 nm.

4. Conclusions

SPAD arrays have a high frame rate but output binary frames. This fundamentally changes the
image formation model used for SMLM applications, which assumes photon arrivals to follow a
Poissonian distribution. The image formation model is used to calculate the theoretical minimum
uncertainty that can be achieved in SMLM by calculating the CRLB [13]. Using the theoretical
minimum uncertainty, it is possible to predict and benchmark the achieved uncertainty for a
particular localization approach. Recent research into using SPAD arrays for SMLM [2,6,15] has
not yet derived the theoretical minimum uncertainty when using a SPAD array. In this paper, we
propose a binomial CRLB specifically for SMLM with a SPAD array.

We have shown that if saturation occurs, the theorized uncertainty of the binomial CRLB
is 46% higher than the Poissonian CRLB. Saturation occurs if all pixels within one standard
deviation of the point spread function have more than one expected photon arrival during one
frame period. In simulations, individual pixels were saturated by modelling pixels up to four
photon arrivals per frame period. For this case there was a factor five difference between the
theorized uncertainty of the Poissonian CRLB and the proposed binomial CRLB, which was
confirmed by the achieved uncertainty in the simulation.

Further investigation into this difference using empirical data demonstrated that saturation is
unlikely to occur in SMLM. The difference between the Poissonian and binomial CRLB was
limited to twofold for low frame rates and negligible for high frame rates, where no saturation
occurred. Therefore, the binomial CRLB can be used to predict and benchmark localization
uncertainty for SMLM with SPAD arrays for all practical intensities, but is especially relevant if
saturation is present.

The empirical data in this research was limited by the photon detection efficiency of the
SwissSPAD2 and nanoruler intensity. As a consequence, it was impossible to reproduce the
fivefold difference between the binomial and Poissonian theoretical uncertainty in the empirical
experiment. Thus the binomial CRLB will become more important as the photon detection
probability of SPAD devices increases in the future.

A further study could assess the theoretical uncertainty of SPAD arrays in super-resolution
methods other than SMLM. The high frame rate of the SPAD array can prove to be a valuable
contribution to single-molecule tracking for instance. This method will benefit from the binomial
CRLB when determining what exposure time to use in the trade-off between localization
uncertainty and displacement due to Brownian motion. We also see applications for the findings
of this study in time-of-flight imaging. This type of imaging is susceptible to pixel saturation
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because of the unpredictable reflectivity of objects. It will therefore benefit from the binomial
CRLB proposed in this paper by allowing researchers to benchmark their uncertainty to the
theoretical minimum uncertainty.
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