
Creating New Train
Timetables in Case of
Disruptions
Optimising a Branch & Bound Algorithm

MSc. Thesis
Yoshi van den Akker

D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy



Creating New Train
Timetables in Case of

Disruptions
Optimising a Branch & Bound Algorithm

by

Yoshi van den Akker

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Thursday May 16, 2024 at 10:45.

Student number: 4594193
Project duration: September 2023 – May 2024
Thesis committee: Dr. N. Yorke-Smith, TU Delft, supervisor

Dr. Z. Erkin, TU Delft
A. van Schie, MSc, CGI

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Preface

Back in September last year, I started doing research for this thesis without a clear idea of what to
expect for the next nine months. Optimising the algorithm of the VGB Solver, that I did not know at all
at that point, would prove to be a challenging project. The experience I had with working on software
related to rail infrastructure turned out to be very useful, but figuring out the details of this extensive
codebase was a tough task nonetheless. Besides the valuable research experience this project brought
me, I also learnt a lot about working on a large-scale software project. I got a taste of the working life
through the internship at CGI, which prepared me for a good start of my career. Working on automating
part of the incident handling process aligned perfectly with my goal for the future: building software that
helps solve problems relevant to society.

Writing this thesis would not have been possible without the help of many people, whom I would like to
thank here.

First, I would like to thank my TUDelft supervisor, Neil Yorke-Smith, for the many discussions we had on
how to turn the project into a proper academic thesis. Then my gratitude goes out to the development
team at CGI for helping me with understanding the details of the VGB Solver. From this team, special
thanks go to Sven Kardol for his supervision, and Arjen van Schie for his critical feedback on the
experiments I came up with. My thank also goes out to Wilco Tielman from ProRail, for helping me with
obtaining data and for always being open to a discussion about new ideas. I am also grateful for the
support of all other colleagues at CGI, for the occasional content-related conversations, but mostly for
the casual chats at the coffee machines and the fun activities after work hours.

Last but definitely not least, I would like to thank my friends and family for their never-ending support.
They put up with my complaints about how the experiments did not turn out the way I expected, or how
code (that I wrote myself) did not do what it was supposed to do. Without their “gezelligheid” and ability
to take my mind off of my thesis every now and again, I would not have been able to bring this project
to a good end.

Yoshi van den Akker
Delft, May 2024

i



Abstract

The Dutch railway system is one of themost densely used systems worldwide and the busiest in Europe.
Given the tight schedules, incidents can quickly cascade through the entire country if not handled
properly. Alternative timetables are created to help train traffic controllers swiftly resolve such incidents.
These schedules are currently created manually, but the team cannot keep up with demand. This is
why CGI is developing VGB Solver, an application to automatically generate such timetables. The
solver uses a branch and bound algorithm in which nodes are processed in best-first order, based on a
heuristic value. For this thesis, different performance optimisations for this algorithm were implemented
and analysed.

Various alternative formulations of the heuristic value, used to determine the likeliness of a node leading
to a good solution, showed promising results. One of these formulas resulted in solutions for 96%more
scenarios than before, and improved the quality of solutions for other scenarios.

Using machine learning, a decision tree was created to predict whether applying another new formula
for the heuristic value gives better results than the old formula. This classifier achieved an accuracy
of 73.5% on the test data. Having the solver choose between the old and new formula based on
that classification resulted in some scenarios with worse scores, but twice as many improved, and the
average improvement was higher than the average deterioration.

Recommendations are made to conduct further experiments related to the heuristic value calculation.
Furthermore, it is suggested to separate the scores for evaluating solution quality from the heuristic
value formula, to facilitate more fine-grained changes to the calculation of the heuristic value.
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1
Introduction

The Dutch railway system is one of the most densely used systems worldwide and the busiest in Europe
[1]. The infrastructure is managed by ProRail, which communicates the available capacity to the railway
operators. ProRail’s traffic controllers deal with over 4.500 incidents every year [2]. Such incidents can
range from a tree falling on the track to a train not being able to move anymore, and from a switch
being stuck to an accident involving road traffic at a level crossing. Sometimes train traffic must be
stopped completely on the affected section of track, but sometimes parallel tracks may still be usable.
Rail traffic controllers have to ensure the area around the incident remains safe, while aiming for train
operators to operate the train services to the best possible level.

For more than 3500 pre-determined scenarios, alternative timetables (also known as VSMs, from the
Dutch term “versperringsmaatregel”, which roughly translates to “blockage measure”) are available to
help controllers reroute trains affected by an incident. Each of these VSMs describes how to effectively
reschedule and/or reroute trains in case a specific part of the infrastructure becomes unusable. In
80% of incidents that involve obstructions on the tracks, one of these VSMs is applicable. Currently,
the traffic controllers depend on the scenarios to handle the incident, which shortens the time until a
stable alternative schedule is in effect. Railway companies rely on VSMs as well: firstly, to update
their personnel and vehicle schedules during incidents, and secondly, to provide their passengers with
alternative travel information quickly.

Currently, all VSMs are created by hand. The people who create these doing this are called “scenario
makers”. Some former rail traffic controllers are part of this group, as they have the experience to judge
if the plans are feasible in practice. The demand for new VSMs has grown from 1100 in 2018 to 4000 in
2023. Currently, scenario makers cannot keep up with demand: 1360 of the 4000 requested VSMs for
2023 could not be delivered in time, and for 2024 it is projected that 800 VSMs will not be delivered at
all. Given the tense Dutch labour market and the required domain specific knowledge for this position,
finding new scenario makers is a challenge.

Automating the process of creating these scenarios is a logical next step. A team of engineers from
CGI is working on the project titled “VGB Solver”, in which VGB stands for “vooraf gedefinieerde bi-
jsturing” (predetermined adjustment). Creating an algorithm to solve the problem exactly is possible,
but probably not the best solution: some parts of the infrastructure allow for an almost infinite number
of combinations of adjustments for all trains. Calculating all possible solutions may require weeks of
computation time. For that reason, the team is working on a heuristic-based solution.

1.1. Scope
For the VGB Solver project, and therefore for this thesis, several assumptions and decisions are made
to define the scope. Firstly, the solver is designed to work in situations for which all train movements
are known beforehand, so a static environment. This implies scenarios will always be built on the
assumption that all scheduled trains are on time and will not consider other disruptions than the one
that scenario is made for. Scenarios should therefore not be seen as an exact solution, but rather as
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1.2. Research question 2

a guideline. If there are additional circumstances to be taken into account, the train traffic controller
should make some adaptations to the adjustments suggested in the scenario.

The timetable for trains in the Netherlands is scheduled with an hourly pattern for the convenience of
passengers. As the trains affected by an incident will be the same every hour, a scenario only has to
describe adjustments to trains for one hour. These adjustments can be reused for the next hour(s) if
the incident lasts longer.

Different timetables exist, for example those for peak hours and off-peak hours. Scenarios are made
for both of these timetables. The third timetable, used during the night, is not in the scope of the project:
as there are far fewer trains on the tracks during the night, adjusting their schedule during an incident
can easily be done on the fly by the traffic controller.

A consequence of using the hourly pattern is that several types of trains are not taken into account
for rescheduling. Cargo trains do not have a regular hourly pattern, so they cannot be added to the
scenarios. The same holds for international trains: even though they have a regular service schedule,
this is not based on an hourly pattern. If these trains are affected by the incident, the traffic controller
must resolve this manually.

1.2. Research question
The problem of rescheduling trains in the event of incidents is so complex that the exact solution can-
not be found efficiently. Therefore, the research question of this thesis is as follows: how can the
solution quality of the VGB Solver be improved? This question will be answered using the following
sub-questions:

1. How can the performance of the VGB Solver be improved by leveraging the existing optimisations
better?

2. How can data about specific problem instances be used in the VGB Solver?

1.3. Thesis outline
The remainder of this thesis is structured as follows. Chapter 2 reviews existing research related to
the problem of (re)scheduling vehicles and solving complex problems. Next, chapter 3 contains back-
ground information about how the existing algorithm works, and analyses the optimisation techniques
that are implemented. Chapter 4 discusses experiments with changes to the algorithm and their effects.
The conclusions of the thesis can be found in chapter 5.



2
Literature Review

This chapter presents a review of literature relevant to the research question from the previous chapter.
First, an overview is given of research in the domain of public transport scheduling. After that, different
methods to model (NP-)hard problems are reviewed.

2.1. Public transport (re)scheduling
Li, Mirchandani, and Borenstein [3] introduce the vehicle rescheduling problem (VRSP) in their work.
They aim to minimise passenger delays caused by a bus breaking down by either rerouting buses
nearby to the incident, or assigning a new bus from the depot as replacement. The vital difference from
the problem for this thesis lies in the fact that the broken bus does not impact other vehicles (except for
the replacement bus): any other bus can simply drive around the broken one. With incidents on railway
tracks, the main problem is to find new routes without using the section(s) blocked by the incident.
Furthermore, an incident on the tracks may not even involve a train that needs to be replaced, a fallen
tree branch for example can also cause such disruptions. Despite the shared domain of public transport
and the common problem of rescheduling, the work tackles a fundamentally different problem. To find
more relevant literature, the search narrows to rail infrastructure specifically, as it is to be expected that
literature in other subdomains of public transport will not tackle a similar problem.

Acuna-Agost et al. [4] provide amathematical model to compute the optimal way of dealing with delayed
trains, by potentially rerouting other trains to other tracks and/or platforms. Where this work differs from
the requirements for the problem of this thesis, is that this model cannot deal with blocked tracks, only
with delayed trains. Similarly, Caimi et al. [5] deal with the removal of conflicts from a train schedule,
which is again meant for the regular timetable. These models are not designed to deal with track
closures, which is the core of the research questions in this thesis.

Liu, Zhu, and Kang [6] tackle the problem of reallocating tracks within a station given one or multiple
track closures. They do not use an exact mathematical programming solution, but instead opt for a
genetic algorithm. For this solution to work, they need to make several assumptions, one of which is
that the arrival and departure times of trains are fixed according to the timetable. With this limitation,
some scenarios may no longer have feasible solutions, whereas they could work if trains could be
delayed. Delaying trains is often used in practice and as it cannot be added to the model presented in
this paper easily, therefore a different model should be used.

To model the railway infrastructure for problem-solving, different levels of detail can be used. Generally,
they are classified into two categories: macroscopic or microscopic. “Macroscopic models consider
stations as nodes and tracks as arcs between them, with given capacities, while microscopic models
incorporate details such as block sections and corresponding signalling constraints” [7].

The work of Aken, Bešinović, and Goverde [7] uses a model of a macroscopic level, which means the
details of the infrastructure may not always coincide with the solution found by their algorithm. Even
though they add more real life constraints as an extension to the aforementioned model, “a microscopic

3



2.2. Modelling/solving techniques 4

counterpart, which can find feasible routes in station areas, has to be developed” [8]. Furthermore,
partial blockages on open-track are not supported by this model, even though they are one of the
major parts of the problem tackled in this thesis.

Another macroscopic model is presented by Louwerse and Huisman [9]. Their solution works for both
complete and partial blockages, but it makes some simplifications. For example, for partial blockages
they only consider the options of cancelling a train series altogether, or having it continue as planned
(potentially with some delay). In real life, however, it would also be possible to have a train complete
part of the designated route and turn around at a station before the incident (this is known as short
turning).

Ghaemi, Cats, and Goverde [10] did use a microscopic model, but this only supports disruptions in
the form of complete blockages. This significantly simplifies the problem, as rerouting to a parallel
track is no longer a viable option. For that reason, all trains have to be short-turned at some station or
cancelled. The only questions that remain are which station is the optimal location to short-turn at, and
which trains to cancel. That is a much simpler problem, and it is only part of the problem this thesis is
about.

The problem described and solved by Looij [11] is closest to the problem for this thesis. The author
created a microscopic routing model for station areas to assist a macroscopic model for scheduling
trains. Despite the microscopic level used in this work, it does not solve the same problem due to
some restrictions. The main issue is that the model is tailored to station areas and “should be run
independently for each complex station area” [11]. Incidents may occur outside the station areas, and
the model should be able to find routes for such problems. Furthermore, this model requires a list
of all possible routes to and from each platform and each entry/exit track of the station area as input.
Creating such a list becomes infeasible if the areas in scope are no longer limited to only stations, as
it would require an exhaustive search for all alternative routes for any area in the country.

2.2. Modelling/solving techniques
Most of the models presented in the literature in the previous section use some form of mathematical
programming, such as mixed integer programming. Such models are based on a fixed number of
variables, a list of constraints for those, and an objective function. As the problem of rescheduling trains
involves many potential conflicts, the list of constraints can become extremely large. An example of
such potential conflicts: for every routing point, e.g. a switch or a signal, two trains must be a certain
period of time apart. This time may depend on the type of train, the type of routing point, and even more
details. To capture the entire problem, the list of constraints would have a severe impact on the runtime
of the model. Furthermore, during the development of the model, the exact conditions can change, also
known as a “moving target” [12]. Modifying this model to accommodate such requests could present
challenges, particularly when there are specific scenarios that require attention. Capturing these in
mathematical constraints is not only a tough task, but also leads to an even more complex model. A
significant amount of research has gone into using mathematical programming for solving the problem
at a microscopic level, but little to no progress has been made after the works presented in the previous
section.

Kuroiwa and Beck [13] describe a generic method of solving problems using dynamic programming.
To solve a problem using dynamic programming, “the scoring system must allow the optimal solution
to be broken up into independent parts” [14]. The work of Van Heuven Van Staereling [15] tries to
solve the periodic event scheduling problem (PESP) using dynamic programming by decomposing the
problem into trees. Unfortunately, the performance of that implementation was worse than other known
solutions, and it could not solve all data sets. The problem posed for this thesis is even more complex:
“PESP model is a pure scheduling model and not a routing model” [16]. Rerouting trains may directly
impact other sub-problems, which means these cannot be solved independently. For that reason and
based on the results in [15], dynamic programming does not seem to provide a feasible method of
solving the problem.

The work of Eele and Richards [17] introduces a branch-and-bound algorithm for a collision avoidance
problem. A major advantage of the branch-and-bound approach is the insight it gives into the solving
process: by reviewing the decisions taken in finding the solution (and the rest of the decision tree), the
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behaviour of the algorithm can be analysed. However, computing the entire search tree still requires
traversing the whole solution space, which may prove infeasible.

The previously mentioned methods would provide an exact solution, but given the NP-hardness of the
problem, they are unable to accomplish this within a reasonable timeframe. A different, more common
approach “is to relax the requirement of finding an optimal solution, and instead settle for a solution
that is “good enough”” [18]. Such probabilistic algorithms can, for example, use generalisations or
shortcuts to find satisfactory but (potentially) suboptimal solutions. These algorithms are known as
(meta)heuristic algorithms. As a subtype of probabilistic algorithms, approximation algorithms define
a performance guarantee, also known as the approximation ratio. This means that they will provide a
solution that is not worse than x times the optimal value. Probabilistic search can also be combined
with the aforementioned strategies. For example, heuristics can be introduced into a branch-and-bound
solution to reduce the search space [17]. The choices for such heuristics are tailored to that specific
problem, for example choosing the first obstacle encountered on the path or the one path that is least
diverted. Other works on optimisations using branch and bound ([19], [20], [21]) also use specific
heuristics for their problems. The last of the mentioned works, that of Tamannaei and Irandoost [21],
also applies a more generally usable metaheuristic method: beam search. This limits the search tree
of their implemented branch and bound algorithm using a heuristic selection method to obtain a result
significantly faster.

2.3. Summary
A substantial amount of research has been done regarding solving (re)scheduling problems for trains.
Most of the works use some form of mathematical programming to solve the problem, but do not use
a model with enough detail to be used to replace hand-made scenarios. The work of Looij [11] stands
out for the level of detail used and the similarity in the problems. However, the model itself is not usable
directly due to a cut-off in the used infrastructure.

Furthermore, no literature was found that takes into account the workload of railway traffic controllers
for rescheduling trains, whereas they are one of the stakeholders in the problem of this thesis. This
perspective, along with the level of detail of the infrastructure this problem has to deal with, makes the
project unique.

Applying heuristics to (otherwise) exact solution methods seems promising, but no research was found
in which this is applied to (railway) scheduling problems. As such, this strategy will be one of the core
points tackled in this thesis.



3
Background information on VGB

Solver

This chapter describes the ideas and implementation used in the project, to provide the background
information required to understand the experiments in the next chapter. The information is divided as
follows. First, different algorithms are explained to solve the problem of creating alternative timetables.
The following section describes the structure of the search tree used internally by the solver. Then, it
is explained how the results from the algorithm are analysed. Lastly, several optimisation techniques
that are applied in the solver algorithm are analysed.

3.1. Algorithmic options
The main goal of the VGB Solver project is to automate the creation of alternative timetables, as de-
scribed in chapter 1. To solve this complex problem, various algorithmic approaches could be used.

Some form of artificial intelligence, for example reinforcement learning, could be applied. For super-
vised learning, the scenario makers could provide a way to give feedback on the output of the algorithm.
However, a major disadvantage is that such techniques do not always lead to explainable results and
may be hard to tweak in case of undesirable outcomes. Furthermore, a minor change in the scoring
system could require retraining the model entirely. In the survey by Liebchen and Schülldorf [12] on
optimisation projects for railway companies, 57% of optimisation experts reported experiencing a “mov-
ing target”, a goal that is modified during the project. As such, being able to adapt internal details is
an important requirement. Another key aspect pointed out in that same survey is the importance of
complete input data. This aspect could also be a problem, as scenario makers often judge solutions
based on their experience, and therefore no exact set of rules is known at the start of the project. In
case specific adaptations have to be made, an explicit algorithm is likely to be a better option than a
machine learning model.

Most relevant research works (see chapter 2) use a mathematical optimisation technique, for example
(integer) linear programming. Besides how these models lack the precision to make specific adjust-
ments (or require many constraints in order to do so) and the explainability criterion explained in the
previous section, there is another reason to deviate from this approach. The existing literature has
focused on this technique for a long time and has not made significant progress on microscopic scale
recently, which means that to this date, no usable model has been created with the level of detail re-
quired for railway operations. Louwerse and Huisman [9] aimed to solve the problem in real-time and
their work ends with the same conclusion: “for more complex cases or when we extend the model the
computations times can increase considerably” [9]. In their conclusion, they recommend looking at
different solution methods.

The VGB Solver is implemented with a branch and bound algorithm. Using the rules for traversing the
search tree, the solving process is explainable and can be made comparable to that of human scenario
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3.2. Search tree 7

makers. This way adjustments to the decision-making process can be made more easily than with
machine learning or purely mathematical models.

3.2. Search tree
Branch and bound algorithms operate on a state space tree. Each node in the tree contains a part of
the solution. The full solution can be found by backtracking to the root of the tree.

In the VGB Solver, each node stores the conflicts yet to be solved. The most important conflict is se-
lected (see below for a further explanation), and all possible solutions to it are computed. The resulting
adjustments form new branches that lead to children of the current node. This process repeats: pro-
cessing a node results in adding children to it, each of which solves the most important conflict in the
parent node in a different way. In this way, each layer of nodes in the tree solves one conflict, but in
doing so, more new conflicts may be created.

3.2.1. Conflict order
To determine which conflict is the most important, a fixed order is used. This order is based on the
difficulty of each type of conflict to solve, with the easiest problems being tackled first. The conflict of a
route through the obstructed area has the lowest priority. This system makes the algorithm solve one
such problem at a time: all new conflicts that arise after solving the obstruction conflict have a higher
priority than the other obstruction(s). In doing so, the depth of the search tree is limited: if the first
obstruction conflict cannot be solved, it is of no use to look at the other ones.

No tiebreaker is added to the sorting process, which means conflicts retain their original respective
order in case their priorities are equal. The original order depends on the order of the train patterns to
which they relate. One of the business requirements for the VGB solver is to treat trains from different
operators equally. This is implemented by sorting trains by their train number, as those numbers are
not based on the operating company. Some experiments were performed with changing this order to
separate trains based on their type. Prioritising conflicts for intercity trains over those for local trains or
vice versa showed some minor improvement, but the experiments described in chapter 4 resulted in
a much better performance increase. Furthermore, after the improvements described in that chapter
were implemented, changing the conflict order no longer had any effect on the performance.

3.3. Evaluating results
A solution to the problem is reached once a node is found that has no more conflicts. Applying all
adjustments used to reach that node in the tree leads to a stable alternative schedule. However, it
is important to check if that solution is actually good. Simply cancelling all affected trains is always a
solution, but rarely the desired outcome.

To determine the quality of a set of adjustments, three perspectives are taken into account:

• Inconvenience for passengers,
• Workload for train traffic controllers,
• Robustness of the alternative schedule.

Adjustments and results thereof are scored according to the impact they have on these topics. The
higher the impact, the higher the number of penalty points. Different solutions can be compared with
each other using this scoring system. However, one scenario can bemore difficult than another, causing
the best solutions for each to still have wildly different scores. As such, only scores of solutions for the
same scenario should be compared.

3.3.1. Focus set
Different scenarios can have very different characteristics. For example, some scenario could be a
partial blockage on a track with only three trains per hour, while another could entail a full blockage of
all tracks leading to a very busy station. Therefore, changes to the algorithm can improve the score
for some scenarios, while having a detrimental effect on others. To evaluate the result of a change
properly, its impact on different scenarios should be taken into account. However, it is not manageable
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nor desirable to run the solver on all available cases. Therefore, a set of around 30 scenarios is used
for most testing purposes. The scenarios in this so-called “focus set” are representative in terms of
geographic location, types of blockages and number of affected trains.

The solver is developed in stages, and each stage has an associated milestone. Each milestone
describes which types of conflicts should be supported. As such, scenarios get increasingly more
complex with every milestone. The focus set contains scenarios for each milestone that has been
worked on or passed earlier, to provide a representative set to test with.

For more complicated scenarios, the solver may need more than 24 hours to process all nodes in the
search tree. Since this would lead to a slow feedback loop, the run time for tests is typically limited to
30 minutes. To evaluate whether this time limit has a significant impact on the quality of the solutions,
a run with a time limit of 24 hours is performed once a week.

3.3.2. Interactive solver
The CGI team developed an interactive version of the solver, where the user can manually enter the
adjustment to take at each node. Using the interactive version, paths can be taken that are not consid-
ered by the automatic solver yet, due to time constraints or viability of the path according to the heuristic
value. With that process, the adjustments given by the scenario makers can be replayed to find the
score of that solution. Using that score as a baseline gives a good indication of whether the solution
found by the solver is good enough.

3.4. Optimisations
Using a search tree to evaluate all options may still lead to unrealistic computation times, as the number
of different options can be immensely large. This section describes the most important optimisations
that are already implemented in the solver, so even somewhat more complex scenarios can be dealt
with.

3.4.1. Pruning
As is typical for a branch and bound algorithm, some branches of the search tree are pruned. Once
the first conflict-free node is found, its score can be used as a threshold. Any other node that already
scores worse than this threshold can be eliminated: to solve its remaining conflicts, more adjustments
have to be made and this will make the score even worse.

The main problem with this optimisation is that it does not work well for incomplete subtrees. A node
that still has conflicts is likely to have fewer adjustments than a node without conflicts, which means that
the score of the former node is lower. Nodes are only cut when their actual score is above the threshold.
Ideally, it would be possible to estimate how many points it would cost to solve the remaining conflicts.
That way, branches could be eliminated earlier in the process. However, finding a formula for a good
estimate of the score of further adjustments has proven to be a great challenge for the team. The
difficult part is that the same type of conflict may have to be solved in different ways in different cases,
depending on the affected infrastructure and other trains. As such, no estimate is used currently. Given
that the team already tried using estimations and was unsuccessful, this optimisation is not looked into
in the remainder of this thesis.

3.4.2. Heuristic value
Most of the time, multiple nodes could be chosen as the next one to process. Various strategies exist
to make this choice. Well-known examples are breadth first (first in, first out), depth first (last in, first
out), and lowest cost first [22]. With the first two options, trees will always be created in the same order
for different problems. However, since “branch and bound algorithms can be (and often are) slow” [23]
and the number of potential solutions is immense, not all nodes can be computed in a reasonable time
frame. With breadth first order, the tree would be processed layer by layer and therefore solutions
deep in the tree may never be found. Conversely, with depth first order one branch of the tree will be
processed until it no longer has conflicts (or becomes unsolvable), only then will the next branch be
taken up. This order gives a very low exploration rate, potentially missing paths to good solutions early
on.
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The third option is based on some cost function. This function should determine the probability that
that node leads to a good solution. With that method, the way the tree is traversed is dynamic: it can
vary from one scenario to the other.

Using the lowest cost first order only works well if the cost function is defined properly. At the time
of writing, the heuristic value is based on the number of remaining conflicts, the number of remaining
obstruction conflicts (as these are the most difficult ones, they are weighed separately), the number of
train patterns that still have at least one conflict, the number of patterns that still have to be mapped
after short-turning somewhere, and the score of all adjustments required so far. That formula has been
the same for years, and the current development team is not fully aware of the reasoning behind it. No
actions taken to improve the formula have been documented, and the formula is not actively worked on
by the development team. There could be room for improvement and experiments would not interfere
with active development, which is why this part is analysed and experimented on later in this thesis.

3.4.3. Similar nodes
When processing a node, child nodes are created for all different ways to solve the most important
conflict. Many nodes with similar adjustments can be created in this way, for example two nodes
that both represent rerouting a train, but using a different route. As the number of nodes could grow
enormously, these new child nodes are grouped if they perform a similar adjustment. For example,
it is checked if both changed the routes of the same trains (regardless of the exact route), or if they
cancel the same train series. Nodes are only grouped if they also have similar remaining conflicts: one
should be a subset of the other. From a group of nodes, only the node with the lowest score will be
kept, while the rest is discarded. Other attempts to prevent the creation of similar or duplicate nodes
are actively developed by the team. For that reason, this thesis does not look further into this method
of optimisation.



4
Approach and Results

This chapter describes various experiments and their results, with the aim of improving the solution
quality of the VGB solver. For relatively simple scenarios, the solver can process all nodes well within
the 30-minute run-time limit of the tests. This means the best solution will be found consistently. Un-
fortunately, this is only the case for a third of the focus set. For the other tests, the solver runs out of
time to process all nodes. Therefore, the best solution may never be found: its node can be one of
the remaining nodes. It can even be the case that none of the solutions are found, if all corresponding
nodes are still to be processed after 30 minutes.

There are two ways to solve this problem: increasing the number of nodes that are processed, or
improving the order in which the nodes are processed. The first option requires detailed knowledge
of the inner structure of the existing code base. Development team is continuously working on this
process. Since diving deeply into the internals of the solver would cost a lot of time, performance
optimisation in this manner was deemed out of scope for this thesis. The second option, improving
the order in which the nodes are processed, can be implemented by changing the calculation for the
heuristic value (see subsection 3.4.2).

This chapter explains various experiments regarding the calculation of the heuristic value. First, the
methods for comparing results are explained in section 4.1. Then, section 4.2 describes experiments in
which the calculation of the heuristic value was optimised. Lastly, the application of a machine learning
classification strategy is explained in section 4.3.

4.1. Comparing results
As explained in section 3.3, a scoring system that takes multiple perspectives into account is imple-
mented in the solver. Using this, different solutions for the same scenario can be compared. However,
finding a solution with a lower score does not guarantee that the adjustments are good enough to be
used in practice. As explained in subsection 3.3.2, a baseline score can be found using the interactive
solver. This gives a better intuition of whether a solution could be used in practice, but no guarantee.
Furthermore, alternative solutions with a similar overall impact can have varying scores.

Scenario makers are sometimes consulted to check if another solution found by the solver could be
viable in practice. This feedback loop can take quite some time and involves manual work, which is
not ideal for checking many different solutions for various scenarios. Even though it would be ideal
to compare how many solutions are good enough for practice, given the difficulties for that process,
results for the experiments in this thesis are compared solely based on their scores.

4.2. Changing heuristic value calculation
As explained in subsection 3.4.2, the solver uses a heuristic value to determine which node to process
next. Changing the calculation for this value changes the order in which the nodes are processed.

The original formula is as follows:

10
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(1 + P + L)× (1 +O + L)× S + C (4.1)

Using the following definitions:

• P : The number of unique patterns with at least one remaining conflict.
• L: The number of unique patterns that are adjusted using short-turning, but are not yet recon-
nected to a pattern for the way back (this loop should be closed).

• O: The number of obstruction conflicts (where a train passes through an obstructed area) that
remain.

• S: The penalty points for all adjustments made to get to the current node.
• C: The number of conflicts that still need to be resolved.

For all these terms, lower values are better.

The calculation was left unchanged for quite some time, but none of the team members knew why
this exact formula would work well. Despite the unknown origin, some components of the formula
intuitively seemed useful to determine how promising a node is. For example, the more conflicts a
node has remaining, the more complex it will be to solve, assuming that the conflicts are of equivalent
difficulty. This intuition turned out to be correct in an initial, accidental experiment.

4.2.1. Single factors
The first change made to this formula is to use only the number of conflicts. The intention was to
create a simple but impactful change, to try the general impact of changes to the formula. It was
expected that this new formula would perform significantly worse. At that time, no solution could be
found for 15 scenarios of the focus set, which then consisted of 36 scenarios. With the new formula,
two scenarios got a significantly worse score. However, for 14 of the aforementioned 15 scenarios
without any solution previously, a solution was found. The development team immediately noticed this
massive improvement and looked into it. As mentioned earlier, it is to be expected that a node with
more conflicts is more difficult to solve, in case of equivalent conflicts. To incorporate the difficulty of
the conflicts in the formula, the score was added as tiebreaker.

More experiments were performed using the other terms of the original formula. Using only the score
was hypothesised to give good results, but this turned out to be incorrect. Initially, this seemed odd, as it
correlates with the number of conflicts, and it seemed reasonable to assume that adding the weights of
the conflicts to the equation would be even better. However, some nodes with many low-weight conflicts
got worse scores than nodes with only a few high-weight conflicts, even though the former option could
be solved much faster. This could mean that the scoring system is not completely accurate, and that
revising it could lead to better results. On the flipside, there is no method of comparison after changing
the scores: simply reducing the number of points for all adjustments obviously leads to lower scores,
but the solution itself may not have changed or even become worse. Another solution could be to
separate the scores of adjustments in the heuristics calculation from those used for the final score. In
addition to the significant code changes required to implement this, it would take a lot of work to tune
the parameters.

Using any of the other terms of Equation 4.1 directly as the heuristic value had only a negative impact.
The results of the formula with the number of conflicts, with a score as a tiebreaker, were much better
than before and showed only very limited negative effects.

Tweaking the formula
At the time of performing these experiments, the solver sometimes progressed very deep into the search
tree, even though this was not necessary at the relevant milestone. To prevent the solver from going
too deep, some penalty points for going over a depth of 50 were added to the formula of the previous
section. Furthermore, if some of the hardest types of conflicts are still present at that depth, the penalty
is doubled.

The final formula was as follows:
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Heuristic value =


C if D ≤ 50

C + 3 if HC = 0

C + 6 otherwise
(4.2)

Using these definitions:

• C: The number of conflicts that still need to be resolved.
• D: The depth of the node.
• HC: The number of hard conflicts.

Ties were broken by the score of the node.

Results
The results of the new formula for the heuristic value had a big impact on the performance of the solver.
Generally, solutions were found for many more scenarios than with the old formula. For scenarios that
already had a solution, newly found solutions were of much better quality.

To show the general impact, a periodic performance analysis is used. This includes other changes
made by the development team, but the majority of the performance change was caused by the new
heuristic value formula. The periodic performance analysis performed by the CGI team is shown in
Table 4.1. In that analysis, the judgement of “good enough” is given based on a deviation from the
estimated score.

Nov Jan

Milestone 1
Total 66 66

Found solutions 66 66
Good enough 54 54

Milestone 2
Total 78 78

Found solutions 70 77
Good enough 37 40

Milestone 3
Total 249 249

Found solutions 133 233
Good enough 52 58

All milestones
Total 962 962

Found solutions 425 832
Good enough 213 235

Table 4.1: Results when using Equation 4.1 or Equation 4.2 for the heuristic value. Differences are highlighted.

As milestone 1 contains mostly simple scenarios, many solutions are found well within the time limit of
30 minutes. Since the solver can process all nodes of those scenarios, changing the processing order
has no effect on them. Milestones with more complex scenarios show more impact when using the
new formula.

On the normal 30-minute testing process, the penalty point system improved the solutions for two of
the scenarios in the focus set. For longer runs, it improved the results of other scenarios as well.

4.2.2. Depth
As described earlier, the solver sometimes progressed too deep into the search tree. Several exper-
iments were conducted using the depth in the heuristic value formula in some way, to penalise this
behaviour. The starting point was the formula from the previous section, with the penalty system for
depths greater than 50 removed. To prevent the solver from going too deep into the tree, the depth of
the node was added as a term directly. This gave large improvements for several scenarios, but had a
detrimental effect on others.
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As a second experiment, the number of hard conflicts was added to the formula, as it was also in the
penalty system before. Again, the results improved for some scenarios and worsened for others, even
compared to the scores of the previous experiment. In general, these scores were better than using
only depth, but there was no significant improvement over Equation 4.2. Using the definitions of terms
provided earlier, the resulting formula was as follows:

C +D +HC (4.3)

Ties were still broken by the score of the node.

Expected depth
It was noticeable that for scenarios in which it had a negative effect, the solver found the solutions
deeper in the tree. Trying to limit the depth meant that the solver would explore more, but did not reach
the nodes with the solution(s) found previously. A new idea came to mind: if it is possible to determine
the expected depth to find solutions, penalising the depth could be done relative to that.

The following data was obtained for all scenarios:

• Number of blocked patterns,
• Number of affected patterns (patterns that are use either blocked tracks, or tracks parallel to
blocked tracks),

• Number of routes blocked (every route is a different way to get from one end to the other end of
the affected area),

• Number of routes affected (similar definition of affected as above),
• Number of indirectly affected patterns (patterns that are not traversing the blocked area, but stop
on the station at either end of the incident area),

• Number of train loops of which at least one pattern is blocked.

Furthermore, the internal search trees for all scenarios in the focus set were analysed to retrieve the
depth of all solutions found by the solver.

The correlation coefficient between the number of blocked patterns and the average depth of all solu-
tions per scenario was 0.72, the highest of all data points. The average depth at which solutions were
found was 4.19 times the number of blocked patterns. The standard deviation of this factor is 3.42,
which is relatively large. However, using only the depth of the best solution rather than the average
of all solutions per scenario, the standard deviation was reduced to 1.62, while the ratio remained the
same. The correlation then improved to 0.80.

This expected depth was used for further experiments. These experiments included:

1. Replace depth in the formula by the depth of the node relative to the expected depth (minimum
0)

2. Replace depth in the formula by the depth of the node relative to half of the expected depth
(minimum 0)

3. Replace depth in the formula by the depth of the node relative to ¾ of the expected depth (mini-
mum 0)

4. Same as 1, but also add the number of critical conflicts starting from the expected depth
5. Always have depth in the formula, and add it another time starting from the expected depth

However, none of these experiments were clearly better than only adding depth as a term. Here again
it stood out that the effects of these changes were very good for some scenarios, while others received
much worse scores than before. For some scenarios the depth made too big of an impact, so more
experiments were conducted. In those, the depth was put in the formula multiplied by a factor ranging
from 0 to 1 in steps of 0.1. Therefore, the formula used was the following.

C +HC +RD × F (4.4)
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In this equation, RD is the relative depth, and F is the weight factor. Ties are broken by the score of
the node. Figure 4.1 displays the relative score changes for each scenario in the focus set.

Figure 4.1: Relative score increase or decrease by using Equation 4.4 compared to Equation 4.2.

The scores for several scenarios became worse altogether compared to using the old formula. Fig-
ure 4.2 gives a more detailed look at the results for the majority of the scenarios, by removing the six
scenarios whose scores are most different.

Figure 4.2: Figure 4.1 minus the six outliers for better overview. The average score is lowest using a weight of 0.4.

It is now clear that for the remaining scenarios, the best results are found around the factor of 0.4.
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Even though the average score was much worse when the outliers were included, the minimal point
was at the same weight value. Only one of the removed outliers had a better score, all others had
significantly worse scores for most weight values. A significant number of scenarios still suffers from
worsened scores at the optimal weight factor. As the results were not better than those of Equation 4.2,
that formula remained in the solver.

4.3. Classifying scenarios
All experiments showed potential for several scenarios, but also had adverse effects on others. If one
can determine the effect of a new formula on the scenario up front, a different strategy could be applied
case by case, filtering out the negative impact as much as possible.

To check whether selecting from different strategies would be viable, the formula of Equation 4.3 was
used, as it showed the greatest potential for positive impact. The data points from Equation 4.2.2 were
used to build a classification system. To improve the quality of the classifier, this data was extracted
for all 1,000 available scenarios, rather than only those in the focus set. Furthermore, ratios between
several of these data points were computed and added to the data file.

Scenarios that receive better results with the new formula are assigned 1 as label, the ones that became
worse are assigned -1. Scenarios on which the new formula had no effect, those with label 0, were
dropped from the data set. Misclassifying these would have no effect on the overall scores after all. The
remaining data was split 50/50 into training and test sets. Then, SKLearn’s DecisionTreeClassifier was
run, with a maximum allowed depth of 3 and at least 5 samples per leaf node. The depth parameter
was chosen by running several experiments with varying depths, ranging 1 to 10. Figure 4.3 shows the
accuracy at these values. After a depth of 3, the accuracy on the training set increased, but the classifier
performed worse for the test set. That difference in accuracy is a clear sign of overfitting. Limiting the
depth prevents it from occurring. Another benefit is that the resulting decision tree is very explainable
and can even be coded into the existing solver, thereby not requiring an external classification system.
The accuracy of the classifier is 73.5% on the test set.

Figure 4.3: Accuracy of the decision tree classifier using different maximum depth values. Accuracy on the test data is highest
at a maximum depth of 3.
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Additionally, a random forest classifier was created using the same data. Even after optimising its
parameters, the difference in accuracy is only 1 to 2 percent points. Given the advantages of the
decision tree classifier described above, that would be the preferred approach.

4.3.1. Impact on scores
To evaluate the impact of using the decision tree, the resulting scores of all scenarios in the megarun
were calculated as if the classifier were used. The new score was taken if the label was predicted to
be 1, otherwise the old score was used. Although 271 scenarios received better scores without the
new formula, only 80 of those remained after classification. On average, these scored 16.7% worse
than before. Of the 301 scenarios with improved scores with the new formula, 153 were correctly
classified. Their scores improved by 17.5% on average. For 11 scenarios, the solver found a solution
using the new formula, whereas using the old formula did not result in one. Six of them remained after
classification. However, of the 82 scenarios that no longer resulted in a solution using the new formula,
only three are classified incorrectly. This shows there is great potential for improvement by using a new
formula for the heuristic value, if an accurate classification system is used to select the scenarios on
which to apply said formula.



5
Conclusion and Future Work

In this chapter, the research question from chapter 1 is answered. After that, recommendations and
future work are discussed.

5.1. Conclusion
In chapter 1, the research question was introduced: how can the solution quality of the VGB Solver
be improved? Given the structure of the VGB Solver, improvements could be made in two ways: pro-
cessing more alternative options, or processing the same options in a better order. The former option
requires detailed insights into the internal workings, which was not feasible for this thesis. The latter
option was more accessible and provided ample opportunity for experiments. The scope was limited
to small but potentially impactful changes, so the experiments could fit the duration of this thesis while
remaining compatible with ongoing development work. Using these experiments, the sub-questions of
the research question can be answered.

How can the performance of the VGB Solver be improved by leveraging the existing optimisa-
tions better?
The majority of the experiments conducted during this project related to the calculation of the heuristic
value of nodes. As that value is used to determine the processing order of the nodes in the internal
tree, changing it can dramatically alter the performance. One of the attempted new formulas, using the
depth of a node as the primary value, improved the performance significantly: solutions were found for
96% more scenarios than before. This formula was integrated into the solver by the development team
after some minor tweaks. Further experiments on the heuristic value computation showed potential,
but often faced the drawback of significantly worsening scores on several scenarios.

How can data about specific problem instances be used in the VGB Solver?
Scenario makers sometimes treat scenarios differently, as they can tell from experience that certain
adjustments will not work well (enough). For example, they will not try to fit all trains into the schedule
on a very busy line in case half of the tracks are unavailable. The VGB solver used the same strategy
for all scenarios, which caused tweaks to the algorithm to work well for some scenarios, but have a
negative impact on others at the same time. To allow different strategies for different scenarios, a clas-
sification algorithm was implemented. The classifications were made based on data of the surrounding
infrastructure and timetables of directly and indirectly affected trains. This resulted in a decision tree
of three levels, that categorised the scenarios into positive and negative impact for a specific heuristic
value formula with 73.5%, disregarding scenarios on which said formula had no impact. By choosing
which of the two available formulas to apply based in the classifier, the number of scenarios that im-
proved was roughly twice as high as those that deteriorated. The relative improvement per scenario
was higher than the loss, making the results mostly positive.

In summary, the solution quality of the VGB Solver was greatly impacted by replacing the formula to
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calculate the heuristic value of a node. Furthermore, experiments using a decision algorithm to apply
a different formula for different types of scenarios showed promising results.

5.2. Recommendations/future work
Despite the numerous formulas that have been tried to compute the heuristic value, many more combi-
nations of the properties of nodes are possible. The depth of nodes was found as an important factor,
but on some scenarios this had adverse effects. The experiments using the “expected depth” were
promising, but that formula did not perform better than when using the regular depth. From these ex-
periments, it was concluded that depth penalties above the expected depth have a positive impact on
the processing order. Further experiments could be conducted to combine the actual depth with the
depth relative to the expected depth of the node to see if these two together can lead to even better
results.

The formula and decision tree found in section 4.3 could be tested with the latest version of the VGB
solver. It would be even more interesting to see if other strategies can be found that work well for a
different set of scenarios. If a classifier also works well for those strategies, the solver could pick from
multiple different strategies for each scenario.

Taking other factors into account for the heuristic value could also be an option. For example, the solver
could check if there was any significant progress in the last couple of nodes leading up to the current
one. If not, perhaps it would be better to process other nodes first.

Another interesting direction to look into is reducing strictness. This would mean the solution produced
by the solver would not have to be conflict-free. Such experiments were not conducted for this thesis,
as it is hard to predict how useful a solution with conflicts is: solving even a single remaining conflict can
create many more conflicts. However, another approach could be used. Many conflicts involve time
limits, for example that two trains cannot cross the same switch in opposite directions within a specified
amount of time. The strictness of these constraints could be reduced, which could allow trains to be
closer than the indicated times. While this may solve some conflicts and is also used in practice, the
exceedance of the time constraint should be minimised. Further research could indicate to what extent
reducing this strictness could be useful in obtaining solutions faster.

For the solver itself, it would be good to look at the scoring system. Currently, the quality of solutions
are determined based on points for certain adjustments and consequences thereof. This score is also
used in the new heuristic value formula. This makes it hard to adjust the weights for certain actions
for the solver: if the scores are adjusted, the results are no longer comparable to previous results.
Separation of these scores ensures that they can be adjusted for use in the heuristic formula, providing
more room for experiments and potential improvements. Furthermore, the scores used to evaluate the
solution quality should be double-checked, so lower-scoring solutions are actually most desirable, as
this is not always the case currently.

Lastly, a general recommendation for other projects that aim to automate manual tasks. Designing an
algorithm to solve all instances of the problem in the same way may not be the best solution. Using
the experience of the people performing the manual task, multiple strategies can be developed, and
representative data points can be found. Then, by applying machine learning algorithms, it can be
determined which strategy should be applied when.
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