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Efficient Off-Grid Bayesian Parameter Estimation
for Kronecker-Structured Signals

Yanbin He , Graduate Student Member, IEEE and Geethu Joseph , Senior Member, IEEE

Abstract—This work studies the problem of jointly estimat-
ing unknown parameters from Kronecker-structured multidi-
mensional signals, which arises in applications like intelligent
reflecting surface (IRS)-aided channel estimation. Exploiting the
Kronecker structure, we decompose the estimation problem
into smaller, independent subproblems across each dimension.
Each subproblem is posed as a sparse recovery problem us-
ing basis expansion and solved using a novel off-grid sparse
Bayesian learning (SBL)-based algorithm. Additionally, we derive
probabilistic error bounds for the decomposition, quantify its
denoising effect, and provide convergence analysis for off-grid
SBL. Our simulations show that applying the algorithm to
IRS-aided channel estimation improves accuracy and runtime
compared to state-of-the-art methods through the low-complexity
and denoising benefits of the decomposition step and the high-
resolution estimation capabilities of off-grid SBL.

Index Terms—Sparse Bayesian learning, higher-order SVD,
intelligent reflecting surface, channel estimation, basis expansion.

I. INTRODUCTION

MULTIDIMENSIONAL signals arise in several engineer-
ing applications such as image processing [2], [3], [4]

and wireless communications [5], [6], [7]. In these contexts,
the data is represented as a function of different dimensions,
each conveying a specific physical quantity. For example, in
the uplink narrowband intelligent reflecting surface (IRS)-aided
system, the received signal at the base station (BS) from the
mobile station (MS) is a function of angle-of-departure (AoD)
at MS, the difference of angle-of-arrival (AoA) and AoD at
the IRS, and AoA at BS [8]. Considering the angular domain
of each array as a separate dimension, this signal is multidi-
mensional [7], [8]. This structure is captured by the Kronecker
product [9], leading to the fundamental model,

ȳ = y1 ⊗ y2 ⊗ · · · ⊗ yI + n̄=⊗I
i=1yi + n̄, (1)
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where ⊗I
i=1yi ∈ C

M̄ is an I-dimensional signal, yi ∈ C
Mi

represents the signal in each dimension, n̄ is the noise, M̄ =∏I
i=1 Mi, and ⊗ is the Kronecker product. Each yi encap-

sulates the signal in the corresponding dimension (e.g., AoA
and AoD) and is expressed as a weighted sum of nonlinear
parametric functions,

yi =

Si∑

s=1

hi(ψ̄i,s)x̄i,s, (2)

with parameters ψ̄i,s and weights x̄i,s, for s= 1, 2, . . . , Si,
where hi(·) ∈ C

Mi is the nonlinear function. In the IRS-aided
system example, the parameter ψ̄i,s can be AoAs or AoDs, the
nonlinear function hi is related to the steering vector, and x̄i,s

represents the path gain corresponding to each AoA or AoD.
Thus, the channel estimation problem reduces to estimating all
ψ̄i,s’s and x̄i,s’s from the received signal ȳ, where Si’s are also
unknown. Hence, this paper focuses on the general problem
of estimating the parameters and weights {ψ̄i,s, x̄i,s}Si

s=1 from
measurements ȳ and the function hi(·) for all I dimensions.

A popular approach for parameter estimation from (1) and
(2) is multidimensional basis expansion model (BEM) [2], [3],
[4], [8], [10], [11]. It evaluates the nonlinear function over
pre-sampled grids of unknown parameters in each dimension
to express the multidimensional signal as the product of a
known overcomplete Kronecker-structured dictionary of the
basic functions and an unknown sparse coefficient vector as

ȳ =
(
⊗I

i=1Hi

)
x+ n̄. (3)

Here, ȳ ∈ C
M̄ is the measurement, Hi ∈ C

Mi×Ni is the over-
complete basis for hi(·), and ⊗I

i=1Hi ∈ C
M̄×N̄ is the over-

all dictionary with M̄ <
∏I

i=1 Ni = N̄ . Also, x ∈ C
N̄ is the

unknown sparse vector, and n̄ is the measurement noise. The
model in (2) leads to a Kronecker-structure in x

x=⊗I
i=1xi, (4)

where xi ∈ C
Ni is the weight in the ith dimension. The over-

complete dictionary makes xi sparse, with only Si nonzero
entries corresponding to the true parameters. Thus, estimating
parameters and coefficients is a sparse recovery problem.

Solving (3) for a sparse vector x with Kronecker-structured
support has been discussed in [3], [7], [10], [11]. A greedy
method, Kronecker- orthogonal matching pursuit (OMP), gen-
eralizes the traditional OMP to multidimensional BEM [3].
It has low complexity but requires hand-tuning of a sensi-
tive stopping threshold [7]. Another approach with improved
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accuracy and no hand-tuning relies sparse Bayesian learn-
ing (SBL). It adopts a fictitious Gaussian prior on the sparse
vector with a Kronecker-structured covariance matrix to en-
force a Kronecker-structured support [7], [10], [11]. Although
Kronecker-SBL (KroSBL) can be readily applied to our prob-
lem, it has two main drawbacks, as elaborated below.

First, KroSBL does not fully exploit prior knowledge (4).
While KroSBL employs a Kronecker-structured covariance
matrix, the variance only determines whether an entry is
nonzero; in effect, KroSBL only exploits the Kronecker struc-
ture of the support vector. Consequently, KroSBL directly es-
timates the high-dimensional vector x. Although the state-
of-the-art KroSBL algorithm employs some complexity re-
duction techniques [7], it still faces high overall complex-
ity due to the high dimensionality of the Kronecker product.
So, we seek a method that can better exploit the Kronecker
structure while significantly reducing complexity compared
to KroSBL.

Second, KroSBL relies on multidimensional BEM, formu-
lating the dictionary using predefined grids. However, the true
parameters may fall off these grids, causing a grid mismatch
issue [12], [13], which can degrade the estimation performance.
A popular way to address mismatch is to estimate the unknown
parameters by optimizing the SBL cost function. However,
this is challenging due to the nonlinearity of the SBL cost
function. One approach is to use linearization methods that
initialize the unknown parameters using pre-sampled values
from the range of interest, locally approximate the nonlinear
cost function using linearization techniques such as Taylor ex-
pansion [12], [14], [15], and solve for the first-order coeffi-
cients. However, such an approximation is only valid locally
[16], [17]. Initialization with finer sampled values can only
alleviate but not fully eliminate this issue [16], [17], [18], and
it also induces higher-dimension dictionary with worse coher-
ence condition. Alternatively, some works turn to marginal
likelihood maximization by isolating the contribution of each
variable to the likelihood, and then sequentially selecting the
candidate that maximizes this isolated contribution [16], [19],
[20], [21]. This greedy strategy starts with an empty dictio-
nary and progressively adds the top-contributing candidates.
So it is closely related to matching pursuit algorithms [20]
and can suffer performance degradation as the number of un-
knowns increases [22]. The framework in [23] can also be
leveraged to jointly construct Kronecker-structured dictionary
and sparse vector. However, the variational Bayesian-based ap-
proach in [23] assumes unconstrained columns in dictionary,
while the column of our dictionary is constrained by column
function hi(·). In addition to the above off-grid methods, grid-
less methods, which operate directly in the continuous do-
main without discretization [13], are also studied in the litera-
ture. Example approaches include atomic norm-based methods
[24], [25], [26] and variational Bayesian line spectral estima-
tion techniques [27], [28]. However, atomic norm methods re-
quire a structured column function hi(·) to admit a Vander-
monde decomposition for parameter recovery, while the distri-
bution approximation used in variational Bayesian approaches
is valid when hi(·) consists of complex sinusoidal components.
Thus, they cannot be trivially generalized to different forms

of hi(·). The drawbacks and limitations of existing mul-
tidimensional BEM, off-grid SBL algorithms, and gridless
methods motivate novel approaches to solving our parameter
estimation problem.

We aim to develop a method for estimating the parameters
and weights {ψ̄i,s, x̄i,s}Si

s=1 for all I dimensions using ȳ in
(1) and (2) with three key features: (i) utilizing the Kronecker
structure in (1); (ii) overcoming the grid mismatch of lineariza-
tion and marginal likelihood optimization; and (iii) achieving
lower complexity compared to KroSBL. Our algorithm follows
the BEM paradigm using SBL and enjoys the theoretical guar-
antees. Our main contributions are as follows:
• Decomposition-Based Algorithm: We present two meth-

ods to decompose the measurement ȳ into multiple low-
dimensional measurements, better utilizing the prior in-
formation of the Kronecker structure in Sec. II-A. It
transforms the joint multidimensional unknown parame-
ters estimation into multiple separate subproblems in each
dimension, leading to reduced complexity.

• Off-grid Algorithm: We use BEM for parameters es-
timation in each dimension and cast it into a sparse
vector recovery problem solved using the expectation-
maximization (EM)-based SBL in Sec. II-B. We further
incorporate a grid optimization step in the EM iterations
to address grid mismatch, implemented via alternating
minimization. This approach fills gaps in prior work by
enabling optimization without the linearization approxi-
mations used in [12], [14], [15] and jointly updating all
variables, avoiding the greedy selection strategies of [16],
[19], [20], [21].

• Algorithm Analyses and Extensions: We study the decom-
position step and the iterative grid optimization in Sec. III.
We theoretically quantify the error bound of the decompo-
sition step in the presence of noise and the denoising effect
which we attribute to the better estimation performance.
We discuss the convergence property of our algorithm.
We also explore potential extensions and applicability of
our decomposition strategy to alternative measurement
structures that emerge in various practical scenarios in
Sec. III-D.

• Application: In Sec. IV, we analyze the signal model of
a prototypical IRS-aided wireless communication system
and explain the implementation of our algorithm for uplink
cascaded IRS channel estimation.

• Numerical Results: We evaluate our schemes in three
scenarios in Sec. V. The first scenario highlights the
computational efficiency and denoising benefits of the
decomposition method. The second scenario demonstrates
the high-resolution estimation capabilities of off-grid
SBL. The third scenario focuses on IRS channel estima-
tion, showcasing improved accuracy and reduced runtime,
driven by the combined effects of decomposition and off-
grid SBL.

In short, our algorithm estimates parameters from Kronecker-
structured multidimensional signals, tackling grid mismatch
and high complexity through two key techniques: decompo-
sition and off-grid SBL. These techniques are of independent
interest and can be applied separately, depending on the specific
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signal model. Compared to our preliminary work [1], we make
several novel contributions here. Apart from the singular value
decomposition (SVD)-based approach in [1], we introduce
higher-order singular value decomposition (HOSVD)-based ap-
proach to the decomposition step and present its probabilistic
error bounds, including a decomposition error bound and a
characterization of denoising. Additionally, we develop an off-
grid SBL algorithm, addressing the issue of grid mismatch
and analyzing its convergence properties. Further, we explore
extensions of our strategy to alternative measurement structures
that emerge in various practical scenarios, and present extensive
numerical evaluations of our two-step solution applied to IRS
channel estimation.

Notation: Boldface small letters denote vectors, boldface
capital letters denote matrices, and calligraphic letters denote
tensors. We use [I] to denote the set {1, 2, · · · , I} and the
symbols ⊗, �, ◦, and ×i to denote Kronecker, Khatri-Rao,
tensor outer product, and tensor ith mode product, respectively.

Tensor preliminaries: We present tensor fundamentals in-
cluding outer product, tensor matricization, tensor mode
product, HOSVD, and multilinear rank. The outer product of
vectors {ti ∈ C

Mi}Ii=1 yields a rank-one tensor R := ◦Ii=1ti ∈
C

M1×···×MI with entries [R]m1,··· ,mI
=
∏I

i=1[ti]mi
. The ith

matricization matrix T (i) of tensor T is defined as
[
T (i)

]
mi,j

= [T ]m1,m2,...,mI
, ∀i ∈ [I],

withmi ∈ [Mi], and j = 1 +
∑I

�=1,� �=i

(∏�−1
p=1,p �=i Mp

)
(ml −

1). Matrix T (i) matricizes T along its ith dimension and has
dimension Mi ×

∏I
�=1,� �=i M� with the (mi, j)-th entry given

by the (m1, . . . ,mI)-th entry of T . Specifically, for rank one
tensor R, its i∗th matricization matrix is [29]

R(i∗) = ti∗
((

⊗i∗+1
i=I ti

)
⊗
(
⊗1

i=i∗−1ti
))T

,

for any index i∗ ∈ [I] which we use to avoid confusion with
iteration index i in the Kronecker product. The ith mode product
of a matrix Di ∈ C

Ni×Mi with T is denoted by

M= T ×i Di,

where M∈ C
M1×···×Mi−1×Ni×Mi+1×···×MI . The ith matri-

cization matrix of M, i.e., M (i) is given by

M (i) =DiT (i).

For a tensor T ∈ C
M1×···×MI , its HOSVD is given by

T = C ×1 E1 ×2 E2 · · · ×I EI ,

where Ei ∈ C
Mi×Mi is the left singular matrix of T (i). Ten-

sor C is the core tensor of T , obtained as C = T ×1 E
H
1 ×2

EH
2 · · · ×I E

H
I . If we denote the rank of T (i) as Ri for i ∈ [I],

then tensor T is said to have a multilinear rank (R1, · · · , RI).

II. OFF-GRID SPARSE RECOVERY ALGORITHM FOR

KRONECKER-STRUCTURED MEASUREMENTS

In this section, we study the parameter estimation problem
with Kronecker-structured measurements. The signal model is

ȳ =⊗I
i=1H̄i,ψ̄i

x̄i + n̄=⊗I
i=1yi + n̄, (5)

where the noise term in n̄ need not be Kronecker-structured.
For i ∈ [I], the matrix H̄i,ψ̄i

is parameterized by ψ̄i :=[
ψ̄i,1, . . . , ψ̄i,Si

]T ∈ R
Si as follows,

H̄i,ψ̄i
:=
[
hi(ψ̄i,1) · · · hi(ψ̄i,Si

)
]
∈ C

Mi×Si ,

where hi ∈ C
Mi is a known and continuous column function.

The scalar Si is the number of unknowns in H̄i,ψ̄i
. We assume

ψ̄i,s ∈ [ψi,l, ψi,r], a known compact range of the unknown pa-
rameters, and the goal is to estimate ψ̄i and x̄i from (5).

To ensure identifiability of ψ̄i, we assume hi(ψp) �= hi(ψq)
for any ψp �= ψq . Identifiability of x̄i is limited by the Kro-
necker structure, i.e., for scalars {αi}Ii=1 with

∏I
i=1 αi = 1,

the set of vectors {x̄i}Ii=1 and {αix̄i}Ii=1 both result in ȳ
when combined with a given noise vector n̄. However, in many
applications (e.g., channel estimation [5], [8]), the goal is to
recover the solution up to a scaling factor, as we later elaborate
in Sec. IV. Therefore, we aim to jointly obtain ψ̄i and the
coefficient x̄i up to scaling ambiguities, given i) measurement
ȳ, ii) vector function hi, and iii) range [ψi,l, ψi,r] for i ∈ [I].

We devise a two-step solution: the first step decomposes (5)
into I subproblems, each estimating ψ̄i and x̄i, and the second
step solves these subproblems using an off-grid approach.

A. Step 1: Decomposition-Based Algorithm

To develop the decomposition algorithm, we use Lemma 1
for the noiseless set of linear equations, ȳ =⊗I

i=1H̄i,ψ̄i
x̄i.

Lemma 1 [7, Lemma 4]: Consider linear equations y1 ⊗
y2 = (H1 ⊗H2) (x1 ⊗ x2) �= 0. Solving for x1 ⊗ x2 from
the equations is equivalent to solving for x1 and x2 from
H1 (αx1) = y1 and H2

(
α−1x2

)
= y2, for any scalar α �= 0.

Lemma 1 indicates that we can estimate individual vectors
x1 and x2, up to a scaling ambiguity α. Therefore, if ȳ is split
into I low-dimensional vectors {ŷi ∈ C

Mi}Ii=1, then (5) in the
noiseless case (n̄= 0) can be decomposed into I subproblems,
each with ambiguity {αi �= 0}Ii=1 with

∏I
i=1 αi = 1. This ap-

proach allows solving for x̄i individually, rather than jointly.
We now discuss the decomposition of ȳ into low-dimensional
vectors ŷi’s, in both noiseless and noisy cases.

1) Noiseless Setting and HOSVD: In the noiseless case,
we aim to find {ŷi}Ii=1 so that ȳ = y =⊗I

i=1ŷi. This can be
achieved using HOSVD applied to the tensor representation
of ȳ. Using (1), ȳ can be represented as an Ith order tensor1

Y = ◦Ii=1yi ∈ C
M1×···×MI , where ◦ is the tensor outer product.

Its i∗th mode matricization for any i∗ ∈ [I − 1] is

Y (i∗) = yi∗

((
⊗i∗+1

i=I yi

)
⊗
(
⊗1

i=i∗−1yi

))T
, (6)

where yi∗ ∈ C
Mi∗ is the i∗th component in the Kronecker

product ⊗I
i=1yi, and (·)T is the transpose operator. We use the

index i∗ in (6) and the subsequent discussion to avoid confusion
with the iteration index i in the Kronecker product expression.
Now, an estimate ŷi∗ of yi∗ up to scaling ambiguities is the
left leading singular vector ei∗ of the rank-one matrix Y (i∗),

1From [29], vec(Y) = vec(◦Ii=1yi) =⊗1
i=Iyi where the subscript is

descending. For simplicity, we use ascending subscripts in the tensor outer
product, resulting in Y and ȳ containing identical entries, albeit reordered.
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i.e., ŷi∗ = ei∗ , for i∗ ∈ [I − 1]. For i∗ = I , the estimate ŷI is
eI multiplied by the leading singular value of Y (I), ensuring
⊗I

i=1ŷi =⊗I
i=1yi. The decomposition is called the HOSVD,

assuming a multilinear rank of (1, · · · , 1) due to the Kronecker
structure [29], [30], [31].

2) Noisy Case and Truncated HOSVD: Extending to the
noisy setting, the decomposition step becomes

{ŷi}Ii=1 = argmin
{zi∈CMi}I

i=1

‖ȳ −⊗I
i=1zi‖2, (7)

where ‖ · ‖2 is the vector �2 norm. We see that (7) is the same as
seeking a tensor Ŷ = ◦Ii=1zi with multilinear rank (1, · · · , 1)
from measurement tensor Ȳ obtained from ȳ as

min
Ŷ

‖Ȳ − Ŷ‖F s.t. multilinear rank of Ŷ is (1, · · · , 1), (8)

where ‖ · ‖F is the Frobenius norm. Unlike the noiseless case,
here the ith mode matricization Ȳ (i) of Ȳ is not rank-one due
to noise. We solve (8) through the truncated HOSVD, where
only the left leading singular vector is selected. We obtain Ŷ =
ξ ×1 e1 · · · ×I eI and ξ = Ȳ ×1 e

H
1 · · · ×I e

H
I , where ei is the

left leading singular vector of the ith mode matricization Ȳ (i)

of Ȳ for i ∈ [I] [32]. Here, operator ×i is the ith tensor mode
product and (·)H is the conjugate transpose. Then, a solution to
(7) is ŷi = ei for i ∈ [I − 1] and ŷI = ξeI .

3) A Low-complexity Approximation: When I and Mi are
large, HOSVD can become computationally intensive due to
SVD needed to obtain ei for i ∈ [I − 1]. Hence, we offer a
low-complexity method using recursive SVD-based rank-one
approximations,

(ŷi, ȳi) = argmin
(zi∈C

Mi ,z̄i),‖zi‖2=1

‖ȳi−1 − zi ⊗ z̄i‖2, (9)

for i ∈ [I − 1] where ȳ0 = ȳ and ȳI−1 = ŷI . For example,
we consider the case when i= 1. We rearrange ȳ as Ȳ ∈
C

M̄/M1×M1 where vec(Ȳ ) = ȳ. Since zi ⊗ z̄i = vec(z̄iz
T
i ),

(9) is equivalent to a rank-one approximation that minimizes
‖Ȳ − z̄iz

T
i ‖F, and ŷi is the leading singular vector of Ȳ .

Compared to HOSVD, here, the problem dimension de-
creases with i as z̄i ∈ C

∏
j>i Mj , and the overall complexity is

dominated by the first step, i.e., i= 1. Besides, in the noiseless
case, (9) and HOSVD yield the same solution.

Combining the decomposition step for y obtaining {ŷi}Ii=1

with Lemma 1, we break down the original M̄ -dimensional
problem into I subproblems of dimensions {Mi}Ii=1,

ŷi = H̄i,ψ̄i
x̄i + n̄i, i ∈ [I], (10)

which can be solved in parallel. Here, we assume αi = 1 with-
out loss of generality, as we seek solutions up to a scaling factor.
The decomposition better exploits the Kronecker structure in
the measurements, aiding denoising (see Sec. III-A) and re-
ducing the complexity (see Sec. III-D). Before presenting these
analyses, we first develop an algorithm to estimate ψ̄i and x̄i

from (10) for a given i.

B. Step 2: Off-Grid SBL-Based Estimation Algorithm

In each dimension, the subproblem takes the general form of
ŷ = H̄ψ̄x̄+ n̄ for a nonlinear function h when entries of ψ̄
belong to [ψl, ψr], where we drop the dimension index i. We
adopt BEM by discretizing [ψl, ψr] with a set of variables ψ ∈
R

N with the nth variable ψn, forming the dictionary

H(ψ) :=
[
h(ψ1) · · · h(ψN )

]
∈ R

M×N .

This leads to the BEM with coefficient vector x as

ŷ =H(ψ)x+ n, (11)

Only a few entries of ψ correspond to the true parameters ψ̄,
making x sparse. However, solving (11) by fixing ψ at some
predefined grid points, as in standard sparse recovery, leads to
grid mismatch. Thus, we treat ψ as variable and jointly estimate
ψ and sparse x using the SBL framework. Then, the nonzero
entries of x and their corresponding ψn’s are estimates of x̄
and ψ̄, respectively.

SBL adopts a fictitious zero mean complex Gaussian dis-
tribution CN (x|0,Γ) as prior on the sparse vector x with an
unknown diagonal covariance matrix Γ. Let Γ= diag(γ) ∈
R

N×N with the diagonal entries γ ∈ R
N . We assume Gaussian

noise n∼ CN (0, σ2I) with unknown variance σ2. Using type
II ML, we first estimate the hyperparameters γ, ψ, and σ2, and
then, the estimate of x is argmaxx p(x|ŷ;γ,ψ, σ2). The ML
estimates of the hyperparameters are

min
γ≥0, ψ∈[ψl,ψr]N , σ2>0

L
(
γ,ψ, σ2

)
, (12)

where γ ≥ 0 indicates that the entries of γ are nonnegative.
Using the SBL priors, negative log-likelihood function L is

L
(
γ,ψ, σ2

)
=log p(ŷ;γ,ψ, σ2)=log |Σy|+ tr

(
ŷHΣ−1

y ŷ
)
,

where Σy = σ2IM +H(ψ)ΓH(ψ)H and tr(·) is the trace op-
erator. We resort to the EM algorithm to solve (12). Specifically,
the rth iteration of EM is

E-step: Q(γ,ψ, σ2)

:= Ex|ŷ;{γ,ψ,σ2}(r){log p(ŷ,x;γ,ψ, σ2)},
M-step:{γ,ψ, σ2}(r+1) = argmax

γ>0,ψ∈[ψl,ψr]
N ,σ2>0

Q(γ,ψ, σ2).

Here, γ > 0 means the entries of γ should be positive to avoid
degenerate distributions. Further, we note that

Q(γ,ψ, σ2) =Ex|ŷ;{γ,ψ,σ2}(r){log p(ŷ|x;ψ, σ2)}
+ Ex|ŷ;{γ,ψ,σ2}(r){log p(x;γ)},

and thus, the optimization problem in the M-step is separable
in γ and {ψ, σ2}. The optimization problem in γ is

γ(r+1) = argmin
γ>0

log | diag(γ)|+ (d(r))Tγ−1 = d(r), (13)

with d(r) = diag(Σx + μxμ
H
x ) where diag(·) returns the diag-

onal entries of the matrix input, and γ−1 representing element-
wise inversion. Here, μx and Σx are the mean and variance of
conditional distribution p(x|ŷ; {γ,ψ, σ2}(r)), respectively,

μx =
(
σ−2

)(r)
ΣxH(ψ(r))Hŷ,
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Σx =
[(
σ−2

)(r)
H(ψ(r))HH(ψ(r)) + diag(γ(r))−1

]−1

.

(14)

Optimizing ψ and σ2 in the M-step yields

{ψ, σ2}(r+1) = argmin
ψ∈[ψl,ψr]N , σ2>0

N log σ +
1

2σ2
g(ψ),

where g(ψ) := ‖ŷ −H(ψ)μx‖22 + tr(ΣxH(ψ)HH(ψ)), is
independent of σ2. Given ψ(r+1), we update σ2 as

(σ2)(r+1) = g(ψ(r+1))/N. (15)

Further, ψ(r+1) = argminψ g(ψ) simplifies to

ψ(r+1) = argmin
ψ∈[ψl,ψr]N

tr
(
H(ψ)ΣH(ψ)H

)

− 2Re {tr (MH(ψ))} , (16)

where Σ :=Σx + μxμ
H
x and M = μxŷ

H. We use the alternat-
ing minimization method to solve (16), where we alternatively
optimize one entry of ψ while keeping all others fixed. The
tth iteration of the alternating minimization method updates the
n∗th variable ψn∗ by minimizing

fn∗(ψn∗) = 2Re
{
vH
n∗h(ψn∗)

}
+Σn∗,n∗h(ψn∗)Hh(ψn∗).

Here, vn∗ ∈ C
M is defined as

vn∗ =

n∗−1∑

n=1

Σn∗,nh(ψ
(r,t+1)
n )

+
N∑

n=n∗+1

Σn∗,nh(ψ
(r,t)
n )−MH

n∗,:,

where Mn∗,: is the n∗th row of M , and Σn∗,n∗ is the
(n∗, n∗)th entry of Σ. We use index n∗ to avoid confusion with
iteration index n. Hence, the tth alternative minimization iterate
ψ
(r,t+1)
n∗ in the rth EM iteration for index n∗ ∈ [N ] is

ψ
(r,t+1)
n∗ = argmin

ψ
(r,t)
n∗ +ψ

(r,t)
n∗−1

2 ≤ψ≤
ψ
(r,t)
n∗ +ψ

(r,t)
n∗+1

2

fn∗(ψ). (17)

The assumption hi(ψp) �= hi(ψq) for any ψp �= ψq ensures the
solution identifiablity of problem (17). Although fn∗(ψ) in (17)
is a nonlinear function of ψ, we avoid local first-order approxi-
mations [18] by using the alternating minimization. It translates
the problem (16) into simple one dimension subproblems (17).
We solve (17) using a simple (one-dimensional) grid search,
preserving accuracy and ensuring easy implementation. Our
off-grid SBL (OffSBL) and the overall decomposition-based
SBL (dSBL) are outlined in Algorithms 1 and 2, respectively.

So far, we discussed our dSBL framework. Next, we discuss
how the recovered signals {xi}Ii=1 are used to infer coefficients
{x̄i}Ii=1, unknown parameters {ψ̄i}Ii=1, and {Si}Ii=1. Through
automatic relevance determination mechanism [33], SBL pro-
motes sparsity in xi by learning a sparse hyperparameter γi

for i ∈ [I]. We note that γi is the hyperparameter involved in
(12) where the subscript i referring to the ith subproblem (10)
is dropped. Then, the support of xi, indicated by the significant

Algorithm 1: OffSBL.

Algorithm 2: Decomposition-Based SBL (dSBL).

peaks in amplitude, reveals the estimated active components
ψ̄i, while its values are the estimates of x̄i; the number of
estimated active components is Si. Due to computational limits,
we cap the number of EM iterations, so the inactive components
are not exactly zero but a very small value. We threshold γi

(e.g., 10−4) to prune the values below the threshold and retain
the other values for estimating {x̄i}Ii=1 and {ψ̄i}Ii=1, as ex-
plained before.

III. THEORETICAL ANALYSIS AND EXTENSIONS

This section analyzes our dSBL algorithm, covering the de-
composition error bound and denoising effect of HOSVD and
convergence results of OffSBL. We then present the complexity
analysis of dSBL, demonstrating its computational advantage
compared to other methods. Finally, we discuss extensions of
our algorithms to other similar signal models.

A. Analysis of Decomposition-Based Algorithm

We start with the decomposition error bound, where we quan-
tify the error between the decomposed vectors {ŷi}Ii=1 and the
true signal components {yi = H̄i,ψ̄i

x̄i}Ii=1. We measure the
error as the angle between yi and ŷi, accounting for scaling
ambiguity in the decomposition step.

Theorem 1 (Decomposition Accuracy): Let ȳ =⊗I
i=1yi +

n̄ ∈ R
M̄ be the noisy measurement as given in (5), where yi ∈
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R
Mi and n̄ has independent zero-mean Gaussian entries with

variance σ2
t . Suppose the signal satisfies

λ2 = ‖ ⊗I
i=1 yi‖22/σ2

t ≥ Cgap

(√
M̄ + max

1≤i≤I
Mi

)

,

for a large constant Cgap > 0. Then, there exist constants c, C >
0 such that with probability at least 1− C exp{−cMi},

sin(ϑi)≤ C
(√

Miλ
−1 +

√
M̄λ−2

)
, i ∈ [I],

where ϑi := arccos
(
|yT

i ŷi|/(‖yi‖2‖ŷi‖2)
)

is the angle be-
tween yi and its estimate ŷi obtained by solving (7) and (8).

Proof: See Appendix A.
We note that λ/M̄ represents the signal-to-noise ratio (SNR)

of our measurement model, and a higher SNR (i.e., a larger λ)
improves estimation accuracy, as expected. As λ goes to ∞
(noiseless case), the error bounds approach zero. Conversely,
when the signal strength is insufficient to meet the required
condition, there is no consistent estimator for yi’s [31].

While the decomposition accuracy reflects how well ŷi aligns
with the true signal yi, we can also access the noise level
after decomposition. We next quantify the denoising effect of
the decomposition step, which refers to noise reduction in the
measurements, i.e., ‖ ⊗I

i=1 ŷi −⊗I
i=1yi‖22 is expected to be

smaller than E{‖n̄‖22}= σ2
t M̄ , as summarized in the following

result.
Theorem 2 (Denoising Effect): Let ȳ =⊗I

i=1yi + n̄ ∈ R
M̄

denote the noisy measurement as in (5), where yi ∈ R
Mi and n̄

has independent zero-mean Gaussian entries with variance σ2
t .

Let ŷi denote the estimate of yi obtained by solving (7) and
(8). Then, the estimates satisfy

‖ ⊗I
i=1 ŷi −⊗I

i=1yi‖2

≤ σt

(

2

I∑

i=1

[

3
√
Mi +

√
M̄/Mi

]

+ 1 + 2
√

max
1≤j≤I

Mj

)

,

(18)

with probability exceeding 1− 3
∑I

i=1 e
−Mi . Moreover,

E
{
‖ ⊗I

i=1 ŷi −⊗I
i=1yi‖22

}
≈ σ2

t

(
I∑

i=1

Mi + 1− I

)

. (19)

Proof: See Appendix B.
To gain insights from Theorem 2, suppose that Mi =O(M)

for i ∈ [I] for some value M . Then, (18) shows that the noise
level ‖ ⊗I

i=1 ŷi −⊗I
i=1yi‖22 in the decomposed signal is dom-

inated by the term O(σ2
t M̄/Mi) =O(M I−1σ2

t ) for I ≥ 2.
Then, in the general situation with I ≥ 2, compared to the
noisy signal ȳ, the noise level reduces from O(M Iσ2

t ) to
O(M I−1σ2

t ) after HOSVD. Besides, from (19), the average
noise level can be approximated as O(MIσ2

t ) when M > I .
Specifically, the noise level E{‖n̄‖2}= σ2

t M̄ reduces approx-
imately by

E
{
‖ ⊗I

i=1 ŷi −⊗I
i=1yi‖22

}

E{‖n̄‖22}
≈
∑I

i=1 Mi + 1− I

M̄
< 1.

The probabilistic bound in Theorem 2 can also be interpreted
as an error bound for HOSVD. Consider the simplest case

I = 2 and fix M̄ =M1M2 and σt. The upper bound in (18)
(with respect to σt) can be bounded from below as

8(
√

M1 +
√

M2) + 1 + 2
√

max{M1,M2}

≥ 8

⎡

⎣ min
M1,M2

M1M2=M̄

√
M1 +

√
M2

⎤

⎦+ 1 + 2M̄1/4 = 18M̄1/4 + 1,

where equality is achieved when M1 =M2. Therefore, the
bound in (18) is minimized when the vectors yi’s have the
same size.

We present the next corollary on the low complexity ap-
proximation, obtained by setting I = 2 and M2 = M̄/M1 in
Theorem 2, noting that it has the same first step as HOSVD.

Corollary 1: Under the assumptions of Theorem 2, if ȳ1 and
ŷ1 are obtained from ȳ using the low complexity approximation
(9), with probability at least 1− 3(e−M1 + e−M̄/M1),

‖ŷ1 ⊗ ȳ1 − ȳ‖2 ≤ σt

(

1 + 18
√

max
{
M1, M̄/M1

}
)

,

and E
{
‖ŷ1 ⊗ ȳ1 − ȳ‖22

}
≈ σ2

t (M1 + M̄/M1 − 1).
Corollary 1 shows that the first step of low complexity ap-

proximation also aids denoising. To intuitively see this, we
reorganize ⊗I

i=1yi into a rank-one matrix Y := (⊗I
i=2yi)y

T
1

Ȳ = Y + N̄ =
(
⊗I

i=2yi

)
yT
1 + N̄ ,

with vec (Ȳ ) = ȳ, vec(Y ) =⊗I
i=1yi, and vec (N̄) = n̄. Here,

the noise term is unstructured N̄ and typically has full rank. The
first step (i= 1) of (9), yields ŷ1 and ȳ1, which estimate Y as
ȳ1ŷ

T
1 . Comparing this estimate with Ȳ , we observe that ȳ1ŷ

T
1

preserves the rank-one structure of the signal. It discards the
components that violate the rank-one constraint, which are often
attributed to noise, effectively performing denoising. However,
a drawback of the low-complexity approximation is that the
error from one step can propagate to the subsequent steps,
as later computations depend on estimates from the previous
steps. In contrast, the error in HOSVD is independent in each
subspace, leading to a better decomposition but with a higher
computation cost.

B. Analysis of OffSBL Algorithm

This section discusses the convergence results for OffSBL in
Algorithm 1. We note that OffSBL is a two-level iterative algo-
rithm, where the outer EM iteration is given by (14) followed
by (13) and (15), and the inner loop updates the grid points via
(17). We first provide the guarantees for the inner loop for a
given rth EM iteration.

Lemma 2 (Convergence of Update): Consider the alternating
update (17) in the rth EM iteration. If supψ∈[ψl,ψr] ‖h(ψ)‖22 <
∞, the sequence {g(ψ(r,t))}∞t=0 is non-increasing and conver-
gent. Its iterate {ψ(r,t)}∞t=0 adopts at least one limit point.

Proof: First, we note that there always exists an optimal
solution to (17) due to the continuity of the function fn∗ . The
extreme value theorem states that fn∗(ψ) must reach a min-
imum at least once within the closed and bounded constraint
set. The solvability of (17) further indicates

g(ψ(r,t+1))≤ g(ψ(r,t)). (20)
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Further, the cost function g(ψ) is bounded from below as

g(ψ) = ‖ŷ −H(ψ)μx‖22 + tr(ΣxH(ψ)HH(ψ))

≥−2Re(tr {MH(ψ)})
≥− tr

{
MHM

}
− tr

{
HH(ψ)H(ψ)

}

≥− tr
{
MHM

}
−N sup

ψ∈[ψl,ψr]

‖h(ψ)‖22 >−∞.

Thus, by the monotone convergence theorem, the sequence
{g(ψ(r,t))}∞t=0 converges. The monotonicity (20) also ensures
that {ψ(r,t)}∞t=0 belongs to the sublevel set of ψ(r,0). Since
g(ψ) is continuous, its sublevel sets are compact, implying that
the sequence {ψ(r,t)}∞t=0 adopts at least one limit point.

We next prove the convergence of our OffSBL algorithm.
For the convergence result, we assume the zero-mean Gaussian
noise n in (11) has a known variance σ2 > 0 and present the
convergence based on iterates {γ(r),ψ(r)}∞r=0, i.e., we do not
update σ2 via (15), but use the true value of σ2 in Algorithm 1.
This assumption simplifies deriving a lower bound for the neg-
ative log-likelihood function (12), which is challenging when
σ2 = 0 or treated as a variable. Moreover, assuming σ2 > 0 is
standard in SBL analysis [34], [35] and the noiseless settings
corresponds the limit where σ2 → 0. Thus, the results below are
asymptotically applicable to the noiseless case.

Theorem 3 (Convergence Property of OffSBL): Consider
the problem (11) where n is zero-mean Gaussian noise
with known variance σ2 > 0, solved using OffSBL in Algo-
rithm 1. If supψ∈[ψl,ψr] ‖h(ψ)‖22 <∞, the cost function se-
quence {L(γ(r),ψ(r))}∞r=0 converges monotonically to some
value L∗, and the sequence {γ(r),ψ(r)}∞r=0 converges to a set
S∗ with L(γ,ψ) = L∗ for any {γ,ψ} ∈ S∗.

Proof: We have Q(γ(r),ψ(r))≤Q(γ(r+1),ψ(r+1)) in the
rth EM iteration due to Lemma 2. Then, OffSBL is a gener-
alized EM algorithm and the sequence {L(γ(r),ψ(r))}∞r=0 is
nonincreasing [36]. Also, L(γ,ψ) is bounded from below as

L (γ,ψ) = log |Σy|+ tr
(
ŷHΣ−1

y ŷ
)
≥ log |Σy| ≥M log σ2,

where Σ−1
y = (σ2IM +H(ψ)ΓH(ψ)H)−1 is positive defi-

nite for γ ≥ 0 and ψ ∈ [ψl, ψr]
N . The last inequality is be-

cause the eigenvalues of Σy are lower bounded by σ2 [7].
Thus, by the monotone convergence theorem, the sequence
{L(γ(r),ψ(r))}∞r=0 converges to some value L∗.

Further, the function L is a coercive function of γ and contin-
uous in both γ and ψ [34, Lemma 3]. Consequently, its sublevel
sets are compact. The nonincreasing {L(γ(r),ψ(r))}∞r=0 indi-
cates that {γ(r),ψ(r)}∞r=0 adopts at least one limit point in the
level set of L∗, i.e., S∗, which completes the proof.

We conclude by noting that although the properties of limit
points of the EM iterations are unknown, OffSBL offers a
sequence over which the negative log-likelihood L is nonin-
creasing, aligning with the problem (12). We also empirically
observe that OffSBL iterates also converge.

C. Algorithm Complexity

For simplicity and interpretability, we assume Mi =O(M),
Ni =O(N), and I <M <N , where Ni is the number of

grids adopted in the BEM of (10). The time complexity
of dSBL with HOSVD is O

(
REMN2MI + IM I+1

)
while

low-complexity approximation has O
(
REMN2MI +M I+1

)
.

Here, REM denotes the number of EM iterations. The dif-
ference between HOSVD and low complexity approximation-
based schemes is roughly of order I . Meanwhile, both have
similar space complexity, i.e., O(M I +MN +N2). Also,
all sparse recovery subproblems are independent of each
other and can thus be solved in parallel. In that case, the
time complexity changes to O(M I+1 +REMN2M) for low-
complexity approximation based and O(IM I+1 +REMN2M)
for HOSVD based, while the space complexity becomes
O(M I + IMN + IN2). For comparison, the time complexity
of AM- and SVD-KroSBL is O

(
REM(RAMIN I + (MN)I)

)

and O
(
REM(N I+1 + (MN)I)

)
, respectively, and the space

complexity is O((MN)I) for both. Here, RAM denotes the
number of AM iterations in AM-KroSBL. Therefore, both the
time and space complexities of our algorithm are several orders
less than the state-of-the-art KroSBL methods.

D. Extensions to Similar Structures

We reiterate that the decomposition and the OffSBL algo-
rithms we presented are general algorithmic techniques and
can also be applied independently. For instance, for estimation
tasks involving Kronecker-structured signals, if there is no grid
mismatch and the parameters ψ̄i lie on a discrete set, one can
combine the decomposition algorithm with any sparse recovery
algorithm. Similarly, OffSBL is a stand-alone off-grid algo-
rithm for conventional linear inversion problems (i.e., I = 1).
Moreover, these techniques can be extended to other parameter
estimation models, as discussed next.

1) Superposition of Kronecker-structured Data: In several
wideband orthogonal frequency division multiplexing multiple
input multiple output (MIMO) systems [5], [6], [37], measure-
ments ȳ takes the form

ȳ =

U∑

u=1

(
⊗I

i=1H̄u,i,ψ̄u,i
x̄u,i

)
+ n̄. (21)

where the special case of U = 1 reduces to (5). Here, we can
rewrite (21) using the tensor form as

Y =

U∑

u=1

◦Ii=1

(
H̄u,i,ψ̄u,i

x̄u,i

)
+ N̄ .

Thus, each factor H̄u,i,ψ̄u,i
x̄u,i for u= [U ] and i ∈ [I] can

be obtained by tensor canonical polyadic decomposition under
mild conditions for uniqueness of the decomposition [29], fol-
lowed by OffSBL for unknown parameter estimation.

2) Non-Kronecker-structured Sparse Vector: Some applica-
tions [2], [7], [10] lead to the measurement model

ȳ =
(
⊗I

i=1H̄i,ψ̄i

)
x̄+ n̄,

where the coefficient vector x̄ is not Kronecker-structured.
Here, direct decomposition of ȳ cannot be applied, but we can
use the Kronecker-structured dictionary in multidimensional
BEMs as H =⊗I

i=1Hi(ψ(i)). Here, vector ψ(i) collects all
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the variables in the ith BEM dictionary matrix Hi. Then, we
arrive at the sparse vector problem

ȳ =⊗I
i=1Hi

(
ψ(i)

)
x+ n̄, (22)

which can be solved using the OffSBL algorithm. Specifically,
we adopt a fictitious Gaussian prior distribution with covariance
matrix Γ= diag(γ) ∈ R

N̄×N̄ on x. Then the estimates of γ,
{ψ(i)}Ii=1 and σ2 are determined by the type II ML with EM
algorithm. The hyperparameter γ and the noise variance σ2 can
be similarly obtained using (13) and (15). We can exploit the
Kronecker structure in (22) to simplify the alternating mini-
mization of OffSBL for {ψ(i)}Ii=1. The EM update step for
{ψ(i)}Ii=1 is equivalent to minimizing

g
(
{ψ(i)}Ii=1

)
= tr

(
HΣHH

)
− 2Re {tr (MH)} .

Let ψi∗,n∗ be the n∗th variable of the i∗th BEM dictionary
matrix Hi∗ . Then, the alternating minimization step optimizes
ψi∗,n∗ with other ψi,n’s being fixed, as in OffSBL. To this end,
for any i∗, we can reorder the Kronecker product as

H =⊗I
i=1Hi = P i∗(Hi∗ ⊗ Si∗)Qi∗ ,

where Si∗ = (⊗I
i=i∗+1Hi)⊗ (⊗i∗−1

i=1 Hi) is independent of
Hi∗ and P i∗ and Qi∗ are the corresponding permutation ma-
trices [38]. Thus, the update step for ψi∗,n∗ minimizes

fi∗,n∗(ψi∗,n∗) = tr
([(

HH
i∗Hi∗

)
⊗
(
SH

i∗Si∗

)]
Qi∗ΣQH

i∗

)

+ tr([Hi∗ ⊗ Si∗ ]Qi∗MP i∗)

= 2Re{vH
i∗,n∗hi∗,n∗}+ci∗,n∗‖hi∗,n∗‖22+ρi∗,n∗ ,

where vi∗,n∗ , ci∗,n∗ and ρi∗,n∗ are independent of ψi∗,n∗ .
Thus, fi∗,n∗(ψi∗,n∗) can be efficiently minimized with respect
to ψi∗,n∗ using a grid search. Also, alternating minimization
sequentially updates ψi∗,n∗ for different values of i∗ and n∗,
unlike dSBL where parallel updates are possible. Consequently,
OffSBL incurs a higher computational cost here.

IV. APPLICATION: CHANNEL ESTIMATION FOR IRS-AIDED

MIMO SYSTEM

In this section, we explore the application of our algorithm to
cascaded channel estimation in an IRS-assisted MIMO system.
We consider an uplink MIMO millimeter-wave system with a
transmitter MS with T antennas, a receiver BS with R antennas,
and a uniform linear array IRS with L elements. Let ΦMS ∈
C

L×T andΦBS ∈ C
R×L denote the geometric narrowband MS-

IRS and IRS-BS channel, respectively,

ΦMS =

PMS∑

p=1

√
LT

PMS
βMS,paL(φMS,p)aT (αMS)

H, (23)

ΦBS =

PBS∑

p=1

√
RL

PBS
βBS,paR(αBS,p)aL(φBS)

H, (24)

where we define the steering vector aQ(ψ) ∈ C
Q for an integer

Q and angle ψ as

aQ(ψ) = 1/
√

Q[1, ej
2πΔ
η cosψ, · · · , ej 2πΔ

η (Q−1) cosψ]T

Here, Δ is the distance between two adjacent elements, and η is
the wavelength. We denote the number of rays in the scatter as
PMS and PBS. The angles φMS,p, αMS, αBS,p, and φBS denote
the pth AoA of the IRS, and the AoD of the MS, the pth AoA of
the BS, and the AoD of the IRS, respectively (see [8, Fig. 1]).
Then, the cascaded MS-IRS-BS channel can be expressed as
ΦBS diag(ω)ΦMS for any IRS configuration ω ∈ C

L. The lth
entry of ω represents the gain and phase shift due to the lth
IRS element. Our goal is to estimate the cascaded channel
ΦBS diag(ω)ΦMS, which is a function of angles φMS,p, αMS,
αBS,p, and φBS, for a given ω.

We estimate the channel using pilot data transmitted over
K time slots. We choose KI IRS configurations, and for each
configuration, transmit pilot data G ∈ C

T×KP over KP time
slots, where K =KIKP. For the kth configuration ωk, the
received signal Y k =ΦBS diag(ωk)ΦMSG+Nk ∈ C

R×KP

where Nk ∈ C
R×KP is the noise. Using (23) and (24), we get

Y k = ζ
√
LAR,BSβBSaL(φBS)

H diag(ωk)

×AL,MSβMSaT (αMS)
HG+Nk,

where AR,BS ∈ C
R×PBS and βBS ∈ C

PBS have aR(αBS,p)
and βBS,p as their pth column and entry, respectively. Sim-
ilarly, AL,MS ∈ C

R×PMS and βMS ∈ C
PMS have aL(αMS,p)

and βMS,p as their pth column and entry, respectively. Also,

ζ :=
√

LRT
PMSPBS

. Vectorizing Y k and using the properties of
the Khatri-Rao product [39, Lemma A1] leads to (see [8] for
detailed algebraic simplifications)

yk = ζ
√
L
(
AL,MSβMSaT (αMS)

HG
)T

�
(
AR,BSβBSaL(φBS)

H
)
ωk + nk

=
[
ωT

kAL,IβMS

] [
ζGTa∗

T (αMS)
]
⊗ [AR,BSβBS] + nk,

where AL,I ∈ C
L×PMS whose pth column is aL(φMS,p −

φBS), � is the Khatri-Rao product, and (·)∗ is conjugate. Here,
the channel is given by

vec(ΦBS diag(ω)ΦMS)

=
[
ωTAL,IβMSζa

∗
T (αMS)

]
⊗ [AR,BSβBS] . (25)

Combining the received signals obtained for the KI configura-
tions, we obtain ȳ ∈ C

RK

ȳ =
[
ΩTAL,IβMS

]
⊗
[
ζGTa∗

T (αMS)
]
⊗ [AR,BSβBS] + n̄,

(26)

where Ω ∈ C
L×KI with the kth column as ωk. Therefore, from

(25), the channel estimation problem reduces to recovering
AL,IβMS, aT (αMS), and AR,BSβBS from ȳ up to a scaling
factor, given that G and Ω are known.

Comparing (26) with (5), we see the signal model here is
the Kronecker product of three terms, i.e., I = 3. The unknown
parameters are AoA or AoD given by ψ̄1 ∈ R

PMS , ψ̄2 = αMS ∈
R, and ψ̄3 ∈ R

PBS where the pth entry of ψ̄1 and ψ̄3 are
φMS,p − φBS and αBS,p, respectively. Also, ψi,l = 0 and ψi,r =
π for all values of i. The basis functions are related to the
steering vectors as

h1(ψ) =ΩTaL(ψ), h2(ψ) =GTaT (ψ), h3(ψ) = aR(ψ).
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Correspondingly, we have x̄1 = βMS, x̄2 = ζ, and x̄3 = βBS.
The channel estimation problem is now translated into estimat-
ing {ψ̄i}3i=1 and {x̄i}3i=1 from the noisy measurement ȳ, where
our dSBL (Algorithm 1) can be applied.

Using the decomposition step (Line 2) of Algorithm 1, we
first decompose ȳ into three vectors, ŷ1 ∈ C

KI , ŷ2 ∈ C
KP , and

ŷ3 ∈ C
R, corresponding to the three terms in the Kronecker

product in (26). We then use the dictionary for the steering
vectors for a given integer Q as

AQ(ψ) =
[
aQ(ψ1) aQ(ψ2) . . . aQ(ψN )

]
∈ C

Q×N ,
(27)

where ψ captures the unknown angles. This formulation leads
to the following three problems similar to (11),

ŷi =Hi(ψ(i))xi + ni, i= 1, 2, 3, (28)

where H1(ψ(1)) =ΩTAL(ψ(1)), H2(ψ(2)) =GTAT (ψ(2)),
and H3(ψ(3)) =AR(ψ(3)). We solve them via OffSBL, ini-
tializing ψ(i) by sampling the angular domain using N grid
angles {θn}Nn=1 such that cos(θn) = 2(n− 1)/N − 1. OffSBL
provides estimates (ψ̂(i), x̂i) of (ψ̄i, x̄i), for i= 1, 2, 3. Finally,
using (25) we compute the channel estimate for a given config-
uration ω as

[
ωTAL(ψ̂(1))x̂1AT (ψ̂(2))x̂2

]
⊗
[
AR(ψ̂(3))x̂3

]
.

Here, the channel estimate is not affected by scaling ambiguity.
We reiterate that OffSBL is a standalone off-grid algorithm

applicable to various linear inversion problems (i.e., I = 1).
One notable example is direction-of-arrival estimation, where
K far-field narrowband signals impinge on a uniform array with
L elements (K <L), resulting in the received signal

ŷ =AL(ψ)x+ n,

where the BEM dictionary AL(ψ) defined in (27) has steering
vectors as its columns, ψ captures the AoAs, and x is the
sparse vector whose support corresponds to the true AoAs. This
formulation is similar to i= 3 in (28) for the IRS-aided channel
estimation problem. In several other applications, the BEM
dictionary takes the form BAL(ψ). Specifically, for i= 1 and
i= 2 in (28), B corresponds to ΩT and GT, respectively. In
other cases, B can represent beamformers [5], [6], [40], com-
biners [5], IRS configurations [41], pilot data [6], or random
matrices [42].

V. PERFORMANCE EVALUATION

We present numerical results to compare our algorithm with
the state-of-the-art methods2. We present three sets of results.
The first two demonstrate the decomposition step and OffSBL
for parameter estimation. The third shows the combined results
for IRS-aided channel estimation.

2Our code is found at https://github.com/YanbinHe/JournalDecomOffGrid.
HOSVD is implemented using Tensorlab [43].

A. Decomposition-Based Sparse Vector Recovery

In this section, we highlight the advantages of the decomposi-
tion step in reducing computational complexity and enhancing
the denoising effect. We focus on recovering the Kronecker-
structured sparse vector (4) using a multidimensional BEM (3)
in the on-grid setting, without requiring the OffSBL algorithm.
By combining the decomposition step with SBL, we demon-
strate the benefits of this approach. We compare our method’s
performance with other methods that do not use decomposition,
such as classical SBL [44], classical OMP, AM-KroSBL, and
SVD-KroSBL [8]. Specifically, AM- and SVD-KroSBL only
consider the Kronecker-structured support of the sparse vector
and do not exploit the Kronecker structure in the nonzero entries
as in (4).

We set I = 3 with Mi =M , and Ni = 12 for i= 1, 2, 3
in (3) and (4). So, we have H =⊗3

i=1Hi and x=⊗3
i=1xi

with xi ∈ R
12. The columns of Hi ∈ C

M×12 for i= 1, 2, 3 are
the steering vectors evaluated by the grids {θn}12n=1 defined
in Sec. IV. There are four nonzeros in each xi, whose posi-
tions are uniformly chosen from the grids and amplitudes are
uniformly drawn from [0.5, 1.5]. Here, measurement level M
is set to be {8, 9, 10}, labeled as Low, Medium, and High
measurement case, controlling the number of measurements
M̄ =M3 and the undersampling ratio M3/N3. We adopt the
additive white Gaussian noise with zero mean whose variance
is determined by SNR (dB) = 10 log10 E{‖Hx‖22/‖n‖22} of
{5, 10, 15, 20, 25, 30}. Three metrics are considered for per-
formance evaluation: normalized mean squared error (NMSE),
support recovery rate (SRR), and run time. Here, we define

NMSE = E

{
‖x− x̂‖22
‖x‖22

}

,SRR =
| supp(x̂) ∩ supp(x)|
| supp(x̂) ∪ supp(x)| ,

where x is the ground truth and x̂ is the estimated vector.
We limit the number of iterations for the SBL-based methods
(dSBL, cSBL, AM-KroSBL, and SVD-KroSBL) to 200 and
prune small entries in hyperparameters for faster convergence.

The denoising effect of the decomposition step is shown in
Table I. Here, we compare the noise levels of a) the origi-
nal noisy signal y in (3), b) the signal after decomposition
ŷh :=⊗3

i=1ŷi where ŷi’s are obtained through (7) or (8), c)
the signal after decomposition ŷl :=⊗3

i=1ŷi where ŷi’s are
obtained through (9), and d) the result of (19). It can be seen
that the noise level for both low complexity approximation
and HOSVD is significantly reduced after decomposition. Low
complexity approximation can reduce even more noise. It also
closely matches the result in (19), validating our claim on the
denoising effect discussed in Sec. III-A.

Fig. 1 shows that with higher SNR and more measure-
ments, all algorithms yield better NMSE and SRR, as expected.
Our dSBL algorithm outperforms other methods in NMSE
and has the best SRR performance in most cases, demonstrat-
ing the efficacy of the decomposition idea. In contrast to the
SVD-KroSBL algorithm that uses Kronecker-structured sup-
port, dSBL achieves superior NMSE by using the additional
Kronecker structure in nonzero entries explicitly enforced via
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TABLE I
ILLUSTRATION OF DENOISING WITH M = 10, USING THE NOISY SIGNAL y,
RECONSTRUCTED SIGNAL ŷh =⊗3

i=1ŷi USING HOSVD, RECONSTRUCTED

SIGNAL ŷl =⊗3
i=1ŷi USING LOW COMPLEXITY APPROXIMATION, AND

GROUND TRUTH yo

Noise
level

SNR
5 dB 10 dB 15 dB 20 dB 25 dB 30 dB

‖y − yo‖2
2 34.6609 9.5529 2.8528 0.9720 0.3044 0.0895

‖ŷh − yo‖2
2 0.9910 0.2741 0.0798 0.0267 0.0087 0.0023

‖ŷl − yo‖2
2 0.9798 0.2720 0.0796 0.0267 0.0087 0.0023

From (19) 0.9286 0.2580 0.0774 0.0263 0.0082 0.0024

Fig. 1. NMSE and SRR of different algorithms as functions of SNR. For
the SRR curves, we choose the low measurement case to avoid clutter.

(4) through the decomposition step. The relatively lower per-
formance of AM-KroSBL is attributed to its slow convergence,
given that we fix the number of EM iterations, as pointed
out in [7]. The lower SRR and NMSE observed in the low
SNR regime are due to small nonzero values in the estimate
at locations where the ground truth is zero. We only include
the low measurement case in the SRR result in Fig. 1, since all
three measurement regimes exhibit similar trends; the others
were omitted for clarity and better illustration.

Finally, Table II demonstrates that dSBL requires two-order
less run time than the other competing algorithms, corroborat-
ing the computational advantage of our decomposition.

B. Off-Grid Parameters Estimation

In this section, we apply OffSBL to the unknown parameters
estimation problem. The model we consider here is the case
in (28) with i= 1, where the goal is to estimate angles ψ(i)

and coefficients xi. The column function is h1(ψ) =ΩTaL(ψ)
with Ω ∈ C

L×M , L= 256, and M being the number of mea-
surements. Here, M is {20, 25, 30, 35, 40, 45, 50} and controls
the undersampling ratio defined as M

N with N = 180. The ma-
trix Ω is randomly generated, whose entries take the form
ejφ where φ is drawn from a uniform distribution on [0, π].
We set the number of unknown parameters (angles) S1 to be
{2, 4, 6}, and the angles are drawn sequentially from a uniform
distribution on [−0.9, 0.9] ensuring a minimal separation of 0.1.
The coefficients are drawn from CN (0, 2).

We use three benchmarks: i) classical (on-grid) SBL, ii) off-
grid sparse Bayesian inference (OGSBI) using the first-order
Taylor expansion [14], and iii) light-weight sequential SBL
(LWSSBL), a state-of-the-art off-grid method using marginal
likelihood optimization [21]. In our simulations, we do not

TABLE II
RUNTIME OF DIFFERENT SCHEMES IN SECONDS

SNR 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB

OMP 0.599 0.602 0.605 0.603 0.604 0.603
cSBL 8.961 7.470 6.111 5.552 5.397 5.318
AM-KroSBL 8.528 8.516 7.249 5.424 4.520 4.093
SVD-KroSBL 4.534 3.360 2.840 2.668 2.627 2.608
dSBL 0.009 0.005 0.004 0.004 0.004 0.004

Fig. 2. MSE And success probability as a function of SNR and undersam-
pling ratio M

N
for unknown parameter estimation with a varying number of

unknown parameters S1 and N = 180.

provide the number of unknowns S1 to all algorithms, but only
an upper bound S̄ of the number of unknowns. In practice,
we only solve the problem (17) for the variables correspond-
ing to S̄ largest peaks of the hyperparameter γ instead of all
variables. OffSBL estimates the noise variance using (15). SBL
and OGSBI can also estimate the noise variance, while noise
variance estimation for LWSSBL is not discussed [21]. So
for LWSSBL, we set noise variance estimate as 0.1‖ȳ‖22/M
as in [21]. We choose SNR = 10 log10 E{‖H̄ψ̄x̄‖22/‖n̄‖22} as
{5, 10, 15, 20, 25, 30} in dB. The performance metrics are mean
squared error (MSE) and success probability, where

MSE = E

{
1

S1

S1∑

s=1

(ψ̄s − ψ̂s)
2

}

,

with expectation taken over 103 independent trials. Here, ψ̄s

and ψ̂s denote the true value and the estimation, respectively.
The success probability is defined as the fraction of trials with
MSE smaller than 10−6.

We compare MSE and recovery probability for different
SNRs and undersampling ratios in Fig. 2. We see that higher
SNR and more measurements facilitate all algorithms, except
OGSBI in Fig. 2(b) and 2(d). This is because OGSBI cannot
effectively optimize the grid points in this setting, as we show
later in Fig. 3. Among all candidates, our OffSBL has the
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Fig. 3. Pseudospectrum γ of different algorithms in the worst-case scenario analysis. (a)–(d): pseudospectrum γ(1000) of the 1000th EM iteration. Different
colors mean different independent realizations of gaussian noise. (e)–(g): dynamic evolution of pseudospectrum {γ(r)}1≤r≤30 for the EM iterations of
EM-based SBL algorithms. Black dot: grid points chosen to be updated. Cross: true values. Although SBL operates as an on-grid method, we still include
the grid points that correspond to the top four peaks, sorely for comparison purposes.

best performance in both MSE and recovery probability in
most cases. An exception is SNR = 5dB where LWSSBL has a
higher success probability. However, LWSSBL often produces
larger errors when it fails, making OffSBL superior in MSE.

In Fig. 3, we present a worst-case scenario study. We set
M = 60 measurements and SNR = 30dB. The unknowns are
[−0.5050,−0.1050, 0.1050, 0.5050], shown as vertical dashed
lines in Fig. 3(a)–3(d). These values are intentionally selected
to be midway between two grids to create a challenging case for
grid optimization. All the coefficients are set to one. We pro-
vide the number of unknowns to all the algorithms but not the
noise variance. We perform 103 EM iterations to facilitate the
convergence of all algorithms. The input of all algorithms is the
same noiseless signal but with ten independent Gaussian noise
realizations. We plot the final pseudospectrum (hyperparameter
γ(1000)) after 103 EM iterations for ten noise realizations in
Fig. 3(a)–3(d) with different colors.

Comparing the different algorithms, we note that OffSBL
consistently recovers all parameters, with minimal amplitude
spikes appearing in the pseudospectrum corresponding to pa-
rameters other than the true values. LWSSBL also recovers
the unknowns but with a lower success probability. LWSSBL

TABLE III
RUNTIME IN SECOND FOR UNKNOWN PARAMETER ESTIMATION WITH

S1 = 2 AND SNR = 30 DB

M 20 25 30 35 40 45 50
OffSBL 0.602 0.546 0.539 0.541 0.477 0.504 0.522
SBL 0.131 0.137 0.161 0.170 0.171 0.181 0.191
LWSSBL 0.032 0.033 0.035 0.037 0.038 0.041 0.043
OGSBI 0.250 0.269 0.274 0.286 0.290 0.305 0.315

exhibits more peaks at parameters other than the true values,
implying that it is more prone to being misled by incorrect
columns in the dictionary due to its greedy nature. In contrast,
while OffSBL takes longer to reach the final result (see Ta-
ble III), evaluating all columns rather than proceeding greedily
reduces the risk of being misled by incorrect columns.

Further, there is little difference between OGSBI and the on-
grid benchmark SBL, indicating that the first-order approxima-
tion is less effective in this case. However, OGSBI has some
improvement over SBL as reflected by a lower MSE. These
findings also highlight that algorithms relying on on-grid SBL
for rough estimates and then refining peaks are likely to fail, as
on-grid SBL often doesn’t provide a reliable starting point, with
peaks rarely matching the true parameters. This is likely due
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to the dictionary’s structure, which takes the form ΩTAL(ψ)
for some integer L. When ΩT ∈ C

M×L has fewer rows than
columns (M <L), the compression effect from multiplication
by ΩT can lead to information loss, creating a challenging
setting for off-grid sparse recovery [45]. However, in many
applications, such as IRS channel estimation, where the value
of M represents the number of time slots, M is typically lim-
ited. Thus, integrating grid updates into the EM iteration, as
implemented in OffSBL, is essential.

Fig. 3(e)–3(g) present the pseudospectrum {γ(r)}1≤r≤30 for
OffSBL, OGSBI, and SBL, along with the grid points that are
updated dynamically throughout the EM iteration. Although
SBL is an on-grid method, we pinpoint the grids of the top
four peaks. All algorithms start from the same γ. Our OffSBL
demonstrates superior optimization of grid points, identifying
the correct values and amplitudes, whereas SBL and OGSBI do
not reveal the true parameters. The pseudospectrum highlights
the effectiveness of our grid adjustment.

C. IRS-Aided Wireless Channel Estimation

We focus on the IRS-aided channel estimation problem, as
described in Sec. IV. Here, we first use the decomposition step
and then turn to the BEM and apply OffSBL separately for
i= 1, 2, 3 in (28). Thus, the channel estimation scheme can
be viewed as a collective evaluation of the decomposition and
OffSBL. For benchmarking, we apply the same decomposi-
tion step, and then solve (28) using the same algorithms as
in Sec. V-B. For simplicity, we denote the problem (28) with
i= 1, 2, 3 as P1, P2, and P3, respectively.

For IRS-aided channel estimation, we use R= 16 BS anten-
nas, T = 6 MS antennas, L= 256 IRS elements. We consider
only one path between the BS and IRS [46], [47], [48], [49],
as the IRS is typically mounted in locations with fewer ob-
stacles [50], [51], and the line-of-sight path is generally much
stronger than the other paths. Therefore, we take PBS = 1 and
PMS = 3. The IRS configuration entries {ωk}KI

k=1 are 1/
√
Lejφ

where φ is drawn uniformly randomly from [0, π] withKI = 40.
We send KP = 20 pilot signals for each IRS configuration.
Our OffSBL algorithm uses the dictionaries in P1, P2, and
P3 with N1 = 180, N2 = 50, and N3 = 50, respectively. The
other algorithms set N1 = 180, N2 = 150, and N3 = 150 grid
points. The channel gains βBS and {βMS,p}PMS

p=1 in (23) and
(24) are drawn from standard complex Gaussian [52]. We ran-
domly draw αMS, {φMS,p}PMS

p=1 , φBS, and αBS from uniform
distribution in [0.3, 0.5], [−0.2, 0.2], [0.3, 0.5], and [0, 0.5], re-
spectively. We also assume that the angles are separated by at
least 0.07. We opt for SNR {−5, 0, 5, 10, 15, 20} in dB. Also,
additional channel estimation metrics are NMSE and symbol
error rate (SER) over 106 16-QAM symbols decoded using the
estimated channel, where

1

KI

KI∑

k=1

‖HBS diag(ωk)HMS − H̃BS diag(ωk)H̃MS‖2F
‖HBS diag(ωk)HMS‖2F

with H̃BS diag(ωk)H̃MS being the channel estimate.
We first examine the angle estimation results in Fig. 4. It can

be seen that our OffSBL can achieve the best performance in

Fig. 4. IRS-Aided channel estimation. (a): MSE and recovery success
probability for angle estimation in P1, P2, and P3. (b): NMSE of IRS-aided
channel estimation and SER of different algorithms as functions of SNR.

solving P1 and P2 except for the low SNR case for P2. P3 re-
duces to the normal DoA estimation problem, where LWSSBL
exhibits superior recovery ability. However, at higher SNRs,
our algorithm is able to achieve comparable performance. As
evident from the NMSE and SER plots, OffSBL consistently
recovers the true angles and accurately retrieves the coefficients,
leading to the best NMSE and SER. Although other algorithms
can perform well in solving P2 and P3, the significant recovery
errors in P1 affect the overall accuracy of channel retrieval.

VI. CONCLUSION

We addressed the joint estimation of unknown parame-
ters and coefficients from Kronecker-structured measurements.
Leveraging the Kronecker structure, we decomposed the prob-
lem into smaller independent subproblems. Each subproblem
was solved with EM-based SBL integrated with a novel grid
optimization method to reduce grid mismatch. We provided
a theoretical analysis of the error bound for the decompo-
sition step and established the algorithm’s convergence. Our
decomposition step also reduces the noise level in the mea-
surements, which was also analyzed theoretically. Numeri-
cal results showed that the decomposition step reduces com-
plexity, while the grid optimization improves accuracy. Fu-
ture work can analyze the resolution of OffSBL and ex-
tend it to the recovery of sparse tensors with ranks greater
than one.

APPENDIX A
PROOF OF THEOREM 1

We define PU as the projection matrix onto the column
space of a given matrix U and U⊥ as the projection onto its
orthogonal subspace. Also, ‖ · ‖ is the matrix spectral norm. We
need the below lemma for the proof.
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Lemma 3 [53, Supplement Sec. 1.2]: Suppose X ∈ R
p1×p2

is a rank-r matrix and Y =X +Z where the entries of Z ∈
R

p1×p2 follow a zero mean Gaussian distribution with unit
variance. We denote V , V̂ ∈ R

p2×r as the matrix of the right
singular vectors of X and the matrix of the top r right singular
vectors of Y , respectively. Suppose the rth right singular value
σ2
r of X satisfies σ2

r ≥ Cgapσ
2(
√
p1p2 + p2) for some large

constant Cgap > 0. Then, for all x≥ 0, there exist constants
C, c > 0 such that

P {‖P Y V Y V ⊥‖ ≤ x} ≥ 1− C exp
{
−c(σ2

r + p1)
}

− C exp
{
Cp2 − cmin

(
x2, x

√
σ2
r + p1

)}
,

and with probability exceeding 1− C exp
{
−cσ4

r/(σ
2
r + p1)

}
,

‖ sinΘ(V̂ ,V )‖2 ≤ C(σ2
r + p1)σ

−4
r ‖P Y V Y V ⊥‖2,

Here, Θ(V̂ ,V ) = diag(arccos(σ1), · · · , arccos(σr)) where
σ1 ≥ · · · ≥ σr ≥ 0 are the singular values of V TV̂ .

We prove Theorem 1 for i= 1, and i= 2, · · · , I follow sim-
ilarly. Also, we consider the decomposition of ȳ/σt instead
of ȳ. This scaling does not alter the subspaces obtained after
decomposition but ensures that the noise entries follow a zero-
mean, unit-variance Gaussian distribution, as in Lemma 3.

For i= 1, the true and estimated subspaces are spanned
by y1/‖y1‖ and ŷ1/‖ŷ1‖, respectively. The first mode ma-
tricization of the tensor Y , as defined in (6), is Y (1). Setting
r = 1, p1 = M̄/M1 and p2 =M1, and consequently, σr = λ in
Lemma 3, we derive

sin2 ϑ1 = ‖ sinΘ(ŷ1/‖ŷ1‖,y1/‖y1‖)‖
≤ C(λ2 + M̄/M1)λ

−4‖P Y T
(1)

y1
Y T

(1)y1⊥‖
2, (29)

with probability at least 1− Ce
−c λ4

λ2+p1 .
Further, we bound ‖P Y T

(1)
y1
Y T

(1)y1⊥‖2 using Lemma 3 by

setting x=
√
C̃M1 where C̃ < C/c < Cgap,

P

{
‖P Y V Y V ⊥‖ ≤ C̃

√
M1

}
≥ 1− C exp

{
−c(σ2

r + p1)
}

− C exp

{

CM1 − cmin

(

C̃M1,

√

C̃M1(σ2
r + p1)

)}

,

(30)

Then, we simplify the right-hand side of (30) using

σ2
r + p1 ≥ σ2

r = λ2 ≥ Cgap(
√
p1M1 +M1)≥ CgapM1.

(31)

Then, (30) is simplified as

P

{
‖P Y V Y V ⊥‖ ≤ C̃

√
M1

}
≥ 1− C exp {−cCgapM1}

− C exp

{[

C − cmin

(

C̃,

√

C̃Cgap

)]

M1

}

≥ 1− Ce−c̃M1 ,

for some constant c̃. So, (29) and the union bound implies

sin2 ϑ1 ≤
C(λ2 + M̄/M1)

λ4
C̃M1 =

CC̃M1

λ2
+

CC̃M̄

λ4
, (32)

with probability exceeding 1− Ce
−c λ4

λ2+p1 − Ce−c̃M1 .

Furthermore, since λ2 ≥ Cgap(
√
p1M1 +M1), with C̄ =

min(Cgap, C
2
gap), we derive

λ2 ≥
√

C̄p1M1 + C̄M1 ≥
C̄M1 +

√
C̄2M2

1 + 4C̄p1M1

2
.

Then, λ4 − C̄M1λ
2 − C̄p1M1 ≥ 0 because λ2 is greater than

both roots of the quadratic function in λ2. Thus, we deduce
λ4

λ2+p1
≥ C̄M1. So, from (32), we arrive at the desired result,

P

{

sinϑ1 ≤
√
CC̃M1

λ
+

√
CC̃M̄

λ2

}

≥ 1− 2Ce−max(cC̄,c̃)M1 .

APPENDIX B
PROOF OF THEOREM 2

Our proof uses the following lemmas.
Lemma 4 [31, Lemma 6]: Suppose X,Z are two matrices,

and the projection matrix orthogonal to the subspace spanned
by the leading r left singular vectors of X +Z is U . Then,
‖UX‖F ≤ 2

√
r‖Z‖, where r is the rank of X .

Lemma 5 [54, Corollary 5.35]: Let Z ∈ R
p1×p2 whose

entries are independent Gaussian random variables with zero
mean unit variance. Then, for any x≥ 0, the matrix satisfies
‖Z‖ ≥ √

p1 +
√
p2 + x, with probability less than 2e−x2/2.

Lemma 6 [55, Lemma 8.1]: Suppose X satisfies the non-
central χ2

d(ν) distribution with d degrees of freedom and non-
centrality parameter ν. Then, for all x > 0, it satisfies X ≥ (d+
ν) + 2

√
(d+ 2ν)x+ 2x with probability less than e−x.

Lemma 7: [30] Consider tensors Y,X , and Z , such
that Y = X ×1 A1 · · · ×I AI , where X = Z ×1 B1 · · · ×I

BI , for any compatible matrices {Ai,Bi}Ii=1. Then, Y =
Z ×1 (A1B1) · · · ×I (AIBI).

Setting the tensor order R= I and r-ranks as pi = 1 for
i ∈ [I] in [32, Eq. (19)] leads to (19). To prove the proba-
bilistic bound, we note that using tensor notation, ‖ ⊗I

i=1 ŷi −
⊗I

i=1yi‖2 = ‖Ŷ − Y‖F, where Ŷ is HOSVD output and Y =
Y + N̄ , with Y,Y and N̄ being the measurement, the noiseless
signal, and noise tensors, respectively, from (5).

HOSVD reconstructs Ŷ = ξ ×1 e1 · · · ×I eI . Here, ei, the
leading left singular vectors of the ith mode matricization of Ȳ
given by Y (i) +N (i), with Y (i) and N (i) are the ith mode ma-
tricization of Y and N̄ , respectively. Also, ξ = Ȳ ×1 e

T
1 · · · ×I

eTI , as the signal is real. Lemma 7 implies

Ŷ =
(
Y + N̄

)
×1 (e1e

T
1 )×2 · · · ×I (eIe

T
I ) = N̄(I) + Y(I),

where we define N̄(I) = N̄ ×1 (e1e
T
1 ) · · · ×I (eIe

T
I ) and

Y(i) = Y ×1 (e1e
T
1 ) · · · ×i (eie

T
i ) with Y(0) = Y . Therefore,

‖ ⊗I
i=1 ŷi −⊗I

i=1yi‖2 =
∥
∥
∥Ŷ − Y

∥
∥
∥
F

≤
∥
∥Y(I) − Y

∥
∥
F
+
∥
∥N̄(I)

∥
∥
F
. (33)

To bound the first term in (33), let P i⊥ be the projection
matrix orthogonal to ei so that Y = Y ×1 (P 1⊥ + (e1e

T
1 )),

leading to

Y = Y(0) ×1 P 1⊥ + Y(1)

= Y(0) ×1 P 1⊥ + Y(1) ×2 P 2⊥ + Y(2)
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=

I∑

i=1

Y(i−1) ×i P i⊥ + Y(I).

Therefore, using triangle inequality, we obtain

∥
∥Y(I) − Y

∥
∥
F
≤

I∑

i=1

∥
∥Y(i−1) ×i P i⊥

∥
∥
F
≤

I∑

i=1

‖Y ×i P i⊥‖F

=
I∑

i=1

∥
∥P i⊥Y (i)

∥
∥
F
≤

I∑

i=1

2‖N (i)‖. (34)

The last step follows from Lemma 4, as P i⊥ is the projection
matrix orthogonal to ei and the rank of Y (i) is 1 from (6). Also,
Lemma 5 with x=

√
2Mi and Z = σ−1

t N (i) implies that with
probability at least 1− 2e−Mi

‖σ−1
t N (i)‖ ≤

√
Mi +

√
M̄/Mi +

√
2Mi

≤ 3
√

Mi +
√

M̄/Mi.

From (34), with probability exceeding 1− 2
∑I

i=1 e
−Mi ,

∥
∥Y(I) − Y

∥
∥
F
≤ 2σt

I∑

i=1

[

3
√
Mi +

√
M̄/Mi

]

. (35)

Next, we bound the second term in (33). We note that
‖σ−1

t N̄(I)‖2F is an 1-dimensional projection of a zero mean
unit variance Gaussian tensor and follows χ2

1(0) [56, Sup-
plement Sec. C.4]. Lemma 6 states that for any x > 0
σ−1
t

∥
∥N̄(I)

∥
∥
F
≤
√

1 + 2
√
x+ 2x≤ 1 + 2

√
x with probability

exceeding 1− e−x. Setting x=max1≤i≤I Mi and combining
with (33) and (35) using the union bound yields (18) with
probability exceeding 1− 2

∑I
i=1 e

−Mi − e−max1≤i≤I Mi ≥
1− 3

∑I
i=1 e

−Mi . Hence, the proof is complete.
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