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NOTATION K
Incident wave amplitude
Ship beam
Froude number, Fn-U_/(gL)Ls
Non—dimensionalized added-resistance coefficient
Non—dimensionalized lateral drift-force coefficient
Time average of a function F, <F >= lleTF(t)dt
The sec¢ond-order steady force ° -
Added resistance
Lateral drift force
The second-order force due to the ship-generated waves
Added resistance due to the ship-generated waves

Lateral drift force due to the ship-generated waves

The second-order force due to interactions between the
{incoming wave and the ship-generated waves :

Added resistance due to interaction betweéen the
{ncoming wave and the ship-generated waves

Lateral drift force due to interaction between the
{ncoming wave and the ship—generated wayes

Gravitational accelgrationv

Green's function |

Rochin function

Kochin function due to the j-th mode of ship motion
Kochin function due to the diffraction potential
Wave number of the progressive wave, k,= 02/5

Ship length

Components of unit normal vector




(Nz'N3)
Oxyz
P=(x,y,z)=X
q(x,y,z,t)
A
Q’= (xoi yO!zo)
.-

Spo

U

X(x,y,2)

NOTATION (CONTINUED)

¥y=2 plane

Coordinate’ System translating with Speed U 1n the
Ox direction

Fileld point
Absolute Velocity, q =V

A ,
Singulaf‘pointi or point on a body surface-

Distance between p and Q

Mean surface of ship

- Mean forward speed of ship

Absolute Perturbation velocity, N=V¢ = (u,v,w)
Wave heading B=0 - following seas,

=21/2 - beam seas,

® T = head seas,

Wave length of incoming wave

“wé/g
Fluid density

Incoming wave frequency .
Uw/g
Total velocicy'poténtial, a rénl'function

Perturbation velocity Potential, a rea] function'¢
¢-¢.+¢T ¢S+¢I+¢B.¢S+¢I+¢D+ﬁf F

Body-generated velocity potential

Diffraction Potential dye to presence of ship

Incident wave potential

Forced-oscillatory wave potential
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NOTATION (CONTINUED)
Steady-state portion of ¢
Time-dependent portion of ¢
Perturbation potential, a complex function
Body~-generated velocity potentail
Diffraction potential
Incoming wave potential
The jth mode oscillatory potential
Two=dimensional diffraction potential) a complex function

Frequency of encounter, w = g - kOUcosB
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af;¢:H° equation 1s used. Numerical computatién for the head-sea
K?¢¢F X . case shows the same trend of experimental data throughout the ,
f?-4§5° ’i frequency ranges, but its magnitude is much larger than that ﬁ

ABSTRACT

The numerical procedure of calculating the second-
order steady forces is présented. The computer program ;
is developed on the basis of Lin and Reed's theory(1976).

Ship motion and diffraction potentials are required as

input data for Kochin-function caleculation. In order to
‘avoid the irregular frequencies which are associated with
Frank's close-fit method(1967), a modification which
extends the source distribution onto the calm waterline
inside of a body is made. For the diffraction problen,

: _ instead of a Helmholtz equation, a two-dLmen;ional.Laplace's

of the experiment, : !
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INTRODUCTION

It is a well known fact that when a ship is navig&ting in a seaway,
the engine power must be increased by a considerable amount in order to
keep the same speed of advance as in calm water. Espec¢ially for a high-
speed vessel or a ship on a tight schedule, it is important to predict the
additional power needed in advance not only for navigational safety but
also for economical reasons. The steady force induced by waves in the
beamwise direction is the lateral drift force. One may state that added
resistance is important from the standpoint of powering and design,-and
drift force from the standpoint of seakeeping and control. Both the lateral
drift force and the added resistance arise from the ship motion and |
diffréction of waves.

These two forces are not seemingly related to each other, but from a
mathematical point of view, they can be analyzed by identical method.

In what follows we shall call both added resistance and lateral drift force
as the second-order steady forces. Because of the complexity of the

' problém, there have been only a few efforts to study‘the second=otrder
steady forces analytically or experimentally in the past. The traditional
practite accepted by naval architects has been that power increase in a
seaway is between 15-30% of the power required for calm-water resistance.

Fortunately, the advent of large computer facilities and the rapid
growth of new computational technique for predicting ship motion make it
possible to calculate the second-order steady forces analytically. In the
last decade much work has been devoted to solving this problem, nevertheless
all the studies have remained limited in scope and achievement. In 1976
Lin and Reed presented a new approach for evaluating the second-order
steady forces in oblique waves. The forces are derived from linear
momentum consideration. The second-order steady forces are obtained in
terms of the Kochin function H(u,A) by taking a time-average of the
periodic forces and invoking the method of stationary phase evaluation of
the potentials at a large distance from the ship. The computation of

second-order steady forces will be based on the formulae derived by Lin

and Reed, for their approach is not only mathematically sound but also
much more versatile than any other method.
2




The validity of thg computed results is‘confirmed by checking with
available model-experimental and other theoretical values, and, also, the
effectiveness of the computer program as an inexpensive way of obtaining
useful information is ascertained. The computer program developed hete
miy bé utilized for such.practical application as establishing data base
for the design of a ship for a given route and sea state. .The work will
be presented in the order of a brief outline of the mathematical problem,
description of the procedure of numerical calculation, presentation of
the numerical results, and finally a summarization of the findings of the
study:

REVIEW OF MATHEMATICAL FORMULATION

A brief outline of the most important aspects of the theory will be
presented here. More detailed derivations can be found in the repsrt by
Lin and Reed (1976))

The problem to be considered here is that of a ship moving at constant

forward speed U with arbitrary heading in a plane of progressive waves, as
-iilustratedvin Figure 1. - Main assumptions and restrictions in the theory
are listed below: -
(1) The usualy ideal-fluid assumption is made, permitting the use
of potential-flew theory; ’ .
(2) The ship has small displacement from the equilibrium position and
both the incoming-uaves and those created by the ship are small;
(3) The ship is sufficiently "slender" so that each section can be
treated as a two-dimensional "strip" with no interaction between them;
(4) The:tespénse of the ship to the incident wave isvligeat. '

. Let Oxyz be a right-handed rectangular coordinate system translating
with the mean position of the ship. The origin is located on the calm
water surface. The x-akis points forward and the z-axis points vertically
upward.

Let ¢ be the velocity potential given by:
‘ ¢(x,y,z,t) = -Ux + ¢(x,y,z,t) ' (2.1)

*_ /
References are listed on page 23




and the absolute velocity of the fluid 1s described by:

§0uy.2,0) = V0 = -le) + g, 2.2)

where V¢ = v = ue, + ve +-weq Tepresents the perturbation fluid velocity,

~ ~ <2 ~
and e, e, and é3 the three unit vectors in Oxyz frame. For convenience,
the perturbation potential ¢ is decomposed into a steady part ¢S and a

time-dependent part ¢T’ i.e.,
¢(x,y,2,t) = 95 (x,y,2) + ¢ (x,y,2,t) (2.3)

where ¢S describes the disturbance due to the steady forward motion of.

the ship " in calm water and ¢T can be further decomposed as:
¢r = ¢I oyt ¢M = ¢I + ¢B (2.4)

where ¢I is the potential of the incoming plane Progressive wave, ¢D the
diffraction potential due to the preserce of the ship, and ¢M the forced-
oscillation potential. The incoming wave potential ¢i is given by:

¢I = Re{ wI(x,y,z)eXP(iwt) }, (2.5) -

where
wI _— ég—ﬁxpfkoz - iko(xcosB + ysinB) } (2.6)1.‘

in which A is the wave amplitude, ¢ the wave frequency, ko = dz/g the wave
Dumber, B8 the wave heading angle counted from the Positive x-axis in the
counterclockwise direction, g the gravitational acceleration and'w the
frequency of encounter. Note that a ship advancing through regular .
sinusoidal wave will not respond at the fxequenc§ of anbming wave, instead’

at the frequency of encounter which is defined as:

We g - koUcosB . 2.7)




Under the assumption of linear response, we have

g = Ref wB(x,y,z)exp(iwt) 1. (2.8)

From the linear momentum consideration we can derive the force, and

by taking the time average of the force, the second-order steady forces

<AF> are obtained in terms of V¥ wI and w w where "*" indicates the

complex conjugate. 3By repeated application of the method of stationary

phase at a large distance from the ship and after lengthy algebraic

manipulation, the following results are obtained:

<OF > = <OF 5 >+ <AFBB > (2.9)
where
<bFy > = %pgA_(“SB)m{ H(B,k ) b (210)
m/2 T-ug 2T Xz(u)- cosu
< 1 : 2
bFgg 5w B ([ of of Jow —= 77 o) (B0 |
-7/2 T\'/Z ﬁ.ﬂo (14'41'(:0»31)
2
T-po 4T A () . cosu
- .L(f +j ) du —2 () |
&n o TH+uo (1+‘0‘l.'cosu)1/2 sinu
(2.11)
in which
0 - -, T$1l/4
Uo = ’

cos-l(llét), ™ 1/4

cos u and cos B corréspOnd to the added resistance and sin u and sin 8
correspond to the lateral drift force. The Kochin function, H(u,)),

and Alg Az will be explained in the next section in detalil,

As shown in Equations (2.10) and (2.11) the forces are the second-order

quantities, bécause according to the usual formulation of the ship motion




problem the velocity potentiais are considered as the firgt ordér of the

wave amplitude and so is the Kochin functioen (see Equation (3.1)).

KOCHIN FUNCTION

The function H(u,A) known as the Kochin fiunction is defined as

follows: ' '
I (x) _
: B -0 'y 9 exp{A z_+1X — ‘
nwn =ff (a— - Ypxg) a_) PPpta i xgrosutygstau) ),
SBo

-~

. (3.1)
Here the integration is over the mean position of the Hhull surface SBO'

and ‘

Al = {1+ 2Tcosu t (1¥4Tcosu)1/2}, p=1,2 (3.2)
2T cos’u
where v = wz/g, T = Uw/g, and the plus and minus signs are for p=1 and
' p=2, respectively. Figure 2 shows the behavior of Al and szas a function

of u.
Let us first consider the ship-generated potential WB in detail.
Using the principle of linear superposition we can expand Y » and hence
the Kochin function as follows: )
6 ' :
Vo = Z o+ vy,
B 1=1 i1 "D

(3.3)

where a 1s the displacement of the body due to the motion in the ith mode,
and 1=1,2,3,4,5,6 reépresent surge, sway, heave, roll, pitch and yaw,
respectively and
6

H(u,A) = 151 aH, + H. | (3.4)
The potential wi when multiplied by the complex amplitude @, represents
the fluid disturbance due to the body oscillation in the ith mode, and so
does the Kochin function. We can easily note from Equations (2.10),(2.11)
and (3.1) that it is very important to predict the ship motion and diffrac-

tion potential accurately, because the second-order forces ate expressed




in terms of the Kochin function, and the Kochin function itself éould be
obtained by the integration of ¥, and WD over the mean body surface SBO'
Therefore, small errors in the prediction of ship motion and the potentials

Y. and wD ¢could result in large errors in the forces.

SHIP MOTION PROBLEM
Our ship motion computation has been developed on the basis of the
method of Salveseh et al.(1970). A brief review of the typical
assumptions which are required for the theoretical justification of the
strip theory, will be given first.
The hull is assumed to be long and slender such that if B is a typical

transverse dimension and L is the length, then

B/L = 0(¢g), (3.5)
and

n, = 0(e), n, = 0(1) and n, = o(1) (3;6)

1
where ny» Nys and n, are components of unit normal vector on the immersed

ship surface. It follows that in the neighborhood of the hull

3 3 3 |
= " o(e), 3y = 0(1) and 32 = o). (3.7)
in addition we shall make a crucial assumption that the frequency of
encounter is high, w >>U %;, which means that the wave length is approxi-
mately of the same order of B. All these assumptions could only be

justified by comparing solutions with experimental data. We will summarize

the above assumptions in the following manner.




Original , With Assumption

Field equation

2 2 2 2 2
3 0 .9 3 )
¢ + ¥ ) y,=0 (=5 +—) y,=0 (3.8)
x?  ay? a2 1 52 3zl A |

Free surface condition

2 .
2. a2t a2 5 .
(w =1iwlU = U E;QQWi-g 3z Wi-o w Wi 8 3z Wi =0 (3.9)

Body boundary _cond ition

Wy | Wy ' .
o = lway + Umi Iy = LuN, + Umy (3.10)

Radiation condition

m 22 ey -0 Lin (ks k) = 0 - @a
R+ . Y+teo

: p)
where R = (x_ + y) 1% and n, is defined by

(nlnn23n3) =1 and (nb’n.S'nG). = T xn

with n the unit normal vector which is directed into the body and r the
position vector with tespect to the origin of the coordinate syste; and
where m, = 0 for 1 = 1,2,3,4 while mg = 0y and m¢ = -n,. N, is the
2-dimensional generalized normal in the y-z plane. We note that with the
abo'vle assumptions, Wi does not depend on the x-coordinate explicitly.
Introducing the assumptions into Equation (3.1) and setting demdxdl, we

can also show that




Yy
H (u A) = V/Ex exp(ikxcosu{/;(di { aNi ( v, +‘%; wg )%ﬁ }

. X‘eXp{ A(z + iysin u) }, (3,12)

in which C(x) is the immersed contour of the cross section of the ship at
station x, and using body boundary condition(3:10), we may obtain ..

| - - U U
Hi(u,k) —-[dx exp(iAxcosu)‘[(x;ll{(im +Um . ) (wi+ ic JJi)

X A(N3+istinu)}exp{X(z+iysinu)}. (3.13)

where wVao for i=1,2,3,4, ¢gé‘w3 and wg=‘-w2,

Naturally in order to calculate the Kochin function the velocity
potential w which satisfies Equations (3.8) to (3 11) must be obtained

beforehand. There are several methods in use for finding solutions for

this houndarv-value roblem such as sepatation of variables and the Fourier

method, the method of reduction and reflection, the method of Green s
functions, the method of multipole expansion, and so on. Among them the

method of Gteen s functions {s certainly the most f1exib1e one. The
" solution by this method involves an integral equation. i,e., o

W) = 52 f W, @6(E.Q - vQG P ) ds(Q). (3.14)
C(x) '
where P = (y,2), Q = (yo,z ), v the normal derivative in terms of (yo,z )
C(x) a contour bounding a two-d imensional region, ds the arc length and
Creen's function which we denote G(P,Q) satisfies the following equetions:

32 3 - . '
(=5 +—3 ) 6(2,Q) = &(y-yq) §(z-2) , (3.15)
dy 9z




]

G=0,

OZG(ng;.yovzo) T 837
Lim gg(y,o;yoizo) t 1k,G } = o, (3.17)
Y-t d |

- and the solution is as follow (see Wehausen and Laitohe,1960):

G(P,Q) = log(r) - log (r'")

exp ko(z+zo) cos ko(y—yo) dk

- -]
- zpi/' : _
k-k

o 0

+ 2mL x exp{ko(z+zd)c09[ko(y-yo))} ;
| : (3.18)

in which r = f(y—yd)2'+ (Zfzo)z}& y T' - {(y-‘yo)2 + (2420)2}&,‘ko-w2/g
and PV indicates the Cauchy principal-value integral.

Although one can show in many cases thaﬁ a solution to the integral
cquation exists, a closed form solution {is usually not obtainable, and
the only possible way to solve it is by numerical solution, With the
advent.of high-speed computers, a numerical solution of 1hté§fdl equations -
has become almost a routine procedure. However, one major draw%ack in
solving an integral equation of the second kind is the ﬁdn;uniquenesé'
of the solution vhen the homogeneous part of the equation has nontrivial
eigen values. For a body floating 1n a free surface, Joln (1950) pointed
out that the integral equation involved admits non-unique solutiong at
theveigen-ftequenCies. He called these eigen-ftequencies | irregular
frequencies. The problem of irregular frequencies hag received extensive
investigationg, Paul Wood has demonstrated by numerical ¢omputation
(ref. Paulling, 1970) that the irregular frequenc{es can be removed by
extending the source distribution onto the waterline inside the cylinder'

and {mposing a rigid wall condition on it (see Figure 3). Frank (1967)

10




studied these irregular frequencies numerically for two-d imensional
cylinders and found that the matrix becomes ill-conditioned at and within
a narrow band near irregular frequencies. The problem islimportanc because
these irregular frequencies are not known a priori for a complicated
geometry. Ohmatsu (1975) has shown how to avoid this difficulty by

nterior problem and proved Paul Wood's justification by

modifying the 1
using Green's theorem. Ogilvie and Shin (1978) have presented a rather
simple procedure that could eliminate irregular frequencies by making
a minor change in. the Green's functions based on a procedure suggested
by Ursell (1953). ' ‘

The reason we gave some detailed explanation for computation procedure
.is that the prediction of the second-order steady forces requires the
ship motion response and the diffraction potential as input values, so
that the second-order steady forces predicted by a given methéd may vary
considerably depending on the method used for obtaining the motion and the
diffraction potential as also mentioned in Salvesen (1976). 1In our compu-
tation we adopt Frank's close-fit method biut we avoid irregular frequenéies
by adding a horizontal rigid wall inside the body by following Paul Wéod's
method. Figure 4 shows the ﬁeave 3ddéd-@aSS'COeffiCients of a circular
cylinder with and without a horizountal wall. Figure 5 displays the added-

mass, damping‘coefficients and heave, pitch magnitudes for a.Mariner-hﬁll

form.

DIFFRACTION PROBLEM

For the diffraction part of Kochin function Hb(u,A)§ we cannot
immediately follow the expression of Kochin fﬁnction,Hi(u,A) for the
forced motion in Equation (3.13). Before writing down the desired final
form, let us study the diffraction problem in some detaii.

With the incident=wave potential given by Equation (2.6), the
diffraction potential U, is subject to the condition that the total
potential'u1+wo has zero normal velocity on the body surface. Since
the incident wave has the factor exp(-ikoxcosB), it seeéms reasonable

to expect that for a slendet ship and short waves the diffraction waves

11




also have similarly oscillatory behavior along the x-axisg. This assumption
is not valid near the ends, but then the assumptions we made, {.e. 5 n, '
changes slowly in the x-d{rection 1is not valid there either, It is for

this reason that we may write
wD = \}/D(yr,i)exp(-ikoxco’s B). ‘ ('.3'.2_0)‘

With this definition YD must satisfy the following equations:

RPN T )
?Dyy + tzz‘+ (-1k0C°SB) WD = 0, (3.21)
2 ‘ . ; . :
w¥ (y,0) - g¥y, = 0, - (3.22)
BW 3
= -2 Aw(Ny=1N,sin B)exp{ k,(z-iysin B)}, - Gy
Lim (35 * ik¥y) = o (3.24)

Y=+

Equation (3.21) 1is known as Helmholtz .equation. Newman(1970)
showed that the determination of the sectional forces due to the incident
waves should deal with a Helmholtz equation in the cross plane instead
of Laplace's equation as the usual strip theory does. But it .1s not
an easy task to solve a Helmholtz equation with boundaty conditions (3.22)
to (3.24). Choo (1975) solved the Helmholtz equation and obtained the
diffraction potential by using an asymptotic series expansion technique
for the case of zero spéed and Troesch (1976) tried to extend to that
at moderate speeds without obtaining numetical

forward motion

values. Troesch compared his numerical computation with not only experi-

mental data but also the solution of the same boundary value problem,
using two-dimensional Laplace's equation as the governing equation.

Figure 6 shows the pressure distribution for the midship section of an

12




ore carrier for L/A = 1.96 and 8=135°. 45°. The integrated pressure
forces are presented in Table 1. F and F are the amplitude of the
sect10nal exciting forces in the horizontal and vertical directions
respectively and are nondimensionalized with respect to pgAB/2 where

B is the sectional beam.

" Helmholtz - 7 Laplace T
- magnitude | phase magnitude | phase
— - | (Deg) f. (Deg) _
e S 1.11 120 0.9
pgAB/2 : . 5 llS\
F, | -
SAB/2 0.43 =55 ©0.47 .57
PgAB/2 5

TABLE 1 Sectional Exciting Force

In Fignre 7 total forces which are integrated over the hull for the
5

Series 60, CB = 0.70 are plotted for heading angle 8=150° and w(B/2g)

ranging from_0.6 to 1.2.
In spite of the more elaborate numer ical computation involved in the.
solution of the Helmholtz equation compared to the solution of Laplace's

1ts do not seem to be so dif ferent from those of

equation, the resu
Thua.ewefshall

laplace's equation as to influence practical predictions.
adopt Laplace's equation in our computation, but we have to keep in mind
that neglecting the(-ik cosB) term in Equation (3.21) violates the

made for the justification of the strip theory in ship
Replacement of the Helmholtz equation by the

crucial assumption we
motion, i.e., A/L = 0(€).
Laplace's equation saves considerable amount of computing time, because
once we solve the forced motion problem rumerically, we can immediately

* In TroescﬁfBéo(dEgree) for head seas.
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obtain the diffraction potentials by‘sﬁmply chang ing body boundary condition.
Numerical proceédure for this simplification will be given in the following

section. 1In passing, the Kochin function for the diffraction part will be

expressed as:

. ' Y
HD(u,X)’flyr ds( 3;2 - wD%; Yexp{A(z+ixcosu+iysinu) }

Awf dx exp{ix()\cosu-k cosB)t[dl(N 1N sinB)
C(x) .
X exP{(k0+k)z + iy(Xsinu-kosinB)}

dx exp(iixcosu) dl Ay (N +1N sinu)
[ f(x) P

x exp(Az + ilysinu) .

VUMERICAL PROCEDURE

As mentioned earlier,. Frank (1967) solved the two—dhmensional problem
where the logarithmic sources of Equation (3.18) were distributed over ..
the hull cross section. Using the method of linear superposition, one '

can express the poténtial V¥ by
o(P) -fc(Q)G(P.Q)dl(Q) - | (3.36)
C . UL

with the unkhown source strength d(Q).
In order to solve Equation (3.26) two assumptions are introduced

in the numerical method. As shown in Figure 8 a hull cross section is
described by n offsets where dlj 1s the arclength between the j and

j¥1 points.
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y/:l(yj.zj)
d
d1j 0j

— 7 +1 . ,
. . (yj+1 j+1)

J=n

Figure 8 - Cross Section of Hull

The first assumption is that the source strength o(l) varies slowly

enough to be considered as constant OJ over a given arclength dlj.

The

éecodd.assumption is that arc d1J can be substituted by a straight line

J
straight lines.

ds, such 'that the ship section could be approximated by a chain of

With these assumptions and body boundary condition (3. 10), one

can obtain the following expression:

n-1

9 ,,=
N W(Pi)

~

2
i=1

n-l

n=1

c(Q)G(fi,Q)dl(Q)

dlJ

g aNf 6(F,,Q41(Q)
“

19N

(3.27)

L o

3 jBNf G(F,,Q)ds (Q)

%




is the constant source strength between points j and j+1,

where oj
F; the midpoint of the i-th arc. Using matrix notation, we may have
n-1
f = ’. A, . O, ’ i=1121-'.1n'-1 (3-28)

where f = %ﬁ w(?i) and A, =‘§§stic(§i,Q)dS(Q). The advantage of
Equation (3.27) is that the term = /G dl can be evaluated in a closed
form. By increasing the number of offset points this approximatZon
approaches the exact solution. However nimerical computations show
that a :elativelylsmall number of points,; for example 15 points for
a half circle, gives fairly good agreement with the exact solution,.
We also may increase the accuracy of solution either by assuming linearly
varying source strength over the line segments ds for a fixed number
of offset points, or by integrating along an arc dl instead of ds
with constant or linear gy But the increased numerical complexity
may offset its merit.

From Equations (3.27) and (3.28) we can note that for given frequency’
w and contout C(x) the coefficient matrix Aij of the forced dotion or
diffraction problem is the same, Therefore once we obtain the inverse
of matrix A 'ij' forced motion and diffraction can be solved simultaneously.
This is the consequence of replacing the Helmoltz equation by the twoa-

dimensional Laplace's equation.

THE SECOND-ORDER STEADY FORCES
. Before calculating the forces, let us discuss the numerical procedure
for the Kochin function first. The general form of the Kochin funetion H

may be written as:

H(A's) fdx exp(1iA xZ/‘ dl f(x;y,z)exp(A, z+iA3y), : (3.29)
C(x)
where L 1s the ship length and f(x;y,z) has x as a parameter. If we
assume that f (x;y,z)‘VarieS-smoothly over C(x), then for the contour

integral we might adopt the same assumptions as Frank did. That is,

16




f dl f(x;y.a)exp(kzz+i>\3y)

C(x)
n-1

= I f(x

& ¥y j)_/' ds exp(),z+i,y) . (3.30)

°

Given N_ stations along ship length, we may calculate the integral (3.30)
- at x=Xj and denote its value as F(Xj, Z'X ) and from Equation (3.29)

we get,

H(A's)-=J/. dx exp(ikix)si(x), for i=1,2,"‘,Ns; (3.31)
L
where S, (X) is the function to be obtained by curve fittiﬁg F(X A-,Az)
Now it is plausible to find a method for obtaining a smooth representation
for the discrete data F(Xi,kl,kz) by the use of the spline function méthod
of curve fitting. By using this method we may define the interpolating -

-spline as

e v 3 .\ 2 ,

Si(x) ai(x-xi) + bi(x-xi) + ci(x-xi) + di’ : (?‘32)
in the interval X, < x < X, .. The coefficients of the cubic polynomial
are expressed in terms of F(xi,kl,X ) F(xi+1,X A ), and the second
derivatives S"(X ), S"(X +1) (see Appendix 4). Consequently we may rewrite
the Equation(3 31) as follows

| X1 |
H(\'s) = il f éx exp(1A )5, (x). (3.33)
;—1 .

This integration can be performed exactly.

Equation(2.9) shows that the second-order steady force consists of
two terms, <AFIB> and <AFBB . | :
forward for e given u=f and A=k,. on the other hand, <AFy,> in Equation

(2.11) is rather complicated. The reason is that the Kochin function is a

function of u,Al,Az; furthermore, AI’AZ themselves are function of u,

The. computation of <AFIB> is straight-

Figure 2 shows that the Xl goes to infinity as u approaches to 7/2.
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The evaluation 6f the Kochin function becomes more difficule a‘é Al bécomes
large; for the intégrand of the Kochin function oscillates very rapidly
along the x and y axes for large values of A In the computation we

first decide the angle u. which satisfies the following (see Appendix B):

~4ﬂ )du D(u, A )
'“E ﬂ-u ﬂ/é-ue _
(]./ f )dl._x D(u, },)

-n/2+u ﬂ/2+uE U*uo

Al(u)

where D(u, X)) = ————773

cosu)
(l+4Tcosu)

sinul’

(w2 ) 2

By doing this we may partly eliminate the difficulty involwed in
the force integral. The contribution of each mode of ship motion and the
diffrdction part to the force 1s examined,sgparateiy; The numerical
results comparing their relative magritude (see Figure 13) shows that
the major source of the forces are from heave and pitch.

The computer program based on Lin and Reed's theory has been deveIOpéd
by Reed and Hubble(1980) criginally. Extensive debugging and modification
that includes the irregular frequency in ship motion problem, the diffrace
tion problem and the force integral are made by author. All the methodsw}
has been synthesized into single computer program by essentially combining
the ship motion program and the Kochin function eQaluatign.' The ship méfion
program consists of several links, and the Kochin function is the last link

to the ship motion program.

v NUMERICAL RESULTS
It is obvious that camputational accuracy increases with the number
of elements used to approximate the body surface, and, in the meanwhile,that
the cost for a solution depends very strongly on the number of points used.
The source points should be distributed in such a way that the best results
will be obtained with the fewest possible points. Naturally, points .
should be concentrated in regions where the flow is expected to change

rapidly. In order to decrease the computing cost within the tolerable
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limit of accuracy we took the following steps: first, we tried to obtain
the optimal minimal number of offset points on the body. Seconid, within
the range of frequency of practical interest appropriate intervals of -
frequencies are taken at which the potential, added-mass coefficient,
damping coefficient, and etc. are evaluated, and the linear interpolation
method is used to get those values at the frequencies between the initially
‘chosen frequencies. Lastly, the integral of equation (2.10) was also
approximated by a finite sum of discretized integrals.
The computations were mostly carried out on the CDC 6600, 6700

computer at DTNSRDC. The evaluation of the influence coefficient

matrix for the singularity strength and the evaluation of the Kochin

function were the most time consuming parts of these computations.

Numerical Examples
To facilitate the comparison, ‘the added'teSiStance*and the lateral
drift force were non-dimensionalized as follows:

added resistance Az loudent wowr amplirude

AFX = 2 2 @: ®eam (4'1)
. pgA“B /L L= Shiplergii -
lateral drift force .
AFy = , 5> , (4.2)-
PEAL

Figure 9 shows the added-resistance prediction for a Mariner hull form
at a speed of F, = 0.194 vith three different headings) ‘8=120°, 150° and
180° (Note that B= 180° for head seas). A striking faet to note is that
the extreme sensitivity of the added resistance to the heading angles,
For instance, at A/L = 0.6 which corresponds to approximately 300 feet
wave length, the added resistance can increase about 6 times when the
wave heading angle 1s changed from the 30° bow to 60° bow. The results

in Figure 9 reveal that the usual notion that the added resistance ig

greater in head seas is not necessarily true, In Figure 10 comparisons were.

made between Salvesen's calculation and <FIIB> at Fn-0.194. The major
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" differerices between Salvesen (1978) and the present theory is that 5lavesen

W

ignored <AF o> in Equation(2.9) by assuming Y << .. Relatively good
agreement in magnitude is observed, but there still exists discrepancy
between them. There might be two reasons for this; first, in developing
the ship motion program éome modifications were made on the Frank'’s close-
fit method as mentioned earlier. Secondly, the computation of the diffrac-
tion part is quite different. In Figure 11l we note that <AF188> gompa;ed
with <AF1IB> is nocrsmall enough to be neglected. Figure 12 displays the
contribution of the forced motion and the diffraction part to the force
<A?1IB> separately for the three different headings at Fn = 0,194,
As would be expected, it is seen that the effects of the forced motion
decrease as A/L bécomés large, and the maximum occurs at shorter wavelength
for decreasing heading angles. Meanwhile, the diffraction part seems to
act differently to that of the forced motion.

Figure lﬁ shows relative magnitudes of each mode of ship motion for

<AElIB> separately. Pitch and heave are dominant over the others. I;
is interesting to note that the peak values of pitch and heave for
B8 = 150° are slightly greater than those for B= 180°, These effects are
reflected in Figure 12 where the peak value of the added resistance for
B = 150o is slightly greater than those for B= 180°. <AFlBB> is presented
in Figures 14 and 15. Basically <AEiBB> consists of two integrals, i.e.,
Al‘ 12 and the corresponding Kochin functions H(u,kl), H(u,A,) respectively.
As expected, Figure 14 shows that we might neglect the highly oscillatory
Al integral in the computation. In Figure 15, <AF185? 1s expressed in
terms of each ship-motion mode, diffraction and their interactions.

The usefulness of any theory cannot be judged until its prediction’
have been comp.ated with empirical data. Unfortunately,. it is difficult
to find experimental data, especially in an oblique seaway, We selected
one of the available experimental dataj Series 60, C, =0,60 at Fni0.283 v
in head seas. In Figure 16 the theoretical predictions of three different
methods are presented together with two sets of experimental data obtained

by Sibul (1971) and Strom-Tejsen et al. (1973) for this particular case.

. RN ' .
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) Cota ALt de e
owenpTdict Adde Fel Sonce
In the lower frequency ranges not only do all three numerical predictions
agree well with each other, but also they show fairly good agreement
with the experimental values, All the numerical values overpredict the
maximum added resistances, however. Gerritsma and Beukelman(1972) overpre-
dict it by about a factor of two, the present theory by nearly 70% and
Salvesen's method by approximately 35%., In the higher frequency ranges
the present theory gives a little better prediction when compared to the

others. It is probably because our computation of the diffraction poten-
tial, which is the major contribution to the added resistance in the higher
frequency ranges, is better than others. Two interesting things are obser-

ved for <AF >; first, <A4F > for this case show good agreement with

experimentailgata. Secondl;IEAFlIB> is slightly higher than the added-
resistance of Salvesen for a Mariner but much less than that of Salvesen
for Series 60. We cannot give any specific reasons for the descrepancies.
Only by comparing both methods term by term, we may find out the differen-
ces,

The lateral drift forces for a Mariner are also presented in Figures
17 and 18. Figure 17 shows the lateral drife force, <AF2>! with three
different headings B= 900, 1200, 1500. As would be expected, the coeffiea
~cient approaches 0,5 as the frequency becomes higher for the beam-gea
case, but the predictions give small negative valuss for oblique seas in
the higher frequency ranges. <AF 2IB> and <AFZBB> are plotted separately
in Figure 18. The relative magnitude of <AFZBB> compared with <AFZIB
is much smaller than that of <AF B> with <AFlIB + Comparisons of added
resistance and lateral drift force with experimental values will be given
in_the future,

CONCLUDING REMARKS
The second-order steady forces have been considered for a ship in
regular waves of arbitrary headings. The accurate prediction of these
forces is of considerable importance for estimating the powering requiree-
ment in waves, assessment of seakeeping qualities, and the position
control of ships. Based on Lin and Reed (1976) a new numer ical scheme

has been developed for predicting the added resistance and drift force.
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The summary of the findings in this study is as follows:
(1) It is not so easy to verify the computed second-order steady

forces satisfactorily because of the lack of reliable experimental data.

(2) The effect of wave heading on added resistance is significant.
The max imum added resistance does not necessarily occur {n the head seas
only. ,

. (3) For decreaeing heading angle or A/L, the contribution of the
motion to the added resistance decreases while that of the diffraction
part increases;

(4) There exists a contradiction between the assumpt ions made in
ship motion and the diffraction problem, In the ship motion problem the
justification of the strip theory is made by assuming A=0(B), 1i.e. , the
wavelength 1is approximately of the order of B, while in difftaction
problems the term (k cos B) {s dropped in order to replace the Helmholtz
equation by Laplace' s-equaeion. That means that in the diffraction
problem the assumption of A®B is made.

It is fair to say that the theory of Lin and Reed is mathematically
sound, but there still exists a gap between the theory and its practical
applicability. In concluding this work we like to make some suggéstions
for future study. First of all, to develop a numerical prediction
method of the second-order steady forces it is desifed to use the
most accurate method for predicting ship motion. For the diffraction
problem we have to solve either three-dimensional Laplace's equation

or Helmholtz equation in high frequemnty. ranges.
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APPENDIX A

Spline Curve Fitting
Suppose we wish to approximate a continuous and differentiable function
F(x) on the interval {0,L} 1in a piecewise fashion, using low-degree
interpolating polynomials over nonoverlapping subintervals of {0,L}.
Let the base points be 0 = X < x<... x 15x, =L the corresponding
functional vaules be yi=F(xi), i=0,1,2,...,n, and interpolating function
for {0,L} be-Si(x). We shall require that Si(x) be continuous on {0,L}
and possess continuous first and second derivatives for all x in {O,L}.

Let Si(x) coincide with a third-degree polynomial on each interval,i.e.,

_ 3 2 .
Si(x) = ai(x—Xi) + bi(x-xi) + Ci(x_xi) + di, (A. 1)
( Xy xS Xyyp )
then
! 2 .
Si(x) = 3ai(x-xi) + Zbi(x,xi) + Ci, (A.2)
and _
Si(x) =-6ai(x-xi) + 2bi' FA.3)

Now, by setting Si(xi) 3 X and S (Xi+1 = Yi+1’ Equation(A.l) yields
Y, = d (A.A)

, 3 2 .
Y1+l = aihi + bihi + Cihi + di’ (A.S)

where hi i+l - Xi.

At each of the interior points, we set

S1(Xgp1) = 531 Kyay,
S or 12 B2 -
3°1h1 + 2bhy + ey = Cy4, (A. 6)
and
" "
or
for i=1,2,...,n=2. Aa.7n

Gaihi + 2bi = 2bi+l’

Since the second derivative is a plecewise linear function of x,

25



A - A :
1+1 i
S"(x) = A, + = (x-X)) (A.8)
i i Xi+1 Xi i

- "ew = N = " P
where Al = Si(xi) and xi“’l Si(x1+1) Si“’l(xi‘.’l)' Thus, comparing
Equations (A.3) and (A.8) there results

2bi = Ai, , (A.9)

CApyy=rp/hy. | (A.10)

bay

(A.5),(A.9) and (A.10) the coé,fficrien‘ts of the cubic

From Equations (A.4),

polynomial in the interval {xi’xiﬂ} can be expressed in terms of Y, Y .,
and )\1, )‘1+‘1 as follows:

(A

wm
[1]

1+1'X1)/6h1'

bi = )\1/2,

ey = (Y y-¥p/hy - (A +x, ., /6, (a.11)

d, =Y.

Substituting Equation(A.ll)'int,o Equation(A.6) and after some algebric

manipulation, we obtain the basic equation of Spline technique as follows:
h
i+l
A, +.A +| ] A,
i i+l 2(h1+h1+12 i+2
3 1YY Yi417Yy
a T : 5 _h— , (A.12)
1 i+l i+1 1 -

for i=1,2,...,n-1,n-2,
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APPENDIX B

Al Integral of <AFBB>

Let us denote
2 N *
Al(u) cos u 2

GO0 = 2 e | e
‘ (1 + 4Tcos u)* :

and

/2 Tl 3n/2 .

| ij ° t/ﬁ '}G(AI.Q)du. ‘ (B.é)

-TT/Z TT/Z TT{‘UO

where T=wl/g, H(ﬁ*u,kl) and Xl(u) are defiﬁed in Equations (3,1) and (3,2),
respectively. As shown in Figure 2, Al becomes infinite as u approaches

to m/2, and 1if Al becomes large, the integrand of Equation(3.l) oscillates
so rapidly that it is difficult to evaluate the integral properly.

We 'will examine the second integral of Equatibn(ﬁ.Z)lfirsf. Let us assume

that there exist a small positive angle uE_such thatAaslue*-O, we have

= m
T=u -u,

. . ,
f G(A,u)du =f G(A,u)du, | (B,3)
/2 m/24u '

where the subscript "i" of X is omitted for the brevity sake. Let us

define the difference between the exact and the'appfoiimatevvalue by

/24 . o
Error Eu/‘ € G( A,u) du, ' (B.4&)
and detérmine the angle u, such that the Error is within an acceptable

limit. In order to do this, let us examine the magnitude of the Kochin

functiont
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1
H(m+u,A) ‘-f dx exp(iAxcos u) dlAy(n_ +1in_sin u)
=1 C(x) 32

x exp{A(z + iysin u)} , for m/2<u Srr/2+ue. (B.5)

Here we neglect the term (iwn) in Equation(3.1) under the assumption that
A 1s very large, Using Equation(3.30) we can approximate the Kochin

function for a large value of A as follows:

1 n=1
H(mu,A) = [_1 dx exp(iixcos u) jfl £y (63,5,02,,0)

x f ds Aexp{A(z+iysin u)}

dsj

where f_(x;y-'j,;j,,u)s qugxsj+in2jsin u) and (;j'gj) is the magnitude of

3
the 1th segment, and furthermore, considering the fact that | exp (1Axcosu) |,

|exp(irysinu) [< 1,0, we may have

ll .. ' n-.i - - ) zj+l
|H(_NN,A)I_<_ | /, dxZ f (x;yj,zj,u)'[ dz Xexp(Azy|

jo1 1 ;
< exp(-}\_lzlmin) ID(w) | " (B.6)
el n=1
where D(u) -\j‘; dx j£1 fJ (x;yj.zj.u) (B.7)

and Izlmin is the minimum value of Izj-ﬁl-zj of all the cross sections,

Combining Equations (B.4) and (B.6), and using the mean-value theorem,

we have

TT/‘Z"'UE 2
. A (ucosu exp{-lezlmin}lb(u)lz

Error £ du ‘
/2 (1 + 4Tcosu)
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'AssUmingvué

. .‘- 2 1'/2+ue
= [p@|° du
/2 (1 + 4Tcosu) ®

2 (u)cos u

ekp{—?k’zlmin}. (B.8)

whete D(u) defined in Equation(B,7) is a smooth function of u and u is the

. value between 17/2 and m/2+ug, By change of variable the integral in

Equation(B,8) will become

: [—‘ef A2(u) (=s1n v) .l .
du .- ———  exp{=2A|z }ooo - (B.9)
(1 - 4Tsinu)% min ’

is small and keeping the leading term only, we obtain the -

following!
u. ' .
€ ;. 2 2V
do _ v exp(- —5=lz|_, ) .. o
| f e T2u,2 min’ . : . (B._,lO)
.0 Tu

e will denote Equation(5.10) as A ‘and again apply the change of Variablé,

uz = v, the result will be

2 R
bz 3f 7 eeCEM v . wep) exp(-B/ul), (B.11)

v
whére a = vz/Ta and B = ZvIzI /_2.
o ’ ) ) min T .

Let us put

a/ (28) exp(=B/ud) < 107F, . (.12)

where the arbitrary positive value P will decide the accuracy of compu=

tation and the angle ue_simultaneouSLy. Equation(B.12) can be rewritten

as
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; 2
35 107 < exparud,

or
a. P 2
In¢( 28 100 ) < B/u,E ,

and 1if '%E 10P >1.0 » then we will have

u, <{8/1n(a10%/ (28))} ¥ | | _ (8.13)

This value u, gives the absolute magnitude of the integral of Equation
(B.4), not a relative size of error, i.e., the ratio of the magnitude of
Equation(B.4) to that of Equation(B.3)., Because of the difficulty of
integration of Equation(B.3), we cannot confirm the validity of Equation
(B.13) but, in the following example, we show the numerical vlaues of
Equation(B.3) for several different P's, In stead of a actual ship, a

rectangular barge 1is considered for an example with the following condi- .

L/B = 7.5,
y
B/T = 2.0, , E_:: —
F 0.2, fe X
n " - -
B 135 (degree), '
21

tions:

"-_.-]

A/L = 2,0, o

lzlmin/B = 0.1,

In addition t6 these the velocity potential ¢ 1n Equation(B,5) is'iééuﬁéd'
to be constant, The Kochin function H(T4u,X) is obtained in the close

fom,‘io e, 0
. 4sin(Xlsin u);‘e-Asin Asin u Y
H(T4+u,)) = X cos u ""1;§§:fL-~z = 1isinucos(Acos u)(e™"-1)}

where 1=L/2, and the integral of Equation(B,3) may be summarized ag follows:
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) =g ‘
P s M) 1P=f GO, u)du 1,/1,

(degree) “/2+”€ ‘
3 25.68 | 4.87 ~9043.66 11,0000
4 22,51 6.98 ~9073,47 1.0033
5 20.28 9,11 -9114,01 1.0078
6 18.61 | 11.26 -9144,22 1.0111
7 17.29 | 13.43 -9169.18 1.0139
8 16.22 | 16.62 -9187.22 1.0159
9 15.32 | 17.83 © -9211,14 1.0185
10 14.56 |20.05 | -9225.95 - 1,0202

where u°=cos—1(l/4T)=7l.39°. Though P increases from 3 to 10, the total
increment of Equation(B.3) for P=10 1s about 2% of the incegratioh for P=3,
The integral does not converge as fast as P grows, but it does approach

to finite value as P becomes large. '

The third integral of Equation(B.2) 1is identical to the second one, and
because X(W/Z-ue) > A(W/2+u€), the angle ue determined in Equation(B.13)
can also be used for the first integral of Equation(B.2). Consequently,

we have

T/2=ug T=u, © 31/ 2«ug
} 6(A,u)du, (B.14)

=T/ 2+u T/ 2+u T,
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Figure ] - Coordinate System
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. B=180°

@; = heave

g = yay



val,12,T=,60

.50, .40
.29, .30
'.20', 025

.13, .20

150
u(degree)

Figure 2 = A, and A, {from Equation(3.2)}
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1.2

oefficients m,'{p(n/2)(B/2)2]}
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Figure 4 = Heave Added-Mass Coefficients of a Semi-Immersed

S 0.4

(w?B/2g)

Circular Cylinder
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Figure 6 - Girthwise Pressure Distribution for a Mi&shfp
Section of an Ore Carrier in Oblique Sea

{Troesch(1976), Figure 7, p.66}
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Figure 7 - Total Force for a Series 60, CB=.‘7O Hull
‘ Form in Oblique Waves (g=30°)

{Troesch(1976), Figure 19, p.84}
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Added-Resistance Coefficient:<AFIBB>/(DSAZBZVL)
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Figure 11 - <AF___> for Mariner at Fﬁ-0.194
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Figure 12 - The Contribution of Forced Motion and Diffraction
Part to <AF1IB> at Fn.o.194 :
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Figure 14 - Comparison between Al and Xz Integral of <AFIBB>
at F_=0.194 '
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Figure 17 - Lateral Drift Force, <AF2>, for Mariner at. Fnﬁo.‘194 |
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