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kB S TRACT

The numerical procedure of calculating the second-

ordér steady forces is presented. The computer program

is developed on the basis of Lin and Reed's theory(1976).

Ship motion and diffraction potentials are required as

input data for Kochin-fúnction calculation. In order to

avoid the irregular f:requencies which are associated with

Frank's close-fit method(1967), a mOdification which

extends the source distribution onto the calm waterline

inside of a body is made. For the diffraction problem,

instead of a Helmholtz equation, a two-dimensional Laplace's

equation is used. Numerical computation for the head-sea

case shows the same trend of experimental data throughout the

frequency ranges, but its magnitude is much larger tMn that

of the experiment.

ADMINISTRATIVE INFORMATION

This projet was authorized by the Naval Sea System Coand wit-h

funding under Element 61153N Project SR0230101 and identified as Work
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INTRODUCTION

It is a well known fact that when ä ship is navigating in a seaway,

the engine power must be increased by à considerable amount in order to

keep the same speed of advance as in calm water. Especially for a high-

speed vessel or a ship oñ à tight schedule, it is important to predict the

additional power needed in advance not only for iiavigational safety but

also for economical reasons. The steady force tnduced by waves in the

beamwise direction is the lateral drift free. One may state that added

resistance is important from the standpOint of powering and design, and

drift force from the standpoint of seakeeping and control. Both the lateral

drift force and the added resistance arise from the ship motion and

diffraction of waves.

These two forces are not seemingly related. to each other, but from a

mathematical point of view, they can be analyzed by identical method.

In what follows we shall call both added resfstance and lateral drift force

as the second-order steady forces. Because of the complexity of the

problem, there have been only a few efforts to study the second-order

steady forces analytically or experimentally in thà past. The traditional

practice accepted by naval architects has been that power increase in a

seaway is between 15-30% of the power required for calm-water resistance.

Fortunately, the advent of large computer facilities and the rapid

growth of new computational technique for prediçttng ship motion make it

p9ssible to calculate the second-order steady forces analytically. In the

last decade much work has been devoted to solving this problem, nevertheless

all the studies have remained limited in scope andachievement. In t976

Lin and Reed presented a new approach for evaluating the second-order

steady forces in. oblique waves. The forces are dertved from linear

momentum consideration. The second-order study forces are obtained in

terms of the Kochin function H(u1A) by taking a time-average öf the

periodic forces and invoking the method of stationary phase evaluation of.

the potentials at a large distance from the Ship. the computation of

second-order steady forces will be based on the formulae derived by L-in

and Reed, for their approach is not only mathematically sound büt also

much more versatile than any other method.

2
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References are listed on page 23

The validity of the computed results is confirmed by checking with

available model-experimental and other theoretical Valués, and, also, the

effectiveness of the computer program as an inexpensive way of obtaining

useful information is ascertaine4. The Computer program developed here

may be utilized for such practical application as establishing data base
for the design of a ship for a given routé and sea state. The work will

be. presented in the order of a brief outline of the m.athatical problem,

description of thé procedure of numerical calculation, presentation of

the numerical results, and finally a suarization of the findings of the

study.

REVIEW OF MATHEMATICAL FORMULATION

A brief oudine of the most Important aspects of the t:heory will be

presented here. More detailed derivations can be found in the report by
*

Lin and Reed (1976).

The problem to be considered here is that of a ship moving at constant.

forward speed U with arbitrary heading in a plane of progressive wavés, as

illustrated in Figure 1. Main assumptions and restrictions in the theory

are listed below:

(i) The usualy ideal-fluid assurnption is made, permitting the use

of potential-flow theory;

The ship has small dsp1acement frOm the eq.d.1ibrium. position and

both the incoming waves and those created by the ship are small;

The ship is sufficiently "slender" so that each section can be

treated as a two-dimensional "strip" with no interaction between th;

(.) The response of the ship to the incident wave is linear.

Let CAyz be a right-handed rectangular coordinate yst translating

with the mean position of the ship. The origin is located on the calm

water surfacé. Th x-axis points forward and the z-axiS points vertically

upward.

Let be the velocity potential given by:

(x,y,z,t) a -Ux + x.,y,z,t)

3
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time-dependent part Lei,

q(x,y,z,t) + T(x,y,z,t)

where is

diffraction

ose lIlat ion

whère

and the absolute velocity of the fluid is described by

q(x,y,z,t) = = -Ue1 +

where = y = ue1 + ve2 + we. represents the perturb ion fluid velocity,and e1, e2 and é3 the three unit vectors in Oxyz f ramé. For convenience
the perturbation pótential is decomposed into part and a

E - -e.xpÇk0z - ik0(xcosS + ysinß))

a Steady

(2.3)

where P describes the disturbancé due to the stéady
forwardmotjon ofthe ship in calm water and can be further decomposed as:

+
+ (2.4)

the potential of the incoming plañe progressive wave, the
potential dte to the presence of the ship, and the forced-
ptential. The thcoming wave poteñtial is given by:

E Re( Pr(x,y,z)exo(fûjt
(2.5) -

(2.6)

in which A js the wave amplitude, a the wave frequency, k0 E ¿/g the wavenumber, 8 the wave heading angle counted from the POsi'tive x-axis in the
counterc1ocjge direction, g the gravitatjo.

acceleration and w thefrequency of encounter, Note that a ship advancing through regular
Sinusoidal wae will not tespond at the

Incoming wave, insteadat the frequency of éncounter which is defined as

a -
(2.)



Under the assumptiOfl of linear response, we have

Re B(x,y,z)exP(t) }.
(2.8)

From the linear momentUm consideration we cn derive the force, and

by taking the time average of the force, the second-order steady forces

<tF> are obtained in tetms of BI and BB
where ,'*" indicates the

complex conjugate. By repeate4
app1iCatOn of the method of stationary

phase at a large distance from the ship and after lengthy algebraIc

tinipulati0fl, the following results are obtained:

<AF > = <AFIB > + <FBB >
(2 .9)

where

> = QgA()lmt H(,k0) }, (2.10)

i'r/2 TruO 2iT

f_f _f )du
1+4

-ir/2 rr/2
( tCO.I)

in which

fo
,tl/4

u0

r> 1/4

cos u and cos B correspond to the added resistance and sin u and sin ,ß

correspond to the lateral drift force. The Kochin function, H(u,X),

and X1 x2 will be explained in the next section in detail.

As shown in Equations (2.10) and (2.11) the forces are the second-order

quantities because according to the usual formulation of the ship motion

<AFBB > =

5

X2() cosu
2

1/2 SiflU'2
(l+4tcosu)

(2.11)

1T.1,i0 ,1T

j+J du

lT-fu0



prob1 the velocity potentials are considered as the first order of the
wave amplitude and so is the Kochin function (see Equation (3.1)).

KOCHIN FUCTION
The function H(u,À) known as the Kochjn Únctjon is défjned as

follows:

toe Koc!in function as fo]lows:

ap (
H(u,X)

_ff(B

SBO

\.1

P 2 2
2r cos u

6

= Z cx.i44+ j
ial i a.

6
H(u,À) - Z cx H + H.ii D

6

;inu)}
ds

(3.1)Here the Integration is over the mean position Of the ljll
surface SBO,

änd

pl,2 (3.2)

where y = w2/g, r = Uw/g, and the plus and minus signs are for p=l and
p=2, respectively. Figure 2 shows the behavior of X1 and: A2 as a function
oÊ u..

Let us first consider the ship-generated potential in detail.
UsIng the principle of linear superposition ve can. expand and hence

(3.3)

where is the disp1acent of the body due to the motion in the ith mode,
and i-1,2,3,45,6 represent surge, sway, heave, roll, pitch and yaw,
respectively and

(3.4)

The potential when multiplied by the complex amplitude a represents
the fluid djsturhance due to the body oscillation in the ith mode, and so
does the Kochin function. We can easily note from Equations (2.1O),(2.1i)
and (3.1) that it is very Important to predict the ship motion and diffrac-
tion potential accurately, because the second-order forces. are expressed

)

-
exP{Az0+IÀ(xcosu+y

1 + 2Tosu ± (1+4rcosu i



in térms of the Kochin functon, and the Kochin function itself could be

obtained by the integration of and over the mean body Surface SBO.

TherefOre, small errors in the prediction of ship motion and the potentials

P. and could result in large errors in the forces.

SHIP MOTION PROBLEM

Our ship mOtion computation has been developed on the basis of the

method of Salvesen et al.(1970). A brief review of the typical

assumpTtions which are required for the theoretical justifIcation of the

strip theory, will be given first.

The hull is assumed to be long and slender sich that if B is a typical

transverse dimension and L is the length, then

B/L = 0(c), (3.5)

and

n1 = 0(c), n2 O(i) and n3 0(1) (3.6)

where n1, n, and n3 are components of unit normal vector on the immersed

ship surface. It follows that in the neighborhood of the hull

O(e), f- O(i) and - 0(1). (3.7)

In addition we shall make a crucial assumption that the frequency of

encounter is high, w »U , which means that the ve length is approxi-

mately of the same. order of B. All these assumptions could only be

jÙstified by comparing solutions with experimental data. We will summarize

the above assumptiOns in the following manner.

7



.2 21/2
where R - (X + y ) and n4is defined by

(n1,n2,n3) = n and (n4,n5,n6) -c3

with n the unit normal vector which is directed into the body and r the

position vector with respect to the origin of the coordinate system and

where mi - O for 'i - 1,2,3,4 while m5 n3 and m6 2 N1 is the

2-dimensional generalized normal in the y-z plane. We note that with the

above assumptions, does not depend on the x-coordinate explicitly1

Introducing the assumptions into Equation (3.1) and setting ddxd1, we

can also show that

8

y-..+

Original With Assumption

Fie14 equatiòn

2 2
+ L.)

=0

92 2

(3.8)

(3.9)

(3.10)

(3.11)

( i +
ay az

Free surface condition

2 a 2a2. a

( -. + ___i )
9y 9z

2 a
(w - iwU - U -g -

Body boundary condition

- g -j = O

= +-- = ic1 + Um

Rad iat ion cond it ion

ap

LIxnR (-1--ik1) .0

iwN Um

Lth(-±ik0P) -0



A.

X exp(ixxcosu)J dl {
C(x)

( pi + )-j }

exp{ X(z+ iysin u) }, (3,12)

in which C(x) is the iersed contour of the cross section of the ship at
station x, and using body boundary condition(3o1Ó), we ay obtain

H.(u,X) .[dX exp(ixxcosu)f dl{(iun.+Ùm.) - ì+ -- »)
C(x)

X A (Ñ+i sinu)}exp{A(z+iysinu)}. (3.13)

where for j=1,2,3,4, and =

Ñaturalty in order to ca1cula'e the Kochin function the velocity -

potential which satisfies Euatiofls (3.8) to (3.11.) must be obtafled

beforehand. There are several methods in use for fin41ng Solutions for
this houn44ry_ValUe problem such as separation of variables and the Foùer
methOd, the method of réduction and reflection, the method of Green's

functions, the method of multipole expansion, and so on. ong. them the

method of Green's fuúctions is certainly the most flexible one. The

solution by this method involves an integral equation, i.e.,

s hf'v)"(» - Q)G(P,Q)} ds(Q), (3.14)

C(x)

where P - (y,z), Q (y0,Z0), u the normal dervative in terms of (y0,z0),

C(x) a contóur bounding a two-dimensoflal region, ds the arc length and

Green's funct1on which we denote G(P,Q) satisfies the fol]owing equations:

2 2
ì- + ) G(P,Q) ó(y-y0) 6(z-z0) (3. 15)



Lim {
y-*±oe Y

+ 2Tri X éxpfk(z+z0)cos

ló

± ik0c } =

y-y0)))

(3.18)

in which r - (y-y0) + (z_z)2}½
r - f(v.2 ¿ (z..z0)2f, k0w2/g-o.and PV indicates the Cuchy

principalvalue Integral.
Although one can show in many cases that a solutj to the integralaquar ton exists, a closed form solutjo is usually flot obtainable andthe onl.y possible way to solve it is by numerical solution. With theadvent of high-speed

computers, a numerjcàl solution of integral euationshas become almost a routine procedure. However, one major drawback insolving an integral equation of the second kind is the
of the Solution when the homogenus part of the equation has nontrivialeigen values. For a body floating in a free surface, Johñ (1950) Páintedout that the integral equation involved admits

nonstinique solutions atthe eigen_frequej9
He. called these eigen-frequencjg irregularfrequencj The probl of irregular frequencies has received extensiveinvestigatio5 Paul Wood has demonstrated by numerical omputatjon(ref. Paulling, 1970) that the irregular frequencies can be removed by

extending the source distributiön onto the waterline inside the cylinderand Imposing a rigid wall Condition on it (see igure 3). Frank (1967)

(3.17)

w2C(y,O;y0,z0) - G = O

and the solution s as follow (see Wehausen and
LatOne,196O)

G(P,Q) = log(r) log ( T)

¡exP k(z+z0) Cosk0(y_)



studied these irregular frequencies numerically for twodimêñsional

cylinders and found that the matrix becomes ill-conditioned at and within

a narrow band near irregular frequencies. The problem is important because

these irregular frequencies are not kno a priori for a complicated

geometry. Otthiatsu (1975) has shown how to avoid this difficulty by

modifying the interior problem and proved Paul Wood's justification by

using Green's theorem. Ogilvie nd Shin (1978) have presented á rather

simple procedure that could eliminate irregular frequencies by making

a minOr change in the Green's functions based on a procedure suggested

by Ursell (1953).

The reason we gaye sorne detailed explanation for computation procedure

is that the predictiofl of the second-order steady forces requires the

ship mOtion response and the diffraction potential as input values, so

that the second-order steady forces predicted by a given method may vary

considerably depending Qn the method used for obtaining the motion and the

diffraction potential as alsO mentioned in Salvèsen (1976). In out compu-

tation we. adopt Prank's close-fit method but we avoid irregular frequencies

by addin a horizottal rigid wall inside the body by following Paul Wood's

metho4. Figure 4 shows the heave added-mass coefficient.s of a circular

cylinder with and witlicuc a horizontal wall. Figure 5 displays the added-

mass, damping coefficients and heave, pitch magnitudes for a. Mariner hull

form.

DIFR.ACTION PROBLEM

For the diffraction part of Kochin function HD(u,A)o we cannot

immediately fôllow the expression of Kochin functionH(u,X) for the

forced motion in Equation (3.13). Before writing down the desired final

form, let us study the diffraction problem in some detail.

Wth the incident-wavé potential given by Equation (2.6), the

diffraction potential S'D
is subject to the condition that the total

potential I+iD has zero normal velocity on the body surface. Since

the incident wave has the factor exp(-ik0xcosß), it seems reasonable

to expect that for a slender ship and short waves the diffraction waves

li



also have similarly oscillatory behavior
is not valid near the ends., but then the

changes slowly in the x-direction is not

this reason that we may write

along the x-axis. This assumptjofl
assumptions we made, i.e., n

valid there either. It Is for

Equation (3.21) is kÏown as Helmhottz equation. Newman(19:7Ö)
Showed that the determination of the sectional forces due to the incident
waves Should deal with a Hélmholtz equation. in the cross plane instead
of Laplace's equation as the usual .striptheory does. But itjs no
an easy task to solve a Helmholtz equation with boundary Conditions (3 22)
to (3.24). Choo (1975) solved the Helmholtz equation and obtained the
diffraction potential by using an asymptotic series expansion technique
for the case of zero speed and Troesch (1976) tried to extend to that
forward motion at moderate speeds without obtaining numerical
values Troesch compared his numerical computation with not only experi-
thental data but also the solution of the same boundary value problem,
using tvo-dimensjo1 Laplace's. equation as the gOverning equation.
Figure 6 shows the pressure distribution for the midship section of an

= '(y,±)exp(_ikxcos 8).
(.3.20)

With this definition must satisfy the following
equations:

' + ' + (-ik cos8)2' = o,Dyy Dzz O D

- = o,

(3.21)

(3.22)

- = A(N3-iN2j ß)exp( k0(z-iysin S)), (3.23)

Lins
-

ay - ik0)=O.
(3.24)



ore carrier for L/X. = 1.96 and S=1350,
450

The integrated pressure

forces are preseñted in Table 1. an4 F are the amplitude of the

sectional excitiñg forces in the horizontal and vertical djrections

respectively and are nondinsionalize4 with respect to pgAB/2 where

B is the sectional beam.

TABLE 1 Seccional Exciting Force

In Fig"re 7 total forces which are integrated, over the hull for the

Series 60, C3 = Ö.1Ó are plotted for heading angle 8=15Q° and w(B/2g)½

ranging Ìrorno.6 tO 1.2.

In spite of the more elaborate numerical computation' involved in the

solution
f
the Helmholtz equation compare4 to the solution of Laplace's

equation, the resUlts do not seem to be so different from those of

Laplace's equation as to influènce practical pre4ictiofls. Thus, ue.'sball

adopt Laplace's equation in our computation, but we bave to keep in mind

that neglecting the(-'ik0cosB)2 term in Equation (3.fl) violates the

crucial assumptiOn we made for the justification of the strip theory in ship

motion, i.e., AIL 0(c). Replacement of the Helmholtz equation by the

Laplacé'S equatiofl saves consderab1e amount of computing timè, because

once we solve the forced motion problem numerically,, we çan immediately

* In Troesch ß20(dégree) for head seas.
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obtain the diffraction potentials by sply changing body boundary condition.

Nurnerical procédure for this siplification will be given in the following

sectiOn. In passing, the Kochin function for the diffraction part will be
expressed as:

i)

HD(u,A) J'f ds( -
-

)exp{À(z+ixcosu+iysinu)}

SBQ

ALJ dx exp {ix(Acosu-k0cos) }Jdl(N3-iN2sins)

L C(x)

x éxp{(k0+X)z + iy(Xsinu-k0sin$)}

_.[dx exp(ixxcosu)f dl D32
x exp(XZ + iXysitLu)

NUMERICAL PROCEDURE

As méntionèd earlier,. Frank (1967) solved the two-4imesional problem

where the logarit1ic sources of Equation (3.18) vere distributed over

the hull cross section. Using the metho4 of linear superposition, one

can éxpress thè potential by

p(P) _fa(Q)G(P,Q)dlÇQ) (3.26)

with the uniUown source strength a(Q).

In order to solve Equation (3.26) two assumptions are introduced

in the numerical method. As shown in Figure 8 a hull cross section is

described by n offsets where dl is the arclength between the j and

j+l points,

14



i-j-1
/

/

/
'I/////

ds,,_i(y,z)
4I d1.o

z)
-n

igure 8 - Cross Section of Hull

The first assumption is that the source strength (1) varies slowly

enOugh to be considered as constant a. over a given arclength d1. The

second assumption is that arc dl can be substituted by a straight line

ds such that the ship section could be approximated by a chain of

straight lines.

With these assumptions and body boundary condition (3.10), one

can obtain the following expression:

_fl1.j
(Q)G( ,Q)dl(Q)

dl

n-1
a -J G(Q)dl(Q)

j-1 j
dl

j
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where a. is the constant source strength between points
j aÎid j+1,

Pi the midpoint o the i-th arc.. Using atrix notation, we may have

n-1

f A. .0.
j=l

where f = P() and A. = ds1C(Pi!Q)4S(Q). The avantage of

Equation (3.27) is that -he tetm/G dl can be evaluated in a closed

form. By increasing the number of offset points this approxjmat4on

approaches the e*ct so],ut-ion. However numerical computations show

that a relatively small number of póthts, for example 15 points for

a half circle, gives fair.y good agreement with the exact solution.

We also may increase the accuracy of solution either by assuming linearly

varying source strength over the line segments d51 for a fixed number

f offset points, or by integrating along an arc dl instead of ds

with. constant or linear 0. But the increased numerical complexity

may offSet its merit.

From Equations (3.27) and (3.28) we can note that for given frequency
w and contour C(x) tlLa coefficient matrix of the forced motion or

d-iffraction problem is the same. Therefore once we obtain the inverse

of matrix A, forced tion and diffraction caji be solved simultaneously.
This is the consequence of replacing the Helmoltz equation by the twO.

dimensional Laplace's equation.

THE SECOND-ORDER STEADY FORCES

Before calculating the forces, let us discuss the numerical procedure

for the Kochln function first. The general form of the Kochin function H

may be written as:

H(À's) 'fdx exp(iÀ1x[ dl. f(x;y,z)expçÀ2z+jA3y), (3.29)
L C(x)

where L is the ship length and f(x;y,z) has x as a pârameter. Ef ve

assume that f (x;yz) varies smoothly over C(x), then for the cofltour

integral we might adopt the same assumptions as Frank did. That is,

16
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fi x;y,zexpX2z+iÀ3y)
C(x)

n-1
E

j=1

S(x) = a(x-X1)3+ bi(x_

Given N5 stations along shIp length, we may calculate the integral (3.30)

at xX and denote Its valué as F(X;)2X3) and from Equation (3.29)

we get,

H(À's) =f d:x exp(iX1*)S1c), for i=1,2,,N. (3.31)

where S(X) is the function to be obtained by curve fitting F(Xi;X,X2)

Now it is plausible tò find a method for obtaining a Smooth representation

for the discrete data F(X;À1,X2) by the use of the spline function méthod

of curve fitting. By using this method we may define the interpolating

sp-1ine as

+ c1(í_x) + di,

in the intervat X1 < x < X. The coefficients of the cubic polynomial

are expressed in terms of F(Xi;Xi,À2), F(Xj+i;Aj,X2), and the second

derivatives s'(X).S'(X11) (see Appendix A). Consequently we may rewrite

the Êquat'ion(33l) as follows:

N5-1 X1
H(X's) E f d.x exp(iÀ1x)S(x). (3,33)

i-1
L

xi

This integration can' be petformed exactly.

Equation(2.9) shows that the second_order steady force consistS of

two terms, <FIB> and <FBB> . The computation of is straight-

forward for given u= and Xk0. on the other hand, <3B> in Equation

(2.11) is rather complicated. The reason is that the Kochin function is a

function of u,X1,X2; furthermore, X1,X2 themselve8 are function of u.

Figure 2 Shows that the X1 goes to infinity as u approaches to ii/2.
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The evaluation of the Kochin function becomes more difficuit äs A1 becomes

large, foi the integr-and of the Kochin function oscillates very rapidly

along the x and y axes for Large values of X1. In the computation we

first decide the angle u which satisfies the following(seeAppendjx B):

(JJr/2(_uo_y/:)du
D(u,A1)

(JJ2_UcJJl_UO J12..$1C

)
-,îr/24i, Tr/2+u

X(u) 2 cosu
IH(rr+u,X ) I ( .1/2 1 sinu

By doing this we may partly elithinate the. difficulty jnvolyed in

the force integral. The contributioi of each adS of ship motion and the

diffraction part to the force is exami,ned separatety The numerical

results comparing their relative magnitude (see Figure 13) shows that

the major source of the forces are froth heave àiid pitch.

The computer program based on Lin and Reed's theory has been developed

by Reed and Hubble(1980) originally. Extensive debugging and rnodification

that includes the irregular frequency in ship motion probl, the diffrac

tion problem and t-he force integral are made by author. All the methOds

has been synthesized into single computer program by essentially combining

the ship motion program and the Kochin function evaluation The ship motion

program consists of several links, and the Kochifl function iS the iast link

to the Ship motion program.

NWRICAL RESULTS

It is obvious that computational accuracy increases with the number

of elements used to approximate the body surface, 4 in the aéanwhjle,that

the cost for a solution depends very strongly on the number Of points used.

The source points Should be distributed in such a wy that the best results

will be obtained with the fewest possible pOintS. Naturally, points

should be concentrated in regions where the fow is expected to change

rapidly. In order to decrease the computing cost within the tolerable

where D(u,X1
(i+4rcosu)
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the range of frequency

Computer

offset points on

of practical interest

the body.

appropriate

evaluated, and the

at the frequencies

integral of equation

of discretized integrals.

influence coefficient

evaluation of the Kochin

of these computations

Second, within

interváls of

coefficient,

limit of accuracy we took the following steps; first, we tried to bbtain

damping coefficient, and etc. are

method is used to get those values

chosen frequencies. Lastly, the

approximated by a finite sum

The computations vere mostly carried out on the CDC 6600, 600
at DTNSRDC. The evaluation of the

matrix for the singularity strength and the

function were the most time corsuming parts

Numerical Examples

To facilitate the comparison, the dded resiStance and the lateràl
drift force veré as follows:

àdded resistance lot nUerfl uiOr nprt
X

PgAB ¡L L =
(4.1)

lateral drift force
y

pgA2L (4.2)

Figure 9 shows the added-resistance prediction for a Mariner hull form
at a speed of 0.194 with three different headings, s_i20O 1500 and
1800 (Note that 8 1800 for head seas). A striking fatt to note is that
e extreme sensitivity of the added tesistance to the heading angles.

For instance, at AIL - 0.6 which corresponds to approximately 300 feet
wave length, the added resistance can increase about 6 times when the.

wave heading angle is changed from the 30° bow to 600 bow. The results
in Figure 9 reveal that the usual notion that the added resistance is
greater in head seas is not ecessari1y true. In Figure 10 COmparisons were.
made between Salvesen's calculation and <F > at F -0.194. The majorlIB n
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frequencies are taken at which the potential, added-mass

t he optimal minimal number of

linea r interpolation

between the initially
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differences between Salvesen (1978) and the present theory is that Slavesen

ignored <FlBB> in Equation(2.9) by assuming )« i1. Relatively good

agreement in magnitude is observed, but there still exists discrepancy

between the. There might be two reasons for this; first, in developing

the ship motion program some modificatons were made on the Frank's close-

fit method as mentioned earlier. Secondly, the computation of the diffrac-

tion part is quite different. In Figure 11 we note that <'lBB> compared

with <lIB> is not sall enough t be neglected. Figure 12 displays the

contribution f the forced motion and the diffraction part to the force

<1IB>
separately for the three different headings at F = 0.194.

As would be expected, it is seen. that the effects of the forced motion

decrease as AIL becomés large, and the maximum occurs at shorter wavelength

for decreasing heading angles. Meanwhile, the diffraction part seems to

act differently to that o the forced motion.

Figure 13 shOws relative magnitudes of each mode of ship motion for

<ltB> separately. Pitch and heave are dominant over the others. It

is interestiig. to note that the peak values of pitch and heave for

8 = 150° are slightly greater than those for 8 180°. These effects are

reflected in Figure 12 where the peak value of the added reSistance for

8 = 150° is slightly greater than those for 8= 180°. <tFlBB> is presented

in Figures 14 and 15. Basically <lBB> consists of: two integrals, i.e.,

X1,
2

and the corresponding Kôchin funct:ions H(u,A1), H(u,X2) respectively.

As expected, Figure 14 shows that we might neglect the highly oscillatory

integral in the computation. In Figure 15, <lBB> is expressed in

terms of each ship-motion mode, diffraction and their interactions.

The uséfulness of any theory cannot be ju4ged until its prediction

have, been compared with empirical data. Unfortunately, it is difficult

to find experimental data, especially in an Oblique seaway. We selected

oné of the available experimental data; Series 60, CB -0.60 at F-0.283

in head' seas. In Figure 16 the theoretical predict:ions of three different

methods are presented together with two sets of experimental data obtained

by Sibul (1971) and Strom-Tejsen et al. (1973) for this particular case.

20
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In the lower frequency ranges not only do all three numerical predictjon
agree well with each other, but alsO they show fairly good agreement
with the experimental values. All he numèrical values overpredict the
maximum added resistances, however. Gerrit5ma and Beukelman(l972)

overpre...
dict it b abou a factor of two, the present theory by nearly 70% and
Salvesen's method by approximately 35% In the higher frequenc.y ranges
the present theory gives a little better prediction when compared to the
others. It is probably because our computation of the diffraction poten-
tial, wic,h is the major contribution to the added resistance in the higher
frequency ranges, is better than others, Two interesting things are obser-
ved for <FlIB>, first,. <F,lIB> for this case show good agreement with
experimental data. Secondly <zFlIB> is slightly higher than the added-
resistance of Salvesen for a Mariner but much less than that of Salvesen
for Series 60. We cannot give any specific reasons for the. descrepancies.
Only by comparing both methods term by term, we may find out the differen
ces.

The làteral drift forces for a Mariner are also presented in Figures
17 and 18. Figure 17 shows the lateral drift force, <F2>, with three
different headings 8 900, 120°, 15Ö°. As wuld be expected, the coeffj..

cient approaches 0.5 as the frequency becomes higher for the beam-sea

case, but the predictions give small negative values for oblique seas in
the higher frequency ranges. <LF2IB> and <F2BB> are plotted separately
in Figure 18. The relative magnitude of <F2BB> cothpàred with

<2IB>
is much smaller than that of

<'lBB> with (FlIB>. Comparisons of added

resistance and lateral, drift force with experimental valües will be given
in the future.

CONCLUDING R1ARKS

The second-order steady forces have been considered for a ship in
regular waves of arbitrary headings. The accurate prediction of these
forces is of considerable importance for estimating the powering require-
ment in waves, assessment of seakeeping qualities, and the position

control of ships. Based on Lin and Reed (1976) a new numerical schéme

has been developed for predicting the added resistance and drift force.
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The summary of the findings in this study is as follows:

It is not so easy to verify the. comp.ited second-order steady
forces satisfactoril.y because of the lack of reliable experimental data.

The effect of wave heading on added resistance is significant.

The maximum added resistance does not, necessarily occur in the head seas
only.

For decreasing heading angle or AIL, the contribution of the
motion to the added resistance decreases while that Of the diffraction
part increases;

There exists a contradiction between the assumptions made In
ship motion and the diffraction problem. In the ship motion problem the
justification of the strip theory is made by assuming A0(B), i.e., the

wavelength is approximately of the order of B, while in diffraction

problems the term (k2cos2S) is dropped in order to replacé the Helmholtz
equation by Laplace's eqtation. That mea.ns that in the diffraction

problem the assumption of X»B is made.

It is fair to say that the theory of Lin and Reed is mathematically

sound, but there still exists a gap between the theory an4 its practica].

äpplicability. In concluding this work we like to maké some suggéstions
for future study. First of all, to evelop a numerical prediction

method of the second-order steady forces it is desited to use the

most accurate method for predicting ship motion. For the diffraction

problem we have to solve either three-dimensional Laplace's equation

or Helmholtz equation in high frequet. ranges.

ACKNOWLEDG (ENT

Since this work had been initiated by Arthur M. Reed and E, Nadine
Hubble several years ago, they already develOped most of thè computer pro-
gram when I took over this problem in 1979. I would like to expressed my
sincere gratitude to them for their enormous effort on the computer program.

I would like to thank Dr. Choung M. Lee who gave invaluable suggest inns
and insights into the problem on various occasions. I am also indebted to
Dr. Joe W..C. Lin for his enthusiastic discussions and friendly help.

22



REFEREN CES

Choo,K.Y., Exciting Forces and Pressure Distribution on a Ship in Oblique
Wave. Ph.D. Dissertation, Massachusetts Institute of TechnoIogy,1975

Frank,W, Oscillation of Cylinder In or Below the Free Surface of Deep
Fluid. NSRDC Rep, 2375, teOpp. 1967.

Gerritsia,J. and Beukelman,W., Analysis of the Resistance Increase in
Waves of a Fast Cargo Ship. Internattonal Shibuildig Progress, Vol.19
pp.285-293. 1972.

John,F., On the Motion of Floating Bodies, I and II. Commun. Pure Appl.
Math. 2:13-57, 3:45-101, 1950.

LinW.C. and Reed,A.M., The Second-Order Steady Force and MOments on a
Ship Moving in an Oblique Seaway The Office of Naval Research, 11th
Symp. on Naval Hydrodynamics, London, 1976.

Newman,J.N., Application of Slender-Body Theory in Ship Hydrodynamics,
Annual Review of Fluid Mechanics, 2:67-94, 1970.

Olatsú1S., On the Irregular Frequencies in the Theory of Oscillating
Bodies in a Free Surface. Papers of Ship Research iflsto,No.48, 1975.

Qgilvie,T.F. and ShIn,Y..S., Integral Equation Solution for time-Dependent
Free-Surface Probi. J. Soc. Naval Arch. Japan, Voi. 143, 1978.

Paulling,J.R., Stability and Ship Motion in a Seaway, Suimnary Rep. 1 July,
1969-30 June, 1.970, Coast Guard.

Reed,A.M, and Hubble,E.N.,, program Force, Added Resistance and Drifting
Forces in Waves1 User's Manuel. DTNSRCD/SPDO89O_o1, June, 1980.

Salvesen,N.,, Tuck,E.O. and Faltinsen,O., Ship Motion and Sea Loads. Thans
Soc. Naval Archi Marine Engs.., Völ. 78, pp25O-279; digcusa1 pp279-
287, 1970.

Salvesen,N., Added Resistance of Ships in Waves. J. Hydronautics, Voi. 12,
No. 1, Janf 1978, pp.24-34.

23



Sibul,O.J., Measurements and Cálculation of Ship Resistance jj), Wäves.College of Engineering, Univ of Calif
Berkeley, Rep No NA-71-2,1971Strom-Tejsen,T , Yeh,H Y H , and Moran,D D , Added Resistance

in Waves,SNAME, TransactionS, Vol. 81, 1973, pplQ9-143.

Tröesch,A.W., The Diffraction Potenia1. for a Slender Ship Moving throughObliqué Waves. PhD thesis,
University of Michigan, Ann Arbor, 1976.Wehausen,J.V. and Laitone,E.V., Surface Wàves.

Encyclopedia of PhySics,vol. 9, pp446778, Springer-Verlage, Bénin, 1960.

24



APPENDIX A

Splirie Curve Fitting

Suppose we -ish to approximate a ContinuouS and differentiable function

F(x) on the interval O,L} in a piecewise fashion, using low-degree
interpolating polytiomials over nonoverlapping subintervals of (O,L].

Let the base pölUts be O = x< x1<... x1< X = L, the corresponding

functional vaules be y=F(x1) i0,1,2,.. .,n, and interpolating function

for CO,L} be S(x). We shall require that S(x) be cöntinuous on {O,L}

and possess continuous first and second derivatives for all x in {o,L].

Let S(x) coincide with a. thi.rd-dgree polynomial on each interval,i.e.,

S(x) a(x-X)3 + b(x_X)2 + c(x-X) + d., (A. 1)

( X x< X1 )

then

s(x) = 3a(x-X)2 + 2bj(x_X.i) + c (A. 2)

and
S (x) = 6a (x-X1) 2b
i i

where hX1 -
At each of the interior points, we set

S(X1) z S1(X1),

or 3ah + 2bjhi + c = c1

and
S"'X ' - S" X 'i' i+1' i+1' i+1''

or
6aihj + 2b a 2b1 for i"I,2,...,n-2.

Sine the. second derivative is a piecewise linear function of x,

25

(A. 3)

(A.6)

Now, by setting S(X) and s(X1) Equation(A.l) yields

z d, (A.4)

+ bh + cihj + (A.5)



S(x) = +

b =

- (2Xi4Àj+i )/6,

d =Y
i i

Substituting Equation(A.11) into Equaton(A.6) and after some algebric

manipúlation, we obtain the basic equation of Spline technique as follows:

h
À À

hi+i

[2(h+h1+1) i + i+1 + 2(hj+hj+L)
i+2

À+i - Xi

xi+l ç

3 N+2-+ Yi+l-i1
h+h1

L
h41 hi J
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for i.1,2,...,n-1,n-2.

(A.8)

(A. 11)

(A. 12)

»

where À. = S'j(Xj) and = S'(X+i) = S1 Thus, comparing

Equations (A.3) and (A.8) there results

2b = (A.9)

6a = ( Ài+i_Xi)/hj. (A. 10)

From Equations
(A.4),(A.5),(A.9) and (A.lO) the coefficients of the cubic

polynomial in the interval x,X1} can be expressed in terms f Y
and À1 as follows:

(À1-À) /6h



Let us denote

and

G(A1,u)

- =

Tr/ 2 Tr

7r/2 ,T/2

Intégral of

2
X1(u) cas u

APPENDIX B

I
}i(1T+u1À1)

I , (B.l)
(1 + 4Tcos u)4

liTi 2

-J' }G(X1,u)dú,

o

(B.2)

where t=wUIg, H(iT+u,X1) and A1(u) arê defined in Equations (3.1) and (3.2),

respectively. As shown in Figure. 2, A1 becomes infinite as u approaches

to ir/2, and if A1 becomes large, the integrand Of Equation(3.l) oscillates

so rapidly th4t it s difficult t evaluate the integral properly.

Wé will examine the second thtegral of Equat-ion(B.2) first, Let us assume

that there exista small positive angle u such that as u O, we have

IT-u 7T-U

fG(Au)dti f (B. 3)

IT/2 ir/2+u

where the subscript "1" of A is omited for the brevity sake. Let us

definé the difference between the exact and the approirnate value by

Error EJ G( A ,ú) du, (B.4)

and determine the angle uc such that the Error is within an acceptable

liit. In order to do this, let us examine the magnitude of the Köchin

functiont
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i I.
H(T-4i.i,X) Uf dx exp(iAxcos u)] dlXtj(n3+in2sjn u)

-1 C(x)

x expA(z + iysin u)} for rr/2<u <rr/2+u. (B.5)

Here ve neglect the term (iwn) in Equation(3.1) under the assumption that

X is very large. Using Equation(3.30) we can approximate the Kochin

fuñction for a large value of X as foÏlows:

i n-i

=
fdx exp(iXxcos u) E f(x;.4.1u)
-1 j-1 J J

x f ds Xexp{X(z+iysin u))

ds

whère +insin u) and is the magnitude of

the .ith segment, and furthermore, considering the fact that exp(iXxcosu)-

exp(iXysinu)!. 1.0, we may have

n-i

Jdx Z f4(x;Y11z4u)J dz Xexp(Xz)I
-1

J
-' z

exp(_Àlzlmjn) JD(u)I (B.6)

where D(ú) dx Z1 (3.7)

and zI is the minimum value of z1zjI of all the cross sections.

Combining Equations (B.4) and (3.6), and using the mean-value theor,

we have

d
A2(u)cos u

½
exp{_2XfzImjn}!D(u)12Error

. f (1 + 4rcosu)
1T/2
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where D(U) defined iñ Equat±on(B.7) is a smooth function o u and is the

value between îr/2 and r/2.4i.. By change of varíäblé the integral in

EquatiOn(BiS) will become

du

= fD()

2
(u)(-sin u)

(1 4Tsinu)½

(B,8)

exp2ÀJzIrnjn}. (B.9)

Assumng u is small and keeping the leadiitg term only, we obtain, the

fol1owing

fUE
T4U3

exp(- 2 'in . (B.lO)

We will denote Equation(B.lO) as and ágain apply the change of variable,

2 = y, theresult will be

f ex dv /(28) cp(-ß/u ' (Lii)

24where . V /1 and B 2v1z1i /2.

Let us put

/(28) exp(-B/u) < (B.12)

where thé arbitrary positivé value P will decide the accuracy of compu-

tation and the angle u Sithultaneously. Equatioii(B.12) can be rewritten

as

29
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À(u)cos u

(1 + Atcosu)



or

lop
< exp(ß/u2),

ln(
lop

)

and if lO
.: 1.0 then we will have

u <{BI1n(a1O/(2ß))} ½

(8. 13)

This value u gives the absolute magnitude of the integral of Equation
(B.4), not a relative size of error, i.e., the ratio of the magnitude of
Equation(B.4) tO that of Equation(B.3). Because of the difficulty of
integration of Equation(B.3), we cannot confirm the validity of Equation
(3.13) but, in the following example, we show the numerica.1 vlaués of
Equation(B.3) for several different P's. In stead of a actual ship, a
rectangular barge is considered for an example with the following condi-
t ions

LIB 7.5,

B/T - 2.0,

F -0.2,
n

B -135 (degree),

AIL 2O
Izi /B - 0.1.min

30

T

In addition tó these the velocity potential
' in Equatjon(B.5) sassumed

to be constant. The Kochin function H(7r+u,X) Is obtained in the close
form, i. ea,

A 4Sin(AlSiflu){ e"sin(Asj.n u)
- isinucos(Acoa U)(e-1)J

H(7T+u, )
A cos u sin u

where l-L/2, and the integral of Equation(B.3) may be suarjzed as follows:



where u0=cos(1/4T)71.39°. Though P increases from 3 to 10, the total

incre.met of Equation(B.3) for P10 is about 2% of the integration for P3.

The integral does not converge as fast as P grows, but it does approach

to finite value as P becomes large.

The third integral of Equation(B.2) is identical to the second one, and

because X(Tr/2_u) > A(TT/2+t), the angle u determined in Equation(B.l3)

can also be usèd for the first integral of Equation(B.2). Cònsequent].y,

we have

1T/2-U IT-U0 31T/2U

J -f - f

31

(B.l4)

p u
£

(degree)

À(u ) i =f G(À,u)du
P

i IiP4

3 25.68 4.87 -9043.66 1.0000

4 22.51 6.98 -9073.47 1.0033

5 20.28 9.11 -9114.01 1.0078

6 18.61 11.26 -9144.22 1.0111

7 17.29 13.43 -9169.18 1.0139

8 16.22 16.62 -9187.22 1.0159

9 15.32 17.83 -9211.14 1.0185

io 14.56 20.05 -9225.95 1.0202



13=0°

z

o

= surge 2 sway
heave- rol]. s pitch - yawB 180° head seas

90° beam seaS
00

following seas

Figure 1 - Coordinate
System

32

y,a2

-X , Ct1

13=1800



v=1.12,r=.60

33

10

8

Figure 2 - and X2 Cfr Equation(3.2)}

.50, .40

.29, .30

.20, .25

.13, .20

150 l8
u (degree)

120906030



0. 4

I -I

0.4. 0.8 1.2 1.6 2.0

vth deck

withOtjt deck

1.2

2.8 3.2

(2B/2g)

Figure 4 Heave Added-Mass Coefficients of a Si-Iersed
Circular Cylinder

35



3.
0

00 c
2.

0
0. E

c_
'I

-1 In
z

d
(-

n

he
av

e

H

(.
5

1.
0

2.
5 

A
/i.

-
3.

0
-J 0.

 5

5

Fi
gu

re
 5

- 
A

dd
ed

_M
as

s
D

am
pi

ng
C

oe
ff

ic
ie

nt
s

an
d 

H
ea

ve
,

Pi
tc

h
A

m
p'

ijt
ud

e
fo

r 
M

ar
in

er
at

 F
o.

2Ø
f=

13
50

w
(L

/g
)½

¿-
a j'



Exper irnent

o s =t35°
ß = 450

Figure 6 Cirthwise Pressure Distribution for a Hidzhïp
Section of an Ore Carrier in Oblique Sea

{Troeach(1976), Figure 7, p.66)

80°

50°

Helmholtz

Laplac e

Hull, Position

ilull Position

37

90

-90 -60 -30 O 30 60 (deg)



Phase 
(deg) 

60 

38 

.80 

Helmholtz 

Laplace 

Ex per linen t 

i. o 
w (B / 2g ) 

Figure 7 - Total Fòrce for a Series 6O C8.70 Hull 
Form in Oblique Waves (30°) 

1roesch(1976), Figure 19, p.84} 



14 . O

12.0

¿ 8.0
w

V
'.4
'4
'4
w
o

Q
w 6.0
u
C

1-,

'.4

w

4.0

2.0

Figure 9 Added-Resistance Coefficientg for Mariner at F 0.]94
n

39

0.4 0.8 1.61.2



40 

0.4 0.8 1.2 1.6 À IL 

Figure 10 - ComparisOn between Salvesen an4<F113> at FQ.l94 



Figure 11 - <1BB> for Matiner at F-O.i94
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Figure 18 - Relative Magnitude of <F2IB> and (F2B? for Mariner at F.,194
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