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 Definitions 
 
A  cross-sectional area 
dx infinitely small element 
   density  

E  Youngs modulus or modulus of elasticity 
I moment of inertia about the x-axis 
EI  stiffness  
f external force 

  separation constant 
M  bending moment 
R radius of the cylinder 
t  time 

  angle between neutral axis and x-axis 
V internal transverse force 
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Introduction 
 
On a raining day rain water can track down along the lower surface of cables of bridges. In 
combination with wind, rivulets can be formed. In the past years it has become clear that the 
combination of rain and wind can produce unwanted vibrations like in the Yapanese Meikonishi 
bridge, and the Erasmus bridge in Rotterdam, see figure I.1. This phenomenon is called rain-wind-
induced vibrations (RWIV). 
 
In this report a model will be given of the cable with a rivulet and wind and drag forces. The results of 
several researchers is taken into account. Since the rivulet can be viewed as a small disturbance, 
asymptotic approximations will be used for analysis. Analytic methods are used in the analysis of the 
models described in this report. 
 
The analytic methods will comprise of solving partial differential equations  (PDEs) via separation of 
variables, perturbation calculus and solving Diophantine-like equations . Moreover, the analysis will 
be centered around internal resonance and stability. 
 
In the first chapter the model will be described, the assumptions will be discussed and the general 
PDE will be derived. In the second chapter perturbation calculus will be applied and the 
corresponding differential equations will be derived. Moreover, a model will be given which includes 
wind and drag forces.  
 

In the third and fourth chapter the O(1)-problem and respectively the O( ) -problem will be 

discussed and the results of internal resonance and stability will be analyzed. Chapter 5 focuses on  
the rivulet modeled as a block signal. In chapter 6 and 7 the presence of a quadratic and cubic term 
in the velocity of the cable will be discussed. Finally in chapter 8 recommendations and directions are 
given towards a continuation of this research. 
 

 
Figure I.1: Attachment of dampers at the Erasmus bridge to suppress rain-wind-induced-vibrations.



9 

 

Literature research 
 
There are a lot of papers written over RWIV. Some of them treat observations in the field while 
others use analytical model to explain the phenomenon. In this literature research 9 papers about 
RWIV scattered over the years are treated. For more information regarding this subject the reader is 
referred to these 9 papers and their references within. 
 
In [1] Hikami and Shirashi were the first to note the RWIV and claim that the vibrations at the 
Meikonishi bridge weren't due to vortex-induced oscillation nor wake galloping. They performed full 
scale measurements which confirmed that the frequency of the observed vibration was well below 
the critical frequency of the vortex-induced oscillation. For the observed vibration to be a wake 
galloping, the distance between the cables was too large to cause any interference with each other.   
 
The authors in [1] reported a very important observation:  the upper rivulet formed through the 
combination of rain and wind plays an important role in the occurrence of the vibrations. They also 
mention that the vibrations only occur within a limited range of the wind velocity, and under certain 
angles of the cable. The measurements show that not all the cables of the bridge exhibited 
vibrations.  
 
The modes excited by rain and wind fell in the range of 1-3 Hz and were mostly of a single mode, 
there were a few occasions when two or three modes were involved. They mention that two possible 
mechanisms of instability could be the Den Hartog instability and instability due to coupled 
aerodynamic forces. In the paper none of the causes are further investigated. 
 
In [2] Yamaguchi attempted to create an analytical model using 2 degrees of freedom to investigate 
the causes of the instability. He used a circular cylinder with diameter D and attached to that a small 
cylinder, with diameter d, acting as a rivulet. He investigated several diameter ratios: 

d
0.1,0.2,0.4

D
 with varying angle of attacks he measured the coefficients CD, CL and CM, see figure 

L.1. 
 

  
Figure L.1: Measured values of CD, CL and CM for different diameter ratios, taken from [2]. 

 



10 

 

He attempted to test the two causes of the instability mentioned in [1]. He found that the Den 
Hartog mechanism can't be the cause of the instability (of course under certain model assumptions) 

due to the failing of the criterion L
D

dC
C 0

d
 


.  

 
Analysis of the second cause gives no conclusion but gives two important results. First of all the 
fundamental frequency of the circumferential oscillation of the upper rivulet is proportional to the 
wind speed and could coincide with the natural frequency of the cable at wind speeds around 10 
m/s. Second of all the upper rivulet is able to oscillate in circumferential direction because of the 
aerodynamic stiffness. 
 
For this thesis report the shape and the dimensions of the rivulet are required. The authors in [3] 
investigated a rivulet on a tube to find out what the characteristics are for the flow of the rivulet for 
heat exchangers, condensers and so on. In their setup they used a nozzle to feed ethanol on a glass 
tube inclined under an angle. Their results show two important shapes of the rivulet and confirm that 
the rivulet can be seen as a small disturbance. 
 
Moreover, in [3] the wave profiles of the rivulet become apparent; figure L.2 shows that the rivulet 
can take two shapes. The first shape is sinusoidal and the second shape is approximately a block 
function. In this report both the sinus-function as the block function will be used to model the rivulet. 
From figure L.2 it's also clear that the amplitude is small and can thus be regarded as a disturbance. 

The function which describes the sinus function is  f (x, t) c sin (x t)     and for the block 

function this becomes 
k k

k

m(x, t) c Q[x (t c )] Q[x (t d )]




       , this will be clarified in 

the next chapters. 

 
Figure L.2: The height h of the rivulet measured for different inclination angles  and different flows Q, taken 

from [3].  

 
In [4] a stochastic approach is implemented. The rivulet is modeled by a small added mass 
undergoing stochastic motion on the circumference. The motion is described by the response of a 
band pass filter. Such a filter can be thought of as an ideal system that, when excited by white noise 
input gives a response whose power spectral density (PSD) induces the PSD of the moving rivulet.  
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The authors chose a 1 DOF model and incorporate measurements of CL and CD from [1]. They found 
stochastic vibrations and for appropriate parameters the system can rapidly evolve around a 
stochastic state. The most important result is that the vibrations occurred with positive damping 
while the Den Hartog mechanism requires anti-damping. 
  
In [5] an attempt is made to create an analytical model based on a single DOF. This model  
incorporates the lift and drag forces via a power series approximation of the data of CL and CD found 
in [1]. The analytical model captures the main vibrations features such as the velocity and amplitude 
restriction. Although the model could be improved by adding axial flow and turbulence it captures 
the trend lines of the observations found in [1]. 
 
In [6] an overview is given of the result of previous investigation in the first part of the paper. They 
mention that large-amplitude cable stay vibrations have been observed on a number of bridges in 
the United states and abroad during relatively low wind speeds with and without the presence of 
rain. The proposed cause of the vibrations is the change in the cross sectional shape of the cable stay 
that occurs when rain forms one or more rivulets along the cable surface. This modified cross section 
affects the aerodynamics of the cable stay. As a result large vibrations occurs at wind speeds above 
the known Karman-vortex shedding winds speeds for cylindrical bodies. 
 
Excessive cable-stay vibrations can distress the cable stays themselves and subject to them to stress 
states for which they were not designed. Long term fatigue damage to the cable stays is another 
concern. Thus safety perception to the public is an important issue.  
 
The second and main part of paper [6] focuses on preventing the vibrations while this report doesn't 
deals with these forms of prevention it's important to note that these vibrations can be suppressed 
effectively. 
 
Currently, cable-stay oscillations caused by rain–wind induced aerodynamic forces are controlled by 
one or a combination of the following methods: (1) single-point mechanical dampers, typically at the 
base of each cable, see figure L.3, (2) restraining cable devices, known as cross-ties, that connect 
adjacent cables at various locations along the length of the cable resulting in a reduced effective 
length for each cable; and (3) distributed passive approaches such as surface treatment of cables 
using grooves, protuberances, or dimples. This paper [6] presents data on the effectiveness of one 
such approach using a distributed passive device.  

 
Figure L.3: The first method of preventing RWIV, additional dampers implemented at the Erasmus bridge in 
Rotterdam in the Netherlands, taken from [6]. 
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The Veterans Memorial bridge was instrumented to monitor its cable stay vibrations. They found 
several results. First of all RWIV occurred when the wind speed was between 6.3 and 14 m/s. 
Secondly velocity restricted response was often triggered when there was no rain and wind speeds 
were between 7 and 11 m/s. And finally the rings attached to the cable stays added aerodynamic 
damping and reduced the amplitudes of the vibrations. 
 
In [7] the rivulet itself was investigated. They investigate the condition for appearance of rivulets and 
the relation between their position and physical parameters such as wind velocity, surface tension, 
viscosity of water, thickness of the water film, cable diameter and tension, see figure L.4. Also the 
equation governing the dynamics of a thin film of liquid on a cylinder subjected to wind is derived in 
the paper.  Finally they propose a simple criterion to estimate the position of the rivulet.  
 
To test their model they used a self made experimental set up. They explain the appearance of 
rivulets via a balance between gravity and wind load. The overall position of the rivulet seems to be 
depend more on the variation of the external load than on local nonlinear effects. 
 

 
Figure L.4: A picture of the model used in [7]. 

 
 
Peil et al. give an elaborate model for rain-wind-induced vibrations (RWIV) in [8]. They derive the 
equation of motion in 3D taking into account sagging of the cable, the elasticity of the cable, 
longitudinal elongation and they coupled the equation of motion for the rivulet where the two 
dimensional Navier Stokes equations are taken as a basis.  
 
Although the model looks extensive at first sight a detailed look towards the rivulets equation of 
motion reveals neglection of small terms which considerably simplify the equations, it's not 
argumented that those terms can be neglected other than the simplification. The result of the model 
shows agreement with the observation in situ. They conclude that self-induced vibrations lead to the 
instability. 
 
In the introduction of [9] they explain that the width of the rivulet was about 1-2 cm. and that the 
cables in cables-stayed bridges have diameter of 10-18 cm. This means that, if a simulation was 
exerted with the same measurements for the rivulet and cables, the measurements of pressure and 
wind acting along the rivulet would be almost impossible. To cope with this fact while staying in the 
same Reynolds regime the test wind speed, the diameter of the cable and the model length are 
adjusted.  
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In the wind test performed by the authors they took both the rivulets into account as opposed to 
other simulations where the lower rivulet was left out, see figure L.5. Also by rearranging  176 
pressure taps the aerodynamic forces could be measured with accuracy. Moreover, the CD and CL of 
both the rivulet at the cable are measured while varying the initial position of the rivulet. An 
analytical model was set up (as discussed in appendix section C) and measured values of CD and CL 
were inserted. 
 

 
Figure L.5: Photo of the test set-up of Gu et al. 

 
The mechanism behind the instability which they suggest is galloping for if the rivulets initial position 
is in a so-called 'danger zone' the position could eventually end up in the unstable zone (according to 
the Den Hartog criterion). The analytical model set up to run numerical simulations differs from 
others in the sense that the friction force is in this paper composed of a linear damping force and a 
Coulomb damping force. Unfortunately the authors Gu et al. had difficulty in determining its correct 
value.  
 
  

  



14 

 

1 Setting up a model 
 
§1.1 Model setup 
All of the models from the papers regarding rain-wind-induced vibrations (RWIV) see the rivulet as a 
lumped mass moving circumferentially around the cable. Some researchers  even took the elasticity 
and strain of the cable into account. In this report a model will be created by modeling the rivulet as 
an perturbation. In this chapter firstly a simplification will be carried out after that the PDE can be 
derived. Finally the restrictions of the model will be analyzed. 
 
§1.2 Simplification 
The cable under consideration is a cable-stay from a bridge and consists of several polystyrene cables 
along with a reinforced ring. A schematic display is given in figure 1.1 as well as the coordinate axis. 
 

 
                               
Figure 1.1: Cable stay from a bridge with chosen coordinate axis. 
 
 

In this report only the vertical displacements will be analyzed. Moreover, the cable will be modeled 
via a cylinder shell in 1D. The rest of the cylinder will be modeled as an sequence of springs with 
spring constant  , see the dark grey area in figure 1.2a and the model in figure 1.2b. 

 



15 

 

 
 
 

 
Figure 1.2a: (on top) A slice of the cylinder will be analyzed. Figure 1.2b: The shell is modeled via a beam and 
the rest as a sequence of springs. 
 

Two models will be analyzed with in each a different form of the rivulet. In the first model the rivulet 

will be a "wave" moving to the right:  0 wavem(x, t) m A sin (x t)    . Note that according to 

[3] Awave is small. Furthermore both ends will be simply supported. Now we are ready to derive the 
equations of motion. The rivulet is assumed to be small compared to the beam and is highly 
exaggerated displayed in figure 1.2a. 
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§1.3 Equations of motion 
We look at an infinitely small element dx of the beam with length L. The beam has an modulus of 
elasticity E, a moment of inertia I and a cross sectional area A. The beam is placed on a sequence of 
springs with spring constant  , subjected to an external force f(x,t) and an axial tension T, see figure 

1.3.  

 
Figure 1.3: An infinitely small element from the beam subjected to an external load f and a tensile force T. 

 
Summing forces in vertical direction gives (subscript denotes partial derative): 
 

 

x dx

tt

x

Adx w V (V dV) f ( , t) d (T dT)sin( d ) Tsin( ) wdx

w w w
dV f (x, t)dx T (T dT) dx wdx,

x x x x



              

     
               


 

 
 

with a specific x  for x x x dx   according to the mean value theorem and the assumption 
 

 
w

sin( ) tan( ) 1
x


   


 and 

w w
sin( d ) d dx.

x x x

   
        

   
 

 
 
 

Now  with neglection of 2dx -terms: 
 

2

tt 2

V w T w
Adx w dx f (x, t)dx T dx dx wdx.

x x x x

   
        

   
 

 
 

Dividing by dx and since dx is infinitely small x x this results in: 
 

 tt x x

V
Aw f (x, t) Tw w.

x


      


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From mechanics of materials we know 
2

2

d w
M EI

dx
  and 

dM
V

dx
 (with the chosen sign convention  

forces downward are positive and CCW-moments are positive as displayed in figure 3). 
 

 

   

2

tt x2 x

xx xxx x

d M
Aw f (x, t) Tw w

dx

EIw f (x, t) Tw w,

      

     

 

 
 

with the assumption that ,A,EI,T are constants we get: 

 

tt xxxx xxAw EIw f (x, t) Tw w.        

 
 
Thus we finally found the resulting partial differential equation: 
 

tt xxxx xxAw EIw Tw w f (x, t).                (1.1) 

 
 
Now introducing nondimensional parameters: 
 

EI
x x,  t ct,    w cw,   c ,

L L L L A

   
   


  

2

2 2

2

T L
q ,   p .

Ac A c

  
   
   

 

 
 
This gives as a final result (with the bars immediately dropped): 
 

2 2

tt xxxx xx

L
w w q w p w f (x, t).

c A
   


                      (1.2)
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A different form for the equation of motion can be found in [13], using Donnels shell theory applied 
to a circular cylindrical shell one can find a set of three coupled PDE's describing the displacement: 
 

 
 

with u, v and w defined in figure 1.1 and  the angle of rotation. 
 
From the last equation (1.2) it can be seen that under certain assumptions the partial differential 
equation (PDE) derived above can be found with additional terms due to the rotation . See [14] for a 
more difficult model taking ovally shaped circular cylindrical shells and the other modes into account.  
 
§1.4 Choice for an analytical model  
The PDE (1.1) derived in §1.4 will, with f(x,t) specified later on, become an nonautonomous nonlinear 
differential equation. Since exact analytical solutions of nonlinear systems often aren’t  available 
qualitative analysis is used. Moreover, it’s used to predict general features of the motion including 
stability and long term behavior. The most useful tool for qualitative analysis of a nonlinear system is 
the state plane: a graphical history of the relationship between two variables, although this isn't 
often used in this thesis. 
 
Analytical solutions are preferable to numerical solutions because they can be used to predict trends, 
analyze the effect of parameters and investigate the stability. Approximate analytical methods are 
often used to approximate the solution of nonlinear problems. If the magnitude of the nonlinear 

term is small, say in the order of , with 1, then a perturbation method can be used to develop 

an approximate solution. 
 
For a one-degree-of-freedom system, the generalized coordinate is expanded in a series of power 

of , 2

0 1 2x(t) x (t) x (t) x (t) ...     . This equation can be substituted in the governing 

differential equations thereafter coefficients of like powers of  are collected and set to zero 
independently. The result is a set of differential equations that are successively solved for 

ix (t),  i 1,2,3...   

 
The series can be convergent and if terms of the homogenous solutions appear in the right-hand-side 
then secular terms may occur. These terms are unbounded for all t and and must be removed. A 
variety of perturbation methods are developed to remove secular terms.  
 
These include the method of strained parameters, the method of renormalization, the method of 
averaging and the method of multiple time scales. Some methods only remove periodic terms that’s 
why in this report the method of multiple time scales is used, since implementing this method results 
in finding all solutions, for more information see [16]. 
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§1.5 Restrictions of the model 
In this paragraph the most important assumptions are listed below. 
In this model 

- Only one rivulet is modeled, the effect of the other rivulet is not taken into account; 
- The upper rivulet doesn’t moves circumferentially on the cable; 
- The rivulet is modeled as a perfect sine/ block signal; 
- Only 1D effect are taken into account; 
- Torsional effects are left out; 
- The mass of the rivulet is assumed to be small in comparison with mass of the cable; 
- The rivulet moves frictionless on the cable; 
- The moment of inertia of the rivulet is neglected; 
- Material properties are constant throughout the cable;  
- The cable is modeled as a beam; 
- Gravity is omitted. 

 
§1.6 Conclusion 
In this chapter a PDE has been derived for the cable in conditions where RWIV might occur. The cable 
is modeled as an Euler-Bernoulli beam subject to a tensile force, placed on a spring bed and the 
beam is in line with the x-axis. Also, the reasons for an analytic model are given, the most important 
being:  analytic models can predict stability for parameter ranges and can outline long term behavior.  
 
Perturbation expansions can be used if certain terms are small compared to others. Care must be 
taken when secular terms occur. Finally it's noted that only under certain important assumptions the 
results can be called plausible. 
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2 Perturbation calculus  

 

In this chapter the model of the rivulet will be added to the PDE derived in chapter 1. Perturbation 
calculus will then be applied to find an approximation of the analytical solution. To simplify the 
model several assumptions are made. 
 

§2.1  Adding the model of the rivulet to the PDE 
The rivulet on the beam can be considered to be a mass varying with time and space: m(x,t). To 
include this in the model the first term in the PDE (1.1) from chapter  1 must be changed. In this 
chapter the rivulet is modeled as a circular cylinder. The amplitude of the wave-shape of the rivulet is 
small compared to the mass of the cable and can thus be considered as a disturbance.  
 
Locally the total mass is: 
 

   t cable tt tt t
mw m w m(x, t)w ,   

  
with 

  
2

w w w

cable cable cable

m(x, t) A (x, t)dx dx c sin (x t) ,
4

m A dx.


       

 

 

 
 

 
Figure 2.1: A schematic representation of the rivulet with a circular cylinder shape and with its height 
prescribed by a sine function on a cable-stay of a bridge. 

 

cable cable w w,A , ,A  are the density and cross sectional area of the cable and respectively the rivulet, 

c is the height at which the sine is present and the presence of 
4


 and the square is just the total 

area of a circular disc of the rivulet, see figure 2.1.  and   are two parameters to give the sine a 

general form.  



21 

 

Now with neglection of 2  terms: 
 

 2

wm(x, t) dx c sin (x t) dx.
4


       

 
So mass term becomes: 
 

   tot t 0 tt tt t
m w m w m(x, t)w ,   

 

with 2 2 2

0 cable w cable cable w cable cable wm m c dx A dx c dx Adx,   A A c .
4 4 4

  
                

 
The dx is divided in the final step of the derivation of the PDE in chapter 1. Now the PDE can be 
reformulated. The PDE with the rivulet and without an external load is: 
 

 tt xxxx xx t t
Aw EIw Tw w m(x, t)w .         

 
Introducing nondimensional parameters:  
 

EI
x x,  t ct,    w cw,   c ,

L L L L A

   
   


 

2

2 2

2

T L L
q ,   p ,  ,

Ac A c c A

  
     
    

   

 
 
which leads to the PDE: 
 

2 2

xxxx xxtt t t t t tt
w w q w p w m(x, t )w m (x, t )w c m(x, t )w ,

L

 
             

 
   

 
 with  
 

L L L L
m(x, t ) sin x t sin(sx t ),    s ,  .

c c

 
        

    
 

 
 
§2.2  The two time scales perturbation method 

The PDE has a component of O( ) and perturbation analysis is best suited to find an approximation 

of the solution. The convergence of the approximation is discussed in the appendix section E. To 
prevent secular terms the two time scales perturbation method will be invoked and applied to this 
PDE: 
 

 2 2

tt xxxx xx t t
w w q w p w m(x, t)w ,       

 

Note that the bars are dropped.  Now with w w(x, t, ) w(x, t, t)     we get: 

 

   2 2 2

tt t xxxx xx t t
w 2 w w w q w p w m(x, t) w w .               
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Now expand w as follows: 2

0 1w(x, t, ) w (x, t, ) w (x, t, ) (..)      . After substitution we get: 

 

       

      
tt tt t t xxxx xxxx

xx xx t t t

2

0 1 0 1 0 1 0 1

2 2

0 1 0 1 0 0 1
t

w w ... 2 w w ... w w ... w w ...

q w w ... p w w ... m(x, t) w w w ... ,

   
                

                
 

 

 

where the dots represent higher order terms. 
 
 
Collecting all order  1 terms gives: 
 

tt xxxx xx

0 2 2

0 0 0 0O( ) : w w q w p w 0.      

 
This PDE will be analyzed in chapter 3. 
 
 
 
Collecting all order  -terms: 
 

tt xxxx xx t t

1 2 2

1 1 1 1 0 0
t

O( ) :    w w q w p w 2w m(x, t)w ,


           

 

with  m(x, t) sin(sx t).   

 
This PDE will be analyzed in chapter 4. 
 
 
§2.3  Lift and drag forces 
Equation (1.2) in chapter 1 can be made more realistically if lift and drag forces are inserted. To this 
end we place the cable under an inclination angle  , the yaw angle of the incident wind, with mean 

wind speed U0, is designated as   just as in [5], see figure 2.2.  

 
The radius of the cable is R and the angle of the static position of the rivulet with the vertical axis is 

0. The angle between the static position of the rivulet 0 and the rivulet itself is , see figure 2.3. 

Since the cylinder is not perpendicular to the direction of the mean wind speed U0 the component of 
U0 perpendicular to the cable is needed: 
 

2 2 2 2 2 2

0 0U U cos ( )cos ( ) sin ( ) U sin ( )sin ( ) cos ( ).           

 
For more information about the derivation of the equations, see appendix section C. Note that 

gravity is left out and that the angle   is a different   than the one used in the sine in chapter 1. 
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Figure 2.2: A representation of an inclined cable of a cable-stayed bridge under influence of wind.  
 

 
Figure 2.3: The velocity diagram of the rivulet and the cable. 
 
 

The angle of attack is: 
 

2 2 2

sin( )sin( )
sin( ) .

cos ( ) sin ( )sin ( )

 
 

   
 

 

The assumptions in this report are that:  
w

1,  R 0
U

  , so the wind speed is large as compared to 

the velocity of the beam in vertical direction and circumferential motion is not taken into account. 
The angle between the relative velocity Urel and the horizontal axis in figure 2.3, is defined as 

* which is:  

 

* 0Usin( ) w R sin( ) w
tan( ) .

Ucos( ) Ucos( )

    
    

 
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The relative velocity becomes, with the earlier named assumptions: 
 

   
2 2

rel 0 0

2

U U cos( ) R cos( ) Usin( ) w R sin( )

w
U cos( ) 1 tan( ) .

U cos( )

            

 
     

 

 

 
 
The net vertical force in w-direction is: 
 

 2 * *

rel L D

1
F DU C ( )cos( ) C ( )sin( ) .

2
        

 

The angle  is defined as *

0.     CL and CD are functions of the angle of attack as shown in 

figure 2.4 below. 
 
 

 
Figure 2.4: The ‘coefficients’ CL and CD which are a function of the angle of attack expressed in degrees, taken 
from [5]. 
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Now using Taylor approximations around 
w

U
 leads to: 

2 3

t t t
0 1 2 3

w w w
F A A A A ,

U U U

   
      

   
 

with 
1 2A ,A and 

3A constants. The quadratic and cubic term in wt are investigated in respectively 

chapter 6 and 7.  
 
 
§2.4  Conclusion 
In this chapter the equations are derived outlining the analysis performed in this thesis. A term 
related to the rivulet was added to the PDE derived in chapter 1. Since this term is small a 
perturbation analysis is carried out, to give an approximation of the solution of the PDE:  the 

equation for the order 1, O(1), and order , O( ), are derived.   

 
Secular terms emerged after which the multiple time scales method was applied. Moreover, a model 
for the lift and drag acting on the cable was given. After linearization a quadratic and cubic term 
arose in the RHS which needed further attention. 
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3 The 0
Ο(ε )-problem 

 

The PDE in the 0O( ) -problem is linear and homogeneous thus the superscript is dropped and 

separation of variables is performed. As stated in chapter 1 the beam is presumed to be simply 
supported at both ends. 
 
§3.1  Separation of variables 
The complete problem to be analyzed is: 
 

2 2

tt xxxx xx

xx xx

t

w w q w p w 0,         0 x ,  t 0,

w(0, t) w( , t) 0,                       t 0,

w (0, t) w ( , t) 0,                  t 0,

w(x,0) g(x),   w (x,0) h(x),    0 x .

        


   


   
     

 

 
 

We presume nontrivial solutions of the form: w w(x, t) X(x)T(t)   

 
Substitution results in: 
 

2 2T X'''' q X '' p X
,

T X

  
    

  
 
where the dots represents time derivative and the prime represents derative with respect to x. The 

separation constant  is negative and it can be proven that is real and that the corresponding 

eigenfunctions are orthogonal, see Appendix section A for details. So the assumption is 0  .  
 
Solving for X(x): 
 

2 2

4 2 2 2

kx

X'''' q X '' ( p )X 0,
   k q k ( p ) 0.  

X(x) e ,

      
     

 
 

 
 

This is a quadratic equation in k2. The discriminant of this equation in k2 is: 4 2q 4( p ).   We have 

to distinguish three cases: 
 

4 2

4 2

4 2

1) q 4( p ) 0;

2) q 4( p ) 0;

3) q 4( p ) 0.

   

   

   
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In case 1 we again have three cases: 
 

 

2 4 2

2 4 2

2 4 2

1) q q 4( p );

2) q q 4( p );

3) q q 4( p ).

   

   

   

 

 

Define 4 2E q 4( p ),    so we need to look at the following cases: 

 

1) E 0  and 2q E;  

2) E 0  and 2q E;  

3) E 0  and 2q E;  

4) E 0;  

5) E 0.  
 
In each upcoming paragraph a case is worked out. 
 

§3.1.1 Case 1 E > 0  and 2
q > E  

We now have four real roots, so we take as a solutions: 
 

1 1 2 1 3 2 4 2X(x) C cosh(k x) C sinh(k x) C cosh(k x) C sinh(k x),     

 
with the constants C1,..,C4 determined via the boundary conditions (BCs).  
 

After applying the BCs: X(0) X( ) X"(0) X''( ) 0       a set of 4 equations with 4 unknowns 

will result. This set only has a nontrivial solution iff the determinant is zero: 
 
 

1 1 2 2

2 2

1 2

2 2 2 2

1 1 1 1 2 2 2 2

1 0 1 0

cosh(k ) sinh(k ) cosh(k ) sinh(k )
det 0

k 0 k 0

k cosh(k ) k sinh(k ) k cosh(k ) k sinh(k )

  
  

       
  
        
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 

1 1 2 2

2 2

1 2

2 2 2 2

1 1 1 1 2 2 2 2

1 2 1 2

2 2

2 1

2 2 2 2

1 1 2 2 1 1 2 2

2 2

2 1

1 0 1 0

cosh(k ) sinh(k ) cosh(k ) sinh(k )

k 0 k 0

k cosh(k ) k sinh(k ) k cosh(k ) k sinh(k )

sinh(k ) cosh(k ) sinh(k ) sinh(k )

0 k k 0

k sinh(k ) k cosh(k ) k cosh(k ) k sinh(k )

k k

   

   

    

 

    

 
2

1 2 1 2 1 2sinh(k )sinh(k ) 0     k ni      k ni        k  k ,     n .          

 

 
The first two complex solutions are in contradiction with the assumption that the roots are real. The 

last solution 1 2k  k   will lead to the trivial solution because then 4 2q 4( p ) 0,   which is in 

contradiction with the assumption that 4 2q 4( p ) 0.    

 

§3.1.2 Case 2 E > 0  and 2
q = E  

Now we have 1,3k q  and 2,4k 0 we take as a solution: 

 

1 2 3 1 4 1X(x) C x C C cosh(k x) C sinh(k x).     

 
Applying the BCs results in the matrix: 
 

1 1

2

1

2 2

1 1 1 1

0 1 0 0 0

1 cosh(k ) sinh(k ) 0
,

0 0 k 0 0

0 0 k cosh(k ) k sinh(k ) 0

 
 
   
 
 

   

  

 

setting the determinant to zero gives  4

1 1k sinh(k ) 0,    

 
so only the trivial solution will result. 
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§3.1.3 Case 3 E > 0  and 2
q < E  

k1,3  will give two real roots and k2,4  two purely imaginary ai, with 
4 2 2q 4( p ) q

a ,
2

   
   so 

we take as a solution: 
 

1 1 2 1 3 4X(x) C cosh(k x) C sinh(k x) C cos(ax) C sin(ax),     

 
Applying the BCs results in the matrix: 
 
 

1 1

2 2

1

2 2 2 2

1 1 1 1

1 0 1 0 0

cosh(k ) sinh(k ) cos(a ) sin(a ) 0
,

k 0 a 0 0

k cosh(k ) k sinh(k ) a cos(a ) a sin(a ) 0

 
 

    
 
 

       

 

 
with its determinant equal to zero leading to: 
 

 
2

2 2 2 2

1 1 1 10   k ni    sinh(k )sin(a ) a n     k a k a 0.           

 
The first solution contradicts with the assumption that k1 is a real root. The second solution leads to 
the matrix: 
 

1 1

2 2

1

2 2 2

1 1 1 1

1 0 1 0 0

cosh(k ) sinh(k ) cos(a ) 0 0
,

k 0 a 0 0

k cosh(k ) k sinh(k ) a cos(a ) 0 0

 
 

   
 
 

     

 

 

which means that C4 is free and 1 2 3C C C 0,   thus  this results in nX(x) W sin(nx)  with 

coefficients Wn. 
 
The third solution isn't possible because both a and k1 are real. 
 
§3.1.4 Case 4 E = 0  

If 4 2 q 4( p ) 0,    then 
1,3 2,4

q q
k ,   k ,

2 2
    so we take as a solution: 

 

1 2 3 4X(x) C cosh(kx) C xcosh(kx) C sinh(kx) C xsinh(kx).     
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Applying the BCs results in the matrix: 
 

2

2 2 2 2

1 0 0 0 0

cosh(k ) cosh(k ) sinh(k ) sinh(k ) 0
,

k 0 0 2k 0

k cosh(k ) 2k sinh(k ) k cosh(k ) k sinh(k ) 2k cosh(k ) k sinh(k ) 0

 
 

      
 
 

           

 

 
 
setting the determinant to zero gives: 
 

22ksinh (k ) 0,    

 
so only the trivial solution will result. 
 
§3.1.5 Case 5 E < 0   
In this case there are four complex valued roots where they appear in couples and have nonzero 

imaginary parts. Suppose the roots have the following form: 1,2,3,4 1 2k i ,    with 1 2,  real-

valued and 2 0  , then we take as a solution: 

 

1 1 2 2 1 2 3 1 2 4 1 2X(x) C cosh( x)cos( x) C sinh( x)cos( x) C cosh( x)sin( x) C sinh( x)sin( x).           

 
Applying the BCs results in the matrix: 
 
 

     

1 2 1 2 1 2 1 2

2 2
1 2 1 2

2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 2 1

2 1 1 2 2 1 1 2

1 0 0 0

cosh( )cos( ) sinh( )cos( ) cosh( )sin( ) sinh( )sin( )

0 0 2

cosh( )cos( ) sinh( )sin( ) cosh( )sin(

2 sinh( )sin( ) 2 cosh( )sin( )

               

   

                 

           

 2 2
2 1 2 1 2

1 2 1 2 1 2 1 2

,

) sinh( )sin( )

2 sinh( )cos( ) 2 cosh( )cos( )

 
 
 
 
 
 
 
 
 

         

           

 
 
setting the determinant to zero leads to: 
 

   2 2

1 2 1 1 2 2 2

2 2 2 2

1 2 1 2 1 2

sinh( )cosh( )sin( ) cos( ) sin( )

2 sinh ( )cos ( ) cosh ( )sin ( ) 0.

             

             

 

 

Thus only trivial solutions will result. Note that 1 2,  can be deduced by taking the principal part 

when calculating the root of the complex number (the result is omitted here). 
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§3.2  The final solution 
We proceed with the infinite solutions found in case 1.3. Now the ODE for the time can be solved: 
 

   n n 5 n 6 n

T
         T+ T 0        T (t) C cos t C sin t ,

T
            

 

with 4 2 2 2

n n n q n p .       

 
 
The final solution becomes: 
 

    n n n n

n 1

w(x, t) G cos t H sin t sin(nx),




     

 
with initial conditions: 
 

 
t

w(x,0) g(x),

w (x,0) h(x).




 

 
The coefficients can be determined at t = 0 by using orthogonality of sines and cosines and 
integrating from 0 to for x  this results in: 
 

n

0

n

n 0

2
G g(x)sin(nx) dx,

2 1
H  h(x) sin(nx) dx.









 





 

 
Note that we can have (mathematical) problems if the stiffness of the beam goes to zero. We have to 
look at this problem separately. 
 
§3.3  A string-like model 
Suppose we look at a vibrating string-like model or equivalently we let the stiffness of the beam go to 
zero then the nondimensional PDE:  
 

2 2

tt xxxx xx

L
w w q w p w f (x, t),

c A
   


 

becomes with new nondimensional parameters (not explicitly shown here): 

2

tt xx

L
w w a w f (x, t).

c A
  


 

We take f=0 and we use separation of variables: w(x, t) X(x)T(t),  
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     
   

2
2

tt xx

2 2 2

1 2

3 4

T X" a X
w w a w 0     

T X

X" a X 0     X(x) C cos a x C sin a x ,

T T 0     T(t) C cos t C sin t .


       

            

       

 

We use fixed ends, so X(0) X( ) 0   , which results in  

  2 2 20 sin a     a n ,  n 1,2,3,...        

With the assumption that 0.   

Thus the solution is:  n n n n

n 1

w(x, t) G cos( t) H sin( t) sin(nx)




    with 2 2

n n n a ,      

with initial conditions: 
 

 
t

w(x,0) g(x),

w (x,0) h(x).




 

 
The coefficients can be determined at t = 0 by using orthogonality of sines and cosines and 
integrating from 0 towith respect to x which results in: 
 

n

0

n

n 0

2
G g(x)sin(nx) dx,

2 1
H  h(x) sin(nx) dx.









 





 

 
The model hardly changes: the number of parameters is reduced from two to one which makes 
upcoming frequency calculations easier to perform. 
 
§3.4 Conclusion 
In this chapter separation of variables is performed to solve the O(1)-problem. The beam under 
consideration is simply supported. The boundary equations leads to a set of equations for the 
coefficients which eventually lead to a matrix of 4x4.  
 
If the determinant is zero then there are infinite solutions. Several cases for the roots of the equation 
for the spatial coordinate lead to trivial solutions except for one case. Finally the eigenfunctions and 
the eigenvalues are derived and a string-like model reduces the number of parameters to one. 
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4 The 1( )  -problem 

 
In  chapter 2 we've found that the O( ) -problem is: 

 

tt xxxx xx t t

1 2 2

1 1 1 1 0 0
t

O( ) :    w w q w p w 2w sin(sx t)w .


                 (4.1) 

 

In the last chapter w0 has been determined, using w0 the order -part 
1w (x, t, )  can now be 

determined. The homogenous solution is the same as the solution for w0. Attention must be paid to 
the particular solution for unbounded solutions are not wanted.  
 
§4.1 Preventing secular terms 

The boundary conditions suggest a solution of the form: 
n

n 1

B (t, )sin(nx)




 , substituting this 

solution in the PDE (4.1) gives: 
 

 

   

      

    

2
4 2 2 2n

n2
n 1

n n
n n n

n 1

n n n n n

n 1

2

n n n n n

n 1

B
n q n p B sin(nx)( 1)

t

dG dH
sin( t) cos t 2 sin(nx)

d d

G sin( t) H cos t s cos sx t sin(nx)

G cos( t) H sin t ( ) sin sx t sin(nx),

















 
      

 

 
       

  

      

      









 

 

with 4 2 2 2

n n n q n p .       

 
Note that the minus signs of RHS are collected and put at the left hand side. Now to get rid of the 

summations the orthogonality of the sine will be used e.g. multiply with 
2

sin(mx)


 and integrate x 

from 0 to   gives the result on the next page. 
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 

   

      

    

2
4 2 2 2m

m2

m m
m m m

n n n n n

n 1 0

2

n n n n n

n 1 0

B
m q m p B ( 1)

t

dG dH
2 sin( t) cos t

d d

2
G sin( t) H cos t s cos sx t sin(nx)sin(mx)dx

2
G cos( t) H sin t ( ) sin sx t sin(nx)sin(mx)dx.










    



 
      

  

        


       


 

 

 

 
 
The four cases where the denominator of the result of the integrals is zero will eventually lead to the 
same conclusions, to that end the analysis of those four cases is omitted.  The result of the integrals 
and more information about the calculation can be found in Appendix section B. 
 

In order to prevent unbounded terms the coefficients of the sin( t) and cos( t) must be set to 

zero. It's therefore clear that four distinct cases must considered: 
 

N M

N M

M N

N M

1)  ;

2) ;

3) ;

4) .

   

   

   

   

 

 

Note that in conditions 2 and 3 the assumption remains that 0 so M > N, the situation that 

0 (with N>M) gives the same result with the only difference that the rivulet moves to the left. 
So, only three cases have to be checked. Note that all three cases are forms of internal resonance. 
 

N M

N M

M N

1)  ;

2) ;

3) ,   M N.

   

   

    

 

 
 

§4.1.1 Case 1 
N M

Ω ω ±ω  

In this case there are no resonating terms which leads to:    
 

n
n n

0

n
n n

n 0

dG 2
0  G ( ) G (0) g(x)sin(nx) dx,   for n 1,2,3...

d

dH 2 1
0  G ( ) H (0)  h(x) sin(nx) dx,   for n 1,2,3...

d





     
 

     
  



  
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Gn and Hn are thus independent of  . So, if we start with zero initial energy in the nth mode, there 

will be no energy present up to O( ) on a time scale of order 
1


. We say that coupling between the 

modes is of O( ) . This allows truncation to those modes that have nonzero initial energy. 

 

§4.1.2 Case 2 
N M

Ω=ω +ω  

Suppose N M  for a certain natural numbers N and M. In case 2 the equation to be solved 

for n and m is:  
 

n m N M ,      

 
leading to n = N and m = M (or m =N and n=M).  It's difficult to prove the presence of nontrivial 
solutions therefore the analysis towards nontrivial solutions is omitted. 
 

M
1 N 2 N

M
2 N 3 N

N
1 M 2 M

N
2 M 3 M

dG
C (M, N) G C (M, N) H ,

d

dH
C (M, N) G C (M, N) H ,

d

dG
C (N,M) G C (N,M) H ,

d

dH
C (N,M) G C (N,M) H .

d


    


    
 

    
 

    



 

 

with 

 

    

j i j 1

1 j

i

j i j 1

2 j

i

j i j 1

3 j

i

1
C (i, j) D(i, j) 1 c sin( s)( 1) ,

4 L

1
C (i, j) D(i, j) 1 c 1 cos( s)( 1) ,

4 L

1
C (i, j) D(i, j) 1 c sin( s)( 1) ,

4 L

2 2ijs
D(i, j) .

i j s i j s i j s i j s

 

 

 

  
     

  

  
      

  


  
     

  

 
  

         













 

 
 

Note that for n N,m M  or m N,n M  the results of §4.1.1 Case 1 apply. The D(i,j) is the 

result of the integrals multiplied by a constant. The solution of the set ODEs in the above example is 
instable. To explain this we need to look at the characteristic equation, which is: 
 

   4 2 2 2 2 2 2 2 4

1 2 3 1 3 1 2 3 2C 2C C C C 2C C C C 0.          
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This is a fourth order real monic polynomial. A real monic fourth order polynomial 
4 3 2x ax bx cx d     is only stable if the coefficients satisfy: 

 

 

2

2

a 0;  

b 0;   

0 c ab;  

abc c
0 d .

a







 


  


 

 

Notice that there's no 3 -term in the characteristic equation! Thus condition a > 0 is violated. 
Conclusion: the polynomial in not stable e.g. there is at least one eigenvalue with a positive real part. 
 

The case:  n m N M      is investigated in §4.2. 

 

§4.1.3 Case 3 
M NΩ=ω -ω  

Suppose M N  for a certain natural numbers N and M. In case 3 the equation to be solved 

for n and m is:  
 

n m M N ,      

 
leading to n = N and m = M (or m =N and n=M).   
 

M
1 N 5 N

M
5 N 3 N

N
1 M 2 M

N
2 M 3 M

dG
C (M, N) G C (M, N) H ,

d

dH
C (M, N) G C (M, N) H ,

d

dG
C (N,M) G C (N,M) H ,

d

dH
C (N,M) G C (N,M) H .

d


    


     
 

    
 

    



 

 

with  j i j 1

5 ij j

i

1
C D 1 c 1 cos(s )( 1) .

4 L

 
  

      
  

 

 
 
Here the same conclusion as in §4.1.2 applies e.g. the set of ODEs has an unstable solution. 

 
§4.2 Combination resonances 
When two different forms of resonance merge the resonance is called a combination resonance. The 
following form of combinations resonance can occur: 
 

n m N M      
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To solve n m N M     with n m 1   an upper bound can be found via an estimation (this 

approach is similar to that in [15]).  This is illustrated via an example; take N = 1 and M = 2, thus the 
equation to be solved is (introduce c=p2,b=q2): 
 

 

4 2 4 2

2

2

2 2 2 2

2 2 2 2

n bn c m bm c 1 b c 16 4b c

c c
m m b 1 b c 2 4 b    

m 4

c c c c
n n b m n b 1 n b 2 n b .

n n n n

          

         

            

 

 
 
The last line is valid if: 
 

 2 2 2 2

2 2 2 2 2 2

c c 1 1 1 1 1
m b n b        m n        .

m n c n m c m n
            

 
 

The supremum lies at m=1, n=2 thus the upper bound found is valid if: 
1 1

.
c 4
  

 
Now under this assumption the estimation becomes:  
 

 2 2

2 2

c c
n n b m 3 n b ,

n n
        thus    m n m 3        n m 1    n m 2.          

 
 

With
1 b

d , f
c c

   the equation to be analyzed is: 

 
4 2 4 2dn fn 1 dm fm 1 16d 4f 1 d f 1.            

 
 
Tables 4.1, 4.2 and 4.3 give results for d = 0.24 computed with Matlab, see Appendix section D for 
the M-code. Note that a great deal of the results can be expressed symbolically (with increasing n 
these formulas become large), these symbolic formulas are omitted. Table 4.1 gives the result for n = 

m+1, table 4.2 for n = m+2 and finally table 4.3 n m 12    with n = m+1. 
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n m f 

2 1 - 

3 2 - 

4 3 0.0508 

5 4 0.9385 

6 5 2.0455 

7 6 3.3728 

8 7 4.9209 

9 8 6.6899 

10 9 8.6799 

11 10 10.8909 

 
Tables 4.1, 4.2 and 4.3: the results are shown respectively for n = m + 1, n = m + 2 and  in the last one n = m + 1 
for ωn-ωm=2ω1. 
 
 

Note that the values of d and f do not have influence on the stability of the system. The estimation 

shown here is to verify that in certain situations four modes are coupled. It's clear that the analysis 

performed with two degrees of freedom isn't easy, keeping this in mind the restoring force term is 

removed in the analysis in chapter 6 and 7. 

§4.3 Moment of inertia of rivulet added 
One of the assumptions is that the moment of inertia of the rivulet is negligible. In this paragraph the 
influence of the addition of the moment of inertia to the PDE is investigated. Remember that in this 
report the rivulet is modeled as a circular cylinder thus for the moment of inertia of the rivulet, we 
use the moment of inertia of a circular cylinder.  
 
In this paragraph the effect of the moment of inertia is shown by isolating the terms connected to 
this term. The assumption in this paragraph is that the entire rivulet is a circular cylinder with 
variable height having a sine wave-like shape, see figure 2.1: 
 

  
4 4

4

rivulet,x

R D
I c sin (x t)

4 64 64

  
         

 

Now we neglect 2O( ) -terms which results in:    4

rivulet,xI c sin x t
64


      

 
The term  with the flexural rigidity needs to be adjusted: 
 

 xx xx xx x xxx xxxxxx
EIw EI w 2EI w EIw    

 
Inserting the sine function leads to: 
 

        2

0 xxxx xxxx xxx xxEI w E sin x t w 2 cos x t w sin x t w           
 

 

 

n m f 

 2 1 - 

3 2 0.1201 

4 3 1.8246 

5 4 4.0565 

6 5 6.8348 

7 6 10.1643 

8 7 14.0466 

9 8 18.4822 

10 9 23.4717 

11 10 29.0150 

n m f 

 3 1 0.1201 

4 2 3.5600 

5 3 8.0377 

6 4 13.7290 

7 5 20.6637 

8 6 28.8499 

9 7 38.2910 

10 8 48.9882 

11 9 60.9424 

12 10 74.1540 
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The term I0 refers to the moment of inertia of the beam Icable and the constant part of Irivulet.  The last 
three terms need to be investigated further for the first term was already taken into account in the 
original PDE. 
 
We now apply the same steps as in §4.1 for the three terms.  After applying orthogonality, 

substitution of 
n

n 1

B (t, )sin(nx)




 and introduction of nondimensional parameters, we get the 

following product terms: 
 

 

 

 

n n n n

n 0

n n n n

n 0

n n n n

n 0

sin(sx t)sin(nx)sin(mx)dx G cos( t) H sin( t)

cos(sx t)cos(nx)sin(mx)dx G cos( t) H sin( t)

sin(sx t)sin(nx)sin(mx)dx G cos( t) H sin( t)







    

    

    







 

 
 
Note that constant terms have been left out to show the general idea. We see that similar terms like 
the ones found §4.1.1-§4.1.3! The conclusion of §4.1.2 regarding Routh-Hurwitz remains valid. 
Therefore the introduction of the moment of inertia of the rivulet doesn't change the outcome: 
instability. 
 
§4.4 Conclusion 

In this chapter the O( ) -problem is solved under the assumption that the rivulet has a sine wave 

shape.  After removing secular terms via the multiple time scales method a set of ODEs was derived 
in case the frequency with which the rivulet moves is a combination of eigenfrequencies. In all cases 
the solution of the set of ODEs proved to be instable. 
 
There are still open problems in the calculation of the frequencies. In §4.1.2  it's already mentioned 
that we look at the trivial solutions. There can be more, this is also the case for the trivial solutions in 
§4.1.3 and §4.2. 
 
In the case of combination resonances the situation became difficult . Only specific combinations of 
the material constants of the beam can lead to resonance. Due to the two parameters p and q, one 
had to be fixed, in order to show that there can be situation in which four modes are coupled. This 
situation also led to instability. In the end, the moment of inertia of the rivulet was taken into 
account to show that the instability isn't changed.
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5 The block signal 

 
In this chapter the shape of the rivulet changes to a block form. The analysis is similar to that of the 
sine -shape in chapter 4. First of all the mass function of the rivulet must be changed. The details for 
the calculation can be found in the appendix section F. 

 
Figure 5.1: A schematic display of the rivulet shape. 

 
§5.1 Model of the block function 
The shape of the rivulet is a block signal of infinite length. The height of the block is 1, the width is 
 dk-ck =constant. The block signal is elevated a distance c of the x-axis (please don't confuse this c 
with that of the interval ck), see figure 5.1. 
 
The corresponding mass function now becomes: 

k k

k

m(x, t) c Q[x (t c )] Q[x (t d )],




        

 
 

with Q the step function:  
1,  x 0,

Q(x)
0,  x 0.


 


 

 
 

The analysis is now fast forwarded to the prevention of secular terms in the O( ) -part. Upon 

substitution of the block model function in the nondimensional PDE we get: 
 

tt xxxx xx t t

2 2

1 1 1 1 0 k k 0

k
t

L L L L
w w q w p w 2w Q x t c Q x t d w .

c c





        
                   

           

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The boundary conditions suggest a solution of the form: 
n

n 1

B (t, )sin(nx)




 , substituting this 

solution in the PDE above gives: 
 
 

 

   

    

2
4 2 2 2n

n2
n 1

n n
n n n

n 1

n n n n n k k

n 1 k

n

B
n q n p B sin(nx)( 1)

t

dG dH
sin( t) cos t 2 sin(nx)

d d

L L L L
G sin( t) H cos t x t c x t d sin(nx)

c c

G cos(









 

 

 
      

 

 
       

  

       
                    

          





 

   2

n n n n k k

n 1 k

L L L L
t) H sin t ( ) Q x t c Q x t d sin(nx),

c c

 

 

       
                 

          
 

 
 

with 4 2 2 2

n n n q n p .       

 

Now using orthogonality: multiplying both sides with 
2

sin(mx)


leads to: 

 

     

       

2
4 2 2 2m m m

m m m m2

n n n n 1 n n n n 2

n 1 n 1

B dG dH
m q m p B ( 1) 2 sin( t) cos t

t d d

2 L 2 L
G sin( t) H cos t I (n, t) G cos( t) H sin t I (n, t).

 

 

  
           

   

            
   

 

 
 
with I1 and I2 specified in the appendix section F.  
 
In principle the series with the step and Dirac delta functions are periodic in x and can be rewritten in 
a Fouries series. By using orthogonality the result of the integrals I1 and I2 shows that there can be 
four cases in which resonance might occur. These four cases are investigated in the next paragraph. 
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§5.2 Internal resonance 
Resonance will occur in four cases: 
 

N M
N M

N M
N M

N M
N M

N M
N M

1)   a ,    N M         c ,    N M,  
N M

2)   a ,    N M        c ,    N M,  
N M

3)   e ,    N M         c ,    N M,  
N M

 
4)   e                      c , 

N M

 
        



 
        



 
        



 
      



 

 

with    
1 1

a n m ,   e n m .
c c

        

 
In case n = m two of the denominators above can become zero, the only resonance case is then 

1
2 m ,

c
 the analysis of this case is similar to the ones performed for the four cases above and 

therefore omitted. Below the sets of ODEs corresponding to the cases above are given. 
 
 

§5.2.1 Case 1 
N M

a =ω -ω  with N > M 

 

   

   

2 2

N N N NM
M k k N k k N

k

2 2

N N N NM
M k k N k k N

k

2

N M
N

dG
2 cos(bc ) cos(bd ) G sin(bc ) sin(bd ) H ,

d 4(N M) 4 4(N M) 4

dH
2 cos(bc ) cos(bd ) H sin(bc ) sin(bd ) G ,

d 4 4(N M) 4 4(N M)

dG
2

d 4(M N)

      
         

     

      
          

     

 
   

 





   

   

2

M M M
k k M k k M

k

2 2

N M M M M
N k k M k k M

k

cos(bc ) cos(bd ) G sin(bc ) sin(bd ) H ,
4 4 4(M N)

dH
2 cos(bc ) cos(bd ) H sin(bc ) sin(bd ) G .

d 4 4(M N) 4 4(M N)













           
    


       
            

      





          
 
Note that the coefficients of GM, HM, GN and HN are all constants.
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§5.2.2 Case 2  
N M

a =ω +ω   with N > M  

 

   

   

2 2

N N N NM
M k k N k k N

k

2 2

N N N NM
M k k N k k N

k

2

N M M
N

dG
2 cos(bc ) cos(bd ) G sin(bc ) sin(bd ) H ,

d 4 4(N M) 4 4(N M)

dH
2 cos(bc ) cos(bd ) H sin(bc ) sin(bd ) G ,

d 4(N M) 4 4 4(N M)

dG
2

d 4 4(M N

      
         

     

      
          

     

 
  

 





   

   

2

M M
k k M k k M

k

2 2

N M M M M
N k k M k k M

k

cos(bc ) cos(bd ) G sin(bc ) sin(bd ) H ,
) 4 4(M N)

dH
2 cos(bc ) cos(bd ) H sin(bc ) sin(bd ) G .

d 4(M N) 4 4 4(M N)













           
    


       
           

      





  
 
 

If  isn’t equal to any of the four cases mentioned above then the results of §4.2 apply. Case 3 and 4  
are in the appendix section F, moreover the sum over k is a finite sum for a given t.   
 
The two sets of differential equations displayed above are instable. Just as in chapter 4 the diagonal 

of the matrix A of the equation Ax x contains a zero diagonal and therefore all of the eigenvalues 
of A are positive, the same conclusion applies to case 3 and case 4 found in the appendix and the 
case n =m. 
 
§5.3 Conclusion 
If the rivulet shape attains a block signal then four cases of resonance can occur. In all of those four 
cases instability is the result. Apparently this is something that the sine wave and the block shape 
have in common.  
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6 A quadratic term 
 
§6.1 Formulating the problem 
The PDE described in chapter 1 can be more realistic if the lift and drag forces are added. The 
magnitude of the angles involved are small and can be thus linearized for small angles. As is 
explained in §2.3 linearization brought about two terms in the RHS which need further attention.  
 
The quadratic and cubic term in the RHS involve each a different approach, that's why the analysis is 
separated in two chapters: in this chapter the PDE (1), displayed below, with an quadratic term will 
be studied, in the next chapter the cubic term will be analyzed. Moreover, as noted in §4.2 the 
restoring force term is omitted. 
 
 In this paragraph the model of the rivulet will be omitted to be added later. The analysis resembles 
chapter 3 of [11] but differs greatly at some points. The problem under consideration in this chapter 
is: 
 

2

tt xxxx xx t

xx xx

t

Aw EIw Pw w ,            0 x L, t 0,

w(0, t) w(L, t) 0,                             t 0,
(1)

w (0, t) w (L, t) 0,                       t 0,

w(x,0) g(x),      w (x,0) h(x),       0 x L.

       


  


  
    

 

 

Using dimensionless variables 
EI

x x,  t ct,    w cw,   c ,
L L L L A

   
   


  and 

introducing 2

2

L P
,    ,

c A Ac
    

 
   the problem becomes:  

 
 

 

2 2

xxxx xxt t t

xx xx

t

w w w w ,              0 x , t 0,

w(0, t ) w( , t ) 0,                        t 0,
(2)

w (0, t ) w ( , t ) 0,                  t 0,

w(x,0) g(x),      w (x,0) h(x),    0 x .

        


   


   
     

 

 
 

If the right hand side is identically equal to zero e.g. 0  then the solution can be determined via 
separation of variables with the following result: 
 

 

 

 

n n n n

n 1

n

0

n

n 0

4 2 2

n n n

w(x, t ) G cos( t ) H sin( t ) sin(nx),

2
G g(x)sin nx dx,

2
H h(x)sin nx dx,

n n ,    .










   




 

 



     






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From this point on the bars will be dropped. Note that 2

tw  is not an 2 -periodic odd function 

whereas tt xxxxw , w and
xxw are. To see this w(x,t) must be analyzed, the boundary conditions imply 

that w can be written in the form of a sine series: 
 

n

n 1

w(x, t) w (t)sin(nx).




  

 
Now look at the deratives: 
 

"

tt n

n 1

w (x, t) w (t)sin(nx)




  2 -periodic odd function. 

4

xxxx n

n 1

w (x, t) w (t)n sin(nx)




  2 -periodic odd function. 

2

xx n

n 1

w (x, t) w (t)n sin(nx)




  2 -periodic odd function. 

    

2 ' ' 2 2

t k l

k 1 l 1

w (x, t) w (t)w k l sin(kx)sin(lx)

1
sin(kx)sin(lx) cos (k l)x cos (k l)x .

2

 

 



   



 

Thus this term is even. The addition of a function j(x) makes this part of the RHS odd and a 2 -

periodic  function: j(x) 1 for x (0, )   and j(0) j( ) 0   . The derivation of the Fourier series is  

as follows: 
 

   

  

n m m

n 1 0 0

n 1

2 4 1
1 a sin(nx)     sin mx dx a   a sin mx dx ,m 0,1,2,...

2 2m 1

4 1
j(x) sin 2m 1 x ,    m 0,1,2,...

2m 1

 








       

  

  
 

  



 
 
§6.2 A formal expansion 
If a regular asymptotic expansion for w(x,t) is performed, terms of the homogeneous solution will 
appear in the RHS, to prevent these secular terms the two-time-scales-method is utilized. 
 

w(x, t) w(x, t, )   with t.    

 
Upon substituting in problem (2) and using the formal expansion 

0 1w(x, t, ) w (x, t, ) w (x, t, ) ...        

 
we get: 

           
22 2

0 1 0 1 0 1 0 1 0 1 0 1tt t xxxx xx
t

w w 2 w w w w w w w w w w .
 

                  
 
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The order  1 and order  -problem are: 
 

tt xxxx xx

tt xxxx xx t t

2

0 0 0

2 2

1 1 1 0 0

O(1) : w w w 0,

O( ) : w w w 2w j(x)w .


  

     
 

 
The solution for the O(1)-problem is: 
 

 

 

 

0 n n n n

n 1

n

0

n

n 0

4 2 2

n n n

w (x, t, ) G ( )cos( t) H ( )sin( t) sin(nx),

2
G (0) g(x)sin nx dx,

2
H (0) h(x)sin nx dx,

n n ,    .










      




 

 



     







 

 
 

The boundary conditions imply a solution of the form: 
n

n 1

q (t, )sin(nx),




  substitution leads to: 

 

 

 

4 2 2 n n
n n n n n

n 1 n 1

m k

k 1 l 1 j 0

dG dH
q n n q sin(nx) 2 ( sin( t) cos( t)

d d

1
q q sin(kx)sin(lx)sin (2j 1)x .

2j 1

 

 

  

  

 
          

  




 



 

 
Note that: 
 

           
1

sin(lx)sin(kx)sin(dx) sin l k d x sin l k d x sin l k d x sin l k d x
4

             

with  d=2j+1, j=0,1,2,... 
 

Now using orthogonality: multiplying both sides with 
2

sin(mx)


and using the symmetry in l and k 

we get: 
 

 4 2 2 m m
m m m m m

m l k d m l k d m l k d m l k d m l k d

dG dH
q m m q 2 ( sin( t) cos( t)

d d

1 1
2 2 ,

2j 1              

 
          

  

 
     

  
    

 

 

with     l k k k k k l l l lG ( sin( t)) H cos( t) G ( sin( t)) H cos( t) .           
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The last term can be rewritten using goniometric relations: 
 

         

        

l k
k l k l k l k l k k ll

l k
k l k l k l k l k l l k

G G H H cos t G G H H cos ( )t
2

G H H G sin ( )t G H H G sin ( )t .
2


          


       

 

 

In the appendix section G it’s shown for what cases resonance might occur, for 2 45,  by solving 

Diophantine-like equations: 
 

4 2 2 4 2 2 4 2 2

m k l d    m k l d      m k l d,

m m k k l l ,

           

         

 

 

with j,k, l,m ,  d 2j 1.    From the appendix it becomes clear that only specific values of d, k, l, 

m and 2 give rise to internal resonance (mode interactions). In the table below several mode 

interactions are given. 
 
 
 

m,l,k,d 2
μ  

3,2,2,1 17/7 

4,2,3,1 9,27 

5,2,4,1 18,48 

6,3,3,1 27,36 

6,2,5,1 30,01 

7,2,6 43,86 

19,6,18 2,028 

... ... 

Table 6.1: Only for special cases of 2 resonance can occur. 

 
 
§6.3  Addition of the rivulet 
In [11] some mode interactions are investigated without the model of the rivulet so we omit these 
analyses, instead we add the model of the rivulet and review these cases. In a worst case scenario 

resonance will appear for a specific value of 2 and for the frequency with which the rivulet moves. 

The scenario with 2 17

7
  and 3 N   gives the set of ODE's on the next page. 
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 

 

 

 

2

2 2
2 3 2 3

3

2

2 2
2 3 2 3

3

3
2 2 1 N 2 N

3

2 23
2 2 2 N 3 N

3

N
1 3 2 3

N
2 3 3 3

dG 16
G H H G ,

d 21

dH 16
G G H H ,

d 21

dG 16 1
2G H C G C H ,

d 21

dH 16 1
G H C G C H ,

d 21

dG
C G C H ,

d

dH
C G C H .

d

 
  

  

 

 
  


  

   



    
  




 



  

 

 

If n 2,3, N then  

 

 

 

n
n

0

n
n

n 0

G 2
0 G g(x)sin nx dx,

H 2
0 H h(x)sin nx dx.






  

 


  

 





 

 
The coefficients Ci can be found in the appendix, note that they're dependent on N and M. It's clear 

that if one specific critical value of 2 is analyzed then the presence of the rivulet can bring about the 

addition of an extra mode, in this case a mode N. Note that  has a fixed value and because N is still 

a parameter there are infinitely many extra modes that can appear for a specific   in the case of 

resonance for a critical value of  2 .  

 

If  is a combination of two frequencies which already are involved in the case for a critical 2 no 

extra modes are added but the set of ODE's will be more complicated. To illustrate we choose 

3 2  and the same 2 as above: 

 

 

 

 

 

2

2 2
2 3 2 3 1 3 2 3

3

2

2 2
2 3 2 3 2 3 3 3

3

3
2 2 1 2 2 2

3

2 23
2 2 2 2 3 2

3

dG 16
G H H G C G C H ,

d 21

dH 16
G G H H C G C H ,

d 21

dG 16 1
2G H C G C H ,

d 21

dH 16 1
G H C G C H .

d 21

 
    

  

 

   
  


   
   



    
   

 

 
The equation solver of Matlab reveals that the only equibrilium point is (0,0,0,0) which is unstable 
found after linearization. 
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The next case is m = 4,3,2 with 2 9,27  the corresponding ODE system with the a rivulet model is: 

 

 

 

 

 

 

4 32
3 4 3 4 1 3 2 3

2

4 32
3 4 3 4 2 3 3 3

2

3 2 4
2 4 2 4 1 2 2 2

3

3 2 4
2 4 2 4 2 2 3 2

3

2 34
2 3 2 3

4

2 34
2 3 2

4

dG 32
H G G H C G C H ,

d 45

dH 32
G G H H C G C H ,

d 45

dG 32
H G G H C G C H ,

d 45

dH 32
G G H H C G C H ,

d 45

dG 32
G H H G ,

d 45

dH 32
G G H

d 45

 
   

  

 
   

  

 
   

  

 
   

  

 
 

  

 
  

  
 3H .





















 

 
All of the cases above have unstable solutions: the eigenvalues of the linearized system around an 
equibrilium point has a zero diagonal resulting in an characteristic equation which has violated the 

Routh-Hurwitz criterium for a polynomial of degree four. This is not the case if M2 ,  if case 

m=3,2,2  is reviewed with 22   then we get: 

 

 

 

 

 

2

2 2
2 3 2 3 1 2 2 2

3

2

2 2
2 3 2 3 2 2 3 2

3

3
2 2

3

2 23
2 2

3

dG 16
G H H G C G C H ,

d 21

dH 16
G G H H C G C H ,

d 21

dG 16 1
2G H ,

d 21

dH 16 1
G H .

d 21

 
    

  

 

   
  


 
   



  
   

 

 

The Matlab solver reveals that the only “equibrilium point” is 2 2 3 3(G ,H ,G ,H ) (0,0,a,b)  with a 

and b arbitrary. So an entire plane in 4D is a solution. Figure 6.1 reveals that the solution becomes 
instable for an initial condition of (0.1, 0.1, 0.1, 0.1) = (G2,H2,G3,H3). 
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Figure 6.1: With an initial condition (0.1, 0.1, 0.1, 0.1) G2, H2, G3 and H3 all move away from the origin. 

 
 

In the case that 32   we get: 

 

 

 

 

 

2

2 2
2 3 2 3

3

2

2 2
2 3 2 3

3

3
2 2 1 3 2 3

3

2 23
2 2 2 3 3 3

3

dG 16
G H H G ,

d 21

dH 16
G G H H ,

d 21

dG 16 1
2G H C G C H ,

d 21

dH 16 1
G H C G C H .

d 21

 
  

  

 

 
  


   
   



    
   

 

 
 
There's only one equibrilium position (0,0,0,0) found via Matlab, analysis via transformation to polar 
coordinates, linearization nor finding a first integral gave plausible results. Although the blow-up 
method is an option a numerical integration was performed which shows instability, see figure 6.2. 
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Figure 6.2: With an initial condition (0.1, 0.1, 0.1, 0.1) G2, H2, G3 and H3 all move away from the origin. 

 
 
§6.4  Conclusion 

Internal resonance will most likely not occur with the addition of the quadratic term: only for special 

values of 2 certain modes will cause resonance. In a worst case scenario the rivulet will cause 

additional resonance and can even add an extra mode where resonance occurs.  
 
The addition of the model of the rivulet can thus result in internal resonance between four modes. If 
energy initially is present in one of the modes there will be continuously energy transition between 
the mode where internal resonance occurs. Truncation to those modes is then valid. In those cases 
instability will be the result. 
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7 A cubic term 
 
§7.1 Formulating the problem 
As is explained in §2.3 the addition of the lift and drag forces introduces a cubic term on the RHS. In 
this chapter the PDE (1) below with the cubic term will be analyzed. The analysis resembles chapter 2 
of [11] but differs greatly at some points.   
 
For now the model of the rivulet will be omitted. The problem under consideration is the beam 
satisfying the PDE from chapter  1, simply supported, with an cubic term in the RHS and as noted in 
§4.5 the restoring force term is omitted: 
 

3

tt xxxx xx t

xx xx

t

Aw EIw Pw w ,              0 x L, t 0,

w(0, t) w(L, t) 0,                              t 0,
(1)

w (0, t) w (L, t) 0,                         t 0,

w(x,0) g(x),      w (x,0) h(x),         0 x L.

       


  


  
    

 

 

Using dimensionless variables 
EI

x x,  t ct,    w cw,   c
L L L L A

   
   


 and 

introducing 2

2

L P
,    ,

c A Ac
    

 
 the PDE becomes:  

 
 

2 3

xxxx xxt t t

xx xx

t

w w w w ,                0 x , t 0,

w(0, t ) w( , t ) 0,                         t 0,
(2)

w (0, t ) w ( , t ) 0,                   t 0,

w(x,0) g(x),      w (x,0) h(x),     0 x .

        


   


   
     

 

 
If the right hand side is identically equal to zero then the solution can be determined via separation 
of variables with the following result: 
 

 

 

 

n n n n

n 1

n

0

n

n 0

4 2 2

n n n

w(x, t ) G cos( t ) H sin( t ) sin(nx),

2
G g(x)sin nx dx,

2
H h(x)sin nx dx,

n n ,    .










   




 

 



     







 

 
§7.2 A formal expansion 
From this point on the bars will be dropped. If a regular asymptotic expansion for w(x,t) is 
performed, terms of the homogeneous solution will appear on the RHS, to prevent these secular 
terms the two-time-scales-method is utilized. 
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w(x, t) w(x, t, )   with t.    

 
Upon substituting in the PDE (2) and using the formal expansion: 
 

0 1w(x, t, ) w (x, t, ) w (x, t, ) ...        

 
we get: 
 

           
32 2

0 1 0 1 0 1 0 1 0 1 0 1tt t xxxx xx
t

w w 2 w w w w w w w w w w .
 

                  
 

 
 
The order  1 and order  -problem are: 
 

tt xxxx xx

tt xxxx xx t t

2

0 0 0

2 3

1 1 1 0 0

O(1) : w w w 0,

O( ) : w w w 2w w .


  

     
 

 
The solution for the O(1)-problem is: 
 

 

 

 

0 n n n n

n 1

n

0

n

n 0

4 2 2

n n n

w (x, t, ) G ( )cos( t) H ( )sin( t) sin(nx),

2
G (0) g(x)sin nx dx,

2
H (0) h(x)sin nx dx,

n n ,    .










      




 

 



     







 

 

The boundary conditions imply a solution of the form: 
m

m 1

q (t, )sin(mx)




 , substitution of this 

solution in the O( ) -problem leads to: 

 

  4 2 2 m m
m m m m m

m 1 m 1

j k m

j,k,m 1

dG dH
q m m q sin(mx) 2 ( sin( t) cos( t)

d d

q q q sin(mx)sin(kx)sin( jx).

 

 





 
          

  
 



 

 
Note that: 

           
1

sin(mx)sin(kx)sin( jx) sin m k j x sin m k j x sin m j k x sin m k j x .
4

           

Now using orthogonality: multiplying both sides with  
2

sin(nx)


and using the symmetry in m,k and j 

we get the result on the next page. 
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2 n n
n n n n n n

n m k j n m k j n m k j

dG dH
q q 2 ( sin( t) cos( t)

d d

1
3 3 ,

4         

 
         

  

 
   

 
  

 

 
with 
 

   m k j m m m m k k k k j j j jG sin( ) H cos( ) G sin( ) H cos( ) G sin( ) H cos( ) .               

 
In the appendix it's shown that in order to find the secular terms the following Diophantine-like 
equations have to be solved.  
 

4 2 2 4 2 2 4 2 2 4 2 2

n m k j   n m k j    n m k j,

n n m m k k j j .

           

            

 

 
Aside from the trivial solutions only specific combinations of j, k, m, n and  will result in solutions of 
the equations above. In the next paragraph trivial solutions and the additional resonance occurring at 

2 2.60  is investigated and the case when 2 2.60.   

 
§7.3 Modal interaction 
The removal of secular terms via the multiple time scale method leads to the following set of ODEs if 

2 2.60 :   

 

   

   

2
2 2 2 2 2n k

n n n n k k

k 1 n

2
2 2 2 2 2n k

n n n n k k

k 1 n

dG 3 1 1
G G H G H ,

d 2 16 4

dH 3 1 1
H G H G H .

d 2 16 4









  
       

   


 
         





 

 
Note that  1/16-term is present  because the mode interaction (n,n,n) can only be counted once, the 
factor 3 originates from the summations in §7.2 where the case with one minus sign is counted 3 

times.  For n = 1,2,3.... We see that if n nG (0) H (0) 0  then n nG ( ) H ( ) 0, 0.      So if we 

start with zero initial energy in the nth mode then there will be no energy present up to O( ).  This 

allows truncation to those modes that have nonzero initial energy.  
 
We consider the case n = 1 and n = 3 and we rewrite the above ODEs with the transformation: 
 

n n n n n nG G ,   G H  .  

 
With the introduction of  polar coordinates:  
 

n n n n n nG r cos( ),    H r sin( ),     
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with n n n nr r ( ),    ( ),       we get the result on the next page. 

 

2 2

1 1 1 3

2 2

3 3 1 3

2

1 1

2

3 3

3 3 1
r r r r ,

2 16 4

3 1 3
r r r r ,

2 4 16

r 0,

r 0.

  
  

 
     

 
  


 

 

 
In this case there's an O(1)-coupling between the modes 1 and  3, if there's initial energy present in 
the first mode then in general energy will be transferred to the third mode, thus in that case 
truncation to one mode is not valid. The two modes have to be taken into account. 
 
The equations may suggest the presence of a limit cycle but a closer inspection of the coupled ODEs 
shows the presence of only one equibrilium point namely the origin. The only equibrilium point, the 
origin, is after linearization a degenerate case (eigenvalues are zero). The first integral can be derived 
by solving the homogeneous differential equation: 
 

2

3

13 3 3

2

1 1 1
3

1

r
4 3

rdr r r
F

dr r rr
3 4

r

 
  

     
   

  
 

 using the transformation 3

1

r
u

r
  a separable differential equation 

must be solved for: 1

1

dr du

r F(u) u



. An implicit equation for the state plane can then be derived 

revealing that the origin is a source. Moreover, the phase plot (blue line are trajectories) shows that 
the origin is a source, see figure 7.1 on the next page for the phase plane generated with Matlab. 
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x ' = 3/2 x (3/16 x2 + 1/4 y2)

y ' = 3/2 y (1/4 x2 + 3/16 y2)
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Figure 7.1: The phase plot created with Matlab reveals that the origin is a source. 

 
 
 

Things get really hard for the case with m = 3, j = 1,  k = 2 and 2 2.60.  The set of differential 

equations involved when removing secular terms is: 
 

   

   

2 2 2 2n
n n n k k n

k 1

2 2 2 2n
n n n k k n

k 1

dG 3 1 1 1
G G H G H X ,

d 2 16 4 32

dH 3 1 1 1
H G H G H Y .

d 2 16 4 32









  
       

  


           





 

 

The set of ODEs above is valid for n 4 with the X and Y-terms. If n 5 the X and Y-terms have to be 
removed. The X and Y-terms are displayed on the next page. 
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1 2 3 2 3 4 2 3 2 3 4

2 1 4 1 4 3 1 4 1 4 3

3 1 4 1 4 2 1 4 1 4 2

4 2 3 2 3 1 2 3 2 3 1

1 2 3 2 3 4 2 3 2 3 4

2 1 4 1 4 3 1 4 1

X 2( G G H H )G 2(G G H H )H ,

X 2(G G H H )G 2( G H H H )H ,

X 2(G G H H )G 2( G H H G )H ,

X 2( G G H H )G 2(G H H G )H ,

Y 2(G H H G )G 2( G G H H )H ,

Y 2(G H H G )G 2(G G H H

    

     

     

    

    

    4 3

3 1 4 1 4 2 1 4 1 4 2

4 2 3 2 3 1 2 3 2 3 1

)H ,

Y 2(G H H G )G 2(G G H H )H ,

Y 2(G H H G )G 2( G G H H )H .

   

    

 

In this case there's an O(1)-coupling between the modes 1, 2, 3 and 4, if there's initial energy present 
in the first three modes then in general energy will be transferred to the fourth mode thus in that 
case truncation to three modes is not valid. All four modes have to be taken into account. 
 
The only equibrilium point is the origin which is degenerate, a stability analysis hasn't been 
performed. Most likely a numerical approach can decide whether the origin is unstable or not. 
 
§7.4  Addition of the rivulet model 
We now add the model of the rivulet. It's clear from §7.2 that the number of modes that can cause 
resonance depends on the amount of modes which have nonzero initial energy. In other words the 
set of ODEs can become as large as we theoretically can analyze. We start by looking at two modes 
with nonzero initial energy. 
 
We review the case analyzed earlier but now with the rivulet model: 
 

   

   

   

 

2 2 2 21
1 1 1 3 3 1 3 2 3

2 2 2 21
1 3 3 1 1 2 3 3 3

2 2 2 23
3 3 3 1 1 1 1 2 1

2 2 23
3 1 3 3 2 1 3 1

dG 1 3 1
G G H G H C G C H ,

d 2 16 4

dH 1 3 1
H G H G H C G C H ,

d 2 16 4

dG 1 3 1
G G H G H C G C H ,

d 2 16 4

dH 1 3 1
H G G H C G C H .

d 2 16 4

  
      

  
  

       
  


           


 

        

 

 
It's clear that transforming to polar coordinates won't give better results. There's only one 
equibrilium point, the origin found with Matlab. This equibrilium point remains unstable as seen 
from the eigenvalues of the linear approximation which all have positive real parts. 
 



58 

 

In contrast to the quadratic term in the previous chapter the equation of the set of ODEs can become 
infinitely large while in agreement with the previous chapter the model of the rivulet can add of 
mode of resonance. Unfortunately also in this case nothing is changed: the origin remains unstable. 
 

   

   

   

 

2 2 2 21
1 1 1 3 3 1 3 2 3

2 2 2 21
1 3 3 1 1 2 3 3 3

2 2 2 23
3 3 3 1 1

2 2 23
3 1 3 3

N
1 1 2 1

N
2 1 3 1

dG 1 3 1
G G H G H C G C H ,

d 2 16 4

dH 1 3 1
H G H G H C G C H ,

d 2 16 4

dG 1 3 1
G G H G H ,

d 2 16 4

dH 1 3 1
H G G H ,

d 2 16 4

dG
C G C H ,

d

dH
C G C H .

d

  
      

  

 
      

  

 
    

  


 
   

  

 


 


















 

 
 
The rivulet model added to the 'complicated case' doesn't changes things: the X and Y-terms can 
don't differ much from the rivulet model and it's likely that the same results for stability will emerge. 
 
§7.5  Conclusion 
In contrast to the quadratic term resonance will occur when the cubic term is present in the RHS, 
irrespective of the material constants. In this case there's an infinite number of modes coupled, 
though only the modes that have nonzero initial energy are eventually coupled.  
 
For specific values of the material constants extra mode interactions can occur; the analysis can 
becomes tedious due to a large number of additional terms. If the analysis is directed towards 
truncation to a few modes, instability is the result. Lastly it is noted that the addition of the rivulet 
model makes no difference towards the instability, just as in the quadratic case. 
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8 Conclusions  

 
In this thesis perturbation methods are applied to investigate rain-wind-induced vibrations. The 
analysis is focused on internal resonances and stability. Hereto a PDE was setup with a small time 
and space-varying term representing the rivulet. In addition a model was setup including lift and drag 
forces because small angles are involved linearization proved to be applicable.  
 
Two shapes of the rivulet namely, a sine wave and a block signal, are investigated. The rivulet moves 
in both shapes to the right. When the mass of the rivulet is added to the PDE the resulting 
differential equation is a nonautonomous nonlinear differential equation. The mass of the rivulet is 
small as compared to the mass of the cable and thus can be represented as a disturbance. 
 

The O(1)-problem can be solved with the method of separation of variables. In the O( ) -problem 

secular terms occurred where the need of the method of multiple time scales proved to be essential. 
When the sine wave was taken as the shape of the rivulet two different values of the excitation 

frequency of the rivulet result in resonance: N M  and M N  .  

 
Both of the excitation frequencies lead to an instable solution of the set of ODEs. There can be 
situations where four modes are coupled but it's difficult to find a general formula which describes 
the modes involved. In the situation of coupling of four modes the instability remained. The block 
signal also has four situations where resonance can occur. All four situations lead to instable 
solutions. 
 
In linearizing the equation where lift and drag forces are present, a quadratic term and a cubic term 
emerge in the RHS. In chapters 6 and 7 these terms were separately investigated. To simplify the 
analysis the restoring force term was omitted. The presence of the quadratic term can only lead to 
resonance for specific values of the material constants. When resonance occurred the solution of the 
ODEs was instable. 
 
The cubic term also leads to resonance where an infinite number of modes can be involved:  the 
number of modes involved depends on the presence of initial energy. For special cases of the 
material constants additional modes can be involved just like in the analysis of the quadratic term.  In 
contrast to the quadratic term case, the analysis of stability can become tedious. 
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9 Future directions 
 
In this chapter recommendations are given so as to continue this research focused on RWIV using 
perturbation calculus. In §9.1 the absence of the restoring force term in chapters 6 and 7 is 
discussed. In §9.2 gravity is added to them so that the tensile force becomes a linear function and in 
§9.3 spring supported boundary conditions are analyzed. In §9.4 damping is discussed and in §9.5 
rotations are taken into account. Finally in §9.6 the string-like model is improved. 
 
§9.1  Addition of restoring force term 
The analyses in chapters 6 and 7 was simplified by leaving out the restoring force thereby reducing 
the degrees of freedom to one. With this simplification it was shown how additional cases of 
resonance can be found. The analysis with two degrees of freedom can be carried out but most likely 
no general conclusions can be drawn.  
 
The main difficulty lies in solving the Diophantine-like equations with two degrees of freedom p and 
q and the modes n, m, k and in the cubic case n, m, k, j. An approach can be made by fixing one of 
the parameters, like in §4.5. A second method is to confine the analysis to certain types of 
beams/cables where the material constants are related to each other. Then one of the parameters 
can be expressed in the other thereby reducing the degrees of freedom to one.   
 
§9.2  Addition of gravity  
In this section the effect of gravity on the beam is analyzed. The beam, with length L, is now inclined 
under an angle , simply supported with a rivulet on top moving to the right, see figure 9.1 below. 

 
Figure 9.1: The beam earlier analyzed is now inclined and subject to gravity.  

 
The PDE earlier under consideration in chapter 1 is: 
 

   tt xx xxx x
Aw EIw f (x, t) Tw w        
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We remove the restoring force term and the external load f(x,t) and redefine the tension T. The 

tension T is now adjusted to take the gravity force into account:
0

x
T T mgsin( )

L
   with m the 

mass of the beam. The term  x x
Tw needs to be recalculated:  

 

 x x 0 xxx

1 x
Tw mgsin( ) w T mgsin( ) w

L L

   
        
   

 

 
After applying separation of variables we end up with the differential equation: 
 

 1 2X'''' C x C X" X' 0    ,  with C1 and C2 constants. 

 
This differential equation has a variable coefficient. None of the analytic methods available can be 
applied to the ODE. We conclude that there’s no solution which can be expressed in elementary 
functions.  
 
There are two ways to progress from this point on. First of all, use can be made of special function. 
Secondly, the term can be regarded as an disturbance and neglected versus another term, in this 
case perturbation calculus can be applied to calculate an approximation like done in [17]. For 
example the xsin( ) can be small as compared to T0. 

 
Both method have disadvantages: working with non elementary functions can create difficulties. In 

addition, the small terms are probably both of a different size, 1 and 2 , if they're almost equal or 

small enough then perturbation calculus can be applied with 1 2 1.    

 
§9.3  Spring supported boundary conditions 
In paper [5] the authors refer to an analytic description of a cable of a bridge subjected to lift and 
drag forces. They use spring supported boundary conditions. Moreover in [19] they mention that 
simulations often use such models, see figure 9.2 and 9.3. 
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Figure 9.2: Commonly uses test setup for wind-rain-induced cable vibration. 
 
 
 
 

 
Figure 9.3: New setup for wind-rain-induced cable vibration of [19]. 



63 

 

To investigate this situation the set of boundary conditions of the earlier proposed disturbance 
model must be changed. 
 
The boundary conditions now become: 
 

X"(0) X"( ) 0,

X"'(0) X(0) 0,

X"'( ) X( ) 0.

  


  
     

 

 
If we look at case 1 of §3.1.1 then the proposed solution for the spatial coordinate becomes: 
 

1 1 2 1 3 2 4 2X(x) C cosh(k x) C sinh(k x) C cosh(k x) C sinh(k x).     

 
Applying  the boundary conditions leads to the following result: 
 

2 2

1 2

2 2 2 2

1 1 1 1 2 2 2 2

3 3

1 2

3 3 3 3

1 1 1 1 1 1 2 2 2 2 2 2

0k 0 k 0

0k cosh(k ) k sinh(k ) k cosh(k ) k sinh(k )

0k k

0k sinh(k ) cosh(k ) k cosh(k ) sinh(k ) k sinh(k ) cosh(k ) k cosh(k ) sinh(k )

 
 

    
  
 

                 

 
 
This set of equations only has a nontrivial solutions if the determinant is zero: 
 

 

 

2 4 2 4 4 6 6 4 2 2 2

1 2 1 2 1 2 1 2 1 2

5 5 2 5 4 3

1 2 1 2 1 2 1 2 1 2

3 4 5 2

2 1 1 2 1 2

sinh(k )sinh(k ) k k k k k k 2 k k

2k k cosh( k )cosh( k ) 1 sinh(k )cosh(k )(2 k k 2 k k )

sinh(k )cosh(k )(2 k k 2 k k )

         

        

     

 

 
Now k1 and k2 have to be found satisfying the above equation and it doesn't appear to have a 
solution other then the trivial solution. The other cases must be checked. 
 
Although the analysis looks straightforward from this point on it doesn't look like this is going to lead 
to an analytic description. If we look at the free vibrations of a beam satisfying the nondimensional 
PDE: 
 

  
2 4

2 4

w w
,

t x

 
 

 
  

 
with one end fixed and the other spring supported then the characteristic equation doesn't lead to 
an explicit description for the separation constant. On the next pages  a calculation performed by 
Kelly in [16] verifies the assertions. 
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Figure 9.4a: A calculation performed by Kelly in [16] shows that there's no analytical solution with these BCs. 
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Figure 9.4b: A calculation performed by Kelly in [16] shows that there's no analytical solution with these BCs. 

 
Even in this simple situation no explicit solution is available for the eigenfrequencies let alone the 
more complicated PDE and more complicated boundary conditions: this is something that the future 
researcher should probably deal with. 

 
§9.4  Addition of damping   
In the introduction of this thesis figure I.1 shows the installment of dampers to suppress RWIV. Since 
the additional dampers have been applied at the Erasmus bridge in Rotterdam, in the Netherlands, 
no RWIV have been reported. The addition of damping could be investigated so as to find out if this 
model is stabilized. Perhaps it's best to start without the spring bed and without the tensile force but 
with the presence of a rivulet moving to the right, see figure 9.5.  
 
 

 

 
Figure 9.5: The proposed model of the beam without a tensile force and without the spring bed but with a 
damper. 
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Hereto the boundary conditions must be changed: 
 

xx

xx

xxx t

w(0, t) w (0, t) 0,

w ( , t) 0,

w ( , t) w .

 


 
   

 

 
The damper is modeled as a viscous damper. The boundary condition with the damping is most likely 
going to prevent an explicit solution of the eigenfrequencies. See [22] for a numerical approach using 
a taut cable like model. 
 
§9.5  Rotation included 
In this thesis the rotations involved when RWIV occurs is completely left out. An idea is to somehow 
incorporate rotations with the PDE derived in this thesis. Hartono has created a model that included 
rotations when he investigated RWIV in [21], see figure 9.6.  
 
It could be possible to couple the PDE derived in this thesis to the model with rotations, be it with 
Hartono's model or an another model. A set of 2 PDE's will result so analysis will become hard yet, 
with the right simplifications it could lead to new developments. 
 

 
Figure 9.6: A model that describes the rotations involved when RWIV occurs made by Hartono. 
 

§9.6  An improved string-like model  
In the string-like model when assuming that the stiffness goes to zero the parameter a2 is then 
actually also small and if neglected the PDE: 
 

 2

tt xx

L
w w a w f (x, t),

c A
  


 becomes  tt xx

L
w w f (x, t).

c A
 


 

 
What is interesting is that when Diophantine-like equations are analyzed they are surprisingly simple:  
 

n m N M   n m N M,         

 
where the plus or minus signs is appropriate depending on the focus on sum frequencies or a 
subtraction of two frequencies. Here we see something special: all modes are coupled! The 
upcoming analysis is thus difficult for the future researcher. 
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Appendix  
 
Section A: Analysis of the eigenfunctions 

 
Orthogonality eigenfunctions 
Define operator H: 
 

    
4 2

2 2

4 2

d d
H(.) . q . p (.).

dx dx
     

 

From the PDE (1.1) follows that eigenfunctions 
n and

m  both satisfy the BCs:  

 
" "

i i i i(0) ( ) (0) ( ) 0,             with  i n,m,  

 
and    
 

m m m

n n n

H( ) 0,

H( ) 0,

   

   
  

 

with the eigenvalue n belonging to eigenfunction n and m belonging to m . 

 
 
Now look at the following integral: 
 

 

   

m n n m n m m n

0 0

'''' 2 '' 2 '''' 2 '' 2

m n n n n m m m

0 0

H( ) H( ) dx   dx

q p  dx - q p  dx.

 

 

        

            

 

 

 

 
 
Note that  with use of the BCs that terms in the brackets continously drop out: 

 
'' '' ' '

m n n m m n n m 0
0

 dx




          
' ' ' '

m n n m

0

'''' '''' ''' '''

m n n m m n n m 0
0

 dx  0.

 dx






     

          




' ''' ' ''' ' '' ' ''

m n n m m n n m 0
 dx  -



           
'' '' '' ''

m n n m

0 0

 dx  0.

 

      
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So we conclude: 
 

 n m n m

0

 dx  0



      with n m    we get:  
n m

0

 dx 0



    

 
 
 
Real eigenvalue 
Look at ,   and their complex conjugates ,  : 

 

H( ) 0,

H( ) 0      H( )+ 0. 

  

      
 

 
where the last step is justified because p2 and q2 are real constants. 
 
 
With the result from above we get: 
 

   
L L

2

0 0

 dx  dx 0                     

 
Negative eigenvalue 
 

Multiply the H( ) with   and integrate x from 0 to   to get: 

 

  2 2 2 2

0 0 0 0

H( ) dx =  dx  dx '''' q '' p  dx.

   

                 

 
Note that: 
 

 
0

''''dx '''


    
0

' '''dx ' ''


        

 

2

0 0 0

0

''  dx.

''dx '

  



 

  

  

 
2

0 0

' dx.

 

  

 

 
 
So that we get: 
 

   
L L L

2 22 2 2 2

0 0 0

H( ) dx '' q ' p dx  dx 0          0
   

                 
   

  
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Section B: Resonance analysis 
 
The integrals are evaluated (for example via writing the sin/cosine in complex e-powers): 
 

   

 

   

n m

0

n m 1 n m 1

n m

0

cos sx t sin(nx)sin(mx)dx D(m,n) sin( t) ( 1) sin( s t)

D(m,n)( 1) sin( s)cos( t) D(m,n) 1 ( 1) cos( s) sin( t),

sin sx t sin(nx)sin(mx)dx D(m,n) cos( t) ( 1) cos( s t)

D(m,n)sin( t) sin





   





       

        

       

 





   n m 1 n m 1( s)( 1) D(m,n)cos( t) 1 cos( s)( 1) ,         

 

 
with 
 

2mns
D(m,n) .

(m n s)(m n s)(m n s)(m n s)




       
 

 
 
 
 
Now the following relations have to be used: 
 

 

 

 

1
cos(A)cos(B) cos(A B) cos(A B) ,

2

1
sin(A)sin(B) cos(A B) cos(A B) ,

2

1
sin(A)cos(B) sin(A B) sin(A B) .

2

   

   

   

 

 
The result on the next page is found when calculating the product of the result of the integrals with 
wt and wtt. 
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    

    

    

    

    

 

n n 1 n n

n 1

n n 2 n n

n n 1 n n

n n 2 n n

2

n n 1 n n

2

n n 2 n

1
G C cos ( )t cos ( )t

2

1
G C sin ( )t sin ( )t

2

1
H C sin ( )t sin ( )t

2

1
H C cos ( )t cos ( )t

2

1
c( ) G C cos ( )t cos ( )t

L 2

1
c( ) G C sin ( )t si

L 2





       

      

     

       


       


    



  

    

    

n

2

n n 1 n n

2

n n 2 n n

n ( )t

1
c( ) H C sin ( )t sin ( )t

L 2

1
c( ) H C cos ( )t cos ( )t ,

L 2

 


       


     

    

 

with   
 

 

n m 1

1 nm

n m 1

2 nm

C D 1 cos( L)( 1) ,

C D sin( L)( 1) .

 

 

    


  

 

 
Now if the excitation frequency is fixed then sets of ODE's can result. An eigenvalue analysis can 

reveal the stability. Suppose N M   then we get the following set of ODE's: 

 

 

M
1 N 2 N

M
2 N 3 N

N
1 M 2 M

N
2 M 3 M

dG
C (M, N) G C (M, N) H ,

d

dH
C (M, N) G C (M, N) H ,

d

dG
C (N,M) G C (N,M) H ,

d

dH
C (N,M) G C (N,M) H .

d


    


    
 

    
 

    


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with     

 

j i j 1

1 ij j

i

j i j 1

2 ij j

i

j i j 1

3 ij j

i

1
C (i, j) D 1 c sin( L)( 1) ,

4 L

1
C (i, j) D 1 c 1 cos( L)( 1) ,

4 L

1
C (i, j) D 1 c sin( L)( 1) ,

4 L

L
2ij

2
D(i, j)

L L
i j i j i j

 

 

 

  
     

  

  
      

  

  
     

  

 
    
            

   

.
L L

i j













   

    
   

 

 
 

Suppose M N   with M>N  then we get the following set of ODE's: 

 

M
1 N 5 N

M
5 N 3 N

N
1 M 2 M

N
2 M 3 M

dG
C (M, N) G C (M, N) H ,

d

dH
C (M, N) G C (M, N) H ,

d

dG
C (N,M) G C (N,M) H ,

d

dH
C (N,M) G C (N,M) H ,

d


    


     
 

    
 

    



 

 

with  j i j 1

5 ij j

i

1
C D 1 c 1 cos( L)( 1) .

4 L

 
  

      
  
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Section C: Analytical model for RWIV 

 
In this section additional explanation of the analytical model including lift and drag is given.  
 

 
Figure D.1: A representation of an inclined cable of a cable-stayed bridge under influence of wind.  

 
Consider a rigid and uniform cylinder to represent a cable segment with length L, inclined under 

angle  , spring supported at both ends and the yaw angle of the incident wind is , as depicted in 

figure D.1. Since the cylinder isn't perpendicular to the direction of the mean wind U0, one needs to 
find the component of the mean wind perpendicular to the cylinder denoted by U. 
 
Note that: 
  

2 2 2 2 2

| BC | Lcos( )cos( ),

| FB | L cos ( )cos ( ) L sin ( ).

  

    
 

 
Now look at plane FBC in figure D.2, 

 
                                
 
 
 
 
 
 
 
 
 
 
                                      Figure D.2: Plane FBC with a schematic representation of the vector U and U0. 

Lcos( )cos( ) 

2 2 2 2 2L cos ( )cos ( ) L sin ( )   


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Note that 2 2 2sin( ) cos ( )cos ( ) sin ( )       so that 2 2 2

0U U cos ( )cos ( ) sin ( ).      
 
Moreover: 
 

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

cos ( )cos ( ) sin ( ) cos ( )cos ( ) 1 cos ( ) 1 cos ( )sin ( )

cos ( ) sin ( ) cos ( )sin ( ) cos ( ) sin ( )sin ( ).

             

           
 

 
 

So that: 2 2 2 2 2 2

0 0U U cos ( )cos ( ) sin ( ) U sin ( )sin ( ) cos ( ).           

 
 
The angle of attack is defined as  , now look a plane ABC in figure D.3: 

 
 
figure D.3: plane ABC with the wind vectors U, U projected on the ABC and U0. 
 

If vector U is projected onto the triangle ABC then proj 0U U cos( )  , now look at the vector 

 
 
 
 
 
 
 
 
 
Figure D.3 plane ABC with vectors U, U projected on the plane ABC, and U0  
 
 

Note that ABC  , proj 0U U cos( )  . 


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Now look at the small vector triangle below. 
 
 

 
 
Figure D.4: The upper triangle perpendicular to triangle ABC. 
 
 

Pythagoras gives the length of the dotted line in figure D.4 as: 0U sin( )sin( ),   so that there can be 

concluded that: 
 

2 2 2

sin( )sin( )
sin( ) .

cos ( ) sin ( )sin ( )

 
 

   
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Section D:  M-code to solve combination resonances 
 
The M-code to solve the equation is given below. 
 
clear all 
clc 
syms n m d f B 
sol_vec = []; 

  
%== part 1 ==% => rn - rm = r1 + r2 met n = m + 1 
B = -sqrt(d*n^4+f*n^2 +1) + sqrt(d*m^4+f*m^2 +1) + sqrt(1^4*d+1^2*f+1)+ 

sqrt(d*2^4+f*2^2 +1); 
B = subs(B,d,0.24); 

  
for q=1:10 
B=subs(B,n,q+1); 
B=subs(B,m,q); 
A=solve(B,'f'); 
sol_vec(q)=A(1); 

  
% syms n m d f B 
B = -sqrt(d*n^4+f*n^2 +1) + sqrt(d*m^4+f*m^2 +1) + sqrt(1^4*d+1^2*f+1)+ 

sqrt(d*2^4+f*2^2 +1); 
B = subs(B,d,0.24); 
end 
sol_vec' 

  
 

 

 

 

%== part 2 ==% => rn - rm = r1 + r2 met n = m + 2 

  
B = -sqrt(d*n^4+f*n^2 +1) + sqrt(d*m^4+f*m^2 +1) + sqrt(1^4*d+1^2*f+1)+ 

sqrt(d*2^4+f*2^2 +1); 
B = subs(B,d,0.24); 

  
for q=1:10 
B=subs(B,n,q+2); 
B=subs(B,m,q); 
A=solve(B,'f'); 
sol_vec2(q)=A(1); 

  
% syms n m d f B 
B = -sqrt(d*n^4+f*n^2 +1) + sqrt(d*m^4+f*m^2 +1) + sqrt(1^4*d+1^2*f+1)+ 

sqrt(d*2^4+f*2^2 +1); 
B = subs(B,d,0.24); 
end 
vpa(sol_vec2') 
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%===part 3==% rn - rm = 2*r1 
B = -sqrt(d*n^4+f*n^2 +1) + sqrt(d*m^4+f*m^2 +1) + 2*sqrt(1^4*d+1^2*f+1); 
B = subs(B,d,0.24); 

  
for q=1:10 
B=subs(B,n,q+1); 
B=subs(B,m,q); 
A=solve(B,'f'); 
sol_vec3(q)=A(1); 

  
 

% syms n m d f B 
B = -sqrt(d*n^4+f*n^2 +1) + sqrt(d*m^4+f*m^2 +1) + 2*sqrt(1^4*d+1^2*f+1); 
B = subs(B,d,0.24); 
end 
vpa(sol_vec3') 
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Section E: The asymptotic validity of formal approximations 
 
In this paragraph the well-posedness of the problem 2.1-2.4,  given below,  is considered to verify 
that the earlier presented asymptotic approximation indeed are justifiable estimates of the exact 
solution. Because the proof is almost exactly the same as in section 2 of [11], the section has been 
altered here so as to fit the proof to problem 2.1-2.4. 
 
The problem under consideration is: 
 

2 2

tt xxxx xx

xx xx

(2.1)  w w q w p w f (x, t, w, ),     0 x ,  t 0,

(2.2)                                w(0, t) w( , t) 0,       t 0,         

(2.3)                           w (0, t) w ( , t) 0,       t 0,

(2.4)    w(x

         

   

   

0 t 1,0) w (x, ),  w (x,0) w (x, ),      0 x .      

 

 

Where ,p,q are constants 0 0[ , ]    and p,q 0 and where f,w0(x), w1(x) satisfy: 

(2.5)  f and all first- second- and third-order partial deratives of f with respect to x,w are   
 

0 0C([0, ] [0, ] [ , , ],   f (0, t,0; ) f ( , t,0; ) 0,   for t 0.              

 

(2.6)  
2 3 4 2 2

0 0 0 0 1 1 1
0 1 0 02 3 4 2 2

w w w w w w w
w , , , , , w , , , C([0, ] [ , ], )

x x x x x x x

      
    

      
 with  

 
2 2

0 0
0 0 2 2

2 2

1 1
1 1 2 2

w w
w (0; ) w ( , ) (0; ) ( ; ) 0,

x x

w w
w (0; ) w ( , ) (0; ) ( ; ) 0.

x x

 
         

 

 
         

 

 

 
(2.7)  f and all first- second- and third-order partial deratives of f with respect to x,w are uniformly 
bounded for all t,x,  . 
 
A classical solution is defined as a function that is three times differentiable with respect to x on 

[0, ] [0, ]   and for which the fourth order partial derative with respect to x is continuous on 

[0, ] [0, ]    and that satisfies 2.1-2.4 and where f, u0, u1 satisfy 2.6-2.8.  
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An equivalent integral equation will be used in the proof of the well-posedness of the problem 2.1-
2.4; this equation is obtained via Green's function G for the linear operator:  
 

2 2

2 4 2
L q p ,

t x x

  
   
  

  with simply supported boundary conditions: 

 

(2.8)        
t

l

0 0

w(x, t) G , , x, t f , , w; d d w (x, t;),



           

 

where     4 2 2 2

4 2 2 2
n 1

2 1
G , , x, t sin n q n p t H(t )sin(n )sin(nx).

n q n p





         
  
  

 

for , x [0, ], , t 0      where H(.) is the Heaviside function. If f=0 then the solution is: 

    l 1 0

0

w (x, t; ) G ,0, x, t w ( ; ) G ,0, x, t w ( ; )  d .



            

 

From the next section it will become clear that there's a constant M1 such that l 1w (x, t; ) M  . 

Note that G is uniformly bounded for the range of variables in question. This is because of  
 

    4 2 2 2

4 2 2 2
n 1

2

24 2 2 2
n 1 n 1

2 1
G , , x, t sin n q n p t H(t )sin(n )sin(nx)

n q n p

2 1 2 1 2
,

n 6 3n q n p





 

 

          
  

 
  

   



 

 

 

 thus there is a constant M4 such that 4G( , , x, t) M   . Moreover since f and
f

w




are assumed to 

be continuous and uniformly bounded for the range of variables in question there are constant M2, 
M3 such that 
 

1 2f (x, t, v ; ) M ,   

(2.14) 1 1 3 1 2f (x, t, v ; ) f (x, t, v ; ) M v v .      

 

For the proof the solution used is defined in  1L (x, t) | 0 x ,0 t L .


         
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Figure E.1a: The first part of the (adapted) proof described in [11]. 
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Figure E.1b: The second part of the (adapted) proof described in [11]. 
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Figure E.1c: The third and final part of the (adapted) proof described in [11]. 
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Energy and boundedness of the solution 

The operator L is self-adjoint and we know that L(G) ,L(w) f    and with usage of the integral  

 
*

t D

wL (G) GL(w) dVdt 0,    we can find the equivalent integral equation via integration by parts 

with use of the boundary conditions. 
 

Now  multiply the PDE 2 2G G q G p G (x , t )          with w and integrate   over 

0      and  over 0 t    combined with the initial and boundary conditions for w and G. 

Below each of the terms is derived: 
 

 
t t

t

t ( ,t )0

0 0

G w d G w G w d G w    
         

t
t

0 0

0

( ,t )

G w Gw Gw dt

Gw

  

 

  

 



t

1 0

0

Gw G w Gw dt.    

 

 
Where the terms drop out because of the causality of the green function G. In the derivation of the 
other terms the boundary conditions will be invoked: 
 
 

0
G wd G w



  
0

0

G w d G w




      
0 0

0

G w d .

G w d G w

 

 



   

 

 

 

0
0

G w d Gw




     
0 0

Gw d .

 

  

 

0
0

G w d G w




   0
0 0

G w d Gw Gw d .

 


           

t

0 0

(x , t )wd d w(x, t).



         

Now we get: 

 

 

t

2 2

tt 1 0

0 0 0

t

1 0

0 0 0

w(x, t) G( , , x, t) w w q w p w  d d G( ,0, x, t)w G ( ,0, x, t)w  d  

w(x, t) G( , , x, t)f , , w( , ),  d d G( ,0, x, t)w G ( ,0, x, t)w  d .

 

  

 



            

              

  

  
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Note that Green function can be found explicitly by solving the following problem: 

   

   

 

2 2

tt xxxx xx

xx xx

G G q G p G (x , t ),    x, (0, ), t 0, 0,

G , ,0, t G , , , t 0,                       t 0, 0,

G , ,0, t G , , , t 0,                  t 0, 0,

G , , x, t 0,                                       

            

         

         

         t. 

 

This inhomogeneous PDE must be solved using a Fourier series with undetermined coefficients. The 

boundary conditions suggest a sine series: 

  n

n 1

G , , x, t g ( , , t)sin(nx),




      

substitution in the PDE gives: 

   

4 2 2 2

n

0

n n

2
g (n q n p ) (x ) (t )sin(nx)dx,

g , ;0 g , ; 0.



        


      


 

The RHS becomes :   
0

2 2
(x ) (t )sin(nx)dx (t )sin(n ).



         
     

The homogeneous solution becomes zero due to the boundary conditions. Using variation of 

parameters    4 2 2 2 4 2 2 2

n 1 2g c (t)cos n q n p t c (t)sin n q n p t       the particular solution 

gives:   

 

  4 2 2 2

n
4 2 2 2

2 1
g sin n q n p t H(t )sin(n ),

n q n p
       
  

 

 

which leads to the final solution: 

    4 2 2 2

4 2 2 2
n 1

2 1
G , , x, t sin n q n p t H(t )sin(n )sin(nx).

n q n p





         
  

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Now an upper bound of the solution of w(x,t) will be determined corresponding to the PDE below. 

2 2

tt xxxx xx

xx 0 xx 1

w w q w p w 0,                             0 x ,  t 0,

w(0, t) w( , t) 0,                                           t 0, 

w (0, t) w (x; ),      w ( , t) w (x; ),        t 0,  0 x .

        


   
         

 

The upper bound can be found via the energy. Multiply the PDE with wt and integrate x over 

0 x    and t over 
00 t t   combined with the initial and boundary conditions gives the total 

energy. Below each of the terms is derived: 

 

0
0

tt

2 2 2

tt t t t 0

0 0

xxxx t xxx t 0

0

1 1
w w dt w w (x, t ) g (x) .

2 2

w w dx w w




    





  xxx t xx xt 0

0

w w dx w w




  

 

00 0 0

0

xx xxt

0

t 2t t t 2 2
t

2 2xx
xx xxt xx xxt xx xxt xx xx 0 20

0 0 0 0

xx t x t 0

0

w w dx

w 1 d f
w w dt w w w dt w w dt w (x, t ) .

2 2 dx

w w dx w w






 

    
          

     





  



0
0 0 0

0

0

x xt

0

t 2t t t 2
t

2 2x
x xt x xt x x xt 00

0 0 0 0

tt

2 2 2

t 0

00

w w dx

w 1 df
w w dt w w w dt w w dt w (x, t ) .

2 2 dx

1 1
ww dt w w (x, t ) f (x) .

2 2



 

    
          

     

 
     

 



  


 

 

Thus the total energy is: 

2 2 2 2 2

t 0 xx 0 0

0

2 22
2 2 2 2

2

0

w (x, t ) w (x, t ) (p q )w (x, t )dx

d f df
g (x) q p f (x)dx.

dx dx





   

   
     

  




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We know that wx exists and is continuous so: 

w(x, t) w(0, t)

x x

0 0

w ( , t)d w ( , t)d .         

Since wxx exists and is continuous and since we have Dirichlet boundary conditions we know that 

there exists an (0,L) with xw ( , t) 0,   so 

x xw (x, t) w ( , t) 

x x

w ( , t)d w ( , t)d . 

 

        

Now first an upper bound for wx will be determined (with use of Hölder's inequality): 

 

x

x

0

1/2 1/2 1/2

2 2 2 2 2 2 2

xx t xx

0 0 0

1/2
2 22

2 2 2 2

2

0

2
2

2 2

2

| w (x, t) | w ( , t)d | w ( , t) | d

1 dx w dx w w q p w dx

d f df
g (x) q p f (x) dx

dx dx

d f df
|| g || q

dx dx



 



  







      

     
          

     

    
            

  
    

 

 

  



1/2
2

2 2

0

2

2

p f dx

d f df
g q p f .

dx dx







 



 
  

 
 

    
           



 

 

Now the maximum of w(x,t) can be found: 

x 2

x 2

0 0 0

2
2

2

d f df
w(x, t) w ( , t)  d w (x, t)  dx g q p f  dx

dx dx

d f df
w(x, t) g q p f .

dx dx

 

 

  



 



    
                 

    
            

  
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Now if g(x)  = 0 then 

 
2

2

2

0

d f df
G ,0, x, t f ( ) d q p f .

dx dx



 



   
         

  
  

and if f(x) = 0 then 

 
0

G ,0, x, t g( ) d g .




     
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Section F: The block signal   
 
Below are the two integrals worked out. 
 

 

1 k k

k0

k k k k

k

L L L L
I x t c  x t d sin(nx)sin(mx)dx

c c

1 1 1 1
sin n t c sin m t c sin n t d sin m t d

c L c L c L c L

1
cos n m

2

 



       
                

          

                  
                       
              







 

   

k k

k

k k

1 1 1
t c cos n m t c

c L 2 c L

1 1 1 1
cos n m t d cos n m t d ,

2 c L 2 c L

        
           
      

        
             

      



 

 
note that for a given t the series in k reduces to a finite summation. 
 
 
Moreover each cosine can be written in such a way that the phase is no longer present: 
 

   

   

k k

k k k k

1 1
cos n m t c cos n m t d

c L c L

cos(at) cos(bc ) cos(bd ) sin(at) sin(bc ) sin(bd ) ,

        
             

      

  

 

 

with    
1

a n m ,   b n m ,
c L


       

 
 

   

   

k k

k k k k

1 1
cos n m t c cos n m t d

c L c L

cos(et) cos(fc ) cos(fd ) sin(et) sin(fc ) sin(fd ) ,

        
             

      

  

 

 

with     
1

e n m ,   f n m .
c L


       
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So the result is: 
 

      

      

      

      

n
k k n n n

n 1 k

n
k k n n n

n
k k n n n

n
k k n n n

n
k

cos(bc ) cos(bd ) G sin ( a)t sin ( a)t
4

cos(bc ) cos(bd ) H cos ( a)t cos (a )t
4

sin(bc ) sin(bd ) G cos (a )t cos ( a)t
4

sin(bc ) sin(bd ) H sin ( a)t sin (a )t
4

cos(fc ) cos(
4






      


     


     


     


 



      

      

      

      

k n n n

n
k k n n n

n
k k n n n

n
k k n n n

fd ) G sin ( e)t sin ( e)t

cos(fc ) cos(fd ) H cos ( e)t cos (e )t
4

sin(fc ) sin(fd ) G cos (e )t cos ( e)t
4

sin(fc ) sin(fd ) H sin ( e)t sin (e )t .
4

    


     


     


     
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   

k k

k k

2 k k

k0

1 1
t d t d

c L c L

k k1 1
t c t c

c L c L

L L L L
I Q x t c  Q x t d sin(nx)sin(mx)dx

c c

1
sin(nx)sin(mx) dx cos (n m)x cos (n m)x  dx

2

1 1

2

 



    
      
   

    
      
   

       
              

          

    



  

   
k

k

1
t d

c L

1
k t c

c L

k k

k

k

1
sin (n m)x sin (n m)x

n m n m

1 1 1 1
sin (n m) t d sin (n m) t d

2(n m) c L 2(n m) c L

1 1 1 1
sin (n m) t c sin (n m) t

2(n m) c L 2(n m) c L

 
  
 

 
  
 

 
      

        
             

       

    
        

   





    

   

 

k

k k k k

k

k k k k

k

k k k

c

1 1
sin at bd sin(at bc ) sin(et fc ) sin(et fd )

2(n m) 2(n m)

1 1
sin(at) cos(bd ) cos(bc ) cos(at) sin(bd ) sin(bc )

2(n m) 2(n m)

1 1
sin(et) cos(fd ) cos(fc ) cos(et) sin(fd ) si

2(n m) 2(n m)

  
  

  

       
 

   
 

  
 





 kn(fc ) .
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The total result is: 
 

      

      

      

   

2

n
k k n n n

n 1 k

2

n
k k n n n

2

n
k k n n n

2

n
k k n n

cos(bd ) cos(bc ) G sin (a )t sin (a )t
4(n m)

cos(bd ) cos(bc ) H cos (a )t cos (a )t
4(n m)

sin(bd ) sin(bc ) G cos (a )t cos (a )t
4(n m)

sin(bd ) sin(bc ) H sin (a )t si
4(n m)






    




    




    




  





   

      

      

      

   

n

2

n
k k n n n

2

n
k k n n n

2

n
k k n n n

2

n
k k n n

n a t

cos(fd ) cos(fc ) G sin (e )t sin (e )t
4(n m)

cos(fd ) cos(fc ) H cos (e )t cos (e )t
4(n m)

sin(fd ) sin(fc ) G cos (e )t cos (e )t
4(n m)

sin(fd ) sin(fc ) H sin (e )t si
4(n m)

  


    




    




    




  


   nn e t . 
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Below are the cases 3 and 4: 
 
 
 

Case 3 N M e     with N > M 

 
 

   

   

2 2

N N N NM
M k k N k k N

k

2 2

N N N NM
M k k N k k N

k

2

N M
N

dG
2 cos(fc ) cos(fd ) G sin(fc ) sin(fd ) H ,

d 4(N M) 4 4(N M) 4

dH
2 cos(fc ) cos(fd ) H sin(fc ) sin(fd ) G ,

d 4 4(N M) 4 4(N M)

dG
2

d 4(M N)

      
         

     

      
          

     

 
   

 





   

   

2

M M M
k k M k k M

k

2 2

N M M M M
N k k M k k M

k

cos(fc ) cos(fd ) G sin(fc ) sin(fd ) H ,
4 4 4(M N)

dH
2 cos(fc ) cos(fd ) H sin(fc ) sin(fd ) G .

d 4 4(M N) 4 4(M N)













           
    


       
            

      





 

 
 
 
 
 
 

Case  4 N Me      

 
 

   

   

2 2

N N N NM
M k k N k k N

k

2 2

N N N NM
M k k N k k N

k

2

N M M
N

dG
2 cos(fc ) cos(fd ) G sin(fc ) sin(fd ) H ,

d 4 4(N M) 4 4(N M)

dH
2 cos(fc ) cos(fd ) H sin(fc ) sin(fd ) G ,

d 4(N M) 4 4 4(N M)

dG
2

d 4 4(M N

      
         

     

      
          

     

 
  

 





   

   

2

M M
k k M k k M

k

2 2

N M M M M
N k k M k k M

k

cos(fc ) cos(fd ) G sin(fc ) sin(fd ) H ,
) 4 4(M N)

dH
2 cos(fc ) cos(fd ) H sin(fc ) sin(fd ) G .

d 4(M N) 4 4 4(M N)













           
    


       
           

      




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Section G: The quadratic term   
 
An analysis of resonance cases 
Several cases for resonance must be analyzed: 
 

4 2 2 4 2 2 4 2 2

4 2 2 4 2 2 4 2 2

4 2 2 4 2 2 4 2 2

4 2 2 4 2 2 4 2 2

4 2 2 4 2 2

m k l d,
:   

m m k k l l ,

m k l d,
:  

m m k k l l ,

m k l d,
:

m m k k l l ,

m k l d,
V :

m m k k l l ,

m k l d,
V :  

m m k k

  
 

         

  
 

         

  
 

         

  
 

         

   

       4 2 2l l ,




  

 

 

where d is odd and k,l,m 1.  

 

It's clear that if 4 2 2 4 2 2 4 2 2m m k k l l         then there are no solutions. The following 

cases remain. 
 
Case I(i) 

4 2 2 4 2 2 4 2 2

m k l d,

m m k k l l ,  (*)

  


       

 

 

with  k,l,m 1,   d 2j 1,  j 0,1,2,...     

 
This set of equations has no solutions! Two proofs are given below. 
 
Proof 1 

Squaring both sides of (*) and reordering gives (introduce 2x   ): 

  

      

    

     

4 2 4 2 4 2 2 2

4 4 4 2 2 2 2 2

a b

2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

m m x k k x l l x 2lk k x l x

m k l x m k l 2lk k x l x

a bx 4l k k x l x

x 4k l b x 4k l (k l ) 2ab 4k l a 0.

        

        

    

      
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Notice a quadratic equation in x: 2Ax Bx C 0   ; from Routh-Hurwitz it can be deduced that if  

B C
0,  0

A A
  then all zeros are in the left half plane. In this case it means that 2

1,2 0  so no 

solutions are found. The signs of A,B and C must be investigated to draw this conclusion. 
 

 

 
2

2 2 2

4 2 2 4 4 4 4 2 2 2

A : 4k l d 2(lk md kd) 0.

B : 4k l 4k l 2(m k l )(m k l ).

    

       

Note that 4 4 4 3 3m k l 4k l 4l k     and that 2 2 2m k l 2kl    so  
 

  4 4 4 2 2 2 3 3 4 2 2 42 m k l m k l 2kl(4k l 4kl ) 16k l 16k l ,         

 
so we find B < 0. 
 

  4 4 2 2 2 2 2C: 4k l a 2k l a 2k l a ,     

note that 2 22k l a 0   and  4 4 4 2 2a m k l 6k l    so  2 22k l a 0   so we find C < 0. 

 

The conclusion is that: 
B

0
A
 and 

C
0

A
 . 

 
Proof 2 
The RHS of (*) is always smaller then the LHS: 
 

4 2 2 4 2 2 2 2 2 2 2 2 4 2 2k k l l  k m l m (k l d) m m m .                 

 
 
Case I(ii) 

4 2 2 4 2 2 4 2 2

m k l d,

m m k k l l ,

  


       

 

 

Note that 4 4 4m k l   and 2 2 2m k l   due to the first equation now squaring of the second 
equation and reordering gives:  
 

    4 2 2 4 2 2 4 4 4 2 2 2 22 k k l l k l m k l m 0.            

 
So no solutions exist for case I(ii). A second proof is constructed analogously to proof 2 of Case I(i).  
 
Case I(iii) 

4 2 2 4 2 2 4 2 2

m k l d,

m m k k l l ,

  


        

 

 
This is the same as case I(i) with the role of k and l switched. 
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Case II(i) 

4 2 2 4 2 2 4 2 2

m k l d,                                              (6.3)

m m k k l l .   (6.4)

  


       

 

 
The same arguments can be applied as in [11] with the inequality adapted leading to the same (and 

more) modes that gives resonance. Define 2 2g(u) u u    now using Taylor's theorem around u 

= A2: 
 

g(u) g(A) (u A)g '( )     with (a,u)  with the assumption that u a . 

 

     2 2 22

2 2 2 2 2 2 2 2 2 2

2 u u u u2u 1
g '( ) 1

2 u u 2 u u u u u u u u

   
      

    
 for 2u, 1.   

 
Now the inequality becomes:  
 

2 2g(u) g(A) (u A) A A u A.         

 

Substitute x2=u and A = a2 results in  2 4 2 2 4 2 2 2 2x x x a a x a        for x a,  x, 1.    

Note that 2 4 2 2 2 2 2m m m k l 2 2 1        since l,  k,  d 1 and by definition  
2 2 2 2 2 2m k l d 2(kl (l k)d) k l          with 2d 2(kl (l k)d)     , comparing the two 

equations leads to:  
 

 22 1 1 .     

 

From the definition of we see that   is odd. Case II(i) hasn't got solutions for 0  . To see this  

introduce 2 2 2M m , K k ,  L l   : 

 

2 2 2 2 2 2

M K L ,

M M K K L L .

  


       

 

 

Assume that 0   then   
 

2 2 2 2N K M 0     N K M      N (K M) K 2KM M ,             

 

but also : 2 2 2N K M     . 
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 Addition of the two equations leads to: 
 

 

 

2 2 2 2 2 2

2
2 2 2 2 2 2

2
2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

N N K 2KM M K M

N N K 2KM M K M

K K M M K K 2KM M M

K K 2 K K M M M M K K 2KM M M

2 K K M M 2KM

K K M M KM

(K K )(M M ) K M

K M KM K M

        

        

           

                

     

     

    

 













2 4 2 2

2 2 2 2 4

KM K M

KM K M KM 0.

   

     



 

 

Which leads to a contradiction since K and M are natural numbers and 0  . 

 

So case II(i) only has solutions for 0  . We see that for 2 45  we have 11.56   and we know 

 is odd, this means that 1,3,..,11,13  have to be investigated. Suppose d = 1 then from the 

definition of we can derive 
*

1
l 1

2(k 1)


 


 where the star is added to distinguish the letter l from 

the number  1. For *

1
1,  l 1

k 1
   


then the only possible solution is *k l 2  which leads to      

n = 3 according to equation 6.3 and equation 6.4 then satisfies for 2 17

7
  .  

 

For *

2
3,  l 1

k 1
   


 the two possible solutions are *k 2,  l 3  or *k 3,  l 2  . Due to 

symmetry in  k and *l  it suffices to look at *k 2,  l 3   then m=4 according to equation 6.3 and 

equation 6.4 is satisfied for  2 9,27  .For *

3
5,  l 1

k 1
   


then the two possible solutions are 

*k 2,  l 4  or *k 4,  l 2  . Due to symmetry in k and *l  it suffices to examine *k 2,  l 4  then 

m = 5 according to equation 6.3 and equation 6.4 is satisfied for 2 18.48  .  

 

For *

4
7,  l 1

k 1
   


three possible solutions are *k 2,  l 5  or *k 5,  l 2  or *k l 3  . Due 

to symmetry in k and *l it suffices to examine the cases *k 2,  l 5   and *k l 3  . If *k 2,  l 5   

the m = 6 according to equation 6.3 and equation 6.4 is satisfied for 2 30,01  . If *k l 3   then 

m = 5 according to equation 6.3 and equation 6.4 is satisfied for 2 301
27.36

11
   . This analysis can 

be continued for 9,11,13,...  . For 9  no solutions exist where 2 45.   
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Suppose d = 3 from the definition of we can derive 
9

l 3
2(k 3)


 


 . For  

*

5
1,  l 3

k 3
   


two 

possible solutions are  *k 4,  l 8  and *k 8,  l 4  .  Due to symmetry in k and *l  it suffices to 

examine the cases *k 4,  l 8  . Then it follows from equation 6.3 that m = 9, and equation 6.4 is 

satisfied for 2 2.066  . This analysis can be continued for 3,5,7,...  , the values for the 

resonance modes up to 2 45   have been omitted but the calculation is similar to the one above. 

 
 

m,l,k,d 2
μ  

3,2,2,1 17/7 

4,2,3,1 9,27 

5,2,4,1 18,48 

6,3,3,1 27,36 

6,2,5,1 30,01 

7,2,6 43,86 

19,6,18 2,028 

... ... 

Table G.1: Only for special cases of 2 resonance can occur. 

 
Due to symmetry in l and k the values of l and k can be switched. This table only gives a part of all 

values where resonance occurs for 2 45.   

 
Case II(ii) 

4 2 2 4 2 2 4 2 2

m k l d,

m m l l k k .

  


       

 

 
This is equivalent to case I(i) with m and l switched and d replaced by d+2k and to case II(i) with m 
and l switched and d replaced by -d+2k. 
 
Case II(iii) 

4 2 2 4 2 2 4 2 2

m k l d,

m m l l k k .

  


        

 

 
This is equivalent to case II(ii) with l and k switched. 
 
Case III(i) 

4 2 2 4 2 2 4 2 2

m l k d,

m m l l k k .

  


       

 

 
This is equivalent to case I(i) where d is replaced by d+2k and to case II(i) where d is replaced by           
-d+2k. 
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Case III(ii) 

4 2 2 4 2 2 4 2 2

m l k d,

m m l l k k .

  


        

 

 
This is equivalent to Case III(ii) with l and k switched. 
 
Case IV(i) 

4 2 2 4 2 2 4 2 2

m l k d,

m m l l k k .

  


       

 

 
This is equivalent to case I(ii) with m and l switched. 
 
Case IV(ii) 

4 2 2 4 2 2 4 2 2

m l k d,

m m l l k k .

  


       

 

 
This is equivalent to case I(i) with m and l switched. 
 
Case IV(iii) 

4 2 2 4 2 2 4 2 2

m l k d,

m m l l k k .

  


        

 

 
This is equivalent to case IV(ii) with l and k switched. 
 
Case V(i) 

4 2 2 4 2 2 4 2 2

m l k d,

m m l l k k .

   


       

 

 
This is equivalent to case I(i) where d is replaced by d + 2k + 2l and to case II(i) where d is replaced by 
-d+2k+2l. 
 
Case V(ii) 

4 2 2 4 2 2 4 2 2

m l k d,

m m l l k k .

   


       

 

This is equivalent to case V(i) with m and l switched. 
 
Case V(iii)  

4 2 2 4 2 2 4 2 2

m l k d,

m m l l k k .

   


        

 

 
This is equivalent to case V(ii) where l and k are switched.
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Section H: The cubic term   
 
In this section we show how the cases where resonance occurs can be derived. The  can be 
expanded using goniometric formulas: 
 

   

   

   

   

   

   

   

 

m k j

1 j 2 j m k j

2 j 1 j m k j

1 j 2 j m k j

2 j 1 j m k j

3 j 4 j m k j

4 j 3 j m k j

3 j 4 j m k j

4 j 3 j m

1
[

4

C G C H cos ( )t

C G C H sin ( )t

C G C H cos ( )t

C G C H sin ( )t

C G C H cos ( )t

C G C H sin ( )t

C G C H cos ( )t

C G C H sin (

    

     

     

    

    

    

     

     

   k j)t ],

 

 
with  
 

1 m k m k 2 m k m k

3 m k m k 4 m k m k

C G H H G ,      C G G H H ,  

C G H H G ,    C G G H H .

    

    
 

 
The terms of  can cause secular terms if  
 

4 2 2 4 2 2 4 2 2 4 2 2n n m m k k j j             .  

 
To determine the contribution of the sums derived in §7.2 the following resonance cases must be 
investigated: 
 

4 2 2 4 2 2 4 2 2 4 2 2

4 2 2 4 2 2 4 2 2 4 2 2

4 2 2 4 2 2 4 2 2 4 2 2

n m k j,
I :

n n m m k k j j ,

n m k j,
II :

n n m m k k j j ,

n m k j,
III :

n n m m k k j j .

  

            

   

            

  

            

 

 
It's clear that the cases do not have solutions where: 
 

4 2 2 4 2 2 4 2 2 4 2 2n n m m k k j j .             
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Case I(i) 

4 2 2 4 2 2 4 2 2 4 2 2

n m k j,

n n m m k k j j .  (*)

  


          

 

 
This set of equations has no solutions. The proof is outlined below. 
 
The RHS of (*) is always smaller then the LHS: 
 

4 2 2 4 2 2 4 2 2 2 2 2 2 2 2

2 2 4 2 2

k k m m + j j  k n m n j n

(k m j) n n n .

            

      

 

 
Case I(ii) 

4 2 2 4 2 2 4 2 2 4 2 2

n m k j,

n n m m k k j j .

  


          

 

 
A proof that this set of equations has no solutions can be constructed along the same lines as the 
proof of case I(i). 
 
Case I(iii)  

4 2 2 4 2 2 4 2 2 4 2 2

n m k j,

n n m m k k j j .

  


          

 

 
A proof that this set of equations has no solutions can be constructed along the same lines as the 
proof of case I(i). 
 
Case II 

n m k j     is the same as I with n and j switched. 

 
Case III(i) 

4 2 2 4 2 2 4 2 2 4 2 2

n m k j,

n n m m k k j j .

  


          

 

 

We know 2 2 2 2n m k j 2(mk mj kj)      . We introduce 2(mk mj kj)     and 
2 2 2N n ,K k ,J j   .  Look at the following set of equations: 

 

2 2 2 2 2 2 2 2

N M K J ,

N N M M K K J J .

   


          
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Assume that 0   then  
2 2 2 2N M K J 0    N M K J       N (M K J) M K J 2(MK KJ MJ)                 

but also 2 2 2 2N K M J       . Addition of the two equations leads to: 

 

  

     

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2

M M K K J J 2 M M K K

2 M M J J 2 K K J J

M K J M K J 2MK 2KJ 2MJ.

            

          

          

 

 
or  
 

        2 2 2 2 2 2 2 2 2 2 2 2M M K K M M J J K K J J MK KJ MJ.                

 
 
But this can never be true because of an terms-wise failing of the inequality: 
 

  

  

  

2 2 2 2

2 2 2 2

2 2 2 2

M M K K MK,

M M J J MJ,

K K J J MJ.

    

    

    

 

 

The conclusion is that 0  . 
 

In some cases there can be resonance depending on the value of 2 . We again use the inequality 

derived in the previous section of the appendix: 2 4 2 2 4 2 2 2 2x x x a a x a        for 

x a,  x, 1.    

 
Using this inequality we can derive that:  

2 4 2 2 2 2 2n n m k j 3 3 1        since n,m,k, j 1.  

We also know that 2 2 2 2 2 2 2n m k j 2(mk mj kj) m k j          this gives us: 

 23 1 1    . With 2 10  the possible values of   are 2, 4, 6 and 8. Take 2   and due to 

symmetry in m and k, assume that m k . For m k we get 2m(m 2j)   which means that 

there are no solutions for 10  which implies that there are also no solutions for 20 10   , so 

we take m k . From the definition of   we have  m(k j) kj 0
2


     so k j 0  , k j  which 

implies that m k j 1  j 1, k 2, m 3       and n 4 .  
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Note that this means that If 2  then mk mj kj 1   , if j 1  then 
2

m 1
k 1

 


. The only 

possible solutions is m 3,  k 2   with n 4  leading to 2 2,60  , due to symmetry in k and m, 

they can be switched. Continuing in this way for j 2  all of the modes can be found linked to a 

specific 2 which can cause resonance. 

 
Case III(ii)(a) 

4 2 2 4 2 2 4 2 2 4 2 2

n m k j,

n n m m k k j j .

  


          

 

 
This set of equations has the obvious solutions k = n and  j = m. Due to symmetry in m, k they can be 
switched. 
 
Case III(ii)(b) 

4 2 2 4 2 2 4 2 2 4 2 2

n m k j,

n n m m k k j j .

  


          

 

 
This set of equations has the obvious solutions m = n and j = k.  
 
Case III(ii) (c) 

4 2 2 4 2 2 4 2 2 4 2 2

n m k j,

n n m m k k j j .

  


           

 

 
This set of equations is the same as III(ii)(b) with m and k switched. Using a similar analysis as in Case 
III(i) it can be shown that the solutions given in III(ii)(a)-(c) are the only solutions. 
 
Case III(a) 

4 2 2 4 2 2 4 2 2 4 2 2

n m k j,

n n m m k k j j .

  


           

 

 
This case is the same as I(i) with n and j switched. 
 
Case III(b) 

4 2 2 4 2 2 4 2 2 4 2 2

n m k j,

n n m m k k j j .

  


          

 

 
This case is the same as III(i) with n and m, k and j switched. 
 
Case III(c)  

4 2 2 4 2 2 4 2 2 4 2 2

n m k j,

n n m m k k j j .

  


           

 

 
This case is the same as III(iii)(b) with m and k switched. 
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