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We present a convex relaxation-based algorithm for large-scale general phase retrieval problems. General phase
retrieval problems include, e.g., the estimation of the phase of the optical field in the pupil plane based on in-
tensity measurements of a point source recorded in the image (focal) plane. The non-convex problem of finding
the complex field that generates the correct intensity is reformulated into a rank constraint problem. The nuclear
norm is used to obtain the convex relaxation of the phase retrieval problem. A new iterative method referred to as
convex optimization-based phase retrieval (COPR) is presented, with each iteration consisting of solving a convex
problem. In the noise-free case and for a class of phase retrieval problems, the solutions of the minimization
problems converge linearly or faster towards a correct solution. Since the solutions to nuclear norm minimization
problems can be computed using semidefinite programming, and this tends to be an expensive optimization
in terms of scalability, we provide a fast algorithm called alternating direction method of multipliers (ADMM)
that exploits the problem structure. The performance of the COPR algorithm is demonstrated in a realistic
numerical simulation study, demonstrating its improvements in reliability and speed with respect to state-

of-the-art methods. © 2018 Optical Society of America
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1. INTRODUCTION

Recovery of a signal from several measured intensity patterns,
also known as the phase retrieval problem, is of great interest in
optics and imaging. Recently, it was shown in [1] that the prob-
lem of estimating the wavefront aberration from measurements
of the point spread functions can be formulated as a phase
retrieval problem.

In this paper, we consider the general phase retrieval

problem [2],

find a € C™ such thaty, = [ulfal> fori=1,...

b }/’

where y, € R and u; € C" are known and (-)” denotes the
Hermitian transpose of a vector (matrix). For the sake of
brevity, the following compact notation will be used in this pa-
per to denote this general noise-free phase retrieval problem:

find a € C" such that y = |Ual?, (1)

ny, .
where y € RY are the measurements and U € C"" is the
propagation matrix. With noise on the measurements y;, we
consider the following related optimization problem:

min [ly - [Ual?|, @)
acCm
where || - || denotes a vector norm of interest.
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The sparse variant of the phase retrieval problem corre-
sponds to the case that the unknown parameter a is a sparse
vector. A special case of this problem is when the measurements
are the magnitude of the Fourier transform of multiples of a
with certain phase diversity patterns. A number of algorithms
utilizing the Fourier transform have been proposed for solving
this class of phase retrieval problems [3-5].

The fundamental nature of Eq. (1) has given rise to a wide
variety of solution methods that have been developed for specific
variants of this problem since the observation of Sayre in 1952
that phase information of a scattered wave may be recovered from
the recorded intensity patterns at and between Bragg peaks of a
diffracted wave [6]. Direct methods [7] usually use insights about
the crystallographic structure and randomization to search for the
missing phase information. The requirement of such a priori
structural information and the expensive computational complex-
ity often limit the application of these methods in practice.

A second class of methods first devised by Gerchberg and
Saxton [8] and Fienup [3] can be described as variants of
the method of alternating projections on certain sets defined
by the constraints. For an overview of these methods and latter
refinements, we refer the reader to [4,9].

In [10], Eq. (1) is relaxed to a convex optimization problem.
The inclusion of the sparsity constraint in the same framework
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of convex relaxations has been considered in [11]. However, as
reported in [5], the combination of matrix lifting and semide-
finite programming (SDP) makes this method not suitable for
large-scale problems. To deal with large-scale problems, the au-
thors of [5] have proposed an iterative solution method, called
greedy sparse phase retrieval (GESPAR), which appears to yield
the promising recovery of very sparse signals. However, this
method consists of a heuristic search for the support of a in
combination with a variant of the Gauss—Newton method,
whose computational complexity is often expensive. These
algorithmic features are potential drawbacks of GESPAR.

In this paper, we propose a sequence of convex relaxations
for the phase retrieval problem in Eq. (1). Contrary to existing
convex relaxation schemes such as those proposed in [10,11],
matrix lifting is not required in our strategy. The obtained con-
vex problems are affine in the unknown parameter vector a.
Contrary to [12], our strategy does not require the tuning
of regularization parameters when the measurements are cor-
rupted by noise. We then present an algorithm based on
the alternating direction method of multipliers (ADMM) that
can solve the resulting optimization problems effectively. This
potentially addresses the restriction of current SDP-based
methods to only relatively small-scale problems.

In Section 2 we formulate the estimation problem of our in-
terest for both zonal and modal forms. In Section 3 we propose
an algorithm for solving this problem. The algorithm is based on
iteratively minimizing a nuclear norm. The nuclear norm of a
matrix is the sum of its singular values. Its benefit in optimization
is that it is used as a convex relaxation to the rank function [13].
The convexity enables direct use of standard software libraries for
solving convex optimization problems. However, since it is a
computationally heavy minimization problem, we suggest an
ADMM-based algorithm in Section 4 that exploits the problem
structure and is therefore more efficient in practical cases. This
ADMM algorithm features two minimization problems whose
solutions can be computed exactly and with complexity
O(n,n,), where n, is the number of measurements, and 7, is
the number of unknown variables. To find these solutions, either
a least-squares problem has to be solved or the singular value
decompositions of 2 x2 matrices have to be computed.
Analytic solutions for the ADMM algorithm update steps will
be presented in Subsections A and B. The convergence behavior
of the algorithm proposed in Section 3 is analyzed in Section 5.
Compared to the other sections, the mathematical analysis in this
section is more involved, which is often the case for convergence
analyses. In Section 6 we describe and discuss the results of a
number of numerical experiments that demonstrate the prom-
ising performances of our algorithms. We end with concluding
remarks in Section 7.

2. WAVEFRONT ESTIMATION FROM INTENSITY
MEASUREMENTS

The problem of phase retrieval from the point spread function
images can be approached from two directions. We take the
opportunity to present them in a unified way. We first describe
the problem in zonal form and then in modal form. The modal
form approach used in this paper seems less popular than that
of the zonal form.
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A. Problem Formulation in Zonal Form

In [1] it was shown that reconstructing the wavefront from
charge-coupled device (CCD) recorded images of a point
source may also be formulated as a phase retrieval problem.
These recorded images are called point spread functions
(PSFs). As such approaches avoid the requirement of extra hard-
ware to sense the wavefront, such as a Shack—-Hartmann wave-
front sensor, the problem is relevant and summarized here.

The PSF is derived from the magnitude of the Fourier trans-
form of the generalized pupil function (GPF). For an aberrated
optical system, the GPF is defined as the complex-valued
function [14],

P(p,0) = A(p, §)d?0), (3)

where p (radius) and 6 (angle) specify the normalized polar
coordinates in the exit pupil plane of the optical system. In
Eq. (3), A(p,0) is the amplitude apodization function, and
¢(p,0) is the phase aberration function.

The aim of the wavefront reconstruction problem is to es-
timate ¢(p, 0). Once this phase aberration of an optical system
has been estimated, it can be corrected by using phase
modulating devices such as deformable mirrors.

In order to estimate ¢(p, 6), a known phase diversity pattern
¢4(p, 0) can be introduced (e.g., by using a deformable mirror)
to transform the GPF in a controlled manner into the aberrated

GPF,
P,(p,0) = A(p, 6)574’(/"9)#‘/’4(/”9). (4)

The noise-free intensity pattern of P,(p,0) measured at the
image plane is denoted as

v, = |F{A(p, 0)?0? b0} 2, (5)

If we sample the function P,(p, 6) at points corresponding to a
square grid of size m x m on the pupil plane, then A(p,0),
¢4(p,0), and ¢(p,0) are square matrices of that size.

Let us define vect(-), the vectorization operator, such that
vect(Z) vyields the vector obtained by stacking the columns
of matrix Z into a column vector. The inverse operator
vect™!(+), which maps a column vector of size 7 to a square
matrix of size 7 x m, is also well defined. Let in particular the
matrix Z and the vector a be defined as

Z = A(p, 0)d?»? e Cmm, a = vect(Z) € C.
With the definition of the vector p,,
p, = vect(e?00) € C,

. 2 2 . . .
and with D, = d(p,) € C"*" as the diagonal matrix with
diagonal entries taken from the vector p,, we can write the
noise-free intensity measurements in Eq. (5) as

_ iy (p, 6 2 _ -1 2
Yo = |F{e? 0O Z}> = | Flvect (Dya)}|.
As the Fourier transform is a linear operator, we can write our
noise-free intensity measurements in the form

v, = Ul (6)

where in this case U, is a unitary matrix.
By stacking the vectors y, and the matrices U, obtained
from the 7, images with 7, different phase diversities,
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correspondingly, into the vector y and the matrix U (of size
nym?* x m*), the problem of finding a from noise-free intensity
measurements can be formulated as in Eq. (1), and that from
noisy measurements can be formulated as in Eq. (2) for 7, =
m?* and n, = nym?.

It is worth noting that the dimension of the unknown a with
m in the range of a couple of hundreds turns this problem into a
non-convex large-scale optimization problem. For such a prob-
lem, the implementation of PhaseLift [12] using standard SDP
using libraries like MOSEK [15] will not be tractable because of
the large matrix dimensions of the unknown quantity. If we
assume that the computational complexity of semidefinite
programming with matrix constraints of size 7 x 7z increases
with O(#°) [16], then a naive implementation of the
PhaseLift method applied to Eq. (2) involving a single image

has a worst-case computational complexity of O(m!?).

B. Problem Formulation in Modal Form

In general, only approximate solutions can be expected for a
phase retrieval problem. In the modal form of the phase retrieval
problem, also considered in [1] for extended Nijboer—Zernike
(ENZ) basis functions, the GPF is assumed to be well approxi-
mated by a weighted sum of basis functions. We make use of
real-valued radial basis functions [17] with complex coefficients
to approximate the GPF. These are studied in the scope of wave-
front estimation in [18], and an illustration of these basis
function on a 4 x 4 grid in the pupil plane is given in Fig. 1.

Switching from the polar coordinates (p, 6) to the Cartesian
coordinates (x,y) in the pupil plane, let us consider the radial
basis functions and the approximate GPF given by

G(x,y) = y(x,y)e (0200,

Pleg) ~ Pleyia) = 3 4,Gx.y), (7)
i=1

where (x;, ;) are the centers of basis functions G;(x, y), 2; € C,
A; € R, determines the spread of that function, y(x, ) denotes
the support of the aperture, and a is the coefficient parameter

Basis function amplitudes in a circular aperture

Fig. 1. 16 radial basis functions with centers in a 4 x 4 grid, with
circular aperture support.

vector to be estimated. The parameters 4; are usually taken equal
for all basis functions, and for their tuning we refer to [18].

The aberrated GPF corresponding to the introduction of
phase diversity ¢, is

nd

i)d(x’}’: a, ¢d) = Zﬂl‘G,‘(X,}/)@M)d(x’y). (8)

i=1

The normalized complex PSF is the two-dimensional
Fourier transform of the GPF [19,20]. The aberrated PSF
corresponding to the aberrated GPF in Eq. (8) is given as

Pl ) =D G F{Gx )=y =" 4,U, (u,v), (9)
i=1 i=1

where (u, v) are the Cartesian coordinates in the image plane of
the optical system.

We now drop the dependency on the coordinates and
vectorize expression Eq. (9) for all 7, diversities that have been
applied to obtain the following compact form of a single
matrix-vector multiplication,

p = Ua (10)

The vector p is the obtained vectorization and combination
over all the aberrated PSFs, and the matrix U is the vectorized
and concatenated version of the functions U, ; sampled on a
grid of size m x m.

Let the intensity of the PSFs be recorded on the correspond-
ing grid of pixels of size 72 x m, and let the vectorization of this
intensity pattern for different phase diversities be concatenated
into the vector y. We can again formulate the problem of find-
ing a from noise-free intensity measurements as in Eq. (1) and
from noisy measurements as in Eq. (2) for n, = m*ny.

It is worth noting that the dimension of a is not dependent
on the size of the sample grid (the size of the problem). This is
the fundamental advantage of the modal form formulation over
the zonal form one, for which the size of a directly depends
on the size of the problem, i.e., 7, = m?*.

In this paper two steps are combined to deal with the
large-scale nature of optimization Eq. (2):

1. The unknown pupil function P(p, 6) can be represented
as a linear combination of a number of basis functions. In [1],
the ENZ basis functions were used, whereas in [18] radial basis
functions were used instead of ENZ ones. The radial basis func-
tions are used here, since [18] demonstrated their advantages
over the ENZ type.

2. A new strategy is proposed for solving optimization
Eq. (1) via a sequence of convex optimization problems.
Each of the subproblems can be solved effectively by an iter-
ative ADMM algorithm that exploits the problem structure.

In the following we assume that the problem is normalized
such that all entries of y have values between 0 and 1.

3. CONVEX OPTIMIZATION-BASED PHASE
RETRIEVAL ALGORITHM

Equation (1) is equivalent to a rank constraint. Define the
matrix-valued function
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L(A,B,C,X,Y) = (C+AY+XB+XY A+X>,

B+Y I
(11)

where / is the identity matrix of appropriate size. Let b € C”

be a coefficient vector. For notational convenience, we will
denote

M(U,a,b,y)=L(d(a" U'),d(Ua),d(y),d(b" U"),d(Ub)).

Our proposed algorithm in this paper relies on the following
fundamental result.

Lemma 1. [21] For anyb € C", the constrainty = |Ual|? is
equivalent to the constraint

rank(M (U, a,b,y)) = n,

For addressing problem Eq. (2), Lemma 1 suggests a
consideration of the following approximate problem for a user-
selected parameter vector b:

m(icn rank(M(U, a, b, y)). (12)
ac(Cra

Since Eq. (12) is a non-convex problem, and to anticipate
the presence of measurement noise, we propose to solve the
following convex optimization problem:

min £(@) = |M(U,a by, (1)
where || - ||, denotes the nuclear norm of a matrix, the sum of

its singular values [13,22]. The motivation to choose M (and L)
in the structure of Eq. (11) is that it is affine in the unknown a.
By relaxing the rank constraint into Eq. (13), we obtain a con-
vex relaxation without “lifting” (substituting) the variables, as is
the case with PhaseLift. One advantage is that the solution for a
can be easily influenced if we have prior knowledge. For exam-
ple, in the case that prior knowledge on the problem indicates
that a is a sparse vector, the objective function in Eq. (13) can
easily be extended with an ¢ -regularization to stimulate sparse
solutions, since the vector a appears affinely in M (U, a, b,y),

min f(a) + Allal|;, (14)
acC"
for a regularization parameter A.
Note that for b = -a,
1M(U,a, -a,y)ll. = lly - |UaPll, + n.  (15)
Since the result of the optimization in Eq. (13) might not
produce a desired solution sufficiently fitting the measure-

ments, we propose the iterative convex optimization-based
phase retrieval (COPR) algorithm, outlined in Algorithm 1.

Algorithm 1: Convex Optimization-Based Phase Retrieval (COPR)

1: procedure COPR(b,7) > Some guess for b

2: while ||y - |Ual?||, > 7 do > Termination criterion
3: a, € arg min, |[M(U,a,b,y)|,

4: b, « -a,

The nuclear norm is a convex function, and standard soft-
ware like YALMIP [23] or CVX [24] can be used to concisely
implement Algorithm 1. However, the nuclear norm minimi-
zation in Algorithm 1 is the main computational burden for an
implementation. Usual implementations of the nuclear norm
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involve semidefinite constraints and require a semidefinite
optimization solver. If we assume that their computational
complexity increases with O(z°) [16] with constraint on ma-
trices of size 7 x 7, then minimizing the nuclear norm of the
matrix M (U, a, b,y) of size 2, x 27, is computationally infea-
sible, even for relatively small-scale problems. Therefore, we
propose a tailored ADMM algorithm of which the computa-
tional complexity of the iterations scales O(7,7,) and which
requires the inverse of a matrix of size 2, x 27, for every
iteration of Algorithm 1.

4. EFFICIENT COMPUTATION OF THE
SOLUTION TO EQ. (13)

The minimization problem Eq. (13) can be reformulated as
r)r(1in | X|l. subject to X = M(U,a,b,y). (16)

Applying the ADMM optimization technique [25,26] to
the constraint optimization problem Eq. (16), we obtain the
steps in Algorithm 2.

Algorithm 2: ADMM Algorithm for Solving Eq. (16)

1: procedure NN-ADMM(b,y, p, 7)
2 a<-b

3: X <« M(U,a,b,y)

4: Y <0
5.

6

while [[|M(U,ay,b,y)|, - [M(U,a,b,y)[l.| > 7 do
a, €

(17)

arg min
a

1
X - M(U,a,b,y) +;Y

2
F
7: X, e

1
arg min || X]], +§HX—M(U,a+,b,y)+;)Y (18)
X

2
F
8: Y, «Y+pX, -MU,ay,b,y)

update p according to the rules in [25]

e

The advantage of using this ADMM formulation is that
both of the update steps in Eqs. (17) and (18) have solutions
that can be computed analytically. The efficient computation of
the solutions is described in the following two subsections.

A. Efficient Computation of the Solution to Eq. (17)

Upon inspection of Eq. (17), we see that this is a complex-
valued standard least-squares problem, since M (U, a,b,y) is
parameterized affinely in a. Let R(-) and Z(-) denote the real
and the imaginary parts of a complex object, respectively. Let
the subscripts (+)1, (-),, and (-)3 denote the top-left, top-right,
and bottom-left submatrices, respectively, according to
Eq. (11). Define

1
Z=X+-Y, X=d"U").
P

In the sequel, let d(P) denote the vector with the diagonal
entries of a square matrix P.

Reordering the elements in Eq. (17), separating the real
and the imaginary parts, removing all matrix elements in the
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argument of the Frobenius norm that do not depend on a,
and vectorizing the result gives the following least-squares
problem:

min lwapnmm - ucorr - ABx|3. (19)

The variables uspym, ucopr,> 4, B, and x are given by

d(R(Z))) y +d(X]?)
d(R(Z,)) d(R(X))
UADMM = Q(R(Z 3)) |» wcorr = ;Z(R(X)) )
d(1(Z,)) d(Z(X))
A(L(Z5)) -A(Z(X))
2R(X) 2I(X)
! ° R(U) -I(U)
Gl I (-zw) -R(U))’
0 I
0 -/

(20)

and x = (R(a)” Z(a)”)”. This means that the optimal
solution to Eq. (19) is given by

x* = (BTATAB)' BT A” (uspmm - ucopr)-

During the ADMM iterations, only uapyp changes. The
inverse (BTATAB)™' has to be computed once for every
iteration of Algorithm 1 (i.e., it remains constant throughout
the ADMM iterations). Since the complexity of computing an
inverse is O(n%) for matrices of size 7 x n, the computational
complexity of this inverse process scales cubically with the
number of basis functions.

Once this inverse matrix is obtained, the optimal solution to
the least-squares problem in Eq. (19) can be computed by a
simple matrix-vector multiplication, whose complexity scales
with O(n,n,).

Note that in the case that the objective term includes regu-
larization as in Eq. (14), the optimization in Eq. (19) should be
modified appropriately to include the additive regularization
term A||a|;.

B. Efficient Computation of the Solution to Eq. (18)
The optimization in Eq. (18) is of the form
arg min [X]]. + 21X - CI13 1)
X

Let C= UcEcVE be the singular value decomposition
(SVD) of C € C?"y>2m,

Lemma 2. The solution X to Eq. (21) has singular vectors U ¢
ﬂﬂd Vc.

proof Let X = UyZy V1 be asingular value decomposition
of X. Then

X1l + AIX - ClI} = trace(Zy)
+ (X, X) + (C, C) - 2(X, C)).

Using Von Neumann’s trace inequality, we get

n}(in(trace(ZX) + A({X, X) + (C,C) - 2(X, C)))
> ?in(trace(EX) + A((X, X) + (C, C) - 2trace(Zx X)),

which with equality holds true when C and X are simultane-
ously unitarily diagonalizable. The optimal solution X to
Eq. (21) therefore has the same singular vectors as C, i.e.,

Ux=Uc Vx="Vc. O
Denote the singular values of C in descending order as
6c1>-->0Ca, > and those of X similarly. Thanks to Lemma

2, Eq. (21) can be simplified to

Zny
arg min » (o, + Aoy, - 0c,)%). (22)
(D'¢] i=1

This problem is completely decoupled in o6y ;, and the
optimal solution to Eq. (22) is computed with

Ox, = max <0,0C,,'—2—1/1>, i=1,...,2n,
By row and column permutations, matrix C is block-diagonal
with blocks of size 2 x 2. The SVD of this permuted matrix
therefore involves block-diagonal matrices U, Z¢, and Vi,
and these blocks can be obtained separately and in parallel.
Since the blocks are of size 2 x 2, the SVD can be obtained
analytically.

This shows that a valid SVD can be computed very
efficiently in (1), that is, in theory, in a computation time
independent of the number of pixels in the image, the number
of images taken, or of the number of basis functions.

5. CONVERGENCE ANALYSIS OF ALGORITHM 1

Algorithm 1 can be reformulated as a Picard iteration
a,, € T'(a;), where the fixed point operator 7:C" — C"
is given by
T(a) = arg min|M(U,x, -a,y)|,. (23)
xeC"a

Our subsequent analysis will show that the set of fixed
points, Fix 7', the set of as for which a = 7'(a), of 7 is in
general non-convex and as a result, iterations generated by
T cannot be Fejér monotone (Definition 5.1 of [27]) with re-
spect to Fix 7". That is, each new iterate is not guaranteed to be
closer to all fixed points in Fix 7". Therefore, the widely known
convergence theory based on the properties of Fejér monotone
operators and averaging operators is not applicable to the
operator 7" given in Eq. (23).

In this section, we make an attempt to prove the conver-
gence of Algorithm 1, which has been observed from our
numerical experiments, via a relatively newly developed conver-
gence theory based on the theory of pointwise almost averaging
operators [28]. It is worth mentioning that we are not aware of
any other analysis schemes addressing the convergence of
Picard iterations generated by general non-averaging fixed point
operators. Our discussion consists of two stages. Based on the
convergence theory developed in [28], we first formulate a con-
vergence criterion for Algorithm 1 (Proposition 5.1) under
rather abstract assumptions on the operator 7. Due to the
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highly complicated structure of the nuclear norm of a general
complex matrix, we are unable to verify these mathematical
conditions for general matrices U. However, we will verify that
they are well satisfied in the case that U is a unitary matrix
(Theorem 5.2). From the latter result, we heuristically hope
that Algorithm 1 still enjoys the convergence result when
the matrix U is close to being unitary in a certain sense. In
Section 6 we demonstrate that convergence is obtained in
practice for the imaging case.

It is a common prerequisite for analyzing the local conver-
gence of a fixed point algorithm that the set of solutions to the
original problem is non-empty. That is, there exists a € C*
such that y = |Ual?. Before stating the convergence result,
we need to verify that the fixed point set of 7" is non-empty.

Lemma 3. The fixed point operator T defined at Eq. (23)
holds

{aly = |Ual?} CFix T :={a € C™|a € T(a)}.
proof. See Appendix A. 0

The next proposition provides an abstract convergence result
for Algorithm 1. Fix 7" is supposed to be closed. In the sequel,
the metric projection associated with a set Q is denoted Pg,

Po(x) == {w € Q|||x - w| = dist(x,Q)}, Vx.

Proposition 5.1. (simplified version of Theorem 2.2 of [28]) Let
S CFix T be closed with T (a*) C Fix T for all a* € S, and let
W be a neighborhood of S. Suppose that T satisfies the following

conditions.

() T is pointwise averaging at every point of S with constant
a€(0,1) on W. Thar is, for all a€ W, a, € T(a),
a* € Pg(a), and a¥ € T'(a*),

1-a
lay -ai[* < [la-a*|? Y [(as -a) - (a} -a")|*

(24)

(ii) The set-valued mapping w = T - 1d is metrically subregu-
lar on W for 0 with constanty > 0, where 1d is the identity map-
ping. That is,

ydist(a, 1 (0)) < dist(0,w(a)), Vae€ W. (25)
(iil) 1t holds dist(a, S) < dist(a, Fix T') for alla € W.

Then, all Picard iterations a, | € T (ay) starting in W satisfy
dist(ay, S) = 0 as kb — oo, at least linearly.

The pointwise property, instead of the standard averaged
property, imposed in (i) of Propositon 5.1 allows us to deal with
the intrinsic non-convexity of the fixed point set Fix 7". The
metric subregularity assumption imposed in (ii) technically en-
sures adequate progression of the iterates relative to the distance
from the current iterate to the fixed point set. This is not only a
technical assumption but also a necessary condition for local
linear convergence of a fixed point algorithm, Theorem 3.12
of [29]. Condition (iii) is, on one hand, a technical assumption
and becomes redundant when § = Fix 7. On the other hand,
the set S allows one to exclude from the analysis possible in/o-
mogeneous fixed points of 7', at which the algorithm often ex-
poses weird convergence behavior (see Example 2.1 of [28]).

The size of neighborhood W appearing in Proposition 5.1
indicates the robustness of the algorithm in terms of erroneous
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input (the distance from the starting point to the nearest
solution).

We now apply the abstract result of Proposition 5.1 to the
following special but important case.

Theorem 5.2. Let U € C""« be unitary and a* € C"« be
such that |Ua*|* =y. Then, every Picard iteration generated by
Algorithm 1 a,, ., € T(a;) starting sufficiently close to a*
converges linearly to a point & € Fix T, satisfying |Ua|* =y.

proof- See Appendix B. 1

6. NUMERICAL EXPERIMENTS

Fourimportant numerical aspects of the COPR algorithm, includ-
ing convergence, flexibility, complexity, and robustness, are tested
on relevant problems. First we discuss convergence and the num-
ber of iterations of the COPR and the ADMM algorithms. Second,
we demonstrate the flexibility of the convex relaxation by compar-
ing the COPR algorithm with an added ¢ -regularization to the
PhaseLift method [12] and to the compressive sensing phase
retrieval (CPRL) method in [11] on an under-determined sparse
estimation problem. Then we compare the practically observed
computational complexity of COPR and a naive implementation
of PhaseLift [12]. Finally, we investigate the robustness of COPR
relative to noise in a Monte Carlo simulation for 25 and 100 basis
functions. We compare four algorithms: COPR, PhaseLift [12], a
basic alternating projections method (Section 4.3 in [12]), and an
averaged projections method based on [30]. We note that the latter
method fundamentally employs the Fourier transform at every
iteration and hence is in general not applicable for phase retrieval
in the modal form.

A. Convergence

The while loops in Algorithms 1 and 2 can be run for a fixed
number of iterations. Figure 2 shows four such combinations
for a typical problem with five images of size 256 x 256, of
which a subset of 25 x 25 pixels per image is used, and 64 basis
functions. All cases are identically initialized with coefficients
that best approximate a flat wavefront. As can be seen from
the figure and the line with a square marker, only one
COPR iteration is necessary here, as the ADMM algorithm
slowly converges towards 0. However, stopping the ADMM
algorithm after a limited number of iterations and having more

Convergence plot
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u 0 O 2 x 1000

~ 10 * 4 x 500

S X 20 x 100

> 10°

10710 ' ' : ‘
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Fig. 2. Convergence plot for four different combinations of COPR
iterations and ADMM iterations. Denoted in the legend are first the
number of COPR iterations and then the number of ADMM itera-
tions used to solve Eq. (16) in each COPR iteration. Markers denote
each new COPR iteration.
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than one COPR iteration can have a clear benefit, since faster
convergence is achieved this way.

B. Application of COPR to Compressive Sensing
Problems

The first problem is to estimate 16 coefficients from 8 measure-
ments, where the optimal vector is known to be sparse.

We generate a sparse coefficient vector a with two randomly
generated non-zero complex elements. We generate two images
(ny = 2, m = 128) by applying two different amounts of de-
focus with Zernike coefficients - £ and £, respectively. From
each image we use the center 2 x 2 pixels, resulting in a total
of n, = 8 measurements.

The applied algorithms are the COPR algorithm, the
COPR algorithm with an additional ¢-regularization, the
PhaseLift algorithm [12], and the CPRL algorithm of [11].
The results are displayed in Fig. 3. As can be seen from the
figure, COPR and PhaseLift fail to retrieve the correct solution.
The CPRL method and the regularized COPR algorithm

compute the correct solution.

C. Computational Complexity

The second problem demonstrates the trends of the required
computation time when the number of estimated coefficients
increases. The underlying estimation problem consists of seven
images with different amounts of defocus applied as phase di-
versity, where each image is of size 64 by 64 pixels. A subset of
20 by 20 pixels of each image is used in the estimation. We
compare in Fig. 4 the COPR algorithm to the PhaseLift algo-
rithm, which is implemented according to the optimization
problem (2.5) in [12]. For PhaseLift, the reported time is
the time it takes the MOSEK solver [15] to solve the optimi-
zation problem. This does not include the time taken by
YALMIP [23] to convert the problem as given to the solver-
specific form. For COPR, the initial guesses for the coefficients
are drawn randomly from a Gaussian distribution, the number
of iterations is set beforehand according to the convergence to
the correct solution, and the total time is recorded. The imple-
mentation of COPR does not exploit the parallelism referred to
in Section 4.B. By convergence, we mean that the estimated
vector 4 satisfies the tolerance criterion

Amplitude of estimated coefficients

081
X True
077 | % copr ¢ )§(
L Sparse COPR
0.6 O PhaselLift *
o5l O  CPRL
g 04r o °
* % * *
03} o * o
x © o
02} % *
*
*
L o o &
0.1 ° o °

O O O
0 2 4 6 8 10 12 14 16
k

Fig. 3. Absolute values of 16 estimated coefficients according to
four different algorithms.
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min e -a*|3 <107, (26)
ceC, =1
where a* is the exact solution.

The minimization over parameter ¢ ensures that the
(unobservable) piston mode in the phase is canceled (Let
(4 a*) = QR be the QR decomposition. Then zc* =

R”) The computational complexity of PhaseLift is, as imple-
mented approximately O(z*). The MOSEK solver ran into
numerical issues for more than 25 estimated parameters.
The COPR algorithm’s computational complexity is approxi-
mately O(n). The better complexity is offset by a longer
computation time for very small problems.

D. Robustness to Noise

When estimating an unknown phase aberration, it is more log-
ical to evaluate the performance of the algorithm on its ability
to estimate the phase and not the coefficients of the basis
functions.

We assume the phase i is randomly generated with a deform-
able mirror. Let H € R”*" be the mirror’s influence matrix
and u € R” be the input to the mirror’s actuators, such that

¢pom = Hu (27)

The input values #; are drawn from the uniform distribution
between 0 and 1. The mirror has 7, = 44 actuators, and the
images have sides 7 = 128. The aperture radius is 0.4.

Five different defocus diversities are applied with Zernike
coefficients uniformly spaced between -7 and 7. Gaussian noise
is added to the obtained images such that

y = max(0, | F{P,(p,0)}|> + ¢), e € N(0,6), (28)

and o is the noise variance. No denoising methods were
applied. The signal-to-noise ratio (SNR) is computed according

to

2912
IF{La(p, D)} I3

The phase is estimated from y using four different algo-
rithms. The first is the COPR algorithm. The second is the
averaged projections (AvP) algorithm [30]. The AvP algorithm
is an extension of the well-known Gerchberg—Saxton algorithm
[31] for solving problems with multiple images and is in the
same class of algorithms as the hybrid-input-output algorithm
and the difference map algorithm [32,33]. This makes this al-

gorithm relevant for comparison. The third is the alternating
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Fig. 4. Compuration time comparison between PhaseLift and
COPR for different numbers of coefficients.
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Strehl ratio, 25 basis functions
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Fig. 5. Strehl ratio of the estimated phase aberration as a function
of SNR.

projections (AIP) method ([12], Section 4.3), and the fourth
algorithm is the PhaseLift method [12].

The COPR, PhaseLift, and AIP methods are applied to es-
timate the phase using 25 basis functions, where the initial
guesses for the coefficients are those coefficients that best
approximate a flat wavefront. The AvP method is not based
on the use of basis functions but on projection and the
Fourier transform.

We make use of the Strehl ratio as a measure of optical qual-
ity. The Strehl ratio S is the ratio of the maximum intensity of
the aberrated PSF and that of the unaberrated one and can be
approximated with the expression of Mahajan,

~
S~e?,

where 8 = ||py - P, and the mean residual phase has been
removed [34].

For every noise level, 100 different phases were generated
with the deformable mirror model Eq. (27). The results are
presented in Fig. 5. The resulting Strehl ratios are plotted with
a trend line connecting the 50% quantiles. Figure 6 gives a
qualitative comparison of the estimates for a single case.

In the case of PhaseLift, the tuning parameter that trades off
measurement fit and the rank of the “lifted” matrix is tuned
once and applied to all problems. This has the effect that
the reported performance is not as high as it could be with
optimal tuning for individual problems. This points to another
advantage of COPR: the absence of tuning parameters aside
from the choice of basis functions.

The two figures show that COPR is robust to noise and
gives accurate phase estimates for a wide range of noise levels.

7. CONCLUDING REMARKS

The convex relaxations in solving the phase retrieval problem as
proposed in Eq. (13) have the advantage over current convex
relaxation methods, such as PhaseLift, that our strategy is affine
in the coefficients that are to be estimated. This allows for easy
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Fig. 6. Example PSF and phase estimates of the COPR, Alternating
Projection [12], Averaged Projection [30], and PhaseLift [12] algo-
rithms for three PSF measurements with an SNR of approximately

36 dB.

extension of the proposed method to phase retrieval problems
that incorporates prior knowledge on the coefficients by
regularization of the objective function. One such successful
extension is the regularization with the #-norm to find sparse
solutions, as demonstrated in Fig. 3.

In Section 4, an ADMM algorithm was proposed for effi-
cient computation of the solution to Eq. (13). The result is that
for the COPR algorithm a better computational complexity is
observed compared to that of PhaseLift; see Fig. 4. COPR is
also able to solve phase estimation problems with larger
numbers of parameters.

The required computations are favorable both in computa-
tion time and accuracy (they have simple analytic solutions)
and in worst-case scaling behavior O(n,n,) for every
ADMM iteration, where 7, is the number of pixels, and 7,
is the number of basis functions.

We discussed the convergence properties of the COPR
algorithm in Section 5 and showed that for selected problems
this convergence is linear or faster.

Finally, COPR has been shown to be robust against mea-
surement noise and outperform the two projection-based
methods whose naive forms are often sensitive to noise, as
expected.

We are aware that in practice the performance of projection
methods can be substantially better than what we have ob-
served in this study, provided that appropriate denoising tech-
niques are also applied. Keeping aside from the matter of using
denoising techniques, we have chosen to compare the
algorithms in their very definition forms.

APPENDIX A: PROOF OF LEMMA 3

proof. Let a satisfy y = |Ual|” It suffices to check that
a € T'(a). We first observe that

0 O
rank(M(U,a, -a,y)) = rank(0 ]ny) =n,

This means that a is a global minimizer of rank M(U,x,
-a,y) as a function of x € C™. Since the nuclear norm
|M(U,x,-a,y)|l, is the envelope  of  the
rank M (U, x, - a,y), they have the same global minimizers.
Hence, a is also a global minimizer of || M (U, x,-a,y)|,
as a function of x, that is,

convex

a € arg min |[M(U,x, -a,y)|,.

xeCra

In other words, a € 7T'(a), and the proof is complete. O
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APPENDIX B: PROOF OF THEOREM 5.2

Lemma 4 will serve as the basic step for proving Theorem 5.2.

Lemma 4. Let U =1, and a* € C' be such that
|Ua*|> =y. Then, every Picard iteration a,,, € T (ay) starting
sufficiently close to a* converges linearly to a point a € Fix T,
satisfying |Ud|? =y.

proof- Since U = I, the nuclear norm ofM([na, X, -a,y)
can be calculated from the nuclear norms of 7, matrices
M(1,x;, - a;,y,) € C*>*? (1 <i<n,). Let us do the calcula-
tion for an arbitrary a € C”. We first calculate the nuclear
norm of each 2 x 2 matrix,

Vi = 2R (x;2;) + |di|2 Xi= ﬂz’)

X; - a; 1

M(1,x;, - ay,) = <
Indeed, we have by direct calculation that

Gl

=2 422+ 142]r-+,
(B1)

2

filx) =M1, x;,

- ai»)’;‘)“i

where

ri=y; - ZR(x,ﬂ_l) + |ﬂi|2’

si=|x; - ayl.
Let us denote
T(a;) = arg min f(x;). (B2)
x;€C
Analytically solving the minimization problem on the right-

hand side of Eq. (B2), we obtain the explicit form of 7'; as
follows:

if 4, =0,
Ta) =4 { ) if0<lal < Vi (B3)
P +1 .
{yz(‘ﬂi‘l_,_l) ‘Zi}! lf |‘Zz’| Z \/l—i’

where 4; is the unique real positive root of the real polyno-
mial g,(r) = + 2(1 - )2 + (7 - 6y, + Dz - 4y,.
We need to take care of the two possible cases of ..
Case 1. y; € (0,1]. Then we have 3 /5; < V4 < 2./7;
since gl-(% ;) <0 and g;(4y;,) > 0. The following properties
of 7'; can be verified.

* Fix T, = {z € Cl|lz| = /y;} U{0}, where 0 is an
inhomogeneous fixed point of T, that is, 7,(0) € Fix 7.

e The set of homogeneous fixed points of 7
is §;=1{z € Cllz| = /y;}

e T, is pointwise averaging at every point of S; on W; :=
{z € Cl|z] > /y;/2} with constant 3/4.

e The set-valued mapping w;:= 7, -1d is metrically
subregular on W; for 0 with constant 1/2.

* The technical assumption dist(z,S;) < dist(z, Fix 7))
holds for all z € W,.

Case 2. y; = 0. Then 4, = 0. Note also that 2] = 0 and the
formula Eq. (B3) becomes 7;(a;) = %ai. The following
properties of 7'; can be verified.

{z € Cllz| < /i

i

e Fix 7', = {0}, where 0 is a homogeneous fixed point

of T,

» T, is pointwise averaging at every point of S; on C with
constant 1/4.

e The set-valued mapping w;:= T, -1d is metrically
subregular on C for 0 with constant 1/2.

* The technical assumption dist(z,S;) < dist(z, Fix 7;)
holds for all z € C.

In this case, we denote S; := {0} and W, := C.
The operator 7" can be calculated explicitly,
T(a) =arg min » +/f,(x), VaeCr, (B4)
xeC"a i=1
where the constituent functions f;(x;) are given by Eq. (B1).
Minimizing £, (i = 1,2..., n,) separately yields the explicit
form of 7" as a Cartesian product,

T(a) = Ti(a) x Ty(ay) -+~ x T, (a,,), (BS)

where the component operators 7'; are given by Eq. (B3).

Thanks to the separability structure of 7" as a Cartesian
product at Eq. (B5), the following properties of 7" in relation
to Proposition 5.1 can be deduced from the corresponding ones
of the component operators 7.

e Fix 7= []}“, Fix T; and the set of homogeneous fixed
points of 7" is S:= ][], S,. It is clear that |Ua|* =y for
U=1, andall a € S.

e 7T is pointwise averaging at every point of S on W :=
[17, W, with constant a = 3/4.

* The set-valued mapping y := T - Id is metrically subregu-
lar on W for 0 with constant k = 1/2.

* The technical assumption (iii) of Proposition 5.1 is
satisfied on W. That is,

dist(w, S) < dist(w, Fix 7), Vwe W. (B6)
Now we can apply Proposition 5.1 to conclude that every
Picard iteration a;,, € 7 '(a;) starting in W converges linearly
to a point in § as claimed. 1

Remark B.1. Under the assumption that y, > 0 for all
1 <i<n,, then the linear convergence result established in
Lemma 4 can be sharpened to finite convergence.

In order to distinguish the fixed point operator Eq. (23) cor-
responding to a general unitary matrix U from the one analyzed
in Lemma 4 corresponding to the identitz\ matrix / n, D the
following proof we will use the notation 7" for one specified
in Theorem 5.2.

proof. Let T be the fixed point operator Eq. (23) that
corresponds to the identity matrix and has been analyzed in
Lemma 4. We start the proof by proving that

T(a) = U'T(Ua), Vae C. (B7)

Indeed, let us take an arbitrary a € C" and denote a’ = Ua.
Then we have

7T(a) = arg min [|M(U,x, - a,y)|,

xeC"a

= arg min |M(/,, Ux,-a',y)l,

xeC"a
= U '(arg min M1, ,x,-a",y)l,)
xeC"a
= U (T@")) = U(T(Va)). (B8)
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We have proved Eq. (B7). As a consequence,
Fix7 = {a € C™|a € T(a)}
={ae€ C¥laec U'T(Ua)}
={a€ C|Ua € T(Ua)}
=f{a€C*|Ua€FixT}=U"'(FixT). (B9)

For the sets S and W dete{\mined in the proof of Lemma 4, we
denote S := U~1(S) and W := U1(W). Since U is a unitary
matrix, the set of homogeneous fixed points of 7  is
S:=UY(S). It also holds by the definition of projection
and Eq. (B9) that, for all w e W,

Pysy(Utw) = U H(Ps(w)), (B10)

dist(U'w, U1(S)) = dist(U'w, U™\ (Fix 7). (B11)

By direct calculation one can verify the three assumptions on 7°
imposed in Proposition 5.1.

o T is pointwise averaging at every point of S on W with
constant a = 3/4. N

* The set-valued mapping  := 7 - 1d is metrically subre-
gular on W for 0 with constant y = 1/2.

* The technical assumption (iii) of Proposition 5.1 is
satisfied on W.

Therefore, we can apply Proposition 5.1 to conclude that
every Picard iteration a;,; € 7'(a;) generated by the COPR
algorithm starting in W converges linearly to a point 4 € S.
Finally, let w € S such that & = U~'W. It holds that |U4|* =
|W|?> =y by the structure of S.

The proof is complete. O
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