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Preface  

This thesis discusses the design, construction and testing of a novel 
interferometer to measure, with extreme accuracy, the low spatial frequency 
shape of extreme ultraviolet lithography (EUVL) mirror substrates. These 
mirrors will in turn be used to manufacture integrated circuits with 
unprecedented feature sizes smaller than 50nm. 
 
The work continues on from the initial research of Klaver1 at the TU Delft from 
1995 to 2000, where he laid the foundation for the development of an 
interferometer that can claim to yield accurate absolute measurement results, in 
contrast with the vast majority of interferometers that only produce relative 
measurement results. While great care was taken to maintain general 
applicability to most types of potential EUVL mirror substrates that may require 
measurement, several practical concessions were made in the design of the 
prototype discussed here to enable proof-of-principle experiments to be carried 
out on one particular EUVL mirror candidate. 
 
To a large part, the conclusions reached by Klaver will be used as starting 
points for the practical implementation of the interferometer. However, a number 
of significant changes in the principle of the interferometer, especially the light-
source, will require a renewed treatment of subjects already covered in the 
preceding work. Also, many of the more general points will be developed to 
specifics which can then be applied directly to the design and construction of 
the device. 
 
The structure of this thesis is as follows: Chapter 1 will contain a brief 
introduction to the field of extreme ultraviolet lithography, serving as motivating 
factor for the research undertaken. Key challenges will be mentioned 
qualitatively, and the approach to the problem will be sketched. Chapter 2 deals 
with the concept of the interferometer, reviewing several earlier concepts and 
conclusions, and presenting the specific measurement approach culminating in 
the design of the prototype interferometer. Chapter 3 is devoted to the 
theoretical challenge of interpreting the raw measurement data to yield a useful 
measurement of the mirror substrate’s shape. Largely mathematical in nature, it 
develops- and compares the performance of- several inverse propagation 
algorithms (IPAs) to fulfill this end. Chapter 4 treats the design and construction 
of the multiple wavelength light source required by the interferometer. Chapter 5 
deals with several types of sensors which could be used in the interferometer. 
The various methods required to acquire and subsequently process 
measurements with these sensors will be discussed. Chapter 6 focuses on the 
design and construction of the interferometer itself, including the frame which 
connects the mirror substrate under test with the other interferometer 
components, and includes a discussion of the optical fibers used in the 
interferometer. Chapter 7 gives the details and results of measurements on a 
particular mirror substrate using our instrument. These results are discussed in 
Chapter 8, together with other, more general considerations and suggestions for 
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improvements and future work. Finally, the appendix contains specifications of 
materials and equipment used. 
 
 
 
[1] R. G. Klaver, "Novel interferometer to measure the figure of strongly 

aspherical mirrors." Delft: Delft University of Technology, 2001. 
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1 Introduction 

The interferometer discussed in this thesis is intended as a measurement tool 
for aspheric, concave mirrors to be used in extreme ultra-violet lithography 
(EUVL). To achieve this goal, it will need to operate at the limits of accuracy for 
an instrument of its class, outperforming the current state of the art. 
 

1.1 The need for an Ångström accuracy interferometer 

The research presented here is being supported by a coalition of semiconductor 
industry- and optical fabrication representatives, as well as governmental 
bodies. The reason for this broad backing is the fact that the accuracy with 
which projection optics can currently be measured forms a bottle-neck for the 
continued development of semiconductor devices.  
 
The semiconductor industry is currently following a self-fulfilling prophecy 
known as “Moore’s Law”. The law, originally stated in 19651 as merely an 
extrapolation of observed trends, predicts that the number of components per 
micro-chip will double every year (which was later adjusted to every two years). 
Ever since its stipulation, manufacturers have strived to follow or even beat this 
law in an effort to remain competitive. 
 
To facilitate this increasing feature density on silicon wafers, the size of the 
patterns to be written has had to decrease, until the limits of the processes used 
were reached. This limit is largely optical in nature, since the resolution of 
optical lithography processes is closely linked with the writing wavelength: 
 

 1R k
NA
λ

=  (1.1) 

 
Where NA stands for the Numerical Aperture, and k1, referred to as the 
“process factor”, is an empirical coefficient which depends on a number of 
technology-specific factors. 
 
Once the numerical aperture and process factor have been optimized, the only 
way to maintain the trend of decreasing feature size is to decrease the 
wavelength of the light used in the lithography process. This has already 
occurred a number of times since 1975, moving from 436nm to 365nm by 1985, 
to 248nm by 1995, and to 193nm in 2002. EUV lithography represents the jump 
to 13nm. 
 
While alternative methods to classical lithography are actively being pursued2, 
prototype EUVL systems have recently become operational3 (Figure 1-1), and 
continue to be developed. 
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“[…] a breakthrough lithography technology currently under 
development, will become the volume production standard. Known 
as Extreme Ultraviolet (EUV) lithography, this technology uses 
reflected rather than directly transmitted light which allows the 
patterning of lines smaller than 50 nm. […] Intel anticipates 
building processors using EUV technology in the second half of 
the decade.”  
 -Intel Fall report4, 2002 

 
As mentioned in the quote above, the move to EUVL also means a move to 
reflective projection optics, as opposed to the refractive, lens-type projection 
optics used to date, the reason being that most materials become highly 
absorptive at the EUVL wavelength. These projection optics require large NA 
aspheric mirrors with unprecedented figure accuracies. 
 
Mirror asphericity is desirable because it enables the design of optical systems 
with considerably fewer aberrations, compared to a system using a similar 
number of spherical optics instead. The reason for larger numerical apertures 
should be clear from (1.1), while the stringent figure accuracy requirements are 
a consequence of the very short wavelength used. In order to perform well in an 
optical sense – that is, to produce focal spots or images which are diffraction 
limited – the root mean square (rms) figure aberrations must be well below λ/14 
(Maréchal condition), while in practise λ/50 is often strived for. For EUV optics, 
this translates to sub-nm accuracy requirements. 
 

 
Figure 1-1 - Final assembly of EUVL illumination system, courtesy of Carl Zeiss SMT. 

 
A number of other areas of development share the need for large aspheric 
reflectors with sub-nm figure accuracies. These include microscopy in the 
“water window”5 (2.3nm-4.4nm), X-ray astronomy (5nm-31nm), spectroscopy 
and plasma diagnostics6. 
 
There are already a number of methods available which can measure the mid- 
and high- spatial frequencies of EUVL mirrors7 (1µm-1-1mm-1 – phase shifting 
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interferometric microscopy and 1µm-1-50µm-1 – atomic force microscopy, 
respectively), but a number of challenges have hampered efforts to meet the 
low spatial frequency requirements (from 1/[clear aperture] to 1mm-1). 
 

1.2 The state of the art 

Besides the interferometer described here, there are four other types of 
metrology systems under development which have reached, or could potentially 
reach the accuracy requirements for EUVL projection optics. After a brief 
review, including an up-to date evaluation of their performance, we will state the 
place of our interferometer in the context of these methods. 
 

1.2.1 At-wavelength phase-shifting point-diffraction interferometry. 
The phase-shifting point-diffraction interferometer (PSPDI) by Medecki8, has 
recently been extended to perform interferometry at the actual EUV wavelength 
of 13.4nm by Goldberg and Naulleau9-14.  
 

 
Figure 1-2 – Schematic diagram of the working principle of a PSPDI. 

 
There are several configurations of this interferometer, one of which is shown in 
Figure 1-2. The method uses a pinhole and grating to generate two spherical, 
angularly sheared wavefronts, which are aberrated by the test optic. One of 
these is subsequently spatially filtered to a spherical wavefront by another 
pinhole, while the other is simply transmitted through the mask. The aberrated 
and spherical wavefronts then interfere at the CCD detector, where the resulting 
interference pattern is measured. By moving the grating, a phase-shift can be 
introduced between the measurement and reference beams, allowing the use of 
phase-shifting interferometry (PSI) to accurately determine the optical phase 
difference between the two beams. 
 
There are a number of obvious limitations and sources of error in this 
interferometer, which we will discuss shortly. Nonetheless, this is currently the 
most accurate method for measuring EUVL reflection optics available, with 
repeatabilities of 0.006nm and accuracies of 0.02nm being reported from 
comparisons with other methods9, 15. This accuracy is mainly due to the short 
metrology wavelength being used.  
 
Unfortunately, using a shorter wavelength also means that the surface can not 
deviate significantly from the reference wavefront without inducing excessive 
fringe-densities at the detector. To circumvent this short-coming, severe 
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aspheres are measured in small “patches”, which are subsequently “stitched” 
together to give the complete surface form. Given a sufficiently generous 
overlap between patches, this method is very effective. 
 
Clearly, the presence of the grating will introduce some wavefront aberrations, 
although these are somewhat averaged out by the process of stepping the 
grating during phase-shifting. There is also a trade-off between the efficiency of 
the system and the reference wavefront sphericity, as smaller pinholes (creating 
more spherical wavefronts) mean less transmission. 
 
This method is unsuitable for optical shop testing, since it requires a coherent 
EUV lightsource. Currently, the only realistic sources are free electron lasers 
(FELs) and synchrotron radiation, both of which require large particle 
accelerators. 
 

1.2.2 Fizeau interferometry. 
Carl Zeiss has reported surprisingly good results with a Fizeau-type 
interferometer, despite the large number of optical components contained 
therein16. Repeatability is stated as 0.07nm, and the accuracy is claimed to be 
below 0.15nm for large NA EUV optics17. 
 
The interferometer, shown schematically in Figure 1-3, is of the Fizeau type with 
compensation optics, where the Fizeau plate is tilted to introduce a spatial 
carrier frequency in the interference pattern, allowing the local phase to be 
retrieved from a single image with methods similar to Takeda’s Fourier 
transform technique18. It is operated at visible wavelengths. 
 

Test Mirror

Compensation

Lens

Fizeau Plate

CCD

Beam Splitter

 
Figure 1-3 – Carl Zeiss Fizeau interferometer with multi-fringe DMI. 

 
The large number of optical components in the beam path raises several 
issues. In order to give reliable results, the aberrations introduced by these 
optics must be below the accuracy requirements, or at least known with similar 
accuracy, so that they may be subtracted from the final measurements. Great 
care has been taken to calibrate this interferometer with reference sphere 
mirrors and rotation of internal optics to average non-rotationally symmetric 
aberrations. Even so, such optics are prohibitively expensive to produce for a 
regular optical shop instrument, requiring regular and extensive calibration 
procedures due to ageing. 
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1.2.3 At-wavelength Hartmann sensor. 
Mercère has recently reported on a Hartmann sensor which is capable of 
measuring the wavefront from EUVL projection optics at operational 
wavelengths with 0.11nm accuracy19. 
 

Pinhole
Test

Optic
CCD

Hole

Array

 
Figure 1-4 – Hartmann sensor 

 
The principle of a Hartmann sensor is illustrated in Figure 1-4. The local 
gradient of a wavefront is measured at the pinhole array position by measuring 
the displacement of the spots projected onto the CCD. 
 
Once again, this is a method which profits from the short metrology wavelength. 
Although, in contrast to the PSPDI mentioned above, the approach does not 
require a coherent source, it does require a high intensity source at around 
13.4nm, because of the low detector efficiency at these wavelengths and the 
severe losses at the pinhole array. The requirements on the lightsource are 
therefore what make this method unsuitable for optical shop testing. 
 

1.2.4 Sommargren interferometer 
The Sommargren interferometer20-23 is, like our interferometer, a fiber based 
instrument, operating in the visible. Various configurations exist, some using 
two fibers, but we will focus on the one-fiber configuration which has recently 
been reported to achieve an accuracy of 0.25nm22, shown in Figure 1-5. 
Improvements to bring this figure down to a projected 0.089nm are underway. 
 

 
Figure 1-5 – Schematic diagram of one arrangement of the Sommargren interferometer. 

 
A low coherence length laser (<2mm) is used to couple two relatively delayed 
beams into a fiber, which then illuminates both the test mirror and the CCD 
detector. The end of the fiber is embedded in a substrate which has been 
super-polished at a slight angle, to direct the light reflected back from the test 
mirror to the detector. By adjusting the relative delay between the two arms of 
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the light source to twice the fiber-mirror separation, interference occurs despite 
the short coherence length of the laser used. The piezo phase stepper can then 
be used to perform PSI to determine the optical phase difference between the 
reference and measurement arms with great accuracy. The resulting phase 
map then needs to be converted into a mirror-figure with an inverse propagation 
algorithm. 
 
The development of this interferometer has been going on in parallel with the 
work reported in this thesis, and shares several salient features. 
 
Potential sources of error include the lack of stability and traceability of the 
wavelength of the low-coherence light source, the surface properties of the fiber 
substrate, residual and parasitic fringes, and alignment errors. Since the NA of 
the fiber is used to illuminate the mirror and detector at the same time, the NA 
of the measurement arm is considerably less than the NA of the fiber, meaning 
that larger optics will have to be measured in parts. Furthermore, the 
modulation depth of this arrangement cannot exceed 0.5, because of the 
mutually incoherent parts of the two beams. 
 

1.3 Conclusion 

It is clear that there are several methods already available to measure the figure 
of EUVL optics with the required accuracy. With the exception of the 
Sommargren interferometer, none of the methods outlined are suitable for in-
process control of such optics in a standard optical shop. The purpose of our 
interferometer should therefore be the sub-nm accuracy measurement of large 
NA aspheres for EUV or X-ray applications, in an optical shop environment, 
without the constant need for re-calibration, both in a reasonable time and at a 
reasonable cost. 
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2 Concept 

As mentioned in the previous chapter, we aim to present an interferometer 
capable of sub-nm accuracy measurements of large NA aspheres for EUV or X-
ray applications, in an optical shop environment, without the constant need for 
re-calibration, both in a reasonable time and at a reasonable cost. In order to 
fulfil these requirements, a number of challenges must be overcome. 

2.1 Challenges 

The prohibitive cost of a EUV source1, coherent or not, strongly indicates the 
use of longer wavelengths for the purposes of optical shop metrology. However, 
the use of longer wavelengths places a bigger demand on the phase-
measurement accuracy. In our case, this accuracy must reach λ/10’000 in order 
to be effective. 
 
Since this is the first time that such an interferometer has been realized, it is 
essential that a certain amount of flexibility in the design of the light-source is 
maintained to allow for a comparison between the results obtained with various 
modes of operation. Such flexibility invariably comes at the expense of 
efficiency and financial costs. In contrast, the design of the interferometer frame 
was kept as simple as possible, optimized for the measurement of only one 
particular test mirror. In this way, the required positioning stability could be 
attained at a reasonable cost. 
 
The positioning stability of interferometer components is critical to the accurate 
measurement of the EUVL substrates2. This stability has to be maintained not 
only during measurement, where the presence of vibrations and drift will 
introduce systematic errors, but also between measurements, to avoid the need 
for frequent re-calibration. The stability requirements extend, beyond the mere 
positioning stability of components, to stability requirements of the atmosphere 
in which the measurement is performed, as refractive index changes in the 
atmosphere will easily introduce excessive errors. 
 
In trying to eliminate the potential errors and calibration procedures associated 
with reference- and intermediate optics in the interferometer beam path, we 
must find a way to build an interferometer with no such components, while 
maintaining the flexibility to measure a variety of substrates. 
 
To ensure traceability of the measurements to international standards, the 
measurement wavelength must be kept stable in the long term. The need for 
wavelength stability also arises from a number of other design aspects of the 
interferometer. 
 
Despite the use of longer wavelengths, the large asphericity of some EUVL 
mirrors means that the resulting fringe pattern would be too dense to be 
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resolved by standard CCD type sensors. A way to overcome this under-
sampling of the fringes has to be found3. 
 
Finally, since the measurement data is not trivially related to the shape of the 
mirror, an algorithm must be found which retrieves the mirror shape from the 
measured data with the required accuracy. 
 
The following section will summarize the approach chosen to attempt to fulfil 
these goals. 
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2.2 Approach 

Mirror

Sensor

Stabilized

Multiple Wavelength

Light Source

Object Fiber

Reference Fiber

Inverse

Propagation

Algorithm

Mirror

Aberration

Map  
Figure 2-1 – Schematic diagram of interferometer principle 

 
Figure 2-1 shows a schematic diagram of the various components of our 
interferometer. These will be discussed in detail during subsequent chapters, 
and have been partially treated in a series of papers4-7. 
 
The primary light source used here is a stabilized HeNe laser, capable of 
maintaining the wavelength accuracy required for our purposes. The accuracy 
of our measurements will be based on the accuracy of this laser. 
 
By passing this light through a single-mode optical fiber, we obtain a highly 
spherical wavefront, which we will use as a reference shape against which the 
EUVL substrates will be measured8. The advantages of this approach are that 
we immediately have a large range of curvatures at our disposal, by simply 
adjusting the fiber position, and that this wavefront reference essentially does 
not require repeated calibration (see chapter 6). 
 
The object fiber tip is placed near the centre of curvature of the reflector, 
displaced a few hundred microns in the horizontal direction and pointed towards 
the area of interest on the mirror. The reflection off the mirror will come to a 
focus in the same horizontal plane as the fiber before falling on the sensor. 
 
Light from the reference fiber is brought to overlap with the reflection from the 
mirror on the sensor, where the two beams interfere. 
 
In order to guarantee an accurate and stable interference pattern, the whole 
set-up must be stable both in the short- and long term. In the short term, 
vibrations could cause excess noise, while long term drifts could cause 
systematic errors to appear in our measurements.  
 
With these considerations in mind, a new set of ultra-stable optical mounts was 
designed and manufactured for the light source. The interferometer itself, 
housing the mirror under test, the fibers and the sensor, was designed entirely 
from Invar – a material with a particularly low thermal expansion coefficient, 



Concept 

 

12 Approach 

using a well established hexapod design which gives excellent immunity against 
deformations and vibrations. 
 
To reduce the influence of atmospheric changes and inhomogeneities on our 
measurement, both the light-source and interferometer can be placed in a 
Helium atmosphere. Helium has a refractive index seven times closer to unity 
than that of regular air, hence reducing the influence of density, pressure and 
temperature changes by the same factor2. 
 
To meet our accuracy requirements, the optical phase difference between the 
two beams has to be measured with 2π/10’000 accuracy. Such accuracies can 
only be obtained by using either phase stepping- or heterodyne interferometry9.  
 
Our lightsource allows for a step-wise or continuous phase shift between the 
reference and object fibers7. A sequence of images captured from the sensor 
between discrete phase steps can be analysed with phase-stepping 
interferometry (PSI) techniques to yield the local optical phase difference at 
every pixel. Heterodyne techniques can be applied to measure the phase at the 
sensor for a continuous phase shift, equivalent to a slight wavelength offset 
between the two fibers – provided the sensor is capable of heterodyne 
detection. 
 
Such a detector is indeed currently under development, and an alternative novel 
sensor has been obtained to demonstrate the principle in the meantime. 
 
Due to a combination of the large asphericities of the mirror under test and the 
separation of the fibers, a very dense fringe pattern is produced at the sensor. 
The resolution of available sensors is not high enough to distinguish some of 
these fringes, making it impossible to retrieve an optical path difference (OPD) 
map using standard methods.  
 
We overcome this problem by using multiple wavelength interferometry10, 11. 
The same setup is used to measure the mirror with a slightly different but stable 
and well-known wavelength produced by our lightsource. The difference 
between the two measured interferograms allows us to resolve the phase 
ambiguities caused by the under-sampling of the fringes. 
 
Once an accurate OPD map is obtained, we use a specially developed inverse 
propagation algorithm to deduce the shape of the mirror from our data. Our task 
is impeded by the presence of severe diffraction effects, rendering purely 
geometrical optics insufficiently accurate for this purpose. A combination of 
geometrical optics and rigorous diffraction methods are therefore employed to 
calculate the shape of our mirror with the required accuracy. 
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2.3 Conclusion 

Our approach resolves many of the problems inherent in the methods 
mentioned in the previous chapter, especially with regards to cost effective 
optical shop measurements. The utilization of a precise and traceable 
wavelength, together with a stable reference wavefront makes our 
interferometer useful as an absolute measurement device. 
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3 Inverse Propagation Algorithm 

In designing an inverse propagation algorithm to retrieve the shape of the 
reflector under test from our interferometer data, we aim to fulfil two main 
requirements: sufficient accuracy and a reasonable execution time. 
 
Unfortunately, these are conflicting requirements, as increased accuracy 
invariably means increased execution time. We therefore look for an algorithm 
which makes use of as many symmetries and simplifications applicable to our 
instrument, without unduly affecting the algorithm’s accuracy. A brief treatment 
of this problem has recently been published1, but we will take the opportunity to 
develop these ideas in more detail here. 
 
The error budget set up by Klaver2 to attain a final measurement accuracy of 
0.1nm rms requires an inversion algorithm accuracy equivalent to ~λ/10’000. At 
this level, the consideration of diffraction effects is not only unavoidable, but 
must be performed with particular accuracy. Assumptions and approximations 
which are routinely made to simplify diffraction calculations must now be 
scrutinised to ensure that they do not violate our requirements. As we shall see 
in the course of this chapter, a hybrid method combining ray tracing methods 
with diffraction calculations is the most promising candidate to meet our 
requirements at a minimal computational cost. We will therefore begin with a 
detailed description of the raytracing method used, before justifying its use with 
rigorous diffraction theory. Following chapter 3.2 which identifies the conditions 
under which the raytracing approach fails to give an accurate description of our 
measurements, we show a number of ways to improve our algorithm to properly 
deal with diffraction effects. These methods are vindicated by comparison 
against a brute-force forward propagation algorithm which provides the required 
accuracy. 
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3.1 Raytracing approach 

In discussing this approach, we will use the notation shown in Figure 3-1: 
 

PS

PP

PO

PF

PD

Mirror

Detector

rOS

~

PR

              
Figure 3-1 – Notation conv
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3.1.1  Forward raytracing problem
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cover the complete mirror aperture. T
these points are evaluated, and th
calculated from the law of reflection.
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interpolate between the initial ray po
should intersect more closely to our p
of rays to the detection plane is then re
intersect with the detection plane withi
centres (PD), three to four iterations o
are required. The whole procedure tak
points on a modern computer. 
 

PO – Location of point-source 
PP – Particular point on mirror 
PF – Nominal focal point 
PD – Point of interest on detector 
PS – Point of reflection on mirror surface 
PR – Position of reference fiber. 
n (PS) – Normal to mirror at PS (not shown) 
g approach 

 
ention for raytracing approach. 

onnecting an arbitrary pair of points, PJ to 
ent of the forward problem necessarily 

the locations of all the interferometer 

of inversion turns out to be simpler and 
 the forward problem of simulating our 
th difference (OPD), at the detector. 
review of the forward problem before 

 
ap at our detector consists of finding the 

e (PS) which will send rays from the fiber-
e begin by choosing a set of NxM points 

our desired resolution) which generously 
he normals to the surface of the mirror at 
e directions of the reflected rays are 
 The intersection of these rays with the 
ally. The resulting ray intersections with 
e with our pixel locations, and so we 
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ixels. The process of tracing this new set 
peated. To ensure that the reflected rays 

n 0.1nm of the actual location of the pixel 
f this interpolation and raytracing process 
es a matter of seconds for a grid of 25x25 

r OS – Vector from PO to PS 
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For every pixel location (PD), we now have the corresponding point of reflection 
on the mirror (PS), from which we can calculate the total optical path length 
(OPL) of the ray from the object fiber tip (PO) to the pixel (rOD+ rDS). The OPD is 
found by subtracting the path from the reference fiber (PO) to the pixel: 
 

 
( )

( )
D OS SD RD

D RD

OPD P r r r

OPL P r

= + −

= −
 (3.1) 

 
In this way we can get an OPD map for our detector. This OPD is not the true 
optical path difference between the object- and reference-beams however, 
since there is an optical delay before the reference fiber tips. While the 
geometric OPD given by (3.1) has a large offset, the delay before the reference 
fiber tip is adjusted to reduce the offset of the true OPD to zero. 
 
By way of example, we will generate the OPD and OPL maps for an aspheric 
mirror with radius of curvature (ROC) ~340mm, aperture diameter of 160mm 
and a p-v deviation from the best-fit sphere of approximately 4.6µm. (See 
Figure 3-2 for the mirror shape and Figure 3-3 for the resulting simulated OPD 
and OPL maps). The positions of the various interferometer components are 
those given in Figure 6-8b. 
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Figure 3-2 – Deviation from best-fit sphere of the rotationally symmetric example mirror. 
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Figure 3-3 – Optical path length (OPL) from object fiber to detector and optical path difference 

(OPD) at detector, as given by (3.1). 
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3.1.2  Inverse raytracing problem 
Although we do not have access to the absolute OPD from our interferometer, 
we have a very sensitive measurement of the relative OPD. We can estimate 
the offset of the relative OPD from the absolute OPD to within a few tens of 
microns for a well-constructed interferometer by using measurements of the 
geometry of the set-up. 
 
We will first show how we can retrieve the shape of the mirror, given the exact 
positions of the key components of the interferometer and the true value of the 
OPD. The consequences of errors in our estimates of these quantities, and the 
steps required to correct for them will be discussed later. 
 
We begin by calculating the OPL from our measurement of the OPD at the 
detector, using (3.1). From the OPL between the object fiber tip and the pixel 
position, we can conclude that the point of reflection (PS) lies somewhere on a 
prolate spheroid with PO and PD as foci (Figure 3-4).  
 

PS

PO

PD

Mirror

Pixel

Position

Object

fiber tip

 
Figure 3-4 – Prolate spheroid traced out by fixed OPL around fiber tip and pixel location. 

 
From a single-point measurement it is therefore impossible to uniquely 
determine the point of reflection. However, we may use the OPL of 
neighbouring pixels to estimate the normal to the wavefront at the pixel, and 
hence the direction of the ray r SD.  
 
Making the assumption of a locally plane wave (an assumption later justified by 
the resulting inversion accuracy), we can write the OPL function in the 
immediate vicinity of a particular pixel located at (xD, yD, zD,) as: 
 

 [ ] [ ]( )2 x D x y D y z D zOPL k x k y k z cλ ε ε ε
π

⎡ ⎤≈ + + + + + +⎣ ⎦  (3.2) 

with: 

 ( ) 2 2 2 2, ,D D D x y zx y z k k k π
λ

= + + =k  (3.3) 
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The direction of the wave-vector, ( ), ,D D Dx y zk , is identical to the direction of the 
ray r SD. Thanks to (3.3), it is sufficient for us to find two out of the three wave-
vector components – the third resulting from the normalization constraint. 
 

Detector

Wavefront

Rays
OPL

rDS

~

PS
Detector  

Figure 3-5 – diagram illustrating rays, wavefront and OPLs at detector 

 
The partial derivatives of the OPL function in the x- and y- direction are 
therefore sufficient to retrieve the direction of the local ray: 
 

 ( ) ( )22' , , 1SD OPL OPL
SD x y

SD

OPL OPL
x y

∂ ∂
∂ ∂

⎛ ⎞∂ ∂
≡ ≈ − −⎜ ⎟∂ ∂⎝ ⎠

rr
r

 (3.4) 

 
Where '

SDr  is the unit vector in the direction of the calculated wavefront normal.  
 
We now have enough information for a unique solution for the point of 
reflection, given by the intersection of a line from PD and direction r DS, with the 
prolate spheroid. Mathematically, this is equivalent to solving a quadratic 
equation: 
 

 
2 2

'
2 2

2
2 22

DO A A B
DS DS

B
A

DO

r d OPL d d
OPL dd
OPL r

− +
=
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'

'
,

,DS DO A
A B DS DO

DO DO

dd d
r r

= = −
r r

r r  (3.6) 

 
The mirror shape retrieved with this method exhibits a remarkable stability with 
respect to errors in the estimated ray direction, as a consequence of the 
identical local gradients of the prolate spheroid and the mirror surface at the 
point of reflection. Even the curvatures of the two surfaces are matched very 
closely, so that the estimate of the mirror shape is correct to better than first 
order for an error in the ray direction. 
 
Nonetheless, care must be taken when calculating the wavefront normals from 
our sampled OPD function. The fact that our forward simulations automatically 
generate the correct ray directions, allows us to evaluate and compare the 
accuracy of schemes to perform this task. The best results were obtained by 
fitting a bivariate quadratic (including cross-terms) to six points on our OPL 
function surrounding the point of interest, in an arrangement similar to that 
shown in 25.3.27 of Abramowitz & Stegun3 and using the resulting expression 
to determine the local gradient. This method has a minute amount of noise 
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suppression, having six fitting parameters compared to the seven data points 
used in the fit.  
 
Performing this inversion on ideal data shows some marginal residual error (rms 
= 1.3pm), dominated by edge effects of the wavefront normal retrieval algorithm 
(Figure 3-6). We will subsequently subtract this residual error from retrieved 
surface shapes of non-ideal mirrors, giving a perfect retrieval for the ideal mirror 
shape by definition. 
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Figure 3-6 – Residual error when directly inverting ideal, simulated data (rms=1.3pm) 

 
To ensure that the accuracy of this procedure is not dependent on this particular 
mirror shape, or its circular symmetry, we repeat the inversion for data 
generated with the previous mirror profile to which a Gaussian “bump” of 
several nm has been added (see Figure 3-7) 
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Figure 3-7 – Gaussian “bump” added to ideal mirror surface profile. 

 
The error figure between the actual and retrieved shapes in Figure 3-8 shows 
that the algorithm retrieves the correct mirror shape with an rms error of merely 
2.0pm. This is more than sufficient for our purposes. 
 
We can therefore state that we can successfully retrieve the surface profiles of 
mirrors, given the exact OPD distribution and interferometer parameters, under 
the assumption that raytracing is valid.  
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Figure 3-8 – Residual error when inverting data from a mirror aberrated by a Gaussian “bump” 

(rms=2.0pm) c.f. Figure 3-7. 

 
As already mentioned, this inversion requires much less computing time than 
the forward problem – the inversion executing in well under a second for a 
25x25 grid of data. When investigating the effect of parameter errors, we will 
therefore change the parameters for the inversion rather than the parameters 
for the forward problem. 
 

3.1.3 Parameter errors 
We will now consider the effect of errors in our assumptions about the positions 
of the various interferometer components. In this section, the coordinate origin 
will be placed at the nominal centre of the detector. 
 
Object fiber position PO:  (xO,yO,zO)  Detector centre PDC: (xDC,yDC,zDC)

Reference fiber position PR:  (xR,yR,zR)  Detector orientation ∆OO:  (∆φX, ∆φY, ∆φZ)

OPD offset:  (OPD0)  Detector size SO:  (SxD, SyD)

Table 3-1 – Interferometer parameters considered as potential error sources. 

 
An error in any of the parameters listed in Table 3-1 will cause a figure error to 
be introduced into our retrieved mirror shape. A global translation of the fibers 
and the sensor is equivalent to the opposite translation of the mirror. The same 
is true for a global rotation about a fixed point. Such errors can therefore be 
grouped under the term “alignment errors”, and should be reported separately 
from the purely “figure” errors. The error introduced by a 1µm shift of the mirror 
in the x-direction is shown in Figure 3-9 as an example.  
 
Due to the almost spherical shape of the mirror, a rotation about a point close to 
the mirror surface (tilt) would be virtually identical to a horizontal shift plus an 
offset. It is important to note that “tilt” cannot be considered a purely linear term, 
as seen in Figure 3-9, while piston (translation in the z-direction) can. Another 
type of error which is considered permissible beyond the 0.1nm accuracy 
otherwise desired for the figure measurement is defocus, defined as a figure 
error proportional to the square of the radial co-ordinate in the horizontal plane.  
Alignment errors and defocus are considered acceptable within certain limits 
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specified by the manufacturers of such mirrors2 and we will therefore report two 
sets of figure errors for every parameter variation: one without subtraction of 
alignment and defocus errors, and one with this subtraction. 
 
In addition to the parameters listed in Table 3-1, the direction of the fibers and 
the positions of the individual pixels can affect the accuracy of the inverse 
propagation algorithm. The wavefront from the fiber is only spherical around the 
central part of the intensity distribution (see chapter 6.3), and care must 
therefore be taken to ensure that the fiber-output is directed at the centre of the 
area of the reflector under test. As long as the area under test falls within the 
region of acceptable wavefront sphericity, the pointing direction of the fiber has 
no systematic effects on the retrieved shape of the reflector, due to the 
spherical symmetry of the wavefront. The relative positions of the individual 
pixels can be determined with independent calibration methods (see section 
5.2.2), and we assume that such a calibration has already been carried out. The 
parameters listed in Table 3-1 are then sufficient to represent any remaining 
alignment errors for the sensor. 
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Figure 3-9 – Errors in the surface height measurement for a displacement of the mirror in the x-
direction. Note the nonlinearity of this error term. The equivalent error profile for a purely 
spherical mirror would differ from the above by only a few pm. 

 
Figure 3-10 to Figure 3-24 show the various errors in the retrieved mirror shape 
for 1µm errors in the various component positions, 1mrad errors in the 
orientation, and 1ppm (parts per million) errors for the CCD size. It should be 
clear that the most severe figure errors are introduced by incorrect estimates in 
the horizontal positions of interferometer components, where they cause what 
appears to be shear-errors in the direction of displacement. The obtainable 
positioning accuracy of the fibers in the xy plane can be considered to be in the 
1-5µm range, while the z-positions could be determined with even better 
accuracy. The CCD horizontal position can also be determined to within about 
1µm by noting the location of visible mirror features (such as apertures and/or 
markings) projected on the CCD. This is still not sufficient to guarantee a figure 
error of 0.1nm however, as can be seen from Table 3-2. 
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Figure 3-10 – Figure error due to an erroneous estimate of the x-coordinate of the object fiber 
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Figure 3-11 – Figure error due to an erroneous estimate of the y-coordinate of the object fiber 
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Figure 3-12 – Figure error due to an erroneous estimate of the z-coordinate of the object fiber. 
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Figure 3-13 – Figure error due to an erroneous estimate of the x-coordinate of the reference 

fiber. 
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Figure 3-14 – Figure error due to an erroneous estimate of the y-coordinate of the reference 

fiber 
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Figure 3-15 – Figure error due to an erroneous estimate of the z-coordinate of the reference 

fiber 



Inverse Propagation Algorithm 
 

 

 Raytracing approach 25 

 

−40
−20

0
20

40
60

−40

−20

0

20

40
−0.0185

−0.018

−0.0175

−0.017

−0.0165

x (mm)

1µm CCD x−position error incl. alignment errors

y (mm)

F
ig

u
re

 E
rr

o
r 

(µ
m

)

   −40
−20

0
20

40
60

−40

−20

0

20

40
−1000

−500

0

500

1000

x (mm)

1µm CCD x−position error (rms sensitivity = 0.187 nm / µm)

y (mm)

F
ig

u
re

 E
rr

o
r 

(p
m

)

 
Figure 3-16 – Figure error due to an erroneous estimate of the x-coordinate of the CCD centre 
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Figure 3-17 – Figure error due to an erroneous estimate of the y-coordinate of the CCD centre 

 
 
 
 
 

−40
−20

0
20

40
60

−40

−20

0

20

40
−2

−1

0

1

2

3

x 10
−3

x (mm)

1µm CCD z−position error incl. alignment errors

y (mm)

F
ig

u
re

 E
rr

o
r 

(µ
m

)

   −40
−20

0
20

40
60

−40

−20

0

20

40
−50

0

50

100

x (mm)

1µm CCD z−position error (rms sensitivity = 0.018 nm / µm)

y (mm)

F
ig

u
re

 E
rr

o
r 

(p
m

)

 
Figure 3-18 – Figure error due to an erroneous estimate of the z-coordinate of the CCD centre 
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Figure 3-19 – Figure error due to an erroneous estimate of the CCD orientation about the x-axis. 
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Figure 3-20 – Figure error due to an erroneous estimate of the CCD orientation about the y-axis. 
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Figure 3-21 – Figure error due to an erroneous estimate of the CCD orientation about the z-axis. 
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Figure 3-22 – Figure error due to an erroneous estimate of the x-size CCD 
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Figure 3-23 – Figure error due to an erroneous estimate of the y-size CCD 
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Figure 3-24 – Figure error due to an erroneous estimate of the OPD offset. 
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The above error figures allow us to make an error-budget for the positioning of 
the interferometer components. Table 3-2 below shows the positioning 
accuracies which, individually, cause figure errors below 0.1nm. Similar errors 
are marked by the symbols: ∗, +, and † which correspond to the x-,y- and z-fiber 
positioning errors respectively. 
 

*xof 10.0 µm  +xCCD  0.5 µm
+yof 10.0 µm  *yCCD  0.5 µm
†zof 100.0 µm  †zCCD  5.0 µm
*xrf 0.5 µm   ∆φx  30.0  µrad
+yrf 0.5 µm   ∆φy  200.0  µrad
†zrf 5.0 µm  +∆φz  200.0  µrad
†OPD 10.0 µm   SxCCD  0.1  %
   SyCCD  0.1  %

Table 3-2 – Interferometer parameter accuracies, each producing <0.1nm figure errors. 

 
To decrease the influence of these errors, we can try to optimize the 
interferometer parameters such, that they give a best fit of the resulting 
retrieved mirror shape to the ideal mirror shape. Only one member of a set of 
similar parameters needs to be fitted, resulting in a total of 7 possible fitting 
parameters. This procedure is likely to result in an overly optimistic estimate of 
the error figure for our mirror, since any actual figure errors present on our 
mirror of the type shown in the preceding series of figures will be significantly 
attenuated by such a fitting procedure. Chapter 7 shows how such parameter 
fitting can be achieved. 
 
Ideally, a parameter optimization of this type would first be performed for a 
particularly well characterized surface, such as a spherical reflector, and the 
resulting calibrated interferometer parameters adopted for the retrieval of future 
mirror shapes. Alternatively, extensive metrology of the interferometer can be 
performed a-priori, to determine the positions and orientation of the various 
interferometer components. 
 

3.1.4 Summary 
Provided that the assumptions and approximations underpinning the raytracing 
approach are valid, this inversion technique gives an estimate of the figure of 
the reflector under test within ~2pm rms with our interferometer. The influence 
of positioning errors should be considered an effect of the interferometer type 
rather than of the inversion approach, but they will most likely dominate the low-
frequency error landscape in our case. 
 
Examples of reflectors for which the raytracing description is sufficient would be 
ones where the smooth reflective surface extends beyond the illuminated area, 
and contains no obstructions. For reflectors where the area of interest is close 
to the edges or contains obstructions, diffraction plays a significant role; 
distorting the optical phase from that calculated by geometrical optics, and 
hence affecting our OPD measurement. 
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3.2 Effect of diffraction 

To obtain an idea of the extent to which diffraction can be expected to affect the 
above method, we turn to the paper by Sherman and Chew4, where the 
problem of focused fields encountering an aperture is treated analytically using 
the Debye integral. This integral is based on the assumption that the angular 
spectrum of the field goes to zero at the angles corresponding to the edge of 
the aperture. Furthermore, the treatment is restricted to circular apertures on 
converging spherical waves and hence is not directly applicable to our 
interferometer. Despite these two major draw-backs, we will use this analytical 
result for a qualitative assessment of the effects of diffraction because of the 
high calculation speed afforded by this approach. 
 
By letting the object fiber-tip coincide with the centre of curvature along the axis 
of a spherical-cap mirror of similar dimensions to ours, we may use the 
analytical results stated by Sherman and Chew. See Figure 3-25 for a diagram 
and the notation used. 
 

 
Figure 3-25 – Notation used for the treatment of diffraction by Sherman and Chew. 

 
It is important to note that these results are cast in a form that explicitly includes 
the geometrical optics contribution. We see that the diffraction contribution 
depends on the intensity of our incident wavefront only at the aperture 
boundary. This is consistent with the notion of a boundary diffracted wave, and 
allows us to attribute the effect of diffraction exclusively to the field at the 
aperture boundaries. That is to say that figure errors in the interior of the 
reflector should not alter the contribution due to diffraction, provided they 
introduce no caustics at the detector. The fact that this is also true for the more 
general cases will be shown in section 3.5. 
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Geometrically illuminated region: 
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Geometrical Shadow: 
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Where ( )A θ  is the angular amplitude distribution (in this example taken as 

unity) and (1)
0H  and (2)

0H  are the Hankel functions of the first and second kind. 
θm is the half-opening angle of the aperture. 
 
Figure 3-26 shows a cross-section of the field amplitude profile at a detector 
35mm from focus, for a spherical mirror (Rm = 340mm) with a central 
obstruction (radius 25mm) illuminated with a uniform amplitude distribution.  
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Figure 3-26 – Amplitude of diffracted field near shadow boundary 
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Figure 3-27 – Phase-difference with geometrical field near shadow boundary, and magnified 

view further away. 

 
Figure 3-27 shows the difference in optical phase between the geometrical 
optics field and the diffracted field.  The oscillations near the shadow boundary 
exceed 0.2rad, which roughly translates into a 20nm figure error introduced 
when retrieving the mirror shape using the raytracing approach. We see that the 
oscillations do not drop to zero very quickly, but increase in frequency.  
 
The physical extent of our pixels will cause an averaging of the phase over the 
pixel area, so that the measured phase is actually the convolution of the actual 
phase with the pixel shape, sampled at the pixel locations, (see Figure 3-28). 
The phase fluctuations are soon under-sampled, but also attenuated by the 
measurement process. For our example geometry, we can say that diffraction 
introduces excessive figure errors over a rim 1.8mm wide, surrounding the 
central obstruction at the detection plane. This translates to a rim 17mm wide 
on the mirror itself. We will refer to this region as the diffraction rim.  
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Figure 3-28 – Phase error remaining after low-pass filtering by 11µm pixels. 

 
In the diffraction rim, the OPD measurement deviates from that predicted by 
geometrical optics by more than 0.1nm, as a series of oscillations in the 
direction of the normal to the boundary of the obstruction.  
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3.3 Tempered Raytracing approach 

Due to the systematic and oscillatory nature of the diffraction effects, we may 
still be able to use our raytracing inverse propagation algorithm if we can find a 
way to reduce or remove these effects. Such approaches can be divided into 
two classes: 
 

1. Physical reduction of diffraction effects: 
a. Damping of diffraction oscillations through vignetting. 
b. Averaging out diffraction effects with a moving aperture. 

 
2. A-posteriori reduction of diffraction effects: 

a. Filtering out of the non-geometrical field. 
b. Parameter-fitting to the measured field. 
c. Subtracting an estimate of the non-geometrical field. 

 
We will now briefly discuss these various approaches. 
 

3.3.1  Physical approach 
Damping 
The damping approach requires us to “vignette” the boundaries of the mirror. 
This could be achieved either with an external  mask with a tapered 
transmission profile near the edges, or by applying an increasingly absorbing 
coating to the edges of the mirror, letting the reflectivity fall off smoothly over 
several hundred wavelengths (see Figure 3-29). While we may state that a 
wider vignetting rim will cause a smaller diffraction rim, we have to assume that 
the figure of the mirror is altered over the entire area where this vignetting takes 
place. The optimum width of such a border still needs to be determined by 
rigorous calculations, and would depend on the physical process used to 
generate the vignetting mask. 
 

Central

obstruction

Mirror

edge

 
Figure 3-29 – Cross-section of mirror reflectivity before and after vignetting. 

 
Moving aperture 
The fact that the diffraction oscillations appear to have a zero mean value can 
be exploited by placing a smaller aperture in front of the mirror, and either 
varying its position, orientation or both between repeated measurements, thus 
averaging out the diffraction effects. We will illustrate this process by averaging 
25 phase profiles as in Figure 3-27, which have been shifted with respect to 
each other randomly in a range of 0-0.3mm. This is equivalent to a random shift 
in the position of the artificially added aperture at the mirror of up to 3mm. The 
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resulting reduction of the diffraction rim to 0.8mm at the detector (equivalent to 
7.8mm at the Mirror) can be seen in Figure 3-30. 
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Figure 3-30 – Reduction in phase error after using moving aperture technique (c.f. Figure 3-28) 

 

3.3.2  A-posteriori methods 
Filtering 
While the Zernike polynomials are generally considered an excellent basis for 
the representation of mirror figure errors, they will not represent the diffraction 
patterns well at lower orders. 
 
The filtering approach would therefore consist of fitting, in a regularized least-
squares sense (using the truncated singular value decomposition – TSVD, for 
example), the lower order Zernike polynomials to the OPL function on the 
region of interest (which excludes regions in the geometrical shadow). The 
resulting decomposition would have a “smoothed” appearance, which excludes 
patterns with high spatial frequencies, such as those generated by diffraction. 
 

             
Figure 3-31 – Measured OPL profile (with arbitrary offset) 

 
To illustrate this procedure, we will filter some data obtained from our 
interferometer. It should be kept in mind that this data still contains several other 
features and noise – notably wavefront aberrations originating from the cover-
glass of the CCD. The raw OPL data, defined at a set of positions (xD,yD), is 
shown in Figure 3-31. Note the masked region in the middle, which generously 
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covers the geometrical shadow region produced by a central hole of the mirror 
under test. The mask was applied manually after the measurements were 
taken. 
 
We now choose, somewhat arbitrarily, a “centre” for this OPL profile (xc,yc), 
coinciding with the centre of the masked region. While the Zernike 
decomposition is quite stable with respect to offsets from a centre of curvature, 
better results can be expected if there is some degree of rotational symmetry 
about this centre. 
 
In order to maximize the sensitivity of our decomposition without exceeding the 
domain of the Zernike polynomials, we now assign “ρ” and “θ” values to every 
point of the OPL profile, scaled in such a way that the maximum value of “ρ” is 
1: 
 

 
2 2

2 2

( ) ( )

max ( ) ( )
D C D C

D C D C

x x y y

x x y y
ρ

− + −
=

⎡ ⎤− + −
⎣ ⎦

 (3.9) 

 [ ]atan ( - ), ( - )D C D Cy y x xθ =  (3.10) 
 
We then generate the values for the first 39 Zernike polynomials on this domain 
(more, or fewer polynomials may be chosen), and store them as an Nx39 array 
of numbers, where N is the number of un-masked points on our OPL profile 
(166302 for the OPL data shown in Figure 3-31 above). We will denote this 
“image basis” matrix with “Z”, while the Nx1 vector of OPL values will be 
denoted by “p”. We are now looking for a 39x1 vector, “a”, which minimizes the 
expression: 
 
 2aZ -p  (3.11) 
 
In other words, we wish to find the Zernike coefficients “a” which give the best 
representation of our OPL values, “p”, in a least-squares sense. The Moore-
Penrose inverse could now be applied to this problem to find a solution for “a”. 
 
However, although we have only 39 Zernike polynomials to represent several 
thousand OPL data points, it is not guaranteed that there is a unique solution to 
this problem, nor is it certain that this solution will be “well-behaved”5. In order to 
“regularize” this inverse, we make use of the truncated singular value 
decomposition (TSVD), which strikes a balance between minimizing the norm in 
equation (3.11) and minimizing the sum of squares of the Zernike coefficients: 
 
 2a  (3.12) 
 
In the case when the Zernike polynomials are not linearly independent over our 
particular domain, this will prevent the solution from diverging. We will refer the 
reader to the excellent treatment of the TSVD by Tan5 for further details of this 
method, and proceed by using the Matlab® function “pinv” to calculate this 
inverse for us: 
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 pinv( )=Y Z  (3.13) 
 
Now, “Y” is a 39xN matrix, which allows us to estimate the “a” which minimizes  
(3.11) (See Figure 3-32): 
 =a pY  (3.14) 
So that we now have: 
 LPF =p aZ  (3.15) 
 HPF = −p p aZ  (3.16) 
With: 
 LPF HPF= +p p p  (3.17) 
 
Here, pLPF is the Zernike decomposition (denoted “LPF” due to the low-pass 
filtering effect this decomposition has), and pHPF is the remaining, “high-pass 
filtered” component of the original OPL profile. Both of these are shown in 
Figure 3-33, where the diffraction patterns are clearly visible on pHPF, along with 
detector related artefacts. 
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Figure 3-32 – The Zernike coefficients obtained after decomposing the OPL data in Figure 3-31. 

 

 
Figure 3-33 – Zernike-39 reconstruction, pLPF (left) and difference with actual OPL data (right). 
The prominent vertical stripes are an artefact possibly due to the CCD cover-glass, or pixel 
positioning errors (see section 5.2.2). 
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To improve the visibility of the diffraction fringes, we have removed the vertical 
stripes (possibly an artefact of the CCD structure. See chapter 5.2.2), and 
smoothed the image with a uniform 3x3 pixel kernel. The result is shown in 
Figure 3-34. 
 
A certain amount of “leakage” of the diffraction pattern into the low-order 
Zernike decomposition is inevitable, and cannot easily be quantified without 
prior knowledge of the actual diffraction pattern. In addition, a lot of high spatial 
frequency features which may be due to actual figure errors rather than 
diffraction would also be filtered out by this approach. While an intuitively simple 
and computationally inexpensive approach, we do not consider this to be an 
accurate or reliable means of retrieving the reflector surface shape from our 
measurements. 

             
Figure 3-34 – Smoothed and corrected pHPF, accentuating the diffraction rings around the 

geometrical shadow region. 

 
Parameter fitting 
By parameterizing the shape of our surface (through a set of Zernike 
coefficients, or amplitude coefficients of other functions able to adequately 
represent the surface shape), as well as parameterizing the shape of the 
aperture (see section 3.6), we could perform an optimization of these 
parameters, provided we have an accurate forward-model of diffraction for our 
situation. An initial set of parameters, representing the nominal surface and 
aperture shapes, would be used to calculate the expected OPL function. The 
difference-squared misfit of this function with our measurement of the OPL 
could then be used as a cost function for a non-linear optimization routine over 
the parameter space for the surface and aperture shapes. Provided such an 
optimization converges, the resulting parameters would represent a surface and 
aperture shape which generates an OPL profile very similar to the one 
observed. 
 
While much more rigorous than the previous approach, several problems make 
this approach impractical. For one, an accurate forward model of diffraction for 
our situation is required to simulate the theoretical OPL functions. As we will 
see in chapters 3.4 and 3.5, such models are indeed available, but take a 
significant amount of computation time. To adequately represent our surface 
and the shape of any apertures, a large number of parameters would need to 
be fitted, and consequently a much larger number of iterations of the forward 
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problem would be required for the optimization to converge. We consider the 
time taken for this approach to be prohibitive. 
 
Subtraction 
As we will show shortly, the electromagnetic field at our detector is the sum of 
the field as predicted by geometrical optics, plus a “boundary diffracted wave” 
(BDW) field arising from the edges of our apertures. If a good estimate of the 
BDW field is available (taking into account the spatial filtering effect of our 
pixels), this can simply be subtracted from our measurements, leaving only the 
geometrical optics field, before proceeding with the raytracing approach for 
inversion.  
 
Calculating the BDW field also requires an accurate knowledge of the shape of 
any diffracting boundaries. To this end, an algorithm has been developed to 
retrieve the shape of the diffracting boundary from our measurement data and a 
reasonable initial guess at the boundary shape. 
 
This is so far the most promising method for dealing with diffraction. The 
following three sections will detail the required algorithms to perform the 
calculation of the electromagnetic field at the detector and retrieve the boundary 
shape from the measured data. 
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3.4 Numerical evaluation of diffraction integral. 

Our model for diffraction will have to be more flexible than that of the previous 
section, which was restricted to axially symmetric systems. It will have to fulfil a 
number of requirements that rule out most asymptotic or approximate methods. 
The algorithm will have to be able to evaluate the diffraction integral over an 
arbitrary three dimensional surface shape, not restricted to a plane or a 
spherical cap. This is due to the combination of large NAs and severe 
asphericities of our reflectors. The accuracy should be adjustable, to check that 
the algorithm converges to within our desired precision. Also, any assumptions 
or approximations made must influence the final phase by less than the 
0.1mrad equivalent to our 0.1nm accuracy. 
 
For these reasons alone, a direct numerical integration of the Rayleigh-
Sommerfeld integral seems the most logical choice. Once results of such an 
approach are available, we are at liberty to use these to evaluate the 
applicability of approximate methods.  
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We have separated out the real, slowly varying amplitude factor B(PI) and the 
quickly oscillating exponential, with argument C(PI). The contour-plot of C(PI) in 
Figure 3-36 for a typical mirror shows the apparent symmetry about the point of 
stationary phase. This symmetry is not perfect, especially if the mirror is 
aspheric. Nonetheless, by choosing a polar co-ordinate system in the plane 
normal to the mirror axis, centered on the point of stationary phase, we are able 
to choose a non-uniform spacing for the mantissa of the radial co-ordinate ρ, 
and a uniform spacing in the angular co-ordinate θ, to take advantage of 
symmetry properties.  
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Figure 3-36 – Contours of C(PI) over mirror surface, and polar co-ordinate system centered at 

PS used for numerical integration. 

 
We re-write (3.18) to reflect this change in co-ordinate system as follows: 
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The radial mantissa is chosen with increasing density, to account for the 
growing number of oscillations (Figure 3-37). As with the method of stationary 
phase, we see that the primary contribution to our integral will come from the 
stationary point and from an area around the boundary of the mirror, near the 
stationary point, where the contours are truncated. The region anterior to the 
stationary point with respect to the mirror axis contributes less to the integral 
due to the quick averaging that occurs by the large number of oscillations. 
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Figure 3-37 – Behavior of integrand with ρ and θ. 
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The results of such a brute-force calculation are shown in Figure 3-39 and 
Figure 3-40, where they are also compared to the results of a boundary-
diffracted wave (BDW) approach6. The accuracy of the numerical result which 
samples each oscillation with 100 points is better than 1%.  
 
It should be noted here that because our mirror is a three-dimensional surface 
there are a number of implications for the evaluation of the integral. First, the 
obliquity factor must be evaluated with respect to the local surface normal. 
Secondly, since (3.19) is an integral over 2 variables in the XY plane, the values 
of B and C are actually those of the points on the mirror which project to the 
corresponding point on the XY plane, and the area element, dA is the three-
dimensional surface element on the mirror surface rather than the area element 
in the XY-plane. 
 
This method is obviously very time-consuming – a single point of Figure 3-39 
taking more than 10 minutes to compute on a modern PC. Fortunately, a 
comparison with the boundary diffracted wave (BDW) approach outlined in the 
next section has already resulted in a considerable saving of computational time 
while maintaining our desired accuracy. This new approach takes just over one 
second to calculate each point.  
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3.5  Boundary Diffracted Wave approach 

The BDW approach will not only serve to perform the necessary diffraction 
calculations in a reasonable time, but it will clearly separate the influence of the 
geometrical optics field (from raytracing) from the influence of the diffracted 
field, which arises solely at aperture edges. 
 
Born & Wolf6 (Ch. 8.9) show that the problem of solving the full diffraction 
integral for a point source behind a planar aperture can be split into two 
separate problems: Finding the geometrical optics field, and adding the so-
called boundary-diffracted wave field. The notation and resulting expression for 
the BDW field, ( )( )d

cU P , can be seen in Figure 3-38 and equation (3.20). 
 

                     
Figure 3-38 – Notation from Born & Wolf (left) and equivalent notation for our situation (right). 
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The transferral of this theory to the case of a point source in front of a concave 
mirror of limited spatial extent is non-trivial, due to the presence of caustics in 
the region of the geometrical focus of this situation, and the somewhat arbitrary 
choice of effective point-source location for each integration path element. 
While our approach seems intuitively correct, the fact that the reflected wave 
may no longer be spherical makes the rigorous treatment of Born & Wolf 
inapplicable to this situation. 
 
The phase of the geometrical optics field is calculated from the optical path 
lengths (OPLs), while the field intensity is calculated from the initial intensity 
distribution from the fiber multiplied by the ratio of the local ray-densities at the 
detector (D(Pc)) and just after the fiber (D(Ps)).  
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To calculate the local ray-density accurately, two extra rays are traced very 
close to each ray of interest over an equal distance before reflection, their end-
points forming a triangular surface element with an area inversely proportional 
to the local ray density. The ray of interest is then traced on to the detection 
plane, and the two accompanying rays are traced through the system to the 
same length, before forming another triangle from their end-points with an area 
inversely proportional to the ray density at the detector: 
 

 ( ) ( ) ( )
( )

OPL( )( ) cc ik Pg
c s

s

D P
U P Am P e

D P
=  (3.21) 

 
The total field is then given by the sum of the geometrical and boundary-
diffracted fields: 
 
 ( ) ( ) ( )( ) ( )g d

c c cU P U P U P= +  (3.22) 
 
Each separate problem is significantly easier to solve than the full Sommerfeld 
diffraction integral, even when using stationary phase methods. 
 

2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6

0.2

0.4

0.6

0.8

1

1.2

Location on CCD (mm)

L
o

ca
l F

ie
ld

 In
te

n
si

ty
 (

a.
u

.)

Comparing results from the Brute−Force and BDW approaches

Brute−Force
BDW

Shadow Boundary 

  
Figure 3-39 – Field intensity at detector calculated with brute-force and BDW models. 
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Figure 3-40 – Phase deviation from geometrical optics, calculated with brute-force and BDW 
methods (left) and difference between phase calculated with the two methods (right). 
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Since our approach is not entirely rigorous, we need to establish whether it still 
yields sufficiently accurate results. To do this, we will calculate the field at our 
detector for a realistic set of parameters, and compare results obtained using 
this new method with the results obtained using our rigorous, numerical brute-
force integration of the Sommerfeld integral. The results of this comparison can 
be seen in Figure 3-39 and Figure 3-40. The difference between the two 
methods is limited only by the numerical accuracy for the brute-force approach, 
while the computational speed of the BDW approach is significantly faster (500s 
for the BDW approach, vs. 63hrs for the brute-force approach for Figure 3-39) 
 
The geometrical phase in the shadow-region was calculated by simply 
extending the nominal mirror shape. The phase-difference between the 
geometrical and diffracted fields in the shadow region is therefore somewhat 
arbitrary. 
 
This is a practical method for calculating the diffraction pattern to be subtracted 
from the measured phase profile to yield the purely geometric component, 
which in turn can be inverted with the raytracing based inversion technique. 
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3.6 Boundary retrieval method 

While we are now able to quickly and accurately calculate the diffraction field for 
a given mirror form and boundary shape, we need a-priory knowledge of both in 
order to subtract the correct BDW field. This section will deal with a means of 
retrieving the shape of the boundary of the mirror from the measured data. 
 
The method relies on the fact that the diffraction patterns are of a characteristic 
form, very different from both random noise and the mirror form itself: 
 
 OPL = Geometrical Phase + BDW Phase + Noise (3.23) 
 
If we can now generate a complete set of basis functions which represent the 
BDW phase contribution from all reasonable boundary shapes, we should be 
able to de-compose the OPL function into these “boundary diffracted wave 
basis functions” (BDWBFs), and hence deduce the shape of the aperture which 
gave rise to the observed OPL, very much in the same way as the filtering 
approach outlined in section 3.3.2 deduced the best fit Zernike coefficients to 
the OPL. 
 
Although we may expect the geometrical phase component of the OPL to be 
naturally orthogonal to the BDWBFs (due to the oscillatory nature of the latter), 
their large magnitude (~mm rms) compared to the magnitude of the BDWBFs 
(~nm rms) magnifies even small leaks of components of the geometrical phase 
along the BDWBFs. For that reason, we will first subtract the low-order Zernike 
components from both the OPL and our BDWBFs, to reduce this “leakage”. The 
noise is implicitly assumed to be largely orthogonal to any systematic basis 
functions. 
 
It remains for us to construct such a complete set of BDWB functions which will 
represent all reasonable diffracting boundary shapes. We may assume good a-
priory knowledge of this boundary shape, both from the mirror manufacturer’s 
specifications and by visual inspection of the interferograms. The vast majority 
of boundary shapes can be represented parametrically: 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ), , cos , sin , ( ( ), ( ))x y z z x yθ θ θ ρ θ θ ρ θ θ θ θ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ , (3.24) 
 
for some “centre” of the boundary (xBC,yBC), where z(x,y) is the mirror height 
profile. The boundary is therefore completely defined by the function ρ(θ). Let us 
therefore fix such a centre, and write our default guess at the aperture shape as 
ρdef(θ). 
 
We can now represent all reasonable aperture shapes (including position 
offsets etc.) with the addition of a number of finite Fourier components to this 
function: 
 

 ( ) ( ) ( )
1

M

def j j
j
b Fρ θ ρ θ θ

=

= + ∑ , (3.25) 
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with: 

 ( ) ( )
[ ]( )

1
2

1
2

sin even
cos 1 oddj

j j
F

j j
θ

θ
θ

⎧⎪= ⎨ −⎪⎩
 (3.26) 

 
For the case of an almost circular aperture, Figure 3-41 shows how the various 
Fourier components affect the shape of the aperture. 
 
The aperture is now defined in terms of the default function and the vector of 
Mx1 Fourier coefficients “b”. Using our Zernike decomposition of the OPL 
together with the raytracing IPA to obtain a default mirror shape, zdef(x,y) we 
can calculate the default BDW phase map as outlined in the previous section. 
The process which maps a particular mirror form and boundary shape to a BDW 
phase map on the detector (xD,yD) will be denoted by: BDWP(xD,yD|z(x,y),ρ(θ)). 
 

 
Figure 3-41 – Default estimate of boundary shape (dashed) aberrated by the first 16 Fourier 

functions. 

 
It can be observed that this BDWP function is sufficiently well behaved to be, to 
first order, linear under addition of small Fourier components as outlined above. 
We may therefore write: 
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j
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Where our basis functions (the BDWBFs discussed earlier) are now given by: 
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( )( ) ( ) ( )( )
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An example of the BDWBFs corresponding to a circular initial guess at the 
boundary shape can be seen in Figure 3-43. 
 
 

 
Figure 3-42 – Example of a BDW pattern at the detector for a circular boundary shape (arbitrary 

scale). 

 

 

 
Figure 3-43 – First 16 BDW basis functions for a circular default boundary shape, corresponding 

to the 16 aberrated boundary shapes of Figure 3-41. 
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Returning to the notation of section 3.3.2, we can now express our desire to find 
the coefficients “b” which best match our BDW phase once again in matrix 
notation, by searching for the “b” which minimizes: 
 
 2− − −p aZ d bB  (3.29) 
 
Where “d” is the Nx1 BDW phase pattern due to the default boundary shape, 
BDWP(xD,yD|z(x,y),ρdef(θ)), and “B” is the NxM matrix of all the BDWBFs as 
defined above. Following the arguments in section 3.3.2 leads to the regularized 
solution for “b”: 
 
 [ ]pinv( )= − −b p aZ d B  (3.30) 
 
From this solution and equation (3.25), we can obtain our improved estimate of 
the boundary shape.  
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Figure 3-44 – Example of a simulated boundary shape (solid) and the retrieved boundary shape 

(dashed, indistinguishable) from a circular initial guess of the boundary shape (ρdef(θ) = 1). 
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Figure 3-45 – BDW pattern (left) produced by simulated boundary shape in Figure 3-44, and the 
deviation from the BDW pattern from the retrieved boundary shape (right). 
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The results of a simulation of such a procedure are shown in Figure 3-44 and 
Figure 3-45. This then allows us to calculate the BDW phase using the methods 
in the previous section, which can be subtracted from our OPL map to give an 
estimate of the purely “geometrical” OPL map. This finally allows us to retrieve 
an estimate of the mirror shape using the raytracing IPA of section 3.1.2. 
 
We may iterate this procedure, as outlined in Figure 3-47, using our new mirror 
shape- and boundary shape- estimates as starting points to improve the 
accuracy of our estimates. 
 
While the above examples are of an internal boundary (a “hole” in the reflector), 
external boundaries can be treated with the same approach. Furthermore, it is 
possible to retrieve the boundary shape from measurements of the diffraction 
pattern’s intensity rather than of its phase, using the methods discussed in this 
section. 
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3.7  Direct back-propagation 

One last potential method for determining the shape of the reflector from our 
measurements of the OPL is the propagation of our measured wavefront back 
to the nominal mirror position. We cannot use this method to determine the 
mirror shape directly. Instead we will be deriving a retardation to the ideal field 
expected at the nominal surface, as described in the previous section, which 
can then be used to deduce the surface shape which would be equivalent to 
this retardation. (See Figure 3-46) 
 

Deformed Mirror
Deformed Incident

wavefront

 
Figure 3-46 – Equivalence of mirror form aberrations and deformations in the incident 

wavefront. 

 
While being the most intuitively appealing, this method unfortunately suffers 
from several problems. In terms of computation time, back-propagation would 
still be prohibitive in the absence of a more efficient forward algorithm (the BDW 
approach is not applicable here, due to the absence of sharp boundaries in the 
diffracted field at the detector).  Furthermore, while the method would give the 
correct mirror shape if the exact diffraction pattern at the detector were available 
to us, the under-sampling and spatial filtering inherent in our measurement 
process will doubtlessly introduce a new class of distortions in the retrieved 
mirror shape.  
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3.8 Conclusion 

We can now combine the results from the previous chapters into an over-all 
strategy for an accurate retrieval of the measured surface shape. This 
procedure is illustrated in the flowchart below: 
 

 
Figure 3-47 – Flowchart summarizing the total inverse propagation algorithm, yielding the mirror 

shape from the OPL measurements. 

 
We have presented several potential approaches to retrieving the shape of 
reflectors under test in our novel interferometer. For reflectors where diffraction 
effects are negligible, a geometrical optics approach yields fast and accurate 
results. The geometrical optics approach in the presence of obstructions has 
been determined to be valid except within a so-called “diffraction rim” around 
the projected obstructions. Various ways to reduce the detrimental effects of 
diffraction were discussed. Motivated by one of these approaches, a novel 
scheme for accurate diffraction calculations was developed. Based on this 
scheme, a “boundary retrieval” algorithm was developed to accurately retrieve 
the shape of any obstructions present. A combination of the above methods 
yields a fast hybrid scheme capable of dealing with the diffraction effects 
present to retrieve the shape of reflectors under test from measurement data 
from our novel interferometer. 
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4 Light Source 

The multiple wavelength light-source used in our interferometer provides up to 
three stable wavelengths, used to increase the unambiguity range of the 
interferometer beyond the λ limit of a single wavelength interferometer. Several 
challenges are involved in the design of such a light source. The wavelengths 
will have to be stabilized to specific desired wavelengths, the OPD drifts within 
the light source will need to be minimized and cross-talk between the reference 
and object beams will need to be minimized, all while maintaining as much 
flexibility as possible with respect to potential sensor types. Given a fast-
sampling type detector, or a 6+ bucket lock-in pixel CCD as described in 
chapter 5, the light source described here should even allow measurement at all 
three wavelengths simultaneously. 
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Figure 4-1 – Schematic diagram of the 3λ lightsource. Beamsplitters marked with a “P” are 

polarizing. 

 
The light source for our interferometer should provide light which, on arrival at 
the sensor, carries enough information about the shape of the mirror to 
determine its shape to within our accuracy requirements. As with classical 
interferometry, we will end up measuring optical path differences (OPDs) 
between two optical paths, using the wavelength(s) of our light source as length 
standards. It is therefore necessary to be able to guarantee a certain level of 
stability for the wavelengths used. Section 4.4 examines this topic in detail. 
 
Several methods of OPD measurement are available to us, each with their own 
advantages: Heterodyne interferometry, phase-shifting interferometry and 
superheterodyne interferometry. While our light source is capable of producing 
light compatible with all three methods, the available sensors restrict us to the 
first two methods. Figure 4-1 shows the full, 3-λ set up capable of the various 
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OPD detection modes, described in a recent paper1. Depending on which 
detection mode is chosen, along with the number of wavelengths used, this set-
up can be simplified considerably. These set-ups will be shown and discussed 
in the subsequent sections. 
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4.1 Simultaneous heterodyne detection 

Heterodyne detection is a well known2,3 and particularly accurate method for 
determining the OPD between two optical paths. As opposed to standard 
interferometry, where the OPD information is encoded on the intensity of an 
interference pattern, heterodyne interferometry encodes the OPD on the phase 
of an oscillating interference pattern. Heterodyne interferometry is inherently 
more accurate than standard interferometry because it is less sensitive to 
intensity noise. 
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Figure 4-2 – Schematic diagram of a heterodyne interferometer 

 
Figure 4-2 shows a schematic diagram explaining the principle of heterodyne 
interferometry. The optical phase difference between the object and reference 
beam is encoded as the phase of the amplitude modulated output signal, which 
has a frequency equal to the frequency difference introduced by the frequency-
shifter. Mathematically, we can express this as follows: Let Uo and Ur be the 
electric field due to the object and reference beams respectively. νopt is the 
optical frequency of the reference object beam, νshift is the frequency shift 
introduced in the reference beam and ∆φopd is the optical phase difference 
introduced by the object under test in the object arm of the interferometer: 
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The intensity at the output of the interferometer, Iinterf, shows a distinct frequency 
component at the difference frequency, νshift, This intensity modulation has a 
phase equal to the optical phase difference due to the test object. The goal of a 
heterodyne interferometer is to measure this phase difference as accurately as 
possible. 
 

4.1.1 Wavelength multiplexing 
Of course, the optical phase difference observed is due to a physical path-
length difference between the reference and object beams: 
 

 2 OPD
OPD

Lφ π
λ

∆ = , (4.3) 
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which is where the dependence on the wavelength comes in. Different 
wavelengths will give a different proportionality constant between the path-
length difference and the optical phase difference, which can be exploited, as 
shown in section 4.3, to lead to an increased unambiguity range. For now, let us 
simply accept that the use of several wavelengths is desirable, and proceed 
with the problem of implementing a heterodyne interferometer measuring at 
several wavelengths simultaneously. 
 
For a simultaneous measurement at all three wavelengths, it is necessary to 
send all three wavelengths through the same object-path, so that all beams 
measure the same parts of the object. This however means that the signals 
from the three different wavelengths also need to be separated out again 
afterwards, so that the measured phase differences can be uniquely attributed 
to their respective wavelengths. If the wavelengths are sufficiently different from 
one another, they may be easily separated out by spectral means, such as 
filters, gratings or prisms. The wavelengths required for our purposes (see 
section 4.3.1) are unfortunately too close to one another for spectral separation. 
Also, these means of separation would require additional optical elements in the 
interferometer, hence introducing unwanted OPD errors. We therefore need an 
alternative means of de-multiplexing the signals due to the three wavelengths. 
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Figure 4-3 – Diagram of a three-wavelength heterodyne interferometer. The three wavelengths 
are actually co-propagating in the object arm, and have only been separated for visual reasons. 

 
By providing a different frequency shift for each wavelength (Figure 4-3), we 
obtain an output signal which is intensity modulated by a superposition of the 
three shift-frequency signals. Cross-terms arising from interference between the 
different wavelengths can be neglected, as they are in the GHz range, and are 
therefore filtered out by the bandwidth-limited response of the photodiode. 
 
The signals can be said to be shift-frequency multiplexed. The three 
frequencies can then be de-multiplexed by electronic means which is usually 
done automatically during the phase-detection step, with phase detection 
methods such as mixing or lock-in detection for example. Counters form an 
exception here, and the three signals would have to be separated using band-
pass filters first, before being passed to the counters for phase measurement. 
 
The shift frequencies must also be compatible with the sensors’ detection 
capabilities, which unfortunately vary widely between sensors. For a CSEM-
type lock-in pixel sensor as described in chapter 5.4, the shift frequencies 
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should ideally be in the MHz range, whereas a fast-sampling type sensor is 
limited to a few kHz or less.  
 
The reasons for the complicated nature of the set-up shown in Figure 4-1 
should now be apparent. By tracing the path of the three different wavelengths, 
it can be seen how the three acousto-optic modulators are used as frequency 
shifters to produce our three shifting frequencies. If we denote the three 
frequencies driving the AOMs as νAOM1, νAOM2 and νAOM3, the shift frequencies 
will be given by: 
 

 
1 3 1

2 2 1

3 3 2

shift AOM AOM

shift AOM AOM

shift AOM AOM

ν ν ν

ν ν ν

ν ν ν

= −

= −

= −

 (4.4) 

 
These can be varied between 0-5MHz with µHz resolution using the digital 
synthesizer modules driving the AOMs. 
 

4.1.2 Cross-talk 
An important feature of the arrangement shown in Figure 4-1, is the complete 
absence of cross-talk (often referred to as “heterodyne nonlinearity” in the 
literature4) for the HeNe laser, our primary metrology wavelength. The acousto-
optic modulators have some intrinsic birefringence, and will therefore affect the 
state of polarization of the incoming beams slightly. By carefully tracing the 
beams of either one of the two tuneable lasers in Figure 4-1, it should become 
obvious that the polarizing beam-splitter after AOM2 will therefore not act 
exactly as shown, instead causing a small amount of mixing between light 
destined for the reference and object arms. It can also be seen that the 
reference and object beams of the HeNe laser will experience no such mixing 
before entering the fibers, even in the face of strongly birefringent AOMs or 
imperfect beam-splitters. For the tuneable laser wavelengths, this cross-talk will 
limit the accuracy of the phase-measurement by introducing a nonlinear phase 
error which, to first order, is given by4, 5: 
 
 ( ). sinnonlin OPDφ ε φ∆ ≈ ∆  (4.5) 
 
Where ε<<1 is the fractional amount of amplitude cross-talk. Even so, this error 
can be calibrated out, provided the degree of mixing stays constant. Methods 
discussed in Chapter 5.2.2 automatically reduce the influence of this type of 
error. 

4.1.3 Two-wavelength set up. 
If only two wavelengths should be required, the set-up can be simplified 
considerably, as shown in Figure 4-4. In addition to eliminating cross-talk for 
both wavelengths, this set up has the added advantage of permitting the use of 
a very much simplified frequency locking scheme, as described in Section 4.4.4. 
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Figure 4-4 – Two-wavelength light-source permitting simultaneous 2λ heterodyne 

interferometry. 

 
If, instead of measuring the two wavelengths simultaneously, it should be 
sufficient to measure the two wavelengths sequentially, the set-up can be 
simplified even more, to that shown in Figure 4-5. For the mirror measurements 
reported in this thesis, the configuration in Figure 4-4 was used. A photograph 
of the actual set up can be found at the end of this chapter in Figure 4-31. 
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Figure 4-5 – Simplified light source for sequential 2λ interferometry 
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4.2 Phase shifting interferometry 

The same set-up as shown in Figure 4-5 above can also be used to perform 
phase shifting interferometry (PSI). PSI has a long and rich history2, 6, and has 
been the method of choice for 2D metrology purposes for many years7.  
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Figure 4-6 – Schematic diagram of a Phase-shifting interferometer 

 
Figure 4-6 illustrates the working of PSI schematically. The similarities with 
heterodyne interferometry should immediately be obvious. In fact, PSI may be 
regarded as a discretized version of heterodyne interferometry. For a fixed 
phase-increment between measurements of size 2π/n, we can write the 
intensity at the photodiode at phase-step number ‘k’ as: 
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After which the phase can be calculated from ‘n’ successive intensity 
measurements using the discrete Fourier transform (see 14.8.2 of ref.8): 
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We need not restrict ourselves to uniform- or even known- phase steps, as 
described in7. However, the most robust methods of phase-retrieval do use 
phase steps of 2π/n, and hence we will confine ourselves to this class of phase-
shifts.  
 
The main advantage of PSI over heterodyne interferometry is that it can use a 
standard CCD to perform 2D OPD measurements. The CCD records a static 
interferogram after every phase shift, and the phase can be calculated at every 
pixel over a number of frames as in the single-point case. Up until recently, it 
was impossible to perform 2D heterodyne measurements with a comparable 
pixel-resolution.  
 

4.2.1 AOM phase stepping 
Phase-stepping has traditionally been performed using mechanical phase-
shifters, such as piezo-mounted retro-reflectors or gratings, which suffered from 
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significant phase-shifting inaccuracies due to piezo nonlinearity and hysteresis2. 
Our set up offers the alternative method of acousto-optic phase shifting, which 
can be regarded as analogous to the shifted-grating method. Here, all AOMs 
are driven at the same frequency, but the phase of one of the AOMs is changed 
by a fixed increment before recording each interferogram. This approach has 
been previously reported (Bass2, chapter 30.7), and is more accurate than 
mechanical phase-shifting, since neither hysteresis nor nonlinearity affect the 
phase-shifting accuracy, nor does the phase-shifter require calibration. The 
digital signal synthesizers allow the phase of the driving signal to be adjusted 
with 32bit accuracy – equivalent to an accuracy of 1.5 nrad.  
 
While some of the drawbacks of piezo phase shifters have been significantly 
reduced by integrating capacitive position sensors in their design, the AOM 
option is still more attractive here, because it allows the operation of the light 
source in both heterodyne- and PSI-mode without any modifications to the 
setup. 
 
To perform a PSI measurement, a standard video frame-rate CCD can be used 
and the vertical synchronization signal can be used to trigger a phase-shift of a 
fixed magnitude at the signal synthesizer before every frame. A frame-grabber 
is then used to capture each successive frame, until enough frames are 
captured to perform the phase measurement. The frames are then post-
processed on a PC as described in7 to obtain the OPD at each pixel. 
 
The disadvantage over heterodyne detection is that it is slower, and hence 
phase-drifts during the measurement process have a greater influence on the 
measurements. These effects can be reduced to some extent (as described in 
chapter 5.2, where we treat PSI in more detail), but the intrinsic advantage of 
heterodyne interferometry remains. Furthermore, PSI does not allow for 
simultaneous measurement of several wavelengths. These will have to be 
performed sequentially. 
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4.3  Phase ambiguity 

Despite the fact that our interferometer is designed to minimize the range of 
OPDs over the sensor (see chapter 6), a certain range of OPDs is unavoidable, 
since the object- and reference-beams are necessarily angularly separated, and 
the mirror is severely aspherical.  
 
Klaver9 estimated the range of OPDs that would result from an optimum 
positioning of the interferometer components, and concluded that an OPD 
range of 3mm was to be expected for the severest aspheres. This means that 
the OPDs between adjacent pixels of the sensor could frequently exceed one 
wavelength of light. For heterodyne- and PSI-interferometers, this would pose a 
virtually insurmountable challenge, due to the resulting phase ambiguity. These 
interferometers can only measure the optical phase difference between two 
beams, translating to an OPD measurement with modulo λ. It would therefore 
be impossible to uniquely determine the number of integer wavelengths by 
which the OPD at two adjacent pixels differs. (See Figure 4-7 for an analogy) 
 

5 6 7 8 9

5.3 8.6

?.3 ?.6

�d = 3.3

�d = ?.3 
Figure 4-7 – Analogy to illustrate concept of phase ambiguity 

 
At the very least, our light source should allow us to decode the absolute optical 
path difference between pixels and preferably even the total absolute path 
length of the two beams. While the latter calls for an unambiguity range of 3mm, 
the former constraint is less severe, requiring an unambiguity range just larger 
than the maximum OPD between any two adjacent pixels. 
 
The phase ambiguity can be resolved in a number of ways, each placing 
different requirements on the light-source and the detector. One such method, 
called frequency modulated continuous wave (FMCW) interferometry, was 
proposed by  Klaver9 in his thesis as a viable candidate. This method 
essentially amounts to an extremely sensitive time-of-flight measurement of a 
frequency-chirped beam. We have exhaustively investigated this option10, and 
concluded that it was not suitable for our application for two main reasons. 
Firstly, the method was unable to measure distances with the required accuracy 
to overcome the one-λ phase ambiguity, and secondly, the requirements on the 
sensor and the subsequent data processing would have been unrealistic.  
 
As with heterodyne interferometry, the interference pattern of a FMCW 
interferometer is dynamic, but this time the OPD information is encoded on the 
instantaneous frequency of the oscillating interference pattern. A potential 
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sensor would therefore have to be able to measure both the phase and 
frequency of an amplitude modulated signal at each pixel. This could probably 
only be achieved by means of a fast-sampling type camera as explained in 
chapter 5.3, and the data-processing would be considerably more intensive.  
 
A method which can overcome the phase ambiguity without changing the 
requirements of the sensor is multiple-wavelength interferometry. 
 

4.3.1 Multiple wavelength interferometry 
Multiple-wavelength interferometry is well established6, 11, and essentially 
consists of performing a standard interferometric phase measurement with two 
or more different wavelengths. With an appropriate choice of wavelengths, the 
obtained phase measurements can be used to determine the OPD 
unambiguously, or at least with a much larger unambiguity range. 
 
Let us assume that a phase measurement has already been performed at our 
primary metrology wavelength, λ1, yielding a phase, φ1. By introducing a second 
laser with wavelength λ2, we can perform another phase measurement. The 
difference between the phases measured with λ1 and λ2 give a difference 
phase, Φ1,2: 
 
 1,2 1 2φ φΦ = − , (4.8) 
 
which repeats every Λ1,2. This Λ1,2, referred to as the synthetic wavelength, is 
given by: 
 

 1 2
1,2

1 2

λ λ
λ λ
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 (4.9) 

 
To extend the unambiguity range to 3mm and beyond, we will choose a 
synthetic wavelength of approximately 6mm, and hence λ2 ≈ λ1 ± λ1/10'000. To 
allow an absolute OPD determination however, the accuracy of a measurement 
with this synthetic wavelength must reach an accuracy better than the 
unambiguity range of the previous system - i.e. 632.8nm for the case of only 
two wavelengths. This requirement would demand a synthetic phase (Φ1,2) 
measurement accuracy better than 2π/10'000, placing a requirement on the 
frequency stability of the sources, as well as the detection system. For sources 
with similar wavelengths, the relationship between synthetic phase stability and 
wavelength stability, when measuring a distance, d, is: 
 

 ( ) ( ) ( )2 2
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2 d ε λ ε λπε
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Where ε(Φ1,2) and ε(λ) are the maximum allowed deviations from the mean for 
the synthetic phase and for the wavelength respectively. In our case we require 
a fractional wavelength stability of 10-8 of the source. While this requirement can 
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be guaranteed for the primary source (see appendix A.1), the stability of our λ2 
source is unlikely to meet this criterion. It is therefore necessary to introduce an 
additional wavelength, λ3, yielding another synthetic wavelength together with 
λ1: Λ1,3.  
To distribute the demands on the frequency stability of the two additional 
sources evenly, the synthetic wavelength Λ1,3 should be approximately 60µm, 
giving λ3 ≈ λ1 ± λ1/100. Now, to go from our 6mm synthetic wavelength to the 
60µm synthetic wavelength, a mere phase measurement accuracy of 2π/100 is 
required, translating to a fractional wavelength stability of 10-6. The same 
accuracy is also required of the synthetic phase measurement Φ1,3 to bridge the 
gap between the 60µm and 632.99nm wavelengths. The details of the required 
wavelengths and their stabilities, are summarized in Table 4-1. 
 

 Wavelength Stability Fractional 
stability 

Frequency
v 

Frequency 
stability 

λ1 632.99141nm ±0.00001nm 10-8 474.393THz 5MHz 

λ2 λ1±0.06330nm ±0.00063nm 10-6 v1 ± 47GHz 474MHz 

λ3 λ1±6.32991nm ±0.00063nm 10-6 v1 ± 4.7THz 474MHz 

Table 4-1 Wavelengths and stabilities required for multi-λ light source. 

 
Given light sources meeting these specifications, we proceed as follows: The 
synthetic phase Φ1,2 is measured, allowing us to determine 6mm OPDs to an 
accuracy better than 60µm. This data will allow us to add the appropriate 
number of 2π phase jumps to the measurement of Φ1,3, giving us a 
measurement accuracy better than 600nm over the total 6mm range, which in 
turn can be used to add the correct number of 2π phase shifts to the φ1 phase 
measurements. Provided the phase-measurement accuracy for our primary 
wavelength is 2π/1000, we now have a resolution of 0.06nm over a range of 
6mm. If we merely need to overcome the phase ambiguity between adjacent 
pixels, wavelengths λ1 and λ3 will be sufficient. 
 
To generate these wavelengths, we have an actively stabilized HeNe laser from 
Melles Griot, a tuneable external cavity diode laser by EOSI (now New Focus), 
and a similar laser from Newport, as described in appendices A.1-A.3. While the 
HeNe laser already fulfils our requirements, the tuneable lasers first need to be 
locked and stabilized to the desired wavelengths. 
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4.4  Wavelength stabilization 

The ultimate accuracy of our interferometer depends on the accuracy of the 
primary metrology wavelength used. This wavelength is provided by an actively 
stabilized HeNe laser by Melles Griot. Its cavity length is thermally adjusted to 
equalize the two Zeeman split modes of the cavity, of which only one is used as 
output. Since the two modes are only equal in amplitude when centred around 
the middle of the HeNe gain spectrum (see Figure 4-8), the laser is stabilized 
with respect to the centre of this spectrum. Measurements by the Dutch 
metrology institute (NMI) confirm that the laser is stable to better than 2MHz 
over 8 hours (see appendix A.1).  
 

1.4 GHz

640 MHz  
Figure 4-8 – HeNe gain profile and two Zeeman-split modes, illustrating the working principle of 

the Melles Griot HeNe locking scheme (not to scale). 

 
The choice of this particular wavelength was a result of the availability and low 
cost of a sufficiently stabilized source, together with the large amount of optical 
components designed for this wavelength. While we were free to choose our 
primary metrology wavelength using these criteria, the wavelengths of our other 
two lasers are consequently fixed by the specifications in Table 4-1. 
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Figure 4-9 – Generic feedback locking scheme. 

 
Tuneable lasers are able to lase at the unusual wavelengths required, as well 
as providing the possibility to dynamically adjust the wavelength by a generic 
feedback type locking scheme, as illustrated in Figure 4-9. 
 
The two most common types of wavelength comparators for stabilization 
purposes either use a molecular gas absorption spectrum or the mirror spacing 
of a Fabry-Perot cavity as wavelength reference. While gas absorption locking 
has the advantage of offering an absolute wavelength reference, there may not 
be any absorption at our wavelengths of interest. With Fabry-Perot locking on 
the other hand, any wavelength can be locked to, but this wavelength may not 
remain stable for a sufficiently long time. Both options were evaluated, and the 
results will be discussed in the subsequent subsections. 
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4.4.1 Molecular gas absorption 
The method by which the Melles Griot HeNe laser wavelength is locked can be 
considered as a type of gas absorption locking, since the HeNe gain spectrum 
is related to its absorption spectrum. The gain profile of the tuneable lasers is 
far too broad and temperature dependent to be useful as an absolute 
wavelength reference, nor are other lasers available with gain profiles which just 
so happen to be centred on our desired wavelengths. Instead we will have to 
rely on the absorption profile of another substance to serve as wavelength 
reference.  
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Figure 4-10 – gas absorption locking scheme for two lasers using an iodine gas cell. 

 
Given such a substance, the laser would be locked to the appropriate 
absorption peak by the well-known2, 12 scheme illustrated in Figure 4-10. By 
lightly modulating the wavelength of our laser, we produce a synchronous 
amplitude modulation signal, whose amplitude is roughly proportional to the 
gradient of the absorption profile at the current wavelength. When at the peak of 
the absorption profile, there will be no amplitude modulation at the frequency of 
the wavelength modulation. Instead, the amplitude modulation will occur at 
twice this frequency, and its harmonics, as can be seen in Figure 4-11 and the 
following treatment. 
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Figure 4-11 – Diagram illustrating the concept of modulation locking. 

 
Given a transmission profile of a substance as a function of wavelength, T(λ), 
let us examine the effect of a small oscillation in the wavelength being 
transmitted through it: 
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To second order, the response exhibits a DC component, a component at the 
modulation frequency proportional to the gradient of T(λ), and one at twice the 
modulation frequency, proportional to the second derivative of T(λ). 
 
We can therefore use the amplitude of the amplitude modulation component at 
the wavelength modulation frequency as a feedback signal. This is best 
achieved by using a lock-in amplifier which, besides being highly frequency 
selective, has the added advantage of amplifying our weakly modulated signal. 
 
The gas selected as a potential candidate for exhibiting absorption peaks near 
our desired wavelengths was molecular iodine – a well characterized 
substance, commonly used as wavelength standard13-18, with a rich absorption 
spectrum near our region of interest19. 
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Figure 4-12 – Set up to confirm the presence of iodine absorption lines.  

 
The presence of iodine’s main absorption peak group (transition 11-5, R(127) - 
consisting of 14 peaks around 632.9913nm, and transition 6-3, P(33), consisting 
of 10 peaks around 632.9920nm, all merged into one peak by Doppler 
broadening), was confirmed by measuring the lock-in response of the set up 
shown in Figure 4-12 while slowly sweeping the wavelength of the tuneable 
laser past the expected location of the peak. The ramp generator acted on the 
high sensitivity input (piezo) of the tuneable laser, while the oscillator acted on 
the low sensitivity input (current). The results can be seen in Figure 4-13. 
 
The width of the detected signal is primarily due to Doppler broadening, which is 
367.6 MHz at room temperature. The irregularities are due to a combination of 
laser amplitude variations during tuning, and the fine structure of the peak 
group. 
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Unfortunately no reliable absorption peaks were found using this set up around 
our wavelengths of interest. Such absorption peaks should exist (transitions: 7-
3, R(120); 7-3, P(114); 7-3, P(115); 8-4, R(60); 8-4, R(61); 8-4, P(54); 8-4, 
P(55), and transitions: 7-4, R(93); 7-4, R(94); 7-4, P(87); 7-4, P(88)), but would 
be significantly weaker than the main absorption peak group around 
632.9913nm. While the sensitivity of the measurement could be improved by 
several orders of magnitude by using an intra-cavity configuration for the Iodine 
cell, this was not considered practical, requiring a re-design of the commercial 
tuneable lasers. The alternative option of Fabry-Perot locking was investigated 
instead. 
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Figure 4-13 – Lock-in response from set up in Figure 4-12, demonstrating the detection of 
Iodine absorption lines. Frequency given as de-tuning from primary Iodine absorption peak 

 

4.4.2 Fabry Perot locking 
A Fabry-Perot etalon essentially consists of a two-mirror cavity, the 
transmissivity of which is a very sensitive function of the frequency of incoming 
light and the mirror separation.  
 
Peak transmission occurs periodically with a period called the “Free Spectral 
Range” (FSR) (see Figure 4-14), dependent on the mirror separation, d, 
according to: 

 
2
cFSR
d

=  (4.12) 

 
The transmission peaks therefore occur at the following frequencies: 
 

 , 1, 2,3,..
2m
cf m m
d

= =  (4.13) 

 
The full width at half maximum (FWHM) of these transmission peaks, is usually 
expressed as a fraction of the FSR and the inverse of this ratio is called the 
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“Finesse” (F) of the cavity. In a loss less cavity with two identical mirrors, the 
finesse depends only on the reflectivity of these mirrors according to: 
 

 
1
R
R

π
=

−
F  (4.14) 

 
Because of this sharply peaked transmission function, a Fabry Perot cavity can 
serve as a frequency reference. It is important that the mirror spacing remains 
constant if such a cavity is to be used for this purpose.  
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Figure 4-14 – Transmission spectrum of a Fabry Perot Etalon. 

 
For our requirements, a cavity with a FSR of 47GHz would be suitable, giving 
an approximate cavity-spacing of 3.19mm according to (4.12). We could then 
tune the cavity spacing such that there is a transmission peak at our stabilized 
HeNe wavelength (m≈10’000 in (4.13)), which would place our 2nd desired 
wavelength on an adjacent transmission peak, and our 3rd wavelength on the 
100th transmission peak from the HeNe peak. 
 
We have purchased such a cavity – a refurbished Burleigh Fabry-Perot (see 
appendix A.8), and fitted it with a pair of parallel mirrors. The transmission of 
our tuneable laser, as a function of frequency offset is shown in Figure 4-15. 
While the mirror spacing and hence also the FSR, are continuously adjustable, 
the finesse of the cavity is limited by the mirror reflectivity. Our cavity exhibits a 
finesse better than 60, equivalent to a FWHM of 780 MHz. Locking to within a 
small fraction of this FWHM is routinely achieved in the laboratory12, and this 
cavity can be expected to fulfil our requirements. 
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Figure 4-15 – Measured transmission characteristics of Burleigh Fabry Perot cavity. 

 
Locking could proceed as illustrated schematically in Figure 4-16. The cavity 
spacing would be weakly modulated, causing the transmitted intensity of the 
laser to be modulated as well. Similar to gas absorption locking (equation (4.11)
), the amplitude of the resulting intensity modulation at the frequency of the 
cavity modulation would be roughly equal to the derivative of the transmission 
spectrum (see Figure 4-17), and could therefore serve as an error signal to be 
fed back to the laser to stabilize it. 
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Lock-in

Oscillator

F.P. Cavity

 
Figure 4-16 – Scheme to lock a tuneable laser to a F.P. cavity. The flat cavity mirrors are shown 

curved only for aesthetic reasons. 

 
Near the locking region, the error-signal (Ve) is approximately proportional to the 
detuning of the laser’s actual optical frequency (νa) from the desired lock 
frequency (ν0). The laser’s actual frequency, in turn, is made to differ from its 
‘natural’ frequency (νn- without a feedback signal) by a constant times the 
feedback signal: 
 
 0( )e aV A ν ν= −  (4.15) 
 a n eBVν ν= +  (4.16) 
 
Figure 4-17 shows such an error signal measured with our cavity.  
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By appropriately amplifying or attenuating this signal (varying ‘A’), we can 
ensure an arbitrarily tight lock, limited only by the level of noise in the signal. In 
our case, we are limited to an accuracy of ~2 MHz – well within our 
requirements: 
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v
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−
= +

−
−

≈ +
 (4.17) 

 
Unfortunately, the transmissivity of a Fabry-Perot cavity is not only highly 
sensitive to the wavelength of the incoming radiation, but also to the mirror 
spacing. Differentiating (4.13) with respect to the mirror spacing yields: 
 

 22
f cm
d d

∂
= −

∂
 (4.18) 

 
So, the mirror spacing would need to kept stable to better than 3nm to fulfil the 
475MHz frequency stability requirement in Table 4-1.  
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Figure 4-17 – Error signal measured from Fabry-Perot locking set-up. 

 
One way to overcome this problem is to actively stabilize the cavity to our 
reference standard – the HeNe laser. Instead of feeding the error signal arising 
from a transmitted HeNe beam back to the laser, it would be fed back to control 
the mirror spacing of the Fabry-Perot, as shown in Figure 4-18.  
 
The challenge here is separation of the different signals passing through the 
cavity. It is essential that the control signal for the cavity is only due to the 
HeNe, while the tuneable lasers should only be controlled by their respective 
transmission signals. The following sections show a method for achieving this 
for three and two wavelengths respectively. 
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Figure 4-18 – Simplified scheme to lock a tuneable laser to a reference laser, via a Fabry Perot 

cavity. The flat cavity mirrors shown as curved for aesthetic reasons only. 

 

4.4.3 Three-wavelength locking scheme 
As discussed in section 4.1.1, it is not feasible to separate the three 
wavelengths using spectral means. However, given the light produced by the 
set-up shown in Figure 4-1, each wavelength can uniquely be identified by its 
intensity modulation frequency. Depending on the AOM settings, the beams of 
the three lasers might be modulated at 15, 20 and 25kHz, for example. By 
sending this bundle of three beams through the set-up shown in Figure 4-19 
each beam is attenuated according to the instantaneous transmission 
characteristics of the Fabry-Perot cavity at their respective wavelengths.  
 
Since the cavity modulation is limited to about 100Hz, the process of cavity 
modulation can be seen as quasi-static with respect to the intensity modulation 
of the laser beams themselves. We can therefore first separate the beams out 
by de-modulation at their respective frequencies, and then use the resulting 
signals to generate three feedback signals using de-modulation at the cavity 
modulation frequency.  
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Figure 4-19 – Full 3λ locking scheme, using shift-frequency multiplexing (c.f. Figure 4-1 & 

Figure 4-3). 
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Due to the limited number of lock-in amplifiers available at the time, only a 
limited 2λ demonstrator version of such a set-up was constructed, according to 
Figure 4-20. The switches allow us to either lock the cavity to the HeNe, the 
tuneable laser to the cavity, or the cavity to the tuneable laser. 
 
The presence of suitable error signals was confirmed by measuring at “A” while 
leaving the loop at “A” open, and sweeping the cavity past both the HeNe and 
Tuneable laser transmission peaks. The peaks were intentionally separated to 
demonstrate the absence of cross-talk between the signals (Figure 4-20). 
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Figure 4-20 – Two-λ demonstrator scheme for shift-frequency multiplexed wavelength locking 

 
The lock was confirmed by first manually tuning the cavity close to resonance 
before monitoring the signal at “A” and closing the loop. Figure 4-22 shows the 
expected drop in error-signal as soon as the loop is closed.  
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Figure 4-21 – Error signals from open feedback loop at location “A” of Figure 4-20 
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It should be noted that the feedback signal remains around 0.05V - 1/40 of the 
p-p amplitude of the error signal in Figure 4-21. From Figure 4-21, we can 
determine the value of A in (4.15) to be ~1.6 GHz/V, and hence deduce that the 
lock is maintained within 80MHz of our desired frequency – well within the 
requirements in Table 4-1. 
 
To test the lock’s immunity to cross-talk, the cavity was locked to the HeNe 
laser, while the tuneable laser was slowly swept past its cavity resonance. The 
tuneable laser was then locked to the cavity while the cavity separation was 
slowly swept past the HeNe resonance. No loss of lock occurred in either case. 
 
This demonstrator set-up shows the feasibility of using this locking method, 
once the availability of appropriate sensors warrants its use (see the beginning 
of this chapter). In the meantime, it is sufficient to lock only one extra laser at a 
time, since the available sensors are only capable of measuring the different 
wavelengths sequentially. In fact, only two lasers are required to measure our 
current mirror, since its asphericity is sufficiently small to introduce an OPD 
range well below 3mm. 
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Figure 4-22 – Feedback loop error signals observed before and after active lock. 

 

4.4.4 Two-wavelength locking scheme 
When only two wavelengths are involved (one being the stabilized HeNe 
wavelength here), instead of having to resort to a complicated de-modulation 
scheme of the type in section 4.4.3, the two can be separated by making use of 
polarization effects. A beam, as provided by the set-up in Figure 4-4 or Figure 
4-5, can be sent through our Fabry-Perot cavity and the two wavelengths can 
then be separated out again using a polarizing beam splitter, as shown in 
Figure 4-23. 
 
Such a set-up was constructed using our Fabry-Perot, HeNe laser and EOSI 
tuneable laser. The Fabry-Perot was modulated with 100Hz, with an amplitude 
of approximately 0.4nm (equivalent to 60 MHz of optical frequency). The 
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resulting signals at the photodiodes were first high-pass filtered at 75Hz and fed 
to two Femto lock-in modules (See appendix A.6 for specifications), which used 
the 100Hz driving signal as reference signal. The 75Hz high-pass filter is 
necessary to prevent a DC overload of the Lock-in modules during an active 
lock. After separately attenuating the de-modulated error signals from the HeNe 
and tuneable wavelengths, they were fed to the cavity control unit and tuneable 
laser piezo-input respectively. The existence of a lock was confirmed by 
observing the output from the two photodiodes. During lock, a 200Hz signal with 
a large DC offset is seen, corresponding to modulation around the peak 
transmission of the Fabry-Perot cavity. 
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Figure 4-23 – Two-λ locking scheme using polarization multiplexing. The dotted box is 

equivalent to the light source before the “locking” output of Figure 4-4 or Figure 4-5. 

 
To quantify the quality of the lock, we tuned the tuneable laser to the HeNe 
wavelength and measured a beat-frequency as a function of time (using a fast 
NewFocus photodiode), with- and without an active lock. The results can be 
seen in Figure 4-24. It is clear that even though the tuneable laser already has 
very good intrinsic frequency stability, the active lock improves this by a factor 
of 20, placing it well within the specifications in Table 4-1.  
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Figure 4-24 – Beat-frequency of HeNe and tuneable laser, as function of time, with- and without 

active locking 
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We now have a light source with the required wavelength properties to measure 
our mirror. Besides the issue of wavelength stability, we also have to consider 
the effect of OPD drifts within the light source, as excessive drifts can have a 
detrimental effect on our phase measurements (See chapter 5.2.2). In order to 
minimize these drifts, we have to take mechanical, thermal and atmospheric 
stability into consideration. These are the topics covered in the following 
sections. 
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4.5 OPD drifts 

Any changes in the optical path lengths inside the interferometer must be 
regarded as detrimental, as they will give rise to phase drift between the 
reference- and object-beams. 
 
The three major contributors to unwanted OPD changes inside the light source 
are mechanical vibrations, thermal expansion, and atmospheric turbulence. We 
have tried to reduce each of these contributions by adapting the design of the 
light-source and its components. We will now deal with these in turn. 

4.5.1 Mechanical considerations 
The first steps towards reducing the amount of mechanical vibrations is the 
choice of a Newport honeycombed optical table together with four vibration 
isolators (See appendix A.7 for specifications). This system is used to reduce 
the effect of building vibrations on the relative positions of optical components 
on the table. Short of complex suspension systems or expensive active 
damping solutions, these components offer the best means of isolating our 
optical table from external vibrations. 
 

     
Figure 4-25 – Custom designed optical mounts for AOMs, mirror-holders and beam-splitters 

 
Even so, the optical components fixed on the table are able to pick up acoustic 
noise present in the room. While sources of such noise will be reduced to a 
minimum during measurements by switching off unnecessary equipment, and 
placing as much equipment as possible in a sound-damped cabinet, a certain 
amount of exposure to sources of vibration will remain. These include the 
cooling fan of the tuneable laser driver, the presence of the experimenter, any 
vibrations that pass through the damping system of the table, and the 
mechanical vibrations of the Fabry-Perot cavity during the wavelength lock. 
 
To reduce the effect of these vibration sources, we have designed mounts for 
our optical components which should outperform commercially available 
mounts. The main method for improvement envisaged was a reduction in the 
beam-height, from 100 mm to just 27mm. Furthermore, the number of parts per 
component was kept to a minimum, while maintaining the required degrees of 
freedom to adjust the optics in the set-up. Once adjusted, the components can 
then be fixed in position by the application of counter forces. The resulting 
designs for beam cube-, AOM- and mirror-mounts are shown in Figure 4-25 (for 
technical drawings, see appendix A.5). 
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Figure 4-26 – Test-setup to measure the immunity to vibration of optical mounts. Positions ‘A’ 
and ‘B’ indicate the placement of the piezo-mounted mass to test the beam-splitter mount and 
mirror-mount respectively. The same set-up was constructed twice, once for each set of 
components 

 
The stability of the beam cube mounts and mirror mounts was quantitatively 
compared with that of their Newport equivalents by synchronous detection of 
OPD oscillations under active excitation. The set-up used was a Mach-Zehnder 
configuration (as illustrated in Figure 4-26), tuned to the middle of a fringe. A 
piezo-mounted mass of 100mg was attached to the mounts near the optical 
components, and the piezo was driven by a fixed amplitude signal at several 
different frequencies. The amplitude of the resulting OPD variations at the 
driving frequency was measured with a lock-in detector (using the amplitude of 
a full-fringe swing as reference), giving the component’s response for that 
frequency. The range of frequencies tested was from 50Hz to 1 kHz, 
corresponding to the lower acoustic range of the vibrational spectrum.  
 

 
Figure 4-27 – Comparison of vibrational sensitivity between commercial and custom designed 

beam-splitter mounts 
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Figure 4-28 – Comparison of vibrational sensitivity between commercial and custom designed 

mirror mounts 

 
A comparison of the response from our custom designed components with that 
from the commercial mounts (Figure 4-27 & Figure 4-28) shows a clear 
improvement. 
 
Despite this reduction in vibration sensitivity, the set-up still exhibits low 
frequency phase drifts. This is most likely due to a combination of temperature 
variations and air turbulence. With an appropriate combination of materials, the 
temperature sensitivity of the interferometer can be reduced. 

4.5.2 Thermal considerations 
The five most important materials used in building the interferometer are: steel 
(optical table), invar (interferometer frame – see Chapter 6), silica (fibers), BK7 
(beam-splitters) and aluminium (custom mounts). Each of these materials has a 
different thermal expansion coefficient, and the thermal dependence of the 
reference- and object-beam OPLs is defined by different combinations of these 
materials. The optical path difference between the reference and object beam 
must be kept below 3mm for our interferometer, but we have some liberty as to 
the total optical path length. By choosing to minimize the total OPL, we reduce 
the influence of several phase disturbing effects, such as turbulence, 
temperature drift, angular drifts, etc. With a non-minimal OPL however, it is 
theoretically possible to completely eliminate the effect of uniform temperature 
drifts, by equalizing the combined, effective thermal expansion coefficient of the 
reference- and object-arms. 
 
Although most of the customized components were manufactured from 
aluminium, aluminium does not contribute to the effective thermal expansion 
coefficient of the two arms. This is because all aluminium components are 
tightly screwed onto the stainless steel faceplate of the optical table. The fact 
that aluminium and stainless steel have significantly different expansion 
coefficients still gives rise to problematic temperature effects, such as warping, 
bending and creeping of the aluminium components secured to the optical 
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table, but the contribution of these effects to the OPD cannot be estimated with 
any confidence. It would be advisable to use only one type of material in the 
construction of commercial versions of this interferometer, to eliminate such 
warping problems. Referring to Figure 4-29 we can see why the flint-glass 
inside the AOMs is also neglected – each beam passes through the same 
amount of this glass, and it therefore does not contribute to the OPD. 
 
 

 
Figure 4-29 – Setup for thermal drift calculations. Materials influencing the optical path lengths 

differently are indicated. 

 
The contribution of the invar to the OPD is fixed, as the path-length inside the 
interferometer frame is fixed. The path-length through BK7 will also be 
considered to be fixed, since the arrangement of beam-splitters can not be 
changed, but we would theoretically be at liberty to add a “dummy” section of 
BK7 glass to one of the arms, if this should somehow prove to be 
advantageous. The only two variables we can now play with are the OPD 
through the silica-core fibers, and the OPD defined by steel. We can find the 
optimum combination of these two OPDs by requiring that the total OPD of the 
chief-ray through the interferometer be zero, and that the OPD change with 
temperature should be zero.  
 
The dependence of the OPL through a particular material on temperature can 
be approximated by: 
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 (4.19) 

 
 [ ]0 0/OPL T n l α ξ⇒ ∂ ∂ ≈ +  (4.20) 
 
Were l0 and n0 are the lengths and refractive indices at the nominal temperature 
respectively, α is the linear expansion coefficient, and ξ is the fractional change 
of refractive index with temperature, (1/n)(dn/dT). The dependence of the latter 
two coefficients on temperature is neglected. For the paths through air (the 
length of which is defined by stainless steel or invar), n is assumed here to be 
unity, and ξ is assumed to be negligible.  
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material/property α (×10-6K-1) ξ (×10-6K-1) n 

Stainless steel 17.6 - - 

Aluminium 23.1 - - 

Invar 1.7 - - 

Silica fibers 0.55 8.24 1.4571

BK7 7.1 1.78 1.5151

Table 4-2 Selected material properties at 20°C and for λ=632.8nm. 

 
The physical path length difference between object and reference beams for a 
particular material is trivially defined by: 
 
 

object referencematerial material materiall l l∆ = − , (4.21) 
 
The instantaneous optical path difference (OPD) between the object and 
reference paths is simply given by: 
 
 7 7invar steel silica silica BK BKOPD l l n l n l= ∆ + ∆ + ∆ + ∆  (4.22) 
 
The change in OPD with temperature can now be found using: 
 
 [ ]/ material material material material

materials
OPD T n lα ξ∂ ∂ = + ∆∑ . (4.23) 
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lint 60.0 60.0 180.0 0.0 0.0 

K7 75.4 10.0 129.4 99.1 871.1x10-6 

/Steel 643.4 82.4 725.8 561.0 9873.1 x10-6 

/Invar 680.0 0.0 680.0 680.0 1155.9 x10-6 

ilica 250.0 1169.7 1419.7 -1340.1 -11900.1 x10-6 

otal  3134.9 0 0 
OPD drifts 

able 4-3 – Path lengths of thermally compensated set-up in Figure 4-29. 

t two equations can now be set to zero, and we can solve for steell∆  
 using the material constants in Table 4-2, invarl∆ = 0.680m – twice the 
’s ROC – and 7BKl∆ = -0.0654m – the total thickness of the last three 
tters. From these calculations, we get: steell∆ = 0.561m and  
.920m. In other words, the object path through air, defined by stainless 
uld be 0.561m longer than the equivalent reference path, and the 
r should be 0.920m shorter than the reference fiber, to get zero net 
pansion difference between the object and reference arms. 
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This stainless-steel path-length difference can be achieved naturally, by 
choosing the longer arm of the light-source as the object arm (an assumption 
we have already made, by including the three prism-lengths in the object-, 
rather than the reference-arm in Figure 4-29). However, we need at least 25cm 
of object fiber to connect the interferometer frame with our light source, so the 
reference fiber would have to be at least 1.021m long.  
 
Many things could go wrong over such a length – especially since we have so 
far neglected the fact that the temperature distribution over the various 
components will not be uniform. If we wish to make use of the “zero net thermal 
expansion” configuration, we must ensure that the temperature changes occur 
as uniformly throughout the interferometer as possible. Future designs of this 
interferometer should therefore place the fibers, optical elements and 
interferometer frame in good thermal contact with the rest of the set-up. 
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lint 60.0 60.0 180.0 0.0 0.0 

K7 10.0 75.4 129.4 -99.1 -871.1x10-6 

/Steel 82.4 347.2 429.6 -264.7 -4658.7 x10-6 

/Invar 680.0 0.0 680.0 680.0 1155.9 x10-6 

ilica 250.0 467.0 1044.7 -316.2 -2807.9 x10-6 

otal  2463.7 0 7181.7x10-6 
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Table 4-4 – Path lengths of shortest-path set-up in Figure 4-30. 

ood thermal contact was not made one of the design criteria for this 
the various components are likely to experience very different, and 
ble temperature changes. For such a case, it is wiser to choose the 
ssible total optical path length (while maintaining a OPD of zero, of 

ince the temperature fluctuations induce a fractional change in the 
h length. 

onfiguration which minimizes the total optical path length while 
g a zero OPD is shown in Figure 4-30, with the corresponding 
given in Table 4-4. The object- and reference-arms are swapped, with 
uplers as close as practically possible to the output-ports of the light 
e length difference between the object and reference fibers needed 

OPD to zero is -0.217m, with the shorter length of fiber again chosen 
5cm long for practical reasons.  

 configuration chosen for our measurements. In future versions of the 
eter, where a more uniform distribution of temperatures can be 
d, it may be advisable to use the configuration shown in Figure 4-29 
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Figure 4-30 – Alternative arrangement of the interferometer, minimizing the total OPL. 

 

4.5.3 Atmospheric considerations. 
The last remaining factor contributing to OPD drift in the light source is the 
inhomogeneous nature of the atmosphere. Other authors have looked at OPD 
errors in high-accuracy interferometry due to atmospheric disturbances in a 
laboratory context4, 20, 21, but it may be useful to re-iterate some of their 
conclusions, and add some comments to their findings. 
 
Although the refractive index of air differs from unity by only ~256ppm, its 
dependence on a number of environmental parameters can introduce short- to 
medium-term fractional OPD drifts of 3.4x10-8 – equivalent to roughly 40nm, for 
the in-air path lengths of the set-up in Figure 4-29, where the OPD in air is 
particularly long. Borboff4 traces such drifts to temperature inhomogenities 
caused by convection, and shows that placing the set-up in an enclosure can 
reduce these drifts to 1.1x10-8. 
 
Slower, long-term (~10hrs) fractional OPD drifts of up to 1.6x10-6 (equivalent to 
2µm for our set-up) remain, and have been shown by Estler20 to be strongly 
correlated to pressure changes. 
 
The dependence of the refractive index of air on temperature and pressure 
variations is easily demonstrated by starting with the Claussius Mossotti 
equation22: 
 

 3 31 1
1 2

m

m
M
R

Rn
Mρ

ρ⎛ ⎞= + ≈ + ⎜ ⎟− ⎝ ⎠
 (4.24) 

 
Where M is the molecular mass of the compound, Rm is its molar refractive 
index, and ρ its density. The approximation holds for most gases at optical 
frequencies where n~1. 
 
Using the ideal gas law as a simplified model, we can relate the density of the 
gas to its temperature and pressure: 
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RT

ρ =  (4.25) 

  
R being the Gas constant (8.314JK-1mol-1), P the pressure and T the 
temperature. Consequently, (4.24) can be re-written: 
 

 31
2

mR Pn
MR T
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⎝ ⎠

 (4.26) 

 
The resulting sensitivity of the refractive index of air to temperature and 
pressure is shown in  Table 4-5, along with its dependence on humidity and 
CO2 concentration as reported by Estler20. Wile Estler dismisses the influence 
of CO2 concentration variations, the presence of an experimenter might render 
this assumption invalid. 
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Parameter Nominal Value Realistic 
changes (/8hrs) 

Fractional OPD 
sensitivity 

Realistic OPD 
drifts (our set-up) 

Pressure 101.3 kPa 0.6 kPa 2.68x10-6 kPa-1 2000nm

Temperature 20.0 °C 0.4 °K -1x10-6 K-1 40nm

Humidity 40 % 2 % -0.01x10-6 %-1 20nm

CO2 0.03 % 5.6 % 149x10-6 %-1 1000nm
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Table 4-5 – Sensitivity of refractive index of air to environmental parameters 

n average adult exhales approximately 6L of air every minute, the CO2 
ncentration of which is ~187 times larger than the usual 0.03% of the ambient 
mosphere23. Referring to Table 4-5, this change could therefore cause local 
actional OPD drifts of up to 8.4x10-6 – equivalent to ~10µm for our set-up. 

umidity drifts appear to have the least influence on the refractive index of air, 
nsidering that a realistic humidity drift of 2% only results in a fractional OPD 
ift of 2x10-8. 

egardless of the actual magnitude of the OPD drifts due to atmospheric 
nditions, they can be reduced by a factor of around 7.3 by replacing the air in 
e set-up with Helium, as reported by Dörband and Seitz24, where the use of 
elium flooding increased the attainable repeatability of measurements from 
058nm to 0.015nm. Since Helium has a refractive index 7.3 times closer to 
ity than air, the temperature and pressure effects outlined above will also be 
duced by this factor. The fact that the Helium would be provided from a 
andard source, would mean that the issues of humidity and CO2 concentration 
so fall away. 

 order to replace the air in the light source with helium, the surface of the 
tical table beneath the light source was first coated in adhesive plastic foil, 
d a chamber was built around it (see Figure 4-31). The chamber was then 
aled with vacuum sealant to minimize leaks. An exit valve can be opened to 
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flush the chamber with Helium. Using an oxygen meter, we can determine when 
the gas exiting the valve has a sufficiently low oxygen concentration. At this 
point, the valve will be closed with a balloon, serving as an indicator of a slight 
over-pressure. This over-pressure is necessary to maintain the helium 
atmosphere inside the container, even in the presence of small leaks. 
 
Even without the addition of helium to the chamber, the influence of 
atmospheric turbulence is reduced, since it is isolated form the effects of 
turbulence originating outside the chamber. 
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4.6 Conclusion 

In designing this light source, three main requirements were taken into 
consideration: versatility, wavelength stability and optical path length stability. 
Its versatility is evident in that it can be used for sequential as well as 
simultaneous multiple wavelength heterodyne interferometry, phase shifting 
interferometry as well as superheterodyne interferometry. Furthermore, it can 
be easily scaled down for less severe requirements.  
 
The required wavelength stability can be met for all three wavelengths thanks to 
a novel locking scheme. To the best of our knowledge, this is the first time such 
a locking scheme has been implemented. A simpler version of the locking 
scheme is perfectly adequate for the measurements performed in this thesis. 
 

 
Figure 4-31 – Light source equivalent to the schematic set-up in Figure 4-4. 

 
Several avenues for reducing the optical path length drift have been 
investigated and implemented. In doing so, a novel set of optical mounts has 
been designed. The use of helium gas to replace air in the set-up is also 
beneficial for the interferometer stage discussed in chapter 6. In future, the 
optical path length drifts can further be reduced by choosing an appropriate 
combination of materials for the construction of the light source. 
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5 Sensor 

In the early stages of this project, it was concluded that the type of sensor 
required to perform measurements with sufficient accuracy was not 
commercially available, and a separate PhD project should be devoted to its 
design, testing and further development. At the time of writing, no prototype 
sensor was yet available and alternative sensors had to be used to perform the 
measurements presented in this thesis. The optical system has been designed 
in such a way as to permit the implementation of a number of different detection 
schemes, each suited to one or more of the sensors considered. Two of these 
sensors, a standard CCD and a phase-measuring pixel detector, will be treated 
in detail and subjected to performance tests to estimate to which extent they 
realistically limit the measurement accuracy. A third potential sensor of the “fast 
sampling” type, will also be discussed briefly. 
 

5.1 Requirements 

Ultimately, the sensor must be able to measure the relative optical phase of the 
object and reference beams from our interferometer with sufficient accuracy to 
permit the inverse propagation algorithm to calculate the shape of the mirror 
under test to within the required accuracy of 0.1nm. Since the three sensors 
treated in this chapter are each based on a very different measurement 
strategy, it is impossible to specify a comprehensive list of quantitative 
requirements without first discussing the measurement strategy. While the 
subsequent chapters will do just that, we can first make a number of qualitative 
comments about requirements common to all three types of sensors. 
 
The optical path difference (OPD) between the reference and optical beam is 
expected to vary very rapidly over the area of the sensor, resulting in a fringe 
density of ~50mm-1. While the fringe density usually places a restriction on the 
minimum pixel density in order to resolve the fringes, the fact that we employ 
multiple wavelength interferometry means that in our case, this condition is 
relaxed to a restriction on the pixel size rather than the density.  
 

�

�

�

�

Sensor Position  
Figure 5-1 – Restriction on pixel size to prevent the pixel photosensitive area from spanning 
more than one fringe. The top two situations (marked with ticks) are acceptable, while the third 
situation (marked with a cross) is not. 
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In other words, it is acceptable to have more than one fringe between adjacent 
pixels, but we may not have more than one fringe over a pixel’s photosensitive 
area (see Figure 5-1).  
 

obj. fiber ref. fiber

various sensor
locations

mirror

 
Figure 5-2 – Dependence of sensor size on sensor position 

 
Unlike conventional applications where miniaturization is often the goal, a 
bigger total sensor area is advantageous for our interferometer. In our case, 
placing the sensor further away from the fiber tips typically improves the 
reference wavefront sphericity as well as reducing the interferometer’s 
sensitivity to positioning errors of the pixels on the sensor and relaxing the 
minimum pixel size requirement. However, we need to maintain the same field 
of view regardless of the sensor’s position. Therefore, the further from the fiber 
tips we wish to place our sensor, the bigger the total sensor area needs to be 
(see Figure 5-2). 
 
Since our light source only has a finite output power and the reflection off our 
mirror substrate is a mere 4%, the sensor needs to be sufficiently sensitive to 
allow the shot noise limited signal-to-noise ratio (SNR) to meet or exceed our 
requirements. Although averaging can be used to reduce the influence of such 
noise sources, our measurement time should be limited to ~1s to prevent drifts 
in the positions of interferometer elements from affecting our accuracy, and 
hence sufficient amount of charge should be collected by the sensor in this 
time. 
 

�
�

 
Figure 5-3 – Decomposition of an analogue signal into its digital form 

and the remaining quantization noise 

 
Even in the case of noise-free detection, an upper limit is placed on our phase 
measurement accuracy by the bit-depth of the data from the sensor. Errors 
caused by this limited bit-depth are said to be due to quantization noise (see 
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Figure 5-3). However, since the total noise is a combination of quantization 
noise and shot noise (as well as other types of noise like thermal- and flicker 
noise), we will experience no significant gain in accuracy by reducing the 
quantization noise far below the shot noise, or vice-versa. Most sensors are 
designed in such a way that when they are used near their saturation point, the 
electronic noise lies just below the quantization noise. 
 
Since there are drifts in the optical path length within our light source as well as 
in the positions of our interferometer elements, the quicker a phase 
measurement is performed, the more immune it is to such drifts. This is also the 
primary reason for considering heterodyne methods over phase shifting 
methods for the final interferometer. 
 

sensor

cover-
glass

 
Figure 5-4 – Diagram illustrating the effects of multiple reflections and 

wave- front distortions due to a cover-glass 

 
Another common source of error is the presence of a protective “cover-glass” 
on most commercial sensors. Despite the fact that the light from the 
interferometer passes through this glass almost common-path, the distortions of 
the reference and object wave fronts differ appreciably, so that a net optical 
path difference (OPD) error is introduced. Multiple reflections at the interfaces 
also serve to introduce systematic errors in our measurement (see Figure 5-4). 
Our ideal sensor would have no such cover glass. 
 
It is clear that several of these requirements are conflicting (such as the sensor 
area- and pixel positioning accuracy requirements or the measurement time- 
and sensitivity requirements). Klaver1 has already looked at the resulting trade-
offs in detail, but recent developments have relaxed several of the requirements 
assumed in this treatment. Instead of generating a new and generally applicable 
parameter space of suitable sensor characteristics, we will look at the 
performance of several available sensors for our interferometer; allowing us to 
identify the characteristics which limit their accuracy. 
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5.2 CCD 

Although high speed CCDs are now available with frame rates exceeding 1kHz, 
we have chosen a simple video frame rate CCD to make our proof-of-concept 
measurements. Should other, more promising, detectors prove to be unfeasible, 
such high frame rate cameras could potentially further improve the 
measurement accuracy of this approach. 
 
Depending on the type of shutter mode and frame rate of the camera, we can 
use the light source in either continuous heterodyne- or discrete phase stepping 
mode. For high frame rates and full-frame shutter modes, continuous 
heterodyne operation will be the most suitable, since the abrupt phase-stepping 
of the Acousto-optic modulators (AOM) introduces noticeable transients when 
the phase is stepped at frequencies above 1kHz. In the absence of a full-frame 
shutter, the effective time at which a sample is recorded varies from pixel to 
pixel, and it is therefore better to use phase-stepping. 
 
The CCD used in our proof-of-concept measurements is a Monochrome Sony 
XC-77RR-CE interline transfer CCD. It has a sensing area of 8.8x6.6mm, 
containing 756 x 580 pixels. The specifications of the camera state a cell size of 
11x11µm, but no information is given about the size of the actual photosensitive 
area per pixel. Since smaller pixel sizes are favourable for our application, we 
have assumed a worst-case scenario of cell size = pixel size. 
 

5.2.1  Data acquisition 
For this camera, phase stepping interferometry (PSI) was chosen over 
heterodyne detection due to the absence of a full-frame shutter mode. Figure 
5-5 shows the test-setup used to evaluate the camera. A phase-step of π/2 was 
performed before each recorded frame, by triggering a phase-step in the AOM 
driving signal of the light source with a synchronization signal from the CCD’s 
driving electronics. We then record several frames at 25 fps (frames per 
second) using a National Instruments frame-grabber card with a bit-depth of 8 
bits.  
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Figure 5-5 – Test setup to evaluate the CCD 

 
The data collected consists of a series of intensity-images (40 in our case), 
each with a phase shift of π/2 with respect to the previous frame. Figure 5-6 
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shows a sequence of four such images. These sequences of intensity-images 
now need to be turned into phase-maps. The well known Wyant 4-bucket 
algorithm2 given by equation (5.1), shows how four successive intensity values 
at a point in the interferogram (I1,…,I4) can combined to give the phase at that 
point: 
 

 4 2

1 3

arctan I I
I I

φ
⎛ ⎞−

= ⎜ ⎟−⎝ ⎠
 (5.1) 

 

 
Figure 5-6 – Sequence of four consecutive intensity images having undergone incremental 

phase-shifts. Also shown is the resulting retrieved phase. 

 
Besides this algorithm, there is a myriad of other algorithms to perform the 
same task. They vary in terms of the number of intensity images considered 
(Schwider-Hariharan - 5 images, Zhao & Surrel – 6, Hibino – 9, etc.), the size of 
phase-steps required between images (Carre – arbitrary phase-step, Larkin & 
Oreb - π/3, etc.), and the way in which the intensities are combined before the 
arctangent operation is performed. These algorithms have been extensively 
reviewed3, and numerically, as well as experimentally, compared for robustness 
against various systematic and stochastic sources of error4. Essentially, it can 
be concluded that algorithms using more images are more accurate, even when 
compared to the average of a sequence of phase values obtained with lower-
image-number algorithms spanning the same total number of images. Based on 
the relevant reviews in the literature3-5 and our own numerical simulations, we 
conclude that the windowed discrete Fourier transform method (WDFT), shown 
in equation (5.2), is the most suitable for our purposes. In fact, the Wyant 
algorithm is simply a special case of the WDFT algorithm, using N=4, and a 
uniform windowing function. 
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with: 
 0jw j≥ ∀  (5.3) 

 
Here, wj represent the discrete values of a “windowing function”, such as the 
Hanning, Blackman-Harriss, or Hamming windows (Figure 5-7). We have 
chosen to use the Hanning window. The results of applying this algorithm to our 
data can also be seen in Figure 5-6. 
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Figure 5-7 – Hanning windowing function for WDFT method. 

 
Although the choice of algorithm is strongly dependent on the expected sources 
of error in the measurement, we have presented the choice of algorithm before 
the treatment of the error sources to enhance readability. 
 

5.2.2 Error sources 
An accurate phase measurement is impeded by a number of sources of error, 
both systematic and stochastic in nature. The stochastic errors include: 
 

• Intensity fluctuations during the measurement process. 
• Shot-, flicker- and thermal-noise. 
• Zero-mean phase fluctuations (e.g. due to vibrations). 
• Quantization noise (although technically a systematic source of error, its 

behaviour is largely stochastic) 
 
Our WDFT method already averages these effects over the measurement 
period. Due to the large number of available pixels, a further reduction of these 
errors can be expected from the averaging of neighbouring pixels. Regions 
where the modulation depth is below the noise limit can easily be identified and 
discarded before further processing. 
 
The systematic sources of error present a greater challenge: 
 

• Camera nonlinearity. The resulting phase error is a function of both mean 
intensity and modulation depth. 

• Systematic phase-drift during the measurement (i.e. with nonzero mean). 
The resulting phase error is a function of the actual phase value only 

• Cross-talk between the reference- and object-beams before entering the 
fibers. The resulting phase error is function of the actual phase and the 
modulation depth. 

• Wavefront distortion and multiple reflections from cover-glass. The 
resulting phase error is a function of pixel position and interferometer 
geometry. 

• Pixel positioning- and dimension- errors. The resulting phase error is a 
function of pixel position. 
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• Electrical inter-pixel cross-talk. The resulting phase error is similar to a 
weak spatial filtering of the phase map.  

 
Intensity response 
The robustness against a nonlinear intensity response is a particular strength of 
the WDFT algorithm. A nonlinear intensity response of the camera is equivalent 
to a deformation of the sinusoidal fringe profile. This in turn is equivalent to the 
introduction of higher harmonics, which are automatically filtered out by the 
algorithm, especially in the presence of small stochastic phase variations. 
Although the camera could be calibrated, and a correction applied to the data 
before the phase-retrieval algorithm is used, the excellent linearity and noise 
characteristics of the Sony camera, together with the robustness of the 
algorithm make this unnecessary. (See also the discussion in 14.10.2 in ref2). 
 
Phase Drift 
Phase drift does introduce a significant error in the measurement, and while 
most phase retrieval algorithms are immune to a linear phase drift, nonlinear 
drifts are not cancelled. Figure 5-8 shows a typical phase drift during a 40-frame 
measurement and the resulting phase-error from our WDFT algorithm.  
 
The fact that this phase error is only a function of the actual phase, offers us a 
unique way of reducing its influence after having performed the measurements, 
which will be explained below. As far as we are aware, this method has not 
previously been reported, and takes advantage of the large fringe density in our 
interferograms – a situation otherwise often avoided in metrology. 
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Figure 5-8 – Typical phase drift during 40-frame acquisition, and corresponding phase error 

 
Having a large number of fringes over a large number of pixels, especially if no 
“stationary” points (of low fringe density) are present, means that the statistical 
distribution of phase values over the CCD should be uniform. That is, there 
should be no intrinsic preference for particular phase values. This is in 
agreement with simulations of interference patterns similar to ones to be 
expected in our set-up. Introducing phase-drift causes a significant and easily 
observable change in the statistical distribution of measured phases.  
 
This can be understood with the help of the diagram in Figure 5-9. Due to the 
nonlinearity of the actual- to measured-phase mapping, certain regions of actual 
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phase will be mapped to much smaller regions of measured phase, meaning 
that such measured phases will occur more often in the interferogram, and vice 
versa. 
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Figure 5-9 – Redistribution of phase values causing a change in probability density function 

 
The expression relating the mapping function to the statistical distributions can 
easily be derived to be: 
 

 
( )

1( ) ( )
m

a

meas m actual ap p
φ
φ

φ φ
∂
∂

=  (5.4) 

 
Where ‘p’ stands for the probability density function. If we now assume a 
uniform distribution of the actual phases and only a very small phase-error in 
our measurement, so that φm = [1+ε(φa)]φa, we can write: 
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Although we cannot uniquely determine the drift from the statistical distribution 
of measured phases, we can find the actual- to measured-phase mapping (by 
finding ε), and use its inverse to correct our observed phases. 
 
We therefore proceed as follows: Our series of intensity images is turned into a 
phase-map by using the WDFT algorithm, and a histogram of the phase 
distribution is calculated for 128 phase regions. After low-pass filtering the 
distribution to discard stochastic noise, we use the resulting “smoothed” 
histogram to calculate the forward-mapping function according to equation (5.6). 
The mapping is inverted using an interpolated look-up table, and applied to the 
phase-map. 
 
The application of this method is shown in Figure 5-10. The test setup of Figure 
5-5 was used to generate an interferogram with a low fringe-count for easy 
unwrapping. A distinct reduction of artefacts – vertical streaks in the same 
direction as the interference fringes – can be seen. It is important to realize that 
although the results look similar, this is not a spatial filtering technique. The 
observed artefacts are removed purely by re-mapping the phases. The method 
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can be used to reduce phase errors due to unknown phase drifts during a PSI 
measurement. It should not be used for interferograms with areas of low fringe-
density, since such regions will upset the uniform phase distribution. 
 

 
Figure 5-10 – Difference between corrected (bottom) and uncorrected (top) interferograms. The 
artefacts remaining in the corrected image could be due to multiple reflections in the CCD cover 

glass. 

 
Cross-talk 
Another error in our phase measurement is that of cross-talk between the 
reference- and object-beams before entering the fibers. For regions of fairly 
uniform modulation depth, this error is also corrected by the above procedure, 
since it behaves like a phase-dependent error (See chapter 4). When the 
modulation-depth varies significantly over the CCD, the error becomes 
modulation-depth dependent and as such, more difficult to remove. Great care 
has been taken in designing the light source to avoid any cross-talk, especially 
at the primary metrology wavelength, where there is no crosstalk whatsoever. 
The secondary and tertiary wavelengths have been measured to exhibit cross-
talk below 10-3. We believe it is inadvisable to attempt modulation-depth 
dependent correction of this error, as we cannot confidently distinguish between 
errors due to cross-talk, and errors due to the actual mirror figure in this case. 
 
Coverglass related errors. 
The presence of a cover-glass introduces two types of errors. Firstly, wavefront 
distortion is introduced even by a perfectly plane-parallel cover-glass, which 
manifests itself as a low spatial frequency OPD error. In the case of a textured 
cover-glass surface, this wavefront distortion is of similar spectral content as the 
cover-glass surface features. Secondly, multiple reflections between the front- 
and back-surface of the cover-glass, as well as reflections involving the CCD 
itself, will interfere with the purely refracted beams, causing a small phase error, 
which in turn also translated to an error in the measured OPD. High spatial 
frequencies are characteristic of multiple reflection induced OPD errors. Novak6 
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states that, compared to the reflections occurring at the front- and back-
surfaces of the cover-glass, the reflections involving the CCD surface may be 
neglected. 
 
While the form of the OPD errors due to wavefront distortion is not very 
sensitive to the position and separation of the fibers, the multiple-reflection 
induced errors are very sensitive to these factors. The converse is true for the 
size of these errors. The OPD errors induced by wavefront distortion increase 
with increasing fiber separation, while the size of the multiple reflection induced 
OPD errors does not depend on the fiber separations at all, instead depending 
almost exclusively on the reflectivities of the various surfaces involved. 
 
To illustrate this, several types of cover-glass shapes were simulated using our 
raytracing approach, and the resulting OPD errors were calculated. The 
approach involved the tracing of four rays to each detection point (See Figure 
5-11): One purely refracted ray and one multiply reflected ray from each the 
“reference” and “object” point sources. The object point-source was placed at 
the focus of the object beam as an approximation. The multiply relfected rays 
underwent two reflections at the back- and front-face of the cover glass, n=1.54 
with an estimated reflectivity of ~0.5% due to antireflection coatings. The 
starting directions of the rays were adaptively chosen to intersect the CCD 
surface at the exact pixel positions. Figure 5-11 – Figure 5-14 show the various 
cover-glass shapes and the resulting OPD errors. 
 
The un-wrapped total effective OPL for each point-source was calculated as 
follows: 
 

 [ ]2sin
2t l tOPL OPL R OPL OPLλ π
π λ

⎛ ⎞≈ + −⎜ ⎟
⎝ ⎠

 (5.7) 

 
Where OPLt and OPLl stand for the “transmitted” and “reflected” OPLs 
respectively, and R is the intensity reflection coefficient of one surface.  
 
The first term may be attributed to the wavefront distortion, while the second 
term is due to the field arising from the multiple reflections. To illustrate the 
difference between OPD errors from these two effects, the terms are shown 
separately in the figures. The approximation above is valid for reflectivities of 
the surfaces below ~5%.  
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Figure 5-11 – OPD errors introduced by a plane-parallel cover glass (top). Errors due to 
wavefront distortion (bottom left) have been separated from errors due to multiple reflections 
(bottom right). Piston and tilt have been removed. 

 
 
 

 
 
 
 

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

X on CCD (mm)

Y
 o

n 
C

C
D

 (
m

m
)

Wavefront Distortion (rms=1nm)

nm

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

    −4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

X on CCD (mm)

Y
 o

n 
C

C
D

 (
m

m
)

Distortion due to multiple reflections (rms=0.5nm)

nm

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 
Figure 5-12 – OPD errors introduced by a wedged cover glass (top). Errors due to wavefront 
distortion (bottom left) have been separated from errors due to multiple reflections (bottom 
right). Piston, tilt and wavefront errors due to a plane glass have been removed. 
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Figure 5-13 – OPD errors introduced by a cover glass with a 334nm rms random surface profile 
(top left and right). Piston, tilt and wavefront errors due to a plane glass have been removed. 
Note the difference between the surface profile and the resulting error. 
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Figure 5-14 – OPD errors introduced by a cover glass with a sinusoidal ripple on the front 
surface, with a period of 0.28mm and an amplitude of 100nm (top). Piston, tilt and wavefront 
errors due to a plane glass have been removed. 
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The effect of interference between the transmitted and multiply reflected beams 
on the intensity distribution of one point source alone is also well approximated 
by the following formula: 
 

 [ ]21 cost l tI I R OPL OPLπ
λ

⎧ ⎫⎛ ⎞≈ + −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 (5.8) 

 
The intensity distribution on the CCD from a single point is therefore an 
indication of the type of effects to be expected on the OPD due to multiple 
reflections. 
 
Figure 5-16 shows artefacts potentially due to the presence of a CCD cover-
glass. A low fringe density image obtained with our testing set-up was un-
wrapped, and the theoretical OPD for this configuration (Figure 5-15) was 
subtracted. The diagonal streaks observed are similar in structure to fringes 
which appear on intensity images with only one beam illuminating the CCD, 
pointing towards multiple reflections as possible cause. 
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Figure 5-15 – OPD measurement from test-setup shown in Figure 5-5, together with the 

theoretical OPD profile, for a small fiber separation of ~0.13mm 
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Figure 5-16 – Difference image of the two images in Figure 5-15, showing artefacts potentially 
due to the presence of a cover glass in the un-filtered image (left) and in a smoothed version of 
the same image (right) 

 



Sensor 

 

102 CCD 

Use of spatial filtering to average out the diagonal streaks in Figure 5-16 reveals 
yet another error structure on our interferogram. We will see in the next section 
how this structure becomes more dominant as the fringe density is increased, 
and will form a limiting factor of our measurement accuracy. 
 
We have tried to remove the cover glass from a Sony CCD described above, 
but the removal process proved difficult, even for the optical workshop of TPD. 
During the removal process, the CCD was damaged, causing missing lines and 
excessive noise in the measured data. However, we believe that it should be 
possible to obtain CCDs from their manufacturers without a cover-glass. Future 
work will be carried out with such sensors. 
 
As the fiber separation (and hence also the fringe-density) is increased towards 
the separation used in our final setup, we find that the spatial frequency of the 
diagonal-stripe features quickly exceeds the sampling density, and the feature 
ceases to be visible. This is consistent with the behaviour of multiple reflection 
related patterns arising from a significant wedge in the cover glass. The vertical 
stripe pattern on the other hand maintains the same spatial frequency and 
becomes more pronounced (i.e. grows in amplitude). We can therefore not 
attribute these two patterns to the same cause. While the latter behaviour is 
consistent with wavefront-aberration induced errors, the next subsection will 
show data which suggests a different cause. 
 
Pixel positioning- and size-errors 
Another potential cause for the vertical lines seen in Figure 5-16, and again in 
our measurement results of chapter 7, are pixel positioning and size-errors.  
 
Such errors can occur during the lithography process of a CCD if the mask 
alignment or even the masks themselves are imperfect. In such a case, the 
pixel position errors and pixel size errors can be expected to be related. The 
vertical stripes mentioned earlier are characteristic of a simultaneous and 
systematic variation of pixel size- and position. We will now treat the effects of 
these two types of errors separately before estimating the magnitude of the 
errors required to produce the observed effect. 
 
Due to the finite size of an individual pixel, problems arise when the fringe 
period approaches the dimensions of a pixel. The pixel effectively averages the 
fringe-pattern over its area2, which affects the observed modulation depth. The 
ratio of the measured modulation depth to the actual modulation depth is called 
the Modulation Transfer Function (MTF) of the CCD, and depends on the pixel 
size (dpixel) and the fringe separation (dfringes): 
 

 pixel

fringes

d
sinc

d
MTF

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (5.9) 

 
When the pixel size is exactly one fringe period, the MTF is zero. This gives us 
the restriction of a maximum pixel size as mentioned in section 5.1. The 
modulation depth will vary over the CCD due to two factors – a varying 
amplitude ratio between the reference and object beams, and a variation of the 
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MTF. The former factor will cause the modulation depth to vary slowly and 
smoothly over the area of the CCD, due to the Gaussian intensity profile of the 
two beams. Any other variation in modulation depth could be due to a variation 
in pixel size.  
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Figure 5-17 – Modulation depth profile showing oscillations in the x-direction. 

 
Figure 5-17 shows such a variation of modulation depth in an interferogram 
taken with our test setup, using parameters similar to our final setup. The period 
of the pattern is 26.2 pixels. The fiber-to-CCD distance was 34.6mm, and the 
fiber-to-fiber distance was 1.25mm, giving a fringe spacing of 17.5µm, 
compared to the reported pixel-dimensions of 11x11µm. The MTF is therfore 
0.47 – meaning that the modulation depth cannot exceed this value. The 
oscillations in the x-direction are an indication that the sizes of the pixels vary 
along the x-direction. We needn’t correct the resulting variation in the CCD’s 
MTF, but an accompanying effect on the pixel spacing could pose a serious 
problem. 
 
Up until now, we have assumed that the points at which the OPD function is 
being sampled are regularly spaced in a plane, according to the manufacturer’s 
specifications of the CCD area and number of pixels. Figure 5-17 should give us 
cause to draw this assumption into question. We can quantify the effect of an in-
plane pixel position error as follows: 
 

 2 2

2

( ) ( )

( ) ...
2!

i i

measured i i i

i
i i

x x

OPD x OPD x

OPD OPDOPD x
x x

ε

εε

= +

∂ ∂
= + + +

∂ ∂
 (5.10) 

 
Where xi is our assumed position of the pixel, and εi is the error in this 
assumption. For both the test setup in Figure 5-5 and our actual measurement 
configuration, the OPD function is predominantly linear, with the first derivative 
dominating over the second- and successive derivatives by several orders of 
magnitude. To first order, our OPD function is given by: 
 

 ( ) (0)i i
sOPD x OPD x
d

≈ +  (5.11) 
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Where s is the separation of the two fiber-tips in the test set-up, or the distance 
between the focus of the reflected object beam and the reference fiber-tip in the 
full setup, and d is the distance between the fiber-tips and the CCD. Therefore, 
our measured OPD, in the presence of a small positioning error, is: 
 

 ( ) ( )measured i i i
sOPD x OPD x
d

ε≈ +  (5.12) 

 
In other words, the OPD error will be directly proportional to the positioning 
error. For the test setup used to generate Figure 5-17, we have s=1.25mm and 
d=34.9mm. Hence the positioning error will appear directly on our OPD 
measurement, attenuated by a factor of 27.92. 
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Figure 5-18 –Measured and theoretical OPD from our test-setup, with a high fringe density 

similar to the one to be expected from our final measurement set-up. 

 
Figure 5-18 shows such an OPD measurement – from the same measurement 
which also gave rise to the modulation depth profile of Figure 5-17. The 
difference between our OPD measurement and the theoretical OPD (Figure 
5-19) shows the same 26.2-pixel-period sinusoidal “horizontal wobble” as the 
modulation depth profile – giving us reason to believe that this error is indeed 
due to non-uniformities of the features on the CCD.  
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Figure 5-19 – Diagram showing measured OPD minus the theoretical values (rms = 29nm). The 

deviations show the same structure as the modulation depth variations of Figure 5-17. 
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Using the amplitude of the oscillations in the cross-section of this measurement 
error as an indication, together with equation (5.12), we arrive at a maximum 
absolute deviation from the ideal pixel positions of +/- 0.5µm (See Figure 5-20). 
The pixel-to-pixel positioning error is significantly less of course.  
 
Such positioning errors seem excessive, despite the age of the CCD. At the 
time of manufacture, <1µm processes were already being used. Nonetheless, 
the experimental evidence strongly points towards a systematic pixel position- 
and size-error. 
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Figure 5-20 – Cross-section of pixel-positioning errors derived from deviation of the measured 

OPD from theory. 

 
It is observed that the amplitude of these errors for different fiber-to-fiber 
distances decreases with reduced fringe density. This is in accordance with 
equation (5.12), which indicates a reduced sensitivity to CCD positioning errors 
at lower OPD slopes. Wavefront aberration errors, discussed in the previous 
subsection (see Figure 5-14), can also explain this behaviour, but fail to account 
for the observed variation in modulation depth. 
 
We can attempt to correct for in-plane CCD geometry errors by estimating the 
correct effective location of the pixels to first order, using our error 
measurements from the test-setup together with equation (5.12). Once we have 
an estimate of the correct pixel locations, we can use interpolation techniques to 
get the data at our desired points. Such a calibration procedure has recently 
also been carried out by Sommargren7 using a setup virtually identical to ours. 
Unfortunately, the presence of a coverglass makes such a calibration 
impossible. 
 
Considering that <0.2µm processes are now available, we may expect a 
significant improvement in the accuracy of PSI methods using CCDs. Another 
way to reduce the influence of these errors is to measure further from the fiber 
tips. In order to maintain the same field of view, the CCD would need to be 
proportionally larger. 



Sensor 

 

106 CCD 

5.2.3 Multiple wavelength data 
With several measurements shown above, as with the final measurement set-
up, the fringe density is so high that standard phase-unwrapping techniques 
cannot be applied. This is the reason for introducing a second measurement 
wavelength with which the same measurement is performed. Subtracting the 
two phase profiles obtained this way, gives rise to a “synthetic phase” profile 
(see chapter 4), which pertains to a “synthetic wavelength”, given by (4.9), 
much longer than either measurement wavelength. The synthetic phase profile 
has fewer phase-jumps than either of the measured phase profiles, and can be 
unwrapped with the algorithm mentioned in the following subsection. Ideally, 
this unwrapped synthetic phase profile could be turned into a rough absolute 
OPD measurement with an accuracy better than 600nm, thus allowing us to 
calculate the correct number of 2π phase-shifts for every pixel of the phase-
profile from our primary measurement wavelength. This then gives the absolute 
OPD with the measurement accuracy for our primary measurement wavelength. 
 
The interferometer and light source are indeed designed to allow this approach, 
but the limited accuracy of the sensor requires us to proceed differently. As 
mentioned previously, the OPD function is predominantly linear – the deviation 
from a best-fit plane being only a few wavelengths over the CCD area. 
Consequently, we can perform the following steps: 
 

1. The measured phase profiles are turned into the synthetic phase profile. 
2. The synthetic profile is un-wrapped. 
3. The best-fitting plane to this phase profile is determined. 
4. This best-fit plane is scaled by a factor of Λ1,2/λ1 to give an estimate of 

the best-fitting plane to the λ1 phase profile. 
5. The scaled best-fit plane is subtracted, modulo 2π, from the λ1 phase 

profile, giving a profile with a reduced fringe density. 
6. This profile is un-wrapped, and the best fit plane previously subtracted is 

added again. 
 
The resulting absolute phase profile differs from the originally measured λ1 
phase profile only by an integer number of 2π steps at each pixel and can be 
turned into an OPD profile by scaling it by λ1/2π. This approach has been used 
to un-wrap all of the measurements shown in this section. 

 
By fitting a plane to the synthetic phase profile, we average out all stochastic-, 
and several systematic errors over the area of the CCD – in essence this is a 
noise reduction technique. For very severe aberrations, we would be at liberty 
to fit a more complicated shape instead of a plane, and proceed as above. 
 

5.2.4 Unwrapping routine 
Due to the presence of “bad” pixels in all but the high-end cameras, our 2D 
unwrapping routine should exhibit good immunity to noise. Furthermore, the un-
wrapping routine should be able to deal with “masked regions” – a fringe pattern 
where certain regions are excluded from the unwrapping process, either 
because of low modulation depth or because of diffraction effects (e.g. just 
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inside our central aperture). We will now describe a fast and simple hybrid 
method exhibiting these properties. 
 
To deal with possible noise, we will first temporarily “smooth” our interference 
pattern. As we shall see later, this smoothing effect does not carry over to our 
final answer.  
 
Instead of naively smoothing the phase map per se, which would also smooth 
the critical discontinuities at 2π phase jumps, we will first decompose our phase 
map into its sine and cosine components, before smoothing each one and re-
assembling our phase map via the arctangent function. The result is a 
smoothing effect which leaves our discontinuities intact (see Figure 5-21 & 
Figure 5-22). The degree of smoothing required depends on the spatial 
frequency of our features of interest and the amount of noise. The main purpose 
of this smoothing is merely to prevent the false identification of 2π phase jumps. 
We are not trying to reduce the noise in our final measurement. 
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Figure 5-21 – Exaggerated example of a wrapped, noisy phase profile (the noise-free phase 

profile is represented by the dashed line) 
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Figure 5-22 – Comparison between naïve and component-wise smoothing, using the same 

smoothing kernel. (Dashed line – noise free phase profile) 
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We now take the difference between our smoothed and original phase maps 
(modulo 2π), to be added again after unwrapping the smoothed phase profile. 
 
The unwrapping used here consists of a sequence of four 1D unwrapping steps: 
from left to right, from top to bottom, from right to left and from bottom to top. 
Each of these unwrapping steps deals with the presence of masked regions by 
extending the masked regions in the direction of unwrapping, as if casting a 
shadow (see Figure 5-23). It is important to note that there are some choices of 
masks which will not permit a complete unwrapping of the un-masked regions. 
For our purposes however, this approach is sufficient. 
 

        
Figure 5-23 – Example of a masked region (left) and the extended mask used for left-to-right 

unwrapping (right). The black regions are not involved in the un-wrapping procedure. 
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5.2.5 Summary 
Figure 5-24 summarizes the methods outlined in this section to interpret 
measurements taken with a CCD-type sensor to retrieve the absolute OPD 
function produced by our interferometer. The steps show how the intensity 
measurements are converted to phase measurements, how these 
measurements are corrected for systematic errors and how the under-sampling 
of the phase function can be overcome by using the phase data from the other 
wavelength of our multiple wavelength light source.  
 
Performing these steps on data from the test-setup, allows us to estimate the 
accuracy with which OPD measurements can be made using our CCD. With 
similar parameters as for the actual measurement set-up, the OPD function for 
two fiber-tips was measured, and the theoretical OPD subtracted to obtain an 
error-image.  
 
The stochastic noise in the error image can be reduced significantly by spatial 
averaging. Since the CCD provides many more data-points than required for 
our spatial resolution of the test mirror, such averaging is permissible. An 
increased bit-depth (>8 bits) could further reduce the stochastic noise observed. 
The remaining error image has an RMS value of 29nm – due primarily to CCD 
geometry errors. These errors can be corrected using calibration procedures in 
the absence of a cover-glass. Unfortunately, the presence of the cover-glass 
makes such a calibration impossible, and will itself also contribute a small 
amount of error directly. 
 
Newer CCDs have both higher bit-depths and better feature positioning 
accuracies than our CCD. If one of sufficient size can be obtained without the 
cover-glass, it is likely that our measurements could be performed to the 
required accuracy using the methods outlined in this chapter. 
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Figure 5-24 – Flowchart showing the procedure to convert a series of PSI intensity images into 

an absolute phase profile, with a number of error-reducing steps 
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5.3 Fast-sampling type sensor 

A fast-sampling type sensor is essentially the same as a CCD sensor, but with a 
much faster frame-rate than the video frame rate of 25fps. The primary 
advantage of a fast-sampling type sensor is the possibility of measuring the 
interferogram of both wavelengths simultaneously, together with the ability to 
use heterodyne interferometry rather than phase-shifting interferometry. For the 
latter, the sensor must also have a full-frame shutter – that is, all pixels must 
sample the light intensity during the same period of time over the whole CCD. 
 
Such sensors are available with frame-rates exceeding 100kHz, but this high 
frame rate usually comes at the cost of resolution and bit-depth. The minimum 
size restriction, the maximum pixel dimensions and requirements on positioning 
accuracies all remain the same as those for the standard CCD, and the 
problems of a cover-glass persist also.  
 
Given such a sensor, with a frame rate F, and the ability to store N consecutive 
images, we could choose the following heterodyne frequencies for our two 
wavelengths: 
 

 

1
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1 1
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1 3
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N

⎛ ⎞= −⎜ ⎟
⎝ ⎠
⎛ ⎞= −⎜ ⎟
⎝ ⎠

∈

 (5.13) 

 
The first frequency is chosen to be the highest resolvable frequency by this 
method, since less noise is generally present at higher frequencies. The second 
heterodyne frequency is chosen in such a way as to find a balance between a 
reduction in cross-talk with the first heterodyne frequency (requiring a large 
frequency difference), and the desire to have the frequency as high as possible 
out of noise considerations (requiring a small frequency difference). Of course, 
both frequencies should have an integer number of oscillations during the 
measurement time. If significant amounts of phase-noise are found, these 
frequencies should be spaced more widely, to prevent cross-talk. 
 
A sequence of measured images can then be analysed by using the WDFT 
method for each pixel along the “time” dimension, just as in the phase-shifting 
case, with the difference that we would pick out the phase of two frequency 
components, one for each wavelength, rather than just one. 
 
Since no such sensor is available, we will show merely a simulation of how a 
sequence of intensity values captured with such a camera would be turned into 
the two separate phase values for the two wavelengths. Figure 5-25 shows a 
simulation of 36 successively acquired intensity values for one pixel and the 
corresponding discrete Fourier transform. The argument of the complex values 
corresponding to our heterodyne frequencies will give us the phase of that 
signal. The statistical noise in such a case is averaged by the process, and 
reduced by a factor proportional to N , but phase-drift and other systematic 
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errors on the CCD, such as non-uniform shutter-times, geometry errors etc. will 
doubtlessly increase this error further. 
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Figure 5-25 – Simulated sequence of intensity values and corresponding WDFT values for a 

fast sampling type sensor. 

 
Once the phases have been obtained for every pixel of the sensor, we would 
proceed as with the phase signals obtained by a CCD to retrieve the total OPD. 
 
While such a sensor offers decreased sensitivity to the low-frequency noise 
present in the setup, due to the higher measurement frequency and the 
simultaneous nature of the two-wavelength measurement, there are also 
considerable disadvantages to its use, not the least of which is the prohibitive 
cost of such a sensor. Another disadvantage is the large amount of data that 
must be transferred in order to obtain the phase values for each pixel. This 
makes this option also much more demanding in terms of post-processing 
hardware. Furthermore, read noise has been known to increase with higher 
clock frequencies, thus decreasing our SNR. 
 
As such sensors become more wide-spread, they may well become a viable 
option for performing our phase measurements, taking full advantage of the 
abilities of our light-source. 
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5.4 Phase-measuring pixel sensor 

Although originally developed for time-of-flight measurements, the phase-
measuring pixel sensors developed by Lange and Seitz8, 9 offer 2D, high-
bandwidth, heterodyne detection without the drawbacks of large amounts of 
data transport or processing. The elegantly simple working principle of this class 
of sensors is based on synchronous detection. 
 
The importance of such a device is highlighted by the following quote by Dorrio 
& Fernandez3: 
 
“…The fact that the [heterodyne] measurement is carried out point-by-point, has 
resulted in the fact that this method is practically nonexistent in industry, and 
therefore is relegated to being a precise laboratory evaluation method” 
 
Each phase-measuring pixel has, in addition to a photosensitive area, N 
charge-storage ”bins” around it. A signal, synchronized with the heterodyne 
frequency, switches the charge produced successively from bins 1 to N during 
one period of the heterodyne signal. This process is repeated for many periods, 
until one of the bins reaches its capacity. At this point, the charges are read out, 
and can be processed by an “N-step” algorithm, like equation (5.2), into a phase 
value for each pixel (Figure 5-26 shows this process for the case of four bins). 
For five or more bins, it is even possible to simultaneously measure two phases 
from different, well-chosen, heterodyne frequencies. 
 

B1

P
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Figure 5-26 – Diagram showing how charge produced at a phase-measuring pixel is 

successively shunted to different charge storage bins. 

 
Such sensors have recently come into production. Up until now, sensors with 5 
or more bins have only been built as linear arrays, but a 2D array of 4-bin 
sensors has been built by CSEM, Switzerland8. 
 
This sensor is not yet commercially available, but a 2-bin predecessor, working 
on a slightly modified principle, designed for time-of-flight measurements, has 
been purchased to evaluate its potential to act as sensor in our interferometer.  
 

5.4.1 Working principle  
The Swiss Ranger 2 from CSEM, Switzerland, is such a phase-measuring pixel 
camera, with which the phase of amplitude modulated light with frequencies 
between 80kHz and 20MHz can be measured at every pixel by means of a two-
bin sampling scheme outlined in the thesis by Lange 8.  



Sensor 

 

114 Phase-measuring pixel sensor 

 

 
Figure 5-27 –  Schematic diagram of the two-bucket sampling scheme of the SR2 camera. 

 
Every pixel has only two charge storage bins to which the charge produced by 
the photo-sensitive area of the pixel is alternatively shunted, synchronous to a 
switching signal with an identical frequency to the modulation signal to be 
measured (see Figure 5-27). This process is carried out for a few milliseconds, 
and the charges stored in the bins are read out to an on-board memory. The 
process is then repeated again, but with a switching signal shifted by 90° with 
respect to the previous switching signal. After reading out the bins a second 
time, four samples per pixel are available, corresponding to 0°, 90°, 180° and 
270° relative to the original switching signal. 
 
In the absence of any phase shifts during the integration time, the phase of the 
amplitude modulation can be calculated according to the well-known formula: 
 

 1 4 2

1 3

tan b b
b b

φ − ⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

 (5.14) 

 
Where b1, b2, b3 and b4 stand for the charges stored in bins 1-4.  
 
The test setup in Figure 5-28 was used to evaluate the camera. While this setup 
allows the use of two wavelengths simultaneously, all measurements, except for 
the ones in Figure 5-36, use only one wavelength at a time. 
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Figure 5-28 – Test setup to evaluate CSEM phase measuring pixel sensor. 
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A typical set of test measurement data is shown in Figure 5-29, together with 
the resulting raw- and unwrapped phase.  

B
1
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2
, φ=π/2 B

3
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4
, φ=3π/2 phase map

unwrapped
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Figure 5-29 – Four images from one CSEM sensor measurement, resulting phase, and 

unwrapped phase. 

 
The four images are returned as one data set via a USB interface before a new 
reading can be taken. 
 

5.4.2 Error sources 
Test measurements carried out under identical conditions with the Sony CCD 
using PSI, and with the CSEM sensor using heterodyne interferometry, show 
that the CCD sensor significantly outperforms the CSEM sensor, despite the 
inherent advantages of heterodyne interferometry.  
 
Phase Drifts 
Because the 0 and 180 samples are measured at a different time to the 90 and 
270 samples, phase drifts during the measurement introduce considerable 
errors. The expressions for the charges in bins 1-4, for an arbitrary optical 
intensity function o(t) are: 
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Where f is the frequency of the switching signal, and we assume an integration 
time of N periods for each bin pair, with a pause of M periods for the reading out 
of bins 1&3. It can easily be verified that substituting ( )( ) sin 2o t f tπ φ= × +  into 
(5.15), and applying (5.14) to the result gives the correct phase. For a linear 
phase drift with time, we can write:  
 
 [ ] [ ]( )1

4( ) sin 2 2 /o t f t N M fπ ε φ π ε= + × + − + +  (5.16) 
 
Where the last term is there to set the “average” phase due to the phase drift to 
zero. Substituting this into (5.15) and applying (5.14) to the result allows us to 
calculate the resulting phase error for some realistic camera parameters. The 
default parameters will be taken as 80kHz for the modulation frequency, 4ms 
integration time, and 0.1 rad/s phase drift. The time taken to read out the bins is 
always around 2.735ms, but rounded to the nearest integer and ¼ periods of 
the switching signal.  
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Figure 5-30 – Phase error in SR2 camera for different combinations of integration 

time (it) and phase drift (pd), at 80kHz optical modulation. 

 
From Figure 5-30 it should be clear that the over-all shape of the phase-error 
curve does not change with any of our parameters, but the amplitude is strongly 
affected by both the integration time and the phase drift. The modulation 
frequency has virtually no influence on the phase error.  
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Figure 5-31 – p-v phase error due as function of phase drift and 

integration time respectively, for 80kHz modulation of SR2 camera. 

 
For the default parameters, we can therefore expect a peak-to-valley (p-v) 
phase error of 0.6 mrad. Longer integration times, and of course larger phase 
drifts, cause bigger p-v phase errors as is shown in Figure 5-31. 
  
A proper 4-bin (or more) sensor would exhibit a much lower sensitivity to phase 
drifts, because all bins are effectively collected at the same time. In that case, 
only the phase-drift during one heterodyne period contributes to the error, while 
the 2-bucket scheme is influenced by the drift over the total measurement time. 
 
Nonetheless, since this is a phase-dependent error, the histogram correction 
outlined in section 5.2.2 can be used to reduce the effect of this error. 
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Figure 5-32 – Comparison between an un-corrected (left) and a corrected interferogram (right - 

tilt has been removed in both cases) 

 
Figure 5-32 shows the OPD map (minus tilt) obtained from the data in Figure 
5-29, and serves to illustrate the extent with which artefacts on an interferogram 
can be removed with this method. It is important to stress once again that this is 
not a spatial filtering technique, and will work for more complicated fringe 
patterns. 
 
Despite a significant reduction in the phase-drift induced errors, they remain the 
dominant source of measurement inaccuracy. By using a 2-tap, rather than a 4-
tap approach, the measurement accuracy of this sensor is sacrificed for the 
sake of ease of manufacture. 
 
Pixel positioning- and size-errors 
Another major drawback of the CSEM sensor is the fact that it has larger pixels 
than the CCD described in section 5.2. The manufacturer’s specifications for the 
CSEM sensor are given in Table 5-1. 
 

Number of pixels 160 x 128
Pixel pitch 39.2µm x 54.8µm
Fill factor 16.3%
Chip size 8.3mm x 7.6mm

Table 5-1 – Manufacturer’s specifications for the CSEM phase-measuring pixel sensor 

 
From the pixel pitch and fill-factor, we can estimate the pixel size to be 15.7µm 
x 21.9µm if scaled proportionally in both orthogonal directions. As calculated 
previously, the fringe period for our measurement set-up will be approximately 
17.7µm – only marginally bigger than the horizontal pixel size. This would cause 
a reduction of the measured modulation depth to 12.5% of the actual value due 
to the MTF of the sensor (see (5.9)), causing a significant reduction of signal-to-
noise ratio. Ironically, since the bit-depth of the sensor is 10-bits rather than our 
CCD’s 8-bits, the theoretical SNR of both sensors would then be about the 
same (the MTF of the CCD is about 4 times better than that of the CSEM 
camera, but the quantization noise in the CCD is 4 times worse than that in the 
CSEM sensor).  
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Several test measurements with the set-up shown in Figure 5-28 give us reason 
to believe that the pixel size is unfortunately bigger than the calculated values 
above. It was observed that the measured modulation depth already drops to 
zero with a fringe-spacing of 30µm (see Figure 5-33) – meaning that this is 
likely to be the actual effective horizontal pixel size. This is unfortunate, since 
we do not have a lot of leeway to adjust our fringe density. Placing the sensor 
further away is an option, but this then also reduces our field of view. 
 
The noise-floor of the measurements was too high to be able to distinguish 
effects due to positioning errors. 
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Figure 5-33 – Modulation depth as function of fringe density, tracing out the expected |sinc|-

profile of the MTF. Zero is at a fringe spacing of ~30µm. 

 
Electronic noise 
Further bad news from the test measurements is the level of noise observed. 
While the quantization noise of most sensors is chosen to lie just above the 
electronic noise, this seems not to be the case for the CSEM sensor. Our 
measurements indicate a 0.3% level of noise just below saturation, compared to 
the 0.1% to be expected from the bit-depth of the sensor. This may be due to 
the fact that the camera is being operated at frequencies of 80kHz-100kHz, 
rather than the design frequency of 20MHz. A detailed analysis of the electronic 
noise sources of this CCD falls outside the scope of this thesis, but a more 
detailed treatment can be found in the thesis of Lange8. 
 
Wavefront distortion and multiple reflections 
We were fortunate enough to be able to receive a sensor which was taken off 
the assembly line before the cover-glass was attached. The issues of multiple 
reflections and wavefront distortions therefore do not come into play here. 
 
Intensity response 
Because this is a fairly novel sensor, we have decided to test the intensity 
response of the detector with the help of the set-up shown in Figure 5-34. In an 
effort to obtain a uniform intensity distribution, and LED was used to avoid 
speckles, and a ground-glass plate further diffused the resulting illumination. 
Measurements for a typical pixel are shown in Figure 5-35. 
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Figure 5-34 – Intensity response calibration setup for CSEM CCD. 

 
While the response itself is fairly linear until saturation is approached, the 
difference in response between the two sets of charge storage bins of a 
particular pixel is of concern. We have therefore measured the ratio of the 
response for the two bins of every pixel, and applied a correction factor to the 
data from the second and fourth bin of every pixel in an effort to reduce this 
error. 
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Figure 5-35 – Intensity response of a typical pixel, showing nonlinearity and different 

sensitivities between taps. 

 
Also, the saturation level should be approximately the same for all pixels. The 
fact that this is not the case is evidence of irregularities in the CCD structure. 
 

5.4.3 Beat frequency demultiplexing. 
A unique feature of this camera is its ability to selectively measure the phase of 
one particular wavelength when more than one wavelength from the multiple 
wavelength source described in chapter 4 falls on the sensor at the same time. 
 
This separation, or de-multiplexing, of the wavelengths is achieved by matching 
the sensor’s de-modulation frequency to the heterodyne frequency of that 
particular wavelength.  
 
The use of two (or more) wavelengths simultaneously has the disadvantage of 
reducing the modulation depth of each signal, because the light from the other 
wavelength(s) form a “background” intensity level on the modulated signal. 
Under ideal conditions, with N wavelengths, the modulation depth will be limited 
to 1/N for all wavelengths. 
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Figure 5-36 shows such a measurement using two wavelengths simultaneously 
in the test-setup shown in Figure 5-28. The best-fit plane to the un-wrapped 
phase profile for φ1 was determined with the approach outlined in section 5.2.3. 
The heterodyne frequencies of the two wavelengths were 100kHz and 80kHz 
respectively. As far as we are aware, this is the first time that a 2D heterodyne 
synthetic wavelength measurement has been performed with such a sensor. 
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Figure 5-36 – Measurement of separate phases for λ1 and λ2, while both wavelengths are 

illuminating the sensor simultaneously. Resulting synthetic phase and its application to remove 
phase ambiguity from φ1. Phases are measured in radians. 
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5.5 Conclusion 

Although a sensor meeting our initial requirements was unavailable at the time 
of writing, significant progress has been made, with a view to achieving the 
desired measurement accuracy with commercially available sensors. 
 
The best results were achieved with a standard video frame-rate CCD using the 
interferometer in phase shifting mode. An rms accuracy of 29nm can be 
achieved this way – limited primarily by CCD geometry errors. The accuracy of 
the method after correction for the CCD geometry errors is estimated at 6nm, 
with a further reduction to 1nm with spatial averaging of neighbouring pixels. 
The presence of a cover glass makes the correction of CCD geometry errors 
impractical. Currently available CCD sensors without a cover glass should be 
able to meet our requirements. 
 
A novel phase-measuring pixel sensor was also tested as a candidate for 
heterodyne measurements, with initially discouraging results. To the best of our 
knowledge, the principle of 2D heterodyne multiple wavelength interferometry 
has been demonstrated for the first time with such a sensor, but this approach 
has not yielded the necessary measurement accuracy. Due to the sensor’s 2-
tap approach, it is particularly sensitive to phase-shift errors and errors due to 
phase-drift. The observed nonlinear response causes the errors to be both 
amplitude and phase dependent, preventing a-posteriori correction of the data.  
The large difference in responses between adjacent pixels is also cause for 
concern. Improvements on such sensors in future, especially the use of a 4-tap 
approach and improved linearity, may well make them the most promising 
candidates for this form of interferometry due to the flexibility and efficiency 
inherent in these sensors. 
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6 Interferometer 

The design of the interferometer used to obtain the results in this thesis was 
aimed at one specific test mirror available. While future designs should focus on 
greater flexibility, in this design, stability was made the top priority. We will begin 
by giving details of the test-mirror used, before proceeding to outline the 
specifications and structural design of the interferometer (technical drawings 
can be found in appendix A.9). This chapter will also include a section on the 
sphericity of the wavefronts generated by the optical fibers. 
 
 

 
 

Figure 6-1 – Exploded view of interferometer frame. 
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6.1 Test Object 

r = 81.25mm

r = 12.4mm

r = 340.67mm

Ø 220mm

      

2
7

.3
m

m

136.1mm

r = 6.35mm

 
Figure 6-2 – Test mirror and mounting structure 

 
The object under test is an aspherical mirror substrate, made entirely of Zerodur 
(See Figure 6-2). The aperture is circular, centred on the rotational axis of 
symmetry. The radius of the reflective surface of interest is 81.25mm, and has a 
hole at the centre with a diameter of 24.8mm. The nominal radius of curvature is 
340.67mm (equivalent to a nominal focal length of 170.34mm; f=R/2), giving a 
“standard” NA for the mirror of 0.48. The rim beyond the region of interest is not 
polished, having the appearance of ground/frosted glass. Ideally, the substrate 
would be rotationally symmetric, and would have a P-V vertical deviation from 
the best-fit sphere  of 4.6µm as shown in Figure 6-3. 
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Figure 6-3 – Vertical deviation of mirror from best-fit sphere. 

 
The substrate was delivered with a mounting structure to facilitate accurate 
placement in measurement systems. The mounting structure essentially 
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consists of a metal ring, with three disc-grooves to receive the positioning 
spheres on the mirror substrate, designed to minimize frictional placement 
errors. These mounting structures are proprietary, and we will have to restrict 
ourselves to the essential dimensions of the combination of mounting structure 
and substrate. 
 
The three positioning spheres provided on the mounting structure, to be used to 
interface with the measurement setup, are equally spaced by 120˚ at 136.1mm 
from the centre. The intention is to leave the mounting structure in place while 
the mirror substrate is being removed and replaced. 
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6.2 Interferometer frame 

The classic hexapod structure of the interferometer frame was suggested by 
designers at TNO/TPD, to guarantee stiffness and stability without inducing 
excess stresses. The design and manufacture of the instrument was carried out 
in close collaboration with the drafting bureau (VeCaTek fijnmechanica) and the 
manufacturer (Instrumek B.V., Schiedam), resulting in the blueprint shown in 
Figure 6-1. The top ring serves as an interface with the mounting structure of 
the test mirror, while the triangular base plate accommodates both the fibers 
and the sensor.  
 
In accordance with the interferometer concept outlined in chapter 2, the various 

interferometer components should be positioned as shown in Figure 2-1. The 

exact distances depend on a number of factors, and are shown in  

Figure 6-8. 

6.2.1 Fiber positioning 
The height of the mirror apex above the fiber-tips should be equal to the 
nominal radius of curvature of the mirror, i.e. 340.67mm, to match the wavefront 
curvature optimally to the mirror curvature, hence minimizing our fringe-density.  
 
The fiber positions are determined by balancing the desire for a low fringe-
density, and the need for the reflected beam to pass between the two fibers 
unobstructed. This means that we need to find the minimum fiber separation 
which allows the reflected beam to pass between them without being 
obstructed. The focus of the reflected beam will occur the same distance from 
the mirror axis, but on the opposite side, to the object fiber. We will start with a 
very much simplified model of the beam shape – that of a cone with the focus 
as apex, and the principal ray as axis – and derive an initial estimate of the 
required fiber separation from this. We will later use raytracing to check this 
estimate and if necessary, adjust it. 
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Figure 6-4 – Angular intensity distribution on mirror. A = edge of central hole, B = edge of region 

of interest, C = half opening angle of unobstructed cone, D = Edge of substrate. 
 
Figure 6-4 shows the intensity distribution due to our fiber at the mirror, along 
with the various mirror features. At the edge of our region of interest, the 
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illumination intensity is merely 0.065% of the peak intensity, dropping to 10-4% 
at the edge of the substrate. The cone of unobstructed light should contain the 
region of interest, but extending the opening angle of this cone much further 
would require a bigger fiber separation than necessary. As a compromise, we 
have chosen the half opening angle of the cone which should remain 
unobstructed as 0.26 rad (approximately 15˚), compared to the 0.24 rad 
subtended by the edge of the region on interest. At the angle of 0.26 rad, the 
intensity has dropped to 10-4 of the peak intensity, and the ground-glass nature 
of the rim beyond the region of interest will, on average, reduce the amount of 
light scattered between our fibers much further. 
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Figure 6-5 – Derivation of optimal fiber separation 

 
Nonetheless, there is an obvious danger of part of the random speckle pattern 
from this rim passing between our fibers and interfering with the measurement 
beams. No precautions against this have yet been taken, but the placement of 
an additional (optically black) aperture to obscure the rim beyond the region of 
interest would solve this problem. Alternatively, the rim could be polished, but at 
such an angle that the reflected light does not pass between our fibers. 
 
Figure 6-5 shows this cone of unobstructed light, together with the positioning of 
the fibers. Of several methods to fix fibers to metal components, the most 
promising was the use of an elastic band to press the fiber into a v-groove cut 
into the metal component (See Figure 6-6 and Figure 6-12).  
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Figure 6-6 – Fiber holder design to mount object- and reference fibers. 

 
The minimal height required to bend the fibers clear of the cone of unobstructed 
light using this method of affixing fibers was determined experimentally to be 
~4.2mm. Taking the thickness of the elastic band and the fibers into 
consideration (~0.15mm), the minimal fiber separation was determined to be 
~2.5mm. 
 
From this arrangement, we see that the clear aperture volume near the focus is 
actually the combination of the aforementioned cone and a cylinder with radius 
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2.2mm (Figure 6-5). Provided no significant amount of light falls outside this 
clear aperture volume, our beam may be considered to be unobstructed. Using 
the raytracing programme mentioned in chapter 3, a set of rays covering the 
entire mirror area of interest was traced a few cm past the focus, confirming that 
no rays fell outside this clear aperture volume.  
 
Provided that no improvements are made which allow the mounting of fibers 
over a shorter vertical distance, the minimal fiber distance is given by: 
 
 0.3 4.2 NAfibd = + ×  (6.1) 
 
Where the NA is the standard numerical aperture of the reflective optic to be 
measured, not to be confused with the NA of our system, since our fiber is 
placed near the centre of curvature, rather than at the focal point of the 
reflector. The maximum NA which can reliably be measured in one go is limited 
to below 0.26 by the fiber wavefront sphericity (see section 6.3.1). Using fibers 
with smaller or tapered cores, this NA could possibly be extended further. 
 

6.2.2 Sensor positioning 
Ideally, we would want to position the sensor at such a distance from the focus, 
as to just fill the sensor area with the projection of the region of interest of the 
mirror. However, we are limited to a certain minimum distance, based on the 
fringe-density as compared to the pixel dimensions (see chapter 5.2.2). At the 
time the interferometer was being designed and manufactured, the primary 
sensor being considered was the phase-measuring sensor from CSEM (chapter 
5.4). The sensor was not yet available for testing, and the design had to be 
based solely on the specification of the sensor.  
 
Based on the specified pixel pitch (39.2 x 54.8 µm) and fill factor (16.3%), the 
pixel size was estimated at 15.8 x 22.1 µm. Using (5.11), we can see that the 
minimum focus-sensor distance (where the pixel size is equal to the fringe 
density) is 31.3 mm. At this distance, the modulation depth would be zero, and 
no measurements would be possible. In order to retain a 10% modulation depth 
(see (5.9)) this distance has to be increased to 34.9mm. 
 

r = 12.4mm

6.27mm

6.80mm

CSEM

                     

r =14.73 mm

8.8mm

6.6mm

Sony CCD

 
Figure 6-7 – Sensors and projected mirror area at fiber-sensor distances of 34.9mm (CSEM 

sensor) and 45.5mm (Sony CCD) respectively. 
 
We can now no longer measure the entire mirror area of interest. Instead, we 
will be measuring only the area shown in Figure 6-7. Unfortunately, the CSEM 
sensor did not perform as well as was expected, and better results were 
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obtained with a standard CCD in PSI mode. The minimum fiber-sensor distance 
of this CCD was limited to 45.5mm by the sensor housing. Figure 6-7 also 
shows the area of the mirror which can be measured with this arrangement. It 
should be noted that since the CCD is not directly fixed to the interferometer 
frame, the location of the CCD can be adjusted to some degree, unlike the 
CSEM sensor, which would have been fixed in such a way as to be centred on 
the projection of the mirror for stability purposes. 
 

CCD Sensor

Mirror

Object Fiber

Reference Fiber

340.67mm

0.625mm

1.25mm

45.5mm

1.334mm                         

Mirror

CSEM Sensor

Object Fiber

Reference Fiber

340.67mm

0.625mm

1.25mm

34.9mm

1.314mm  
Figure 6-8 – Positioning of interferometer components 

 
The relative positions of the various interferometer components are now 
completely determined. 
 

6.2.3 Temperature stability. 
In order to minimize the influence of temperature variations on the positioning 
accuracy of the various interferometer components, Invar has been chosen as 
the material for the entire interferometer frame. The extremely low thermal 
expansion coefficient of 1.7x10-6K-1 makes this material more than an order of 
magnitude less susceptible to temperature fluctuations than stainless steel. 
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Figure 6-9 – Over-night temperature variations of optical table, and two-sample variance of 

indicated segment. 
 
Figure 6-9 shows an over-night temperature measurement of the surface of our 
optical table, using a mK accuracy temperature probe. No active temperature 
control was used. The marked section is analysed in terms of the two-sample 
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variance – giving the rms temperature difference between two samples taken a 
time τ apart. This analysis is used to establish that the temperature variation 
during a 40 frame PSI measurement (lasting 3.3s) is approximately 0.71mK. We 
assume that the day-to-day repeatability of the temperature is better than 
0.05K, using active temperature control if necessary. These values are used to 
obtain the positioning stabilities in Table 6-1. 
 
The effect of position errors on the retrieved mirror surface is discussed in more 
detail in chapter 3, and the results are also incorporated in Table 6-1. The short 
term positioning stability is sufficient to guarantee that the interferogram does 
not drift by a significant percentage of a fringe (in comparison to OPD drifts 
caused by drifts within the light source), and the figure errors due to 
temperature drifts during one measurement are well below the required 0.1nm. 
Long term drifts are considerably below the accuracy with which the 
corresponding quantities can be measured, and also do not induce significant 
figure errors compared to our desired 0.1nm accuracy level. The long term 
mirror-height drift is also consistent with the requirement of a maximum 50nm 
error in the measurement of the absolute radius of curvature. 
 
It should be noted that these estimates are not complete, as they may depend 
on the geometry of the interferometer setup, but they give a convincing 
indication that positioning drifts due to temperature variations are unlikely to 
contribute to our figure errors. 
 

 Short-term (3.3s) Long term (24h) 

 Drift Figure error Drift Figure Error 

Mirror Height  0.411 nm  0.008 pm 28.9 nm 0.58 pm 

Fiber separation  0.003 nm   0.001 pm 0.2 nm 0.06 pm 

Fiber x-position  0.001 nm < 0.001 pm 0.1 nm 0.02 pm 

CCD x-position  0.002 nm < 0.001 pm 0.1 nm 0.01 pm 

CCD z-position  0.055 nm  0.001 pm 3.9 nm 0.08 pm 

Table 6-1 – Position variations and resulting figure errors due to temperature fluctuations. 

6.2.4 Placement accuracy. 
A comprehensive analysis of placement errors is outside the scope of this 
thesis. Nonetheless, we have attempted to optimize placement accuracy by 
using a V-groove positioning system for both the fibers and the mirror support 
structure.  
 

Contact
Surface

 
Figure 6-10 – V-grooves for spheres and fibers. 
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To mount the mirror support, the interferometer frame contains three V-grooves 
pointing towards the geometrical centre of the mounting structure to receive the 
positioning spheres (Figure 6-1).  
 
This well-known design singly restricts the position of the mounting structure in 
all degrees of freedom. Any uniform expansion or contraction of either the 
interferometer frame or the mounting structure about their centre does not affect 
the mirror position, and does not induce stresses in either the mount or the 
frame. In order to reduce deformation errors, the V-grooves are clad with 
ceramic strips to distribute the pressure from the otherwise extremely small 
contact area between the groove walls and the positioning spheres. 
Deformation errors may still occur on the hardened positioning spheres of the 
mounting structure. 
 

V-grooves

Mounting structure
Positioning spheres

 
Figure 6-11 – Kinematic V-groove mount for mirror support structure 

 
The fibers are first lightly fastened to the v-grooves with the elastic band, and 
then pressed down gently with the help of a gauge block, until the fiber tip is 
level with the fiber-holder surface. The elastic band is then tightened, and the 
gauge block is removed. With this procedure, sub micron vertical positioning 
accuracy with respect to the fiber-holder can be achieved. 
 

Fiber

Elastic
Band

Gauge
Block

 
Figure 6-12 – Fiber mounting procedure. Drawings not to scale. 

 
The interferometer consists of a number of sub-assemblies to facilitate 
manufacture. These include the v-grooves for the support structure and the fiber 
holders. To ensure accurate placement of these sub-assemblies, tight 
tolerancing was used in combination with guiding pins which define the 
locations of connected components with respect to each other. 

6.2.5 Adjustability. 
Once the interferometer is assembled, only three degrees of freedom of the 
base plate remain adjustable.  
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Ceramic

guide-bead

Adjustment

nut  
Figure 6-13 – Adjustable corners of base-plate (to scale). 

 
The base plate is connected to the rods via corner pieces which allow the height 
of the base plate corners to be adjusted with an adjustment nut. The nut and 
corresponding bolt have a very fine thread of 0.5mm, and are also made 
entirely from invar. To guarantee that the in-plane position of the base plate is 
stable during adjustment, a ceramic guide-bead fixed to the corner piece fits 
snugly into a guide-hole in the base-pate. Once the corners have been optimally 
adjusted, they can be locked into place with the bolts on top of the corner 
pieces. 
 
Since the fibers and CCD are fixed respective to the base-plate, it is easier to 
understand the effect of adjusting the corner height in terms of a rotation of the 
mirror about one of the base-plate edges. Using adjustments over the 2mm 
range of travel of these adjustment screws, we have a 0.3 mm out-of-plane 
adjustment range, with a sensitivity of ~0.5µm and a 1µm in-plane adjustment 
range with a sensitivity of ~1.5nm. 
 
This adjustment range is in proportion to the different sensitivities of the figure 
measurement to errors in the in-plane and out-of-plane positions of the 
interferometer components. 
 

 
Figure 6-14 – Effect of height-adjustment of corner blocks (exaggerated motion). 

 

6.2.6 Summary 
The hexapod interferometer frame presented here is designed specifically for 
our test-object and optimized for stability. The positions of the various 
interferometer components depend on a number of factors, and will need to be 
adjustable in future versions of this interferometer, designed to measure a 
range of different mirrors. While care must be taken to ensure thermal 
equilibrium during a measurement, no active temperature stabilization is 
required since the low expansion coefficient of the material used in the 
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construction of the interferometer keeps the figure errors introduced by 
temperature variations well below the required levels. The use of V-grooves 
makes accurate and repeatable positioning possible without introducing undue 
stresses. Finally, the limited amount of adjustability present in this design is 
representative of the sensitivity of the instrument to positioning errors. 
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6.3  Optical Fiber 

The optical fibers play a key role in this interferometer. We have previously 
assumed that they produce spherical waves with an approximately Gaussian 
intensity distribution. In this section, we will justify this assumption, and show 
what limitations apply.  
 
The optical fiber used in this interferometer is a Newport F-SPV polarization-
preserving single-mode fiber. appendix A.4 lists the fiber’s parameters as 
specified by the manufacturer. 
 

Core
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Cladding

Jacket
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1.4492

1.4571
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15.00µm
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123.00µm

 
Figure 6-15 – Composition of F-SPV polarization maintaining fiber (not to scale). 

 
Like most polarization preserving fibers, this fiber consists of a cylindrical core, 
surrounded by a cladding layer with stress-elements, which in turn is covered by 
a protective plastic jacket (See Figure 6-15). The core has a higher refractive 
index than the cladding (ncore > ncladd).  
 
In the following section, we will try to estimate the degree of sphericity which we 
can expect from the wavefronts of such fibers. To guarantee applicability to our 
situation, we will calculate the field from the fiber at a distance equal to the fiber-
CCD distance (34.9mm) and the fiber-mirror distance (340.67) in our 
interferometer, without making the far-field assumption. 
 

6.3.1 Modeled fiber output 
 

Mode Field Aperture Field

Far Field

 
Figure 6-16 – The three field regions used to describe fiber output. 

 
In an attempt at deriving a good model for the fiber output, we will need to 
consider three distinct field regions1: the mode field, the aperture field and the 
far field region, see Figure 6-16. The mode field is the field inside the fiber, far 
from either end. An expression for the mode field can be found by solving 
Maxwell’s equations with the boundary conditions appropriate to a cylindrical 
waveguide, and will take into consideration the birefringent nature of the fiber. 
The aperture field is the field just outside the fiber end-face, and will be affected 
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by the fiber surface properties. Finally, the far-field distribution is found by 
propagating the aperture field the appropriate distance through free space. 
 
Mode field 
Neglecting the stress elements for the moment, solutions for cylindrical 
waveguides are readily found and have been exhaustively discussed in the 
literature2, 3. For weakly-guiding fibers such as our own, the solutions are of the 
following form: 
 

 ( ) ( )
( ) e

( )
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 (6.2) 

With: 
 2 2r x y= +  (6.3) 
 
The constant A is a normalization constant, but the other constants depend on 
the fiber specifications as follows: 
 

 ( ) ( )
( )
l

l

J haB A continuity
K qa

=  (6.4) 

 ( )
2

2 2 2 2
1 1

2q n n hπ
λ

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (6.5) 

 ( )
( )

( )
( )

1 1l l

l l

J ha K qa
h q
J ha K qa

+ +=  (6.6) 

 
2

2 2 2
1

2n hπβ
λ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (6.7) 

 
(6.5) and (6.6) can be used together to solve for h and q, which in turn give β. 
The solutions to this set of simultaneous equations is not trivial, and numerical 
methods need to be used. For single mode fibers operated at wavelengths 
longer than the so-called “cut-off wavelength”, only one solution for β exists 
which gives a propagating mode: 
 

 ( ) 0

0

( )
( ) e

( )
i t z

x

AJ hr r a
E r

BK qr r a
ω β− <⎧

= ⎨ ≥⎩
 (6.8) 

 
h, q and β still need to be evaluated numerically, and depend on the refractive 
index difference, core-diameter and operational wavelength.  
 
Taking our fiber parameters as given in appendix A.4, we can observe the slight 
wavelength dependence of the mode-field (see Figure 6-17) 
 
The effect of the stress elements is two-fold. For one, the core (and to a lesser 
extent, the cladding), becomes birefringent. For our fiber, the birefringence  
(nx-ny) is 3.2x10-4. The other effect is a slight ellipticity of the core. 
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Figure 6-17 – Radial field distribution for several wavelengths in our fiber. 

 
According to Yariv2, the birefringence has little effect other than to destroy the 
degeneracy of the two orthogonally polarized modes supported in the fiber. 
Consequently, two orthogonally polarized modes, with virtually identical mode 
profiles but experiencing different refractive indices, are supported by the fiber. 
Since we launch linearly polarized light into the fiber along one of the optical 
axes, we can restrict ourselves to just one of these modes. 
 
The ellipticity can be treated with perturbation analysis4, 5 to show that the 
resulting solutions are identical to the circularly symmetrical ones save for a co-
ordinate transformation mapping a circle to the appropriate ellipse. The ellipticity 
of our fiber is approximately 1.2:1, and we can therefore simply replace (6.3) 
with: 
 

 ( )22 /1.2r x y= +  (6.9) 
 
It should be noted that this fundamental mode has the potential to couple into 
so-called cladding modes, which propagate within the air-cladding or jacket-
cladding interface. Such coupling can occur through imperfections in the fiber 
and sharp bends. However, these modes are generally lossy and do not 
propagate far in the fiber. We have neglected these here, and rely on the 
experimental results to justify this assumption. 
 
Aperture field 
Although there is surprisingly little literature exclusively on the subject of finding 
the aperture field from the mode field, several papers concerned with finding the 
mode field from the far-field distribution have been published, making the 
assumption that the aperture field can be derived simply by multiplying the local 
mode field amplitude (given by equation (6.8) in our case) with the Fresnel 
transmission coefficients for a plane-wave perpendicular to an interface, using 
the local refractive index at the fiber end face1, 6, 7.  
 

 2 ( , )( , ) ( , )
( , ) 1ap mo
n x yE x y E x y

n x y
= ×

+
 (6.10) 
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Equation (6.10) shows how the aperture-field amplitude (Eap) can be calculated 
from the mode-field amplitude (Emo) and the local refractive index (n) using this 
approach. 
 
A more accurate solution might be found by taking the finite extent of the plane 
wave into account by de-composing it into its angular spectrum before applying 
the Fresnel transmission coefficients. Young1 notes that the difference between 
these two methods is negligible. Another option, beyond the scope of this 
thesis, would be to rigorously solve Maxwell’s equations with the appropriate 
boundary conditions present at the air-fiber interface and using the mode field 
as incident field. We will be satisfied with the first approach, confident that the 
difference between the results will be small, especially considering the fact that 
the fiber surface shape has not actually been measured, and some 
assumptions about this will need to be made anyway. 
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Figure 6-18 – Simulated surface profile of fiber core. 

 
Atomic force microscopy (AFM) Measurements on cleaved single mode fibers8 
have shown that the act of cleaving causes the core to recede by a few nm at 
the end-face. Furthermore, the cleaved surface generally exhibits an rms 
roughness of 0.5nm with a 1/f spatial frequency distribution, stopping at  
0.08nm-1. We simulate this by filtering white noise appropriately and normalizing 
to give σ=0.5nm. The resulting height profiles (see Figure 6-18) compare very 
well with the measurements reported by Poumellec8. We then add a 3nm deep 
cylindrical dip at the centre, having a radius of 1.35µm and with a smooth 
transition over 0.5µm, as described in Poumellec’s paper. 
 
In accordance with the paper by Young1, we will model the transition of the 
mode field to the aperture field as follows: The amplitude of the aperture field is 
given by multiplying the mode field distribution with the Fresnel transmission 
coefficient using the local refractive index, as shown in equation (6.10).  
 
The phase of the aperture field is found by calculating the retardation 
experienced at different locations of the fiber end-face, due to the varying height 
profile: 
 

 ( ) [ ] ( )2, 1 ( , ) ,x y n x y h x yπφ
λ

= − ×  (6.11) 
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Here, φ(x,y) is the aperture phase profile, n(x,y) is the fiber’s refractive index 
profile, and h(x,y) is the local height profile. Typical aperture field values are 
shown in Figure 6-19 
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Figure 6-19 – Amplitude and phase of aperture field. 

 
Far field 
While the far field of cylindrically symmetric aperture fields can be evaluated via 
the Hankel transform7, we have to resort to an evaluation of the two-
dimensional diffraction integral. Owing to the stochastic nature of the phase 
profile to be propagated, analytical solutions do not exist, and a numerical 
evaluation will have to be performed instead. Although the results from vector- 
and scalar diffraction theory differ appreciably, especially at large NAs, Young7 
shows that this difference is mainly in the field amplitude, while the phase 
function may be considered unaffected for our purposes. 
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Figure 6-20 – Optical phase difference between spherical wave and simulated fiber output for 

45mm and 340mm. Phases outside our tolerance appear clipped. 
 
We therefore evaluate the Sommerfeld diffraction integral numerically, using the 
aperture field derived above, to evaluate the far field at a plane z=34.9mm and 
z=340.67mm from the fiber tip. These brute-force calculations are considerably 
simplified by the fact that the aperture field is confined to such a small area, 
allowing us to choose a 1000x1000 element grid for a 12x12µm area, to yield a 
grid resolution of 12nm – equivalent to the highest spatial frequency 
components in the fiber’s height profile. Numerical simulations show that 
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increasing the grid resolution does not alter the results by more than 0.3µrad. 
The resulting field distribution and the associated integration kernel can 
therefore be stored entirely in the working memory of a standard PC, and the 
double integral evaluated very quickly as a discrete sum. Figure 6-20 shows the 
resulting far-field distribution and the phase difference from a spherical phase 
profile. It should be noted that the centre of curvature of the spherical wave has 
not been chosen to coincide with the fiber end-face, and has instead been taken 
as the best-fit location. This focal shift is analogous to the focal shift in Gaussian 
beams. The images of the phase difference are clipped at +/-2π/10’000, 
equivalent to a wavefront error of 0.06nm, to show regions of unacceptable 
wavefront errors. In addition, the largest inscribing circle of the region of 
acceptable phase deviation is displayed on the image. 
 
We can conclude that we may expect the measured wavefronts to be spherical 
to within 0.06nm for a half opening angle of 0.13 rad at both 45mm and 
340.67mm from the fiber tip. This means that the largest standard NA of a 
reflective optic which can reliably be measured in one go using this fiber is 0.26 
(See the closing remarks of section 6.2.1). To measure optics with larger NAs, 
such as our example optic, the measurement either needs to be performed in 
several parts, or fibers with smaller core diameters/apertures at the end-face 
need to be used. 
 

6.3.2 Experimental measurement of fiber output. 
Using an experimental setup as shown in Figure 5-5, we can estimate the 
wavefront sphericity from our fibers. Similar experiments have been carried out 
6, 9, 10, which are in agreement with our findings, and place the wavefront 
sphericity at the theoretically predicted 0.06nm9. 
 
In these experiments, the separation between the fiber tips was approximately 
0.44mm, and the fiber-to-sensor distance was 163 mm, producing fringe-
patterns as shown in Figure 6-21. Using phase shifting interferometry as 
explained in 5.2.4, we retrieved the optical path difference (OPD) map also 
shown in Figure 6-21. 
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Figure 6-21 – Fringe pattern, and un-wrapped OPD map from 40 such phase-shifted patterns. 

 
We then performed a parameter optimization on the fiber-tip locations to 
minimize the misfit between our data and the theoretically predicted OPD. The 
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remaining misfit can be seen in Figure 6-23, along with a low-pass filtered 
version. The noise seen before low-pass filtering is made up of stochastic noise 
and patterns introduced by multiple reflections. 
 

Pixel position (mm)

P
ix

el
 p

o
si

ti
o

n
 (

m
m

)

Measured OPD (minus tilt)

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3
−25

−20

−15

−10

−5

0

5

10

nm 

        Pixel position (mm)

P
ix

el
 p

o
si

ti
o

n
 (

m
m

)

Theoretical OPD (minus tilt)

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3
−25

−20

−15

−10

−5

0

5

10

nm 

 
Figure 6-22 – OPD minus tilt. Measured (left) and model (right) 
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Figure 6-23 – Misfit between measurement and model (left), and low-pass filtered version to get 

rid of parasitic reflection artifacts (right) 
 
After filtering, the error image is dominated by residual fringes, resulting from 
nonlinear phase drifts during the measurement. The reduction of the rms noise 
from 1.8nm to 0.36nm after filtering (convolution with a 5x5 pixel kernel), is 
consistent with a stochastic noise process, and we may conclude that our 
measurement is noise limited. 
 
The theoretical and actual OPD functions can therefore be said to agree to 
within 0.36nm rms. It should be noted that the systematic pixel positioning 
errors discussed in 5.2.2 play a negligible role in these measurements, because 
of the extremely low fringe density compared with the actual mirror form 
measurements. 
 
The OPD is basically the difference between the laterally sheared wavefronts 
from the two fibers: 

 

 ( ) ( )1 2
ˆ ˆ, , , ,

2
OPD x y z x x y zλ φ φ δ

π
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Where we have assumed, without loss of generality, that the two fibers are 
separated only along the x-axis. 1̂φ  and 2̂φ are the absolute phase functions of 
the two fibers, and δx is the distance by which the two are separated. 
 
If the two wavefronts are identical, the OPD by is given by their shearing 
function, which can be approximated by the first derivative: 
 

 ( ) ( )
ˆˆ ˆ, , , ,

2 2
xOPD x y z x x y z
x

λ λδ φφ φ δ
π π

∂⎡ ⎤= − − ≈⎣ ⎦ ∂
 (6.13) 

 
Our measurement of the wavefront sphericity is therefore less sensitive to low-
spatial frequency aberrations than to higher-frequency ones. Additional 
measurements, where the fiber-tip locations remain approximately constant 
while the fiber direction is varied, could increase our sensitivity to such low-
spatial frequency aberrations, but have not yet been carried out. 
 
We can state that the measured OPD function is consistent with the assumption 
that the fiber wavefronts are spherical to within our measurement accuracy, and 
the theoretically predicted wavefronts are spherical to within the required 
accuracy over a half-opening angle of 0.13 rad for typical fiber to CCD 
distances. 
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6.4 Conclusion 

The interferometer frame presented in this chapter is sufficient to guarantee the 
measurement accuracies required of our measurements. The simplicity and 
extreme stability of this design has come at the cost of flexibility – having been 
optimized for one particular mirror substrate only. The generic design of a 
hexapod structure still lends itself ideally for extension to an adjustable 
interferometer frame however, by using commercially available hexapods, such 
as ones produced by Physik Instrumente (PI) for example (See Figure 6-24). 
These hexapods can reach absolute positioning accuracies of ~1µm, and 
sensitivities of 50nm, allowing the use of off-axis substrates, various focal 
lengths and the ability to measure larger NA substrates in sections. 
 

 
Figure 6-24 – Adjustable hexapod structure (M-850) by Physik Instrumente (PI). 

 
A certain degree of adjustability could also be introduced to the fiber holders, to 
facilitate the measurement of smaller NA optics by decreasing the fiber 
separation. 
 
This chapter has also shown the wavefronts produced by the optical fibers 
should theoretically be spherical within our requirement of 0.06nm over a half 
opening angle of 0.13 rad, sufficient for optics with a standard NA of 0.26. This 
prediction is in agreement with our experimental observations. 
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7 Measurements 

The measurements presented in this chapter were made on the EUVL mirror 
substrate discussed in chapter 6. We have used the Sony CCD in phase-
shifting interferometry (PSI) mode as mentioned in chapter 5 to obtain the OPD 
measurements for two wavelengths. The two wavelengths (632.99nm and 
637.32nm) were produced with the stabilized multiple wavelength source as 
described in chapter 4. 

7.1 Results 

Figure 7-1 shows two typical PSI fringe-patterns used to derive the optical 
phase difference between the reference- and object-beams. 
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Figure 7-1 – Intensity fringe patterns obtained from interferometer with test substrate described 

in chapter 6, using λ1 and λ2. 

 
The resulting phase profiles from λ1 and λ2 are shown in Figure 7-2, and the 
synthetic phase profile is shown in Figure 7-3. Histogram correction has already 
been carried out. After following the procedure outlined in chapter 5 of how to 
use the synthetic phase profile to unwrap the under-sampled phase map for λ1, 
we obtain the optical path difference (OPD) map shown in Figure 7-5. The 
central obstruction is masked to avoid problems during the unwrapping phase.  
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Figure 7-2 – Phase profiles retrieved from a sequence of 36 phase-stepped intensity fringe 

patterns, using the WDFT algorithm described in chapter 5. 
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Figure 7-3 – Wrapped synthetic phase, obtained by subtracting the two phase maps shown in 

Figure 7-2, modulo 2π. 
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Figure 7-4 – Phase map for λ1 (Figure 7-2) after subtracting (modulo 2π) linear phase terms 

derived from un-wrapped synthetic phase profile (Figure 7-3) 
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Figure 7-5 – OPD map for λ1, obtained by un-wrapping the phase-map of Figure 7-4 and re-

adding the linear terms previously subtracted. 

 
We now fit this OPD map with the first 38 Zernike polynomials as outlined in 
chapter 3.3.2. 
 
Figure 7-6 displays our OPD map alongside the resulting Zernike-38 fit (with tilt 
removed for clarity). Figure 7-7 displays the remainder of the OPD map after the 
first 38 Zernike components are removed, to reveal some diffraction artefacts 
around the obstruction and systematic artefacts due to CCD pixel positioning 
errors. After applying the CCD calibration as discussed in chapter 5.2.2, we 
obtain the second image of Figure 7-7. The rms values of these residual errors 
are 13.6nm and 11.6nm respectively, and it should be apparent from the figure 
that the CCD calibration procedure was unable to remove the majority of the 



Measurements 
 

 

 Results 147 

CCD artefacts. This is not surprising, since the calibration procedure assumes 
the absence of a cover-glass. 
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Figure 7-6 – Phase map from Figure 7-5 and the Zernike-38 fit. Both with tilt removed. 
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Figure 7-7 – difference between Figure 7-5 and the Zernike-38 fit. Also shown is the same 

difference image after applying the CCD correction discussed in chapter 5. 
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7.2 Analysis 

For an accurate inversion, it is necessary to first know the position values for 
our interferometer components. Since our interferometer has neither been 
calibrated nor extensively measured, we must expect the nominal position 
values to differ significantly from the actual ones. We will be using two 
approaches to estimate the actual position values. We begin by using some 
simple features of the measured interferogram together with a number of 
assumptions to get an initial estimate of the parameters. This estimate is then 
refined by launching an optimization routine which aims to minimize the misfit 
between the measured and the ideal mirror shape. 
 

7.2.1 Parameter estimation using interferogram features. 
A number of position values can be estimated from features of our OPD map. 
They are: 
 

1. The vertical distance from the CCD to the focal point – by measuring the 
size of the central obstruction projected onto the CCD, compared to the 
size of the obstruction on the mirror. 

2. The distance (and direction) from the reference fiber to the focal point – 
by measuring the slope of the OPD function 

3. The in-plane location of the object fiber, with respect to the CCD – by 
locating the centroid of the central obstruction projected onto the CCD. 

 
The separation of the object- and reference-fiber was measured using a 
microscope mounted on a milling-machine translation table at 2.50mm +/- 
0.01mm. In order to obtain an estimate for the remaining component positions, 
two additional assumptions are made: 
 

1. The fibers and focus lie in the same horizontal plane (implicitly, we also 
assume that the object fiber is in the horizontal plane of the mirror’s 
centre of best-fit curvature. 

2. The object fiber, focal point and reference fiber lie along a straight line. 
3. The CCD surface is perpendicular to the plane defined by the object 

fiber, reference fiber and mirror apex. 
 
These assumptions are not strictly correct, but if the tolerancing specified by the 
interferometer frame manufacturers is reliable, the above assumptions will hold 
to within a few tens of µm. It is important to keep in mind the fact that once the 
relative positions of the interferometer components are known, either by direct 
measurement, or by calibration, the procedures described in this section are no 
longer necessary. 
 
Vertical CCD – focal point distance 
The rays from the boundary of the central obstruction passing through the focus 
to the CCD trace out a circle (approximately – an ellipse is a more accurate 
description due to the off-axis nature of the chief ray), the radius of which 
depends on the vertical distance of the CCD from the focus as follows: 
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Our task of measuring the radius of the projected circle is complicated by two 
factors. One: we do not know the centre of this circle and two: due to diffraction 
there is no sharp shadow boundary for this projection  
 
Ironically, the latter complication is easily circumvented, and actually helps us in 
resolving the first complication. From our treatment of diffraction due to the 
central obstruction, we know that the shadow boundary coincides with the first 
zero-crossing of the absolute phase difference between the diffracted field due 
to the obstruction and the unobstructed (geometrical) field (see Figure 3-27). By 
subtracting the lower spatial frequencies of our un-wrapped interferogram from 
the same, we artificially re-create such an interference experiment (See Figure 
7-8).  
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Figure 7-8 - Phase map for λ1 (Figure 7-2) after subtracting (modulo 2π) the 38 Zernike 

polynomials obtained by fitting outside the geometrical shadow. 

 
A plot of the phase as a function of the radial distance from the centre of the 
projected obstruction should strongly resemble Figure 3-27, and the radius of 
the projected obstruction can be found by locating the first zero-crossing of the 
absolute phase difference. 
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Figure 7-9 - “ρ-θ” plots of the diffraction-ring pattern for a non-ideal choice of centre co-ordinates 

(left) and an optimum choice of centre co-ordinates (right) 
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A “ρ-θ” plot of the phase as a function of radial distance and angle from a point 
near- but not at- the centre of the projected obstruction (Figure 7-9) should help 
the reader to understand the approach we will use to determine the centre of 
the projected obstruction. 
 
After averaging along the “θ” co-ordinate (see Figure 7-10), an error in our 
guess of the location of the centre of the obstruction will cause a smearing-out 
of the radial diffraction pattern, hence decreasing its modulation depth. We will 
therefore measure the modulation depth of these radial phase functions, and 
find the location for which the resulting modulation depth is largest.  
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Figure 7-10 – The plots in Figure 7-9 were averaged along the “θ” co-ordinate to obtain plots 

which ideally should resemble the theoretical diffraction patterns predicted in chapter 3. 

 
Figure 7-9 also shows the ρ-θ plot resulting from our best estimate of the centre 
of the obstruction obtained this way. The remaining deviations are due to the 
slight ellipticity expected of our projection, and perhaps an anamorphic scaling 
error for our pixel locations.  
 
The zero-crossing marking the shadow-boundary is clearly visible in the radial 
phase plot, giving us an estimate of the radius of the projected obstruction of 
1.937mm. Inserting the known radius of the obstruction on the mirror (12.4mm) 
into (7.1) above, together with the assumed focus-mirror distance of 340.67mm, 
gives us an estimate for the focus-CCD distance of 53.208mm. 
 
Reference fiber – focal point distance 
The slope of the OPD function for our interferogram is: 
 

 ( ), 0.0168, 0.0051OPD OPD
x y

⎛ ⎞∂ ∂
= −⎜ ⎟∂ ∂⎝ ⎠

 

 
The slope of the OPD function is a function of the fiber-focus separation and the 
vertical distance of the CCD from the fibers (see (5.11)). Consequently, the 
location of the reference fiber relative to the focal point is 

 
(∆x, ∆y)=(0.8837mm, -0.2697mm) 
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This indicates an in-plane rotation of the CCD relative to the axis defined by the 
object fiber – reference fiber separation by -16.97˚.  
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Figure 7-11 – Relative positions of relevant interferometer components. Front-view (left) and 

top-view (right). Neither diagram is to scale. 

 
Position of CCD relative to fibers and focus 
Knowing the distance of the focal point to the reference fiber, together with our 
measurement of the reference- to object-fiber distance, also gives us the 
horizontal distance between the mirror apex and the focus (see Figure 7-11). 
The centre of the projected central obstruction can therefore serve as a 
reference point on the CCD. The position of this point on the CCD, relative to 
the apex of the mirror, is given by: 
 

 ( ) ( ), , , , p
p p p f f f

f

z
x y z x y z

z
≈  (7.2) 

 
Inversion results 
Using the Zernike-38 fit to our measured data with our estimate of the 
parameters (shown in Table 7-1) to perform an inversion, yields the retrieved 
mirror form shown in Figure 7-12. The Error figure with the nominal mirror 
shape is shown in Figure 7-13. With piston, tilt and defocus removed, it has an 
rms value of 4.2nm. 
 

              
Figure 7-12 – Nominal and retrieved mirror surface shape, using estimated parameters. 
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Figure 7-13 – Difference between nominal and retrieved surface shapes, using initial parameter 
estimates. Piston, tilt & defocus are removed in the second image, resulting in a 4.2 nm rms 
difference. 

 
Use of Zernike-38 fit 
As outlined in chapter 3.3.2, the use of the Zernike-38 fit to our data has a 
number of advantages over the use of the raw data. Apart from naturally 
reducing the effects of diffraction, a number of CCD-dependent errors are also 
filtered out.  
 
Due to the expected magnitude of the cover-glass and CCD related errors 
introduced, the use of the Zernike-38 fit seems justified as a means of removing 
diffraction effects. The marginal improvement gained by using the complex 
hybrid inverse propagation algorithm (IPA) of chapter 3.8 will be insignificant in 
comparison to the remaining systematic errors. Nonetheless, once improved 
sensors are available, the hybrid IPA will be able to deal with diffraction effects 
more rigorously. 
 
To confirm that the use of the Z38 data does not introduce any significant errors 
with low spatial frequencies, we also show the results of the inversion with the 
raw data and the parameters estimated above (Figure 7-14 & Figure 7-15). The 
inversion with the raw data has an rms deviation from the nominal surface 
shape of 10.1nm. 
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Figure 7-14 – Retrieved error figure from Z38 fit to raw data (left) and from raw data (right). 
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Figure 7-15 – Difference between error figures in Figure 7-14. Note the absence of low spatial 

frequency components. 

 

7.2.2 Parameter estimation using optimization. 
We now apply an optimization procedure outlined in chapter 3.3.2 to retrieve the 
set of interferometer parameters which minimize the misfit between the 
measured- and the nominal data (given in Table 7-1). With this set of 
parameters, we get significantly better agreement before subtraction of piston, 
tilt and de-focus errors compared with the initially estimated parameters (see 
Figure 7-16 cf. Figure 7-13). 
 

           
Figure 7-16 – Difference between nominal and retrieved surface shapes, using optimized 
parameter estimates. Piston, tilt & defocus are removed in the second image, resulting in a rms 
difference of 3.9 nm. 

 

Parameter Nominal value 
(mm) 

Estimated value using 
interferogram features 

Estimated value using 
optimization 

Object fiber (x,y,z) (-0.625, 0, -340.67)  (-0.75, 0.21, -340.67) (-0.75, 0.21, -340.67)

Reference fiber (x,y,z) (1.875, 0, -340.67)  (1.65, -0.46, -340.67)  (1.65, -0.46, -340.76)

CCD centre (x,y,z) (1.334, 0, -386.17)  (0.87, -0.24, -393.83)  (0.91, -0.29, -393.83)

OPD at centre  (681.32)  (681.32)  (681.23)

Table 7-1 – comparison between nominal and estimated positions of interferometer 
components. 
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7.3 Conclusion 

Due to the excessive noise introduced by the inadequate sensor used to make 
these measurements, it is difficult to objectively assess the resulting instrument 
accuracy. It was already clear from chapter 3.1.3 that knowledge of the correct 
interferometer parameters plays a significant role in the accuracy of the final 
measurement. While we have addressed this issue “a-posteriori”, it should be 
possible to obtain the positions of the interferometer components by means of a 
combination of independent metrology and self-calibration, using as yet to be 
determined procedures. Once these have been obtained, they can directly be 
used for the retrieval of surface shapes, without the need for the complicated 
estimation steps outlined above. 
 
The fact that the Z38 fit to the raw data, together with our initial, rough estimate 
of the interferometer parameters has already resulted in an rms error of merely 
4.2 nm (after subtraction of piston, tilt and de-focus), is proof of the principle of 
this novel interferometer, and an encouraging indication that the target accuracy 
of 0.1nm could be attained with improvements in both the quality of the sensor 
and the determination of the interferometer parameters. 
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8 Discussion 

In this thesis, we have demonstrated the use of a novel interferometer for the 
accurate measurement of the shape of extreme ultraviolet lithography (EUVL) 
aspheric mirror substrates at spatial frequencies up to 1mm-1. 
 
Although the accuracy of 4nm reported here for our preliminary measurements 
falls short of the desired accuracy of 0.1nm, several improvements not yet 
implemented are likely to increase the accuracy of the instrument to desired 
levels. The most significant source of error at this time is believed to be the 
sensor. A sensor designed specifically to meet the requirements of our 
interferometer was still under development at the time of writing. Consequently, 
our proof-of-concept measurements were obtained with a significantly 
inadequate sensor instead. All other subsystems meet the requirements for the 
desired measurement accuracy. 
 
In developing the interferometer presented here, advances have been made in 
a number of fields. These developments and suggestions for future work will 
now be discussed in the same order as they appear in the body of the thesis: 
 
The original concept of the interferometer has been revised to use multiple 
wavelength interferometry instead of the originally proposed frequency 
modulation continuous-wave (FMCW) techniques, to gain a significant 
simplification of the detection subsystem and the added flexibility of using either 
phase shifting or heterodyne methods to perform our measurements. 
 
The novel nature of the interferometer required the development of a unique 
inverse propagation algorithm to retrieve the shape of the surface under test 
from the measurement data. This has been achieved by using a combination of 
analytic raytracing methods and numerical diffraction methods, based on the 
idea of boundary diffracted waves, to obtain a good balance between 
computational speeds and accuracy. A rigorous method for diffraction 
calculations was developed and used to confirm the accuracy of the hybrid 
methods used in the inverse propagation algorithm. While the current model is 
workable, improvements in terms of speed and efficiency are certainly possible. 
 
The light source constructed is capable of providing a stable set of wavelengths 
which can be used to perform full-field multiple wavelength heterodyne 
interferometry at three wavelengths simultaneously. In the absence of a suitable 
sensor, the light source can also be used to perform sequential multiple 
wavelength interferometry using phase shifting methods. To ensure a minimum 
of drift and vibration susceptibility, several optical mounting structures were re-
designed to be used at lower beam-heights. The custom designed mounts have 
been shown to outperform commercially available mounts. To achieve the 
required flexibility and stability for the wavelengths used, tuneable lasers were 
stabilized relative to a reference laser, using an actively stabilized Fabry-Perot 
cavity. Direct beating between the stabilized lasers and the reference laser 
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show that the obtained stability far exceeds our requirements. Drifts in the light 
source could be further reduced by a more careful choice of materials and 
further miniaturization of the components. 
 
Although a sensor specifically designed to meet the requirements of the 
interferometer was still under development at the time of writing, significant 
progress was made with commercially available sensors. A phase-measuring 
active pixel sensor was used to demonstrate full-field heterodyne interferometry, 
as well as the beat frequency de-multiplexing of multiple wavelengths, allowing 
interferometry at several wavelengths simultaneously. The use of a standard 
CCD sensor in conjunction with phase shifting interferometry was also 
discussed, and calibration techniques were applied to reduce the influence of a 
number of systematic errors inherent in this method. This approach proved to 
be the most accurate of the methods compared using the available sensors. 
Even in the absence of the desired custom made active pixel sensor, the use of 
state-of-the-art CCD sensors together with improved calibration techniques may 
be sufficient to perform measurements to the desired accuracy with standard 
phase-shifting techniques in the future. 
 
An interferometer frame which allows the stable placement of the fibers, sensor 
and the surface under test at the required positions without obstructing the 
beam path has been designed and constructed entirely from invar to ensure 
optimum immunity against temperature fluctuations. The frame is also designed 
for accurate re-placement of the fibers and the substrate under test to allow in-
process monitoring of the substrate. Future versions of the interferometer frame 
will need to have a far greater adjustment range to permit the measurement of a 
variety of substrates. A comprehensive metrology strategy should also be 
devised which will allow the determination of the relative positions of the 
interferometer components with greater accuracy. 
 
Measurements on the sphericity of the wavefronts produced by the optical fibers 
were in agreement with the theoretical models, which predict a deviation from 
sphericity below +/- 0.06nm over an opening angle of 0.13 rad. By tapering and 
polishing the fiber ends, a larger effective NA may be achieved, both in terms of 
the intensity distribution and the wavefront sphericity. This may become 
necessary in future, for large NA optics. 
 
Preliminary measurements of a test substrate, performed using phase shifting 
techniques and a standard CCD, yielded promising results. The measurement 
resulted in a retrieved a mirror shape within 4.2nm rms of the nominal mirror 
shape, and an even smaller deviation from the mirror shape as measured by 
conventional interferometry techniques. The three main factors thought to limit 
the instrument’s accuracy are the non-uniformity of the features on the CCD, 
the presence of a cover-glass on the sensor and insufficient a-priory knowledge 
of the relative positions of the interferometer components. All of these factors 
can be overcome or reduced, leading to measurements with the required 
accuracy in the foreseeable future. The result will be an ultra-precise metrology 
instrument suitable for use in optical workshops – both in terms of cost and 
ease of operation. 
 



Absolute Heterodyne Interferometer for Strongly Aspherical Mirrors 

 

 M. L. Krieg 157 

Summary 

For the past thirty years, microchips have doubled in complexity every two years. 
This increasing complexity required that the size of the structures written on silicon 
halve at the same rate. A fundamentally limiting factor to the size of microchip 
structures is the wavelength of the lithographic projection processes used in their 
manufacture. Consequently, the wavelengths used to produce microchips have 
shrunk from 436nm, at the boundary of the visible spectrum, to 193nm, in the 
ultraviolet, between 1975 and 2002.  
 
A next generation process aims to use light with a wavelength of 13nm, in what is 
called extreme ultraviolet lithography (EUVL). Unlike previous processes, which 
could use lens systems to project the required patterns onto the microchips, EUVL 
requires the use of mirror projection systems. The mirrors used are highly aspheric 
and must be manufactured with unprecedented accuracies, of the order of 0.1nm. 
There are currently no affordable and easy to use systems to measure such mirrors 
with the required accuracy in optical workshops during manufacture. 
 
While the primary push for the development of such a measurement tool has come 
from the semiconductor industry, there are a number of other technology branches 
which could benefit from increased reflector accuracies. These include astronomy 
at ultra-short wavelengths, plasma physics, and biological microscopy. 
 
This thesis describes the construction and use of a novel interferometer to 
accurately measure the shape of such EUVL mirror substrates. Since tools to 
measure the surface roughness of these mirrors are readily available, we are 
concentrating on the measurement of spatial frequencies below 1mm-1 for the 
entire mirror surface. 
 
The main advantages of our interferometer over competing instruments are its 
independence from reference optics, which could introduce significant errors in 
other types of interferometers, its ability to measure the whole surface of most 
EUVL optics in one go and the possibility of using a more accurate type of 
interferometry - heterodyne interferometry - instead of the usual phase stepping. In 
contrast with a number of methods already available, this instrument is suitable for 
use in optical workshops, both in terms of cost and ease of use. 
 
Although the accuracy of 4nm reported here for our preliminary measurements falls 
short of the desired accuracy of 0.1nm, several improvements not yet implemented 
are likely to improve the accuracy of the instrument to desired levels. The most 
significant source of error at this time is believed to be the sensor. A sensor 
designed specifically to meet the requirements of our interferometer was still under 
development at the time of writing. 
 
In constructing the interferometer presented here, advances have been made in a 
number of fields: 
  
The novel nature of the interferometer required the development of a unique 
mathematical tool - an inverse propagation algorithm - to retrieve the shape of the 
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surface under test from the measurement data. This has been achieved using a 
combination of analytic raytracing and numerical diffraction methods based on the 
idea of boundary diffracted waves, to obtain a good balance between 
computational speed and accuracy. A rigorous method for diffraction calculations 
was also developed and used to confirm the accuracy of the fast hybrid method 
finally used in the inverse propagation algorithm. 
  
The light source constructed is capable of providing a stable set of wavelengths 
which can be used to perform full-field multiple wavelength heterodyne 
interferometry at three wavelengths simultaneously. In the absence of a suitable 
sensor, the light source can also be used to perform sequential multiple wavelength 
interferometry using phase shifting methods. To ensure a minimum susceptibility to 
drift and vibrations, several optical mounting structures were re-designed from 
scratch. The custom designed mounts have been shown to outperform 
commercially available mounts. 
 
Two different types of sensors were tested and compared. A commercially 
available CCD sensor already allowed us to make measurements coming close to 
the desired accuracy by using calibration techniques to reduce the influence of a 
number of systematic error sources. A recently developed sensor, with phase-
measuring active pixels, was used to demonstrate new approaches to 
interferometry: full-field heterodyne interferometry, as well as the beat frequency 
de-multiplexing of multiple wavelengths, allowing interferometry at several 
wavelengths simultaneously.  
 
An interferometer frame, which allows the stable placement of the mirror and 
various other components, has been designed and constructed entirely from invar 
to ensure optimum immunity against temperature fluctuations.  
 
Theoretical models were used to show that substrates with numerical apertures as 
large as 0.26 may be measured with the desired accuracy, limited only by the 
optical fibers used. Measurements carried out on the optical fibers showed that the 
sphericity of the wave fronts produced was in agreement with our theoretical 
models. By tapering and polishing the fiber ends, it may be possible to measure 
optics with even larger numerical apertures. 
 
Preliminary measurements of a test substrate, performed using phase shifting 
techniques and a standard CCD, yielded promising results. The measurement 
resulted in a retrieved mirror shape within 4.2nm rms of the nominal mirror shape, 
and an even smaller deviation from the mirror shape as measured by conventional 
interferometry techniques. The three main factors thought to limit the instrument’s 
accuracy are the non-uniformity of the features on the CCD, the presence of a 
cover-glass on the sensor and insufficient a-priori knowledge of the relative 
positions of the interferometer components. All of these factors can be overcome or 
reduced, leading to measurements with the required accuracy in the foreseeable 
future. The result will be an ultra-precise metrology instrument suitable for use in 
optical workshops. 
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Samenvatting 

Gedurende de afgelopen dertig jaar is de complexiteit van microchips elke twee 
jaar verdubbeld. Deze toenemende complexiteit eist dat de structuren die op het 
silicium worden geschreven overeenkomstig kleiner worden. Een fundamentele 
beperking voor de afmetingen van microchipstructuren wordt gevormd door de 
golflengte van het lithografische proces waarmee de chips worden vervaardigd. Om 
deze reden zijn de gebruikte golflengtes voor het maken van microchips tussen 
1975 en 2002 afgenomen van 436nm naar 193nm. 
 
Bij een toekomstig fabricageproces – extreem ultraviolet lithografie (EUVL) – wordt 
gestreefd naar het schrijven met golflengtes van 13nm. In plaats van lenzen, zoals 
tot nu toe gebruikt in de lithografie, vereist EUVL toepassing van spiegel-
projectiesystemen. De daarin toegepaste spiegels zijn sterk asferisch, en moeten 
met een uitzonderlijke nauwkeurigheid van rond de 0,1nm worden vervaardigd. Er 
zijn tot dusverre geen eenvoudige en betaalbare meetsystemen die de vorm van 
zulke spiegels met de vereiste nauwkeurigheid tijdens het fabricageproces in een 
optische werkplaats kunnen meten. 
 
Terwijl de ontwikkeling van dergelijke meetsystemen voornamelijk van belang is 
voor de halfgeleiderindustrie, zijn er ook andere sectoren die van een hogere 
meetnauwkeurigheid kunnen profiteren, waaronder de plasmafysica, biologische 
microscopie en astronomie bij ultrakorte golflengtes. 
 
Dit proefschrift beschrijft de constructie en het gebruik van een nieuw type 
interferometer voor het nauwkeurig meten van de vorm van spiegelsubstraten zoals 
gebruikt in EUVL. Aangezien er al meetsystemen bestaan voor het meten van de 
oppervlakteruwheid van spiegelsubstraten, concentreren wij ons op het meten van 
de lage ruimtelijke frequenties tot 1mm-1 over het gehele spiegeloppervlak. 
 
Onze interferometer kent meerdere voordelen ten opzichte van concurrerende 
instrumenten. Hij is onafhankelijk van referentie-optiek die grote fouten in andere 
interferometers kan introduceren, hij meet het hele oppervlak van de meeste 
substraten in een keer en kan gebruik maken van een nauwkeurigere 
interferometrische techniek – heterodyne interferometrie – in plaats van de gewone 
fase-stap technieken.  In tegenstelling tot andere meetinstrumenten is onze 
interferometer geschikt voor gebruik in een optische werkplaats, zowel qua kosten 
als op het punt van gebruiksgemak. 
 
Hoewel bij onze inleidende metingen tot nu toe maar een nauwkeurigheid van 4nm 
is bereikt, in plaats van de gewenste 0,1nm, zijn er meerdere verbeteringen 
mogelijk die alsnog tot de gewenste nauwkeurigheid kunnen leiden. De sensor 
introduceert op dit moment vermoedelijk de grootste fouten in onze metingen. Een 
sensor die voldoet aan de eisen van onze interferometer was tijdens het schrijven 
van dit proefschrift nog steeds in ontwikkeling in een parallel-project. 
 
Tijdens de constructie van onze interferometer is er op een aantal gebieden 
vooruitgang geboekt: 
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De aard van de interferometer vereiste de ontwikkeling van een uniek rekenmodel 
– een invers propagatie-algoritme – om de vorm van de spiegel uit de 
meetgegevens terug te vinden. Dit model bestaat uit een combinatie van 
analytische bundelpropagatie en numerieke diffractiemethoden gebaseerd op het 
concept van rand-buigingsgolven, om een goede balans tussen rekentijd en 
nauwkeurigheid te bereiken. Verder werd ook een nauwkeuriger, maar langzamer 
rekenmodel ontwikkeld om de betrouwbaarheid van onze methode te valideren. 
 
De door ons gebouwde lichtbron maakt het mogelijk om heterodyne interferometrie 
met drie golflengtes tegelijkertijd uit te voeren. Als daarvoor geen bijbehorende 
sensor beschikbaar is, kan de bron nog steeds worden gebruikt om voor elke 
golflengte een reeks fase-stap metingen uit te voeren. Ter vermindering van de 
gevoeligheid van de opstelling voor vibraties en fluctuaties, zijn er meerdere 
optische houders ontworpen. De nieuwe houders zijn aanzienlijk stabieler dan 
commerciële houders.  
 
Twee verschillende types sensoren zijn met elkaar vergeleken. Een standaard 
CCD was al voldoende om metingen uit te voeren die bijna de gewenste 
nauwkeurigheid behaalden, waarbij ijkmethodes zijn toegepast om een aantal 
systematische fouten te reduceren. Een nieuw type sensor, met fase metende 
pixels, stond heterodyne metingen toe over de gehele sensor, evenals het meten 
met meerdere golflengtes tegelijkertijd, door het de-multiplexen van de golflengten 
op basis van hun modulatiefrequenties. 
 
Om een optimale stabiliteit ten opzichte van temperatuurfluctuaties te bereiken, is 
een behuizing voor de spiegel en de andere componenten van de interferometer 
ontworpen die volledig is gemaakt van invar.  
 
Rekenmodellen hebben aangetoond dat spiegelsubstraten met numerieke 
aperturen tot 0,26 gemeten kunnen worden, waarbij de gebruikte optische vezels 
de beperking vormen. Metingen aan de optische vezels hebben laten zien dat de 
bolvormigheid van de gegenereerde golffronten in overeenstemming was met het 
rekenmodel. Door het verkleinen en polijsten van de vezeluiteinden zal het wellicht 
mogelijk zijn bij nog grotere numerieke aperturen metingen uit te voeren. 
 
Voorlopige metingen van een testsubstraat, uitgevoerd met een standaard CCD en 
fase-stap techniek, waren veelbelovend. De metingen toonden een verschil van 
4,2nm ten opzichte van de nominale spiegel vorm, en zelfs een kleiner verschil ten 
opzichte van de vorm zoals gemeten met conventionele methodes. De drie 
belangrijkste oorzaken voor de beperkte nauwkeurigheid van het instrument zijn 
pixel-positioneerfouten, de aanwezigheid van een dekglas op de sensor en 
onvoldoende kennis van de relatieve posities van de verschillende onderdelen van 
de interferometer. Al deze factoren kunnen worden gereduceerd of geëlimineerd, 
waardoor de gewenste nauwkeurigheid kan worden bereikt. Het resultaat zal een 
ultra-nauwkeurig meetinstrument zijn, geschikt voor gebruik in een optische 
werkplaats.  
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A. Equipment specifications 

A.1 HeNe Laser 

The HeNe laser used here was an actively stabilized HeNe laser from 
MellesGriot, model 05-STP-903. 
 
Calibration by the Dutch national institute of standards measured the 
wavelength of the laser at: 

(632.991 410 1 ± 0.000 001 0) nm 
 
We will briefly list the technical specifications along with some reported 
performance data: 
 

Model: 05-STP-903  Output mode: TEM00 

Power: 1 mW  Polarization: 1000:1 

Power stability: ~1% rms  Noise: <0.05% rms 

Wavelength: 632.991410 nm  Freq. stability (1min/1h/8h): 0.3/0.8/1.2 MHz 

Beam diameter: 0.5 mm  Temp. dependence: 0.5 MHz / K 

Divergence: 1.8 mrad    

Table A - 1: Specifications of HeNe laser used. 

 

   
Figure A - 1: Typical frequency stability measurements, relative to a Zeeman stabilized laser, as 

provided by Melles Griot 
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Figure A - 2: Typical photocurrent noise spectrum as provided by MellesGriot. The harmonics of 

2.5kHz are probably due to the high voltage amplifier. 
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A.2 Tunable Laser Newport/EOSI 2010 

The primary tunable laser used for most of our experiments was a Newport 
(formerly EOSI) model 2010 external caviy diode laser based on a Littman-
Metcalf design. 
 

Model: 2010M  Power: 5 mW 

Wavelength: 635±4 nm  Power stability: ~1% rms 

Fine Tuning Range (piezo): 100GHz  Beam shape: 2.5x0.7 mm 

Polarization: 1000:1  Divergence: <1 mrad 

Max. modulation rate: 500Hz    

Table A - 2: Specifications of the Newport 2010 laser used. 

 

A.3 Tunable Laser New Focus 6210 

Another tuneable laser used for several of our experiments (such as the three-
wavelength locking scheme) was a 6210 tuneable external cavity diode laser 
from New Focus.  
 

Model: 2010M  Power: 4 mW 

Wavelength: 633±5 nm  Power stability: ~1% rms 

Fine Tuning Range (piezo): 70GHz  Beam shape: 2.5x0.7 mm 

Polarization: 1000:1  Divergence: <1 mrad 

Max. modulation rate: 2000Hz    

Table A - 3: Specifications of the New Focus 6210 laser used. 
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A.4 Polarization maintaining single-mode fiber 

A key component in our interferometer is the optical fiber used as a point-
source to generate our reference spherical wave. The fibers used here are 
Newport F-SPV single-mode polarization preserving fibers, manufactured by 
Fibercore as model HB600. 
 

Model: F-SPV  Cut-off wavelength: 550±50nm 

Index Profile: Step  Stress-elements: Bow-tie 

N.A: 0.14-0.18  Birefringence: 0.31x10-3 

Mode-field diameter: 3.2µm  Ellipticity (typ.) 1.2:1 

Cladding diameter: 125±1µm  Core ref. index: 1.4610 

Coating dameter: 245±12µm  Cladd. Ref. index: 1.4571 

Table A - 4: Specifications of the F-SPV fiber used. 

 



Equipment specifications 

 

 Custom components. 165 

A.5 Custom components. 

Stability concerns required the design of new, ultra-low mounting structures for 
beam-splitting cubes, AOM modules and mirror-mounts. Only the most 
essential degrees of freedom were allowed to remain. The following drawings 
were used in the construction of these mounts. 
 
 
 
 
 
 
 
 

 
Figure A - 3: Mirror-mount holders for imperial optical table. 
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Figure A - 4: Adjustable AOM mounts (incl. AOM module) for imperial optical table. 
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The beam-splitting cube holders shown above can pivot and rotate about the 
centre of the steel bearing shown. To fix the top disc in place, three screws are 
fed through the slits in the disc, and screwed into the threaded holes of the plate 
below. One of these screws can also contain a spring to provide a flexible 
counter-force, making the mounts continuously adjustable (see Figure A - 6). 
 
 

 
Figure A - 5: Adjustable beam-splitting cube mounts (incl. cube) for imperial optical table. 

 
 
 

 
Figure A - 6: Assembly of an adjustable beam-splitting cube mount. 



Equipment specifications 

 

168 Lock-in modules. 

A.6 Lock-in modules. 

The lock-in modules used for the wavelength stabilization of the tuneable lasers 
are LIA-BV-150-H single-board lock-in amplifiers by Femto Messtechnik GMBH. 
These compact lock-in modules offered all the necessary flexibility needed for 
our demodulation purposes without the additional overhead of stand-alone lock-
in amplifiers. The specifications can be found in Table A - 5. 
 
 
Model: LIA-BV-150-H  Reference acquisition time: <2sec.

Input range: 3µV-1V  Phase shifter resolution: <1.4° at f<60 kHz

Input noise: 12nV/√Hz  Phase shifter drift: <100 ppm/K

Input impedance: 1MΩ//4pF  Time constant range: 300µs – 1s

Input gain drift: 100ppm/K  Demodulator dyn. reserve: 15,35 or 55 dB

CMRR: 110dB @ 1kHz  Ouput impedance 50Ω

Pre-filters  
(high, 6dB/Oct): 

2Hz-10kHz  Output DC-stability: 5,50 or 500 
ppm/K

Pre-filters  
(low, 6dB/Oct): 

100Hz-1MHz   

Table A - 5: Specifications of the LIA-BV-150-H Lock-in modules used. 
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A.7 Table and support 

The Optical table used was a Newport RPR series, with a set of XL-B vibration 
isolation legs. The specifications of these components are given in the tables 
below. 
 
 
Model: RPR-48-12  Thickness 106 kg/m2

Dimensions: 2.4mx1.2mx0.3m  Max. dyn. defl. coeff.: <2x10-3

Surface tickness: 4.8 mm  Max. Rel. Motion Value*: <3x10-7mm

Surface flatness: 0.1 mm over 0.36 m2  Deflection under load+: <1.3x10-3mm

Surface material: ferromagnetic steel
(w. damping layer)

  

Mounting holes: M6 thread on 1 in. grid 
(non-standard)

  

Table A - 6: Specifications of the optical table used. * - maximum relative motion value derived 
and confirmed by measurement for a typical table on isolators in a typical laboratory 
environment with a vibration PSD 10-10 g2/Hz. + - Measured with a 114kg load at the centre of 
the table. 

 
 

 
Figure A - 7: Compliance curve for optical table as reported by manufacturer. 

 
 
 

Model: Four Newport XL-B legs  Acceptable load: 700-2700kg 

Type: Pneumatic  Settling time: ~1.5s 

Leg height: 0.405m  Max. air pressure: 6.5 kg/cm2 

Active air volume: 0.45m3    

Table A - 7: Specifications of the vibration isolation legs used. 
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Figure A - 8: Transmissibility curves of isolation legs for vertical and horizontal vibrations, as 

reported by manufacturer. 
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A.8 Fabry-Perot cavity. 

The Fabry-Perot cavity used for our wavelength stabilization scheme was a 
refurbished Burleigh RC-150 (See Fig. A – 9). The specifications are listed in 
the table below. 
 

 
Figure A - 9: Compliance curve for optical table as reported by manufacturer. 

 
Model: RC-150  PZT range: 1.75µm 

Materials used: Al & super invar  Scan linearity: <0.1% 

Aperture: 50mm  Mirror type: Flat, 10’ wedge 

Mirror separation: 0-10mm  Mirror flatness: λ/100 

Adjustments: Coarse sliding
3-point vernier 

3-point PZT

 Coatings: Multi-layer dielectric (front) 
AR coating (back wedge) 

Table A - 8: Specifications of the RC-150 Fabry-Perot. 
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A.9 Interferometer frame 

Some drawings used for the construction of the interferometer frame (not to 
scale): 
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