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To define is to limit.

Oscar Wilde

Mathematical reasoning may be regarded rather schematically as the exercise of a
combination of two facilities, which we may call intuition and ingenuity.

Alan Turing
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SUMMARY

Man-made systems, such as manufacturing and transportation networks, and their in-
teractions with the environment are driven by human-designed operational rules. These
rules are most often based on the asynchronous occurrence of discrete events over time,
such as the arrival and departure of trains at a station. The modelling, analysis, and
control of the system evolution over discrete events result in the discrete-event systems
framework. Here, the dynamics are derived from two layers of behaviours: the logical or-
dering of event occurrences on the one hand, and the timing of events on the other. Au-
tomata are untimed finite-state sequential processing machines typically used to study
the logical behaviour of the discrete-event system. Here, a state transition diagram en-
codes the allowed sequences of events, such as the order of successive trains departing a
station, resulting in a variable (possibly non-deterministic) schedule of operation. Max-
plus algebra, with maximisation and addition as its basic operations, (and associated
algebraic structures) conveniently handle the timing aspects of discrete-event systems
when the schedule of operation of different tasks, such as the order of trains, is made
deterministic.

In this PhD thesis, we develop tools for system-theoretical analysis of discrete-event
systems when purely (max-plus) algebraic models, derived from timing constraints
among events, are enriched with automata-theoretic conflict resolution schemes to treat
variable schedules. We follow the hybrid dynamical systems approach that offers a pow-
erful description of the interplay between the logical and timing aspects of discrete-
event systems. On the one hand, the resulting hybrid automata allow a continuous-
variable dynamic representation of discrete-event systems analogously to time-driven
systems. On the other hand, the framework is convenient when timing constraints are of
explicit concern in system dynamics and performance specifications. We address issues
related to the stability, reachability, and solvability of discrete-event systems in this PhD
thesis.

Firstly, we focus on formalising the discrete-event modelling framework as a novel
max- plus-algebraic hybrid automaton analogously to the hybrid automaton framework
in conventional algebra. There are mainly two phenomena of concern: synchronisa-
tion and choice of event occurrences. We illustrate how the proposed framework offers
explicit flexibility in modelling the interplay of synchronisation and choice phenomena
among event occurrences. We show that the proposed framework unifies and extends
the existing max-plus-algebraic models of discrete-event systems with the variable or-
dering of events. We derive equivalence relations between the proposed framework and
other automata-theoretic models with timing features such as weighted automata.

Stability analysis plays an important role in the operation and control of dynamical
systems. There has been considerable research on generalising the notions of stabil-
ity from linear time-invariant systems to hybrid systems in conventional algebra. The
research for the counterpart in max-plus-algebraic systems is still limited. This moti-
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xiv SUMMARY

vates us to study the stability of discrete-event systems in the second part of the thesis.
We present a novel stability analysis framework under the broad setting of max-plus-
algebraic hybrid automata. We achieve this by reformulating various notions of stability
of discrete-event systems phrased in the classical Lyapunov sense. We then integrate
tools from max-plus algebra and Lyapunov theory to demonstrate the decision-making
capabilities of the proposed approach.

In the last part of the PhD thesis, we focus on the parametric modelling of con-
strained discrete-event systems. This allows capturing variations in the timing and
ordering of event occurrences within the framework of max-plus-algebraic hybrid au-
tomata analogously to the conventional time-driven linear parameter-varying systems.
The analysis of the effect of parameter variations on the existence of admissible trajec-
tories is of paramount importance in model-based decision-making for discrete-event
systems. Therefore, we focus on validating the coherence of the obtained model in pres-
ence of nonlinear implicitness in the system dynamics. In our analysis, we borrow tools
from max-plus algebra, monotone functions theory, graph theory, and computational
geometry. Finally, we study the application of the proposed approach to an urban rail-
way system.



SAMENVATTING

De interactie tussen door mens gemaakte systemen, zoals productie- en transport-
netwerken, en hun omgeving wordt aangestuurd door middel van door mens ontwor-
pen regels. Deze regels zijn veelal gebaseerd op het asynchrone en discrete voorkomen
van gebeurtenissen in de tijd, zoals de aankomst en vertrek van treinen op een station.
Het modelleren, analyseren en regelen van een system over discrete gebeurtenissen re-
sulteert in het discrete-event-systeemraamwerk. In dit raamwerk wordt de dynamica
afgeleid van twee gedragslagen: enerzijds van de volgorde van gebeurtenissen en an-
derzijds van de timing van gebeurtenissen. Automata zijn niet-getimede sequentiële
verwerkingsmachines met eindige toestandvariabelen die doorgaans worden gebruikt
om het logische gedrag van systemen met discrete gebeurtenissen te bestuderen. Een
toestandsovergangsdiagram codeert de toegestane opeenvolgingen van gebeurtenissen,
zoals de volgorde van opeenvolgende treinen die een station verlaten. Dit resulteert in
een variabel (mogelijk niet-deterministisch) werkingsschema. Max-plus-algebra, met
maximalisatie en optelling als basisoperaties, (en bijbehorende algebraïsche structuren)
is een handige methode voor het modelleren van de timingaspecten van discrete-event-
systemen wanneer het werkschema van verschillende taken, zoals de volgorde van
treinen, deterministisch wordt gemaakt.

In dit doctoraatsproefschrift ontwikkelen we methoden voor systeemtheoretische
analyse van systemen met discrete gebeurtenissen wanneer zuiver (max-plus) alge-
braïsche modellen, afgeleid van timingbeperkingen tussen gebeurtenissen, worden ver-
rijkt met automatisch-theoretische conflictoplossingsschema’s om variabele schema’s te
behandelen. We volgen de hybride dynamische systeembenadering die een krachtige
beschrijving biedt van het samenspel tussen de logische en timingaspecten van syste-
men met discrete gebeurtenissen. Enerzijds maken de resulterende hybride automata
een continu variabele dynamische representatie mogelijk van systemen met discrete
gebeurtenissen, analoog aan tijdgestuurde systemen. Aan de andere kant is het raamw-
erk handig wanneer timingsbeperkingen expliciet van belang zijn in de systeemdynam-
ica en prestatiespecificaties. In dit proefschrift behandelen we kwesties die verband
houden met de stabiliteit, bereikbaarheid en oplosbaarheid van systemen met discrete
gebeurtenissen.

Ten eerste richten we ons op het formaliseren van het modelleringsraamwerk
voor discrete gebeurtenissen als een nieuwe max-plus-algebraïsche hybride automa-
ton, analoog aan het hybride automaatraamwerk in conventionele algebra. Hier-
bij zijn voornamelijk twee fenomenen van belang: synchronisatie en keuze van het
voorkomen/ordenen van gebeurtenissen. We illustreren hoe het voorgestelde raamwerk
expliciete flexibiliteit biedt bij het modelleren van het samenspel van synchronisatie- en
keuzefenomenen tussen gebeurtenissen. We laten zien dat het voorgestelde raamwerk
de bestaande max-plus-algebraïsche modellen van systemen met discrete gebeurtenis-
sen verenigt en uitbreidt met de variabele ordening van gebeurtenissen. We lei-
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den equivalentierelaties af tussen het voorgestelde raamwerk en andere automaat-
theoretische modellen met timingkenmerken zoals gewogen automata.

Stabiliteitsanalyse speelt een belangrijke rol bij de werking en besturing van dy-
namische systemen. Veel onderzoek is gedaan naar het generaliseren van stabiliteits-
begrippen van lineaire tijdsinvariante systemen naar hybride systemen in conventionele
algebra. Voor hybride system in max-plus-algebra is dit onderzoek nog beperkt. Dit is de
motivatie voor het bestuderen van de stabiliteit van systemen met discrete gebeurtenis-
sen in het tweede deel van dit proefschrift. We presenteren een nieuw raamwerk voor
stabiliteitsanalyse onder de brede setting van max-plus-algebraïsche hybride automata.
We bereiken dit door verschillende begrippen van stabiliteit van systemen met discrete
gebeurtenissen te herformuleren in de klassieke Lyapunov-betekenis. Vervolgens inte-
greren we methoden van max-plus algebra en de Lyapunov-theorie om de besluitvorm-
ingsmogelijkheden van de voorgestelde benadering te demonstreren.

In het laatste deel van het proefschrift richten we ons op het parametrische mod-
elleren van discrete-event systemen onderhevig aan randvoorwaarden. Dit maakt het
mogelijk variaties in de timing en volgorde van gebeurtenissen binnen het kader van
max-plus-algebraïsche hybride automata vast te leggen, analoog aan de conventionele
tijdgestuurde lineaire parametervariërende systemen. De analyse van het effect van pa-
rametervariaties op het bestaan van toelaatbare trajecten is van allergrootste belang bij
modelgebaseerde besluitvorming voor systemen met discrete gebeurtenissen. Om deze
reden richten we ons op het valideren van de coherentie van het verkregen model onder
niet-lineaire impliciteit in de systeemdynamiek. In onze analyse gebruiken we metho-
den van max-plus algebra, theorie van monotone functies, grafentheorie en computa-
tionele meetkunde. Ten slotte bestuderen we de toepassing van de voorgestelde meth-
ode op een stedelijk spoorwegsysteem.



1
INTRODUCTION

In this chapter, we first give a brief overview of the discrete-event systems framework
in Section 1.1. Then we highlight the role that the max-plus algebra plays in the mod-
elling and analysis of discrete-event systems in Section 1.2. We point out the underlying
assumptions and ensuing limitations of the existing tools arising from the max-plus al-
gebra for the analysis of discrete-event systems. This, among other things, sheds light
on the steps that need to be taken to better understand the behaviour of more complex
discrete-event systems. The dissertation builds upon the hybrid systems framework of
[216] for studying system-theoretic properties of discrete-event systems in the max-plus
algebra. To this end, we formulate the objectives of this thesis exploiting the hybrid sys-
tems perspective to modelling and analysis of discrete-event systems in the max-plus
algebra in Section 1.3. We also present the major contributions of this thesis in 1.3. In
conclusion, we present an overview of the organisation of the subsequent chapters of
the dissertation in Section 1.4.

1.1. DISCRETE-EVENT SYSTEMS
From a classical system-theoretic point of view, any dynamical system can be under-
stood as a collection of its input-output (behaviour) trajectories defined along the time
axis [221]. We are often interested in defining a model that specifies the input-output be-
haviour of the system by adjoining the concept of state to the system. Here, the state is
an auxiliary variable that captures the internal configuration of the system by bifurcating
the past and future of the input-output behaviour. Thus, the state formalises the concept
of memory of the system [221]. The state space is then the set of all possible values of the
state variable. The model obtained in this way allows for predicting the future behaviour
of the system, as an aid in quantitative analysis, and for an adequate design of control
methods to verify or optimise the behaviour of the system such that certain specifica-
tions are met [54, 135, 221]. The distinction is then made based on the flow of time (con-
tinuous vs discrete) and on the definition of the state space (continuous vs discrete) [42].
We speak of ‘hybrid systems’ when both continuous and discrete elements are present

1
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in the behaviour of the system. A hybrid system description is most relevant in cyber-
physical systems [40, 156, 208] where natural phenomena interact with computer-based
logic, for instance, via control. Herein, a part of the dynamics are represented using a set
of differential or difference equations (progressing in time) as operation modes. Another
part of the dynamics are represented by a discrete mechanism that switches the mode of
operation in response to (internal or external) events.

Concept of event. In this dissertation, we are interested in system dynamics that are
event-driven. An event-driven system, in contrast to a time-driven system, evolves with
the occurrences of events causing instantaneous transitions in the state of the system. In
general, the events occur asynchronously with the tick of a clock. The formalism of log-
ical (or untimed) discrete-event systems is characterised by an event-driven dynamics
and is usually defined on a discrete (potentially infinite) set of states [54]. The formalism
is rather abstract as the states can be symbolic rather than numerical. Thus, such sys-
tems cannot generally be defined using models based on differential/difference equa-
tions. The discrete-event system modelling formalism finds applications in the study of
man-made systems such as transportation networks, flexible manufacturing systems,
telecommunication networks, and so on [17]. These man-made systems are charac-
terised by the completion of tasks/activities (such as the assembly of a product) by co-
operation between a finite number of entities (jobs or intermediate manufactured parts)
to utilise a finite number of resources (processors or machines). The starting and finish-
ing of different entities at different resources, for instance, constitute the set of events.
Time intervals between such events are not necessarily identical. The controller design
problem for (untimed) discrete-event systems then consists of determining the optimal
routing and/or scheduling of activities of entities on resources.

Concept of time. So far we have discussed the logical behaviour of an (untimed)
discrete-event system observed as a string of events over a discrete set of states. The
formalism of timed discrete-event system explicitly incorporates the timing (or tempo-
ral) features on the occurrence of events. This is achieved by adding one or more clocks
to the logical discrete-event system resulting in a timed discrete-event system. In this
thesis, we assume that the event occurrences are instantaneous. Therefore, the timing
information appears only as durations between the occurrence of events. This timing
information is either deterministic, stochastic, or provided as non-deterministic inter-
vals. Also, the clock variables can either take values in a continuous space or they can be
synchronised and measured with a single global digital clock. The durations or incurred
delays between event occurrences, for instance, are associated to the processing times of
entities on different resources. Initially, the concept of time was introduced in the mod-
elling of discrete-event systems for the purpose of performance evaluation (in terms of
throughput and makespan) of the system [27, 190, 226]. In this dissertation, we are in-
terested in situations where timing constraints are of explicit and primary importance
in the modelling, performance specification, and control of discrete-event systems. For
instance, sometimes the aim of the controller design problem is to determine when cer-
tain activities (events) should occur in time such that the completion of a task follows a
due-date reference.
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Models. There are many well-established modelling and analysis techniques for timed
discrete-event systems in the literature [24, 26, 39, 54, 190]. The choice of modelling
class typically trades off the modelling power against the decision power. In particular,
the larger the class of systems that can be modelled under a framework, the less it is
amenable to efficient analysis using analytical and mathematical tools. Moreover, timing
adds another dimension to discrete-event systems modelling. In particular, if the clock
variables are accounted for in the state of the system then it can lead to an infinite state
space.

Timed Petri nets obtained by associating clock structures to (untimed) Petri nets
form one of the largest and most powerful classes of timed discrete-event systems
[37, 184, 190]. These models are typically defined on a hybrid state space and are there-
fore infinite state. The analysis and synthesis issues are typically studied for the state
transition structure of the system utilising graph-theoretic tools. However, even for small
systems the number of possible state transitions over a future event sequence can ex-
plode combinatorially. Complete analytic solutions are unavailable for a general class of
timed Petri nets. Therefore, several problems (such as deadlock analysis that operates
on the reachability graph) are rendered undecidable, in that there do not exist generally
applicable algorithms to evaluate certain properties in finite time using a computer. In
some cases, it is possible to obtain finite-state representations of timed discrete-event
systems defined on an infinite state space. The resulting model classes include timed
automata [12, 13], timed transition systems [25, 39], and state class graphs [25]. Such
models lend themselves to language-theoretic analysis along the lines of Ramadge and
Wonham [191, 192, 202].

In this dissertation, we are interested in modelling classes that arise from a
continuous-valued event-driven dynamical system representation of timed discrete-
event systems. Herein, the concept of time forms the basic aspect for deriving the model
of the system. Thereby, the state-space consists of variables that can take values in a con-
tinuous space and the dynamics can be expressed algebraically as difference equations.
On the one hand, there are special subclasses of timed Petri nets that have a continuous-
valued recursive dynamical representation. This includes, but is not limited to, the class
of timed-event graphs [17, §2.5] and timed Petri nets with fixed priority rules [16, 60]. On
the other hand, there are subclasses of timed discrete-event systems whose dynamics
can be represented algebraically using difference equations, that cannot be easily ex-
pressed using timed Petri nets [17, §9.6.1], [203, §7]. The obvious disadvantage is that
the class of timed discrete-event systems that can be represented algebraically as differ-
ence equations is rather restricted. However, the algebraic description allows deriving
efficient specialised analysis tools [17, 61].

For a more complete overview of the applications of continuous-valued representa-
tions of timed discrete-event systems in control and analysis, the interested reviewer is
referred to [17, 59, 65, 85, 137, 138, 217] for manufacturing and queueing networks and
[38, 119, 134, 217] for railway networks.

Synchronisation and concurrency. The common feature of timed discrete-event sys-
tems of interest, whose dynamics can be expressed as difference equations, is that their
dynamics are governed by synchronisation and certain forms of concurrency. Synchro-
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nisation, a nonlinear and non-smooth phenomenon, refers to the requirement that sev-
eral resources be available at the same time to process an entity/job. The first kind of
concurrency occurs when an entity initiates multiple activities at different resources at
the same time. Another form of concurrency appears when an entity has a choice of re-
sources to visit at a certain time. Choice in the use of common resources requires mak-
ing decisions to resolve conflict. For instance, a choice can be modelled as a competi-
tion among successor resources. Timed-event graphs form a subclass of timed Petri nets
where all possible choices have been resolved beforehand. Timed-event graphs have
a continuous state space and their dynamics can be expressed explicitly using differ-
ence equations in the temporal (clock) variables. In particular, the clock variable updates
are governed by synchronisation effects and delays. Therefore, timed-event graphs can
model synchronisation but not choice phenomena [17].

Caveat. As stated earlier, conventional hybrid systems arising from cyber-physical sys-
tems are characterised by an interaction of time-driven and event-driven dynamics. We
note that discrete-event systems can also be obtained from hybrid (cyber-physical) sys-
tems by abstracting away information in both time and space. For instance, a high-level
abstraction can be obtained by a discrete partition of the state space and attributing
the events (such as passage of time) to transitions between the regions of the partition
[14, 207]. The issues arising in analysis and control of such systems, mainly due to sam-
pling of continuous time and state space, are conceptually different and out-of-scope of
this thesis.

Finally, we note that all of the work recalled from the literature and presented in this
dissertation focuses on timed discrete-event systems. For brevity of expression, we often
leave out the term ‘timed’ when we speak of discrete-event systems.

1.2. ROLE OF THE MAX-PLUS ALGEBRA

The application of the max-plus algebra to control and performance evaluation of
discrete-event systems has been a popular field of research for several decades [17, 61,
138]. The max-plus techniques also find applications to problems outside the field of
discrete-event systems [88, 96].

The dynamics of a timed-event graph corresponds directly to a max-plus linear sys-
tem [17, §2.5]. As mentioned earlier, the dynamics of a timed-event graph is governed by
synchronisation. Therein, the starting time of an activity can be expressed as the max-
imum of a set of the earliest times when all resources are available to an entity. These
availability times can, in turn, be expressed as the starting time of a preceding activ-
ity plus the processing time at the corresponding resource. Therefore, the description
of timed discrete-event systems under synchronisation but not choice results in state-
space models composed of linear expressions in the max-plus algebra [17].

In what follows, we discuss the tools arising from the max-plus algebra and the role
they play in performance analysis and control of timed discrete-event systems governed
by synchronisation but no choice.
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Max-plus algebraic systems theory. There is a considerable amount of literature on
system-theoretic linear max-algebraic notions and max-plus algebra tools in parallel
with conventional linear algebra [17, 48, 61, 66, 69, 84]. In particular, the max-plus
Perron-Frobenius theory allows for analytical study of the asymptotic behaviour of max-
plus linear maps [17], [61, §3], and hence discrete-event systems modelled by timed-
event graphs. The max-plus Perron-Frobenius theory has since been extended to non-
linear expressions in the max-plus algebra (such as the dynamics described by min-max-
plus linear functions) [108]. This aforementioned extension is based on the realisation
that we only need the underlying assumptions of monotonicity and additive homogene-
ity on dynamics [89, 109]. The tools for performance evaluation (related to throughput
analysis) have also been extended to the dynamics described by a set of max-plus linear
maps along with a scheduling mechanism [36, 85, 216]. The extensions of the max-plus
linear systems theory for analysis of a more general class of timed Petri nets are rather
limited [16, 60, 94].

Graph theory. It is noteworthy that graph theory plays a key role in the control and
analysis tools associated with max-plus linear systems theory. Firstly, several results
from max-plus Perron-Frobenius theory rely on a graph-theoretical interpretation for ef-
ficient evaluation of spectral properties and transient behaviour of timed-event graphs
[70, 119, 171]. Secondly, structural analysis tools for validating liveness, deadlock, and
boundedness of the associated timed-event graph exploit tools from graph theory [63].
Lastly, graph theory allows a distributed approach to control and scheduling of discrete-
event systems [133, 217]. The tools from graph theory associated with the max-plus al-
gebra have also been extended to study the dynamic behaviour of other classes of Petri
nets, such as P-time event graphs [205, 225]

Geometric systems theory. The control objective or the desired behaviour of a timed-
discrete event system is often specified as a set of acceptable schedules of operations
such as a set of sequences of event occurrence times [58]. Firstly, it is necessary to assess
whether the desired behaviour can be attained from a given set of initial conditions via
forward reachability analysis. Secondly, backward reachability analysis can be used to
find the largest subset of initial conditions such that the desired specification is satisfied
for all possible trajectories of the system. Max-plus geometry plays an important role
in studying several reachability problems for timed-event graphs [61, §4], [90]. This in-
volves the study of images and kernels of max-plus matrices as geometric objects, and
operations on them [91]. This also forms the basis of the max-plus geometric control the-
ory analogous to the classical geometric control theory of [223]. The theory of max-plus
geometric objects is more involved than its conventional algebra counterpart. Never-
theless, several important results towards the study of controllability [187], observability
[99], invariance-based control and estimation [80, 128, 162], and disturbance rejection
[114, 148, 199] problems can be found in the literature. The thrust of the research efforts
in this direction is towards providing elegant solutions to the algorithmic issues encoun-
tered in max-plus control and estimation problems at the cost of restrictive assumptions
and hypotheses. The geometric max-plus theory employs tools from residuation theory,
which provides analytic solutions to solve equations involving order-preserving (mono-
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tone) maps between partially ordered sets [61]. In particular, a solution to max-plus
linear equations, if it exists, can be obtained using multiplication in the dual min-plus
algebra. Residuation theory then finds applications in resource optimisation and stabil-
isability of timed-event graphs [61, §3].

Optimisation. The decision problems arising from algebraic and geometric systems-
theoretic treatment of max-plus linear systems often reduce to finding the solution
(spaces) to a system of equations and inequalities involving only maximisation, min-
imisation, and addition operations [48, 69, 128]. In the most general case, this can
be reduced to solving mixed-integer linear programs [71]. However, developing tools
for efficiently finding and analysing solutions to special cases of max-min-plus systems
of equations and inequalities is an active area of research (see [48, 98] and references
therein). In particular, solutions to (parametric) one-sided and (parametric) two-sided
max-plus equations can be finitely generated as max-plus polyhedra, defined analo-
gously to convex polyhedra, [7, 93, 97]. Most importantly, max-plus polyhedra are ca-
pable of encoding disjunctive (either-or) constraints among variables [9]. For exam-
ple, the constraint z = max(x, y) encodes the linear constraints x − z ≤ 0 and y − z ≤ 0,
along with the disjunctive information z = x ∨ z = y . This also leads to closed-form ex-
pressions for control and estimation problems arising in timed discrete-event systems
when the desired specification is formulated as a max-plus polyhedron [103, 104]. Fi-
nally, we note that the notion of (tropical) linear program and its parametric version have
been proposed in the literature analogously to the conventional (parametric) linear pro-
gram [93, 140, 141, 224]. The authors of [93, 140, 141, 224] have also proposed (pseudo)
polynomial-time algorithms to solve optimisation problems involving maximisation of
max-plus linear costs under max-plus linear constraints.

1.3. OBJECTIVE OF THE RESEARCH
Linear models (even in conventional algebra) form the simplest abstraction of dynami-
cal systems. The classical systems theory has its roots in the analysis of linear systems in
conventional algebra [135]. As the summary in the preceding section shows, the focus of
much of the existing research towards applications in discrete-event systems has been
on developing a mathematical framework for a coherent systems theory for max-plus
linear systems that are analogous to the classical systems theory. We intend to develop a
systems theory for classes of discrete-event systems obtained as extensions of max-plus
linear systems by allowing the choice phenomenon and parametric uncertainties.

The modelling power of a continuous-variable representation of a discrete-event sys-
tem (governed only by synchronisation but no choice) as a max-plus linear system is
restrictive [17]. There has been much work towards extending the class of max-plus lin-
ear systems by allowing certain forms of concurrency [85, 214]. The models proposed
in [85, 214], in particular, allow modelling a larger class of discrete-event systems by in-
cluding a discrete-valued state to model the choice phenomenon. There have also been
extensions towards modelling more involved constraints between the timing of occur-
rences of events, such as competition [203] and implicit dependence [127]. The authors
of [127] propose an implicit system of difference equations in the max-plus algebra for



1.4. ORGANISATION OF THE DISSERTATION

C
h

ap
te

r
1

7

modelling, control and, analysis of P-time event graphs.

Hybrid systems framework. The (common) objective of the different contributions
of this thesis is to extend max-algebraic system-theoretic tools for analysis and perfor-
mance evaluation to switching and uncertain systems in max-plus algebra. To this end,
we demonstrate the relation between hybrid behaviours observed in discrete-event sys-
tems governed by both synchronisation and choice phenomena and cyber-physical sys-
tems. In particular, we rely heavily on the analysis framework for discrete hybrid sys-
tems of [209] to develop tools for performance evaluation (in terms of throughput and
makespan) and trajectory computation of discrete-event systems in the max-plus alge-
bra.

A hybrid-systems approach to control and analysis serves the following objectives.
Firstly, the multi-modelling capability of the hybrid systems framework of [157] allows
exploiting and translating the existing analysis and control methods to hybrid models of
discrete-event systems in max-plus algebra. Secondly, the framework of [157] incorpo-
rates tools for addressing problems of stability, safety analysis, control, and state estima-
tion for conventional time-driven switching systems [157, 158, 160, 172, 194]. We would
like to develop a system-theoretic framework for max-plus discrete-event systems analo-
gous to the hybrid systems framework of [157]. In particular, a hybrid-systems approach
to problem solving exploits the modular structure of highly complex systems. This is
done by modelling complex systems as a collection of simpler dynamical systems. It is
then important to address the difficulties arising from the observed hybrid phenomena
due to interactions of the constituent dynamical systems.

1.4. ORGANISATION OF THE DISSERTATION
We present an overview of the dissertation along with key contributions. The structure
of this thesis and the connections between the different chapters can be found in Fig.
1.1. The contents of the dissertation are as self-contained as possible. Briefly, Chapter
2 presents the mathematical preliminaries for the rest of the thesis. Chapters 3-5 con-
tain the core contributions of this dissertation. Each core chapter also briefly recalls
the existing related work in the respective direction along with a detailed statement of
contributions. We present the concluding remarks and suggestions for future work in
Chapter 6.

Chapter 2: Mathematical background. We begin this thesis with a concise mathe-
matical overview of the max-plus algebra and of the max-plus systems theory. In doing
so, we also present the analogy between the max-plus formalism and the conventional
algebra. We present tools from max-plus Perron-Frobenius theory and max-plus con-
vex geometry before presenting the max-plus systems theory for analysing dynamical
behaviour. We also highlight the various assumptions underlying the development of
the existing analytical tools. Then we recall the stability theory for conventional time-
driven systems. In particular, we recall the role Lyapunov functions play in the analysis
of asymptotic stability, ultimate boundedness, and the invariance for systems defined
on finite-dimensional normed spaces. We then focus our attention on discrete-time
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Figure 1.1: Overview of the dissertation.
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hybrid systems defined by piecewise-affine systems. The notions and tools discussed
for piecewise-affine systems form the fundamental basis for the development of sev-
eral analysis tools proposed in this thesis. This is in accordance with the relation of the
max-plus linear description with the piecewise-affine description of a dynamical system
[5, 118, 216]. Finally, we discuss the tools of computational geometry that are necessary
for reachability analysis and invariance set computations for discrete-time piecewise-
affine systems.

Chapter 3: Modelling and equivalences. The first core chapter of the thesis presents
the theoretical foundations for modelling discrete-event systems. We recall the classes
of switching max-plus linear systems and max-plus automata from the literature. We
identify the discrete phenomena arising in continuous-valued descriptions of discrete-
event systems. This, in particular, allows us to form a modelling hierarchy for hybrid
system descriptions of discrete-event systems. We introduce the novel class of max-plus-
algebraic hybrid automata as a unified modelling language for systems arising from the
extensions of max-plus linear systems. We formally present the equivalence relation-
ships of the proposed max-plus-algebraic hybrid automata with the existing classes of
switching max-plus linear systems and max-plus automata. In particular, the obtained
results allow the comparison of timed and logical behaviours of switching max-plus lin-
ear systems and max-plus automata.

Chapter 4: Stability of max-plus-algebraic hybrid automata. In this chapter, we treat
the problem of stability of the continuous-valued portion of a max-plus-algebraic hy-
brid automaton. We restrict ourselves to autonomous (internal) notions of stability for
discrete-event systems. The main contribution of this chapter entails the extension of
tools from Lyapunov stability, in conventional normed spaces, to systems defined on a
special semi-normed space. Conventional Lyapunov theory studies the stability of dy-
namical systems using certain well-defined functions such as quadratic and piecewise-
affine functions [31]. We present theorems and analysis tools for asymptotic stability,
ultimate boundedness, and LaSalle-like invariance principle for discrete-event systems
modelled by max-plus-algebraic hybrid automata. In this regard, we propose certain
well-behaved classes of max-plus Lyapunov functions derived from monotone and ad-
ditively homogeneous functions. Finally, we present an algorithmic perspective on the
stability analysis of switching max-plus linear systems described by a set of max-plus
matrices.

Chapter 5: Max-plus linear parameter-varying systems. In this chapter, we deal with
the issues, related to the existence and uniqueness of trajectories, arising in implicit
parametric descriptions of discrete-event systems in max-plus algebra. We introduce
a general class of max-plus linear parameter-varying systems analogously to the linear
parameter-varying system descriptions in conventional time-driven systems theory. The
class of max-min-plus-scaling systems forms a nonlinear extension of the dynamical
system descriptions in the max-plus algebra [75]. We formally establish the equivalence
relationship between the proposed max-plus linear parameter-varying systems and the
class of max-min-plus-scaling systems and hence continuous piecewise-affine systems.
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On the one hand, a (quasi-)linear description in max-plus algebra allows us to provide
necessary and sufficient conditions for the existence and uniqueness of trajectories. On
the other hand, the proposed equivalence relationship allows us to exploit tools from
piecewise-affine analysis to compute the invariant regions of the state space where a
(unique) state solution always exists to the max-plus linear parameter-varying system at
each event step. Finally, we present an intuitive case study involving a unidirectional ur-
ban railway system. This provides an application of the presented sufficient conditions
to ascertain the existence and uniqueness of solutions.

Chapter 6: Conclusions & future work. Some concluding remarks and suggestions for
future work can be found in the final chapter.



2
MATHEMATICAL BACKGROUND

In this chapter, we introduce the notations and preliminaries pertaining to the max-plus
algebra, conventional stability theory, and piecewise-affine analysis tools relevant to the
rest of the dissertation.

2.1. INTRODUCTION
This chapter is organised as follows. We begin with some preliminary mathematical
notations common to all sections of this chapter. Section 2.2.1 recalls the basic no-
tion of max-plus algebra (and associated idempotent semirings), and the constituent
operations and conventions. Section 2.2.2 discusses max-plus spectral theory and the
associated graph-theoretical tools. Section 2.2.3 summarises the notions of distances
and geometrical objects defined max-plus algebra analogously to the conventional alge-
bra. Section 2.2.4 lays out the systems theory for the qualitative characterisation of the
dynamical behaviour of additively homogeneous monotone functions using max-plus-
algebraic tools. Section 2.2.4 also details procedures for finding solutions of certain max-
plus equations. Section 2.3 mainly recalls conventional Lyapunov stability theory and its
extensions for dynamics defined on normed spaces. Several max-plus-algebraic objects
can be studied using polyhedral methods. Therefore, Section 2.4 presents the neces-
sary definitions pertaining to piecewise-affine systems from the literature. In particular,
Section 2.4 recalls an algorithm for the computation of invariants for a piecewise-affine
dynamics from the literature. The chapter ends with concluding remarks in Section 2.5.

2.1.1. BASIC MATHEMATICAL NOTATIONS
The sets of all non-negative integers and positive integers are denoted asN0 = {0,1,2, . . . }
and N = N \ {0}, respectively. The set of all non-negative integers up to n is denoted as
[n] = {l ∈N0 | l ≤ n}. The set of positive integers up to n is denoted as n = [n]\{0}. The set
of all non-negative real numbers is denoted as R+ = {l ∈ R | l ≥ 0}. The vectors of length
n ∈N consisting of only zeros and ones are denoted as 0n and 1n , respectively. The set of
unit vectors

{
e{1},e{2}, . . . ,e{n}

}
denotes the standard basis of Rn .

11
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We speak of Euclidean topology as the topology induced on the Euclidean space Rn

by the Euclidean metric, d(x, y) =
√∑

i∈n
(
x2

i − y2
i

)
for x, y ∈Rn .

Let P be a finite set. Then |P |, 2P , and P∗ denote the cardinality, power set (set of
all subsets), and set of non-empty finite sequences of elements from P , respectively. A
non-empty finite set of symbols is referred to as an alphabet.

2.2. MAX-PLUS ALGEBRA
This section presents some important notions in max-plus algebra and monotone func-
tion theory. For a comprehensive overview of max-plus algebra and its applications, an
interested reader is referred to [17, 66].

2.2.1. NOTATIONS AND TERMINOLOGY
The section is based entirely on [17, 75, 115, 119, 178, 180].

Definition 2.2.1 (Semigroup). Let R be a set and ⋄ a binary operation defined on the
elements of R. Then (R,⋄) is a semigroup if ⋄ is associative, i.e. a ⋄ (b ⋄ c) = (a ⋄b)⋄ c for
all a,b,c ∈R. □

An element IR ∈R is an identity if for all a ∈ R, IR⋄a = a⋄IR = a. An element 0R ∈ R
is zero if for all a ∈R, 0R ⋄a = a ⋄0R = 0R.

We sometimes refer to R as a semigroup instead of (R,⋄) if the binary operation is
clear from the context. The semigroup (R,⋄) is called commutative if a ⋄b = b ⋄ a for all
a,b ∈R.

We speak of the conventional algebra as the field of real numbers: set R equipped
with addition (+) and multiplication1 (×). In the following, we present the concept of
max-plus algebra as an abstract generalisation of the conventional algebraic structure.

Definition 2.2.2 (Max-plus algebra). The max-plus algebra is defined as Rmax =
(Rε,⊕,⊗), and consists of the set Rε = R∪ {−∞} endowed with the max-plus addition
(⊕) and the multiplication (⊗) operations:

a ⊕b = max(a,b)

a ⊗b = a +b.

The zero element is denoted as ε = −∞ and the unit element as 1 = 0. The max-plus
algebra is a tropical semiring and satisfies the following axioms:

• The set (Rε,⊕) forms a commutative semigroup with ε as identity;

• The set (Rε,⊗) forms a semigroup with 1 as identity;

• Max-plus multiplication distributes over max-plus addition, i.e. a ⊗ (b ⊕ c) = (a ⊗
b)⊕ (a ⊗ c) for all a,b,c ∈Rε;

• The element ε is absorbing for ⊗. □
1We sometimes denote the conventional multiplication as ·.
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Additionally, max-plus addition is idempotent, i.e. it lacks an additive inverse: a ⊕b =
ε⇒ a = b = ε.

There are several max-plus analogues to classical algebraic definitions. For instance,
the set of n-dimensional vectors and m ×n matrices can be defined as Rn

ε and Rm×n
ε ,

respectively. The partial order ≤ is defined such that for vectors x, y ∈Rn
ε , x ≤ y ⇔ x⊕ y =

y ⇔ xi ≤ yi , ∀i ∈ n.
A max-plus zero matrix is denoted as En×n . A max-plus identity matrix I⊗

n is defined
as: [I⊗

n ]i i = 0 for all i ∈ n and [I⊗
n ]i j = ε for all i , j ∈ n with i ̸= j . A max-plus per-

mutation matrix is obtained by permuting the rows and columns of a max-plus identity
matrix.

The max-plus powers of a matrix are defined recursively as A⊗k+1 = A⊗k ⊗ A for k ∈N
with A⊗0 =I⊗

n . For scalars γ,c ∈R, we have γ⊗c = c ·γ.
The (i , j )-th element of a matrix A ∈ Rm×n

ε is denoted as [A]i j = ai j and the i -th
element of a vector x ∈Rn

ε is denoted as xi . The vector and matrix operations can also be
defined analogously to the conventional algebra. Let A,B ∈ Rm×n

ε , C ∈ Rn×p
ε be matrices

in the max-plus algebra; then

[A⊕B ]i j = ai j ⊕bi j = max
(
ai j ,bi j

)
[A⊗C ]i j =

n⊕
k=1

ai k ⊗ ck j = max
k

(
ai k + ck j

)
The matrix A normalised by a scalar µ ∈R is denoted as [Aµ]i j = [A]i j −µ.

Definition 2.2.3 (Regular (row-finite) matrix). A matrix A ∈ Rm×n
ε is called regular if it

has one finite element (different from ε) in each row. □
We denote the set of square regular max-plus matrices of dimension n ∈ N as

M (n×n)(Rε).

Definition 2.2.4 (Max-plus matrix semigroup, [107]). A set of regular square matrices
in the max-plus algebra of dimension n, denoted as A ⊆ M n×n(Rε), forms a max-plus
multiplicative semigroup (A ,⊗):

Ψ(A ) :=
{

A(i1) ⊗·· ·⊗ A(ik ) | A(i j ) ∈A , j ∈ k, k ∈N
}

□
The max-plus convex hull of m ∈Nmatrices in A is defined as

conv⊗(A ) =
{ m⊕

j=1
α j ⊗ A( j )

∣∣∣ j ∈ m, A( j ) ∈A , α j ∈Rε,
m⊕

j=1
α j =1

}
. (2.1)

The identities based on Kronecker products and vectorisation can also be extended
to max-plus algebra.

Definition 2.2.5 (Max-plus Kronecker product, cf. [116]). Let A ∈ Rm×n
ε and B ∈ Rr×s

ε .
The max-plus Kronecker product of A and B is defined as

A⊠B =


b11 ⊗ A b12 ⊗ A · · · b1s ⊗ A
b21 ⊗ A b22 ⊗ A · · · b2s ⊗ A

...
...

. . .
...

br 1 ⊗ A br 2 ⊗ A · · · br s ⊗ A

 ∈Rmr×r s . (2.2)
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□
The following max-plus Kronecker product identities follow analogously from con-

ventional algebra2 [115]:

(A⊠B)⊗ (C ⊠D) = (A⊗C )⊠ (B ⊗D), (2.3)

(A⊠B)⊺ = A⊺⊠B⊺, (2.4)

I⊗
m ⊠I⊗

n =I⊗
n ⊠I⊗

m =I⊗
m·n . (2.5)

The (column-wise) vectorisation of a matrix [B ]i j = bi j ,

vec(B) = (
b11 b21 · · · b12 b21 · · ·)⊺ , (2.6)

is compatible with the max-plus Kronecker product. The following identities can also be
derived analogously for matrices A, B , and C of dimensions k × l , l ×m, and m×n in Rε,
respectively, and c̃ = vec(C ):

vec(A⊗B ⊗C ) = (I⊗
n ⊠ A⊗B)⊗vec(C ), (2.7)

vec(A⊗B) = (I⊗
m ⊠ A)⊗vec(B)

= (B⊺⊠I⊗
k )⊗vec(A),

(2.8)

C = vec−1(c̃) = (
vec(I⊗

n )⊺⊠I⊗
m

)⊗ (
I⊗

n ⊠ c̃
)

. (2.9)

As mentioned earlier, the max-plus algebra is a special case of a semiring. In the fol-
lowing, we recall other (tropical) semirings important for the scope of this dissertation.

Definition 2.2.6 (Min-plus algebra). The min-plus algebra,Rmin = (R⊤,⊕′,⊗′), defined as
a dual of the max-plus algebra acting on the setR⊤ =R∪{+∞}, is also a tropical semiring.
The zero element is ⊤=+∞ and the unit element is 1. The vector and matrix operations
are defined analogously as in the max-plus algebra. □

The dual min-plus conjugate of a max-plus vector x ∈ Rn
ε is denoted as x− = (−x)⊺ ∈

Rn
⊤. The relation between max-plus and min-plus algebra is then apparent: a⊕b = (a−⊕′

b−)− for a,b ∈Rn
ε =Rn

ε ∪ {+∞}.
We then speak of (Rε,⊕,⊗) as the3 completed max-plus algebra. The set of all vectors

in R
n
ε with at least one finite entry is denoted as R

n
ε \ {ε,⊤}n .

Remark. We attribute the terminology max-plus-algebraic to the set of elementsRε. The
term max-plus-algebraic indicates that the operations and elements of max-plus algebra
take precedence over min-plus and conventional operations and elements. In doing so,
we adopt the following conventions:

• ε+⊤=⊤+ε= ε,

• a ⊗⊤=⊤⊗a =⊤ if a ∈R⊤,

2Assuming that the products A⊗C and B ⊗D are compatible.
3A semiring is said to be complete if it is complete as an ordered set, i.e. any arbitrary subset attains a least

upper bound, and the product distributes over infinite sums.
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• ε⊗
a =⊤ if a < 0, ε⊗

a = ε if a > 0, ⊤⊗a =⊤ if a > 0, and ⊤⊗a = ε if a < 0,

• ε⊗
0 =⊤⊗0 = 0.

Definition 2.2.7 (Max-plus Boolean algebra). The max-plus Boolean algebra defined as

Bmax = (Bε,⊕,⊗), Bε = {ε,1}.

It is isomorphic to the Boolean algebra B= ({false, true},or,and). □

2.2.2. MAX-PLUS SPECTRAL THEORY
The max-plus spectral theory bears remarkable analogy with the Perron-Frobenius the-
ory for non-negative matrices. The interested reader is referred to [89] for an exhaustive
description. Here, we recall certain concepts from the literature pertaining to the dis-
sertation. We begin with graph theory and then describe its connection with max-plus
eigenvalue problem.

Definition 2.2.8 (Precedence graph of a max-plus matrix). The directed graph of a ma-
trix A ∈ Rn×n

ε , denoted G (A) = (N (A),E(A)), is a directed graph with labelled edges on a
vertex set N (A) = n and an edge set E(A) ⊆ n ×n. Here, an edge (i , j ) ∈ E(A) whenever
[A] j i is finite.

A path from a node i1 to ik , k ∈ N, on the graph G (A) is a directed chain of edges
ω = ((i1, i2), . . . , (ik−1, ik )), such that (il , il+1) ∈ E(A) for all l ∈ {1, . . . ,k − 1}. A path is a
circuit if ik = i1. The circuit is elementary if all nodes i1, . . . , ik−1 are distinct. □

The weight of a path ω = ((i1, i2), . . . , (ik−1, ik )) is the max-plus product of the edge
labels on the path:

|ω|w =
k−1∑
l=1

[A]il+1il .

The length of the path, the number of edges in the path, is denoted as |ω|l = k −1. The
average weight of the pathω is the ratio |ω|w/|ω|l. Ifω is a circuit, then we speak of circuit
mean for the average weight of the circuit. The maximal circuit mean is then the maximal
average weight over all the circuits of the graph G (A). By convention, the weight of an
empty path is defined as max-plus unity, |ω|w = 0 if |ω|l = 0. Vertices i , j ∈ N (A) are said
to communicate with each other if either i = j or there exists a path from i to j and a
path from j to i .

A circuit σ of G (A) is said to be critical if its circuit mean is maximal. We define the
set of all nodes on the critical circuit(s) as the critical nodes, Nc(A). Similarly, the set of all
labelled edges belonging to critical circuit(s) are denoted as Ec(A). The resulting critical
(sub-)graph of G (A) is denoted as Gc(A) = (Nc(A),Ec(A)). If i , j ∈ Nc(A) belong to the
same critical cycle then they are equivalent, denoted as i ∼ j .

Max-plus algebraic operations on matrices have corresponding graph-theoretic in-
terpretations. For instance, each ( j , i )-th element of the s-th power of a square matrix,
[A⊗s

] j i , corresponds to the maximum weight over all paths from i to j of length s ∈ N.
Similarly, the element [C ]i j of C = A ⊕B corresponds to the maximum of the weights
from i to j over the corresponding precedence graphs of the max-plus summands.

The following concept is important to draw an analogy between Perron-Frobenius
theory of max-plus and non-negative matrices.
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Definition 2.2.9 (Irreducible matrices). A matrix A ∈Rn×n
ε is said to be irreducible if G (A)

is strongly connected i.e., for each i , j ∈ N (A), there is a path that starts in i and ends in
j . Algebraically, the matrix A is irreducible if

[Γ]i j = [A⊕ A⊗2 ⊕·· ·⊕ A⊗n−1
]i j ̸= ε, ∀i , j ∈ n, i ̸= j . □

Note that the element [Γ]i j is finite only if there exists at least a path from j to i of
length up to n−1. As the shortest path between any two connected vertices are of length
n−1 or smaller, the paths of length n or greater need not be considered in the preceding
definition.

If a matrix A is not irreducible, it is possible to partition the set of nodes N (A) to
form subgraphs Gt = (Nt (A),Et (A)), t ∈ r with r ∈ n, of G (A). Here, Et (A) is defined as
the subset of edges that both begin and end in vertices contained in Nt (A). Moreover,
no two vertices contained in disjoint partitions communicate with each other. If Nt (A)
is not empty then Gt (A) is said to be a strongly connected subgraph of G (A).

Definition 2.2.10 (Frobenius normal form, [119]). Let A ∈ Rn×n
ε be a reducible matrix.

Then it can be transformed into the Frobenius normal form by a suitable max-plus per-
mutation matrix:

P ⊗ A⊗P⊗−1 = Ã =


A11 ε . . . ε

A21 A22 . . . ε
...

...
. . .

...
Ar 1 Ar 2 . . . Ar r

 (2.10)

where A11, . . . , Ar r are irreducible submatrices of Ã, and pertain to the strongly con-
nected subgraphs of G (A).

A reducible matrix A can be brought to a lower-triangular form if any strongly con-
nected components in G (A) is a self-loop. In particular, the diagonal matrix blocks
A11, . . . , Ar r in the Frobenius normal form Ã are of unit dimension. □

The partition of the subset of vertices (classes) N (A), corresponding to the Frobenius
normal form, is denoted as N1, . . . , Nr . An arc from a vertex in Ni to a vertex in N j , de-
noted Ni → N j , exists only if i ≤ j . The classes of A with no incoming arc are called the
initial classes and those with no outgoing arcs are called the final classes.

The max-plus eigenvalue problem is defined analogously to the conventional algebra
albeit using max-plus operations.

Definition 2.2.11 (Max-plus eigenspace, [66]). The max-plus eigenspace of a matrix A ∈
Rn×n
ε corresponding to a max-plus eigenvalue λ ∈R is defined as :

eig(A,λ) = {z ∈Rn
ε \ {ε}n | A⊗ z =λ⊗ z}. (2.11)

Here, λ is called the max-plus eigenvalue and z ∈ eig(A,λ) is called the correspond-
ing max-plus eigenvector. The set of max-plus eigenvalues λ of the matrix A such that
eig(A,λ) ̸= ; is denoted asΛ(A). □

We note here that the max-plus eigenspace eig(A,λ(A)) contains a finite max-plus
eigenvector only if the matrix A is regular (row-finite).
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The largest max-plus eigenvalue, denoted λ(A), of a matrix A ∈ Rn×n
ε can be inter-

preted as the maximal circuit mean of the graph G (A). Let Σ be the set of all elementary
cycles of G (A). Then, we have

λ(A) = max
ω∈Σ

|ω|w
|ω|l

.

The max-plus spectral characteristics can be computed exactly and efficiently. We
refer to [119] for a complete overview. The max-plus eigenvalue problem can also be
solved as a linear program:

λ(A) = min
x,λ

{
λ
∣∣∣[A]i j +x j −xi ≤λ, ∀ i , j ∈ n s.t. [A]i j is finite

}
. (2.12)

Theorem 2.2.1 (Max-plus spectral theorem, [17]). An irreducible matrix A ∈ Rn×n
ε at-

tains a unique max-plus eigenvalue. That is, the set Λ(A) is a singleton. Moreover, the set
eig(A,λ(A)) then contains only vectors with only finite elements. ■

In general, the max-plus eigenspace of an irreducible matrix contains several max-
plus eigenvectors that are not proportional in the max-plus sense. Note also that some
reducible matrices also attain unique max-plus eigenvalues corresponding to finite max-
plus eigenvectors.

Lemma 2.2.1 (Finite eigenvectors, [66]). Let A ∈Rn×n
ε be a regular matrix. Then A admits

finite max-plus eigenvectors, corresponding to λ(A), if and only if for every i ∈ N (A) there
is a j ∈ Nc(A) such that ( j , i ) ∈ E(A). ■

In general, a reducible matrix A ∈ Rn×n
ε has several (at most n) distinct max-plus

eigenvalues. The set of max-plus eigenvalues can be found using the Frobenius normal
form (3.12) as detailed in [119, §6].

The following result presents the notion of periodicity of max-plus linear maps.

Lemma 2.2.2 (Matrix periodicity, [66]). Let A ∈ Rn×n
ε be irreducible. Then there exist

scalars k0 ∈N0 and c ∈N such that for all k ≥ k0, we have

A⊗k+c =λ⊗c ⊗ A⊗k
,

whereλ ∈R is the (unique) max-plus eigenvalue and the smallest non-zero c ∈N satisfying
the preceding equation is the cyclicity of the matrix A. □

The notions of irreducibility and max-plus eigenvalues can also be extended to ma-
trix semigroups in the max-plus algebra (see Definition 2.2.4).

Definition 2.2.12 (Irreducible semigroups, [107]). Let A ⊆Mn×n(Rε) be a set of regular
matrices. The semigroup (A ,⊗) is said to be irreducible if there exists an irreducible
matrix in the max-plus convex hull of the matrices inΨ(A ). □

In particular, for an irreducible matrix semigroup there exist irreducible matrices S ∈
Ψ(A ) [107]. Equivalently, we have

∃ c ∈N, S = A(ic ) ⊗ A(ic−1) ⊗·· ·⊗ A(i1), A(i j ) ∈A , j ∈ c, (2.13)

such that S is irreducible.
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Lemma 2.2.3 (Irreducible matrix semigroup, [107]). Let A ⊆ Mn×n(Rε) be a closed and
bounded4 set of regular matrices. The matrix semigroup (A ,⊗) is irreducible if and only
if there exists an irreducible matrix in conv⊗(A ). Equivalently, the semigroup (A ,⊗) is
irreducible if the matrix

SA = ⊕
A∈A

A (2.14)

is irreducible. ■
In view of the preceding result, the irreducibility of a matrix semigroup in max-plus

algebra can then be evaluated efficiently.
The notion of joint-spectral radius extends the notion of eigenvalues from a matrix

to a semigroup of matrices [33].

Definition 2.2.13 (Max-plus spectral radii, [33]). Let A ⊆Mn×n(Rε) be a finite set of L ∈
N regular matrices. The max-plus joint spectral radius ρmax and max-plus lower spectral
radius ρmin are defined as

ρmax(A ) = lim
k→∞

max
i1,i2,...,ik∈L

∥∥Ai1 ⊗ Ai2 ⊗·· ·⊗ Aik

∥∥⊗1/k
,

ρmin(A ) = lim
k→∞

min
i1,i2,...,ik∈L

∥∥Ai1 ⊗ Ai2 ⊗·· ·⊗ Aik

∥∥⊗1/k
,

where ∥A∥ = maxi , j∈n [A]i j for A ∈Rn×n
ε . □

Note that the max-plus joint spectral radius of a finite set of regular max-plus matri-
ces is readily calculated as stated in the following result.

Lemma 2.2.4 (Max-plus joint spectral radius, [85]). Let A ⊆ Mn×n(Rε) be a finite set of
regular matrices. Let the maximum of the matrix set A be defined as in (2.14). Then
ρmax(A ) =λ(SA). ■

The approximation of lower spectral radius of a given matrix group in max-plus al-
gebra is known to be computationally difficult [33, 85]. Therefore, a complete spectral
characterisation of a max-plus matrix semigroup is usually unavailable.

Now we recall the notion related to asymptotes of max-plus matrix powers. The result
is particularly important for solving implicit equations in max-plus algebra. The notion
of a Kleene star of a matrix A ∈ Rn×n

ε is analogous to the matrix inverse (I − A)−1 in
conventional algebra.

Lemma 2.2.5 (Kleene plus and Kleene star, [17]). Let A ∈Rn×n
ε . Then the series

A+ = A⊕ A⊗2 ⊕·· · , A⋆ =I⊗
n ⊕ A⊕ A⊗2 ⊕·· · (2.15)

converges if and only if λ(A) ≤ 0, i.e. the associated directed graph G (A) has only non-
positive circuit weights.

If the limits A+ and A⋆ exist, then we have

A+ =
n⊕

k=1
A⊗k

, A⋆ =
n−1⊕
k=0

A⊗k
. ■

4Here, the compactness of a set of matrices in max-plus algebra is understood under the topology induced by
the metric d(x, y) = ∣∣ex −e y

∣∣, with x, y ∈Rn
ε , where the exponential is understood to be element-wise.
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The matrices A+ and K = A⋆, if they exist, are known as the Kleene plus and Kleene
star matrices, respectively. These matrices can be found efficiently using the Floyd-
Marshall algorithm [48]. The Kleene star matrix K accumulates the paths with the great-
est weights, by definition. Moreover, λ(K ) = 0. Equivalently, K is a Kleene star matrix

if K ⊗2 = K and [K ]i i = 0 for all i ∈ n. Moreover, if a matrix A ∈ Rn×n
ε is irreducible and

λ(A) ≤ 0, then A⋆ has all entries finite [17].
As will become clear in the subsequent subsection, Kleene star matrices form a par-

ticularly well-behaved class of max-plus matrices. Therefore, it is important to point out
here that Kleene star matrices play a vital role in several aspects of the max-plus algebra.

2.2.3. MAX-PLUS CONVEX GEOMETRY
In this section, we recall the max-plus analogues of linear spaces, convex sets, and cones
along with their important geometrical properties. The section is based on [8, 9, 50, 79,
197].

Firstly, we recall the notions of norms and metrics suited to max-plus geometric
structures. This will allow us to define notions of distance from and projection onto
subsets of Rn

ε .

Definition 2.2.14 (Supremum norm). Let x ∈Rn
ε . The max-plus algebra is equipped with

the conventional ℓ∞ norm defined as5

∥x∥∞ = max
i∈n

|xi | = max(max
i∈n

(xi ),max
j∈n

(−x j )). (2.16)

The metric induced by the ℓ∞ norm is denoted as d(x, y) = ∥∥x − y
∥∥∞. □

We note that the ℓ∞ norm on Rn
ε can take an infinite value.

The introduction of the next norm requires the notion of the projective space.

Definition 2.2.15 (Max-plus Hilbert’s projective space). Let ∼ be an equivalence relation
on Rn

ε such that
x ∼ y ⇔∃ν ∈R s.t. x = ν+ y, ∀x, y ∈Rn

ε . (2.17)

The respective equivalence class denotes the ray y = {x ∈Rn
ε | x ∼ y}. The Hilbert projec-

tive space PRn
ε is identified as the quotient space Rn

ε /∼. The max-plus Hilbert projective
space PRn is similarly defined as the quotient space Rn/∼. □

While the supremum norm measures the distance from the origin, it is sometimes
required to measure distances between rays. The distance between rays is understood
as the distance between points in the projective space. In the following, we denote 1n as
the equivalence class of the vector 1n .

Definition 2.2.16 (Max-plus Hilbert projective metric, [119]). The max-plus Hilbert pro-
jective (semi) norm in max-plus algebra is defined as

∥x∥P = max
i∈n

(xi )−min
j∈n

(x j ), x ∈Rn

∥A∥P = max
{∥[A]·i∥P | i ∈ m

}
, A ∈Rn×m .

(2.18)

5Recall that under the adopted convention, ε⊗
−1 =−ε=⊤.
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The max-plus Hilbert projective (semi-) norm induces the max-plus Hilbert projective
(pseudo-) metric as dH(x, y) = ∥∥x − y

∥∥
P

for x, y ∈Rn .
The (Hilbert) projective norm satisfies: i) Triangle inequality,

∥∥x + y
∥∥
P
≤ ∥x∥P+

∥∥y
∥∥
P

,

ii) Definiteness, ∥x∥P = 0 ⇔ x ∈1n , and iii) Absolute homogeneity ∥ν · x∥P = |ν| ·∥x∥P for
x, y ∈Rn ‘’ and ν ∈R. □

The notion of max-plus Hilbert projective metric can be extended to the space Rε as
in [62]. We note that the max-plus Hilbert projective norm and consequently the max-
plus Hilbert projective metric fails to satisfy the properties of positive definiteness and
indiscernibility, respectively. We have dH(x, y) = 0 if and only if x ∼ y . Therefore, dH

forms a metric on the Hilbert projective space PR as all points are distinguishable. How-
ever, dH does not form a metric on the max-plus Hilbert projective space PRε.

Definition 2.2.17 (Open ball). An open ball of radius δ> 0 centred at {λ+x}, λ ∈R, with
respect to the max-plus Hilbert projective norm is defined as

Bδ(x) := {
y ∈Rn∣∣∥∥y −x

∥∥
P
< δ}

. (2.19)

Additionally, the set Bδ(x) for x ∈1n is denoted as Bδ. If K ⊆Rn is a set, then Bδ(K ) =⋃
x∈K Bδ(x). □

The set Bδ is a polytope with n(n−1) facets in the projective spacePRn . To see this, it
is convenient to embed the domain Rn into the affine hyperplane H = {x ∈ Rn | xn = 0}.
Then PRn can be identified as a real n −1 dimensional space.

It can be noted that the ball Bδ is centred around the origin in the max-plus Hilbert
projective space Rn ∩H . The closed unit ball B1 and its sub-level sets are plotted in Fig.
2.1. Note that in dimension n = 3, the representative unit ball and its sub-level sets are
hexagons.
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Figure 2.1: Concentric max-plus Hilbert balls Bδ of radii δ ∈ {1,2,3} in R3 with a representative x3 = 0 in the
max-plus Hilbert projective space R2.
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Figure 2.2: Concentric balls in the ℓ∞ norm of radii δ ∈ {1,2,3} in R2.

We deal with finite dimensional spaces in this dissertation. The geometric notions
on max-plus (vector) spaces Rn

ε can be defined analogously to the Euclidean space.
For the set V ⊆ Rn , a point x ∈ Rn is in its interior, denoted x ∈ int(V ), if there exists

δ> 0 such that Bδ(x) ⊆ V . The closure and boundary of the set V are defined as cl(V ) =
{x ∈Rn | dH(x,V ) = 0}, and ∂V = cl(V ) \ int(V ), respectively.

Definition 2.2.18 (Max-plus cone). A subset W ⊆Rn
ε is said to be a max-plus cone if it is

closed under addition ⊕ of its elements and under multiplication ⊗ with scalars in Rε:

λ⊗u ⊕µ⊗ v ∈W (2.20)

for all u, v ∈W and λ,µ ∈Rε. The subset W is said to be a convex max-plus cone if (2.20)
holds for all u, v ∈W and λ,µ ∈Rε such that λ⊕µ=1. □

A max-plus cone V is said to be bounded in the max-plus Hilbert projective norm if

∃δ> 0 s.t. ∀x ∈ V ⇒∥x∥P < δ⇔ V ⊆Bδ. (2.21)

Max-plus cones have several features common with classical convex cones. The no-
tions of max-plus span span⊕ and max-plus convex hull conv⊕ are defined analogously
to the conventional algebra.

Definition 2.2.19 (Finitely generated max-plus cones). A max-plus cone W ⊆ Rn
ε is said

to be finitely generated if there exists a finite set of vectors W = {w1, w2, . . . , wm} such that

W = span⊕(W ) =
{

m⊕
i=1

αi ⊗wi

∣∣∣αi ∈Rε
}

, (2.22)

or the max-plus combination of the column vectors of W , the generating set of W .
The max-plus weak dimension of a finitely generated max-plus cone W is the cardi-

nality of the minimal generating set of W . □
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Here, minimality is understood in the sense of max-plus independence: the set W =
{w1, w2, . . . , wm} is dependent if v can be expressed as a max-plus span of vectors in W \
{v} for some v ∈ W . Note that a finitely generated max-plus cone of Rn

ε is closed [92,
Lemma 2.20].

A min-plus cone and a (classical) convex cone can be defined analogously over the
min-plus algebra and conventional algebra, respectively.

Definition 2.2.20 (Extremals). Let W ⊆ Rn
ε be a max-plus cone. An element u ∈ W is an

extremal in W if
u = v ⊕w, v, w ∈W ⇒ u = v or u = w.

If u is an extremal in W then λ⊗u is also an extremal in W for all λ ∈R. □
We note that there exist several max-plus analogues to results in classical discrete ge-

ometry. Here, we only recall the analogue of the Carathéodory’s Theorem that is relevant
to the contents of this dissertation.

Lemma 2.2.6 (Max-plus Carathéodory’s Theorem, [50]). Let W ⊆ Rn
ε be a closed max-

plus cone. Then W is generated by its set of extremals, and any element w ∈ W is in the
max-plus span of no more than n extremals.

An important subclass of max-plus cones is obtained when its extremals can be ex-
pressed as a Kleene star matrix (see Lemma 2.2.5).

Definition 2.2.21 (Kleene cones). A max-plus cone is said to be a Kleene cone if it is
generated as a max-plus column span of a Kleene star matrix. □

We refer the interested reader to [123, 197] for a comprehensive overview of Kleene
cones and their relation with convex sets.

Lemma 2.2.7 (Convex max-plus cones, [197]). A max-plus cone generated as a max-plus
column span of a Kleene star matrix is also convex in the Euclidean sense. ■

The preceding result is stronger in the sense that for a max-plus cone that is bounded
in the max-plus Hilbert projective norm, min-plus convexity and Euclidean convexity
are equivalent [123, Theorem B]. Moreover, a max-plus cone bounded in the max-plus
Hilbert projective norm is Euclidean convex if and only if it is generated as the max-plus
column span of a Kleene star matrix [123, Corollary C].

It can then be noted that Bδ = span⊕(K (δ)) where

K (δ) =


0 −δ · · · −δ
−δ 0 · · · −δ

...
...

. . .
...

−δ −δ · · · 0

 (2.23)

is a Kleene-star matrix with finite columns.
It follows that the sub-level sets of the unit ball B1 can be obtained by appropri-

ately scaling the off-diagonal elements of the Kleene star matrix, in this case equal to
λ2(K (1)). This intuition, in principle, can be extended to any max-plus cone generated
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Figure 2.3: The max-plus cone generated by K in (2.24) as span⊕(K̃µ) are max-plus Hilbert balls for µ ∈
{0,−1,−2} in R3 with a representative x3 = 0 in the max-plus Hilbert projective space [196].

by the columns of a Kleene star matrix. The following matrix scaling facilitates a compact
representation.

The normalisation K̃µ of a Kleene star matrix6 K ∈ Rn×n
ε by a scalar µ ∈ R is obtained

as follows: [K̃µ]i i = 0, [K̃µ]i j = [K ]i j −µ, for all i , j ∈ n. Thus, we subtract µ from the
off-diagonal elements.

Then for the max-plus cone generated by a Kleene star matrix K , span⊕(K̃µ) repre-
sents the resulting non-empty sub-level sets for µ>−λ2(K ) [196].

Example 2.2.1 ([196]). Consider a max-plus Hilbert ball K centred at x = (
5 4 0

)⊤
with radius δ= 3. Then we have K = span⊕(K ) for

K =
 0 −2 2
−4 0 1
−8 −7 0

 . (2.24)

The corresponding max-plus Hilbert ball and its sub-level sets are plotted in Fig. 2.3.
Consider the following matrix and its Kleene star:

A =
 0 −4 1

1 0 1
−5 −7 0

 , A⋆ =
 0 −4 1

1 0 2
−5 −7 0

 . (2.25)

The resulting span⊕(A) and span⊕(A⋆) represented in R2, by projecting out the last coor-
dinate, are plotted2 in Fig. 2.4. Note that the max-plus cone generated by columns of A is
not a convex cone as opposed to that generated by columns of A⋆.

Finally, it can be observed that all the illustrated max-plus cones can be circumscribed
in max-plus Hilbert balls Bδ for large enough δ’s. They are bounded in the max-plus
Hilbert projective metric.

6Note that for a Kleene star matrix [K ]i i = 0 for all i ∈ n.
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Figure 2.4: The max-plus cone generated by A and A⋆ in (2.25) as 2.4a span⊕(A) and 2.4b span⊕(Ã⋆µ) for

µ ∈ {0,−0.5,−1} in R3 with a representative x3 = 0 in the max-plus Hilbert projective space R2 [196].
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Finally, we recall notions of distances and projections under max-plus convex geom-
etry. The distance of x ∈Rn

ε to a max-plus cone V ⊆Rn
ε is denoted as:

∥x∥V ,P≜ dH(x,V ) = inf
v∈V

dH(x, v) (2.26)

Definition 2.2.22 (Nonlinear projector, [8]). Let V ⊆ Rn
ε be a max-plus cone. The non-

linear projection PV (x) of x ∈Rn
ε onto V is defined as:

PV (x) = max {v ∈ V | v ≤ x}. (2.27)

The nonlinear projector PV (·) minimises the max-plus Hilbert projective metric:

dH(x,V ) = dH(x,PV (x)). (2.28)

The operator PV is additively homogeneous, monotone, non-decreasing, and continu-
ous. For any x ∈Rn

ε , there exists at least one index i ∈ n such that [PV (x)]i = xi . □
For a max-plus cone V = span⊕(V ), where V ∈Rn×m

ε , we have PV (x) =V ⊗((−V )⊺⊗′x)
for all x ∈ Rn

ε . In the case that V ∈ Rn×n
ε is a Kleene star (see Definition 2.2.5), we have

PV (x) = (−V )⊺ ⊗′ x for all x ∈ Rn
ε . We note that the projection operator PV is min-plus

linear if and only if V is generated as the max-plus span of a Kleene star matrix [197,
Proposition 3.2].

2.2.4. SYSTEMS THEORY
In this subsection, we recall the systems theory arising from the max-plus algebra to
study iterates of monotone and additively homogeneous functions. We also recall sys-
tems of max-plus linear equations that can be solved efficiently using the tools of the
max-plus algebra. [86].

In the first part of this subsection, we are interested in presenting the max-plus al-
gebra tools to analyse the dynamical behaviour of functions as iterates {g k (x) | k ∈N} of
g :Rn →Rn for arbitrary x ∈Rn . One aspect of the study of such dynamics deals with the
(qualitative) characterisation of the asymptotic linear growth rate of the function g .

Definition 2.2.23 (Cycle time vector). The cycle time vector for a function g :Rn →Rn is
defined as the limit, if it exists,

χ(g ,ξ) = lim
k→+∞

x(k)

k
, (2.29)

where x(k) = g (x(k −1)) and x(0) = ξ ∈Rn . □
Another important aspect of the dynamics is concerned with the characterisation

of the fixed point set of the function g . The notion of max-plus eigenspace (Definition
2.2.11) can be extended to a general class of functions g :Rn →Rn as

eig(g ,λ) = {z ∈Rn | g (z) =λ⊗ z}.

The corresponding set of max-plus eigenvalues is denoted asΛ(g ) = {λ | eig(g ,λ) ̸= ;}.
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Definition 2.2.24 (Fixed points). The set of fixed points of a function g : Rn → Rn is
defined as its max-plus eigenspace:

Fix(g ) = ⋃
λ∈Λ(g )

eig(g ,λ) (2.30)

= {
x ∈Rn ∣∣g (x) =λ⊗x for some λ ∈R}

. □
Note that when the set of max-plus eigenvaluesΛ(g ) = {0}, the definition of the fixed-

point set boils down to the conventional definition Fix(g ) = {x | g (x) = x}. The modifica-
tion adopted in Definition 2.2.24 is aligned with the fact that the max-plus eigenvalues
represent the asymptotic rate of occurrence of events (or inverse of throughput) in a
discrete-event system.

The max-plus spectral theory plays a crucial role in the study of dynamics (behaviour
under iteration) of max-plus linear functions. It is important to note that the max-plus
spectral theory extends to a larger class of functions than max-plus linear ones [109].
Therefore, we present it here for a general class of tropical functions.

Definition 2.2.25 (Tropical functions). A function g : Rn
ε → Rn

ε is said to be additively
homogeneous if g (µ+ x) = µ+ g (x), for all µ ∈ R. The function g is monotone if for all
x, y ∈Rn

ε , x ≤ y implies g (x) ≤ g (y). The class of additively homogeneous and monotone
functions is called tropical functions. □

Max-plus linear maps g : x 7→ A⊗ x, that can be represented by a regular (row-finite)
matrix A ∈Rn×n

ε , fall under the category of tropical functions.

Definition 2.2.26 (Max-min-plus expression, [108]). A max-min-plus expression f of
variables x1, . . . , xn is defined by the recursive grammar

f := xi | fk ⊕ fl | fk ⊕′ fl | fk +α, α ∈R, i ∈ n, (2.31)

where fk and fl are again max-min-plus expressions. The symbol | stands for “or". □
Lemma 2.2.8 (Max-min-plus conjunctive form, [108]). A max-min-plus expression f can
be placed in the max-min-plus conjunctive form:

f = f1 ⊕′ f2 ⊕′ · · ·⊕′ fm ,

i ̸= j ⇒ fi ≰ f j ,
(2.32)

where f j = (a j 1 ⊗ x1)⊕ (a j 2 ⊗ x2)⊕·· ·⊕ (a j n ⊗ xn) is said to be a max-plus projection of f
with a j i ∈Rε for all i ∈ n and j ∈ m. The max-min-plus conjunctive form (2.32) is unique
up to reordering of f j ’s. ■

It can be noted that max-plus and min-plus expressions are special cases of max-
min-plus expressions. We denote the general class of functions obtained from the max-
min-plus grammar as max-min-plus linear functions. More importantly, any function
built on the max-min-plus grammar is also a tropical function [108, 109].

Definition 2.2.27 (Lipschitz continuity). A function g :Rn →Rn is Lipschitz continuous
(with respect to dH) if there exists a constant L ≥ 0 such that for all x1, x2 ∈Rn/∼ we have

dH(g (x1), g (x2)) ≤ L ·dH(x1, x2). (2.33)
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A function g is said to be contractive in the max-plus Hilbert projective norm if L < 1 and
non-expansive if L = 1. □
Lemma 2.2.9 (Monotonicity and non-expansiveness, [109]). An additively homogeneous
monotone function is non-expansive in the max-plus Hilbert projective metric and the ℓ∞
metric. Moreover, an additively homogeneous non-expansive function is monotone. ■

The non-expansiveness property plays a significant role in the characterisation of the
steady-state characteristics (asymptotic linear growth rate and existence of fixed points)
of a function g .

Lemma 2.2.10 (Uniqueness of cycle time vector, [109]). Let g :Rn →Rn be an additively
homogeneous and non-expansive function. If the cycle time vector χ(g ,ξ) (as the limit
defined in (2.29)) exists for a particular ξ ∈ Rn ; then the limit exists as the same value for
any arbitrarily chosen initial condition ξ′ ∈Rn :

χ(g ,ξ) exists ⇒χ(g ,ξ′) exists and χ(g ,ξ) =χ(g ,ξ′). ■
The preceding result shows that the cycle time vector χ(g ,ξ) ∈ Rn , if it exists, is a

characteristic of the function g and is independent of the choice of the initial condition
ξ. Also, all trajectories {g k (x) | k ∈ N} for arbitrary x ∈ Rn are asymptotically equivalent
in the supremum metric. Efficient algorithms for computing the cycle time vector of a
given max-min-plus linear function can be found in [57, 203].

Lemma 2.2.11 (Existence of fixed point, [89]). Let g : Rn → Rn be an additively homoge-
neous monotone function. Then g admits a max-plus eigenvector with eigenvalue λ ∈ R
if and only if there exists an x ∈Rn such that

∥∥g k (x)−k ·λ∥∥∞ is bounded as k →∞.
Moreover, a max-plus eigenvector z ∈Rn exists, g (z) =λ+ z for some λ ∈R, if and only

if all trajectories {g k (x) | k ∈N} are bounded in the max-plus Hilbert projective norm for
arbitrary x ∈Rn . ■

The first implication of the preceding result is that the entries of the cycle time vector
of a tropical function g attain the same value, χ(g ) = [λ,λ, . . . ,λ]⊺, if and only if g attains
a max-plus eigenvector. In particular, this result is stronger than the result presented in
Theorem 2.2.1. The graph-theoretic generalisation of the max-plus spectral theorem for
max-plus linear maps, in Theorem 2.2.1, to general tropical functions can be found in
[89, §3]. The second implication of the preceding result is that if z ∈ eig(g ,λ) then any
arbitrary trajectory {g k (x) | k ∈N} remains at a bounded distance from {z +k ·λ}k∈N as k
tends to infinity.

Definition 2.2.28 (Max-plus slice spaces). Let α,β ∈ R with β≥α. The max-plus super-

eigenspace Sβ, max-plus sub-eigenspace Sα, and max-plus slice space Sβα generated by
a function g :Rn →Rn are defined as

Sβ(g ) = {
x ∈Rn | g (x) ≤β+x

}
Sα(g ) = {

x ∈Rn | α+x ≤ g (x)
}

Sβα(g ) = Sβ(g )∩Sα(g ) = {
x ∈Rn | α+x ≤ g (x) ≤β+x

}
.

(2.34)

For α≤α′ and β′ ≤β with α′ ≤β′, we have Sβ
′

α′ (g ) ⊆ Sβα(g ). □
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Figure 2.5: Max-plus cones: (a) Max-plus cone K = {
(x1, x2)⊤ ∈R2

ε | x1 +2 ≤ x2 ≤ x1 +5
}
, and (b) Max-plus

eigenspace S
β
α(g ) = Sβ(g )∩Sα(g ) for α= 2 and β= 5.

We note that the max-plus eigenspaces, as introduced in the preceding definition, are
invariant with respect to the iterates of the function g if the function g is tropical. Finally,
we recall the following important result that can be derived from the boundedness of the
max-plus slice spaces of a tropical function.

Theorem 2.2.2 (Finite fixed-points [86]). Let g : Rn → Rn be an additively homogeneous
monotone function. Let there exists a non-empty max-plus slice space Sα

β
(g ), for some

β≥α,α,β ∈R. If Sα
β

(g ) is bounded in the max-plus Hilbert projective norm, then g admits

a finite max-plus eigenvector. ■
We remark here that it is difficult to prove boundedness of a given max-plus slice

space for a general tropical function [87].
In the following, we restrict ourselves to max-plus linear maps. We recapitulate cer-

tain solution methods for certain max-plus system of equations and closed-form gener-
ators of the max-plus slice spaces of max-plus linear maps.

The solution to the equation f (x) = b is not unique if the mapping is not injective.
Then, we study the solution as an upper bound of the subset of subsolutions of the equa-
tion [17]:

f ♯(b) = max
{x| f (x)≤b}

x, f ( f ♯(b)) ≤ b. (2.35)

Dually, we can study the solution as a lower bound of the subset of supersolutions:

f ♭(b) = min
{x| f (x)≥b}

x, f ( f ♭(b)) ≥ b. (2.36)

Lemma 2.2.12 (One-sided max-plus equation, [48]). Let A ∈ Rm×n
ε and b ∈ Rm

ε . The
greatest subsolution to the equation A⊗x = b is given using the left division operator ◦\:

x̂ = A ◦\ b = max{x | A⊗x ≤ b}

= (−A)⊤⊗′ b.
(2.37)

Then, A⊗x = b has a solution if and only if x̂ is a solution, i.e. A⊗ (A ◦\ b) = b. ■
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The solution methods to two-sided (implicit) system of equations in max-plus alge-
bra play an important role in max-plus systems theory. We begin with the simpler cases.

Lemma 2.2.13 (Max-plus sub-eigenpace, [49]). Let the sub-eigenspace of a regular ma-
trix A ∈Rn×n

ε with respect to β ∈R be defined as

V∗(A,β) = Sβ(A) = {
x ∈Rn ∣∣ A⊗x ≤β⊗x

}
.

Then V∗(A,β) ̸= ; if and only if β≥λ(A). We have

V∗(A,β) = span+
⊕(A⋆β) =

{
n⊕

i=1
αi ⊗ [A⋆β ]·i

∣∣∣αi ∈R
}

, β≥λ(A). ■

The characterisation of max-plus super-eigenspace of a max-plus matrix is a more
intricate topic [49, 198]. We recall a simpler result relevant to this dissertation.

Lemma 2.2.14 (Max-plus super-eigenpace, [49]). Let the max-plus super-eigenspace of a
regular matrix A ∈Rn×n

ε with respect to β ∈R be defined as

V ∗(A,α) = Sα(A) = {
x ∈Rn ∣∣ A⊗x ≥α⊗x

}
.

Consider the matrix A in the Frobenius normal form (3.12) with the corresponding parti-
tion of the vertices of the directed graph G (A) into {N j } j∈r . Define

λ∗(A) = min
j∈r

{
λ(A j j )

∣∣ N j is an initial class
}

λ(A) = min
i∈n

[A]i i .

Then V ∗(A,α) ̸= ; if and only if α≤λ∗(A). Also, V ∗(A,α) =Rn if α≤λ(A). ■
The max-plus eigenspace of a matrix A ∈ Rn×n

ε , with λ(A) = 0, is generated by the
max-plus span of the columns of A+ pertaining to the critical vertices Nc(A) in the di-
rected graph G (A) [66]. Here, we present the characterisation of the finite max-plus
eigenvectors of the matrix A.

Lemma 2.2.15 (Max-plus eigenspace, [48]). Let the finite max-plus eigenspace of a regu-
lar matrix A ∈Rn×n

ε with respect to λ=λ(A) be defined as

V (A,λ) = Sλλ(A) = {
x ∈Rn ∣∣ A⊗x =λ⊗x

}
.

Then we have
V (A,λ) ̸= ; ⇔ ⊕

j∈Nc(A)
[A+

λ ]· j ∈Rn .

Moreover, if V (A,λ) ̸= ; then

V (A,λ) =
{ ⊕

j∈V ∗
c (A)

α j ⊗ [A+
λ ]· j

∣∣α j ∈R, j ∈ n

}
,

where V ∗
c (A) is the maximal set of non-equivalent critical nodes of G (A). ■
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We note that, in general, the set V (A,λ) is not finitely generated. However, if the
matrix A is additionally irreducible then V (A,λ) is a max-plus cone finitely generated by
the columns of A+ corresponding to the critical vertices [66].

Finally, we recall some results on more general two-sided max-plus linear systems of
equations.

Lemma 2.2.16 (Implicit max-plus linear system, [119]). Let A ∈ Rn×n
ε and b ∈ Rn

ε . Then
the smallest solution x̂ ∈ Rn

ε to the implicit system of equations x = A ⊗ x ⊕b is given as
x̂ = A⋆⊗b.

The solution x̂ = A⋆ ⊗ b to the implicit system of equations exists if and only if the
circuit weights of the associated directed graph G (A) are non-positive, λ(A) ≤ 0. Moreover,
the solution is unique if the circuit weights are negative, λ(A) < 0. ■

Note that the existence and uniqueness of the solution to an implicit system of equa-
tions is inherently connected to the existence of the Kleene star A⋆ matrix (as in Lemma
2.2.5).

Theorem 2.2.3 (Homogeneous two-sided systems, [48]). Let A,B ∈Rm×n
ε . Then the set

S(A,B) = {
x ∈Rn

ε

∣∣ A⊗x = B ⊗x
}

is a finitely generated max-plus cone in Rn
ε . ■

Theorem 2.2.4 (Separated two-sided systems, [48]). Let A,B ∈Rm×n
ε . Then the set

S(A,B) = {
[x⊺, y⊺]⊺ ∈R2n

ε

∣∣ A⊗x = B ⊗ y
}

is a finitely generated max-plus cone in R2n
ε . ■

Note that the homogeneous and separated two-sided system of max-plus equations
can be transformed into one another [48, §7.4]. An iterative method to find a finite solu-
tion to a separated two-sided system of max-plus equations formed by matrices, with at
least one finite element in each row and each column, can be found in [48, §7.3].

2.3. CLASSICAL STABILITY THEORY
In this subsection, we recall certain stability properties of conventional nonlinear sys-
tems defined on discrete-time and continuous space. We note that, in particular, such
systems are assumed to be defined on a normed vector space (R,∥·∥). In addition to the
axioms satisfied by a seminorm on Rn , a norm satisfies positive definiteness: ∥x∥ = 0 if
and only if x = 0. We first discuss notion of Lyapunov stability (with respect to an equilib-
rium point) for a general time-varying nonlinear system. Then we discuss the notion of
Krasovskii-Lasalle invariance (inside a positively invariant set) for a set-valued dynami-
cal system defined as an autonomous difference inclusion. This section is based entirely
on [31, 46, 47, 130, 135].

2.3.1. TIME-VARYING DYNAMICAL SYSTEMS
In this thesis, the dynamical systems of interest are defined analogously to a discrete-
time continuous-space dynamical system in conventional algebra. We recall the relevant



2.3. CLASSICAL STABILITY THEORY

C
h

ap
te

r
2

31

definitions and properties. Then we discuss notions and relevant theorems on stability
of such systems. A (time-varying) discrete-time non-linear dynamics is defined as

x(k) = F (k, x(k −1)), k ∈N, (2.38)

where F : N×Rn → Rn is an arbitrary time-dependent non-linear function. We assume
that F (k, ·) is continuous on Rn for all k ∈N. For simplicity, we assume that the solution
to the dynamical system exists for all k ∈ N. We denote this solution starting at x0 =
x(k0) ∈ Rn as ϕ(k; x0). In addition, we assume that the origin is an equilibrium point (or
fixed point): F (k,0) = 0 for all k ∈ N. The central idea of the classical stability theory
is to transfer the stability property of the dynamical system to monotonic decrescent
behaviour of certain nice auxiliary functions along the trajectories of the system.

We first provide some definitions useful for further exposition.

Definition 2.3.1 (Positive definiteness). A locally Lipschitz function V : Rn → Rn is said
to be positive definite if V (x) > 0 for x ∈ Rn \ {0n} and V (0) = 0. The function is positive
semi-definite if V (x) ≥ 0 for all x ∈ Rn \ {0n}. The function V is negative definite if −V is
positive definite. □

Definition 2.3.2 (Positive invariance). A closed set P ⊆ Rn , containing the origin in its
interior, is said to be positively invariant to the dynamics (2.38) if for all x(k0) ∈ P , we
have ϕ(k; x0) ∈P for all k ≥ k0. □

We say that a set is compact if it is both closed and bounded in the normed vector
space (R,∥·∥).

Definition 2.3.3 (Comparison functions, [130]). A function α : R+ → R+ is said to be of
class K if it is continuous, strictly increasing, and α(0) = 0.
If lims→+∞α(s) =+∞, then it is said to be of class K∞.
A functionβ :R+×R+ →R+ is said to be of class K L ifβ(·,k) is of class K for each fixed
k ≥ 0 and limk→∞ β(r,k) = 0 for each r ≥ 0.
An identity function is denoted by id such that id(s) = s for all s ∈R+. □

Definition 2.3.4 (Uniform local asymptotic stability, [135]). The system (2.38) is said
to be uniformly locally asymptotically stable with respect to the origin if there exists a
neighbourhood of the origin P ,with 0 ∈P , such that the following conditions hold:

1. Uniform local stability: for all ϵ> 0 there exists a scalar δ= δ(ϵ) > 0 independent of
k0 such that

∥x0∥ ≤ δ ⇒ ∥∥ϕ(k; x0)
∥∥≤ ϵ, ∀k ≥ k0.

2. Local uniform attraction: for each η> 0, there exists a constant T = T (η) ∈N such
that

∥x0∥ ∈P ⇒ ∥∥ϕ(k; x0)
∥∥≤ η, ∀k ≥ k0 +T (η),

for every k0 ∈N. □
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Definition 2.3.5 (Lyapunov function). Let P ⊆Rn be a neighbourhood of the origin with
0 ∈P . A continuous function V : P →R is said to be a Lyapunov function for the system
(2.38) in P if the following conditions are satisfied:

1. there exist two functions α1,α2 of class K such that for all ξ ∈P , we have

α1(∥ξ∥) ≤V (ξ) ≤α2(∥ξ∥);

2. there exists a continuous positive definite function α3 such that

∆V (x) =V (F (k, x))−V (x) ≤−α3(∥x∥),

for any x ∈P and for all k ≥ 0. □
We say that a Lyapunov function V is smooth if it is smooth in x on P .

Theorem 2.3.1 (Asymptotic Lyapunov stability theorem, [135]). Consider the system
(2.38) and a neighbourhood of the origin P ⊆ Rnwith 0 ∈ P . The origin is uniformly
locally asymptotically stable for the system (2.38) if the system admits a smooth Lyapunov
function V in the set P (as in Definition 2.3.5). ■

It is important to remark here that the equilibrium point (origin) in the preceding
definitions and theorem can be replaced by a compact (closed and bounded) positively
invariant set Q [122]. In that case, the distances are measured with respect to the set P

as ∥x∥Q = infξ∈Q ∥x −ξ∥.

Definition 2.3.6 (Uniform ultimate boundedness, [31]). Let P ⊆ Rn be a neighbour-
hood of the origin with 0 ∈ P . Then the system (2.38) is said to be uniformly ultimately
bounded in the set P if there exists a scalar c > 0 and for every scalar a ∈ (0,c), there is
T = T (a,P ) ∈N such that

∥x0∥ ≤ a ⇒ ϕ(k, x0) ∈P , ∀k ≥ k0 +T (η)

for all k0 ∈N. □
In what follows, we recall how Lyapunov analysis can be used to study ultimate

boundedness of dynamical systems. Briefly, we require that there exist a bounded neigh-
bourhood of the equilibrium (origin) that is positively invariant. Additionally, we require
that there exist a continuous positive-definite function that behaves like a Lyapunov
function outside the bounded neighbourhood of the equilibrium (origin).

Definition 2.3.7 (Sub-level sets). Given a function Ψ : Rn → R and a scalar ν ∈ R, the
sub-level set ofΨ is defined as the set

N (Ψ,ν) = {
x ∈Rn ∣∣Ψ(x) ≤ ν}

. □

Definition 2.3.8 (Lyapunov-like function, [31]). Let P be a neighbourhood of the ori-
gin. A continuous positive definite function V : Rn → R+ is said to be a Lyapunov-like
function outside P for the system (2.38) if the following conditions are satisfied:
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1. there exists a scalar ν> 0 such that N (V ,ν) ⊆P ,

2. there exists a function α3 of class K such that

x ∉N (V ,ν) ⇒ ∆V (x) =V (F (k, x))−V (x) ≤−α3(∥x∥).

3. V (F (k, x)) ≤ ν for all x ∈N (V ,ν) and for all k ∈N. □
The notion of a Lyapunov-like theorem can now be used to provide stability theorem

for ultimate boundedness of (2.38).

Theorem 2.3.2 (Ultimate boundedness stability, [31]). Let P ⊆ Rn be a bounded neigh-
bourhood of the origin with 0 ∈ P . The system (2.38) is uniformly ultimately bounded in
the set P if it admits a Lyapunov-like function outside P (as in Definition 2.3.8). ■

To facilitate analysis, a candidate Lyapunov-like function can be generated as the
gauge function of a compact convex set containing the origin. This gives rise to set-
induced Lyapunov functions.

Definition 2.3.9 (C-set, [31]). A compact convex set P ⊆Rn containing the equilibrium
(origin) in its interior is called a C-set. □

Given a C-set, we define a class of functions whose sub-level sets are obtained by
linearly scaling the C-set.

Definition 2.3.10 (Minkowski gauge function, [31]). The Minkowski gauge function in-
duced by a given C-set P is defined as

ΨP (x) = inf
{
µ≥ 0

∣∣ x ∈µP
}

.

The Minkowski gauge function satisfies the following properties:

• Positive definiteness: ΨP (x) ≥ 0, andΨP (x) = 0 ⇔ x = 0,

• Positive homogeneity: ΨP (µ · x) =µ · x for µ> 0 and all x ∈Rn ,

• Sub-additivity: ΨP (x + y) ≤ΨP (x)+ΨP (y) for all x, y ∈Rn . □
The Minkowski gauge function of a given C-set is continuous and convex, by defini-

tion. Its unit sub-level set results in the C-set. The function is a norm if and only if it is
0-symmetric,Ψ(x) =Ψ(−x).

2.3.2. SET-VALUED DYNAMICAL SYSTEMS
A set-valued dynamics, on (Rn ,∥·∥), is defined as a difference inclusion

x(k) ∈ T (x(k −1)), k ∈N, (2.39)

where the (set-valued) map T assigns to each x ∈ Rn a (non-empty) set T (x) ⊆ Rn .
Note that the system definition allows a non-deterministic evolution of the state. We
still speak of a trajectory of the system (2.39) as ϕ(k; x0) such that ϕ(0, x0) = x0 and
ϕ(k, x0) ∈ T (φ(k −1, x0)) for all k ∈N.
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A particularly interesting case arises when the set-valued map is generated by a finite
number L ∈N of continuous mappings:

T (x) = {
F (l , x)

∣∣ l ∈ L
}

, x ∈Rn . (2.40)

If the map T = {F (x)} is a singleton, we retrieve the time-invariant dynamical system.
The notion of continuity extends to such set-valued maps from the continuity of the

constituent dynamics F (l , ·) for all l ∈ L [46, Lemma 4.2]. A point x∗ ∈Rn is said to be am
equilibrium point of T if x∗ ∈ T (x∗).

The notion of positive invariance carries over to set-valued dynamics from its time-
varying counterpart: A closed set P ⊆ Rn , containing the origin in its interior, is said to
be positively invariant to the dynamics (2.39) if for all x ∈P , we have T (x) ⊆P .

Definition 2.3.11 (Weak positive invariance). A closed set P ⊆Rn , containing the origin
in its interior, is said to be weakly positive invariant to the dynamics (2.39) if for all x ∈P ,
there exists y ∈P such that y ∈ T (x). Equivalently, T (x)∩P ̸= ; for any x ∈P . □
Definition 2.3.12 (Attractivty of a set). Consider a set-valued dynamics (2.39) evolving
on a positively invariant set P ⊆Rn . A trajectoryϕ :N×Rn →Rn is said to approach a set
Q ⊆P if for every neighbourhood R of Q, there exists a time K ∈N such that φ(k, ·) ∈R

for all k ≥ K .
The set Q is said to be locally attractive for (2.39) if there exists a neighbourhood R

of Q such that every evolution with x(0) ∈R approaches the set Q. □
In what follows, we recall the Krasovskii-Lasalle invariance principle for set-valued

dynamics (2.39) when the evolution is a priori bounded in a closed positively invariant
set. Such a stability notion is interesting because: i) it does not require a strict Lyapunov
function (as in Definition 2.3.5), ii) it allows estimation of attractors of discrete-time sys-
tems thus resulting in asymptotic properties of the dynamics.

Theorem 2.3.3 (Krasovskii–LaSalle invariance principle for set-valued maps, [46]). Con-
sider the set-valued dynamics (2.39) generated by finitely many continuous mappings
(2.41) evolving on a compact positively invariant set P ⊆Rn .

Assume that there exists a continuous function U : P → R such that U (x ′) ≤ U (x)
for all x ∈ P and x ′ ∈ T (x). Then there exists a constant c ∈ R such that each trajectory
generated by (2.39) starting in P approaches the set M = K ∩U−1(c) where K is the
largest weakly positively invariant set contained in{

x ∈P
∣∣ ∃x ′ ∈ T (x) such that U (x ′) =U (x)

} ■
It is particularly important to note that the analysis of the time-varying system (2.38)

can also be performed on an appropriately defined set-valued dynamical system (2.39).
Herein, the evolution of the system (2.38) is over-approximated by considering a larger
set of evolutions in (2.39):

TF(x) = {
F (k, x)

∣∣ k ∈N}
. (2.41)

Then, any trajectory defined by (2.38), from a given initial time, is contained in the set
of trajectories defined by (2.39) and (2.41). We end the subsection with the following
lemma.
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Lemma 2.3.1 (Over-approximation Lemma, [47]). Consider the time-varying nonlinear
dynamics (2.38) and its set-valued approximation (2.39), (2.41). Let a closed set P ⊆ Rn

be locally attractive with respect to the set-valued dynamics (as in Definition 2.3.12). Then
the set P is uniformly locally attractive with respect to time-varying dynamics (2.38). ■

2.4. PIECEWISE-AFFINE SYSTEMS
This thesis deals with the system-theoretic analysis of discrete-event system descrip-
tions, consisting of both continuous and discrete variables, evolving over a discrete-
event counter. In this section, we give an overview of discrete-time hybrid systems that
consist of continuous and discrete variables evolving over a discrete-time counter. There
is a remarkable analogy between such system descriptions [5, 118] and the continuous-
valued description of certain subclasses of discrete-event systems [17, 61]. The methods
described in this section form a fundamental basis for several analysis methods derived
in this dissertation. In this section, we assume that the dynamics and geometrical ob-
jects are defined on a finite-dimensional Euclidean normed space (Rn ,∥·∥).

2.4.1. POLYHEDRA AND FUNCTIONS
We recall the notions of polyhedra and polyhedral functions for completeness. This
subsection is based entirely on [28, 73, 75, 105, 211]. The notions for boundedness (or
compactness) of sets used in this section are understood to be derived from a finite-
dimensional Euclidean normed space. The interior, closure, and boundary of a set Γ are
denoted as int(Γ), cl(Γ), and ∂Γ= cl(Γ) \ int(Γ), respectively.

Definition 2.4.1 (Polyhedra and polytopes). A polyhedron is a closed and convex set
generated as an intersection of finitely many half-spaces (Half-space representation):

Ω=
{

x ∈Rn |α⊺
j x ≤β j , j ∈ r

}
= {

x ∈Rn | Ax ≤ b
}

. (2.42)

where r ∈N, {α j } j∈r is a set of vectors inRn , and {β j } j∈r is a set of scalars. Here, [A] j · =α⊺
j

and b j =β j for j ∈ r .
A polytope is a bounded polyhedron. □
Briefly, a polyhedral set can also be represented as a union of a finite family of poly-

hedral sets [105, Proposition 2.3].
A polyhedral cone is generated as

Υ=
{

x ∈Rn |α⊺
j x ≤ 0, j ∈ r

}
= {

x ∈Rn ∣∣ W x ≤ 0
}

, (2.43)

where r ∈N and {α j } j∈r is a set of vectors. Here, [W ] j · =α⊺
j . A polyhedral cone is said to

be a subspace if for any x, y ∈Υ and λ,µ ∈R, we have λx +µy ∈Υ.
A polyhedron can also be represented as a sum of a finitely generated cone and a

convex-hull of finitely many points.

Definition 2.4.2 (Minkowski-Weyl representation). A set Ω is polyhedral if and only if
there exists a finitely generated coneΥ and a finite set of points {v1, v2 . . . , vm} such that

Ω=
{

x ∈Rn ∣∣ x =
m∑

i=1
λi vi +w,

m∑
i=1

λi = 1, λi ≥ 0, i ∈ m, w ∈Υ
}

. (2.44)
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The preceding representation is referred to as the vertex representation.
A polyhedron is a polytope ifΥ=; in (2.44). □
It is important to note here that several operations on polyhedral sets preserve the

polyhedral character.

Lemma 2.4.1 (Operations on polyhedral sets, [28]). The following operations on polyhe-
dral sets result in a polyhedral set:

1. Intersection of polyhedral sets;

2. Cartesian product of polyhedral sets;

3. Image under a linear transformation;

4. Inverse image under a linear transformation. ■
Definition 2.4.3 (Polyhedral partitioning). A partition of a polyhedron Ω ⊆ Rn is a col-
lection of sets {Ω}i∈m such that:

1. Ωi ̸= ; for all i ∈ m;

2.
⋃

i∈m Ωi =Ω;

3. int(Ωi )∩ int(Ω j ) =;, for all i , j ∈ m with i ̸= j .

If Ωi ∩Ω j ̸= ; for i ̸= j then the intersection forms an (n −1 dimensional) common face
ofΩi andΩ j .
The partition {Ω}i∈m is polyhedral if, in addition,Ωi are polyhedral for i ∈ m. □
Definition 2.4.4 (Projection onto a set).

The (lower) epigraph of a function f :Ω→R, whereΩ⊆Rn is a subset of Rn+1:

epi( f ) = {
(x,β) | f (x) ≤β, x ∈Ω, β ∈R}

. (2.45)

The convexity and (semi-) continuity of a function are derived from the convexity and
closedness of its epigraph, respectively. Consequently, a function is said to be (lower)
polyhedral if its epigraph is a polyhedral subset of Rn+1.

Definition 2.4.5 (Piecewise-affine functions). A function f :Ω→ Rn is piecewise-affine
(over the setΩ⊆Rn) if there exists a partition {Ωi }i∈m ofΩ such that

f (x) = Ai x + fi , ∀x ∈Ωi , i ∈ m. (2.46)

The piecewise-affine function f is polyhedral if Ω ⊆ Rn is polyhedral with a polyhedral
partition {Ωi }i∈m . □

Note that a general piecewise-affine function can be multi-valued due to discontinu-
ity on the boundaries of the partitions. A continuous piecewise-affine function attains
several useful equivalent formulations [105, Theorem 3.1].
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Lemma 2.4.2 (Convex piecewise-affine functions, [105]). A (lower) polyhedral function
f : Ω→ R (defined over a polyhedron Ω ⊆ Rn) is convex if and only if there exist affine
functions gi :Ω→R, i ∈ m, such that

f (x) = max
i∈m

(gi (x)) = max
i∈m

(α⊺
i x +βi ), ∀x ∈Ω, (2.47)

where αi ∈Rn , βi ∈R, and m ∈N. ■

The preceding result leads to the class of max-plus-scaling functions.

Definition 2.4.6 (Max-plus-scaling functions, [211]). A max-plus-scaling function f :
Ω→R (defined over a polyhedronΩ⊆Rn) is a convex polyhedral function such that

f (x) = max
i∈m

(α⊺
i x +βi ), ∀x ∈Ω, (2.48)

where α ∈Rn+ and β ∈R for all i ∈ m. □

The collection of max-plus-scaling functions, denoted Smps, is closed under the op-
erations (max,+), and multiplication by a non-negative scalar [211, Lemma 1]. More-
over, all functions f ∈Smps are monotone: x ≥ y ⇒ f (x) ≥ f (y) [211, Lemma 2].

Lemma 2.4.3 (Min-max representation of polyhedral functions, [105]). A function f :
Ω→R (defined over a polyhedron Ω⊆Rn) is (lower) polyhedral if only if there exist affine
functions gi j :Ω→R, j ∈ mi and i ∈ k, such that

f (x) = min
i∈k

(
max
j∈mi

(gi j (x))

)
, ∀x ∈Ω. ■

The preceding result leads to the class of min-max-plus-scaling functions that are
formed recursively from the max-min-plus-scaling grammar [75, 118].

Definition 2.4.7 (Max-min-plus-scaling expression, [74]). The max-min-plus-scaling
expression h of the variables x1, . . . , xn is defined by the recursive grammar

h := xi |α|max( fk fl )|min( fk , fl )| fk + fl |β · fk , α,β ∈R, i ∈ n, (2.49)

where fk and fl are again max-min-plus-scaling expressions. The symbol | stands for
“or". □

Note that if the function f in Lemma 2.4.3 is continuous then it can also be written as
(point-wise) maximum of (point-wise) minimum of affine functions [105, Theorem 3.1].
In particular, max-min-plus-scaling functions, formed from a max-min-plus-scaling ex-
pression, attain max-min and min-max canonical formulations [75, Theorem 3.1].

Consequently, the functions formed from the max-min-plus-scaling grammar are
also continuous piecewise-affine [75, Lemma 2.4].
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2.4.2. DYNAMICS
The dynamical systems built from piecewise-affine functions (as in Definition 2.4.5) are
called piecewise-affine (PWA) systems. Although the class is rather general, we focus
mainly on the case when the partitions of the state-space are defined as convex polyhe-
dra. We say that a dynamical system is autonomous if there are no exogenous inputs to
the system. This subsection is based entirely on [73, 75, 118].

Definition 2.4.8 (Piecewise-affine systems, [118]). The discrete-time piecewise affine
systems form a subclass of affine switched systems when the switching is driven by poly-
hedral partitioning {Ωi }i∈L of the state-space time at time step k ∈N:

x(k) = Ai x(k −1)+Bi u(k)+di

y(k) =Ci x(k)+ei
for

[
x(k −1)

u(k)

]
∈Ωi ≜

{[
x
u

] ∣∣∣ Hi x +Ri u ≤ hi

}
. (2.50)

where x(·) ∈Rn , u(·) ∈Rnu , y(·) ∈Rny denote the state, input, output, respectively. □
Piecewise-affine systems are a subclass of hybrid systems and form the ‘simplest’

extension of linear system and can (arbitrarily) approximate non-linear and non-smooth
processes. We say that a given piecewise-affine system is continuous if the constituting
piecewise-affine functions are continuous on the polyhedral domain. A piecewise-affine
systems is said to be well-posed if given x(k −1) and u(k), (2.50) is uniquely solvable for
x(k) and y(k).

Definition 2.4.9 (Max-min-plus-scaling systems, [118]). A discrete-time constrained
max-min-plus-scaling system over a counter k ∈N is defined as

x(k) = fMMPS(x(k −1),u(k)),

y(k) = hMMPS(x(k),u(k)),

gMMPS(x(k),u(k)) ≤ c,

(2.51)

where x(·) ∈ Rn , u(·) ∈ Rnu , y(·) ∈ Rny , c ∈ Rnc , and where the (vector-valued) functions
fMMPS, gMMPS, hMMPS are again max-min-plus-scaling expressions. □

The class of (unconstrained) max-min-plus-scaling systems generalises the frame-
work of max-plus linear systems [74] and max-min-plus linear systems [108]. Finally,
the following equivalence relationships can be obtained from literature.

Lemma 2.4.4 (PWA to MMPS [117]). Every well-posed piece-wise affine system can be
written as a constrained max-min-plus-scaling system. ■
Lemma 2.4.5 (Continuous PWA to MMPS[75]). The class of continuous piece-wise affine
systems and the class of (unconstrained) max-min-min-plus scaling system coincide. ■

2.4.3. COMPUTATIONAL GEOMETRY
In this section, we delineate the procedure to compute a positively invariant set for a
continuous piecewise-affine system, defined on a convex polyhedral partition. This sub-
section is based entirely on [30, 132, 188, 189].
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Let {Ωi }i∈m be a finite number of convex polyhedra forming a partition of the state-
space X ⊆ Rn . Consider the following autonomous discrete-time piecewise-affine sys-
tem:

x(k) = f (x(k −1)), k ∈N, (2.52)

subject to the set of constraints:

x(k) ∈X⊆Rn , ∀k ∈N. (2.53)

Here, the function f : Rn → Rn is assumed to be continuous piecewise-affine on the
polyhedral partition {Ωi }i∈m . The constraint setX is assumed to be polyhedral. For con-
venience, we write fi for the affine restriction of the function f to the polyhedronΩi .

We recall again the notion of positive invariance.

Definition 2.4.10 (Positively invariant set). A set Ψ⊆X is said to be positively invariant
set for the piecewise-affine dynamics (2.52) subject to the constraints (2.53) if for every
x ∈Ψ, we have f (x) ∈Ψ. □

In case a given set Ψ⊆X is not positively invariant, we are interested in determining
the largest positively invariant set contained inΨ.

Definition 2.4.11 (Maximal positively invariant set). The set O∞(Ψ) is said to be max-
imal positively invariant set for the dynamics (2.52) subject to the constraints (2.53) if
O∞(Ψ) is positively invariant and it contains all positively invariant sets inΨ. □

We note that the union of two positively invariant sets is also a positively invariant
set. It can then be shown that the maximal robust positively invariant set is unique [30].
Then the preceding definition implies that for any positively invariant setΦ, we have

Φ⊆O∞(Ψ) ⊆Ψ.

The computation of the maximal positively invariant set for a given dynamical system
involves reachability analysis and set propagation. To this end, we recall the definition
of the (backward) reachable set.

Definition 2.4.12 (Pre-image set). Consider the system dynamics (2.52) and a set Ψ ⊆
Rn . Then the non-empty set

Q(Ψ) = {
x ∈X ∣∣ f (x) ∈Ψ}

(2.54)

consists of all states in X that evolve into the setΨ in one step. □

Note that a set Ψ is positively invariant for a given dynamics (2.52) if and only if Ψ⊆
Q(Ψ) [132]. This also implies that Q(Ψ)∩Ψ=Ψ ifΨ is a positively invariant set.

The following algorithm provides a procedure for computing the maximal positively
invariant set for a given discrete-time autonomous dynamics (2.52).
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Algorithm 1 Computation of O∞(X), [188].

Input: Dynamics (2.52), Constraint set X
Output: O∞(X)

k ←−1
Ψ(0) ←X

while Ψ(k+1) ̸=Ψ(k) do
k ← k +1
Ψ(k+1) ←Q(Ψ(k))∩Ψ(k) ▷ (2.54)

end while
O∞(X) ←Ψ(k)

The preceding algorithm generates a non-increasing sequence of sets Ψ(k+1) ⊆Ψ(k)

and results in the maximal positively invariant set as the fixed point of Q(·), O∞(X) =
∩k∈NΨ(k) [188, Lemma 2]. Moreover, Ψ(k) = ; for a finite k ∈ N implies O∞(X) = ;. In
general, there can exist an infinite sequence of sets {Ψ(k)}k∈N.

The authors in [188] present sufficient conditions to guarantee the finite termination
of Algorithm 1 for a continuous piecewise-affine system. Briefly, Algorithm 1 terminates
in finite number of steps if the constraint set X is compact, X contains the origin, and
the system (2.52) is asymptotically stable with respect to the origin [188, Corollary 1].

Algorithm 1 requires three routines for the computation of the maximal positively
invariant set at each step k ∈N:

1. Computation of pre-image set Q(Ψ(k));

2. Computation of intersection Q(Ψ(k))∩Ψ(k);

3. Testing set inclusionΨ(k) ⊆Ψ(k+1).

For any given polyhedral setsΩ1 andΩ2 (in the half-space representation (2.42)), the set
inclusion Ω1 ⊆Ω2 requires the linear inequalities in Ω2 to be redundant with respect to
the set of inequalities inΩ1. Efficient algorithms for the computation of the intersection
and subset testing of two polyhedra can be found in [132, §3.3 ].

In the following, we briefly explain the procedure to compute the pre-image set for a
continuous piecewise-affine system.

We note that, in case of an autonomous dynamics (2.52), the pre-image set Q(Ψ) is
readily calculated if the set Ψ is a union of finitely many convex polyhedra in the half-
space representation [189, Theorem 4].

Theorem 2.4.1 (Pre-image set of a piecewise-affine system, [189]). Consider the contin-
uous piecewise-affine system (2.52) defined over a polyhedral partitionΩ=∪i∈mΩi of the
state-space X. Then the pre-image set Q(Ω), defined in (5.4), is again a union of finitely
many convex polyhedra. ■

The following properties of the pre-image set can then be used to compute the pre-
image set.

Lemma 2.4.6 (Properties of Q(Ψ), [132]). Consider the system (2.52) defined over the
polyhedral partitionΩ=∪ j∈mΩ j .
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For any two setsΨ1 andΨ2 withΨ1 ⊆Ψ2, we have Q(Ψ1) ⊆Q(Ψ2).
IfΨ=⋃

i∈r Ψi is given as a union of finitely many polyhedral sets, then we have

Q(Ψ) = ⋃
i∈r

Q(Ψi ).

Define the pre-image set for individual affine dynamics over a union of convex polyhedra
Ψ as

Q j (Ψi ) = {
x ∈X ∣∣ f (x) ∈Ψi , x ∈Ω j

}
, i ∈ r , j ∈ m.

Then we have

Q(Ψ) = ⋃
i∈r

⋃
j∈m

Q j (Ψi ). ■

Hence, the polyhedral partitioning of Q(Ψ) can be easily derived. We note here that
the union of convex polyhedral sets is not necessarily convex or connected.

Finally, we note that most available software for computational geometry require the
setsΨ(k) (as in Algorithm 1) to be compact [209, 219].

2.5. CONCLUSIONS
In this chapter, we have comprehensively discussed the background knowledge and
tools that form the prerequisite for the remainder of the dissertation. This includes a
primer on max-plus algebra and the related system-theoretical concepts (in Section 2.2),
stability theory for conventional discrete-time systems defined on normed spaces (in
Section 2.3), and piecewise-affine dynamics along with geometrical tools for invariant
set computations (in Section 2.4).





3
MODELLING AND EQUIVALENCES

In this chapter, we introduce the novel framework of max-plus-algebraic hybrid au-
tomata as a hybrid modelling language in the max-plus algebra. Then we formulate
formal relationships with the existing modelling classes of switching max-plus linear
(SMPL) systems and max-plus automata. The contents of this chapter are based entirely
on [110].

3.1. INTRODUCTION
max-plus-algebraic models are particularly suited for modelling discrete-event systems,
with synchronisation but no concurrency or choice, when timing constraints on event
occurrences are of explicit concern in system dynamics and performance specifications
[17, 54, 138]. The max-plus linear modelling class coincides with that of timed-event
graphs. Moreover, the modelling formalism provides a continuous-variable dynamic
representation of discrete-event systems analogous to time-driven systems. This sim-
ilarity has served as the key motivation in the development of max-plus linear systems
theory, analogously to classical linear systems theory [17, 61]. The theoretical develop-
ments find applications in analysis of production systems, timetabling of transportation
networks, queuing systems, and so on [138].

Prerequisites: Max-plus algebra; finite automata; set theory; piecewise-affine func-
tions; max-min-plus-scaling functions. Please refer to Chapter 2.

3.1.1. RELATED WORK
We begin with a literature review to highlight limitations and further extensions of the
max-plus linear framework.

The major limitation of the max-plus linear modelling framework is rooted in its in-
ability to model competition and/or conflict among several event occurrences [138]. One
way to circumvent the limitation is by the use of dual min-plus operations to model con-
flict resolution policies explicitly in the algebraic system description [17, 60]. A discrete-

43
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event system with conflict can also be modelled using a non-stationary system of max-
plus linear equations [3, 121]. Then a routing function is incorporated to resolve the
choice phenomenon for evaluating the system performance under deterministic rout-
ing policies. Such models are obtained ad-hoc based on applications [3, 121].

Automata-theoretic models for discrete-event systems are particularly suited for
modelling conflicts and certain forms of concurrency. To this end, models have been
proposed in literature that follow a modular approach by allowing the conflict resolution
mechanism be handled by a discrete variable taking values in a finite set (event alphabet)
[85, 214]. The resulting hybrid phenomenon due to the interaction of the discrete-valued
and continuous-valued dynamics is the focus of this chapter. In this context, there are
two layers of behaviour that are studied: logical ordering of the events on the one hand,
and the timing of events on the other.

The max-plus automata approach (Section 3.2.4) for modelling the aforementioned
hybrid phenomenon forms an extension of finite automata where transitions are given
weights in the max-plus algebra [85]. The weight encodes the timing information as the
price of making the transition. The output under a given input sequence over an event
alphabet is then evaluated, in the max-plus algebra, as the accumulated weight. Such
models lend themselves to path-based performance analysis for discrete-event systems
[85, 95].

An alternative approach involves the SMPL modelling paradigm (Section 3.2.3). Such
models extend the max-plus linear modelling framework by allowing changes in the
structure of synchronisation and ordering constraints as the system evolves [2, 214].
This offers a compromise between the powerful description of hybrid systems and the
decision-making capabilities in max-plus algebra [74, 214]. Moreover, the SMPL for-
malism offers the flexibility of explicitly modelling different switching (or, conflict res-
olution) mechanisms between the operating modes in a single framework (see Section
3.2.3). However, this modelling formalism abstracts the mechanism by which transitions
are orchestrated again into discrete events. This, in particular, allows modelling only the
aggregated dynamics from one mode to the other. The conservativeness then lies in the
difficulty in picking appropriate partitions of the state space for continuous or discrete
control using mixed integer programs.

3.1.2. STATEMENT OF CONTRIBUTION

We propose a novel max-plus-algebraic hybrid automata (Definition 3.3.1) framework
to model discrete-event systems analogously to the hybrid automata framework of [158,
160] for conventional time-driven systems. In the proposed framework, the discrete-
valued dynamics is represented as a labelled oriented graph and the continuous-valued
dynamics is associated to each discrete state. We formally prove that this serves as a uni-
fying framework for studying the aforementioned models and their equivalence relation-
ships in the behavioural framework [124, 218, 222]. We also provide a finite-state discrete
abstraction procedure for a subclass of the max-plus-algebraic hybrid automata (Propo-
sition 3.3.1) that preserves the state-transition structure of the underlying discrete-event
system.

We show that the modelling framework unifies and extends the switching max-plus
linear systems framework (Theorems 3.4.1 and 3.4.2). This also serves as another step
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towards importing tools for analysis and optimal control from conventional time-driven
hybrid systems [209, 216] to discrete-event systems in max-plus algebra. In addition,
we show that the framework serves as a bridge between automata-theoretic models in
max-plus algebra and switching max-plus linear systems. In doing so, we formalise the
relationship between max-plus automata and switching max-plus linear systems in a be-
havioural sense (Proposition 3.4.3). We also formulate an equivalence relationship be-
tween the finite-state discrete abstractions of a max-plus automaton and the proposed
max-plus-algebraic hybrid automaton (Theorem 3.4.4).

Due to the affinity of the SMPL and the discrete piecewise-affine modelling frame-
work [118, 216], we generate a modelling hierarchy for SMPL models under different
switching mechanisms (see Fig. 3.2) that could be used for further analysis. We then
consider the dynamics of a subclass of SMPL systems with max-plus linear mode dy-
namics where the switching is orchestrated by a partitioning of the state space. Such
systems can be rewritten as max-min-plus-scaling (MMPS) systems with both contin-
uous and discrete variables [216, Proposition 4]. This amounts to incorporation of ad-
ditional (possibly discrete-valued) variables in the system description so that the SMPL
system can be written as a constrained system of difference equations in the max-plus
algebra. We present an novel procedure to obtain this relationship (Proposition 3.2.1),
in that we replace the requirement on the boundedness of the state space (as in [216,
Proposition 4]) with a weaker assumption of non-negativity of the state space.

3.1.3. ORGANISATION OF THE CHAPTER
The chapter is organised as follows. Section 3.2 reviews the literature on discrete-event
systems in max-plus algebra focusing on SMPL and max-plus automata frameworks.
Section 3.3 introduces the unifying modelling framework of max-plus-algebraic hybrid
automata and its finite-state discrete abstraction. Section 3.4 establishes the relation-
ships among different modelling classes namely, SMPL, max-plus automata, and the
proposed max-plus-algebraic hybrid automata. Section 3.5 illustrates the modelling of
a production line in the proposed max-plus-algebraic hybrid automata framework. The
chapter ends with concluding remarks in Section 3.6.

3.2. MAX-PLUS-ALGEBRAIC MODELS OF DISCRETE-EVENT SYS-
TEMS

This section aims at recapitulating models in the max-plus algebra that capture syn-
chronisation as well as certain forms of concurrency in discrete-event systems. For sim-
plification of the exposition and for further systematic comparisons, we also present a
common description of the underlying signals in discrete-event systems.

3.2.1. SYNCHRONISATION AND CONCURRENCY
The max-plus-algebraic modelling paradigm characterises the behaviour of a discrete-
event system by capturing the sequences of occurrence times of events (or, temporal
evolution) over a discrete event counter. This, in particular, is useful when the events are
ordered by the phenomena of synchronisation (max operation), competition (min op-
eration), and time delay (plus operation) [17]. The phenomenon of concurrency arising
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due to variable sequencing (and hence variable synchronisation and ordering structure)
of events can lead to a semi-cyclic behaviour [217]. Below we discuss two different mod-
elling approaches, namely SMPL systems and max-plus automata, that extend the max-
plus linear framework to incorporate such concurrency. Here, the shared characteristic
is the introduction of a discrete variable that completely specifies the ordering structure
at a given event counter. This interaction of synchronisation and concurrency is, thus,
hybrid in nature.

3.2.2. SIGNALS IN DISCRETE-EVENT SYSTEMS

We refer to variables with finite or countable valuations as discrete, and variables with
valuations in Rε as continuous. An event-driven system with both continuous and dis-
crete variables evolving over a discrete counter k is characterised by the following sig-
nals:

• x(·) and l (·): continuous and discrete states, respectively;

• u(·) and v(·): continuous and discrete controlled inputs respectively;

• y(·): continuous output;

• r (·) and w(·): continuous and discrete exogenous inputs respectively. The signal
r (·) can represent a reference signal or a max-plus additive/multiplicative uncer-
tainty in the continuous state x. The signal w(·) can represent a scheduling signal
or uncertainty in mode switching.

The uncontrolled exogenous inputs, hereafter, are collected into a single signalΘ(·). This
signal is partitioned asΘ= [r⊤, w⊤]⊤. Here r denotes the uncertainty in the continuous-
state evolution, and w denotes the uncertainty in the discrete-state evolution.

3.2.3. SWITCHING MAX-PLUS LINEAR SYSTEMS

The dynamics of a general discrete-event system model in max-plus algebra in mode
l (k) ∈L ≜ nL for the continuous state x(k) ∈Rn

ε at event counter k ∈N can be written as
follows:

x(k) = f (l (k), x(k −1),u(k),r (k)),

l (k) =φ(l (k −1), x(k −1),u(k), v(k), w(k)),

y(k) = h(l (k), x(k),u(k),r (k))

(3.1)

where the functions f (·) and h(·) represent the evolution of the continuous state and out-
put, respectively, as MMPS functions1. The function φ(·) encodes the switching mecha-
nism.

We refer to an open-loop SMPL system, SO, when the functions f and g are max-
plus linear in states and inputs for a fixed l and control inputs u and v are absent. On
the other hand, we refer to a controlled SMPL system, SC, when a controller is also part
of the system description. The control inputs in (3.1) can then be modelled as outputs of

1See section 2.4.1
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a control algorithm:

u(k) = f (u)
C (z(k),Θ(k))

v(k) = f (v)
C (z(k),Θ(k)).

(3.2)

Here, the signal z(·) denotes the performance signal composed of the (past) known val-
ues of the continuous and discrete states, and continuous inputs. It is noted here that
the functions f (·)

C might not have a closed form. The most popular control algorithms for
continuous-valued discrete-event systems in literature are residuation [163] and model
predictive control [216].

An important subclass of controlled SMPL systems can be represented using max-
min-plus linear functions2. This encompasses the class of max-plus linear systems in
open-loop and closed-loop with static [214] and certain dynamic feedback controllers
(for e.g., via residuation [143]). The max-min-plus linear functions can also be used to
model the dynamics of a subclass of timed Petri nets under a first-in first-out policy [180,
203].

A controlled SMPL system can be represented as the connection of an MMPS dy-
namics f in (3.1) and a controller dynamics fC in (3.2) via a switching mechanism φ in
(3.1). The controlled SMPL system can then be represented as a modification of discrete
hybrid automata proposed in [209] as shown in Fig. 3.1. The major differences between
our framework and that of [209] are: i) the control algorithm is explicitly included in the
model description, and ii) the mode selector can also model a discrete dynamic process.
The mode dynamics, however, is still piecewise affine due to the equivalence of max-
min-plus-scaling and piecewise-affine systems under fairly non-restrictive assumptions
on boundedness and well-posedness of the dynamics [118, 216].

In the sequel, we will adopt a more general representation for the transition notation.
We denote by (l+, x+) the successors of the current global state (l , x). Similarly, we denote
by (l−, x−) the known state information that could possibly contain some parts of the
current global state (l , x) [212].

SWITCHING MECHANISM

The dynamic evolution of the discrete state l can be brought about by either i) a dis-
continuous change in the continuous dynamics f (·) when the states satisfy certain con-
straints, or ii) in a non-autonomous response to an exogenous event occurrence via the
signal w(·). We refer to the dynamics as autonomous in the absence of exogenous inputs.

We refer to the discrete evolution as controlled when the controller (via (3.2)) is in-
corporated into the system description in (3.1). Now we classify the switching mech-
anisms due to autonomous/non-autonomous and controlled/uncontrolled behaviour
[214, 216]. The notions are then sub-classified in increasing order of complexity, where
the first case(s) are special cases of the last one:

1. State-dependent switching: The functionφ does not depend on exogenous inputs.
The switching class can be segregated based on the presence or absence of con-
trollers:

2See Section 2.4.1 for a complete definition.
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Figure 3.1: The SMPL system in closed loop SC with a controller, represented as a subclass of the class of
discrete hybrid automata.

1a. Autonomous switching: The controller is either absent or contains only
memoryless maps that can be incorporated in the dynamics f :[

(l+)⊤ x⊤]⊤ = fφ(l , x−). (3.3)

1b. Autonomous controlled switching: The control algorithm, in this case, is ex-
plicitly part of the system description:[

(l+)⊤ x⊤ (u+)⊤ (v+)⊤
]⊤ = fφ,C(l , x−,u, v). (3.4)

2. Event-driven switching: The function φ depends only on discrete inputs (exoge-
nous or controlled) and discrete states. The class can be subdivided as follows:

2a. Externally driven switching: The switching sequence is completely (arbitrar-
ily) specified by a discrete exogenous input. Therefore, the switching hap-
pens uncontrollably in response to exogenous events:

l =φ(w). (3.5)

2b. Constrained switching: The switching sequence is driven by a discrete exoge-
nous input with constraints on allowed sequences:

l =φ(l−, w). (3.6)

2c. Constrained controlled switching: A combination of an exogenous discrete
input and a discrete control input together describe the switching sequence
along with constraints on allowed sequences:

l =φ(l−, v, w). (3.7)
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MODELLING HIERARCHY

In this subsection, we classify the discrete-event systems (Eq. (3.1), (3.2)) that arise due
to different modelling choices for SMPL systems. The resulting modelling hierarchy con-
sists of classes of models obtained by specifying the switching mechanism (as described
in the preceding subsection) in (3.1), (3.2).

The modelling classes are categorised as follows (Fig. 3.2) in the absence of uncer-
tainties:

1. Open-loop: There is no control algorithm. The system has the usual SMPL repre-
sentation (3.1):

(I) Non-autonomous switching: The signal w(·) appears as an exogenous input.

(II) Non-autonomous switching with additive input: The signals r (·) and w(·) ap-
pear as exogenous inputs.

2. Closed-loop: There is a control algorithm (3.2) that is considered to be part of the
system:

(III) For some algorithms like output (or state) feedback [177], the closed-loop
system can again be formulated as an SMPL system.

(IV) Under residuation-based control methods, the closed-loop can be explicitly
formulated as belonging to a subclass of max-min-plus-scaling systems, i.e. a
max-min-plus linear system [143]. The class of max-min-plus-linear systems
is known to be a subclass of switching max-plus linear systems [214, Lemma
1].

(V) For switching based on state-space partitioning, the closed-loop system can
be modelled as a max-min-plus-scaling system with both continuous and
discrete variables.1

The five broad classes (I-V in Fig. 3.2) form the basis for analysis (in the subsequent chap-
ter) of max-plus-algebraic hybrid dynamical systems. Each case can be modelled as (3.1)
and (3.2) resulting in specific properties of the functions f (·) and φ(·).

TRANSLATION OF SMPL TO MMPS WITH DISCRETE VARIABLES

In this subsection, we show that an SMPL system with max-plus linear mode dynamics
and switching based on state-space partitioning can be rewritten as a max-plus-scaling
system with discrete variables. The procedure differs from [216, Proposition 4] as it does
not require boundedness of state and input variables. We refer to the resulting modelling
class as max-min-plus-scaling system with discrete variables.

Definition 3.2.1. (Autonomous controlled SMPL system [216]). An SMPL system with
max-plus linear mode dynamics is described for event step k ∈N as

x(k) = A(l (k)) ⊗x(k −1)⊕B (l (k)) ⊗u(k)

y(k) =C (l (k)) ⊗x(k),
(3.8)

where A(l )Rn×n
ε , B (l ) ∈Rn×1

ε and C (l ) ∈R1×n
ε are system matrices for mode l ∈ nL.
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SMPL

Closed-loop

D-MMPS
V

MMPL
(residuation)

IV

SMPL
(state-feedback)

III

Open-loop

Non-autonomous
(w(·),e(·))

II

Non-autonomous
(w(·))

I

Figure 3.2: Modelling hierarchy for switching max-plus linear systems (left to right). The exogenous signals
w(·), and e(·) belong to certain classes W and E respectively. MMPL: Max-min-plus linear system [143], and
D-MMPS: max-min-plus-scaling system with discrete variables [216].

The switching mechanism of an autonomous controlled SMPL system can be ex-
pressed as

[l (k) = m] ⇔ [
z(k) = (

l (k −1) x⊺(k −1) u⊺(k) v⊺(k)
)⊺ ∈Ωm

]
, (3.9)

where v(·) is an auxiliary control variable. Here, {Ωm}m∈nL is a polyhedral partition of
Ω⊂Rnz such that

⋃
m∈nL Ωm =Ω. ♦

We parametrise the elements of the polyhedral partition as

Ωm = {z(k) |Rm z(k) ⪯m rm} , Rm ∈Rpm×nz , rm ∈Rpm (3.10)

where ⪯m is a vector with entries ≤ or <. Also, pm denotes the number of supporting
hyperplanes of the polyhedronΩm .

The following property ensures the existence and uniqueness of the solution to a
given autonomous controlled SMPL system.

Definition 3.2.2. (Well-posedness). A autonomous controlled SMPL system as de-
scribed in Definition 3.2.1 is said to be well-posed if the elements of the partition Ωi

andΩ j are non-overlapping for all i , j ∈ nL and i ̸= j . ♦

A discrete-event system description (4.8) is said to be structurally finite if the states
x(k) and output y(k) do not become ε for finite initial states x(0) ∈ Rn and finite inputs
u(k) ∈R. We note that physical systems are typically structurally finite [216].
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Lemma 3.2.1. (Structurally finite SMPL system [216]). An SMPL system representation
(4.8) is structurally finite if and only if the matrix

H (l ) =
(

A(l ) B (l ) ε

ε ε C (l )

)
(3.11)

contains at least one finite entry in every row for all l ∈ nL. ■
An autonomous controlled SMPL system can be rewritten as an equivalent con-

strained MMPS system by introducing discrete variables [216, Proposition 4]. The
derivation involves the “big-M” technique used in [22] to rewrite a piecewise affine
model as a mixed-logic dynamical model. This, however, requires the boundedness of
the state-space of the underlying system.

For the sake of completeness, we recall the description of a max-min-plus-scaling
system.

Definition 3.2.3. (Max-min-plus-scaling expression). A max-min-plus-scaling (MMPS)
expression f of the variables x1, . . . , xn is defined by the grammar3

f := xi |α| fk ⊕ fl | fk ⊕′ fl | fk + fl |β · fk , α,β ∈R, i ∈ n, (3.12)

where fk and fl are again MMPS expressions. ♦

Definition 3.2.4. (Constrained MMPS system). A constrained MMPS system is de-
scribed by a state-space model of the form:

x(k) =Mx (x(k −1),u(k)) (3.13)

y(k) =My (y(k −1),u(k)) (3.14)

where Mx and My are MMPS expressions.
A constrained MMPS system is defined by (3.13) along with the condition

Mc (x(k −1),u(k)) ⪯ c(k), (3.15)

where Mc is again an MMPS expression and ⪯ is a vector with entries ≤, =, or <. ♦

We now establish an alternative relationship between an autonomous controlled
SMPL system and a constrained MMPS system by rewriting the polyhedral partitions as
max-min equations [18]. The procedure does not require the boundedness of the state
space. Instead, we make the following assumption.

Assumption 3.2.1. The finite entries of the system matrices, A(·), B (·) and C (·), describing
the SMPL system (4.8) are non-negative. Also the states x(·) and input u(·) are assumed
take non-negative values. ♢

The preceding assumption is not restrictive in practical situations where the finite
elements of the system matrices, and entries of the state and input vectors represent
processing/waiting times and event occurrence times, respectively.

3The symbol | stands for “or". The definition is recursive.
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Proposition 3.2.1. (SMPL to D-MMPS). Under Assumption 3.2.1, every well-posed struc-
turally finite autonomous controlled SMPL system (Definition 3.2.1) can be written as a
constrained MMPS system with discrete variables.

Proof. By Assumption 3.2.1, the finite elements of the system matrices are non-
negative. Also, the elements of the state x(·) and input u(·) are non-negative.

Consider again the polyhedral partitioning of Ω ⊂ Rnz as in (3.10). These partitions
are max-min separable as they are disjoint [18]. An element of the partition Ωm defines
the following max-plus-scaling function

ϕm(z(k)) = max
j∈pm

(
Rm, j z(k)− rm, j

)
= ⊕

j∈pm

(
Rm, j z(k)− rm, j

)
.

(3.16)

It can be noted here that ϕm(z(k)) is a non-positive scalar if z(k) ∈Ωm .
Define a vector with non-negative entries d̃ ∈RnL+ such that

d̃(k) = max(ϕ(k),−ϕ(k)). (3.17)

Then given z(k) ∈Rnz
ε , the following statements hold:

• there exists m ∈ nL such that ϕm(z(k)) =−d̃m(k), i.e. z(k) ∈Ωm ;

• ϕl (z(k)) = d̃l (k) for all l ∈ nL \ {m}, i.e. z(k) ∉Ωl for l ̸= m.

Define another non-negative scalar using min-plus algebra4,

x̄(k) = min
l∈nL

(d̃l (k)) = C̃ ⊗′ d̃(k) (3.18)

where C̃ ∈RnL
⊤ is a row vector of zeros (unity element in R⊤). It can be noted that (3.18) is

an MMPS expression. Moreover, x̄(k) ≥ 0. Therefore, for all l ∈ nL such that z(k) ∉Ωl , we
have x̄(k)+ϕl (z(k)) > 0. Then, the following statements hold:

• x̄(k) ≤ d̃l (k) =−ϕl (z(k)) for l = m;

• x̄(k) ≤ d̃l (k) =ϕl (z(k)) for all l ∈ nL \ {m}.

The inequality x̄(k)+ϕm(z(k)) ≤ 0 is an MMPS constraint.
Define binary variables {δm}m∈nL ∈ {0,+∞}nL in the min-plus algebra such that

[δm(k) = 0] ⇔ [
x̄(k)+ϕm(z(k)) ≤ 0

]⇔ [l (k) = m] . (3.19)

Moreover, due to the well-posedness of the SMPL system the condition (3.9) can be
rewritten as

x̄(k)+ϕm(z(k)) ≤ δm(k) (3.20)

min
m∈nL

δm(k) = 0. (3.21)

4R⊤ =R∪ {+∞}
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Figure 3.3: A nondeterministic max-plus automaton [85]. An edge label consists of an event label (a letter in
Σ) and a weight in the max-plus semiring Rmax.

Then the max-plus state space equations in (4.8) can be written as:

x(k) = min
l (k)∈nL

(
A(l (k)) ⊗x(k −1)⊕B (l (k)) ⊗u(k)⊕B2 ⊗δl (k)

)
,

y(k) = min
l (k)∈nL

(
C (l (k)) ⊗x(k)⊕δl (k)

)
.

(3.22)

where B2 ∈Rnx×1
ε is a vector of zeros. Then, the system (3.22) along with (3.20) and (3.21)

is a constrained MMPS system (Definition 3.2.4) representation of the autonomous con-
trolled SMPL system (Definition 3.2.1). This completes the proof. ■

3.2.4. MAX-PLUS AUTOMATA
The max-plus automata are a quantitative extension of finite automata combining the
logical aspects from automata/language theory and timing aspects from max-plus linear
system [85]. Here, the concurrency is handled at the logical level of the finite automaton.
The variable ordering structure in the sequence of events is brought about by the set of
accepted input words. The transition labels are augmented with weights in the max-plus
semiring. The continuous-variable output dynamics appears as a max-plus accumula-
tion of these weights over the paths accepted by an input word. We now recall the formal
definition to elucidate the functioning of a max-plus automaton.

Definition 3.2.5. (Max-plus automata [85]). A max-plus automaton is a weighted fi-
nite automaton over the max-plus semiring Rmax and a finite alphabet of inputs Σ repre-
sented by the tuple

A = (S,α,µ,β), (3.23)

consisting of i) S, a finite set states, ii)α : S →Rε, the initial weight function for entering a
state, iii) µ :Σ→RS×S

ε , the transition weight function, and iv) β : S →Rε, the final weight
function for leaving a state. □

A labelled transition between s, s′ ∈ S is denoted as s
l |c−−→ s′ such that [µ(l )]ss′ = c for

l ∈ Σ. The initial and final transitions are denoted as
c0−→ s and s′ cf−→ such that α(s) =

c0 and β(s′) = cf, respectively. This can be represented by a weighted transition graph
(Fig. 3.3).
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The discrete (logical) evolution of a max-plus automaton for a given word ωk ∈ Σ∗
for k ∈N is obtained by concatenating the labelled transitions as an accepting path ρk =
(s0, s1, . . . , sk ) ∈ Sk+1 such that α(s0) ̸= ε, β(sk ) ̸= ε, and [µ(li )]si−1si ̸= ε for all i ∈ k. The
language of A is defined, analogously to that of a finite automaton, as the set of finite
words accepted by the max-plus automaton:

�A �L = {ωk ∈Σ∗ | ∃ρk ∈ S∗ s.t. ρk accepts ωk with k ∈N}.

The continuous-valued trajectories of a max-plus automaton appear as the maxi-
mum accumulated weight over all accepted discrete trajectories. Therefore, it can be
expressed completely using max-plus operations on the weights of the transition labels.
The output of the max-plus automaton A for the given word ωk is obtained over all ac-
cepting paths ρ as

y(ωk ) := max
ρ∈Sk+1

{α(s0) + [µ(l1)]s0s1 + [µ(l2)]s1s2+

·· ·+ [µ(lk )]sk−1sk + β(sk )
}

.
(3.24)

Given n states in S, the initial weights α ∈ Rn
ε and final weights β ∈ Rn

ε can be identified
as vectors and µ(l ) ∈ Rn×n

ε can be identified as a matrix for all l ∈ Σ. Then the evolution
of the continuous-valued dynamics of the max-plus automaton A can be represented
as [85]:

x(ωk ) = x(ωk−1)⊗µ(lk ), x(ϵ) =α⊤

y(ωk ) =α⊤⊗µ(l1)⊗µ(l2)⊗·· ·⊗µ(lk )⊗β
= x(ωk )⊗β.

(3.25)

The finite-state discrete abstraction of a max-plus automaton is a finite automaton.
It can be obtained by restricting the weights on transitions of A to the Boolean semiring
B [85]:

AT = (S,Σ,δA ,S0,Sf), (3.26)

where the partial transition relation δA : S ×Σ → 2S is defined such that s′ ∈ δA (s, l )
if [µ(l )]ss′ ̸= ε. Similarly, we have s ∈ S0 if α(s) ̸= ε and s′ ∈ Sf if β(s′) ̸= ε. The accep-
tance condition for a word by the automaton AT follows immediately [85]. Moreover, the
max-plus automaton and its finite-state discrete abstraction share the same language,
i.e. �AT�L = �A �L.

Example 3.2.1. A max-plus automaton (from [85]) with states S = {1,2,3} over finite al-
phabetΣ= {a,b} is depicted in Fig. 3.3. The transition weight functions can be represented
as matrices of appropriate dimensions:

µ(a) =
ε 1 3
ε ε 4
ε ε ε

 , µ(b) =
ε ε ε

2 1 ε

7 5 1


α= (

0 ε ε
)⊤

, β= (
2 ε ε

)⊤
.

(3.27)

The generated language can be obtained from the event labels of the paths originating
from the initial state 1 and terminating at the final state 1 in Fig. 3.3. Such words ω ∈ Σ∗
are of the form ab, aab, aabb, and so on.
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We can now proceed to the introduction of a unified modelling framework repre-
sented by a max-plus-algebraic hybrid dynamical system.

3.3. UNIFIED MODELLING FRAMEWORK
We propose a novel modelling framework of max-plus-algebraic hybrid automata for
discrete-event systems as hybrid dynamical systems in the max-plus algebra (3.1). The
modelling language allows composition with controllers/supervisors and abstraction to
refine design problems for individual components. We also propose a finite-state dis-
crete abstraction of the max-plus-algebraic hybrid automaton that preserves the allowed
ordering of events of the discrete-event system.

Later, we show (in Section 3.4) that the proposed max-plus-algebraic hybrid au-
tomata framework also serves as a link between SMPL systems and max-plus automata.
The proposed modelling framework is more descriptive than SMPL systems and max-
plus automata in that it allows to capture the different types of interactions between the
continuous and discrete evolutions (as presented in Section 3.2.3). Most importantly,
the model retains the structure of switching between dynamical systems.

3.3.1. MAX-PLUS-ALGEBRAIC HYBRID AUTOMATA
A max-plus-algebraic hybrid automaton is presented as an extension of the open hybrid
automata in [158, 159] to incorporate max-plus-algebraic dynamics.

Definition 3.3.1. (Max-plus-algebraic hybrid automaton). A max-plus-algebraic hybrid
automaton with both continuous and discrete inputs and distinct operating modes can
be represented as a tuple

H = (Q,X,U,V,Y, Init,F, H , Inv,E ,G ,R,Λ) (3.28)

where:

• Q is a finite set of discrete states (or, modes);

• X⊆Rn
ε is the set of continuous states;

• U⊆Rnu
ε is the set of continuous inputs;

• V is a finite set of discrete inputs;

• Y⊆Rny
ε is the set of continuous outputs;

• Init ⊆Q×X is the set of initial states;

• F : Q×X×U → X is the continuous-valued dynamics associated to each mode
q ∈Q;

• H :Q×X×U→Y is the continuous-valued output equation;

• Inv : Q→ 2X×U×V assigns to each q ∈ Q an invariant domain specifying a set of
admissible valuations of the state and input variables.
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• G : E → 2X×U×V is the collection of guard sets which assigns to each edge η =
(q, q ′) ∈ E the admissible valuation of the state and input variables when transi-
tion from the mode q to q ′ is possible;

• R := E ×U×V→ 2X×X is the collection of reset maps which assigns to each edge
η= (q, q ′) ∈ E , u ∈U and v ∈V a destination map specifying the continuous states
before and after a discrete transition;

• Λ :Q×X→ 2U×V assigns to each state a set of admissible inputs. □
The hybrid state of the max-plus-algebraic hybrid automaton H is given as (q, x) ∈

Q×X. The hybrid nature stems from the interaction of the discrete-valued state q ∈
Q and the continuous-valued state x ∈ X. Moreover, the valuations of the continuous
variables of H are defined over the completed max-plus semiring Rε. Therefore, the
proposed max-plus-algebraic hybrid automaton forms a novel extension of the hybrid
automata framework in [160].

The hybrid state of the max-plus-algebraic hybrid automaton H is subject to change
starting from (q0, x0) ∈ Init as concatenations of i) discrete transitions in the continuous-
valued state, to (q0, x), according to x = F (q0, x0, ·), as long as the invariant condi-
tion of the mode q0 is satisfied, i.e. (x, ·, ·) ∈ Inv(q0), and ii) discrete transitions in the
mode, (q0, x) to (q ′, x ′), as allowed by the guard set (x, ·, ·) ∈ G(η), η = (q0, q ′), while the
continuous-valued state changes according to the reset map (x, x ′) ∈ R(η, ·, ·).

The exogenous inputs u ∈ U and v ∈ V allowed by a given hybrid state (q, x), or
(u, v) ∈Λ(q, x), can affect the system evolution through: i) the continuous-valued mode
dynamics x ′ = F (q, x,u) and y = H(q, x,u) when (x,u, v) ∈ Inv(q), ii) the guard sets
(x ′,u, v) ∈ G(η) allowing discrete mode transitions along η = (q, q ′) ∈ E , iii) the mode
invariants (x ′,u, v) ∉ Inv(q) forcing discrete mode transitions, and iv) the reset maps
(x ′, x ′′) ∈ R(η,u, v).

3.3.2. FINITE-STATE DISCRETE ABSTRACTION
We now propose a finite-state discrete abstraction of a max-plus-algebraic hybrid au-
tomaton (3.28) by embedding it into a finite automaton. The proposed discrete abstrac-
tion of H is a one-step transition system abstracting away valuations of the continuous
variables while preserving the state-transition structure of the underlying discrete-event
system.

To this end, we define one-step state transition relations corresponding to the mode
dynamics F and H based on the underlying directed graph.

Assumption 3.3.1. The dynamics F : (q, x,u) → F (x, q,u) and the output function H :
(q, x,u) → H(x, q,u) in (3.28) are max-min-plus functions of the state x ∈X and the input
u ∈ U for every mode q ∈ Q. Also, the reset relation is defined such that for a discrete
transition allowed by the guard set (i.e. (x,u, w) ∈ G(η) for η = (q, q ′)), we have x = x ′ if
(x, x ′) ∈ R(η,u, w). We denote such a map as R(·) := Rid(·). ♢

The subclass of max-plus-algebraic hybrid automata modelled using max-min-plus
functions is large enough to characterise a broad range of discrete-event systems (see
Section 3.2.3). The assumption on the reset relation signifies that the exogenous discrete
input via V does not directly impact the continuous-valued state x ∈X.
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For convenience, it is also assumed that the functions F and H are in the max-min-
plus conjunctive form (2.32). The ambiguity resulting from unspecified ordering of the
max-plus projections, in (2.32), is not of consequence to the following analysis. Then,
there exist L, M ∈N such that the mode dynamics can be expressed as [108]:

x+ = F (q, x,u) = min
l∈L

(
A(q,l ) ⊗x ⊕B (q,l ) ⊗u

)
,

y = H(q, x,u) = min
m∈M

(
C (q,m) ⊗x ⊕D (q,m) ⊗u

)
.

(3.29)

Here, A(q,l ) ∈Rn×n
ε , B (q,l ) ∈Rn×nu

ε and C (q,m) ∈Rny×n
ε for all q ∈Q, l ∈ L and m ∈ M .

We associate the sets of labels Xvar = {x1,x2, . . . ,xn}, Uvar = {u1,u2, . . . ,unu } and Yvar =
{y1,y2, . . . ,yny } with the continuous-valued state, input and output variables, respec-
tively.

Definition 3.3.2. (One-step state transition graph). Given that Assumption 3.3.1 is sat-

isfied, the one-step state transition graph Γ(q)
F ⊆ (Xvar×Xvar)∪(Uvar×Xvar) of the contin-

uous dynamics F (q, ·, ·), q ∈Q, is defined such that for (i , j ) ∈ n2 and (p, j ) ∈ nu ×n:

(xi ,x j ) ∈ Γ(q)
F ⇔ {∃l ∈ L s.t. [A(q,l )] j i isfinite},

(up ,x j ) ∈ Γ(q)
F ⇔ {∃l ∈ L s.t. [B (q,l )] j p isfinite}.

(3.30)

The one-step state transition graph Γ(q)
H ⊆ (Xvar ×Yvar)∪ (Uvar ×Yvar) of H(q, ·, ·), q ∈Q, is

defined such that for (i , j ) ∈ n ×ny and (p, j ) ∈ nu ×ny:

(xi ,y j ) ∈ Γ(q)
H ⇔ {∃m ∈ M s.t. [C (q,m)] j i isfinite}

(up ,y j ) ∈ Γ(q)
H ⇔ {∃m ∈ M s.t. [D (q,m)] j p isfinite}.

(3.31)

The transition graph Γ(·)
F corresponds to the support of the dynamics F in that the mem-

bership of a pair (xi ,x j ) in Γ(·)
F indicates whether the component F j is an unbounded

function of the coordinate xi or not. Similarly, the transition graph Γ(·)
H corresponds to

the support of the output equation H . □

We now propose a finite-state discrete abstraction of the max-plus-algebraic hybrid
automaton (3.28). The mode dynamics of the max-plus-algebraic hybrid automaton is
abstracted as a one-step transition system. Here, the one-step transition naturally corre-
sponds to the evolution of the discrete-event system in one event step k ∈N. Therefore,
we denote it with a unique label 1.

Proposition 3.3.1. (Finite-state discrete abstraction of max-plus-algebraic hybrid au-
tomaton). Consider a max-plus-algebraic hybrid automaton H (as in (3.28)) under As-
sumption 3.3.1. We assume that5 X = Rn

ε \ {ε,⊤}n . Then the max-plus-algebraic hybrid
automaton H generates a finite automaton.

5The set of all vectors in R
n
ε with at least one finite entry is denoted as R

n
ε \ {ε,⊤}n .
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Proof. A finite automaton embedding a max-plus-algebraic hybrid automaton can
be generated as a one-step transition system:

HT = (Q,Σ,δH ,Q0,Q f), (3.32)

that consists of:

• the finite set of states Q =Q× (Xvar ∪Uvar);

• the input alphabet as a union of mode transition event labels and the one-step
transition label denoting state transitions within a mode, Σ=V∪ {1};

• the set of initial states Q0 with (q,x j ) ∈ Q0 ⊆ Q× (Xvar ∪Uvar) if (q, x) ∈ Init and

x j ̸= ε, and (q,up ) ∈Q0 if there exists x j ∈ Xvar such that (up ,x j ) ∈ Γ(q)
F ;

• the set of final states Q f with (q,xi ) ∈Q f ⊆Q××(Xvar ∪Uvar) if there exists y j ∈ Yvar

such that (xi ,y j ) ∈ Γ(q)
H , and (q,up ) ∈Q f if there exists y j ∈ Yvar such that (up ,y j ) ∈

Γ
(q)
H ;

• the partial transition function δH : Q×(V∪{1}) → 2Q is defined as the combination
of:

i) the transition relation corresponding to the one-step evolution inside a mode

as (q,x j ) ∈ δH (q,xi ,1) if (xi ,x j ) ∈ Γ(q)
F , or (q,x j ) ∈ δH (q,up ,1) if (up ,x j ) ∈

Γ
(q)
F ;

ii) the transition relation corresponding to each edge η= (q, q ′) ∈ E as (q ′,xi ) ∈
δH (q,xi , w) if there exists w ∈V. ■

It is noted that the transitions via inputs from V do not entail transitions in the state
x ∈ Xvar. Therefore, the transitions in the mode q ∈Q viaV and one-step state transitions
in x ∈ Xvar are allowed to occur concurrently. Then, the transition (q ′,x j ) ∈ δH (q,xi , w)

for some (q, q ′) ∈ E and w ∈V represents a concatenation of labelled transitions (q,xi )
1−→

(q,x j ) and (q,x j )
w−→ (q ′,x j ). A similar statement holds for (q ′,x j ) ∈ δH (q,up , w).

3.4. MODEL RELATIONSHIPS
In this section we formalise the relationships between the classes of SMPL models and
max-plus automata described in Section 3.2 and the max-plus-algebraic hybrid au-
tomata proposed in Section 3.3.1. To this end, we propose translation procedures among
the three modelling classes to further establish partial orders among them.

3.4.1. PRE-ORDER RELATIONSHIPS
We first recall formal notions from literature for comparison of different modelling
classes. This subsection is based entirely on [124, 218, 222].

We adopt a behavioural approach towards establishing relationships between differ-
ent modelling classes, in that the systems are identified as a collection of input-state-
output trajectories they allow6.

6The term recognised is usually used instead of allowed in automata theory [54].



3.4. MODEL RELATIONSHIPS

C
h

ap
te

r
3

59

Definition 3.4.1. (Behavioural semantics). The behavioural semantics of a dynamical
system is defined as a triple Ω= (T,S,B), where T is the time axis, S is the signal space,
and B ⊆ST is the collection of all possible trajectories allowed by the system. The pair
(T,S) is the behavioural type of the dynamical system. □

In the context of this chapter, T = N represents the event counter axis. The signal
space S is factorised as S = D× I×O into the state space D, input space I, and output
spaceO.

Definition 3.4.2. (Input-output behaviour). Given a behavioural system model Ω =
(T,S,B) withS=D× I×O factorised into the state, input and output space, respectively.
The input-output behaviour of the system modelΩ is the projection of the behaviour B
on the set of input-output signals, πIO(B) ⊂ IT×OT. □

We now proceed to define an input-output behavioural relationship between two
dynamical systems.

Definition 3.4.3. (Behavioural equivalence). Consider two dynamical systems Ωi =
(T,Di × I×O,Bi ), i = 1,2. The dynamical system Ω1 is said to be behaviourally included
inΩ2, denoted asΩ1 ≼B Ω2, if πIO(B1) ⊆πIO(B2).

The notion of behavioural equivalence (denoted as Ω1 ≃B Ω2) follows if the said be-
havioural inclusion is also symmetric. □

The input-output behaviour of a finite automaton can be defined as the collection
of all accepted words. In that case, the condition of behavioural equivalence of finite
automata implies the equality of their generated languages [124].

We now define pre-order relation that also captures the state transitions structures
of two dynamical systems. We first define the concept of a state map.

Definition 3.4.4. (State-map). Given a dynamical system Ω = (T,D× I×O,B). A state
map is defined as a map ϕ : IT×OT×T→D such that for every (x, w, y) ∈B and for each
τ ∈Twe have x(τ) =ϕ(w, y,τ). □

The following notion provides a sufficient condition for demonstrating that an input-
output behavioural relationship exists between two dynamical systems.

Definition 3.4.5. (Bisimulation). Consider two dynamical systems Ωi = (T,Di × I×
O,Bi ), i = 1,2, and their respective state maps ϕ1 and ϕ2. A simulation relation from
Ω1 to Ω2, Ψ : T → 2D1×D2 , is defined such that for any τ ∈ T if (x1, x2) ∈ Ψ(τ) and
(x1, w1, y1) ∈ B1 where x1(τ) = ϕ1(w1, y1,τ) then there exists (x2, w2, y2) ∈ B2 such
that x2(τ) = ϕ2(w2, y2,τ), and for all τ′ ≥ τ such that w1(τ′) = w2(τ′) we have: i)
(ϕ1(w1, y1,τ′),ϕ2(w1, y2,τ′)) ∈Ψ(τ′), and ii) y1(τ′) = y2(τ′).

The dynamical system Ω1 is said to be simulated by Ω2, Ω1 ≼S Ω2, if a simulation
relation exists fromΩ1 toΩ2.

The notion of bisimilarity (denoted as Ω1 ≃S Ω2) follows if the said simulation rela-
tion is also symmetric. □

Finally, we recall the following result from the literature.
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Lemma 3.4.1. (Simulation to behavioural inclusion [124]). Consider two dynamical sys-
tems Ωi = (T,Di × I×O,Bi ), i = 1,2, and their respective state maps ϕ1 and ϕ2. Then the
following implication holds:

Ω1 ⪯S Ω2 ⇒Ω1 ⪯B Ω2. ■
We now move on to formalising the relationships between the proposed max-plus-

algebraic hybrid automata and the existing frameworks of SMPL systems and max-plus
automata.

3.4.2. EQUIVALENT MAX-PLUS-ALGEBRAIC HYBRID AUTOMATA FOR SMPL
SYSTEMS

In this subsection we show that SMPL systems in open-loop and closed-loop configu-
rations (SO and SC, respectively), are special cases of max-plus-algebraic hybrid au-
tomata. To this end, we construct an equivalent restriction of the max-plus-algebraic
hybrid automaton. Here, equivalence is expressed in terms of a simulation relation that
captures the state transition structure of the SMPL system.

Theorem 3.4.1. (Max-plus-algebraic hybrid automata simulate open-loop SMPL sys-
tems). Given an open-loop SMPL system SO, there exists a max-plus-algebraic hybrid
automaton HO that bisimulates it, i.e. SO ≃S HO.

Proof. Consider an open-loop SMPL system SO behaviour consisting of states (l , x) ∈
D = nL ×Rn

ε , inputs (w,r ) ∈ BnL
ε ×Rm

ε , and output y ∈ Rd
ε defined on an event counter

k ∈ N. The state maps are defined in (3.1) without the control inputs u and v as x(k) =
f (l (k), x(k−1),r (k)), l (k) =φ(l (k), x(k−1), (w(k),r (k))) and y(k) = h(l (k), x(k),r (k)). The
initial condition is denoted as x0 = x(0) ∈Rn

ε .
A max-plus-algebraic hybrid automaton HO (as in (3.28)) is constructed with the

states q ∈Q= nL and xh ∈X=Rn
ε , the inputs (w,r ) ∈ I=V×U=BnL

ε ×Rm
ε , and the output

yh ∈Y= Rd
ε . The discrete state characteristics are defined for all q ∈ nL as: (q, x0) ∈ Init,

F (q, ·, ·) = f (q, ·, ·), H(q, ·, ·) = h(q, ·, ·), and Inv(q) = {(xh, (w,r )) | φ(·, xh, (w,r )) = q}.
The edge characteristics are defined for all (q, q ′) ∈ E ⊆ nL × nL as: G = {(xh, (w,r )) |
φ(q, xh, (w,r )) = q ′}, and R(·) := Rid(·). There are no constraints on the admissible in-
puts, i.e. Λ(q, x) = 2I for all (q, xh) ∈X.

Note that the two systems share the same state, input and output spaces. An event
counter dependent simulation relation can be defined such that for a given k ′ ∈ N, if
((l , x), (q, xh)) ∈Ψ(k ′) then we have l (k ′) = q(k ′) and x(k ′) = xh(k ′). It is now sufficient
to show that the two models produce state trajectories, under the same input sequence
(w(k)),r (k)) for k ≥ k ′, such that x(k) = xh(k) and l (k) = q(k).

Let ((l , x), (q, xh)) ∈Ψ(k ′), l (k ′) = l1, and k ′′ = inf{k ∈N |φ(l (k), x(k−1), ·) ̸= l1, k > k ′}.
We now have that any continuous-valued state trajectory x(·) of the SMPL system inside
the mode l (k) = l1, k ∈ {k ′,k ′+1, . . . ,k ′′−1}, also satisfies the invariance condition of the
mode q(k) = l1. Then, for the same input sequence we have xh(k) = x(k) = f (l1, ·, ·) as
long as l (k) = q(k) = l1. For a mode change l (k ′′) = l2 ̸= l1 such that φ(l1, x(k ′′−1), ·) = l2,
the invariance condition of mode q(k) = l1 is also violated in the max-plus-algebraic
hybrid automaton resulting in a transition in the state from (l1, xh(k ′′)) to (l2, xh(k ′′)) with
x(k ′′) = xh(k ′′). Thus, ((l , x), (q, xh)) ∈Ψ(k) for all k ≥ k ′. Moreover, the output function
is shared by both the models resulting in y(k) = yh(k) for all k ≥ k ′.
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Figure 3.4: A max-plus-algebraic hybrid automaton visualisation of an SMPL system (3.1) with nL = 2 modes.
The function φ(·) encoding the switching mechanism appears in the definition of the mode invariants and as
directed edge labels specifying the guard set for mode transition. The reset map is identity.

The simulation relationΨ(·) is indeed symmetric. Hence, we have SO ≃S HO. ■
Theorem 3.4.2. (Max-plus-algebraic hybrid automata simulate closed-loop SMPL sys-
tems). Given a closed-loop SMPL system SC, there exists a max-plus-algebraic hybrid au-
tomaton HC that bisimulates it, i.e. SC ≃S H .

Proof. We now consider a closed-loop SMPL system SC behaviour consisting of
states (l , z) ∈D= nL ×R1+n+nu+nv

ε where z(k) = [l (k −1), x⊤(k −1),u⊤(k −1), v⊤(k −1)]⊤,

inputs (w,r ) ∈ BnL
ε ×Rm

ε , and output y ∈ Rd
ε defined on an event counter k ∈ N. The

state maps are defined as compositions of (3.1) and (3.2) such that z(k) = fφ,C(l (k), z(k −
1),r (k)), l (k) = φ(l (k), z(k − 1), (w(k),r (k))) and y(k) = hφ,C(l (k), z(k),r (k)). The initial
condition is denoted as z0 = z(0) ∈Rn

ε .
A max-plus-algebraic hybrid automaton HC is constructed with the states q ∈ Q =

nL and xh ∈ X = R
1+n+nu+nv
ε , the inputs (w,r ) ∈ I = V×U = B

nL
ε ×Rm

ε , and the output

yh ∈Y = Rd
ε . The discrete state characteristics are defined for all q ∈ nL as: (q, z0) ∈ Init,

F (q, ·, ·) = fφ,C (q, ·, ·), H(q, ·, ·) = hφ,C(q, ·, ·), and Inv(q) = {(xh, (w,r )) | φ(·, xh, (w,r )) = q}.
The edge characteristics are defined for all η= (q, q ′) ∈ E ⊆ nL×nL as: G(η) = {(xh, (w,r )) |
φ(q, xh, (w,r )) = q ′}, and R(·) := Rid(·). There are no constraints on the admissible inputs,
i.e. Λ(q, x) = 2I for all (q, xh) ∈X.

Then the rest of the proof follows analogously to that of the open-loop case in Theo-
rem 3.4.1. Hence, SC ≃S HC. ■

Due to the findings of the preceding theorem, the discrete transition structure of
a max-plus-algebraic hybrid automaton can be classified analogously to the switching
mechanism of an SMPL system as presented in Section 3.2.3. An open-loop SMPL sys-
tem with two modes and no continuous-valued inputs is shown in Fig. 3.4.

3.4.3. EQUIVALENT MAX-PLUS-ALGEBRAIC HYBRID AUTOMATA FOR MAX-
PLUS AUTOMATA

This section establishes the relationships between max-plus automata and max-plus-
algebraic hybrid automata.

We first recall that a max-plus automaton (3.23) provides a finite representation for
certain classes of discrete-event systems [85]. A trajectory of a max-plus automaton A
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involves transitions among discrete states in S such that a (possibly non-unique) accept-
ing path attains the maximum accumulated weight corresponding to the output (3.24).
The auxiliary variable x(·) in (3.25), however, does not constitute the state space. This is
in contrast to the SMPL system description (3.1) where the transitions in the hybrid state
(l , x) govern the dynamics.

We first treat the problem of generating an equivalent max-plus-algebraic hybrid au-
tomaton of a given max-plus automaton behaviourally. We show that a subclass of open-
loop SMPL systems (3.1) generates the same input-output behaviour as that of max-plus
automata. The required relationship then follows from the notions presented in the pre-
ceding section.

Theorem 3.4.3. (SMPL systems behaviourally include max-plus automata). Given a
max-plus automaton A , there exists an open-loop SMPL system SOA that captures its
input-output behaviour, i.e. A ≼B SOA.

Proof. We first embed the given max-plus automaton A = (S,Σ,α,µ,β)
into a behavioural model consisting of states s ∈ D1 = S = {s1, s2, . . . , sn}, inputs
ω ∈ Σ = {σ1,σ2, . . . ,σm}, and output ya ∈ Rε. The input-output behaviour, πIO(BA),
then consists of the language of the max-plus automaton, �A �L ⊆ Σ∗, and the output7,
ya(ωk ) =α⊤⊗µ(ωk )⊗β ∈R for ωk = γ1γ2 · · ·γk ∈ �A �L, as in (3.25).

We recall that the language of the max-plus automaton is a map �A �L :N→Σ∗ such
that the sequence ωk = γ1γ2 · · ·γk ∈ Σ∗ can be represented as a signal w( j ) = γ j for all
j ∈ k. The output sequence description can be similarly extended and defined along the
event counter k ∈N.

Consider an open-loop SMPL system SOA (as in (3.1)) with the states (l , x) ∈ D2 =
m ×Rn

ε , input w ∈ Σ, and output y ∈ Rε defined on an event counter k ∈ N. The state
maps (as in (3.1)) are defined as x(k) = A(l (k)) ⊗ x(k − 1), l (k) = φ(·, x(k − 1), w(k)) and
output as y(k) =C ⊗x(k) where C ∈R1×n

ε , x(0) ∈Rn
ε , A(l ) ∈Rn×n

ε for all l ∈ m, and

φ(·, x, w) =
{

l ∈ m | A(l ) ⊗x ̸= En×1, w =σl

}
. (3.33)

For a given initial condition x(0) ∈Rn
ε , the input-output behaviour of the modelπIO(SOA)

consists of input sequences {w(k)}k∈N such that φ(·, ·, w(k)) ̸= ; and the corresponding
output sequences {y(k)}k∈N.

It remains to show that for particular valuations of the matrices A and C , the max-
plus automaton A and SMPL system SOA generate the same input-output behaviour.

Consider the specifications: i) A(l ) = µ⊤(σl ) for all l ∈ m, ii) [C ]i = β(si ), and iii)
xi (0) = α(si ) for i ∈ n. Then using (3.25), given a word ωk = γ1γ2 · · ·γk ∈ �A �L such that
w( j ) = γ j , j ∈ k, we have ya(ωk ) = y(k) for all k ∈N.

Let xa(·) ∈ R1×n
ε denote the auxiliary continuous variable satisfying (3.25). Then

xa(ω j ) = xa(ω j−1)⊗µ(γ j ) ̸= En×1 for all j ∈ k when ωk ∈ �A �L. We have x⊤
a (ω j ) = x( j ) =

A(l ) ⊗ x( j − 1) ̸= En×1. Hence, l ∈ φ(·, x( j − 1), w( j )) in (3.33). Therefore, by induction
all finite input sequences ωk constituting the language of the max-plus automaton also
satisfy the condition φ(·, ·, w( j )) ̸= ; for w( j ) = γ j , j ∈ k.

For finite input sequences we have πIO(BA) ⊆πIO(SOA), and hence A ≼B SOA. ■
7Note that with a slight abuse of notation we use the shorthand µ(ωk ) =µ(γ1)⊗µ(γ2)⊗·· ·⊗µ(γk ).
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Figure 3.5: The one-step state transition graphs, Γ(1)
F and Γ(2)

F , as defined in Definition 3.3.2, associated to the
bimodal open-loop SMPL system of Example 3.4.1.

In the preceding proof, we only considered finite input sequences from the input
alphabet Σ. However, the procedure is constructive in that it can be extended to infinite
input sequences, by concatenations of finite words from the language �A �L, to establish
behavioural equivalence.

The above exposition shows that the subclass of discrete-event systems modelled by
SMPL systems is at least as large as the subclass modelled by max-plus automata. The
first relation between max-plus automata and max-plus-algebraic hybrid automata then
follows from their respective behavioural relations with SMPL systems.

Corollary 3.4.1. (Max-plus-algebraic hybrid automata behaviourally include max-plus
automata). Given a max-plus automaton A , there exists a max-plus-algebraic hybrid
automaton H (as in (3.28)) that captures its input-output behaviour, i.e. A ≼B H .

Proof. The proof follows from Lemma 3.4.1, Theorem 3.4.1, and Theorem 3.4.3. ■
Example 3.4.1. Consider an open-loop SMPL system (3.1) with three states n = 3, two
modes nL = 2, discrete input w ∈Σ= {σ1,σ2} with σ1 = a and σ2 = b. The mode dynamics
are given for l ∈ nL:

f (l , x, ·) =µ⊤(σl )⊗x, x(0) =α
h(l , x, ·) =β⊤⊗x,

(3.34)

where α, µ(·) and β are given in (3.27). The underlying one-step state-transition graphs
for the mode dynamics, Γ(l )

F for l ∈ nL, are depicted in Fig. 3.5.
The switching function can be obtained from (3.33) for m = 2. Then we have,

i)
(
α⊤⊗µ(σ2)

)⊤ = E3×1, and ii)
(
µ(σ1)

)⊗2 ̸= (
µ(σ1)

)⊗3 = E3×1. This also means that for
discrete inputs with w(1) =σ2 and/or w(k) = w(k +1) = w(k +2) =σ1 for k ∈N, we have
φ(·, ·, w) =;.

It can now be observed that the described SMPL system is behaviourally equivalent to
the max-plus automaton in Example 3.2.1 following the arguments in Proposition 3.4.3.
The max-plus-algebraic hybrid automaton bisimilar to the provided SMPL system is de-
picted in Fig. 3.4.
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So far we have established that SMPL systems and, by corollary, max-plus-algebraic
hybrid automata can encode the input-output characteristics of max-plus automata. We
now show that the behaviourally equivalent max-plus-algebraic hybrid automaton also
inherits the state transition (logical) structure of the max-plus automaton. To this end,
we consider the finite-state discrete abstractions of the two systems (as in (3.31) and
(3.26) respectively) that naturally embed their state transition structure. Then, we es-
tablish a relationship between a max-plus-algebraic hybrid automaton and max-plus
automaton.

Theorem 3.4.4. Given a max-plus automaton A with its finite-state discrete abstraction
denoted as AT (as in (3.26)), there exists a max-plus-algebraic hybrid automaton H with
a finite-state discrete abstraction HOAT (as in Definition 3.3.1) such that HOAT simulates
AT, i.e. AT ≼S HOAT.

Proof. Consider a max-plus automaton A = (S,Σ,α,µ,β) (as in (3.23)) with state
s ∈ D1 = S = {s1, s2, . . . , sn}, input ω ∈ Σ = {σ1,σ2, . . . ,σm}, and output ya ∈ Rε. We
recall that the finite-state discrete abstraction of the max-plus automaton is a tuple
AT = (S,Σ,δA ,S0,Sf) with i) a partial transition function δA : S × Σ → 2S such that
s′ ∈ δA (s,σ) if [µ(σ)]ss′ ̸= ε, ii) a set of initial states S0 such that s ∈ S0 if α(s) ̸= ε, and
iii) a set of final states Sf such that s′ ∈ Sf if β(s′) ̸= ε. Moreover, �AT�L = �A �L.

We now consider the SMPL system SOA that behaviourally includes the max-plus
automaton A as proposed in Theorem 3.4.3. The max-plus-algebraic hybrid automaton
HOA such that SOA ≃S HOA can be derived using the procedure described in Theorem
3.4.1. Then HOA consists of i) states (q, x) ∈ Q×X = m ×Rn

ε , continuous input U = ;,
discrete input w ∈ Σ, and (q, x(0)) ∈ Init for all q ∈Q, ii) discrete state characteristics for
x ∈ Rn

ε and for all q ∈ Q as: F (q, x, ·) = A(q) ⊗ x, H(q, x, ·) = C ⊗ x, and Inv(q) = {(x, w) |
φ(·, x, w) ̸= ;} (as in (3.33)). The edge characteristics are defined for all (q, q ′) ∈ E ⊆ nL ×
nL as: G = {(x, w) | φ(q, x, w) = q ′}, and R(·) := Rid(·). There are no constraints on the

admissible inputs, i.e. Λ(q, x) = 2I for all (q, x) ∈X.
Now we derive the finite-state discrete abstraction of the max-plus-algebraic hybrid

automaton HOA following the procedure described in Section 3.3.2. Recall that the state
variables are defined as Xvar = {x1,x2, . . . ,xn}. The transition graphs (Γq

F and Γq
H) for the

continuous-variable one-step dynamics (as in Definition 3.3.2) reduce to: for all (i , j ) ∈
n2 and q ∈Q, we have

(xi ,x j ) ∈ Γ(q)
F ⇔ [A(q)] j i ̸= ε,

(x j ,x j ) ∈ Γ(q)
H ⇔ [C ] j ̸= ε.

(3.35)

The finite-state discrete abstraction of the max-plus-algebraic hybrid automaton can
then be formulated as:

HOAT = (Q,Σ,δH ,Q0,Q f), (3.36)

where Q = Q× Xvar; (q,xi ) ∈ Q0 if xi (0) ̸= ε and (q,x j ) ∈ Q f if [C ] j ̸= ε for all q ∈ Q; the

partial transition function δH : Q ×Σ→ 2Q is defined such that for η = (q, q ′) ∈ E and
σ ∈Σ, we have that (q ′,x j ) ∈ δH ((q,xi ),σ) if [A(q ′)] j i ̸= ε.

It remains to show that there exists a simulation relation from AT to HOAT that sat-
isfies the properties stated in Definition 3.4.5. The two systems share the same input
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Figure 3.6: A pictorial representation of a production line, adapted from [17, §9.6.1], [203, §7.2]. The nodes
q1-q3 denote machines and are associated with durations τ1-τ3 representing processing/recycling times. The
two modes of operation can be distinguished by differently coloured arcs: i) Mode l1 as red dotted line (· · · ),
and ii) Mode l2 with blue dashed line (- - -).

alphabet Σ. Moreover, |Σ| = |Q| and |S| = |Xvar|. Furthermore, A(l ) = µ⊤(σl ) for l ∈ m,
and [C ] j =β(s j ) and x j (0) =α(s j ) for j ∈ n (as specified in Theorem 3.4.3).

Recall that words on the input alphabet, ωk = γ1γ2 · · ·γk ∈ Σ∗, can be identified as
a map ω : N→ Σ. Here, N represents the event counter axis. Also, the partial transition
functions, δA and δH , can be perceived as state maps (as in Definition 3.4.4).

The simulation relation is defined as a map Ψ :N→ S ×Q that satisfies the following
properties for all k ∈ N: i) for every (si , (q,x j )) ∈Ψ(k) we have i = j , ii) for every σl ∈ Σ
and (si , (q,xi )) ∈Ψ(k), we have that for every state s j ∈ {st ∈ δA (si ,σl ) | [µ(σl )]si st ̸= ε},
there exists (q ′,x j ) ∈ {(q ′, xt ) ∈ δH ((q,xi ),σl ) | [A(l )]t i ̸= ε} such that (s j , (q ′,x j )) ∈Ψ(k),

and iii) for every s ∈ S0 and (q,x) ∈ Q0, we have (s, (q,x)) ∈Ψ(0). Note that the provided
simulation relation is symmetric.

Therefore, for a given word ωk ∈ Σ∗ there are equivalent trajectories allowed by AT

and HOAT. Finally, for every state s ∈ {s j ∈ Sf | β(s j ) ̸= ε} there exists (q,x) ∈ {(q,x j ) ∈Q f |
[C ] j ̸= ε} such that (s, (q,x)) ∈Ψ(k), k ∈N. Therefore, the final states for the acceptance
of the word ωk ∈Σ∗ are equivalent in the two models.

Hence, we have AT ≃S HOAT. ■
For a max-plus-algebraic hybrid automaton (3.28) with max-plus linear mode dy-

namics, the finite-state discrete abstraction in (3.32) captures exactly the language of the
underlying discrete-event system. The results of the preceding theorem also imply, using
Lemma 3.4.1, that the two finite-state discrete abstractions AT and HOAT and generate
the same language, �AT�L = �HOAT�L.

3.5. ILLUSTRATION

In this subsection, we consider the modelling of a production line, as depicted in Fig.
4.3, in the max-plus-algebraic hybrid automata framework.

The network consists of nodes q1, q2, and q3 where activities are performed with
processing times τ1,τ2,τ3 ∈N, respectively. The buffers between each pair of nodes have
zero holding times and are all assumed to have a single product initially. The buffer
before q3 can store at most two incoming products. The other buffers are constrained to
hold at most one product at a time. The node q1 transfers product simultaneously to the
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buffers before q2 and q3. The earliest product8 arriving at q3 is processed first.
The product exits node q3 and then a new cycle is started. This is modelled as a

feedback-loop from node q3 to node q1. In addition, we introduce a second mode of
operation where the product from node q3 is routed to node q2 for reprocessing. This is
distinguished by differently coloured arcs in Fig 4.3.

The state xi (k) ∈Rε, for i ∈ {1,2,3} and k ∈N, denotes the time when node qi finishes
an activity for the k-th time. The convention is xi (k) = +∞ if no activity is performed
at qi for the k-th time. It is assumed that all buffers contain a product initially. The
dynamics of the production line can be expressed algebraically (as in (3.1)) as follows for
mode ℓ(·) = l1:

x1(k +1) = max(x1(k)+τ1, x2(k), x3(k)+τ3)

x2(k +1) = max(x1(k)+τ1, x2(k)+τ2)

x3(k +1) = max(x1(k)+τ1, x2(k)+τ2, x3(k)+2τ3,

min(x1(k)+τ1 +τ3, x2(k)+τ2 +τ3)).

(3.37)

For the system dynamics in mode ℓ(·) = l2, we have:

x1(k +1) = max(x1(k)+τ1, x2(k))

x2(k +1) = max(x1(k)+τ1, x2(k)+τ2, x3(k)+τ3) ,
(3.38)

and the evolution of x3 follows the same equation as of mode l1. The initial state and
output matrices (y =C ⊗x) are chosen as follows:

x(0) = (
0 0 ε

)⊤
, C = (

ε ε 0
)

. (3.39)

The dynamics can be represented in the min-max-plus conjunctive normal form (3.29),
for L = 2 and M = 1, by replacing the expression of x3(·) in (3.37) with

x3(k +1) = min{max(x1(k)+τ1 +τ3, x2(k)+τ2,

x3(k)+2τ3),

max(x1(k)+τ1, x2(k)+τ2 +τ3,

x3(k)+2τ3)}.

(3.40)

There are no continuous-valued inputs to the system. The discrete input w(·) ∈ V ≜
{l1, l2} determines the mode as follows (see (3.1)):

φ(·, x, w) =
{

i ∈ {1,2}
∣∣∣ min

j∈L
A(i , j ) ⊗x ∈Rn

ε \ {ε,⊤}n , w = li

}
. (3.41)

The discrete-event system of the production network under consideration can there-
fore be expressed as a max-plus-algebraic hybrid automaton as depicted in Fig. 3.4 with
continuous-valued dynamics of the form (3.29).

As the system dynamics (3.37)-(3.38) satisfy Assumption 3.3.1, a finite-state discrete
abstraction of the max-plus-algebraic hybrid automaton can be obtained using Proposi-
tion 3.3.1. The necessity of the restriction of the state spaceX is reflected in the definition

8The conflict at the buffer before q3 is resolved here using the so-called first-in first-out policy.
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Figure 3.7: The one-step state transition graphs associated to the production network in Fig. 4.3. The finite
automaton can be obtained by duplication of the nodes q1−q3 for the two modes l1 and l2. The black arcs are
common to both the modes. The blue arc (—) belongs to mode l2 and the red arcs (—) belong to mode l1. The
input and output arrows symbolise the initial and final states of the finite automaton.

of the switching function φ(·) in (3.41). The resulting one-step state transition graphs
of the two modes are depicted in Fig. 3.7. Moreover, the reset relation does not entail
transitions in continuous-valued state. Then the language of the max-plus-algebraic hy-
brid automaton model of the production network is contained in the language of the
obtained finite automaton. This completes the illustration.

3.6. CONCLUSIONS
In this chapter, we have proposed a unifying max-plus-algebraic hybrid automata frame-
work for discrete-event systems in max-plus algebra. In this context, we have identified
the hybrid phenomena due to the interaction of continuous-valued max-plus dynam-
ics and discrete-valued switching dynamics in switching max-plus linear and max-plus
automata models. We have formally established the relationship between these two
models and their relationships with the proposed max-plus-algebraic hybrid automata
framework utilising the notions of behavioural equivalence and bisimilarity. This is
achieved in a behavioural framework where the models are seen as a collection of input-
state-output trajectories. As a max-plus-algebraic hybrid automaton and a max-plus
automaton are defined on different state space, we have also studied their relationship
by embedding them into their respective finite-state discrete abstractions. The subclass
of max-plus-algebraic hybrid automata that can be simulated by max-plus automata re-
mains to be investigated.





4
STABILITY OF

MAX-PLUS-ALGEBRAIC HYBRID

AUTOMATA

In this chapter, we present a framework to study stability problems for discrete-event
systems modelled as switching max-plus linear (SMPL) systems. Only autonomous
notions of stability pertaining to the continuous-valued portion of the dynamics are
treated. The presented theory forms the basis for studying non-autonomous stability
notions and stability of SMPL systems under constrained switching.

4.1. INTRODUCTION
Stability analyses play an important role in the operation and control of dynamical sys-
tems. The most important breakthroughs in such analyses rely on finding verifiable con-
ditions to establish boundedness around certain equilibria without the need of comput-
ing solutions explicitly [155].

This chapter focuses on the autonomous stability notions of SMPL systems. In par-
ticular, we develop novel mathematical principles and tools to ensure the boundedness
of the continuous-valued part of SMPL systems. We achieve this analogously to “classi-
cal” Lyapunov stability analysis approaches while utilising tools from max-plus algebra
and mixed-integer programming. To this end, we adopt the conventional stability anal-
ysis roadmap for studying switching systems, i.e. we assume that either the switching
sequence is arbitrary [150].

4.1.1. RELATED WORK
The stability analysis of a dynamical system is inherently connected to the existence and
investigation of its set of equilibria. The study of equilibria (stationary regimes) of a
discrete-event system in the max-plus algebra is based on the properties of its under-
lying timed-event graph [17, 63, 89]. The set of equilibria of interest are linked by the

69
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max-plus eigenvalue problem for the max-plus linear system. This existence problem is
treated qualitatively i.e., the system dynamics is studied as the event counter approaches
infinity and is associated to the unique asymptotic growth rate of the states. The afore-
mentioned analysis tools can be extended to max-min-plus linear systems, if the un-
derlying event graph is fixed [87, 109, 203], owing to the the additive homogeneity and
monotonicity of the dynamics. For a suitable comparison with conventional time-driven
systems, the interested reader can refer to [15]. The authors of [15] study the stability of
an additively homogeneous monotone system. The boundedness of all system trajecto-
ries is associated to the qualitative existence and uniqueness of a global equilibrium for
a suitable projection of the system dynamics.

The eigenvalue-based analysis of stability in conventional time-driven systems is
based on the variational principle, i.e. characterise the most critical switching sequence
and prove that it is stabilising [166]. This approach is not suitable for stability analysis
of SMPL systems partly due to the high complexity of calculating the spectral charac-
teristics [33]. Moreover, it serves only one aspect of stability analysis concerning perfor-
mance evaluation in terms of throughput of the system [85].

The existence of stationary regimes of a max-plus matrix semigroup1 (set of matri-
ces corresponding to the system) can be studied under restrictive assumptions on the
structure of the underlying directed graphs of the constituent matrices [17, 119], and/or
the contractiveness of the system dynamics [129, 164, 170]: i) the matrix semigroup has
a fixed ε-structure2 but its generators form a stationary and ergodic sequence on some
probability space [17, 119], ii) the matrix semigroup consists of independent and identi-
cally distributed matrices that has a unique irreducible element that occurs with a pos-
itive probability [164], iii) existence of at least one idempotent3 element in the semi-
group that occurs with positive probability or the constituent matrices commute pair-
wise [129, 170]. The class of SMPL systems is, however, bigger than the ones described
in aforementioned references [17, 119, 129, 164, 170]. A generic semigroup of matrices
in the max-plus algebra can have multiple stationary regimes that correspond to dif-
ferent asymptotic growth rates of the states, which in turn depend on the variable that
orchestrates switching [85]. Therefore, these sufficient conditions for boundedness are
restrictive for the purpose of closed-loop analysis and practical applications.

Another stability analysis approach involves proving asymptotic stability in the large
[182], i.e. proving that closed-loop system stability is achieved in a finite number of steps
for all possible initial states and event trajectories [216, Theorem 1]. Such an ad hoc
analysis is performed a posteriori and has limited application in performance evaluation
for a general class of timed discrete-event systems. [112, 216].

4.1.2. STATEMENT OF CONTRIBUTION

In what follows, the novel contributions of this chapter are stated.
The first set of contributions involve systematically unifying the notions of internal

1A semigroup consists of a set together with an associative binary operation without requiring the existence of
an identity element or inverses

2The ε-structure in the max-plus description pertains to the structure of the underlying timed-event graph.
3Here, an idempotent element refers to a max-plus matrix with a (max-plus) rank 1 such that it maps the entire

state space to a unique element in the max-plus Hilbert projective space.



4.1. INTRODUCTION

C
h

ap
te

r
4

71

stability from the Lyapunov framework with that of discrete-event systems in the max-
plus algebra:

(A) Stability notions: We first categorise the notions based on desired types of the
boundedness of the states, i.e. pertaining either to the same event counter (max-plus
bounded-buffer stability) or consecutive ones (max-plus Lipschitz stability). These no-
tions are further classified based on ultimate boundedness (Definitions 4.2.3 (1) and
4.2.4 (1)) and local asymptotic stability (Definitions 4.2.3 (2) and 4.2.4 (2)). The max-
plus bounded-buffer stability is expressed using the max-plus Hilbert projective norm
(see (2.32)). The max-plus Lipschitz stability is studied as the growth rate of the state
trajectory.

The next set of contributions are bundled under the title stability analysis. We provide
necessary and sufficient conditions on the proposed notions of stability under arbitrary
switching (in Section 4.3):

(B) Ultimate boundedness: Inspired by polyhedral Lyapunov functions, we propose
max-plus gauge functions (Definition 4.3.4) for analysing ultimate boundedness under
max-plus bounded-buffer stability (see Theorem 4.3.1). We also show that max-plus
bounded-buffer stability implies max-plus Lipschitz stability for the case of ultimate
boundedness (see Proposition 4.3.1).

(C) Asymptotic stability: We provide necessary and sufficient conditions for asymp-
totic max-plus bounded-buffer stability (see Theorem 4.3.3). To this end, we intro-
duce a novel class of max-plus Lyapunov functions (Definition 4.3.6). We show that the
dynamics can be decomposed injectively using additively homogeneous, monotone
functions (see Lemma 4.3.4). Then asymptotic max-plus Lipschitz stability becomes
equivalent to ultimate boundedness under max-plus bounded-buffer stability along
with the existence of an asymptotic growth rate (see Theorem 4.3.2).

(D) Convergence properties: We develop suitable max-plus versions of the Krasovskii-
LaSalle invariance principle to study the convergence properties of SMPL systems (see
Theorem 4.3.4 and 4.3.5). To this end, we introduceω-limit sets in the max-plus Hilbert
projective space (Definition 4.3.7) and a weaker version of max-plus Lyapunov func-
tions (Definition 4.3.9). This also allows us to extend the results of [111, Proposition
4.1] anto study attractivity of max-plus eigenspaces under SMPL system dynamics (see
Theorem 4.3.6).

Finally, we apply the proposed stability theory to open-loop SMPL systems with linear
modes:

(E) Boundedness of max-plus matrix semigroups4: We consider the application of the-
oretical results via various numerical examples. In doing so, we provide a constructive
necessary and sufficient condition for a given closed max-plus subspace to be posi-
tively invariant for the system dynamics (see Theorem 4.4.1). The condition can be
checked efficiently using existing algorithms.

4A semigroup consists of a set together with an associative binary operation without requiring the existence of
an identity element or inverses.
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(F) Algorithmic perspective: We provide a mixed-integer linear programming formu-
lation for construction of a positively invariant set common to a given max-plus ma-
trix semigroup (see (5.27a)). We also formulate a condition for existence of a common
positively invariant set as a non-homogeneous system of two-sided max-plus linear
equations (see Theorem 4.4.2). Finally, we propose a mixed-integer linear program-
ming formulation to determine the region of attraction for asymptotic stability using a
max-plus Lyapunov function (see Section 4.4.5).

4.1.3. ORGANISATION OF THE CHAPTER

The chapter is organised as follows. Section 4.2 recalls the modelling framework and
introduces the problem statement. Section 4.2 also presents the associated notions of
stability along with positive invariance. The theorems and tools for stability analysis are
then introduced under arbitrary switching in Section 4.3. Section 4.4 presents the algo-
rithmic aspects for the study of properties of positively invariant sets in the presented
stability framework. The technical proofs of the results of the chapter are collected in
Section 4.5. The chapter ends with concluding remarks in Section 4.6.

4.2. STABILITY CONCEPTS
This section first presents the model of discrete-event systems in the max-plus-algebraic
hybrid automata framework. We formulate the stability analysis problem for discrete-
event systems in max-plus algebra. Then we recapitulate the autonomous notions of
stability for discrete-event systems. Finally, we formulate these notions in a max-plus-
algebraic framework. The importance of distinctions among the different notions is es-
tablished. We also briefly recall the notion of invariant sets for such systems from [111].
These notions form the basis for further stability analysis.

4.2.1. MODELLING ASSUMPTIONS

Max-plus-algebraic hybrid automata [110] represent a powerful modelling framework
for discrete-event systems analogously to the conventional hybrid automata [160]. In
this chapter, we study the stability of the continuous-valued portion of the system dy-
namics of a max-plus-algebraic hybrid system.

To every state (event), say i , a dater function is associated, xi (k), and it represents the
time of the k-th occurrence of the state event i , relative to some arbitrarily chosen origin
of time. The dynamics for the continuous state x(k) ∈Rn

ε at event step k ∈N is written as
a prototypical switching system in the multi-modal form:

x(k) = f (l , x(k −1)), l ∈ nL. (4.1)

A (possibly infinite) switching sequence σk = (lk )k∈N along with an initial state x(0) and
(4.1), completely describes the trajectory of the discrete-event system. We sometimes
denote this trajectory as xσ(k) to emphasise the dependence on the switching sequence
σk .

A discrete-event system description (4.1) is said to be structurally finite if the function
f maps Rn to Rn for each mode l ∈ nL such that the states do not become ε for finite
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initial states. The following assumptions on the function f :N×Rn
ε →Rn

ε hold for the rest
of the chapter.

Assumption 4.2.1. The discrete-event system described by (4.1) is structurally finite. ♢

Assumption 4.2.2. The function f (l , x) is continuous and additively homogeneous in the
state x ∈Rn for every l ∈ nL. ♢

The latter assumption ensures that any two solutions (x2 = λ+ x1, λ ∈ R) that are
equivalent in the sense of having identical dynamics ( f (l , x2) = λ+ f (l , x1) for a given
l ∈ nL) are also indistinguishable when measured in the max-plus Hilbert projective
norm (2.32). If the elements of the state x are interpreted as the times of occurrences
of events then additive homogeneity can be understood as time-invariance of the sys-
tem dynamics. If the function f (l , x) is max-plus linear in x ∈Rn

ε for every l ∈ nL, we refer
to the restricted class of open-loop SMPL systems.

4.2.2. PROBLEM STATEMENT
The buffer level in discrete-event systems described in max-plus algebra is defined as the
time delay between the occurrences of different events in either the same event cycle (k)
or the consecutive ones. The notion of stability is associated with the boundedness of
these buffer levels [181]. Asymptotic stability then implies that the buffer levels, at an
average, take constant values. This is only possible, non-trivially, when the asymptotic
growth rates of all the states become equal to each other.

The study of (stable) asymptotic behaviour of trajectories of a max-plus linear sys-
tem (nL = 1) is intimately connected to the max-plus eigenvalue problem (2.11). The
(unique) growth rate is obtained using the max-plus eigenvalue and represents the in-
verse of throughput of the system. The set of stationary regimes for buffer levels in
the same event cycle can be obtained from the associated (finite) max-plus eigenvec-
tors. The extension of this approach to study stationary behaviour of open-loop SMPL
systems (or inhomogeneous products of max-plus matrices) is known to be difficult
[33, 85]. We therefore follow the framework for studying stability problems in conven-
tional switching systems [150].

In this chapter, we consider the following problem:

• Problem A. Formulate conditions for stability, in some suitable sense, of system
(4.1) for arbitrary switching sequences.

To this end, we first present what we mean by “stability in some suitable sense”. Then we
present constructive methods to analyse and compare the various stability concepts.

4.2.3. INVARIANT SETS
Almost all notions of stability addressed in this chapter concern with qualitative char-
acterisation of invariant sets5. In the following subsection, we first recall the notions of
invariant sets of a dynamical system. Then we subsequently present various notions of
stability.

5The notions of invariance and attractivity are taken as it is from conventional systems theory as presented in
Section 2.3.
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Without a loss of generality, we assume that the invariant sets considered henceforth
are also invariant with respect to max-plus translation by the vector 1n :

x ∈K ⇔ x +µ⊗1n ∈K , ∀µ ∈R. (4.2)

The preceding property is not restrictive as the dynamics f (·, x) is additively homoge-
neous in x under Assumption 4.2.2.

Consider again the discrete-event system dynamics (4.1). We introduce some con-
cepts of invariant sets K ⊆Rn and their attractivity to characterise the behaviour of the
system trajectories.

Definition 4.2.1 (Positive invariance, [47]). A set K ⊆ Rn is positively invariant for the
system dynamics (4.1) if x ∈ K implies f (l , x) ∈ K for all l ∈ nL. If the sets K1 and K2

are positively invariant then so are K1 ∩K2 and K1 ∪K2. □
Note that for the general case of the discrete-event system (4.1), we have K = Rn

under Assumption 4.2.1. For other cases, a positively invariant set is used to characterise
attractors (stationary regimes) amounting to certain desirable behaviours of a discrete-
event system. The most important case of an invariant set is an equilibrium, K = xe ⊂
Rn/∼: there exist xe, x ′

e ∈ xe such that f (l , xe) = x ′
e for all l ∈ nL.

Finally, we recall the notion of attractivity of a set with respect to the system dynam-
ics.

Definition 4.2.2 (Attractivity, [47]). A non-empty closed set K ⊆ Rn is attractive for the
state trajectories {x(k)}k∈N of (4.1) if there exists an open neighbourhood U ⊃ K such
that for all x(0) ∈ U and for all neighbourhoods V ⊃ K there exists a k0 ∈ N such that
x(k) ∈ V for all k ≥ k0. □

4.2.4. AUTONOMOUS NOTIONS OF STABILITY

In this subsection, we recall the following internal notions of stability6 for a general
discrete-event system formulated in max-plus algebra [111, 164].

We recall that Bτ(x) denotes an open ball of radius τ > 0 with respect to the max-
plus Hilbert projective norm centred at the ray x = {z ∈Rn | ∃µ ∈R, x =µ+z}. The set Bτ

denotes Bτ(1n).
The first set of notions deals with stability associated to boundedness of buffer levels

in the same event cycle.

Definition 4.2.3. (Max-plus bounded-buffer stability). A discrete-event system (4.1) is
said to be

1. uniformly max-plus bounded-buffer stable if there exists a constant δ > 0 and for
every µ> 0 there exists a constant T = T (µ,δ) > 0 such that if x(0) ∈ Bµ, we have x(k) ∈
Bδ for all k ≥ T (µ,δ) ;

2. uniformly locally asymptotically max-plus bounded-buffer stable with respect to a
closed set K ⊆ Bτ, for some τ > 0, if i) for every δ > 0, there is µ = µ(δ) > 0 such that if

6Please refer to Section 2.3 for stability theory for conventional time-driven systems defined on a suitable
normed vector space.
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x(0) ∈ Bµ(K ), we have x(k) ∈ Bδ(K ) for all k ≥ 0, and ii) there exists a constant µ > 0
and for every η> 0, there exists a scalar T = T (η) > 0 such that if x(0) ∈Bµ(K ), we have
x(k) ∈Bη(K ) for all k ≥ T (η). □

The notion of max-plus bounded-buffer stability is analogous to ultimate bounded-
ness in conventional time-driven systems (see [135, Definition 4.6]). The asymptotic
counterpart, on the other hand, is understood in the sense of Lyapunov (see [122]).
Loosely speaking, it is required that a trajectory starting close to a closed set K should
remain close to the set K . Note that when K = {xe} with xe ∈ Rn/∼, the asymptotic
notion of max-plus bounded-buffer stability requires the existence of a common equi-
librium point of the system dynamics. This results in asymptotic trajectories of the form
x(k) =µ(k)⊗x(k−1) with a (possibly) event-varying growth rateµ(k) ∈R for a sufficiently
large k ∈N.

For a max-plus linear system, the upper bound7 on ∥x(k)∥P can be obtained by
analysing the sub-eigencone8 of the system matrix A [17, Theorem 3.104]. The sub-
eigencone is non-empty if there exist finite eigenvectors of the system matrix [66, Lemma
23-2].

The second notion deals with the boundedness of buffer levels associated to time
delays in consecutive event cycles of a discrete-event system (See Fig. 4.1b).

Definition 4.2.4. (Max-plus Lipschitz stability). A discrete-event system (4.1) is said to
be

1. uniformly max-plus Lipschitz stable if for every µ > 0 there exists a scalar δ > 0 and
T (µ,δ) ∈N such that if x(0) ∈Bµ, we have x(k) ∈Bδ(x(k −1)) for all k ≥ T (µ,δ) ;

2. uniformly locally asymptotically max-plus Lipschitz stable with a basin of attraction
Bη, for some η > 0, if the system is stable (as in 1) and there exist scalars ρ ∈ R and
T = T (η) > 0 such that if x(0) ∈Bη,

∥∥x(k)−ρ ·k
∥∥∞ is bounded for all k ≥ T (η). □

The asymptotic notion of max-plus Lipschitz stability suggests that the average
growth rate of the state trajectories, of the discrete-event system, become constant. Note
that the definition requires that this asymptotic growth rate ρ ∈ R exist but no require-
ment is placed on uniqueness over all system trajectories. As we will prove later (in
Section 4.3.1), asymptotic max-plus Lipschitz stability requires that the system be max-
plus bounded-buffer stable. The converse is not necessarily true. An interesting spe-
cial case is when there exists a period c ∈ N such that the trajectories are of the form

x(k) = ρ⊗c ⊗x(k − c) for sufficiently large k ∈N.
A different way to study stability and attraction, that does not require a complete

knowledge of the attractor, is to compare (adjacent) trajectories with respect to a certain
metric. These type of notions are classified under orbital stability [135, Definition 8.2].

Definition 4.2.5. (Max-plus incremental stability). A discrete-event system (4.1) evolv-
ing on a positively invariant set K ⊆Rn for a given switching sequence σk = {l (k)}k∈N is
said to be

7Please refer to Section 2.2.3 for the definition of various norms and metrics used in this dissertation.
8The sub-eigencone of a matrix A is defined as eig(A,λ(A)) = {z ∈Rn | A⊗ z ≤λ(A)⊗ z}.
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Figure 4.1: Notions of stability: (a) asymptotic max-plus bounded-buffer stability in a set K (green dashed
line - -) and (b) max-plus Lipschitz stability. The asymptotic stability for the first case is understood in the
Lyapunov sense. In the latter case, the dashed (- -) lines represent the global bounds on the growth rates
trajectories. Then asymptotic max-plus Lipschitz stability can be inferred from the eventual trajectories x(k).

1. uniformly max-plus incrementally stable in K ⊆ Rn if for every δ > 0, there is a
µ = µ(δ) > 0 such that for any x(1)

σ (0), x(2)
σ (0) ∈ K if x(2)

σ (0) ∈ Bµ(x(1)
σ (0)), we have

x(2)
σ (k) ∈Bδ(x(1)

σ (k)) for all k ≥ 0 ;

2. uniformly asymptotically max-plus incrementally stable in K ⊆ Rn if the system
is stable (as in 1), and for each η> 0, there exists a scalar T = T (η) > 0 such that for
any x(1)

σ (0), x(2)
σ (0) ∈K , we have x(2)

σ (k) ∈Bη(x(1)
σ (k)) for all k ≥ T (η). □

The preceding notion of max-plus incremental stability implies that any two trajec-
tories, corresponding to the same switching sequence σk = (l (k))k∈N, starting close to
each other, remain close to each other in the max-plus Hilbert projective metric. The
asymptotic notion then implies that all trajectories ‘forget’ their initial conditions and
converge to each other again in the max-plus Hilbert projective metric. Note that the
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trajectories of a max-plus incrementally stable system can be unbounded in the max-
plus Hilbert projective norm.

We note that for a max-plus linear system (or, max-min-plus linear system), mono-
tonicity coupled with additive homogeneity ensures non-expansiveness of the dynamics
[109, Proposition 1.1]. This is equivalent to uniform max-plus incremental stability. The
non-expansiveness property implies that with no explicit variation of the dynamics over
events, all trajectories are asymptotically equivalent to each other [109, §4]. In a more
general setting, when the system dynamics (4.1) is varying over the events, the result fails
to hold. Furthermore, the limiting behaviour does not necessarily consist of equilibrium
points but can rather have a more general event-varying nature.

Definition 4.2.6. (Max-plus convergent dynamics). A discrete-event system (4.1) is said
to be uniformly max-plus convergent in a positively invariant set K ⊆ Rn for a given
switching sequence σk = {l (k)}k∈N if the following conditions are satisfied:

1. there exists a unique solution x̃σ(k) of system (4.1) defined in K and bounded in
the max-plus Hilbert projective norm for all k ∈N;

2. the system is uniformly asymptotically max-plus bounded-buffer stable with re-
spect to the solution x̃σ(k): i) for every δ > 0, there is a µ = µ(δ) > 0 such that
if x(0) ∈ Bµ(x̃σ(0)), we have x(k) ∈ Bδ(x̃σ(k)) for all k ≥ 0, and ii) there exists a
constant µ > 0 and for each η > 0, there exists a scalar T = T (η) > 0 such that if
x(0) ∈Bµ(x̃σ(0)), we have x(k) ∈Bη(x̃σ(k)) for all k ≥ T (η). □

The notion of max-plus convergent dynamics requires the existence of a unique and
asymptotically max-plus bounded-buffer stable reference solution, possibly dependent
on the the switching sequence σk . This solution is often referred to as a steady-state so-
lution. Every other solution, in the vicinity, then converges asymptotically to the steady-
state solution. This is not necessarily true for max-plus incremental stability where all
solutions can be unbounded in the max-plus Hilbert projective norm. Moreover, the
convergence of each solution to the steady-state solution does not necessarily imply a
uniform convergence of two solutions to each other. Therefore, the two notions of max-
plus incremental stability and max-plus convergent dynamics are distinct. A similar re-
lationship between incremental stability and convergent dynamics is very well-known
in the literature for conventional time-driven systems [210].

If the matrix describing a max-plus linear system is primitive9, the steady-state solu-
tion is unique in the max-plus Hilbert projective norm [119, §4.3]. Moreover, the conver-
gence to the solution is obtained in finite-step for any finite initial condition.

4.2.5. CONVERGENCE
The notion of max-plus bounded-buffer stability requires finite-step (exponential) con-
vergence to the desired set. This, in particular, is manifested as a turnpike phenomenon:
i) finite transients to periodic behaviour in max-plus linear systems [59], and ii) con-
vergence to a set of stationary regimes for products of max-plus matrices under cer-
tain restrictive assumptions [170, 201]. Algorithms for computation of bounds on the

9A max-plus matrix A ∈Rn×n
ε is said to be primitive if there exists an integer N ∈N such that for t ≥ N , [A⊗t

]i j
is finite for all i , j ∈ n.
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transients of max-plus linear systems (leading to a periodic behaviour) can be found in
[1, 179].

The exponential convergence property is desirable for the purpose of control and
stabilisation. However, the a priori computation of bounds on the rate of convergence
is not always possible and involves detailed graph-theoretical analysis [131, 175]. Sec-
ondly, convergence in the max-plus Lipschitz stability case is studied in an asymptotic
sense. This is because the growth rate (inverse of throughput) is an asymptotic prop-
erty of trajectories of an additively homogeneous and monotone dynamical system [109,
§4]. Moreover, it is sometimes possible to achieve a smaller growth rate by (possibly in-
finitely) increasing the period c ∈N [95, §V.A].

4.3. STABILITY ANALYSIS: PROBLEM A
In this section we derive useful general criteria for stability analysis of max-plus-
algebraic hybrid automata. The exposition is largely based on Lyapunov theory and
its extensions for conventional time-driven systems [135]. We differentiate between the
stability of the discrete-event system (4.1) and that of its individual subsystems corre-
sponding to the different modes of operation. In this section, the notions of stability
are studied under arbitrary switching. It is then necessary that all subsystems are stable
under the respective notion.

4.3.1. ULTIMATE BOUNDEDNESS
We study the max-plus bounded-buffer stability of discrete-event systems (4.1) (as in
Definitions 4.2.3 and 4.2.4) as attractivity and positive invariance of certain sets bounded
in the max-plus Hilbert projective norm (2.21). This is carried out analogously to the
treatment of uniformly ultimate boundedness of conventional time-driven systems10

under uncertainty and parameter variations [29, 82, 151]. The notion of stability and
the ensuing analysis is therefore robust to unknown and possibly event-varying pertur-
bations.

We begin by presenting a Lyapunov function definition outside an open ball Bδ to
analyse max-plus bounded-buffer stability (see Definition 1).

Definition 4.3.1. (Sub-level sets). The sub-level sets generated by a continuous function
Ψ :Rn →R for δ≥ 0. are denoted as

N (Ψ,δ) = {x ∈Rn |Ψ(x) ≤ δ}, □

Definition 4.3.2. (Lyapunov function outside a set). A positive definite continuous func-
tionΨ :Rn →R is a Lyapunov function outside Bδ, δ> 0, for the system (4.1) if

1. there exists ν> 0 such that N (Ψ,ν) ⊆Bδ and for all x ∉N (Ψ,ν) we have

∆Ψ(x) =Ψ( f (l , x))−Ψ(x) ≤−α(∥x∥P+δ′) (4.3)

for some δ′ ≥ 0, a function α of class K and for all l ∈ nL.

10Please refer to Section 2.3.1 for a brief description of stability analysis tools for conventional time-driven
systems.
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2. The set N (Ψ,ν) is positively invariant, so for all x ∈N (Ψ,ν) and for all l ∈ nL, we
have

Ψ( f (l , x)) ≤ ν □

A non-zero value of the scalar δ′ in the preceding definition of a Lyapunov function
indicates that the ray 1n might not be contained in the set N (Ψ,ν). The following result
is immediate.

Theorem 4.3.1. (Ultimate buffer boundedness). A discrete-event system (4.1) is uni-
formly max-plus bounded buffer stable if it admits a Lyapunov function outside Bδ, for a
finite δ> 0, as in Definition 4.3.2.

Proof. The proof follows from [31, Theorem 2.50]. ■
The converse of the preceding theorem can be formulated by requiring, for instance,

asymptotic convergence to the set Bδ and recognising that the max-plus Hilbert projec-
tive norm is a set-induced Lyapunov function, N (∥·∥P,δ) =Bδ (see [101, Theorem 6.5]).
Mathematically, there exist a function β of class K L and a scalar δ > 0 such that for
max-plus bounded-buffer stability under uniform asymptotic convergence, we have

∥x(k)∥P ≤ max(β(∥x(0)∥P,k),δ). (4.4)

Now we propose a general candidate Lyapunov function for the discrete-event system
(4.1) as a max-plus gauge function: i) it evaluates the distance of the trajectory from a
given closed set K ⊆ Rn bounded in the max-plus Hilbert projective norm, and ii) its
max-plus unit ball (or, 0-level set) represents the set K .

To this end, we present the following definitions analogously to the concept of C-
set in set-invariance theory [31]. Again, such a set enforces max-plus bounded buffer
stability (as in Definition 4.2.3).

Definition 4.3.3. (Max-plus C-set). A max-plus C-set is defined as a subset K ⊆ Rn

such that it is a finitely generated max-plus cone11 and convex cone, and bounded in the
max-plus Hilbert projective norm. □

Note that a finitely generated max-plus cone is a convex cone if and only if it is also
a min-plus convex cone [123, Theorem B]. Therefore, a max-plus C-set can be obtained
by taking a min-plus convex closure of a given finitely generated max-plus cone.

We also note that a max-plus C-set does not necessarily contain the ray 1n in its
interior. We now show that a max-plus C-set is generated as max-plus column span11 of
a Kleene star matrix12.

Lemma 4.3.1. (Kleene star generator). Given a max-plus C-set K ⊆ Rn , there exists a
unique irreducible Kleene star matrix K ∈Rn×n

ε such that K = span⊕(K ) = eig(K ,0).

Proof. See Section 4.5. ■
The preceding result also implies that the max-plus weak dimension (see Definition

2.2.19) of a max-plus C-set is at most n. We now define a function associated to a given

11Please refer to Section 2.2.3 for an exposition on max-plus convex geometry.
12Please refer to Lemma 2.2.5 and the discussion thereafter.
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max-plus C-set whose sublevel sets are achieved by scaling the max-plus eigenspace of
the generating Kleene star matrix. To this end, we present a normalisation of a Kleene
star matrix [196, §4].

A Kleene star matrix13 K ∈ Rn×n
ε normalised by a scalar µ ∈ R is denoted as K̃µ and

obtained as follows: [K̃µ]i j = [K ]i j −µ for all i , j ∈ n with i ̸= j , and [K̃µ]i i = 0. Note that
K̃µ is again a Kleene star matrix.

Definition 4.3.4. (Max-plus gauge function). Given a max-plus C-set K ⊆ Rn =
span⊕(K ), its max-plus gauge function is defined as14

ΨK (x) = min
µ≥0

{µ ∈R | x ∈ eig(K̃µ,0)}, ∀x ∈Rn . (4.5)

Here, the minimum is attained since the max-plus eigenspace of a Kleene star matrix is
finitely generated. □

The following properties of a max-plus gauge function can be verified.

Definition 4.3.5. (Max-plus gauge function properties). Given a max-plus C-set K ⊆
Rn , the associated max-plus gauge functionΨK : Rn →R satisfies the following proper-
ties:

a) Max-plus sub-linearity: ΨK (x ⊕ y) ≤ΨK (x)⊕ψ( y), for all x, y ∈Rn ;

b) Scale freeness: ΨK (µ⊗x) =ΨK (x), for all x ∈Rn and µ ∈R;

c) Positive definiteness: ΨK (x) ≥ 0,ΨK (x) = 0 ⇔ x ∈K ;

d) Continuity. □
The max-plus convexity of the sublevel-set of a max-plus gauge function, N (ΨK ,δ)

for a given δ > 0, follows from [66, Theorem 18-9]. As the max-plus C-set K is closed,
the functionΨK (·) is max-plus convex.

Lemma 4.3.2. (Closed-form expression of a max-plus gauge function). A max-plus
gauge function (4.5), for a given max-plus C-set K ⊆ Rn and a vector x ∈ Rn , can be ex-
pressed as15

ΨK (x) = x∗⊗K ⊗x, (4.6)

where K ∈ Rn×n
ε is the generating Kleene star matrix. The max-plus gauge function pro-

vides the minimum max-plus Hilbert projective distance between x and K .

Proof. See Section 4.5. ■
The smallest max-plus Hilbert ball Bδ enclosing the set span⊕(K ), for a given Kleene

star matrix K ∈ Rn×n
ε , can be obtained using existing algorithms [68]. This provides a

global ultimate upper bound on the buffer-level of the discrete-event system via Theo-
rem 4.3.1.
13Note that for a Kleene star matrix [K ]i i = 0 for all i ∈ n.
14In conventional algebra, a gauge function or Minkowski function for a convex and compact set K ⊆ Rn is

defined asΨK (x) = inf{µ≥ 0 | x ∈µK }.
15Recall that x∗ = (−x)⊺ for x ∈Rn .
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Figure 4.2: Max-plus C-set K as defined in (4.8) (in green dash-dotted line −·−) and its level-set K̃µ, for

µ= 10, (in red dash-dotted line −·−) projected on the hyperplane {x ∈R3 | x3 = 0}. Sample trajectories (in blue
dashed line −−) of the SMPL system defined by matrices in Example 4.3.1 are also shown. The level-sets of
(symmetric) max-plus Hilbert balls centred at 1n (in mustard −−) represent practical bounds on the buffer-
levels.

Example 4.3.1. Consider a bimodal open-loop switching max-plus linear system defined
by the following matrices:

A(1) =
4 2 4
ε 3 2
1 4 1

 , A(2) =
5 ε 5

4 3 2
5 1 5

 . (4.7)

We consider a positively invariant max-plus C-set K = span⊕(K ), where

K =
 0 0 0
−5 0 −4
−3 0 0

 (4.8)

is computed as in Appendix 4.4.4. Consider now the associated max-plus set-induced Lya-
punov function V (x) = x∗⊗K ⊗x. The analysis on attractivity (as in Appendix 4.4.5) of the
max-plus C-set shows that max-plus set-induced Lyapunov function, is non-decreasing
for all x ∈ Rn

ε \ K (check for instance x = (13 −2 0)⊺). However, the function V (·)
is strictly decreasing in two steps. The latter analysis is performed on A = {A(1), A(2)},

A ⊗2 = {A(1)⊗2
, A(2)⊗2

, A(1) ⊗ A(2), A(2) ⊗ A(1)}.
The max-plus C-set and sample trajectories are plotted in Figure 4.2.
Lastly, the smallest (symmetric) max-plus Hilbert ball centred at1n containing K is of

radius δ= 5. This gives the ultimate bound on the buffer-levels of the discrete-event system
defined by the open-loop switching max-plus linear system defined by x(k) = A(l (k))⊗x(k−
1) where l (k) ∈ {1,2} for k ∈N. In particular, for every µ> 0, there exists a T = T (µ,5) such
that ∥x(k)∥P ≤ 5 for k ≥ T if ∥x(0)∥P ≤µ.
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Figure 4.3: Trajectory of the open-loop switching max-plus linear system defined in Example 4.3.2 under pe-
riodic switching σ = 1,2,1,2,1, . . . . Note that ∥x(k)∥P and maxi (xi (k)− xi (k −1)) diverge along the event step
k ∈N.

Remark. A semigroup of commuting matrices16 A in max-plus algebra leaving a closed
subspace K ⊆Rn invariant share a common max-plus eigenvector [200, Theorem 2.1].

The rest of the subsection is devoted to the analysis of max-plus Lipschitz stability of
discrete-event systems as boundedness of the growth rate of trajectories.

Proposition 4.3.1. (Uniform Lipschitz stability ultimate bounds). A uniformly max-plus
bounded buffer stable discrete-event system (4.1) is also uniformly max-plus Lipschitz sta-
ble.

Proof. See Section 4.5. ■
The converse of the preceding proposition does not however hold: A uniformly

max-plus Lipschitz stable discrete-event system is not necessarily uniformly max-plus
bounded-buffer stable. We also note that uniform max-plus Lipschitz stability of a
discrete-event system can be lost even if the subsystems are max-plus bounded-buffer
stable.

Example 4.3.2. Consider a bimodal open-loop switching max-plus linear system com-
posed of the following matrices:

A(1) =
(
ε 2
5 0

)
, A(2) =

(
0 5
2 ε

)
. (4.9)

The subsystems are uniformly max-plus bounded-buffer stable. The max-plus eigenspaces
are spanned by the vectors (0 1.5)⊺ and (1.5 0)⊺, respectively. However, a periodic switch-
ing between the two subsystems leads to instability with respect to bounded-buffers and
growth rates. A sample trajectory is portrayed in Fig. 4.3.

16A matrix semigroup A is commutative if A⊗B = B ⊗ A for all A,B ∈A .
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Hence in the subsequent sections, we often assume that the system is uniformly
max-plus Lipschitz stable. Note that this can be achieved on a restricted domain D ⊆Rn

by specifying bounds α,β ∈R, with β≥α, on the one-step growth rate of the system:

D
β
α = {x ∈Rn | x ∈ ⋂

l∈nL

Sβα( f (l , ·))}, (4.10)

where the slice spaces Sβα( f (l , ·)) are defined in (2.34).
We now present a qualitative characterisation of max-plus bounded-buffer stability

that allows a change of metrics17 and further analysis of asymptotic max-plus Lipschitz
stability of a discrete-event system.

Lemma 4.3.3. (Change of norms). A discrete-event system (4.1) is max-plus bounded-
buffer stable if and only if there exists a function γ : N×Rn → R such that the quantity∥∥x(k)−γ(k, x(0))⊗1n

∥∥∞ is bounded as k →∞.

Proof. See Section 4.5. ■
We remark that if the dynamics in (4.1) is such that nL = 1 and the function f is

monotone and additively homogeneous in the state x then the existence of a function
γ(k, ·) = λ( f ) ·k (in Lemma 4.3.3) is necessary and sufficient for the existence of a fixed
point (finite eigenvector) of f corresponding to an eigenvalue18 λ( f ), or eig( f ,λ( f )) ̸= ;
[109, Lemma 4.2]. In particular, if λ( f ) exists, it is unique and represents the asymptotic
growth rate of any trajectory of the system.

We now recall the following result from literature that allows analysis of system tra-
jectories for a (given) constant asymptotic growth rate.

Lemma 4.3.4. (Projected dynamics [169]). For any monotone and additively homoge-
neous function Φ :Rn →R, the function Γ : x 7→ (Φ(x), x) is an injective Lipschitz continu-
ous function from Rn to R×PRn with a Lipschitz continuous inverse. ■

The preceding result implies that the limiting (asymptotic) behaviour of the state
trajectory (x(k))k∈N of a given discrete-event system (4.1) can be studied as a combina-
tion of limiting behaviours of the sequences {Φ(x(k))}k∈N and {x(k)}k∈N. For example,
Φ(x) = xi , Φ(x) = maxi xi , and Φ(x) = mini xi , are interesting monotone and additively
homogeneous functions.

Theorem 4.3.2. (Asymptotic Lipschitz stability). Consider again the discrete-event sys-
tem in (4.1). Let ρ ∈ R be given and let the normalised state be denoted as xρ(k) =
x(k)− (ρ ·k)⊗1n . The following statements are equivalent:

1. The system is uniformly max-plus bounded-buffer stable.

In addition, given any monotone and additively homogeneous function Φ : Rn →
R, for every µ > 0 there exists a scalar T = T (µ) ∈ N such that if x(0) ∈ Bµ, then∣∣Φ(xρ(k))−Φ(xρ(k −1))

∣∣ is uniformly bounded for all k ≥ T .

17For x ∈Rn , if α⊗1≤ x ≤β⊗1, for some α,β ∈R, then ∥x∥P ≤β−α and ∥x∥∞ ≤ max(|α|, |β|). Here, the norm
equalities are met if xi =α and x j =β for some i , j ∈ n.

18Please refer to Section 2.2.4 for an exposition on the max-plus eigenvalue problem and its relation to the
fixed-point theory of additively homogeneous and monotone functions.
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2. The system is uniformly asymptotically max-plus Lipschitz stable.

Proof. The result is immediate from Lemma 4.3.3 and 4.3.4. ■
The scalar additively homogeneous and monotone functionΦ in the preceding anal-

ysis can be interpreted as an output map of the system. The preceding theorem then
suggests that the asymptotic max-plus Lipschitz stability can be equivalently analysed
as the boundedness of the output of a (suitably normalised) max-plus bounded-buffer
stable discrete-event system.

4.3.2. LYAPUNOV STABILITY
In this section we propose Lyapunov-like theorems to study the asymptotic stability
properties of the discrete-event system in (4.1). We follow the approach of [67, 165] to
study the asymptotic notions of stability of switching systems under arbitrary switching,
in that the switching sequence is not known a priori. The authors of [67, 165] exploit the
connection between conventional time-driven nonlinear switched systems and nonlin-
ear systems with disturbances to provide necessary and sufficient conditions for uniform
asymptotic stability in the sense of Lyapunov.

We recall the following notions of uniform asymptotic stability with respect to a
closed (but not necessarily compact) set from the literature [122, 152], albeit expressed
in the max-plus Hilbert projective metric. Note that the following stability notions do
not directly ensure stability in the sense of Definitions 4.2.3 and 4.2.4.

Lemma 4.3.5. (Asymptotic bounded-buffer stability, cf. [122]). Consider a discrete-event
system (4.1) and a closed positively invariant set K ⊆Rn . The system is uniformly asymp-
totically max-plus bounded with respect to K if there exists a function β of class K L
and a scalar µ> 0 such that19

∥x(k)∥K ,P ≤β
(∥x(k0)∥K ,P,k

)
(4.11)

whenever ∥x(k0)∥K ,P ≤µ and k ≥ k0.
Similarly, the system is uniformly exponentially max-plus bounded with respect to K

if the estimate in (4.11) can be expressed as

∥x(k)∥K ,P ≤ κ · ∥x(k0)∥K ,P ·σ−(k−k0) (4.12)

for some scalars κ> 0, σ> 1 whenever ∥x(k0)∥K ,P ≤µ and k ≥ k0. ■
The maximal open neighbourhood {x ∈ Rn | ∥x∥K ,P < µ} allowed in the preceding

definition is called the region of attraction of K . The Lyapunov characterisation of the
preceding acttractiveness properties are very well known in literature for conventioal
time-driven systems defined on a suitable normed vector space [122, 152]. We extend
the results from literature [122] to the discrete-event system (4.1).

Definition 4.3.6. (Max-plus Lyapunov function). Let D ⊆ Rn be an open domain. Let
K ⊂ D be a closed set. A continuous function V : D → R+ is said to be a common
max-plus Lyapunov function with respect to K defined on the domain D for the system
dynamics (4.1) if the following conditions hold:

19Note that ∥z∥K ,P denotes the distance of z to K in the max-plus Hilbert projective metric (3.27).
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1. the function V is scale free, so V (µ⊗x) =V (x) for all x ∈D and µ ∈R;

2. there exist two functions20 α1,α2 of class K∞ such that

α1(∥x∥K ,P) ≤V (x) ≤α2(∥x∥K ,P) (4.13)

for all x ∈D;

3. there exist a continuous, positive definite function α3 such that

V ( f (l , x))−V (x) ≤−α3(∥x∥K ,P) (4.14)

for all x ∈D and for all l ∈ nL. □
Theorem 4.3.3. (Uniform asymptotic max-plus bounded-buffer stability). Consider a
uniformly max-plus Lipschitz stable discrete-event system (4.1) and a closed max-plus
cone K ⊂Rn bounded in the max-plus Hilbert projective norm.

Then the discrete-event system is uniformly locally asymptotically max-plus bounded-
buffer stable with respect to the closed set K if it admits a common max-plus Lyapunov
function with respect to K on a domain D ⊆Rn containing K .

Proof. The proof follows from [122, Theorem 1] by noting that K is a closed set. ■
Under uniform Lipschitz continuity and uniform max-plus bounded-buffer stability

of the constituent subsystems, the conditions of the preceding theorem are necessary as
well if the common max-plus Lyapunov function is required to be smooth (once differ-
entiable). This can be proved analogously to [122, Theorem 1].

The following example shows that a max-plus set-induced Lyapunov function can be
reused as a max-plus Lyapunov function.

Example 4.3.3. Consider a bimodal open-loop switching max-plus linear system defined
by the following matrices:

A(1) =
(
4 ε

1 1

)
, A(2) =

(
3 3
ε 6

)
. (4.15)

The max-plus eigenvalues are obtained as λ1 = 4 and λ2 = 6 for the two subsystems, re-
spectively. Consider a max-plus C-set generated as K = span⊕(K ), where

K =
(

A(1)
λ1

⊕ A(2)
λ2

)⋆ =
(

0 −3
−3 0

)
. (4.16)

The set K is positively invariant to the system dynamics. We consider the max-plus
Lyapunov function21 V (x) = x∗ ⊗K ⊗ x. The attractivity properties of the set K can be
noted from Fig. 4.4. The plot is obtained using the method explained in Section 4.4.5 for

the matrix semigroups A = {A(1), A(2)}, A ⊗2 = {A(1)⊗2
, A(1) ⊗ A(2), A(2) ⊗ A(1), A(2)⊗2

}, and

A ⊗3 = {A(1)⊗3
, A(1)⊗A(1)⊗A(2), A(1)⊗A(2)⊗A(1), . . . , A(2)⊗3

}. Most importantly, the set K is
uniformly and globally attractive for the trajectories of the open-loop switching max-plus
linear system under arbitrary switching sequences.

We can also derive that ∥x(k)∥K ,P ≤ 0.45 · ∥x(0)∥K ,P ·1.6−k . This results in a uniform
exponential max-plus bounded-buffer stability with respect to K .
20For a function α of class K , if lims→+∞α(s) =+∞, then it is said to be of class K∞.
21Recall that x∗ = (−x)⊺ for x ∈Rn .
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Figure 4.4: The worst-case convergence of trajectories of the open-loop switching max-plus linear system,
in Example 4.3.3, to the max-plus C-set K = span⊕K . The distance to the set is measured using the max-
plus Lyapunov function V (x(k)) = x∗(k)⊗K ⊗ x(k). The change in Lyapunov function, V (x(k))−V (x(k ′)), is
minimised (as in Section 4.4.5) for k ′ = k + 1, k ′ = k + 2, and k ′ = k + 3. This corresponds to the Lyapunov

function decay for matrix semigroups A , A ⊗2
, and A ⊗3

, respectively.

4.3.3. LASALLE-LIKE RELAXATIONS
In this subsection, we consider the non-autonomous discrete-event system dynamics
(4.1) evolving over a positively invariant set. The aim is to extend the stability arguments
from the classical Krasovskii-LaSalle invariance principle22 [47, §1.3], [168] to max-plus
algebra. This generalisation of the Lyapunov theory from the preceding subsection al-
lows the relaxation of strict decay requirement on Lyapunov functions by exploiting in-
variance of limit sets.

We first present a definition of an ω-limit set suitable for analysis of discrete-event
systems (4.1). These sets play a pivotal role in the characterisation and computation of
attractive sets of iterated function systems G = {gl }l∈nL consisting of a (possibly infinite)
compact set of generating maps gl :Rn →Rn [20, 41], and multi-valued discrete dynam-
ical systems [47, §1.3]. This involves formulating conditions for existence and unique-
ness of attractive sets in general non-contractive [21], contractive [41, 195], or additively
homogeneous contractive mappings [35], among others [147].

Definition 4.3.7. (Projective limit set). The ω-limit set Ω(γ) ⊂ Rn/∼ of a sequence γ =
{γ(k)}k∈N0 is the set of rays y ⊂Rn/∼ for which there exists a subsequence {γ(km)}m∈N of
γ such that the lim

m→+∞dH(γ(km), y) = 0. □

It is noted that the determination of state trajectories, and hence the ω-limit sets,
of general non-autonomous dynamical systems requires an additional specification of
exogenous input sequence. The important consequence of this non-uniqueness is that
the ω-limit set is not invariant. Therefore, we resort to the following notion of weak
invariance.

22Please refer to Section 2.3.2 for an exposition on the Krasovskii-LaSalle invariance principle for conventional
time-driven systems defined on a suitable normed vector space.
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Definition 4.3.8. (Weak positive invariance). A set K ⊆Rn is weakly positively invariant
for the system (4.1) if for every x ∈K there exists l ∈ nL such that f (l , x) ∈K . □

The subsequent analysis for switching systems (4.1) can also be applied to an over-
approximation of general event-varying system dynamics f :N×Rn →Rn as an iterated
function system or a multi-valued discrete dynamical system [47, Lemma 1.21]. We be-
gin with the definition of a weak max-plus Lyapunov function in a set.

Definition 4.3.9. (Weak max-plus Lyapunov function). Let K ⊆ Rn be any set. A func-
tion V : Rn → R is said to be a weak Lyapunov function in K for the system dynamics
(4.1) if the following conditions hold:

1. V (·) is scale free, so V (µ⊗x) =V (x) for all µ ∈R;

2. V (·) is continuous on K ;

3. V ( f (l , x))−V (x) ≤ 0 for any x ∈K and all l ∈ nL.

The function V is positive definite with respect to a set Kc ⊆Rn if

1. V (x) = 0 for all x ∈Kc;

2. there exists an η> 0 such that V (x) > 0 wherever x ∈Bη(Kc) and x ∉Kc. □
We now present a max-plus version of the Krasovskii-LaSalle invariance principle

for discrete-event systems (4.1) under Assumptions 4.2.1 and 4.2.2. Our aim is to char-
acterise the attractive sets of uniformly max-plus bounded buffer stable systems using
certain weak max-plus Lyapunov functions.

Theorem 4.3.4. (Max-plus Krasovskii-LaSalle invariance principle I). Consider a
discrete-event system (4.1) evolving on a positively invariant set K ⊆ Rn . Suppose that
the system dynamics admits a weak max-plus Lyapunov function V : Rn → R in K (see
Definition 4.3.9).

Assume the discrete-event system is uniformly max-plus bounded-buffer stable in Bδ

for some δ > 0. Then there exists c ∈ R such that the state trajectories approach a set of
the form V −1(c)∩M where M is the largest weakly positively invariant set contained in
{x ∈ cl(K ) | ∃l ∈ nL s.t. V ( f (l , x)) =V (x)}.

Proof. See Section 4.5. ■
The preceding result is general in the sense that it lets go of the assumption on non-

expansiveness of the constituting maps in (4.1). The assumption on uniform max-plus
bounded-buffer stability of the system can be relaxed if the sub-level sets of the weak
Lyapunov function are bounded in the max-plus Hilbert projective norm.

Theorem 4.3.5. (Max-plus Krasovskii-LaSalle invariance principle II). Consider a
discrete-event system (4.1). Suppose that there exists a continuous function V : Rn → R

such that

1. there exists a scalar s ∈ R such that N (V , s) = {x ∈ Rn | V (x) < s} is bounded in the
max-plus Hilbert projective norm;
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2. V is a weak Lyapunov function in N (V , s) (see Definition 4.3.9).

Then there exists a scalar c ∈ R such that the state trajectories approach a set of the
form V −1(c) ∩M where M is the largest weakly positively invariant set contained in
{x ∈ cl(N (V , s)) | ∃l ∈ nL s.t. V ( f (l , x)) =V (x)}.

Proof. The proof follows closely the proof of Theorem 4.3.4. A sub-level set of
the weak max-plus Lyapunov function provides a positively invariant set that is also
bounded in the max-plus Hilbert projective norm. ■

Example 4.3.4. Consider a bimodal open-loop switching max-plus linear system defined
by the following matrices

A(1) =
−2 1 ε

−1 −1 −2
−1 ε −2

 , A(2) =
 0 −1 −1

ε 0 −4
−3 ε 0

 . (4.17)

We consider a positively invariant max-plus C-set K = span⊕(K ), where

K =
 0 1 −1
−1 0 −2
−1 0 0

 . (4.18)

The unique generator of the max-plus cone K is a common max-plus eigenvector of the
system matrices. We define a weak max-plus Lyapunov function V (x) = x∗⊗K ⊗ x = u ⊗
x−v ◦\ x, where v = [K ]·1 and u = [K ]1·. The sub-level sets of the function V (·) are bounded
in the max-plus Hilbert projective norm.

It can be deduced (using the analysis presented in Section 4.4.5) that the Lyapunov
function V (·) is non-decreasing along the trajectories of the system.

We now note that u ⊗ A(l ) = u for l ∈ nL ≜ {1,2}. In accordance with Theorem 4.3.5,
we deduce that the trajectories such that ∥x(0)∥K ,P ≤ c, c ∈ R, approach a set of the form
V (−1)(c)∩M where M is the largest weakly positively invariant set contained in

C = {x ∈K | ∃l ∈ nL s.t. v ◦\ (A(l ) ⊗x) = v ◦\ x}. (4.19)

The set C is generated as solutions to mixed max-min equations. The computation of
the solution sets can be reformulated as an extended linear complementarity problem [71,
§4.5].

Remark. Under max-plus geometry, the ‘bi-vector’ (x, y) ∈ Rn
ε ×Rn

ε is max-plus orthog-
onal to z ∈ Rn

ε if z ◦\ x = z ◦\ y [8, §4]. The set C , in the preceding example, consists of all
state vectors x ∈Rn that evolve (max-plus) orthogonally to the common max-plus eigen-
vector v ∈Rn , under the application of either of the modes. This notion can be extended
to cases where the dimension of the attractor (max-plus weak dimension23 of matrix K )
is larger than one.

23See Definition 2.2.19.
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4.3.4. ATTRACTIVITY OF MAX-PLUS EIGENSPACES
In this subsection, we aim to characterise the attractive sets of a discrete-event system
(4.1) using the dynamical properties of certain monotone and additively homogeneous
functions. This serves as an extension of the work [111] on stability of switching max-
plus linear systems.

In the context of discrete-event systems, the max-plus spectral theory of additively
homogeneous and monotone functions yields quantitative measures of performance
[87, 89, 109]. An additively homogeneous discrete-event system dynamics enjoys a trans-
lation property: the occurrence times of all events (continuous state) can be changed by
the same amount without affecting the dynamical properties of the system. The mono-
tonicity property, on the other hand, implies that a delay in the occurrence times of some
events cannot accelerate the occurrence of any other event. The latter property, however,
does not necessarily hold for switching max-plus linear systems [111].

The long-term behaviour of additively homogeneous and monotone functions under
iteration is related to desirable periodic trajectories (max-plus eigenvector) and optimal
operating conditions (max-plus eigenvalue) of discrete-event systems.

The existence of finite max-plus eigenvector(s) of an additively homogeneous and
monotone function g : Rn → Rn is equivalent to the boundedness of its trajectories, de-
noted {g k (x)}k∈N, in the max-plus Hilbert projective norm for all x ∈Rn [89, Theorem 9].
The function g admits a finite max-plus eigenvector if there exists a non-empty subset
V ⊂ Rn that is i) invariant under iteration of function g , i.e. g (V ) ⊆ V , and ii) bounded
in the max-plus Hilbert projective norm [87, Corollary 4.1]. We first recall the definition
of a max-plus (sub)eigenspace of a function g that is always invariant under iteration of
the function g [89]. For given scalars α,β ∈ R with β ≥ α, the slice space of a function g
is defined as:

Sβα(g ) = {
x ∈Rn | α+x ≤ g (x) ≤β+x

}
. (4.20)

Note that a given slice space Sβα(g ) is non-empty for a large enoughβ and a small enough
α with β≥α.

In [111] we assume that such a function g exists with a slice space Sβα(g ) bounded in
the max-plus Hilbert projective norm for someα,β ∈R. Then the positively invariance of

the slice space Sβα(g ) for the system dynamics (4.1) implies that any trajectory starting in

Sβα(g ) remains bounded in the max-plus Hilbert projective norm and satisfies the max-
plus Lipschitz stability property [111, Proposition 4.1]. Now we consider the attractivity
properties of these slice spaces with respect to the system dynamics (4.1).

Theorem 4.3.6. (Attractivity of max-plus eigenspaces). Consider a uniformly max-plus
bounded buffer stable discrete-event system (4.1) evolving over a positively invariant set
K ⊆Rn .

Let g : Rn → Rn be an additively homogeneous and monotone function. Assume that
the scale-free function V defined by V (x) = ∥∥g (x)−x

∥∥
P

is a weak max-plus Lyapunov
function in K .

Then there exists a slice space Sβα(g ) ̸= ;, for some α,β ∈R, such that the state trajecto-
ries approach the largest weakly positively invariant set contained in the slice space.

Proof. See Section 4.5. ■
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The choice of an additively homogeneous and monotone function g in the preceding
theorem gives information on the smallest achievable set M in Theorem 4.3.4. It also

facilitates the determination of the largest region of attraction, Sβα(g ), such that for all

x(0) ∈ Sβα(g ) it holds that limk→∞ x(k) ∈V −1(c)∩M .
In accordance with Theorem 4.3.5, the assumption on uniformly max-plus bounded-

buffer stability can be relaxed if there exists a slice space Sβα(g ), for some α,β ∈ R, that
is a priori bounded in the max-plus Hilbert projective norm. It is, in general, difficult

to prove boundedness of a given slice space Sβα(g ) [89]. However, there exists a sub-
class of additively homogeneous and monotone functions for which all slice spaces
are bounded in the max-plus Hilbert projective norm [89, §3]. The function V de-
fined by V (x) = ∥∥g (x)−x

∥∥
P

is positive definite with respect to the max-plus eigenspace

eig(g ,λ(g )). The boundedness of a non-empty slice space Sβα(g ), for some α,β ∈ R, im-
plies the existence of a finite max-plus eigenvector: ∃x ∈ Rn such that g (x) = λ⊗ x for
some λ ∈R [87, Corollary 4.1].

4.4. ALGORITHMIC ASPECTS
We provide some algorithms for stability analysis of an open-loop SMPL system (4.1)
defined by a set of matrices A = {A(1), . . . , A(nL)}.

Given a max-plus C-set, we would first like to check if it is a common positively in-
variant set of the system. Secondly, we propose conditions for the existence of such a
max-plus C-set for a given set of matrices A . We then provide an algorithm to construct
the largest (bounded) positively invariant C-set common to all subsystems, if it exists. Fi-
nally, we provide an optimisation problem to calculate the region of attraction of a given
positively invariant set.

4.4.1. MAX-PLUS DOUBLE DESCRIPTION METHOD

Let K = {x ∈ Rn
ε | C ⊗ x ≤ D ⊗ x}, C ,D ∈ Rm×n

ε , be a given finitely generated max-plus
cone expressed as a solution of a system of max-plus inequalities (see Theorem 2.2.3).
The explicit set of its generators as columns of a matrix K ∈ Rn×q

ε , q ∈ N, can be found
using the max-plus double description method [10, §4].

Lemma 4.4.1. (Generator enumeration [10]). Consider a max-plus cone G = span⊕(G),
where G ∈Rn×q

ε with q ∈N, and a set H = {x ∈Rn
ε | c⊺⊗ x ≤ d⊺⊗ x}, where c,d ∈Rn

ε . Then
the max-plus cone G ′ =G ∩H is generated by the set G ′

0 ∪G ′
1, where

G ′
0 =

{
[G]·i

∣∣ c⊺⊗ [G]·i ≤ d⊺⊗ [G]·i , i ∈ q
}

,

and

G ′
1 = { (u⊺⊗ [G]· j )⊗ [G]·i ⊕ (v⊺⊗ [G]·i )⊗ [G]· j

∣∣
i , j ∈ q , c⊺⊗ [G]·i ≤ d⊺⊗ [G]·i , and [G]· j > d⊺⊗ [G]· j

}
■
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The elimination algorithm for enumerating the generators of the max-plus cone re-
lies on iteratively applying the preceding result. This is done starting from the max-plus
canonical basis24 of Rn

ε , G (0) = {e( j ) ∈Rn
ε | j ∈ n}, and H (k) = {x ∈Rn

ε | [C ⊗x]k ≤ [D ⊗x]k }.

4.4.2. POSITIVE INVARIANCE
We first provide a certificate for validating the positive invariance of a finitely generated
max-plus cone with respect to a max-plus linear map.

Lemma 4.4.2 (Positive invariance of max-plus cone [128]). A max-plus cone
K = span⊕(K ), K ∈Rn×m

ε , is positively invariant for the system dynamics x(k) = A⊗x(k−
1), A ∈Rn×n

ε , if and only if the following equality holds:

K ⊗ (K ◦\ (A⊗K )) = A⊗K (4.21)

■
We now present a constructive theorem for validating the positive invariance of a

max-plus C-set.

Theorem 4.4.1 (Max-plus S-Lemma). Let A = {A(1), . . . , A(nL)}, A(l ) ∈ Rn×n
ε for l ∈ nL.

Given a max-plus C-set K = span⊕(K ), K ∈ Rn×n
ε , then the condition for positively in-

variance:
x ∈K ⇒ A(l ) ⊗x ∈K , ∀l ∈ nL (4.22)

holds if and only if
K ⊗ A(l ) ⊗K = A(l ) ⊗K , ∀l ∈ nL. (4.23)

Proof See Section 4.5. ■
Remark. For a general case of finitely generated max-plus cones, a certificate for validat-
ing an implication between a set of max-plus inequalities can be found in [11, Proposi-
tion 13].

Finally we note that for the case of positive invariance with respect to a set of max-
plus C-sets (max-plus multi-cones), the preceding theorem can be conveniently ex-
tended.

4.4.3. EXISTENCE
We formulate the certificate (4.23), for a max-plus C-set to be positively invariant, as a
non-homogeneous system of two-sided max-plus linear equations (see Theorem 2.2.4).
This is carried out using vectorisation and max-plus Kronecker product operations25.

Lemma 4.4.3 (Bilinear vectorisation). Given matrices X ,T ∈Rn×n
ε , we have

vec(X ⊗T ⊗X ) = (
I⊗

n ⊠vec(T )⊺⊠I⊗
n

)⊗ (vec(X )⊠vec(X )) . (4.24)

24The element e( j ) of Rn
ε represents a vector of max-plus zeros with the j -th entry equal to zero (max-plus unit

element).
25Please refer to Section 2.2.1 for identities involving max-plus Kronecker products and vectorisation opera-

tions.
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Proof. See Section 4.5. ■

Theorem 4.4.2. (PI reformulation as two-sided max-plus linear system). Consider a ma-
trix A ∈Rn×n

ε and a max-plus C-set K = span⊕(K ) with K ∈Rn×n . The condition for pos-
itive invariance of K with respect to the dynamics x(k) = A⊗ x(k −1), as stated in (4.23),
can be expressed as (

M1

M3

)
⊗ z1 =

(
M2

I⊗
n2

)
⊗ z2, (4.25)

where z1 = vec(K )⊠vec(K ) ∈Rn4
, z2 = vec(K ) ∈Rn2

, and the remaining matrices are given
as

M1 =I⊗
n ⊠vec(A)⊺⊠I⊗

n , (4.26)

M2 =I⊗
n ⊠ A, (4.27)

M3 =I⊗
n ⊠vec(I⊗

n )⊺⊠I⊗
n . (4.28)

Proof. See Section 4.5. ■
The results of Theorem 4.4.2 can be extended to a set of matrices A by augmenting

the system (4.25) with matrices M1 and M2 defined for each l ∈ nL. Note that the matrices
M3 and I⊗

n2 are regular (each row and column has at least one finite entry). In case the

matrices M1 and M2 are also regular26, a finite (non-optimal) solution (z1, z2) to (4.25)
can be found using existing algorithms (see [48, §7.3]). The algorithm in [48, §7.3] either
converges to a solution or provides a certificate that no solution exists.

4.4.4. CONSTRUCTION
We provide a general set-up for construction of a smallest non-empty positively invari-
ant set given an open-loop SMPL system. Here, the radius of the invariant max-plus
C-set is measured as the (negative) second largest max-plus eigenvalue of the associated
Kleene star matrix [196, Proposition 17].

The optimisation problem can be formulated as follows:

max
θ,x

λ2(K ) (4.29a)

subject to K ⊗ A(l ) ⊗K ≤ A(l ) ⊗K , ∀l ∈ nL, (4.29b)

K ⊗K ≤ K , (4.29c)

[K ]i j =−θi j , ∀i , j ∈ n, i ̸= j , (4.29d)

−θi j +x j −xi ≤λ2, ∀i ∈ n, i ̸= j , (4.29e)

[K ]i i = θi i = 0, ∀i ∈ n. (4.29f)

The constraints in the preceding optimisation problem contain max-plus polynomial
expressions of the free variables (θ and x). Therefore, it can be recast as an extended
linear complementarity problem and solved as a mixed-integer linear program [71].

26If the corresponding rows of both M1 and M2 have only ε elements, then they can be removed from the
system of equations (4.25) without affecting the solution method.
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4.4.5. ATTRACTIVITY

This section provides an algorithm for evaluating the worst case one-step convergence
rate of trajectories of a discrete-event system (4.1) to a given positively invariant max-
plus C-set.

Let the positively invariant max-plus C-set K ⊆ Rn be generated by a Kleene star
matrix K ∈ Rn×n

ε . The associated max-plus gauge function V can be defined by V (x) =
x∗⊗K ⊗ x. Then for a given distance from the max-plus C-set δ > 0, the search for the
worst-case descent to the max-plus C-set can be formulated as P (δ) = maxx,δ′ {δ

′ |V (x) ≤
δ, V (A(l ) ⊗x) ≥ δ′, ∀l ∈ nL, x ∈Rn}. The optimisation problem is given as27:

P (δ) = max
δ′,x

δ′ (4.30a)

subject to A(l ) ⊗x ≤ K̃δ′ ⊗ A(l ) ⊗x, ∀l ∈ nL, (4.30b)

K̃δ⊗x ≤ x. (4.30c)

(4.30d)

The preceding optimisation problem P (δ) can be recast as a parametric linear comple-
mentarity problem [72] and solved efficiently using the multi-parametric toolbox [120].
It is remarkable to note that the preceding optimisation problem for a fixed δ ∈R is an in-
stance of a tropical linear-fractional programming problem [93]. An efficient algorithm
to solve tropical linear-fractional program can be found in [93].

We finally note that the optimal value of P (δ) can be proved to be monotone non-
decreasing on δ ≥ 0 using the results presented in [100, Proposition 3.2]. Hence, if the
max-plus C-set is uniformly attractive over all possible switching sequences then there
exists a function α1 of class K such that28 α1(δ) ≤ P (δ) ≤ id(δ). This implies, in par-
ticular, that the set-induced Lyapunov function (see Definition 4.3.2) is non-increasing
along the dynamics:

V (A(l ) ⊗x)−V (x) ≤−α2(∥x∥K ,P), ∀x ∈Rn , ∀l ∈ nL, (4.31)

where α2(·) = id−α(·) is again a function of class K . Therefore, the feasibility of the
optimisation problem over δ ∈ [0,δmax] provides a certificate for attractivity of a given
positively invariant max-plus C-set and an estimate of the region of attraction:

D =N (V ,δmax) = {x(0) ∈Rn | lim
k→+∞

x(k) ∈K }. (4.32)

Note that the preceding procedure can be extended to other max-plus Lyapunov func-
tions taking polyhedral forms.

27Note that a Kleene star matrix normalised by a scalar µ ∈ R is denoted as K̃µ and obtained as follows: for all

i , j ∈ n, [K̃µ]i j = [K ]i j −µ if i ̸= j , and [K̃µ]i i = 0.
28An identity function is denoted by id such that id(s) = s for all s ∈R+.
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4.5. TECHNICAL PROOFS

In this section, we provide the proofs of various results stated in this chapter.

Proof of Lemma 4.3.1. A finitely generated max-plus cone is a finitely generated con-
vex cone if and only if it is generated as the max-plus column span of a Kleene star matrix
[123, Theorem C]. Then, the max-plus C-set K = span⊕(K ), for some Kleene star matrix
K ∈Rn×n

ε , is finitely generated and hence non-empty.

The largest max-plus eigenvalue of a Kleene star matrix is λ(K ) = 0. The max-plus
column span of a Kleene star matrix is generated as its max-plus eigenspace correspond-
ing to λ(K ) [196, Proposition 7]. The max-plus eigenspace eig(K ,0) of a Kleene star ma-
trix has only vectors with finite entries if and only if it is irreducible [196, Proposition 7].
Therefore, K is bounded in the max-plus Hilbert projective norm.

For any two Kleene star matrices K (1),K (2) ∈ Rn×n
ε such that span⊕(K (1)) =

span⊕(K (2)), we have K (1) = K (2) [196, Proposition 6]. Therefore, the generating Kleene
star matrix is unique.

Proof of Lemma 4.3.2. Firstly, the max-plus eigenspace of a Kleene star matrix K ∈
Rn×n
ε is given as

eig(K ,0) = {x ∈Rn
ε | [K ]i j +x j ≤ xi , i , j ∈ n, i ̸= j }. (4.33)

Here, xi + [K ]i i ≤ xi is trivially satisfied as [K ]i i = 0 for all i ∈ n.

Then, given a point x ∈Rn , there exists a µ≥ 0 such that x ∈ eig(K̃µ,0):

max
i∈n

max
j∈n

([K̃µ]i j +x j −xi ) ≤ 0

⇔max
i∈n

max
j ̸=i

(
[Kµ]i j +x j −xi

) ≤ 0

⇔max
i∈n

max
j ̸=i

(
[K ]i j +x j −xi

) ≤µ

⇔ x∗⊗K ⊗x ≤µ.

(4.34)

Here, [K̃µ]i j = [Kµ]i j for i ̸= j . The max-plus matrix completion in the final step follows
by adding the inequality µ+ xi − xi ≥ 0 to each row. Therefore, the expressions (4.5) and
(4.6) are equivalent.

Now, we note that the nonlinear projection PK (x) minimises the distance of a point
x ∈Rn to a set K ⊆Rn , i.e. dH(x,K ) = dH(x,PK (x)), (see Definition 2.2.22).
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As the set is generated by a Kleene star matrix, we have PK (x) = (−K )⊺⊗′x. Therefore,

dH(x,K ) = dH(x, (−K )⊺⊗′ x)

= max
i∈n

(xi − [(−K )⊺⊗′ x]i )

−min
i∈n

(xi − [(−K )⊺⊗′ x]i )

= max
i∈n

(xi − [(−K )⊺⊗′ x]i )

= max
i∈n

(xi + [K ⊺⊗ (−x)]i )

= max
i∈n

(xi +max
j∈n

([K ] j i −x j ))

= max
i∈n

max
j∈n

([K ] j i +xi −x j )

= x∗⊗K ⊗x.

(4.35)

Here, the third equality follows as PK (x) ≤ x and the equality holds for at least one index
i ∈ n. Therefore, min(x −PK (x)) = 0. This completes the proof.

Proof of Proposition 4.3.1. We first show that the bound on growth rates is intimately
connected to the width of a positively invariant set that is bounded in the max-plus
Hilbert projective space. Let Bµ, for some µ > 0, be positively invariant to the system
dynamics in (4.1). Consequently, if x ∈ Bµ then f (l , x) ∈ Bµ for all l ∈ nL. From the
triangle inequality, we have

dH( f (l , x), x) ≤ ∥∥ f (l , x)
∥∥
P
+∥x∥P ≤ 2 ·µ. (4.36)

Let the system be uniformly max-plus bounded-buffer stable in Bδ. Then for any trajec-
tory starting with x(0) ∈Bµ, with arbitrary µ> 0, there exist a scalar T (µ,δ) > 0, such that
x(k) ∈Bδ for all k ≥ T (µ,δ). Therefore, owing to (4.36) we have dH(x(k), x(k −1)) ≤ 2 ·δ,
or x(k) ∈B2δ(x(k −1)) for k ≥ T (µ,δ). This completes the proof.

Proof of Lemma 4.3.3. (⇒) Take γ(k, x(0)) = maxi∈n xi (k). Then we have

∥x(k)−max
i∈n

xi (k)⊗1∥∞ = |min
j∈n

x j (k)−max
i∈n

xi (k)|

= ∥x(k)∥P.
(4.37)

Therefore, the asymptotic boundedness of the state in the max-plus Hilbert projective
norm implies the result.

(⇐) We are given a function γ : N×Rn → R such that
∥∥x(k)−γ(k, x(0))⊗1n

∥∥∞ is
bounded as k → ∞. Then there exists a finite scalar M > 0 such that for k → ∞, we
have

−M ⊗1n ≤ x(k)−γ(k, x(0))⊗1n ≤ M ⊗1n . (4.38)

From the definition of the max-plus Hilbert projective norm, we have ∥x(k)∥P ≤ 2M as
k →∞. This completes the proof.
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Proof of Theorem 4.3.4. Let γ = (x(k))k∈N0 be a state trajectory of the discrete-event
system (4.1) with x(0) ∈ K . Let Ω(γ) ⊂ K /∼ denote the ω-limit set of the sequence γ
in the projective space. Note that this is possible because the dynamics is additively
homogeneous (Assumption 4.2.2). We first prove that the set Ω(γ) is weakly positively
invariant for the dynamics (4.1).

As the system is assumed to be max-plus bounded-buffer stable, there exist scalars
δ,T > 0 for any given state trajectory γ such that ∥x(k)∥P < δ for all k ≥ T . Therefore,
Ω(γ) ⊂Bδ/∼ is bounded in the max-plus Hilbert projective norm. The set is also closed
as the system dynamics f (·, x) is assumed to be continuous on K .

For any z ∈ Ω(γ), there exists a subsequence {x(km)}m∈N such that
lim

m→+∞dH(x(km), z ′) = 0. Moreover, the subsequence {x(km + 1)}m∈N has a conver-

gent subsequence by the virtue of boundedness of the ω-limit set in the max-plus
Hilbert projective space. Therefore, the limit lim

m→+∞dH(x(km + 1), z ′) = 0 exists and

z ′ ∈ Ω(γ) by definition. As every closed ball in the max-plus Hilbert projective metric
is compact in the projective space and the function f (·, x) is continuous in the state x,
there exists l ∈ nL such that f (l , z) = z ′ for some z ∈ z and z ′ ∈ z ′. Therefore, Ω(γ) is
weakly positively invariant.

We now prove that the function V along the trajectory γ converges to a level set that
coincides with Ω(γ). Consider again that there exist δ,T > 0 such that x(k) ∈ Bδ for
k ≥ T . As the function V is scale free and continuous on K , V (x(k)) is lower bounded
for all k ≥ T . Since V (x(k)) is also non-increasing along the trajectories γ, there exists
c ∈R such that limk→∞V (x(k)) = c. Let z ∈Ω(γ) such that limm→+∞ x(km) ∼ z. Then the
limit limm→+∞V (x(km)) = V (z) for all z ∈ z follows from the continuity and scale-free
property of the function V . Hence, V (z) = c for all z ∈ z. Let the corresponding set be
denoted as V −1(c) = {z ∈Rn |V (z) = c}.

Let Kc = cl(K ∩Bδ). Noting that the set Ω(γ) ⊂Kc/∼ is weakly positively invariant
representing the level set of the function V , we have

Ω(γ) ⊂ {z ∈Kc/∼ | ∃l ∈ nL, ∃z ∈ z, s.t. f (l , z) = z ′ and V (z ′) =V (z)}. (4.39)

Hence, we conclude that there exists a weakly positively invariant set M contained in
{x ∈ Bδ | ∃l ∈ nL s.t. V ( f (l , x)) = V (x)} such that the set V −1(c)∩M is attractive in the
sense of Definition 4.2.2.

Proof of Theorem 4.3.6. It is sufficient to show that the slice spaces Sβα(g ) form sub-
level sets of the function V for certain values of α,β ∈ R. The rest of the proof follows
from Theorem 4.3.4 as the function g is always continuous.

Let x ∈ V −1(c) ̸= ; for a given c > 0. Then α≤ g (x)− x ≤ β where β−α= c and there
exist indices i , j ∈ n such that gi (x)− xi = β and g j (x)− x j = α. For the given choice of

α,β ∈ R, Sβα(g ) ̸= ; as V −1(c) ̸= ;. Therefore, the slice spaces Sβα(g ) form sub-level sets
of the function V for appropriate choices of α,β ∈ R. Moreover, all such slice spaces are
positively invariant.

Proof of Theorem 4.4.1. We first recall that the generator of the given max-plus C-set is
an irreducible Kleene star matrix (see Lemma 4.3.1). The problem of positive invariance
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can be restated as the following implication:

(1) K ⊗x = x ⇒ K ⊗ A(l ) ⊗x = A(l ) ⊗x, for all x ∈Rn and for all l ∈ nL.

We show that statement (1) is equivalent to

(2) K ⊗ A(l ) ⊗K ⊗ y = A(l ) ⊗K ⊗ y , for all y ∈Rn
ε and for all l ∈ nL.

(2) ⇒ (1) We recall from the literature that for any closed max-plus cone K ∈ Rn
ε , any

point in K is a max-plus combination of at most n generators29 [50, Proposition 24]. As
the max-plus weak dimension30 of a max-plus C-set is at most n, so for any z ∈K , there
exists (at least one) y ∈ Rn

ε such that z = K ⊗ y . Then if (2) holds31 for all y ∈ Rn
ε , then

K ⊗ A(l ) ⊗ z = A(l ) ⊗ z, l ∈ nL, holds for all z ∈K .
(1) ⇒ (2) An irreducible Kleene star matrix K has only elements with finite entries in

its max-plus column span [196, Proposition 7]. Therefore, the matrix K maps the entire
spaceRn

ε into K . It is then sufficient to note that for any y ∈Rn
ε \{En}, there exists a z ∈Rn

such that K ⊗ y = z = K ⊗ z. Then if the implication (1) holds for all x ∈Rn then (2) holds
for all y ∈Rn

ε .
As the equality (2) must hold for every y ∈ Rn

ε \ {En}, then a max-plus C-set K =
span⊕(K ) is positively invariant to the system dynamics if and only if (4.23) is satisfied.
This completes the proof.

Proof of Lemma 4.4.3. The left-hand side of (4.24) can be rewritten as follows:

vec(X ⊗T ⊗X )=(I⊗
n ⊠X ⊗T )vec(X ) (using (2.7))

= (
I⊗

n ⊠vec−1 (
(T ⊺⊠I⊗

n )⊗vec(X )
))⊗vec(X ) (using (2.8))

= (
I⊗

n ⊠ (vec⊺(I⊗
n )⊠I⊗

n )⊗ (I⊗
n ⊠ (T ⊺⊠I⊗

n ))︸ ︷︷ ︸
M

⊗ (I⊗
n ⊠vec(X ))

)⊗vec(X )
(using (2.9))

= (I⊗
n ⊠M)⊗ (I⊗

n ⊠ (I⊗
n ⊠vec(X )))⊗vec(X ) (using (2.3))

= (I⊗
n ⊠M)⊗ (I⊗

n2 ⊠vec(X ))⊗ (vec(X )⊠1)

= (I⊗
n ⊠M)⊗ (I⊗

n2 ⊗vec(X ))⊠vec(X ) (using (2.3))

= (I⊗
n ⊠M)⊗ (vec(X )⊠vec(X )).

The expression of M can be simplified as:

M = (vec⊺(I⊗
n )⊠I⊗

n )⊗ (I⊗
n ⊠ (T ⊺⊠I⊗

n ))

= (vec⊺(I⊗
n )⊠I⊗

n )⊗ ((I⊗
n ⊠T ⊺)⊠I⊗

n )

= (
vec⊺(I⊗

n )⊗ (I⊗
n ⊠T ⊺)

)
⊠ (I⊗

n I⊗
n ) (using (2.3))

= (
(I⊗

n ⊠T ⊺)⊺⊗vec(I⊗
n )

)⊺⊠I⊗
n

= (
(I⊗

n ⊠T )⊗vec(I⊗
n )

)⊺⊠I⊗
n

= vec⊺(T )⊠I⊗
n . (using (2.8))

This completes the proof.

29Max-plus Carathéodory’s theorem [91, Proposition 3.3].
30See Definition 2.2.19.
31Note that the equality (2) is satisfied trivially for y = En .
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Proof of Theorem 4.4.2. We rewrite left-hand-side of (4.23), for nL = 1, using the result
of Lemma 4.4.3. The right-hand-side follows directly from (2.8). This gives the expres-
sions for M1 and M2. As we assume that K is a Kleene star matrix, we additionally re-
quire that K ⊗K = K (see Lemma 2.2.5 and the discussion thereafter). This is expressed
as M3 ⊗ z1 =I⊗

n2 ⊗ z2 again using Lemma 4.4.3.

4.6. CONCLUSIONS
In this chapter, we have proposed notions of stability and tools for stability analysis for
discrete-event systems in max-plus algebra. To this end, we have established a max-plus
Lyapunov theoretic framework that can be used to analyse stability properties of switch-
ing max-plus linear system operating under arbitrary switching. On one hand, the sta-
bility analysis tools let go of the usual assumption of contractiveness of the dynamics in
the max-plus Hilbert projective norm. On the other hand, the tools still benefit from and
rely on the desirable characteristics of the non-expansive and additively homogeneous
dynamics. The presented stability theory studies the positive invariance of certain sets
with respect to the discrete-event dynamics. Therefore, we have also presented an algo-
rithmic perspective on construction of such positively invariant sets to further evaluate
the stability properties for open-loop switching max-plus linear systems.



5
MAX-PLUS LINEAR

PARAMETER-VARYING SYSTEMS

In this chapter, we present a framework for modelling parametric discrete-event systems
as linear parameter-varying systems in the max-plus algebra. We present algebraic tools
to analyse the consistency of the obtained model, which allows to assess the existence
and uniqueness of trajectories of the system. The application of the formalism is moti-
vated using an intuitive case study on an urban railway system.

5.1. INTRODUCTION
Linear parameter-varying systems provide a convenient system-theoretical framework
to handle control and analysis problems of conventional time-driven linear systems un-
der explicit parameter dependence [32, 34, 45, 173, 193]. The resulting formalism pro-
vides a deeper understanding into the dynamics of the system by preserving certain lin-
earity properties of the dynamics. At the same time, it allows for extension of tools from
linear systems theory, for analysis and control, to (nonlinear) parametric systems. We
intend to extend the max-plus linear framework to parametric discrete-event systems.
Such descriptions of discrete-event systems find applications in production [167, 213],
and transportation systems [119].

Parametric modelling of discrete-event systems in max-plus algebra allows captur-
ing variations in timing durations between event occurrences, broadening the class of
max-plus linear systems. The obtained model is said to be consistent if the existence of
a state trajectory that respects all synchronisation and ordering constraints can be guar-
anteed. We distinguish the concept of solvability when the admissible state trajectories
are required to be unique for a given realisation of the parameter trajectory. We speak of
invariant solvability when the system is solvable over an infinite event horizon. The flex-
ibility provided by the introduction of parametric dependence is often offset by the loss
of solvability of the obtained model on either the entire state space or for all event steps.
This is partly due to inherent implicitness in the state equations of such systems. The

99
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problem of ensuring the consistency is fundamental to modelling of parametric discrete-
event systems. A complete absence of finite trajectories reveals operational issues in the
underlying discrete-event system and also the physical system itself. It is then necessary
to study conditions on parameters and past state values that ensure the existence (and
possibly uniqueness) of a state solution to the model at a given event step. Thereafter, it
is interesting to investigate the set of initial conditions and parameter values such that a
given model is solvable on an unbounded event-step domain (or for all event steps).

As an application, we consider the modelling of a unidirectional urban railway sys-
tem [220] where the states denote the arrival and departure times of trains at the various
stations. Such a railway system is usually operated without a timetable. It is assumed
that there is no capacity limit for the trains. At any given station, a fraction of the num-
ber of passengers on a train disembark and then all passengers present at the platform
board the train. Therefore, the dwell time of a train at a given station is conditioned upon
the number of passengers present at the platform. This in turn depends on the arrival
and departure times of the train at the particular station as well as the ones preceding
it. Such dwell times appear as parameters in the state matrices of the max-plus linear
model of the dynamical system. Apart from other uncertainties arising due to unwar-
ranted delays, the system evolution can be modelled using a set of implicit max-plus
equations in the state variable. The solvability of the obtained model is then the subject
of investigation.

5.1.1. RELATED WORK
The analysis and control of uncertain max-plus linear systems has long been an impor-
tant topic of investigation. The variations in timing durations between event occur-
rences can be incorporated in different ways in the system dynamics: i) polytopic un-
certainties in max-plus algebra [106, 167], ii) polytopic uncertainties in conventional al-
gebra [211], iii) stochastic multiplicative uncertainties [17, 213], or iv) non-deterministic
holding times at places in the timed-event graph [77, 113, 127, 149, 204].

The analysis of consistency of parametric discrete-event systems using the tools of
the max-plus algebra has been a topic of investigation in the literature. The most pop-
ular modelling framework, in this respect, is that of P-time event graphs [26]. P-time
event graphs form a non-deterministic extension of timed event graphs where the hold-
ing times associated to places are given as intervals. Hence, dynamics of the system at
each event step k ∈ N is captured by a set of inequalities on the state vector x(k) using
max-plus and min-plus operations1 [205, and references therein]:

M⊕
µ=0

Aµ⊗x(k −µ) ≤ x(k) ≤
M⊕
µ=0

′ Aµ⊗′ x(k −µ). (5.1)

Here, the implicitness in the state (in)equalities over the event counter k occurs due to
the absence of tokens in certain places in the associated timed-event graph. The consis-
tency problem for the class of P-time event graphs then involves checking the existence
of extremal2 trajectories satisfying the constraints. The author of [76] provides an algo-

1Here (⊕,⊗) and (⊕′,⊗′) represent max-plus and min-plus operations in Rε and R⊤ respectively (see Section
2.2).

2A trajectory is considered extremal if it is either maximal or minimal in the sense of partial order (R+,≤).
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rithm for computing extremal trajectories of a P-time event graph over a finite event-step
horizon. The algorithmic analysis also leads to an algebraic condition on consistency
over an infinite horizon. The existence of 1-periodic3 state trajectories of a P-time event
graph is studied using linear programming methods in [77]. In particular, the linear pro-
gramming formalism in [77] allows an affine dependence of elements in the matrix Aµ

on the state vector x(·).
The authors of [205] provide checkable necessary and sufficient conditions for the

existence of (infinite horizon) d-periodic extremal trajectories under the assumption
that all the state matrices Aµ and Aµ are periodic (see Lemma 2.2.2). The aforemen-

tioned analysis procedures also lead to bounds on achievable throughput of the P-time
event graphs operating under a d-periodic regime [78, 205, 225]. Lastly, we note that
the implicitness in the (in)equalities describing the system dynamics is circumvented
using max-plus and min-plus Kleene star (closure) operations (see Lemma 2.2.5) in the
aforementioned articles [76, 205].

We note that our modelling and analysis approach is fundamentally different from
the one presented in [76, 77, 205]: i) we consider more general (uncertain and state-
dependent) parametric variations in the elements of the state matrices, ii) we consider a
deterministic system and require unique trajectories for any given realisation of the past
state variables and exogenous input invariables, iii) the invariant solvability property
ensures satisfaction of synchronisation and ordering constraints on event occurrences
over a possibly infinite horizon without the requirement of periodic behaviour, and iv)
the model description preserves the incidence structure of the underlying discrete-event
system while still exploiting linear programming based methods.

5.1.2. STATEMENT OF CONTRIBUTION
In what follows, the novel contributions of this chapter are stated. The first set of contri-
butions involve modelling of parametric discrete-event systems in the max-plus algebra:

(A) Taxonomy: We present an extended description of max-plus linear systems with
a linear parameter varying structure analogously to the conventional framework [34,
161], which we designate as MP-LPV systems (in (5.2)). We show (in Section 5.2.1) that
the proposed description is general in that it allows modelling various uncertain as well
as state-dependent parameter variations in the system, as recalled in the preceding
section [17, 77, 106, 113, 127, 167, 205, 211, 213].

(B) Equivalence relationships: We show (in Theorem 5.2.1) that under the assumption
of piecewise affine dependence on the parameter, the proposed class of MP-LPV sys-
tems defined over a discrete event counter is equivalent to that of discrete hybrid sys-
tems described by max-min-plus-scaling systems [118]. Under the same assumption,
we also present a canonical form of an MP-LPV system (in Lemma 5.2.2) and a proce-
dure to obtain it.

An important aspect to consider while modelling state-dependent parametric variations
in the max-plus linear modelling framework is that the inherent implicitness in the state

3A sequence {Z (k)}k∈N is d-periodic if there exist scalars d ∈N and ρ ∈R such that Z (k+d) = ρ⊗Z (k) for large
enough k.
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equations cannot always be resolved using the methods of the max-plus algebra. This
problem indeed arises due to the lack of an inverse to the maximum and minimum op-
erations [17, 77]. The next set of contributions concern the solvability issues of a given
MP-LPV system due to inherent implicitness in the model description. We again assume
that the system matrices have a piecewise affine dependence on the parameters.

(C) Necessity: We propose necessary (checkable) conditions for the existence of a
state solution to the system equations given a realisation of the input signal and past
(known) parameter values using tools from max-plus algebra (see Theorem 5.3.1). We
achieve this by characterising the set of (admissible) parameter values as a union of
polyhedra.

Subsequently, assuming the absence of control inputs, we provide an algorithm to
compute the maximal set of admissible parameter values (as a union of polyhedra)
such that any trajectory starting in this set remains in the set for all event steps k ∈ N
(see Section 5.3). The proposed methodology is derived from the tools of computa-
tional geometry from piecewise affine analysis, as discussed in Section 2.4.3.

(D) Practical sufficiency: We study the effect of coefficients of the piecewise affine de-
pendence on parameters (in the finite matrix entries) on the existence and uniqueness
of state trajectories of the MP-LPV system. The proposed conditions, in Theorem 5.3.2,
are sufficient for the solvability problem (over a possibly infinite event-step horizon).
We provide a physical interpretation of the obtained result in the context of the oper-
ation of a unidirectional urban railway system in Section 5.5. The feasible state trajec-
tories can then be evaluated using existing tools from the literature.

5.1.3. ORGANISATION OF THE CHAPTER
The chapter is organised as follows. Section 5.2 introduces the framework of max-plus
linear parameter-varying systems along with its relationship with the max-min-plus-
scaling systems, and presents a canonical reformulation suitable for further analyses.
Section 5.3 highlights the solvability issues inherent to the MP-LPV modelling class and
proposes a modular algebraic approach to ensure existence and uniqueness of the state
trajectories. The section provides necessary conditions for solvability of a given MP-LV
systems. Section 5.4.1 considers the problem of invariant solvability for MP-LPV system.
Section 5.5 presents the case study of an urban railway system to highlight solvability
issues. We end the chapter with concluding remarks and future research directions in
Section 5.6.

5.2. PARAMETRIC DISCRETE-EVENT SYSTEMS
In this section, we introduce the novel framework of max-plus linear parameter-varying
(MP-LPV) systems. We delineate how certain existing modelling classes for parametric
and uncertain max-plus linear systems can be reformulated in the proposed MP-LPV
systems framework. Consequently, the relationship of the MP-LPV systems with the
class of continuous piecewise affine systems under certain assumptions is formalised.
Finally, a canonical formulation of the MP-LPV system is presented that aids further in-
vestigation into the conditions for the existence and uniqueness of the system trajectory
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in Section 5.3.

5.2.1. MODELLING AND CLASSIFICATION
We are interested in studying the dynamics of an implicit max-plus linear system with
(possibly event-varying) parameters or disturbances, contained in P ⊆ Rnp , evolving
along a discrete-event counter k ∈N, k ≥ M :

x(k) =
M⊕
µ=0

(
Aµ(p(k))⊗x(k −µ)

)⊕B(p(k))⊗u(k),

y(k) =C (p(k))⊗x(k),

p(k) ∈P .

(5.2)

Here, the order4 M ∈N is specified along with initial conditions x( j ) ∈Rn
ε for5 j ∈ M . The

states x(k) ∈ Rεn , k ∈ N0, contain time instants of event occurrences. Note that due to
timed-event graph convention [17, §5.4.4], it is assumed that x(k) = En for k < 0. The
systems matrix functions are defined as: Aµ : P → Rn×n

ε for µ ∈ [M ], B : P → R
n×nu
ε and

C : P → R
ny×n
ε . This linear parameter-varying description in the max-plus algebra is

designated as an MP-LPV system analogously to the conventional LPV framework [173].
The distinction from a max-plus linear system is due to the non-stationary behaviour of
the MP-LPV system along the event counter. An event-varying max-plus linear system
is distinguished from an MP-LPV system, mainly in analysis and control synthesis, due
to the explicit dependence on the counter k ∈ N in the former. For instance, a single
trajectory of the parameter p(·) in (5.2) would result in an event-varying max-plus linear
system. On the contrary, an MP-LPV system framework considers a set of trajectories of
the parameter.

The MP-LPV system description (5.2) is general in that it can model different types
of multiplicative uncertainties (as introduced in [149, 211, 213, 215]) as well as state-
dependent parameter variations. In what follows, we enumerate some important classes
of MP-LPV system based on the evolution of the parameter p(·) and the dependence of
the state matrices on the parameter.

Max-plus affine MP-LPV systems. The system matrices, {Aµ(·)}µ∈[M ], B(·), and C (·), are
considered to be max-plus affine functions of the parameter p ∈P ⊆Rnp :

Aµ(p(k)) = A(0)
µ ⊕

np⊕
i=1

pi (k)⊗ A(i )
µ , µ ∈ [M ],

B(p(k)) = B (0)⊕
np⊕

i=1
pi (k)⊗B (i ), C (p(k)) =C (0) ⊕

np⊕
i=1

pi (k)⊗C (i ),

(5.3)

with known matrices A(i )
µ ∈ Rn×n

ε for µ ∈ [M ], B (i ) ∈ Rn×nu
ε , and C (i ) ∈ Rny×n

ε for i ∈ [np]
and pi is the i -th element of the parameter vector.

4The order corresponds to the maximum number of tokens contained initially at a place of the underlying
timed-event graph [17].

5The set of all non-negative integers up to n is denoted as [n] = {l ∈ N0 | l ≤ n} where N0 = {0,1,2,3, . . . } and
N=N0 \ {0}. The set of positive integers up to n is denoted as n.
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Reference tracking control of parametric max-plus linear systems, with system ma-
trices as in (5.3), when the parameter vector is a (known/measured) exogenous process
has been studied in [106, 167].

Polytopic MP-LPV systems. The parameter vector p is assumed to belong to a unit
simplex at each event step k ∈N:

P :=
{

p(·) ∈Rnp

∣∣∣∣∣ np∑
i=1

pi (·) = 1, pi (·) ≥ 0

}
. (5.4)

Let each of the matrix functions A(i )
µ ∈Rn×n

ε for µ ∈ [M ], B (i ) ∈Rn×nu
ε , and C (i ) ∈Rny×n

ε for
i ∈ np have fixed finite structures6.

Then the polytopic description of the system is obtained as 7:

Aµ(p(k)) =
np∑

i=1
pi (k) · A(i )

µ , µ ∈ [M ],

B(p(k)) =
np∑

i=1
pi (k) ·B (i ), C (p(k)) =

np∑
i=1

pi (k) ·C (i ),

(5.5)

where the known matrices A(i )
µ ∈ Rn×n

ε for µ ∈ [M ], B (i ) ∈ Rn×nu
ε , and C (i ) ∈ Rny×n

ε for
i ∈ np share the finite structures of their respective matrix functions. The stabilisability

problem of uncertain max-plus linear systems with system matrices as in (5.4), (5.5) has
been studied in [215].

Switching max-plus linear systems An MP-LPV system (5.2) subsumes the class of
switching max-plus linear systems with max-plus linear modes. The parameter vector
p is then assumed to be measurable and at each event step k ∈N belongs to the set

P :=
{

p(·) ∈ {0,1}np

∣∣∣∣∣ np∑
i=1

pi (·) = 1

}
. (5.6)

Then the system matrices of a switching max-plus linear system can be described as
(5.5),(5.6), without the requirement of fixed finite structures as in polytopic MP-LPV sys-
tems.

Interval MP-LPV system. In some situations, due to the presence of uncertainties, the
timing of events is not exactly specified. Instead, the timing of any event is assumed
to be non-deterministic, and contained in a (known) bounded interval [149]. This, for
instance, is also the case in the modelling of P-Time event graphs [205]. In the same vein,
an interval model in the max-plus algebra can be modelled in the MP-LPV framework
analogously to the interval models in the conventional LPV framework [56].

6The finite structure of a matrix-valued function A : P → Rn×m
ε is defined as the support of its finite compo-

nents: S⊕(A) =
{

(i , j ) ∈ n ×m
∣∣∣[A(p)]i j is finite for all p ∈P

}
.

7Recall from Section 2.2 that we follow the convention: ε⊗
a = a ·ε= ε for a > 0 and ε⊗

0 = 0 ·ε= 0.
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Let the system matrices be defined as

Aµ(p(k)) = A(0)
µ +∆Aµ(p(k)), µ ∈ [M ],

B(p(k)) = B (0) +∆B(p(k)), C (p(k)) =C (0) +∆C (p(k)),
(5.7)

where {A(0)
µ }µ∈[M ], B (0), and C (0) are known matrices of appropriate dimensions and fixed

finite structures. The matrix functions ∆Aµ, ∆B , and ∆C depend on the (unmeasured)
parameter vector p(·) ∈P . Then assuming that for all p(·) ∈P , we have

∆Aµ ≤∆A(p(·)) ≤∆Aµ, µ ∈ [M ],

∆B ≤∆B(p(·)) ≤∆B , ∆C ≤∆C (p(·)) ≤∆C ,
(5.8)

where∆M and∆M are known bounds for M ∈ {
{∆Aµ}µ∈[M ],∆B ,∆C

}
, we obtain an inter-

val model in the max-plus algebra in the MP-LPV framework.

(Quasi) MP-LPV system. The most general MP-LPV system results from abstracting
away (max-plus) non-linearity in the system. This results in a max-plus linear, albeit
non-stationary dynamical representation. Let the parameter vector be defined as:

p(k) = [
x⊺(k), x⊺(k −1), . . . , x⊺(k −M),u⊺(k), z⊺(k)

]⊺ ∈P . (5.9)

The exogenous input signal z(·) ∈Rnz is assumed to be independent of the state x(·) ∈Rn ,
the control input u(·) ∈ Rnu , and the output y(·) ∈ Rny . Thus, the MP-LPV description
(5.2), (5.9) can encode more general constraints on timing of events than a max-plus
linear system.

In the context of timed-event graphs, the examples involving state-dependent para-
metric variations in a max-plus linear system model can be found in [43, 144]. The au-
thors of [43, 144] study the control and performance analysis of timed-event graphs un-
der (known) periodic variations in timing of events along the event counter k ∈N.

5.2.2. MODELLING RELATIONSHIPS
In this subsection, we establish a relationship between the class of implicit MP-LPV sys-
tems (5.2), (5.9) and that of max-min-plus-scaling (MMPS) systems (as in Definition
2.4.9). It is noted that MMPS systems are equivalent to continuous piecewise affine sys-
tems [75, Proposition 2.5]. We first recall the following result:

Lemma 5.2.1 (Max-min canonical form [75]). An MMPS function fMMPS :Rn →R can be
rewritten into the max-min canonical form:

fMMPS = max
i∈L

min
j∈ni

(
α⊤

(i , j )x +β(i , j )

)
, (5.10)

for some L,ni ∈N, α(i , j ) ∈Rn , and β(i , j ) ∈R. ■
The vector-valued MMPS functions satisfy the preceding statement componentwise.

We make the following assumption on the MP-LPV system representation (5.2), (5.9).
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Assumption 5.2.1. The finite entries of the system matrices {Aµ(·)}µ∈[M ], B(·), and C (·) are
continuous piecewise affine in the parameter p(·) ∈ P . It is also assumed that the system
description in (5.2) is structurally finite. Mathematically, the matrix

F (·) =
[

A0(·) A1(·) · · · AM (·) B(·) E

E E · · · E E C (·)
]

(5.11)

is row finite. The finite structure of the matrix F (·) is assumed to be independent of the
parameter p(·). ♢

The assumption on affine dependence is not very restrictive as it still allows arbi-
trarily accurate approximations of non-linear and non-smooth processes. It is noted
that a continuous piecewise affine function can be rewritten as an MMPS function [75].
Therefore, functional dependence involving max-plus and min-plus operations (as in
[106, 167]) can be conveniently expressed using piecewise affine functions. Secondly,
physical systems are typically structurally finite. This ensures that the states do not be-
come ε for finite initial states. This is required, for instance, when the trajectories are
non-decreasing as they represent timing of event occurrences.

Theorem 5.2.1 (Equivalence of MMPS and MP-LPV systems). Under Assumption 5.2.1,
the classes of MP-LPV systems (5.2), (5.9) and MMPS systems (Definition 2.4.9) coincide.

Proof. For the first part, it is sufficient to note that the definition of an implicit
MP-LPV system (5.2), (5.9) involves only the basic constructors of an MMPS expression
(3.12):

• All finite elements of the system matrices in (5.2), such as [Aµ(·)]i j = fµ,i j (·) ̸= ε,
are continuous piecewise affine in the variables x(·), u(·), and z(·). By corollary,
they involve only MMPS expressions [75].

• As the definition of the MMPS expressions is recursive, the equations of the form
(5.2) again consist of only MMPS expressions.

• The assumption on structural finiteness (Assumption 5.2.1) ensures that state
equation in (5.2) maps RM ·n+nu into Rn . Similarly, the regularity of the matrix C
ensures that the output equation in (5.2) always maps Rn into Rny .

Therefore, the class of MP-LPV systems (5.2) is contained in the class of MMPS systems.
Now we show that the MMPS system (2.51) can be written in the form (5.2). The

states x ∈Rn and inputs u ∈Rnu , z ∈Rnz are first collected as:

w(k) = [
x⊤(k), . . . , x⊤(k −M), u⊺(k)

]⊤ ∈Rnw ,

p(k) = [
w⊺(k), z⊺(k)

]⊤ ∈Rnp ,
(5.12)

where nw = M ·n +nu, np = nw +nz. Consider now an MMPS system described as

x(k) = fMMPS(p(k)), (5.13)
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where the components fMMPS,l :Rnp →R, l ∈ n, are MMPS functions. Then from Lemma
5.2.1, for every l ∈ n there exist scalars N ,ni ∈N such that

xl (k) = max
i∈N

min
j∈ni

γl ,(i , j )(p(k)),

= max
i∈N

gl ,i (p(k))
(5.14)

where γl ,(i , j )(·) are piecewise affine functions for every l ∈ n and (i , j ) ∈ N ×ni. As min-
imum over piecewise affine functions is again a piecewise affine function [75], the last
equality follows by defining piecewise affine functions gl ,i (·) := min j∈ni γl ,(i , j )(·).

It is noted that we can always augment the max expression in (5.14) with “void” terms
of the form max(s,ε,ε, . . . ). Therefore, the scalar N can be incremented suitably for the
subsequent argument. We now define subsets Nt ⊂ N such that Nt ̸= ;, t ∈ nw, of the set
N such that Nt ∩Ns =; for t ̸= s and ∪t∈nw Nt = N . Then from (5.14), we have

xl (k) = max
t∈nw

(
max
i∈Nt

gl ,i (p(k))

)
= max

t∈nw

(
max
i∈Nt

(
gl ,i (p(k))−wt (k)+wt (k)

))
= max

t∈nw

(
fl t (p(k))+wt (k)

)
.

(5.15)

Here, the last equality follows by defining functions fl t :Rnp →Rε for l ∈ n and t ∈ nw,

fl t (p(k)) := max
i∈Nt

(
gl ,i (p(k))−wt (k)

)
. (5.16)

Collecting terms in (5.15) and defining a matrix F (·) ∈ Rn×nw
ε with elements [F (·)]l t :=

fl t (·), we have
x(k) = F (p(k))⊗w(k). (5.17)

A suitable partition of the matrix F (·) as

F (p(k)) = [
A0(p(k)) · · · AM (p(k)) B(p(k))

]
(5.18)

results in an MP-LPV system of the form (5.2). It is noted that the finite elements of the
matrix F (·) are continuous piecewise affine in the parameter p(·). By construction, the
system (5.17) remains structurally finite even after the introduction of ε elements in the
matrix F (·).

A similar argument can be applied to rewrite the output equation in (2.51) as the
output equation of (5.2). Therefore, a given MMPS system can be rewritten as an MP-
LPV system. ■

It is noted that the MP-LPV model resulting from an MMPS system using the proce-
dure described in the preceding theorem might not be unique. For instance, this loss of
uniqueness can arise due to the introduction of ε elements in the expression (5.15). This
can lead to different choices for the finite structure8 of the matrix-valued function F (·) in

8See footnote 6.
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(5.17). Therefore, the proof only shows that the system representations can be translated
from one to the other but might not result in a model respecting the incidence structure
of the underlying discrete-event system. The preceding result allows the tools designed
for analysis and control of either class of systems to be applied to the other class of sys-
tems.

In the context of uniqueness of the model, we present a canonical form of MP-LPV
systems (5.2), (5.9) in the next subsection to simplify the subsequent analysis.

5.2.3. CANONICAL FORM OF MP-LPV SYSTEMS
The Assumption 5.2.1 allows us to rewrite the MP-LPV system (5.2), (5.9) such that it
facilitates further analyses. The following canonical form of an MP-LPV system is partic-
ularly useful for studying the existence of finite state trajectories.

Lemma 5.2.2 (MP-LPV system canonical formulation). Consider an implicit MP-LPV
system (5.2), (5.9) under Assumption 5.2.1. Then the dynamics can be rewritten in the
following canonical form9 for µ ∈ [M ]:

x(k) =
M⊕
µ=0

(
Aµ

(
p(µ)(k)

)⊗x(k −µ)
)⊕B(p(1)(k))⊗u(k),

y(k) =C (p(k))⊗x(k),

p(µ)(k) = [
x⊤(k −µ), . . . , x⊤(k −M),u⊺(k), z⊤(k)

]⊤ ∈P (µ), µ ∈ [M ].

(5.19)

Here in comparison to (5.2), the matrix Aµ(·) is independent of the states x(k − m) for
m <µ and the matrix B(·) is independent of the state x(k).

Proof. Consider the MP-LPV system in (5.2), (5.9). We only show here the trans-
formation of matrices Aµ(·) for µ ∈ [M ]. The transformation required for the matrix B(·)
follows accordingly. Then without a loss of generality, we assume that the inputs u(·) and
z(·) are absent from the description as they do not affect the subsequent transformation
to the canonical form. For the sake of this proof, we have np = n(M +1) in (5.2).

The property P(M), M ∈N, is said to be satisfied if the state dynamics in (5.2) can be
rewritten as in (5.19) for orders µ ∈ [M ]. We now prove the result by induction.

It is first noted that the property P(0) holds trivially with p(0)(k) = p(k), P (0) =P , and
A0

(
p(0)(k)

)= A0(p(k)).
Assuming that the property P(M −1) holds for some M > 1, we have for indices i ∈ n:

xi (k) = max
µ∈[M−1]

max
j∈n

(
f (µ)

i j

(
p(µ)(k)

)+x j (k −µ)
)

, (5.20)

where f (µ)
i j : P (µ) → Rε, for all i , j ∈ n and each µ ∈ [M −1]. Also, f (µ)

i j (·) does not depend

on x(k −m) for m <µ.
We now show that given P(M −1), the property P(M) is satisfied as well. Under As-

sumption 5.2.1, the finite structures S⊕(·) of the system matrices in (5.2) are fixed. From

9With a slight abuse of notation, Aµ(p(·)) := Aµ(p(ν)(·)), µ,ν ∈ [M ] signifies that the matrix Aµ(·) is only depen-

dent on the terms in p(ν)(·).
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Lemma 5.2.1, we have for (i , j ) ∈S⊕(Aµ(·)) and orders µ ∈ [M ]:

[Aµ(p(k))]i j = fµ,i j (p(k)) = max
q∈Q

min
r∈nq

(α⊺
(q,r )p(k)+β(q,r ))

= max(min(γ11(p), . . . ),min(γ21(p), . . . ),

. . . ,min(γQ1(p),γQ2(p), . . . )),

= max
q∈Q

(gq (p(k)))

(5.21)

where10 γqr (·) :=α⊤
(q,r )p(·)+β(q,r ), q ∈Q and r ∈ nq , and gq (·) := minr∈nq

(
γqr (·)), q ∈Q.

Moreover, [Aµ(·)]i j = fµ,i j (·) ≡ ε for (i , j ) ∉ S⊕(Aµ). Then from the associativity of the
max operation, we have for i ∈ n:

xi (k) = max
µ∈[M ]

max
j∈n

(
fµ,i j (p(k))+x j (k −µ)

)
= max

j∈n

(
max

µ∈[M−1]

(
f̄ (µ)

i j

(
p(µ)(k)

)+x j (k −µ)
)

,

fM ,i j (p(k))+x j (k −M)
)
.

(5.22)

Here, the last equality follows by invoking P(M − 1). Let αi j (M) = fM ,i j (p(k))+ x j (k −
M). Now it remains to show that any term dependent on x(k −m), for m < M , can be
moved from αi j (M) to the rest of the terms in the expression of xi (k) while preserving
the canonical form.

Let x(k −m), for some m ∈ [M ], be the smallest order term present in the expression
of fM ,i j (·) in (5.21). Then, we have

αi j (M) = max
q∈Q

(
gq

(
p(m)(k)

))+x j (k −M)

= max
q∈Q

(
gq

(
p(m)(k)

)+x j (k −M)−x j (k −m)
)

+x j (k −m),

= max
q∈Q

(
ḡq

(
p(m)(k)

))+x j (k −m)

= f̄M ,i j
(
p(m)(k)

)+x j (k −m).

(5.23)

Let e{ j } denote the j -th unit vector of Rn(M+1) such that [e{ j }]i = 1 if i = j and [e{ j }]i = 0
otherwise. Then the last equality in (5.23) follows by redefining the affine functions11 in
(5.21) for q ∈Q and r ∈ nq as

γqr (p(k)) = γqr (p(k)+x j (k −M)−x j (k −m)

= (
α(q,r ) +e{n·M+ j } −e{n·m+ j }

)⊺ p(k)+β(q,r ),
(5.24)

10The indices i , j ∈ n and µ ∈ [M ] are omitted for the sake of brevity of the expression for the matrix compo-
nents [Aµ(·)]i j .

11Addition ‘+’ distributes over max and min operations in the scalar case.
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and similarly the functions ḡq (·) in (5.23) for q ∈ Q. Substituting the expression for
αi j (M) in (5.23) back into (5.22), we have

xi (k) = max
j∈n

(
max

µ∈[m−1]

(
f̄ (µ)

i j (p(µ)(k)
)
+x j (k −µ)),

max
(

f̄ (m)
i j (p(m)(k)), f̄M ,i j (p(m)(k))

)
+x j (k −m),

max
µ∈{m+1,...,M−1}

(
f̄ (µ)

i j (p(µ)(k))+x j (k −µ)
))

= max
µ∈[M ]

max
j∈n

(
f (µ)

i j (p(µ)(k))+x j (k −µ)
)

.

(5.25)

Here, the last equality results by noting that i) the maximum of two piecewise affine
functions can again be expressed as a piecewise affine function of its variables12 ([75,
118]), and ii) f (M)

i j (·) := ε for all j ∈ n if m < M in (5.23). The new systems matrices

{Aµ(·)}µ∈[M ] are updated accordingly as in (5.21).
As the procedure is recursive for all i ∈ n, the preceding expression for xi (k) and

hence that of x(k) can be expressed in the canonical form (5.19). As P(M − 1) implies
P(M), the property P (M) holds for every M ∈N by the principle of induction. The same
argument can be extended to rewrite the terms dependent on x(k) in B(·)⊗u(k) as terms
in A0(·)⊗x(k) to obtain the final canonical form (5.19). ■

The most important advantage of the MP-LPV canonical form (5.19) is that the im-
plicitness is now concentrated in the A0(·) matrix. We now look at the analysis to show
the existence of state trajectories of the MP-LPV system (5.19).

5.3. SOLVABILITY OF MP-LPV SYSTEM
The dependence of the matrices {Aµ(·)}µ∈[M ] and B(·) on the current state x(k) can result
in an implicit system of equations. Unfortunately, such an implicitness cannot always
be resolved by the usual Kleene star operation (see Lemma 2.2.5). We would like to in-
vestigate the existence and uniqueness of finite trajectories (x(·),u(·), z(·)) of the MP-LPV
system (5.19). Therefore, we introduce the following definition:

Definition 5.3.1 (Solvability). Consider the MP-LPV system in (5.2). The system is said
to be solvable at a given event step k ∈ N, k > M , if for every x(k − j ) ∈ Rn for all j ∈ M ,
u(k) ∈Rnu and p(k) ∈P , there exists a unique state x(k) ∈Rn that satisfies (5.2). □

The resulting solvability problem then looks at the formulation of a priori guarantees
to ensure the existence of unique finite state x(k) given the input and parameter values
at event step k, and the past state values. The notion of solvability is defined analogously
to that of implicit nonlinear discrete-time systems [83], and discrete-time linear systems
in the descriptor form [154].

5.3.1. APPROACH
We adopt a modular approach in investigating the solvability problem for MP-LPV sys-
tems. The following cases can be identified based on the degree of implicitness present

12We note that the argument also holds if f̄ m
i j (p(m)(k)) = ε in (5.25) as ε is an identity with respect to the max

operation.
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in the system model (5.19):

Explicit. For the case A0(·) = En×n , we achieve an explicit MP-LPV system. A cursory
inspection of (5.19) reveals that the state x(k) is then only dependent on p(1)(k) and u(k).
Therefore, the regularity of system matrices {Aµ}µ∈M (as in Assumption 5.2.1) is sufficient
for solvability (as in Definition 5.3.1) of the MP-LPV system.

Single Implicit. For the case A0(p(·)) := A0(p(η)(·)) for η ≥ 1, we achieve a single im-
plicit MP-LPV system. Herein, the implicitness can be resolved using the Kleene star
operation resulting in an explicit MP-LPV system. Given that the system matrices are
regular (as in Assumption 5.2.1), solvability at each event step k ∈ N is ensured if the
Kleene star A⋆0 (p(1)) exists (see Lemma 2.2.5). The uniqueness is guaranteed if the asso-
ciated directed graph G (A0(·)) has negative circuit weights.

Doubly Implicit. In the most general case, the implicitness in the current state also
appears due to the parametric dependence of the matrix A0(x(k); p(1)(k)) on x(k). This
results in a doubly implicit MP-LPV system. The resulting existence problem for a solu-
tion to such a system of equations has not yet been studied in literature. We provide a
sufficient condition to ensure solvability under certain practically relevant assumptions
.

In the subsequent subsections, we present algebraic approaches to study the solv-
ability problem for the MP-LPV systems (5.19).

5.3.2. NECESSITY

In this subsection, we restrict our attention to the solvability problem for a single implicit
MP-LPV system (5.19) with A0(p(·)) := A0(p(η)(·)) for η≥ 1. The following result is a direct
consequence of Lemma 2.2.16 to the state equation of a single-implicit MP-LPV system.

Lemma 5.3.1 (Solvability of single-implicit MPLPV system). Consider a single implicit
MP-LPV system in (5.19), A0(p(·)) := A0(p(η)(·)) for η≥ 1. The state solution to the system
x(k) at a given event step k ∈N, k > M, exists if and only if A⋆0 (p(1)(k)) exists. Equivalently,
the state solution exists if and only if the largest max-plus eigenvalue of A0(p(1)(k)) is non-
positive, λ(A0(p(1)(k))) ≤ 0. ■

We now show that the solution to the state equation (5.19), for the case of single im-
plicit MP-LPV system, can be computed explicitly if it exists. The following result relies
on the fact that A0(p(·)) only depends on past state information and hence can be com-
puted analytically.

Theorem 5.3.1 (Solvability condition). Consider a single implicit MP-LPV system in
(5.19) with A0(p(·)) := A0(p(η)(·)) for η ≥ 1. The set of past state information p(1)(k) at
any given event step k ∈ N, k ≥ M, such that a unique state solution x(k) to the implicit
MP-LPV system exists, is a union of convex polyhedra.
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Proof. Let the finite structure of the matrix A0(·) be given as:

S⊕(A(·)) = {
(i , j ) ∈ n ×m | [A(·)]i j is finite

}
. (5.26)

Let a denote the vector of finite entries of the matrix A0(·). The max-plus eigenvalue
problem for the matrix A0(·) is given as a linear program:

min
λ,s

λ (5.27a)

subject to ai j + s j − si ≤λ ∀(i , j ) ∈S⊕(A(·)). (5.27b)

A unique state solution to the single implicit MP-LPV system exists if and only if
λ(A0(·)) < 0 (see Lemma 5.3.1). Then the set of decision variables s ∈ Rn and parameter
values a such that λ(A0(·)) < 0, can be expressed as a convex polyhedron for a suitable
choice of a matrix S and a slack vector sϵ:

Λ= {
[a⊺, s⊺]⊺

∣∣ S · [a⊺, s⊺]⊺ ≤ sϵ
}

, (5.28)

Then the set of all finite entries of matrix A0(·) such that a unique solution exists to the
MP-LPV system can be obtained as a projection of Λ on the a-subspace and expressed
in the half-space description:

Λa = proja(Λ) = {a | Sa ·a ≤ ba}. (5.29)

Under Assumption 5.2.1, used to define the MP-LPV system in (5.19), the finite elements
of matrix A0(·) are continuous piecewise affine functions of the parameter p(·) ∈ P .
Then there exist matrices Gi ∈ Rn×np , vectors gi ∈ Rn , and a partition, the elements of
which have non-overlapping interiors, of the state space {Ωi }i∈m ,Ωi = {p | Ri ·p(1)(·) ≤ ri }
for i ∈ m, such that

a(p(·)) =Gi ·p(1)(·)+ gi , if p(1)(·) ∈Ωi . (5.30)

The setΛp,i of vectors p(1)(·) contained inΩi such that the corresponding a(p(·)) is con-
tained in the subspaceΛa can be represented as

Λp,i =
{

p(1)(·)
∣∣∣[Sa ·Gi

Ri

]
·p(1)(·) ≤

[
ba −Sa · gi

ri

]}
, i ∈ m. (5.31)

Note that the intersection of two convex polyhedra is again convex. Then at any given
event step k ∈ N, the set of past states p(1)(k) such that a unique solution x(k) to the
MP-LPV system exists is given as:

p(1)(k) ∈Λp ≜
m⋃

i=1
Λp,i . (5.32)

■
The proposed solvability condition in the preceding theorem allows us to readily

check for existence of a finite state solution at any given event step.

Corollary 5.3.1. A single implicit MP-LPV system, with A0(p(·)) := A0(p(η)(·)) for η≥ 1, is
solvable at any given step k ∈N, k > M, if and only if p(1)(k) ∈Λp as in (5.32). ■

We show how the solvability condition in Theorem 5.3.1 can be used to derive con-
ditions for existence of finite trajectories over a possibly infinite-step event horizon in
Section 5.4.2.
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5.3.3. PRACTICAL SUFFICIENCY
In this subsection, we provide a sufficient condition for the solvability of a doubly-
implicit MP-LPV system (5.19) under certain practically relevant assumptions.

We note that at every event step k ∈ N0, the state update of a doubly implicit MP-
LPV system (5.19) amounts to solving a fixed point problem in the current state x(k)
for a (vector-valued) max-min-plus-scaling function. This follows from the equivalence
presented in Theorem 5.2.1. We first treat the problem analytically starting with certain
assumptions.

Given an index j ∈ n, let the state x(k) be partitioned as

x(·) =



x1(·)
...

x j−1(·)
x j (·)

x j+1(·)
...

xn(·)



x(− j )(·)

x(+ j )(·)

(5.33)

We now make the following assumptions.

Assumption 5.3.1. The doubly implicit MP-LPV system in (5.19) is assumed to satisfy the
following assumptions:

1. The matrix A0(·) is reducible and in the lower-triangular form (3.12);

2. The finite components of matrix A0(·) are max-plus-scaling functions (see Defini-
tion 2.4.6) of the parameter p(k).

3. The finite components of the matrix A0 are defined such that for i , j ∈ n with i ≤ j ,
we have [A0(·)]i j := [A0(x(−i )(k), xi (k), p(1))]i j . ♢

The first assumption on the lower-triangular form of the matrix A0(·) ensures that
any circuit present in the underlying directed graph is a self-loop (see Definition 2.2.10).
In context of a max-plus linear system (obtained by fixing matrices {Aµ}µ∈[M ], B , and C in
(5.2)), the associated timed-event graph is live if the matrix A0 is strictly lower triangular
under a convenient permutation of the coordinates [17, §2.5.3]. The liveness property al-
lows a straight-forward recursive evaluation of the state variables x j (k) for all j = 1, · · · ,n
and k ∈N. The first assumption is then less restrictive than usually made in the literature
on timed-event graphs. The last assumption ensures that state equations for x j (·), j ∈ n,
are causal. Therefore, the first and the last assumptions together allow us to recursively
define the evolution equations for the states x j for j ∈ n. These state equations can still
be implicit as opposed to that obtained for live timed-event graphs. The practical rel-
evance of these assumptions in the context of the case study of a unidirectional urban
railway line will be discussed in Section 5.5.

Under Assumption 5.3.1, the state at event step k can be expressed as

xi (k) = gi (xi (k)) = max
j≤i

[
A0(p(0)(k))

]
i j ⊗xi (k)⊕ ri (k)

= max
(

f (i )
MPSε

(
x(−i )(k), xi (k), p(1)(k)

)
,ri (k)

)
,

(5.34)
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where the function f (i )
MPSε(·) is an extended real-valued max-plus scaling function (see

Definition 2.4.6) in xi (k) for some N ∈N:

f (i )
MPSε(·) = max

l∈N

(
α(i )

l xi (k)+β(i )
l (x(−i )(k), p(1)(k))

)
+δ(i )

0 , (5.35)

where δ(i )
0 = ε if [A0(·)]i j = ε for all j ∈ n, and δ(i )

0 = 0 otherwise, irrespective of the pa-

rameter p(k). The known terms are collected in β(i )
l (·) and r (k) ∈Rn

ε as

r (k) =
M⊕
µ=1

(
Aµ(p(µ))(k))⊗x(k −µ)

)
⊕B(p(1)(k))⊗u(k). (5.36)

Therefore, the states xi (k) can be evaluated in increasing order of indices i ∈ n as a uni-
variate fixed-point problem.

We now note that under Assumption 5.3.1 2, the function f (i )
MPSε(·) and in turn the

expression for xi (k) in (5.34) are monotone functions (see Definition 2.4.6 and subse-
quent discussion). This allows us to apply results from fixed-point theory of monotone
functions.

Lemma 5.3.2 (Existence of fixed points, [4]). Let h : Rn → Rn be a monotone function. If
the set {x ∈ Rn | h(x) ≤ x} is bounded from below, the function h attains the smallest fixed
point that satisfies:

x∗ = h(x∗) = inf
{

x ∈Rn ∣∣h(x) ≤ x
}

. ■
The boundedness of the set {x ∈ Rn | h(x) ≤ x} for a monotone function h is not en-

sured by the existence of the smallest fixed point [4]. Therefore, the preceding condition
is not necessary for the existence of fixed points of a monotone function. We now present
the main result of this subsection.

Theorem 5.3.2 (Practical solvability). For every i ∈ n, there exists a unique solution xi (k)

to (5.34) if for every l ∈ N , the function f (i )
MPSε(·) in (5.35) satisfies 0 <α(i )

l < 1.

Proof. We leverage the monotonicity of the functions fi (·), i ∈ n, in (5.34) to show
that there exists a unique solution x(k) for a given past state and input data under the
proposed condition. Due to the problem setup, it is sufficient to prove the result for an
arbitrary index i ∈ n.

We first remark that under Assumption 5.2.1 on structural finiteness of the system
description in (5.19), ri (k) is finite if f (i )

MPSε(·) = ε, and vice versa. For the former case, we
have xi (k) = ri (k). Therefore, a unique solution to (5.34) exists trivially. We now treat the
problem of existence and uniqueness when δ(i )

0 = 0 in (5.35).

Uniqueness. For the case when δ(i )
0 = 0 in (5.35), we require

Fi (xi (k)) = max
(

f (i )
MPSε(xi (k)),ri (k)

)
−xi (k)

= max
l∈[N ]

(
(α(i )

l −1) xi (k)+β(i )
l (·)

)
= max

l∈[N ]

(
α(i )

l xi (k)+β(i )
l (·)

)
= 0,

(5.37)
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where α(i )
0 = 0 and β(i )

0 (·) = ri (k). The function Fi (·) is again a continuous piecewise

affine function. Under the given conditionα(i )
l < 1, we haveα(i )

l < 0 for all l ∈ [N ]. Hence,
Fi (·) is a strictly decreasing continuous function. Therefore, if there exists a zero-crossing
then it is unique.

Existence. Under the assumption α(i )
l > 0, for all l ∈ N , in (5.35), the function f (i )

MPSε is
a monotone function in xi (·). As (pointwise) maximisation preserves monotonicity, we
have that the function gi (·) in (5.34) is also monotone in xi (·).

We show that the set Γi = {t ∈ R | gi (t ) ≤ t } is lower bounded for gi defined in (5.34)
when α(i )

l > 0 in (5.35). The required result then follows from Lemma 5.3.2.
In the case ri (k) is finite, then the function gi (·) is bounded from below, i.e.

gi (xi (k)) ≥ ri (k) for all xi (k) ∈R. Therefore, a solution exists.
Lastly, we consider the case when ri (k) = ε such that g (·) = fMPSε(·). It is then suffi-

cient to show that the set Γi is non-empty and bounded from below. Let

x∗ = max
l∈N

β(i )
l (·)

1−α(i )
l

. (5.38)

Then we have f (i )
MPSε(x∗) ≤ x∗ for all α(i )

l ∈ (0,1). Also, x∗ is the smallest element of Γi .
This completes the proof. ■

The condition provided in the preceding theorem is only sufficient for existence and
uniqueness. It is indeed possible to obtain a solution to (5.34) for α(i )

l > 1 depending on

the values of β(i )
l (·), i ∈ n. This, however, can lead to zero or multiple zero-crossings of

the function Fi (·). We find that such cases are not of any physical importance to the case
study presented in Section 5.5. The generalisation of the result obtained on practical
solvability to other applications is still a topic of investigation.

The solution to the fixed point equation (5.37) can be found using an interval inter-
polation line-search algorithm, Newton’s gradient descent [81], Kleene star (monotone)
iteration [64], policy iteration [4], or mixed-integer programming [71].

5.4. INVARIANT SOLVABILITY
In this section, we describe the invariant solvability problem that extends the notion of
solvability over an infinite event-step horizon starting from admissible initial conditions
by restricting parameter values.

5.4.1. PROBLEM STATEMENT
We first note that a free choice of the initial conditions {x( j )} j∈M can lead to inconsis-
tencies in the system equations (5.2). We call a given initial condition admissible if the
implicit algebraic relation (5.2), relating the states {x(k − j )} j∈M , the control input u(k),
and the parameter value p(k), holds for k = M .

To simplify the treatment, we only consider the autonomous case in the absence of
control inputs, i.e. u(k) = Enu for all k ∈N0. Note that causal feedback control inputs can
still be treated in our framework.

Definition 5.4.1 (Invariant solvability). Consider the MP-LPV system in (5.2) in the ab-
sence of exogenous and control inputs. The system is said to be invariantly solvable if
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there exist sets X ⊆ Rn and P ⊆ Rnp such that given an admissible initial set of states
{x( j )} j∈M , there exists a unique state trajectory x(k) ∈X with p(k) ∈P for all k ∈N that
satisfies (5.19). □

Note that in the preceding definition, X is a robust positively invariant set for all pa-
rameter values in P . Moreover, the set of admissible initial conditions are also required
to satisfy x( j ) ∈ X for j ∈ M . The characterisation of existence of solutions to conven-
tional implicit discrete-time systems using invariant subspaces can be found in [19].

The invariant solvability problem for the case of a (quasi) MP-LPV systems (5.19)
boils down to the characterisation of the set P as it also contains the set of initial con-
ditions X0. In the following, we treat the autonomous case of the invariant solvability
problem, in the absence of exogenous and control inputs.

5.4.2. BACKWARD REACHABILITY
This subsection is an extension of the necessary solvability conditions provided in Sec-
tion 5.3.1 for an autonomous single-implicit MP-LPV systems, (5.19) with A0(p(·)) :=
A0(p(η)(·)) for η ≥ 1. We say that the system dynamics is autonomous if it does not
depend on the exogenous and control input signals z(·) and u(·) respectively. We treat
the problem of invariant solvability for the general case of a single-implicit MP-LPV sys-
tem with A0(p(·)) := A0(p1(·)). The section utilises tools from piecewise affine analysis
as detailed in Section 2.4.3. Recall that the maximal positively invariant set for an au-
tonomous dynamics is defined as the largest set containing all positively invariant sets
of the dynamics contained in a given set (see Definition 2.4.11).

We intend to compute the maximal positively invariant set contained in Λp (derived
in Theorem 5.3.1) such that the solution exists for all k ∈ N. Equivalently, we compute
the largest setΩp ⊆Λp such that there exists a unique trajectory p(1)(k) ∈Λp for all k ∈N,
k > M , if p(1)(M) ∈Ωp.

Lemma 5.4.1 (Single-implicit to explicit MP-LPV). Consider an autonomous single-
implicit MP-LPV system in (5.19) with A0(p(·)) := A0(p(η)(·)) for η= 1. Assume a counter
k ∈ N such that p(1)(k) ∈ Λp , as defined in (5.31) and (5.32). Then the explicit state-
solution of the single implicit MP-LPV system for the fixed k ∈N is given as

x(k) = A⋆0 (p(1)(k))⊗
M⊕
µ=1

(
Aµ

(
p(µ)(k)

)⊗x(k −µ)
)
, (5.39)

where

A⋆0 (p(1)(k)) =
n−1⊕
i=0

A0
⊗i

(p(1)(k)). (5.40)

Proof. We first note that if p(1)(k) ∈ Λp , then the largest max-plus eigenvalue of
A0(p(1)(k)) is non-positive and a unique state-solution to the single implicit MP-LPV sys-
tem exists due to Lemma 5.3.1 and Theorem 5.3.1.

In particular, the matrix A⋆0 (p(1)(·)) can be readily expressed in a closed form (5.40)
using the result presented in Lemma 2.2.5 for an arbitrary p(1)(·) ∈Λp.

The preceding observation allows us to employ the result of Lemma 2.2.16 to solve
an implicit system of equations in max-plus algebra. The state-solution to the single-
implicit MP-LPV system is then given by (5.39). This completes the proof. ■
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We note that the formulation (5.40) of the matrix A⋆0 (p(1)(·)) is a max-min-plus-
scaling expression (Definition 2.4.7) in the parameter vector p(1)(·) . Hence, the system
dynamics of an autonomous single-implicit MP-LPV system, derived from (5.19), can
be expressed as an autonomous MMPS system evolving over a discrete counter k ∈ N,
k ≥ M :

p(1)(k +1) = f (p(1)(k)), p(1)(k) ∈Λp , (5.41)

where f :Rnp →Rnp is an MMPS function andΛp is obtained from (5.32).
We recall here that the class of MMPS systems coincides with continuous piecewise

affine systems [75, Proposition 2.5]. Therefore, the results of Section 2.4.3 can be applied
to compute the maximal positively invariant set for the dynamics (5.41) contained in
Λp. Here, we adapt Algorithm 1 to compute the maximal positively invariant for a given
single-implicit MP-LPV system.

Algorithm 2 Computation of O∞(X).

Input: Dynamics (5.41), Constraint set X=Λp

Output: O∞(X)
k ←−1
Ψ(0) ←X

while Ψ(k+1) ̸=Ψ(k) do
k ← k +1
Ψ(k+1) ←Q(Ψ(k))∩Ψ(k) ▷ (5.42)

end while
O∞(X) ←Ψ(k)

As discussed in Section 2.4.3, we are required to compute the pre-image set, i.e. the
set of states that map into a given setΨ⊆Rn under the dynamics:

Q(Ψ) = {
p ∈Λp

∣∣ f (p) ∈Ψ}
. (5.42)

We recall that an MMPS dynamics can be rewritten as a piecewise affine dynamics
[75]. Then there exists a polyhedral partition

{
Υ j

}
j∈J of the state-spaceΛp, such that the

MMPS dynamics in (5.41) can be equivalently written as:

p(1)(k +1) = T j ·p(1)(k)+ t j , p(1)(k) ∈Υ j ≜
{

p(1)(·) ∣∣ S j ·p(1)(·) ≤ s j
}

, j ∈ J . (5.43)

Lemma 5.4.2 (Pre-image of piecewise affine systems). Consider the piecewise affine dy-
namics in (5.43). Let Ψ be defined as a union of polyhedra. Then the pre-image set Q(Ψ),
as given in (5.42), is again a union of polyhedral sets.

Proof. We prove the lemma for the case when Ψ = ⋃m
i=1Λp,i , where Ψi =Λp,i is de-

fined in (5.31). The proof follows along the lines of [189, Theorem 4].
The required pre-image set (5.42) for (5.43) can be computed as (see Lemma 2.4.6)

Q(Ψ) = ⋃
i∈m

⋃
j∈J

Q j (Ψi ). (5.44)



118 5. MAX-PLUS LINEAR PARAMETER-VARYING SYSTEMS

Figure 5.1: Unidirectional urban railway line with J stations and K trains. The boarding and disembarking
times for each train k ∈ K at any given station j ∈ J are denoted as τb, j (k) and τd, j (k), respectively. Passengers
arrive at a constant rate λ j per unit time at all the stations. The passengers alight the train at a constant rate b
per unit time.

where

Q j (Ψi ) = {
p ∈Λp

∣∣ p+ = f (p) ∈Ψi , p ∈Υ j
}

(5.45)

= {
p

∣∣ p+ = f (p) ∈Ψi
}∩{

p
∣∣ p ∈Υ j

}
(5.46)

=
p

∣∣∣∣
Sa ·Gi ·T j

Ri ·T j

S j

 ·p ≤
ba −Sa · gi −Sa ·Gi · t j

ri −Ri · t j

s j

 . (5.47)

Finally, since each non-empty set Q j (Ψi ) is a polyhedron, the set Q(Ψ) is a union of
polyhedra. ■

Now we note that Algorithm 2 generates a non-increasing sequence of sets Ψ(k+1) ⊆
Ψ(k). If the sequence of sets Ψ(k) converges, we obtain the maximal positively invariant
set O∞(Λp) for the system dynamics (5.43). Moreover, if Ψ(k) = ; for a finite k ∈N then
O∞(Λp) =;. In general, there can exist an infinite sequence of sets {Ψ(k)}k∈N. Therefore,
the algorithm might not converge.

Theorem 5.4.1. Consider Algorithm 2 such that there exists a finite j ∈ N for which
Ψ( j+1) =Ψ( j ). ThenΨ( j ) is a maximal positively invariant set for the dynamics (5.41).

Proof. The proof is trivial [188, Lemma 2]. ■
The set O∞(Λp) obtained from finite termination of Algorithm 2, satisfies the condi-

tion for invariant solvability for the given autonomous single implicit MP-LPV system.
Finally, we note that the chosen approach to obtain the positively invariant sets can

also be extended to non-autonomous single implicit MP-LPV systems (5.43) analogously
to the conventional framework presented in [132, 188] for piecewise affine systems.

5.5. CASE STUDY
In this section we first derive the dynamics for a unidirectional urban railway system as
an implicit MP-LPV system. Then we study the application of the proposed approach to
study the problem of existence and uniqueness of trajectories using the obtained model.

5.5.1. SYSTEM DESCRIPTION
Consider an urban railway line as given in Figure 5.1 with J stations and K trains with
unlimited capacities. Each station can only accommodate a single train and the trains
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are not allowed to overtake along the direction of travel.
We assume there is no timetable and there are no input delays via u(·). Each train

k ∈ K arrives empty at station 1 with a minimum headway interval of τ0. It stops at each
station j ∈ J for passengers to first disembark, and then departs when all passengers
on the platform have boarded the train. We denote the arrival and departure time of a
train k at station j by a j (k) and d j (k), respectively. The dwell time at each station is the
sum of the time for disembarking and boarding the train. In this model the boarding
time is given as τb, j (·) = c j (d j (k)−d j (k −1)), with c j = λ j /b where λ j is the number of
passengers entering the station per second and b is the number of people that can enter
the train per second. This dependence leads to an implicit system of equations.

The number of passengers in a train k arriving at station j is therefore proportional
to the differences of the departure times of train k and k−1 from preceding stations i < j .
We also assume that the number of people leaving any train at a particular station j is
a fixed fraction β j ∈ [0,1], j ∈ J , of the number of the passengers in the train along with
β0 = 0 and βJ = 1.

We now show that the disembarking time τd, j (·) is an affine function of the state. Let
the number of passengers in a train k ∈ K when leaving station j ∈ J be denoted as ρ j (k)
with d j (0) = 0 for all j ∈ J . Recall that λ j is the number of passengers entering the station
per second, b is the number of people that can enter the train per second, and β j is the
fraction of the number of people on a train that disembark at station j . We have

ρ1(k) =λ1(d1(k)−d1(k −1))

ρ2(k) = (1−β2)λ1(d1(k)−d1(k −1))+λ2(d2(k)−d2(k −1))

ρ3(k) = (1−β3)(1−β2)λ1(d1(k)−d1(k −1))+ (1−β3)λ2(d2(k)−d2(k −1))

+λ3(d3(k)−d3(k −1))

...
...

ρ j (k) =
j−1∑
i=1

( j∏
m=i+1

(1−βm)λi (di (k)−di (k −1))
)
+λ j (d j (k)−d j (k −1)).

Therefore, the disembarking time, τd, j = β j ρ j−1, is affine in the departure times di (k),
i < j . A similar result can be obtained for the passenger boarding times τb, j .

We assume that the trains have unlimited capacity. The minimum dwell time τmin at
each station, the running times τr, j from station j −1 to j , and the minimum headway
time τh between successive train are assumed to be fixed. The evolution of the discrete-
event system can then be modelled in max-plus algebra as:

a j (k) = max
(
d j−1(k)+τr, j ,d j (k −1)+τh

)
d j (k) = a j (k)+max

(
τd, j (d(k),d(k −1))+τb, j (d(k),d(k −1)),τmin

)
= a j (k)+γ j (d(k),d(k −1)) .

(5.48)

for j = 2, . . . , J along with a1(k) = τ0k and d1(k) = a1(k)/(1− c1) for k ∈ K . Here, the fixed
parameter τ0 represents the constant rate of arrival of trains at the first station. Note that
here γ j (d(k),d(k −1)) is dependent only on di (k) for i < j .
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5.5.2. ANALYSIS

Table 5.1: Urban railway fixed parameters, based on [220].

Property Value
Minimum dwell time, τmin [s] 30
Minimum headway time, τh [s] 90
Passenger boarding rate, b [passenger/s] 1
Number of trains, K 4
Number of stations, J 8

The urban railway system as derived in (5.48) can be expressed as a doubly implicit
MP-LPV system (5.19) with M = 1:

x(k) = A0(p(k))⊗x(k)⊕ A1(p(1)(k))⊗x(k −1). (5.49)

The states are defined as x(k) = [
a1(k), d1(k), a2(k), d2(k), . . . , a J (k), d J (k)

]⊺ ∈ R2J . The
varying parameter is then defined as p(k) = [d⊺(k), d⊺(k −1)]⊺ and partitioned such that
p(1)(k) = d⊺(k − 1). The corresponding system state matrices can then be obtained for
system description (5.48) as13



a1

d1
...

d j−1

a j

d j
...

d J−1

a J

d J



(k) =



ε ε · · · ε ε ε · · · ε ε ε

c1/(1− c1) ε · · · ε ε ε · · · ε ε ε
...

...
. . .

...
...

...
. . .

...
...

...
∗ ∗ ·· · ∗ ε ε · · · ε ε ε

ε ε · · · τr,j ε ε · · · ε ε ε

ε ε · · · ε γ j (·) ε · · · ε ε ε
...

...
. . .

...
...

...
. . .

...
...

...
∗ ∗ ·· · ∗ ε ε · · · ε ε ε

ε ε · · · ε ε ε · · · τr,J ε ε

ε ε · · · ε ε ε · · · ε γJ (·) ε



⊗



a1

d1
...

d j−1

a j

d j
...

d J−1

a J

d J



(k)

⊕



τ0 ε · · · ε ε ε · · · ε ε ε

ε ε · · · ε ε ε · · · ε ε ε
...

...
. . .

...
...

...
. . .

...
...

...
ε ε · · · ε ε ε · · · ε ε ε

ε ε · · · ε ε τh · · · ε ε ε

ε ε · · · ε ε ε · · · ε ε ε
...

...
. . .

...
...

...
. . .

...
...

...
ε ε · · · ε ε ε · · · ε ε ε

ε ε · · · ε ε ε · · · ε ε τh

ε ε · · · ε ε ε · · · ε ε ε



⊗



a1

d1
...

d j−1

a j

d j
...

d J−1

a J

d J



(k −1).

Firstly, we note that the system description is structurally finite and the finite matrix

13The ∗ entries in the system matrices denote finite elements different from ε.
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Table 5.2: Urban railway sample operating parameters, based on [220].

Station
j

Passenger
arrival rate, λ j

[passenger/s]

Passenger
alighting

proportion, β j

Minimum running
time, τr, j

[s]
1 0.3 0 -
2 0.05 0.05 90
3 0.3 0.3 90
4 0.4 0.38 120
5 0.04 0.4 130
6 0.4 0.32 130
7 0.4 0.5 90
8 0 1 90

elements are continuous piecewise affine in the chosen parameter. Therefore, Assump-
tion 5.2.1 is satisfied. The system matrix A0(·) is strictly lower triangular. Moreover the
function γ j (·) are only dependent on d j−1 for each j ∈ J . It can also be noted that the
state updates in (5.48) can be expressed as (5.34) because affine functions with non-
negative coefficients (τd, j (·) and τb, j (·)) are a subclass of max-plus-scaling functions
(2.48). Therefore, the system description satisfies Assumption 5.3.1.

We now consider the solvability of (5.48) as proposed in Section 5.3.3. The state equa-
tions (5.48) can be restated as (5.35). We find that the coefficients in (5.35) are given as

α
( j )
N = 0 andα( j+J )

N =λ j /b for j ∈ J with N = 1. These values are all smaller than one if the
number of people entering the station per second is smaller than the number of people
that can enter the train per second for every station. Therefore, the resulting doubly im-
plicit MP-LPV system is solvable, as in Definition 5.3.1, if c j = λ j /b < 1 for all j ∈ J . This
follows from Theorem 5.3.2.

To highlight the numerical effect of variation of the parameter {c j } j∈J on the train
schedule, we fix the unidirectional urban railway line with eight stations (J = 8) and four
trains (K = 4) in the MP-LPV framework. A set of nominal values of various fixed and
operating parameters are taken from [220, §5.6] and recalled in Tables 5.1 and 5.2. The
system is initialised with train 0 arriving as a1(0) = 0, a j (0) = d j−1(0)+τr, j for j = 2, . . . , J
and departing as d j (0) = a j (0)+τ0 for j ∈ J . Here, the dwell time of train 0 at each station
is fixed at τ0 = 150 s. The trains arrive at the first station at a constant rate of τ0 = 150 s.

We recall that the function f (·) describing the system dynamics is monotone in the
state: x(1) ≥ x(2) implies f (x(1), ·) ≥ f (x(2), ·). The implicitness in the system of equations
(5.48) can therefore be resolved numerically using Kleene iterations: For a given k ∈ K ,
let x(0)(k) = x(0)(k −1). Then compute x(i+1)(k) = f (x(i )(k), p(1)(k)) for i = 0,1,2, . . . . It is
noted that if the iteration terminates, x(m+1)(k) = x(m)(k) for a finite m, the limit x(m)(k)
is the least solution to the state equation at the given k ∈ K .The procedure is, in gen-
eral, inefficient [64]. More efficient approaches for fixed point computation of monotone
functions can be found in [4, 64, 71, 81].

It can now be observed from Figure 5.2 that an increase in the number of passengers
arriving at a given station with respect to the number of passengers that can enter the
train in unit time can result in diverging state trajectories. Consequently, the dwell times
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Figure 5.2: The train schedules for an urban railway line with 4 trains and 8 stations [220, §5.6] obtained by
simulating the MP-LPV model (5.48). The effect of increasing the upper limit on the parameter c j from (a) 0.15
to (b) 0.4 can be observed on the effective dwell times τd, and running times τr.

of the train at the stations increase from their minimum value (τmin), and the travel times
between stations d j (k)−d j−1(k) increase along with the total travel time a J (k)−d1(k).
As the parameter c j approaches 1, the system looses the solvability property.

5.6. CONCLUSIONS

In this chapter, we have presented linear parameter-varying models of discrete event
systems in max-plus algebra analogously to the conventional linear parameter-varying
systems. We have shown that for the case of continuous piecewise affine dependence of
the system matrices on the varying parameter, the class of max-plus linear parameter-
varying systems is equivalent to max-min-plus-scaling systems. We have first consid-
ered the problem of solvability to ensure existence and uniqueness of the solution to
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implicit state equation at a given event step. We have provided a necessary condition
for the solvability problem for the restricted case of autonomous single-implicit max-
plus linear parameter-varying systems. A sufficient condition that ensures the existence
and uniqueness of the state trajectories of double-implicit max-plus linear-parameter
varying systems has also been proposed. The state trajectories can then be evaluated
using tools already studied in the literature. Subsequently, we have studied the invari-
ant solvability problem for autonomous max-plus linear parameter-varying systems that
ensure existence and uniqueness of the system trajectory over a possibly infinite event
horizon by restricting the state space. We have shown how tools from computational
geometry for piecewise affine systems can be used to determine the maximal region of
the state space that is invariant to the system dynamics. Finally, we have motivated and
illustrated our modelling and solvability approach using an example of a unidirectional
urban railway system.





6
CONCLUSIONS & FUTURE WORK

In this chapter, we summarise the key learning points and major contributions of this
thesis. We also provide some interesting directions for future research.

6.1. OVERVIEW OF CONCLUSIONS
In the field of discrete-event systems, synchronisation and linearity (in the sense of max-
plus algebra) play an important role in deriving tools for performance evaluation and
control problems under the max-plus-algebraic system theory. This thesis has focused
on developing mathematical theories for the analysis of discrete-event systems in the
max-plus algebra when synchronisation can be broken and linearity is lost due to the
presence of scheduling and ordering variables. In particular, we have treated problems
related to modelling, stability, and reachability of discrete-event systems modelled in
the max-plus algebra. Firstly, we pointed out the importance of the assumptions on
monotonicity and additive homogeneity of the discrete-event system dynamics in the
max-plus linear systems theory. Through various results presented in this thesis as
listed below, we have provided insights that help overcome these assumptions to al-
low extension of the max-plus algebraic tools to a broader class of discrete-event sys-
tems. In particular, the class of discrete-event systems studied in this thesis exhibit the
phenomenon of choice apart from synchronisation. Another important realisation was
that the principles and approach for modelling and analysis of conventional time-driven
(cyber-physical) systems need not be relinquished. We, therefore, have relied heavily on
classical systems theory in shaping the analysis tools developed in this thesis.

In what follows, we first provide a concise list of main contributions and key learning
points of this thesis:

1. We have proposed a novel class of max-plus-algebraic hybrid automata, obtained
as a novel reformulation of conventional hybrid automata of [156], extending the
class of switching max-plus linear systems of [216]. We have established a formal
relationship between a max-plus automaton and a switching max-plus linear sys-
tem. Moreover, we have found that the class of systems modelled by a max-plus

125
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automaton of [85] is contained in the class of systems modelled by switching max-
plus linear systems;

2. We have formulated a max-plus Lyapunov stability theory for discrete-event sys-
tems analogous to the Lyapunov stability theory for conventional time-driven sys-
tems;

3. We have presented a novel class of max-plus linear parameter-varying systems
for modelling parametric discrete-event systems. We also formulated an analysis
framework for evaluating existence and uniqueness of the trajectories of a max-
plus linear parameter-varying system using tools from the max-plus algebra and
piecewise-affine systems.

We now classify and elaborate on the main contributions based on the chapters:

Modelling. In Chapter 3, we have introduced the novel class of max-plus-algebraic
hybrid automata as a unifying modelling framework for obtaining hybrid models of
discrete-event systems in the max-plus algebra. The proposed modelling framework is
a reformulation of the conventional hybrid automata framework of [156] and an exten-
sion of the class of switching max-plus linear systems of [216]. The hybrid phenomena
due to the interaction of continuous-valued and discrete-valued dynamics have been
identified and a modelling hierarchy has been generated. We have formally established
equivalence relationships between the proposed max-plus-algebraic hybrid automata
and the classes of switching max-plus linear systems and max-plus automata. We have
noted the difficulties arising in the direct comparison of switching max-plus linear sys-
tems and max-plus automata due to incompatible definitions of state space. Therefore,
we have resorted to the behavioural framework where the similarity is studied for the
collection of generated input-output trajectories of the systems.

We want to remark that the obtained equivalence relationships allow bridging the
knowledge gap between hybrid systems theory and weighted automata theory. This
in particular will allow interpreting and solving problems for max-plus automata using
tools for max-plus-algebraic hybrid systems developed in Chapters 4 and 5 of this dis-
sertation.

Stability. In Chapter 4, we have developed a framework for studying stability problems
for the continuous part of a max-plus-algebraic hybrid system. On the one hand, the sta-
bility notions have been carried over from general discrete-event systems described in
the max-plus algebra. On the other hand, the stability framework has been developed
analogously to that of time-driven switched systems defined on normed vector spaces
[150]. The key observation has been that the Hilbert projective (semi-)norm provides a
convenient substitute for a vector norm to study the stability notions for discrete-event
systems defined in the max-plus algebra. In doing so, we have justified the assump-
tions on continuity and additive homogeneity of the mode dynamics and have relaxed
the assumption on monotonicity. We have provided necessary and sufficient conditions
for evaluating stability properties of autonomous discrete-event systems under the as-
sumption of additive homogeneity and continuity of the dynamics.
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We have showcased the capability of the proposed stability framework by studying
boundedness and convergence of the trajectories of open-loop switching max-plus lin-
ear systems. Firstly, the proposed approach allows performance evaluation (as ultimate
bounds on the makespan) of discrete-event systems modelled as switching max-plus lin-
ear systems. Secondly, we have shown how the associated optimisation problems (such
as computation of minimal positively invariant sets and their region of attraction) can
be reformulated as mixed-integer linear programs. The key observation was that mono-
tone and additively homogeneous functions (including the ones obtained from Kleene
star matrices) can be used to obtain max-plus Lyapunov functions for analysis.

Parametric DES. In Chapter 5 of this dissertation, we have dealt with problems of ex-
istence and uniqueness of trajectories of parametric descriptions of discrete-event sys-
tems in the max-plus algebra. In doing so, we have introduced the novel class of max-
plus linear parameter-varying systems analogously to linear parameter-varying systems
in conventional algebra. Under the assumption of piecewise-affine dependence of the
finite elements of the system matrices on the varying parameters, we have established
an equivalence relationship with the class of max-min-plus-scaling systems.

A max-plus linear description of discrete-event systems is usually implicit in the state
of the system. We have pointed out that this implicitness in the state cannot completely
be resolved for max-plus linear parameter-varying systems using the tools of max-plus
algebra. Therefore, we have provided necessary and sufficient conditions for the ex-
istence and uniqueness of trajectories (or solvability) of a max-plus linear parameter-
varying system. To ensure this property over the entire event horizon, we have extended
the tools from piecewise-affine systems analysis to obtain positively invariant sets where
a unique solution to the state equation always exists. The key observation is that the
successful treatment of the solvability problem for max-plus linear parameter-varying
systems requires a combination of tools from the max-plus algebra and piecewise-affine
analysis. Finally, the effectiveness of the proposed theory has been used for assessing
solvability property of the model of a uni-directional urban railway system.

6.2. SUGGESTIONS FOR FUTURE WORK
There are still a lot of opportunities for improvement in the proposed system-theoretical
analysis framework for discrete-event systems in the max-plus algebra. In what follows,
we propose several topics for further investigation and research directions to extend the
results of the dissertation:

Modelling and equivalences. A considerable amount of research focuses on establish-
ing equivalence relationships between different modelling classes to study control syn-
thesis and verification problems [207]. The formal analysis approach in hybrid systems
concerns checking whether a given hybrid system satisfies certain specifications. The re-
lationship with finite-state systems can then be exploited to study verification and con-
trol problems for large infinite-state systems. Such relationships between finite-state
and infinite-state systems also provide a framework to trade off tractability (of algo-
rithms) with modelling power, a recurring issue in the hybrid systems literature [14, 207].
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Firstly, the reformulation of the switching max-plus linear framework into the max-
plus-algebraic hybrid automata framework (Chapter 3) allows borrowing abstraction
procedures from conventional hybrid automata [14] to study verification problems for
discrete-event systems. Secondly, conditions for finite-state abstraction would help to
identify the subclass of max-plus-algebraic hybrid automata that correspond to safe
timed Petri nets, readily modelled by max-plus automata [95, 136, 145]. This would, at
the same time, allow exploiting tools from the supervisory control theory of Ramadge
and Wonham [191, 206] to study reachability and control synthesis problems for switch-
ing max-plus linear systems.

Stability and stabilisability. There is still much work to be done before a complete Lya-
punov stability framework for timed discrete-event systems comes to fruition. We have
developed a max-plus Lyapunov stability framework for the continuous-valued part of
max-plus-algebraic hybrid automata under arbitrary switching in Chapter 4.

In many discrete-event applications, the switching sequence is not completely arbi-
trary but constrained based on the (hybrid) states, and on exogenous and control inputs
(see [85, 216]). The uniform stability notions presented in Chapter 4 can be conservative
for practical applications with constrained switching sequences. A Lyapunov function
or a positively invariant set common to all subsystems might not even exist in the pres-
ence of unstable subsystems. In this light, it is important to extend the stability analy-
sis approach of Chapter 4 by possibly employing multiple Lyapunov functions and also
to identify interesting classes of switching signals as for conventional time-driven sys-
tems [150, Chapter 3]. Logical constraints on the switching sequence appear in several
discrete-event system applications [85]. In presence of logical constraints on switching
sequences, the admissible switching sequences can be encoded using a finite automa-
ton [185]. Therefore as a subsequent step, the max-plus Lyapunov framework can gain
considerably from the stability theory presented in [6, 125, 183, 185]. The authors of
[6, 125, 183, 185] provide several constructive theorems and tools to study stability of
conventional time-driven switched systems. The extension of max-plus Lyapunov sta-
bility theory along the lines of [6, 125, 183, 185] for control and performance evaluation
of discrete-event systems is an interesting direction of research.

A consolidation of the max-plus Lyapunov framework with language-theoretic Lya-
punov framework presented in [142, 181] to study stability and stabilisability of the
discrete-valued part of the dynamics is another interesting direction of research.

Parametric modelling and analysis of discrete-event systems. We showed that the
proposed max-plus linear parameter-varying systems are equivalent to max-min-plus-
scaling systems, which are in turn equivalent to continuous piecewise-affine systems.
Firstly, the description can be extended to include switching behaviour in the system
where the structure of the underlying incidence graph is allowed to change over events.
This could possibly lead to an equivalence with discontinuous piecewise-affine systems.

Secondly, we have proposed methods to analyse existence and uniqueness of trajec-
tories of max-plus linear parameter-varying systems (Chapter 5). The methods based
on piecewise-affine analysis can suffer from exponential computation time. It is then
interesting to find conditions for which the presented algorithm either terminates at
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a solution in finitely many steps or provides an approximate solution subject to error
bounds. The analysis procedure can gain immensely from interval analysis [44, 153].
For instance, convex polyhedra can be approximated using union of hyper-rectangles
[23] that are amenable to representation by intervals [174] and also difference-bound
matrices [53]. The analysis of interval descriptions in the max-plus algebra is an ongo-
ing field of research [44, 113, 153]. In particular, the tools can be employed to obtain (nu-
merically) efficient representations of the pre-image of uncertain max-plus linear maps
[52, 53, 176].

The application of the obtained tools to closed-loop feasibility (constraint satisfac-
tion) analysis and robustness analysis of discrete-event systems represented by max-
min-plus-scaling systems is an interesting direction of research. The underlying theory
can also be directly extended to obtain robust and controlled invariant sets of max-plus
linear parameter-varying systems analogously to piecewise-affine systems [132].

Inter-chapter research directions. Finally, we present directions for future work laid
out by exploiting relations across the different chapters of this dissertation.

Lyapunov theory plays an important role in designing effective tools for control sys-
tem design and analysis of conventional time-driven and hybrid systems [51, 55, 126,
146, 186]. The development of the counterpart max-plus Lyapunov theory to study de-
sign and analysis problems for discrete-event systems in the max-plus algebra is a long-
term goal.

Firstly, Lyapunov theory has been used to obtain finite-state abstraction of switch-
ing systems locally (in a given compact set) [102]. This, for instance, can be utilised to
obtain stabilising switching laws. Secondly, the results of Chapter 4 can be extended in
this direction to study robustness to disturbances, as input-to-state stability and dissipa-
tivity, in discrete-event systems. The max-plus Lyapunov stability framework presented
in Chapter 4 forms an excellent starting point to address such problems. We have also
found that parametric descriptions of discrete-event systems in the max-plus algebra
can have states that model quantities (such as number of passengers present at a plat-
form). The interaction of states/parameters representing both timed and untimed quan-
tities has implications for modelling as well as stability analysis of discrete-event sys-
tems. An interesting opportunity arises when the discrete-event system can be compart-
mentalised such that any individual component involves only quantities with the same
units. For example, we can compartmentalise the model of a uni-directional railway
system to obtain one component consisting of only timing variables and another com-
ponent modelling the flow of passengers. The stability can then be studied by analysing
individual components along with the interactions among them.

P-time event graphs form an extension of timed event graphs where holding times
are allowed to take values from an interval in a non-deterministic fashion [205]. We
have pointed out (in Chapter 5) how these systems can be modelled in the proposed
max-plus linear parameter-varying systems framework. Similarly, interval-weighted au-
tomata have been proposed as an extension of max-plus automata for modelling the
choice phenomena observed in P-time Petri nets [139]. Therefore, we can aim at find-
ing abstraction procedures that relate the proposed class of max-plus linear parameter-
varying systems with the classes of P-time event graphs, P-time Petri nets, and interval-
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weighted automata. For instance, the tools for performance evaluation of P-time event
graphs can be exploited to study performance evaluation of max-plus linear-parameter-
varying systems via abstraction.
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[188] S. V. Raković, P. Grieder, M. Kvasnica, D. Q. Mayne, and M. Morari. Computation of
invariant sets for piecewise affine discrete time systems subject to bounded distur-
bances. In Proceedings of the IEEE Conference on Decision and Control, volume 2,
pages 1418–1423. IEEE, 2004.
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