TU Delft

Reward Based Program Synthesis for Minecraft
Adapting Program Synthesizers for Reward Evaluation and Leveraging Discovered Programs

Timur Mukminov
Supervisor(s): Sebastijan Dumancié¢, Tilman Hinnerichs

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Timur Mukminov
Final project course: CSE3000 Research Project
Thesis committee: Sebastijan Dumanci¢, Tilman Hinnerichs, Wendelin Bohmer

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Program synthesis is the task to construct a
program that provably satisfies a given high-
level specification. There are various ways
in which a specification can be described.
This research focuses on adapting the Probe
synthesizer, traditionally reliant on input-output
examples, to utilize reward-based synthesis. The
generalization of Probe allows for flexibility in
using various search algorithms, selection and
updating algorithms, enhancing its applicability
to a general case. By modifying the Probe
algorithm to learn from rewards, we explore how
exploiting existing programs as partial solutions
impacts synthesis performance. Different ways
of exploitation were tested, specifically, how
much the probabilities change, and how a starting
probabilities can affect the synthesis. Exploitation
of programs could lead to faster synthesis but it
could also lead to no solutions depending on the
world environment.

1 Introduction

Program synthesis is an emerging field built on algorithmics,
increasingly influenced by machine learning advancements.
The concept of a computer program writing another
program stands at the pinnacle of computer science
with possibilities to advance automation and problem-
solving, promising significant advancements in software
development, scalability, and efficiency. Program synthesis
has been an interest to computer scientists since the 1950s,
during the initial surge of artificial intelligence research.
Recent developments in computational power have reignited
the passion for this field as it enables the synthesis of
increasingly complex programs.

Reward-based synthesis is a nascent topic with relatively
limited research compared to the more established example-
based synthesis methods. While existing studies into Reward-
Guided Synthesis (CUI et al, 2024)[1] have demonstrated
promising results, it has yet to be addressed how generated
or pre-existing programs could be utilised in the form of
partial solutions or traces to affect the performance of reward-
based synthesisers. Understanding this interaction is crucial
for optimising synthesis algorithms to achieve faster program
generation and optimal solutions. These priors could reduce
the search space and induce bias towards the optimal program
which will cause optimal solutions to be synthesised at a
greater speed.

The supplementary objective of this study focuses on
adapting the existing Probe synthesiser algorithm to use a
reward-based evaluation system. This involves converting
the original code into a different language, modifying the
framework to integrate rewards into synthesis grammar.
Followed by investigating how to adapt program synthesis to
a game environment namely Minecraft.

The primary research aims to investigate how pre-existing
successful programs and partial solutions found iteratively

during the synthesis stage affect the performance of the
Probe synthesiser. Specifically, the study seeks to optimise
the synthesis time of the synthesiser by using pre-existing
starting grammar found by evaluating a succesfful program
and partial solutions to aid the discovery of a final solution.

By achieving these objectives, the study aims to provide
insights into incorporating rewards into existing synthesis
algorithms, and additionally provide insights into how a more
exploitative algorithm affects the synthesis stage. Finally,
this study will aim to contribute to the development of more
advanced synthesis techniques and advancing the field of
reward-based program synthesis.

This paper firstly discusses relevant background
information in section 2, the generalisation and adaption
of probe to Minecraft will be discussed in section 3, the
research setup to exploit successful programs discovered and
the results in section ??. Furthermore, responsible research
practices will be detailed in ??, and the conclusion ??.

2 Background

2.1 Program Synthesis

Program synthesis is the process of automatically generating
computer programs from high-level specifications. This
means a user describes generally what the program should
do alongside a grammar that determines what the program
can and cant do and then the program synthesiser creates
the actual code to perform that task. Depending on the
application, it could save time and effort, especially for
complex tasks or repetitive coding such as the cell filling
feature in excel called FlashFill (Gulwani, Sumit, 2011)[3]

Programming By Example
The most common approach to program synthesis is
programming by example (PBE). For PBE the user provides
specific input-output pairs to to guide the synthesis and
determine the correctness of the generated program. The
input-output pairs are used to search for a program which
satisfies them and infers the desired program behaviour by
matching or transforming the inputs into the outputs. PbE has
various real-world applications. For example, PbE has proven
to be a valuable paradigm for facilitating the automation of
bioinformatics tasks (Gordon, P.M., Sensen, C. W., 2007,
Wilkinson, M., 2006)[2][9]. Furthermore, PbE is evolving
through combinations with machine learning strategies, such
as the development of Neural Programming by Example
(NPbE), which leverages deep neural networks for enhanced
problem-solving capabilities (Shu, C., Zhang, H. 2017)[8].
This is the traditional approach as the input-output
examples are easy to generate or are already available in
large quantities which are used to evaluate the correctness of
programs generated by the synthesiser. PBE is currently the
leading approach to synthesising programs which has yielded
many advancements in generating correct and efficient code.

Programming by Reward/Reward-based evaluation

An alternative method inspired by reinforcement learning
is reward-based synthesis. This approach provides reward
feedback based on the correctness of the program generated,
making it more flexible and powerful, particularly in complex

domains where exhaustively generating programs to satisfy
input-output example pairs within an appropriate time frame
is unfeasible.

Recently, there has been growing interest in reward-based
evaluation for program synthesis. Instead of relying on
examples that need to be satisfied, the synthesiser receives
a reward for creating a correct program, thus generating a
feedback loop go improve its program generation. A key
aspect of this technique is that it does not require detailed
input-output pairs. Instead, an evaluation function assesses
the correctness of the generated programs. This allows for
easier application in scenarios where specifying examples is
challenging, but defining a correct solution is straightforward.
For example, in this study, a distance function determines
the reward which cannot be transformed into an input-output
example.

2.2 Synthesising Programs with Probe

One such advanced method is the Probe synthesiser. Probe
employs techniques such as Just-in-Time (JIT) learning, a
method that builds probabilistic models during synthesis
using partial solutions. Additionally Probe employs
guided bottom-up search algorithm which uses bottom-up
enumeration with guidance from probabilistic models. These
techniques enhance the synthesiser’s guidance to bias towards
the final program without requiring large amounts of prior
examples
The algorithm can be described by two stages as seen in
Figure 1:
¢ Synthesis Stage: The algorithm employs a bottom-
up search strategy to build programs by combining
smaller ones into larger ones. One of the cores of this
algorithm is the Probabilistic Context-Free Grammar
(PCFG) which helps guide the synthesis by enumerating
the programs in the order of decreasing likelihood of
appearing. This probabilistic guidance biases towards
correct programs making them more likely to appear,
resulting in a faster and more efficient synthesis process.
¢ Learning Stage: In this stage, the PCFG gets updated
with new probabilities by learning from partial solutions
found in the synthesis technique. This technique is
exploited due to the observation that partial solutions
often share syntactic similarities with the final solution.
By rewarding the grammar nodes that were found in
these partial solutions, the guidance provided by the
PCFG gets biased to steer towards the final solution.

PROBE

I Solution found? \/ Solution!

SyGus Problem |
i/o examples I

+CFG

Synthesis

Updated PCFG b4

- Partial solutions
| Learning

Figure 1: Overview of Probe algorithm (Shraddha Barke et al,
2020)[7]

Guided Bottom-Up Search

This is the synthesis stage where the algorithm employs a
bottom-up search strategy to build programs by combining
smaller ones into larger ones. The pseudocode can be
found in the appendix B. One of the cores of this algorithm
is the Probabilistic Context-Free Grammar (PCFG) which
helps guide the the synthesis by enumerating the programs
in the order of decreasing likelihood of appearing. This
probabilistic guidance gives bias to programs more likely to
appear resulting in faster and more efficient synthesis process.

Just-in-Time Learning

In this learning stage, the PCFG gets updated with new
probabilites by learning from partial solutions found in the
synthesis technique using the algorithm in figure 2. This
technique is exploited due to the observation the partial
solutions often share syntactic similarities with the final
solution. By rewarding the grammar rules that were found in
these partial solutions , the guidance provided by the PCFG
gets biased to steer toward the final solution.

p“(R)“’F[T}

ENE[P
p(R) = where FiT = max &

7 (PePSol|Retr(P)} | &)

Figure 2: Formula for updating probabilities in PCFG (Shraddha
Barke et al, 2020)[7]

3 Methodology

3.1 Generalise Probe

To enhance the flexibility and functionality of the Probe
algorithm, the structure was generalised to be more modular.
This allows for the use of different sub-algorithms and
facilitates easy adjustment of various parameters. The
pseudocode for the algorithm can be seen in (Shraddha Barke
et al, 2020)[7]

Instead of being limited to guided bottom-up search alone,
the modular approach allows interchangeability of different
algorithms for searching the program space. It also facilitates
straightforward redefinition or updating of selection and
update functions.

The newly implemented program search algorithms have
been implemented as iterators, enabling the return of
intermediate results rather than only the final result. This
property is particularly useful for reward-based synthesis, as
it allows for continuous feedback throughout the synthesis
process. Furthermore, this modification transfers the logic
that monitors cycles from the guided bottom-up search
algorithm to the Probe algorithm, therefore now allowing for
adjustment of cycle lengths.

Probe was generalised to also use any iterator. However
these iterators may lack evaluation caches and lists of partial
solutions, therefore these were directly added to the probe
algorithm. Consequently, every program returned by the
iterator requires evaluation to fill the evaluation cache and
partial solution store.

Algorithm 1 Generalised Probe algorithm

Input: PCFG G, set of input-output examples F, program iterator I, selection function SELECT, update function UPDATE,

max. time 7', cycle length C'
Output: A solution P or L

1: Function PROBEGENERALISED(G, F, I, SELECT, UPDATE, T, C):

2
3
4
5:
6
7
8
9

Eval Cache + 0 ;
State +— 0 ;
while time — start_time < T do
Pso 05
while i < C do
Program < ITERATE(I, State) ;
Result <~ EVAL(P, E) ;
if Result = F then
return P ;
end
if Result € Eval_Cache then
continue ;
end
if Result N E # () then
Pso) < Psol U Program ;
FEval_Cache < Eval_Cache UR ;
end
end
Psy) < SELECT (Psol) ;
if Ps,; # () then
G + UPDATE(G, Ps,1, Eval_Cache) ;
Eval_Cache + 0 ;
State + 0 ;
end
end
return

// Initialise evaluation cache
// Initialise program iterator state

// Initialise partial solutions

// Get next program
// Evaluate program

// Solution found

// Result already in evaluation cache

// Add program to partial solutions
// Add result to evaluation cache

// Select promising partial solutions

// Update grammar probabilities
// Reset evaluation cache
// Reset program iterator

3.2 Adapting Probe for Game Environments

As part of this research, the objective is to modify the
existing Probe algorithm to incorporate rewards rather than
traditional input-output pairs. This adaptation is necessary
for implementing the algorithm in game environments such
as MineRL (Guss et al, 2019)[4], where conventional input-
output scenarios are absent. Instead, MineRL offers traces of
real human actions to solve challenges, with rewards based
on the progress made in these challenges.

The Minecraft[6] game, which MineRL is built on,
is known for its expansive sandbox environment and
procedurally generated worlds, each presenting unique
landscapes and challenges for navigation. Amidst this
diversity, environments can be controlled using seeds,
allowing players to replicate identical worlds. This research
utilises this mechanic to choose several seeds with unique
landscapes such as flat plains, hilly desert, lush forests,
and intricate cave systems, providing a varied spectrum of
challenges for the synthesiser.

In this environment, the MineRL library provides rewards
based on the task presented to the synthesiser and its
evaluation of programs generated for navigating these
challenges. A program is defined as a sequence of tuples of
actions. An example would be walking forward 5 steps and
walking left 3 steps. All required actions should be defined

as grammar rules in the PCFG which the synthesiser uses to
construct the sequence of actions to solve a task.

Language and Library Selection

The Julia language was chosen for its easy integration
with Python, which is essential for running the MineRL
environments. Additionally, the project utilizes and
contributes to the leading library Herb-Al (Hinnerichs and
Dumanci™ ¢ 2024)[5], developed specifically for program
synthesis. As the original algorithm was written and
optimized in Scala, which differs significantly in syntax
and libraries from Julia, a complete rewrite of the
algorithm was necessary. This included translating data
structures, control flows, and models to their Julia/Herb-Al
equivalents. Furthermore, a statistics library was employed
to provide functions like "mean" without the need for manual
implementation.

Reward-Based Evaluation

The algorithm was integrated with the API of the game
to interact with the game environment, receive feedback,
and dynamically calculate rewards. Without input-output
examples, the algorithm shifted from evaluating the number
of examples the partial solutions solve to a reward-based
evaluation. The adapted algorithm now evaluates programs
based on the rewards obtained in the game environment. This

required redefining the function for selecting partial solutions
to choose a set number of programs which achieved the
highest rewards. These then become the new partial solutions.

3.3 Exploiting Successful Programs

The second part of the research focuses on determining
how to exploit successful programs which the algorithm has
discovered. The following methods were used to explore the
effect of changing the algorithm to exploit these programs:

* Probability Updating: Updating the grammar
probabilities more aggressively based on successful
programs to increase their likelihood of being selected.

 Elitism: Retaining the grammar created for the top-
performing programs to bootstrap the synthesis process
with previously successful programs.

4 Experiment Setup & Results

The primary goal of this research was adapting the existing
algorithm, as was done for HerbSearch, and investigating the
impact of exploiting discovered programs to aid the synthesis
process.

4.1 Set-up

The code used for experiments is available on the probe-with-
minerl-exploit branch of the HerbSearch GitHub repository '
Additional instructions on how to set up the system to run the
code is available in the wikis of the same repository 2.

All experiments used an adapted MineRLNavigateDense-
v0 environment from version 0.4.4 of MineRL. The
adapted version, MineRLNavigateDenseProgSynth-v0, adds
the position of the agent to the observation space and adds
the ability to send chat messages, which were used to send
teleport commands to the start location, as well as disable
mobs, food and health. Additionally, the randomisation of the
compass which was used to calculate the rewards was turned
off, implying the compass and rewards were always accurate.
The adapted version can be found on the prog-synth® branch
of the forked MineRL GitHub repository.

4.2 Hardware

The experiments were all run on the same system. The device
used ran Ubuntu 24.04 LTS, had 8.0 GiB memory, 4-core i7-
5600U and integrated graphics.

4.3 Environments - Seeds

For the experiments to be reproducible, 5 seeds were chosen
that would generate the same world environment for each
iteration of the experiment. This ensures that each iteration
using the same seed generates the same world. In these
environments, the goal is for the agent to reach a diamond
block, which is 64 blocks away using Manhattan distance.
The agent is given a reward based on how close it gets to
the goal, with an additional 100 points awarded for reaching

"https://github.com/Herb-Al/HerbSearch.jl/tree/probe-with-
minerl-exploit

“https://github.com/Herb-Al/HerbSearch jl/wiki

3https://github.com/eErrORe/minerl/tree/prog-synth

the block. Each environment has a unique maximum reward
in the range of 60 to 75 excluding the extra points for
reaching the destination. This reward mechanism is managed
automatically by the Gym and MineRL libraries and cannot
be changed to be normalised between seeds. The seeds were
chosen to include diverse challenges for the algorithm to try
to solve. Each seed has unique features which distinguish it
from the other worlds. Each seed, their respective maximum
reward, and title within the rest of the paper can be found in
table 1.

World Seed Maximum Reward
World 1 958129 75
World 2 999999 64
World 3 6354 74
World 4 | 11248956 70
World 5 95812 68

Table 1: World Information

* 958129: Grassy terrain that is relatively flat with sparse
trees to block the way. The agent spawns in front of
a small cave opening with the destination being to the
front left. Going forward will make you jump in it. It is
possible to exit the cave opening by walking diagonally
forward and left and jumping. Alternatively you can
skip the cave opening by first walking left and then
proceeding forward.

* 999999: Desert terrain that is relatively flat with no
obstacles. Agent spawns in a desert and the destination
is to the front and right.

* 6354: Forest terrain with many trees to block your
way. The agent spawns right in front of a tree with the
destination being to the front and left. It is possible to get
on top of the trees or get into an alcove of trees where
the only option is to reverse and go around.

» 11248956: Hilly terrain with a cave opening infront of
agent. The goal is forward and to the left. Reward
increases when entering cave but destination not inside
the cave.

* 95812: Small hills and trees with a big hole between
start and goal. Impossible to excape hold once entered.

These seeds will continue to be referred to as world 1-5
respectively.

4.4 Experiments

Each experiment was run 5 times and had a 15 minute
timeout. The low number of reruns was due to each
experiment taking a long time since each action has to be
simulated in the environment. Each experiment used the same
grammar, where the probabilities are displayed on the left and
the actions on the right of the semicolon:

For the experiments, the fitness algorithm as described
in Section 2 was changed. The higher the fitness for a
grammar rule, the higher the chance of it being enumerated
in the following synthesis cycle. Figure 3 shows the overall
equations used for the fitness algorithms where x axis shows
rewards, and y axis shows fitness.

Listing 1: Minerl Grammar

minerl_grammar:

1 :SEQ= [ACT]

1 :ACT = (TIMES, Dict("move"
=> DIR, "sprint" => 1, "jump" =>
)

0.125 :DIR = forward | back | left

| right | forward-left | forward

-right | back-left | back-right

0.1666 :TIMES =1 | 5 | 10 | 25 |
50 | 75

@ =15
) = \og“(;fl

.
piy = g loa1 4)

q:y=03 : 02

o e @ o

x :
sy =1oqg T Ll

0 o 2 D) EY E) 70 % % 100

Figure 3: Fitness for reward of different algorithms]

Experiment 1

For experiment 1, a fitness of 0 was chosen meaning the
probability of the grammar rules doesn’t change. Because
the probabilities doesn’t change, the grammar rules get
enumerated in order, meaning it first enumerates walking
forward then backwards then left etc. which could lead
to a correct direction to be enumerated last, every cycle.
Unfortunately this experiment did not produce useful results
for a baseline as every world wasn’t able to find a solution in
an appropriate amount of time and timed out.

Experiment 2

For this experiment, a constant fitness of 0.3 was chosen
which meant the probabilities slowly got higher if the
grammar rule was found in the partial solution. The same
experiment was rerun with a fitness of 0.1, 0.5, 0.7, 0.9 which
all oddly resulted in near identical results (ref appendix)
therefore only fitness = 0.3 was chosen. The figures 4 and
5 shows us that we now have solutions for world 1 and 2. For
world 1 the time to obtain 95% of the maximum reward by
reaching within several steps of the goal was almost equal to
generating a program that would travel those last steps. In
world 3 it gets stuck in an alcove of trees several time where
it requires to walk back and left to get out and increase the
reward. This is represented by not having bar entry as it wasnt
able to reach 95% reward. In world 4 the agent goes into a
large hole because it gives the most reward however that hole
is too deep to get out from. In world 5, the agent walks into
the cave however it cannot get out as it would require the
agent to walk backwards which decreases the reward. Since
all subsequent experiments produced no result for world 4
and 5, the graphs for these worlds were left out.

Experiment 3
For the experiment 3, a linear fitness that was proportional to
the best reward was chosen. For the rest of the paper best
reward will be referred to as 5. If the the grammar rule
appeared in the partial solutions, the grammar was updated
with a fitness of %. This fitness choice means that the
earlier partial solutions that get a small reward don’t affect the
grammar as much as the larger almost correct partial solutions
that receive large rewards. Figure 4 shows us that the time to
generate a solution greatly decreased. This is partly due to
the different probabilities causing the agent to take a more
optimal route to the destination. This can be seen in world
1 where the agent skipped the 95% reward threshold and
directly got to the reward. Figure 6 shows that World 3 now
has a solution for obtaining 95% of the reward in under 700
seconds however it timed out before it could reach the goal.
The experiment was rerun but with mirrored fitness of
1-— % so the closer you get to the goal, the less the grammar
changes. The results timed out for every world likely because
as you get closer to the reward you would require to change
the grammar more aggressively to point you towards the
goal. Although this was done only for experiment 3 so no
conclusions could be made, it still serves as an indication of
a correct approach.

Experiment 4
For experiment 4, a

fitness =1 — emp(%§)3)

was chosen. the fitness is smaller at the lower values
of reward and bigger at higher values compared to fitness
algorithm in Experiment 3. Figure 3 shows us the fitness
level compared to reward of the algorithms. Compared to
experiment 3 it exploits less early on and exploits more closer
to the goal. You can see in figure 4 and 5 that the time
to generate a 95% correct solution decreased however the
time take to generate a full correct solution increased and
in the case of world 3 it wasn’t able to generate a solution
in an appropriate amount of time. This could mean that the
majority of time for the program generation comes in the mid
to late stages of the final solution so optimising for it will
likely yield better results however it requires exploration to
find the sequence of actions to reach the goal.

Experiment 5
For experiment 5, a Logarithmic fitness function has been
defined as follows

14 ﬁ)
2

Such a fitness rewards greatly throughout the rewards range
compared to the Linear fitness. Figure 4 tells us that it wasn’t
able to generate a solution for world 1 compared to the other

methods. Worlds 2 and 3 saw a drastic increase in time to
reach the 95% reward threshold

fitness = logio(

2)

4.5 Experiment 6

For experiment 6, a more complex algorithm that uses 2
variables was chosen to decide the fitness of each grammar

rule. In particular

fitness = % x log(1 + num_appearances) (3)
was used, where the linear algorithm from experiment 3 was
used except there is an additional variable that multiplies
the fitness by the number of occurrences of the grammar
rule in the entire program. This means higher occurrences
of a grammar rule gets a higher fitness value. As seen
from Figure 4 and 5 and 6 this fitness algorithm makes
the synthesiser reach the almost correct program in around
half the time, however because the grammar probabilities
are highly tailored to reach as close as possible, getting to
the block requires exploration which the probabilities highly
discourage. This results in the complex algorithm bar in
figure 5 where it reaches within a couple blocks of its
destination significantly more quickly than other methods but
the final couple blocks could take more than the same amount.

4.6 Results

1,000

800 - 1

600 - N

Time (s)

400 |- N

200 - N

| | |
Constant Linear Exp

|
Log Complex

fitness algorithms

[Reach 95% max reward Ml Reached final solution

Figure 4: World 1. Time to find solution using different fitness
algorithms. Missing Bars means no solution

1,000

| |
= 600 | =
(]
g —
H

400 |- -

200 -

Constant Linear Exp Log Complex

fitness algorithms

[OReach 95% max reward M Reached final solution

Figure 5: World 2. Time to find solution using different fitness
algorithms

1,000 T

800 - 1

600 - 1

Time (s)

400 - N

200 - N

| | | | |
Constant Linear Exp Log Complex

fitness algorithms

[OReach 95% max reward M Reached final solution

Figure 6: World 3. Time to find solution using different fitness
algorithms. Missing Bars means no solution

4.7 Experiment 7

Experiments 2-6 were rerun, however, for each experiment
another run was made beforehand to determine the
probabilities of the grammar rule. These were then used
in the starting grammar instead of a uniform probability
model. This change could have several effects: since the
starting grammar is now different, the synthesiser could find
a different route which could be more optimal. Figure 7
shows it takes around 2.5 times less time to reach a solution
in world 2 using the linear fitness algorithm compared to

starting with uniform probabilities in figure 5. With different
starting conditions it is also now able to solve an additional
seed namely world 4 as seen in figure 8. On the other hand it
could also lead to unsolvable situations for example figure 10
shows that in world 3, when changing the starting conditions
only the log fitness model was able to find a solution albeit 2
times faster.

1,000

800 -

600 -

400 -

Time (s)

200 - N

| | |
Constant Linear Exp

| |
Log Complex

fitness algorithms

[OReached 95% solution M Reached final solution

Figure 7: World 2. Time to find solution using different fitness
algorithms and with starting probabilities

1,000

800 - 1

600 - 1

400 - N

Time (s)

200 - N

| | | | |
Constant Linear Exp Log Complex

fitness algorithms

[JReached 95% solution M Reached final solution

Figure 8: World 4. Time to find solution using different fitness
algorithms and with starting probabilities

1,000

800 - 1

600 - 1

Time (s)

400 - N

200 - N

| | |
Constant Linear Exp

| |
Log Complex

fitness algorithms

[OReached 95% solution M Reached final solution

Figure 9: World 1. Time to find solution using different fitness
algorithms and with starting probabilities

1,000

800 - 1

600 - 1

400 - N

Time (s)

200 - N

| | | | |
Constant Linear Exp Log Complex

fitness algorithms

[Reached 95% solution M Reached final solution

Figure 10: World 3. Time to find solution using different fitness
algorithms and with starting probabilities

4.8 Trend in results

From experiments 2-6, there seems to be a trend where
more exploitation of grammar rules that were previously
used reduces the time to generate a solution whose feedback
reaches 95% of maximum reward. However, there seems so
be no trend in the in time to generate a full solution.

From experiment 7 , it is hard to conclude a trend.
Depending on the world seed and fitness algorithm used, the
synthesis time could either drastically reduce or increase. It
is able to solve new worlds, but it is also not able to solve

previously solvable configurations. Although there seems to
not be a trend on the general scale, simpler worlds like 1 and
2 seem to benefit as their time to generate a solution with
95% of the reward decreases across fitness algorithms. This
suggests that simpler environments benefit from exploitation
more than complex environments which is in line with the
hypothesis. However across the fitness algorithms, it seems
that using more exploitation has a negative effect on the
synthesis time. This suggests that there exists an optimal
trade off between exploitation and exploration per world
basis.

The rest of the results and graphs can be found in the
appendix A

5 Responsible Research

While the methodology of the original data collection lacks
detailed documentation, our methodology over the course
of our research will be thoroughly described to ensure
reproducibility of our results using the same dataset.

The algorithm used for the generation of the Minecraft
probe is deterministic meaning that it is guaranteed
that running the same algorithm in the same Minecraft
environment will consistently produce the same program in
a similar amount of time accounting outside variables like
temperature of device. This predictability of results allows for
researchers to reproduce and verify our results. Additionally
we meticulously document how to set up the environment
and provide comprehensive instructions on how to run the
algorithm to recreate the conditions that have produced our
results.

6 Conclusions and Future Work

The goal of this research project was to further explore
rewards as a method of specification in program synthesis.
We generalised the already existing Probe synthesiser and
then tailored it to synthesise for the environments in MineRL.
We made changes to probe to allow the use of different
selection methods. Changed Probe to utilises rewards from
evaluation. This meant redefining partial solutions and how
grammar gets updated.

We investigated the effect of changing the probabilities in
a way that biased already discovered partial and full solutions
to explore how exploitation affects the synthesis time. By
changing the fitness algorithm we found that favouring the
partial solutions with better rewards will decrease the time
needed to reach the final solution, however it also has a
negative effect of decreasing exploration which is needed to
reach the final solution in an appropriate amount of time.
Depending on the environment changing the fitness algorithm
could change the grammars probabilities where a new route
is taken which sometimes solves a new environment or
sometimes reaches a point where its unsolvable.

There is a limited number of results available due to
the duration of each experiment and the many world
types available therefore a concrete conclusion on which
exploitation methods is best cannot be made.

Building on the generalization and reward-based
adaptation of the Probe algorithm, several paths to explore

for future research:

» Balancing Exploration and Exploitation: finding the
optimal threshold for amount of exploitation and
exploration

* Explore hybrid approaches: explore how different
approaches could be utilised based on feedback from
environment (eg. if synthesis gets stuck in a local
maxima)

e Trace evaluation: using traces of human gameplay to
guide synthesis

» Exploring Different Domains: Extend the application to
environments beyond navigation.

A Graphs 80

—e— 958129
—=— 999999
Base case . 11248956
60 N
80 T T I I I 95812
—eo— 958129 6354
—=— 999999 'g 40 |
60 | 11248956 | g
95812 ~
6354
ke 20 .
s 40 .
3
Q
[7 y
of & 2
20 N ! | | ! |
0 200 400 600 800
Synthesis Time
O - & |
! ! \ \ | | \ Figure 13: Use a different fitness algorithm, Partial solution:
0 100 200 300 400 500 600 reward > f3, Cycle length 6. Select 5 programs with
Synthesis Time highest reward. Update based on last action. fit = 1 —

expV(m)*ﬁ)
Figure 11: Base case, Partial solution: reward > [, Cycle

Select titel
length 6, Select 5 programs with highest reward, fit =

. 80 T \ ‘ -
min(155, 1) “e_ 958129
Select lower amount of partial solutions —m— 999999
80 T T \) — 60 - 11248956 ||
—e— 958129 95812
—=— 999999 6354
60 |- 11248956 || T a0l |
95812 2
6354 P
g 40 - = 20 |- |
2
(]
a7
20 |- oF E |
| | | | |
0 200 400 600 800
0 Synthesis Time
| | | | |
0 200 400 600 800

Figure 14: experiment 1 again: fit = %
Synthesis Time

Figure 12: Select lower amount of partial solutions, Partial
solution: reward > B, Cycle length 4. Select 3 programs
with highest reward. Update based on last action. fit =
min(l%7 1)

Reward

Baseline

80 F T I —
—e— 958129
—m— 999999
60 |- — & 11248956 ||
95812
6354
40 - R
20 | R
0 - |
! ! ! ! !
0 200 400 600 800

Synthesis Time

Figure 15: fit = min(1, (1‘%) * (log(1 + appearances)))

Baseline
80 [T T T I |
—e—0.0
—a—0.1
60 |- 0.2 ||
0.3
——0.5
40 - ——0.7 |
——1.0
20 + =
O - |
|

| | | | | |
0 200 400 600 800 1,000 1,200
Synthesis Time

Figure 16: fit = ¢

Baseline
T I T
ms —e— 958129
—a— 999999
11248956
30 95812
6354
2
[+
= 20|
o~
10
|
ol B
| | | | |
0 200 400 600 800

Synthesis Time

Figure 17: fit =0

B Probe guided search algorithm

Algorithm 1 Guided Bottom-up search algorithm

Input: PCFG Gp, input-output examples &, and optionally, the initial state of the search

Output: A solution P or L, and the current state of the search
1: procedure GUIDED-SEARCH(G). &, (LvLg, Bo. Eo. PSolp) = (0,0, 0, 0))

2 Lvi,B,E, PSol « Lvig, By, Eg, PSoly > Initialize state of the search
3: while LvL < Lvig + Lim do
4: for P € NEw-PrOGRAMS(G), LvL, B) do > For all programs of cost LvL
5: EvaL « [(i, [P](i)} | {i,0) € &E] > Evaluate on inputs from &
6: if (EvaL = £) then
7: return (P, (Lvy, B, E, PSol)) > P fully satisfies &, solution found!
8: else if (EvaL € E) then
9: continue > P is observationally equivalent to another program in B
10: else if (EvaL N & # 0) then > P partially satisfies &
11: PSol « PSolu P
12: B[LvL] « B[LvL] U {P} > Add to the bank, indexed by cost
13: E « E UEvaL > Cache evaluation result
14: LvL e~ LvL+1
15: return (L, (Lvt, B, E, PSol)) > Cost limit reached

Input: PCFG Gy, cost level Lvi, program bank B filled up to Lvr — 1
Output: Iterator over all programs of cost LvL > For all production rules

16: procedure NEw-PROGRAMS(G)p, LvL, B)
17: for(R=N— (tNy N2 ... Np) e R)do

18: if cost(R) = LviL A k = 0 then > t has arity zero
19: vield ¢

20: else if cost(R) < LviL A k > 0 then > t has non-zero arity
21: for (c1,...,c1) € { [1, LVL]k | Y ¢; = LvL — cost(R) } do > For all subexpression costs
22: for (Py,...,P;) € {Ble1] X... xBlei] | A;N; =" P; } do > For all subexpressions
23 vield (t Py ... Py)

Figure 18: Pseudocode of the Synthesis stage of Probe (Shraddha Barke et al, 2020)

References

[1] GUOFENG CUI, YUNING WANG, WENJIE QIU, and
HE ZHU. Reward-guided synthesis of intelligent agents
with control structures. 2024.

[2] Paul MK Gordon and Christoph W Sensen. Seahawk:
moving beyond html in web-based bioinformatics
analysis. BMC bioinformatics, 8:1-13, 2007.

[3] Sumit Gulwani. Automating string processing
in spreadsheets using input-output examples. In
Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,

pages 317-330, 2011.

[4] William H Guss, Brandon Houghton, Nicholas Topin,
Philip Wang, Mathias Codel, Manuela Veloso, and
Ruslan Salakhutdinov. Minerl: A large-scale dataset of
minecraft demonstrations. In Proceedings of the Annual
Conference on Neural Information Processing Systems
(NeurIPS) Competition and Demonstration Track, 2019.

[5] T. Hinnerichs and S. Dumancié. Herb.jl: A library
for defining and efficiently solving program synthesis
tasks in julia. https://github.com/Herb-Al/Herb.jl, 2024.
GitHub repository.

[6] Mojang. Minecraft, 2009.

[7] Hila Peleg Shraddha Barke and Nadia Polikarpova. Just-
in-time learning for bottom-up enumerative synthesis.
page 29, November 2020.

[8] Chengxun Shu and Hongyu Zhang. Neural programming
by example. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31, 2017.

[9] Mark Wilkinson. Gbrowse moby: a web-based browser
for biomoby services. Source Code for Biology and
Medicine, 1:1-8, 2006.

https://github.com/Herb-AI/Herb.jl

	Introduction
	Background
	Program Synthesis
	Programming By Example
	Programming by Reward/Reward-based evaluation

	Synthesising Programs with Probe
	Guided Bottom-Up Search
	Just-in-Time Learning

	Methodology
	Generalise Probe
	Adapting Probe for Game Environments
	Language and Library Selection
	Reward-Based Evaluation

	Exploiting Successful Programs

	Experiment Setup & Results
	Set-up
	Hardware
	Environments - Seeds
	Experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5

	Experiment 6
	Results
	Experiment 7
	Trend in results

	Responsible Research
	Conclusions and Future Work
	Graphs
	Probe guided search algorithm

