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Abstract

The quantum uncertainty principle famously predicts that there exist measurements that are
inherently incompatible, in the sense that their outcomes cannot be predicted simultaneously. In
contrast, no such uncertainty exists in the classical domain, where all uncertainty results from
ignorance about the exact state of the physical system. Here, we critically examine the concept of
preparation uncertainty and ask whether similarly in the quantum regime, some of the uncertainty
that we observe can actually also be understood as a lack of information (LOT), albeit a lack of quantum
information. We answer this question affirmatively by showing that for the well known measurements
employed in BB84 quantum key distribution (Bennett and Brassard 1984 Int. Conf. on Computer
System and Signal Processing), the amount of uncertainty can indeed be related to the amount of
available information about additional registers determining the choice of the measurement. We
proceed to show that also for other measurements the amount of uncertainty is in part connected to a
LOL. Finally, we discuss the conceptual implications of our observation to the security of cryptographic
protocols that make use of BB84 states.

1. Introduction

The uncertainty principle forms one of the cornerstones of quantum theory. As first observed by Heisenberg
[15] and then rigorously proven by Kennard [19], it is impossible to perfectly predict the measurement
outcomes of both position and momentum observables. This notion was generalised by Robertson to an
arbitrary pair of observables [26] showing that uncertainty is an inherent feature of any non-commuting
measurements in quantum mechanics. The described uncertainty is often referred to as preparation uncertainty,
because it states that it is impossible to prepare a quantum state for which one could perfectly predict the
measurement outcome of both observables.

A modern way of capturing the notion of preparation uncertainty is by means of a guessing game [2]. Such a
game makes the concept of preparation uncertainty operational and is of great use in proving the security of
quantum cryptographic protocols [7]. Figure 1 summarises the game, which in its simplest form works as
follows. Bob prepares system B in an arbitrary state pj of his choosing and then passes it to Alice. Alice performs
one of two incompatible measurements labelled by r = 0 and r = 1 according to a random coin flip contained
in the register R and obtains measurement outcome X. She then informs Bob which measurement she
performed by sending him the register R. Bob wins the game if he correctly guesses Alice’s measurement
outcome X.

To see why this captures the essence of the uncertainty principle, note that if the measurements are
incompatible, then there exists no state p, that Bob can prepare that would allow him to guess the outcomes for
both choices of measurements with certainty. Uncertainty can thus be quantified by abound on the average
probability that Bob correctly guesses X. That is, a relation of the form

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Uncertainty guessing game. The game runs as follows: (1) First, Bob prepares system Bin a state p, and sends it to Alice. We
show in appendix A that Bob’s best strategy is to prepare a pure state p, = |¢) (¢ |5. (2) Second, Alice measures Bin a basis determined
by the state of register R. (3) Finally, Alice obtains the classical outcome X and sends R to Bob. Bob can then measure R in order to help
him guess X. Note that R may be initially prepared in a mixed state pp, and Bob does not have access to the purifying system of py,
denoted as Pin the figure. Hence, P embodies Bob’s lack of information in this game.

Figure 2. Quantum circuit of the uncertainty game. At time t,, Alice’s register R and Bob’s system B are uncorrelated. We will assume
that Alice measures in the standard basis and one additional basis depending on the state of register R. To allow for maximum intrinsic
uncertainty, we take the other basis to be maximally incompatible. Here, we choose it to be the Fourier basis. Hence the two
measurements correspond to measuring in two mutually unbiased bases. If Bis a qubit, then this means that Alice measures in the
standard and Hadamard basis, which are the two bases used in BB84 quantum key distribution. This basis choice is performed by Alice
applying a controlled unitary between the two registers, leading to a correlated state at time #,. Alice then measures B to obtain the
measurement outcome X. If the register R is classical, then the two operations together correspond to performing a random
measurement. If the register R contains some non-zero coherence, then those operations describe a procedure which could be
understood as a ‘measurement in a superposition of two bases’. After time t3, Alice sends R to Bob. At this stage,

Prx = i PePi @ |X) (x[x is a qc-state. Bob can then make a measurement in order to distinguish the states p7, i.e., to help him guess
X. Note that Bob knows which states p}, he wants to distinguish since he knows the form of the initial state | £ ) and the measurements
Alice can perform.

F:guess(XlBOb) = P(T = O)Pguess(XlBOb) r=0)+ P(f = I)Pguess(XlBOb) r=1)< 27(; (1)

for all p,. Equivalently, we can relate the above defined guessing probability to the min-entropy
Hppin (X|Bob) = —log Byyess (X[Bob) (in this article all logarithms are base 2), so that we obtain an inequality:

Hmin (XlBOb) 2 g (2)

This expression forms an uncertainty relation as long as the RHS is non-trivial (i.e. ¢ > 0). Analogous relations
exist for other entropies [7], but here we focus on the min-entropy since it is the relevant measure for quantum
cryptography and randomness generation, and it quantifies the winning probability for the aforementioned
guessing game.

In this work, we seek a deeper understanding of the uncertainty principle by considering a more general
scenario than the typical guessing game and observing the conditions under which Bob’s uncertainty vanishes.
In particular, the generalisation we consider is to allow Bob to have additional information—possibly quantum
information—about Alice’s measurement choice. This generalisation is closely related to recent proposals for
quantum control experiments [5, 17]. To elaborate, we note that Alice’s random measurement choice in the
guessing game can be implemented by preparing a qubit R in the maximally mixed state p, = 1/2 and then
performing a unitary operation on B conditioned on the state of R (see figure 2 above). In the generalised game
that we consider, we allow p,, to be a more general state, possibly with some coherence. As we discuss below,
allowing for coherence in py, corresponds to giving Bob more information.

Our motivation for considering this scenario is to distinguish between uncertainty that is due to Bob’s lack of
information (LOI) versus uncertainty that is intrinsic or unavoidable. To help clarify these notions, we remark
that a classical theory admits no intrinsic uncertainty. Classical here refers to commuting measurements that are
jointly diagonal in one predefined basis. If Alice employed such measurements in the aforementioned guessing
game, then the only way for her to prevent Bob from winning the game would be for her to add noise to her
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measurement outcomes, i.e., implement noisy measurements. Yet, we would classify Bob’s uncertainty in this
case as LOI uncertainty, as he simply lacks the information about the noise Alice adds. Hence, the arising
uncertainty is clearly not an intrinsic feature of the measurements.

Notice that preparing the register R in the maximally mixed state p, = 1/2 injects classical randomness into
the protocol. It is unclear whether or not this randomness is ultimately responsible for the uncertainty principle,
and this is a question we aim to answer. We emphasise that the scenario we consider differs from other variants
of the uncertainty principle which derive bounds involving the purity or entropy of p, [2-4, 6, 8,9, 11-14, 21—
23,25,27].

Interestingly we find that in the special case where Bob’s system is a qubit (d = 2), there is no intrinsic
uncertainty but all the uncertainty is due to LOI. That is, if Bob has complete knowledge about the preparation of
R(i.e., Risinapure state), then his uncertainty vanishes. In contrast, for all dimensions d > 2, we find that there
is always some intrinsic uncertainty. That is, even with the full knowledge about the preparation of R, Bob
cannot win the guessing game with unit probability. Before we discuss these results in detail, let us outline the
physical setup.

2. Physical setup

2.1. Degrees of ignorance

In this section we describe the generalised guessing game shown in figure 1. Here, Alice prepares a register
system R in some state pp. Meanwhile Bob prepares system B in state p, and sends it to Alice. Alice measures Bin
abasis determined by the state of R. Then she passes R to Bob, and he tries to guess her measurement outcome,
possibly using the information stored in R. We are interested in understanding how much of Bob’s uncertainty
(i.e., his inability to win this game) is due to LOI and how much corresponds to intrinsic (or unavoidable)
uncertainty.

To better understand this, let us examine what Bob does and does not have access to in figure 1. Since py is
generally a mixed state, it can be purified by considering an additional system, P. Even though Bob is given access
to R, we emphasise that he does not have access to Pin our guessing game. Hence, we can think of Pas
representing Bob’s LOL

For example, consider the case when p, = /2 is maximally mixed, which corresponds to the case where the
measurement choice is a classical coin flip (i.e., the typical uncertainty game considered in the literature [2]). The
purification is a maximally entangled state such as

[Erp) = %(|O>R|O>P + [ Dr [1)p). 3)
Atthe other extreme is the case where py is pure, i.e.,
1€rp) = 1€R) ® 1€p) 4)
isa product state. We will take |£5) = —(]0) + [1)),1.e., we choose an equal superposition in correspondence

2
with the idea that both measurements were previously chosen with equal probability. Intuitively, when the initial

state is maximally entangled, then Bob will later suffer from a maximum LOI about P. However, in the case
where the two systems are uncorrelated, Bob does not need Pat all. In other words, there is no LOI on his part,
because R is pure.

There are many ways to interpolate between these two extremes in terms of a measure of correlation between
Rand P. Here, we choose one that is intuitive when we think about ‘how much’ of P Bob is actually lacking.
Concretely, we imagine that apart from the classical coin C (which is a part of R), R and P are actually comprised
of many environmental subsystems Ej, ..., E,;, and we quantify Bob’s LOI by the number of the environment
systems that are part of Pinstead of part of R. Specifically, we take

1

|Erp) = NG (|0>c ® §|Q>Ei + [1)e ® ®|5>E,], 5)

i=1

where RP = CE, ... E,. The environments E;’s are two-dimensional registers and | (a|3)| = 1 — €, withe > 0
and € < 1so that each individual E; holds very little information about the state of the coin C. However, we see
that («|3)" — 0asn — 0o. Wethusseethatforn — coandR = C, P = E ... E,, weapproach the extreme
case of R being essentially classical, and | ) being maximally entangled. This idea of approximating the notion
of a classical register by ‘copying’ information into a large number of environmental systems E;is due to
Zurek [30].

We can now interpolate between the two extremes by letting R = CE; ... Ejand P = E;; ... E,. Wehave
that




10P Publishing

NewJ. Phys. 19 (2017) 023038 F Rozpedek eral
1
PR=5(|0><0|+|1><1|+7* 10) (1] + ~ [1)(0]), (6)
where
j
[0)r = 10)c ® @l 7)
i=1
j
1z = [l)c @ Q|B)E ®)
i=1
v = (alB)" . )

We see that |y | increases monotonically with j, the number of environmental subsystems contained in R, and
hence the number of subsystems to which Bob is given access later on. The extreme cases vy = 0and v = 1
correspond respectively toj = 0andj = n (again note that the number of environment subsystems is very large
so that we always consider the limit n — 00). In appendix A we show that for the uncertainty game it is only the
modulus of y that matters. Therefore, we will only consider the case of real and positive y,i.e. v € [0, 1].

2.2. Uncertainty game

Let us now revisit our uncertainty guessing game (see figures 1 and 2) with a more detailed description. First, Bob
prepares system B in a state p, and sends it to Alice. Second, Alice measures Band obtains the classical outcome
X, with the measurement basis determined by the state of register R given by:

pR=§<|o><0|+|1><1|+v|0><1|+w|1><0|>. (10)

Specifically, as depicted in figure 2, states |0) and | 1) on R are, respectively, associated with measuring in the
standard basis and Fourier basis on B (we have chosen maximally incompatible bases to maximise the ‘inherent’
uncertainty). Next, Alice sends Bob the register R. Finally Bob measures R to help him produce a guess for X.
This defines a two-parameter family of uncertainty games which depend on: d € {2, 3, ...}, the number of
possible outcomes (which fixes the dimension of the quantum state pj, supplied by Bob and the dimension of the
Fourier transform in figure 2) and y € [0, 1], describing the amount of information about R thatis held in P, or
equivalently the amount of coherence in R.

3. Methods

Here we provide a high level overview of the methods used to obtain the results presented in the next section. For
complete analysis we refer the reader to the appendices.

After Alice has performed her measurement, at time #; in figure 2 the resulting qc-state between the register R
and the outcome register X is:

Prx (%> ds pp) = D pp (v, d, pp) @ Ix) (xIx, (11)

where By (7, d, pg) = p,(d, pp) px (7> d, pg) is the subnormalised post-measurement state of the register R
corresponding to the outcome X = x. In terms of Bob’s input state pj, this state has the form:
<% 1 (xlpg %) v (x| ppFT |x)
Pr (V> d, pp) = = ¥ >

2\ v (x| Fpy |x) (x| FpzF" |x)
as derived in appendix A. Since Bob later gains access to register R, we see that in order to guess the resulting
outcome X = x, Bob should try to determine which quantum state p3 (7, d, p,) he hasreceived. Hence, his
guessing problem becomes equivalent to the problem of distinguishing quantum states { p (7, d, pp) }
occurring with probabilities {p_(d, pg) }.

The probability of Bob correctly discriminating those states with the optimal strategy, i.e., with the optimal
measurement on R (described by POVM elements { M, }), is given by [29]:
d—1
Pyuess (V> & pp) = max > b (d, pp) Tr[Mypi (v, d, pp)]- (13)

X x=0

(12)

In appendix A we show that to achieve pg"l:::s

sufficient to consider only pure input states p, = |¢) (¢ |5. Hence, the maximum value of Pyuess (V> d, pg)fora

(7, d), the guessing probability optimised over input states py, it is

given yand d is the result of optimising the guessing probability over all input states | )z of Bob (for convenience
we will often omit the subscript ‘B’ from | ¢)p). That s,

4
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Figure 3. The optimal guessing probabilities p™* (-y, d) as a function of -y for different d. The solid line corresponds to the analytical

guess

oy (7> d = 2) for a two-dimensional game. The remaining data corresponds to the numerical lower bounds pgr:::s by, d)

m:

solution P

for d = 3, 4, 5.For v = 0 the numerical values coincide with the analytical solution pé;‘;‘;‘s (y=0,d) = %(1 + %) The crossing

of the dotted lines corresponding tod = 4 and d = 5is discussed in section 5.

Ppess (1> ) = r?;xpguess(% d, |#)). (14)

Solving this optimisation problem is not an easy task. Note that the function which we want to optimise over all
the POVM elements { M, } in equation (13) is linear in those operators. Hence, for a specific input state | ¢))p the
optimisation can be performed using techniques of semi-definite programming. However, the above
optimisation problem in equation (14) involves optimisation both over POVM elements and input states | ¢)p.
Clearly, py (7, d, |¢)p) is quadraticin | ). Note that this problem can be made linear in the input state by again
considering optimisation over all mixed states py, i.e. our problem is then linear in p,. However, the full
problem of optimising over both { M, } and pp:

d-1

Prness (7> @) = maxmax 3 p. (d, pp) Tr[Mypy (7, d, pp)] (15)
pg AM} o

turns out not to be jointly concave in both of those variables and so cannot be solved using techniques of convex

optimisation.

3.1. Two-dimensional game

Nevertheless, we can solve this problem analytically for d = 2. For this case, we derived our result (stated below
in theorem 1) by noting that the problem of optimising over the POVM elements in equation (13) (for fixed
states { p3} occuring with fixed probabilities { p }) has been solved analytically by Helstrom [16]:

1 ) .
Pouess (1> d = 2, pp) = S+ 152 (%> p5) — PR (v ) D) (16)

where |- |; denotes the trace norm and we have omitted the d = 2 argumentin p and f. In this way we obtain
an expression for Pyuess (V> d = 2, pg) which we then analytically optimise over the input states p, for every
value of v € [0, 1]to obtain pg‘l'l‘:;‘s (v, d = 2) (see appendix B). For completeness, we still optimise over all qubit

states pj, not only the pure ones. This allows us to find all the qubit input states that achieve pg‘l‘:;‘;‘s (v, d = 2).

3.2. Higher-dimensional games

For d > 2 we cannot calculate pg‘l‘;‘ea;‘s (v, d > 2) analytically, since there exists no known analytical expression
for the probability of correctly distinguishing more than two quantum states. However, we can find

Puess (> @ |¢)) for an arbitrary state | ¢) using techniques from semi-definite programming. We obtain

numerical lower bounds for pgrfleafs (7, d), shown in figure 3, by solving a semi-definite programme for

Pauess (1> d, |¢)) and numerically searching for local maxima of Pguess (> d, | ¢)) with respect to the input state
| #) using the Nelder—Mead algorithm. We repeat the search multiple times with a randomly generated initial
state in each run, that is drawn uniformly from unit vectors on .

4, Results

In section 1 we discussed that classical uncertainty arises solely from LOIL Here we show that even in the
quantum case, uncertainty can in part be understood as a LOI that Bob has—namely a lack of quantum
information about the register P. For the case of d = 2 and BB84 measurements as they are used in quantum key
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distribution (QKD)), this effect is indeed dramatic. We find (see theorem 1 below) that there is no more
uncertainty at all in the case where R is pure and P is uncorrelated, meaning that Bob does not suffer from
any LOL

First, we consider the typical uncertainty game where R is a classical coin, i.e., R and P are maximally
entangled (v = 0). In this case the maximum value of the guessing probability (for completeness derived in
appendix C) is given by:

b guess \/E

The states pj that achieve the guessing probability of equation (17) are the pure states
|63 = (1) + WIF 1)), (18)

where c = 4/ \/E / (2\/3 + 2) isthe normalisation constant, F denotes a quantum Fourier transform defined in
appendix A, wis the dth root of unity and j and / are integer indices that lie in the range {0, 1,...,d — 1} sothat
the pure states | j) and | /) denote the corresponding eigenstates of the standard basis. The states defined in
equation (18) are the states where the dominant classical outcome for the measurement is j in the standard basis
and /in the Fourier basis.

Now we consider the more general case where R may have some coherence. For d = 2 we have found the
analytical solution for all v € [0, 1].In this case the guessing probability is equal to the probability of
successfully distinguishing the two possible post-measurement states of the basis register, namely p% and pk
corresponding to outcomes 0 and 1 respectively (see figure 2).

max (), d) = %(1 + L) (17)

Theorem 1. The maximum guessing probability for a two-dimensional game (d = 2), optimised over all input
states py is given by:

max 1 V2 + 29
Ppes (1 d =2) = —(1 + ] (19)
2 2
In particular, for -y = 1 one achieves perfect guessing, that is pg“::;‘s y=1d=2)=1
Itis also possible to express this guessing probability in terms of the purity of the basis register:
max 1
Paess (1 d =2) = E(1 + JTrlpa]). (20)

Forall v € [0, 1], this guessing probability can be achieved by one of two orthogonal input states of Bob,
|#o1) = ¢(|0) + |—))and|¢,,) = c(|1) + |+)), which are mapped by the Hadamard transformation onto
each other. (For y = 0 this guessing probability can of course also be achieved by | ) and | ¢,,), as then
equation (19) reduces to equation (17). For v = 1the optimal input states form a continuous one-parameter
family, see appendix B.)

From equation (19) we see that Bob can achieve perfect guessing probability for the case when R is
uncorrelated from P (and so Pholds no information about R and there is no LOI about the measurement process
on Bob’s side). This is connected to the fact, that for v = 1and a suitable choice of input state pj, the joint state
prp becomes maximally entangled at time #, just before Alice’s measurement in figure 2 (see appendix D below
for discussion of this connection). The above results for d = 2 are derived in appendix B.

Now it is interesting to ask what happens to the measurement uncertainty in the game with more than two
measurement outcomes in higher dimension. It is intuitive that the dramatic effect we see for d = 2 should be
less prominent here. After all, Bob is trying to guess measurement outcomes that can take on d values, while R
and P each remain two-dimensional and can hence only contain limited information about the outcomes. We
first make this intuition precise in the following theorem.

Theorem 2. For d-dimensional games with any d > 2 itis not possible to achieve perfect guessing, i.e.,
pre (v, d>2) <1, v v € [0, 1]. (1)

guess

Crucially, however, coherence in register R always facilitates guessing.

Theorem 3. For d-dimensional games with d being arbitrary, the maximum guessing probability when R has any
non-zero amount of coherence is always strictly greater than the case of maximally mixed R. Thatis, forall v' > 0

(v = d) > pr(y=0,d), Vd>2 (22)

guess

Moreover, we show that for a subclass of the input states that are optimal for v = 0, the guessing probability

6
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monotonically increases with +. Specific values of pgrﬁea;‘s (v, d) arelower bounded numerically. Those results are

depicted in figure 3.

5. Discussion

We have shown that quantum preparation uncertainty is not always inherent to the measurement process but on
the contrary it depends on the amount of information that one has about this process. In particular, for d = 2, if
Bob has all the information about the measurement process, then he can perfectly predict the measurement
outcome. In the cryptographic protocols that use BB84 states, pp, is a maximally mixed state. Hence, from the
perspective of cryptographic security, this shows that it is important for the purification of p, to remain
inaccessible to the adversary. In particular, the more of the purification P becomes incorporated into R, the
larger the guessing probability becomes and so the more the security of our cryptographic protocols becomes
compromised. Passive encoding schemes [10], which generate the QKD signal states by performing a
measurement on a quantum register (analogous to our R), would especially need to consider this issue.

On the other hand, we found that there is always some unavoidable uncertainty for guessing games in higher
dimensions, d > 2. This result is somewhat intuitive when one considers that our guessing game allows for two
measurements, and hence system R is only two-dimensional. The intuition behind this unavoidable uncertainty
is that the state p,, in which the information about the measurement outcome becomes encoded, is always a
qubit, while the number of outcomes is d. Hence, even if Bob inputs a state that results in entanglement between
the two systems, this entanglement lives in a two-dimensional subspace of the d-dimensional space Hj.
Therefore, the joint state cannot be maximally entangled and since the Fourier transformation applied to
elements of the standard basis generates a basis that is unbiased to it, the correlations before the measurement of
Alice do not align with the standard basis in which the measurement is performed. This fact can also be seen by
noting that perfect guessing could only occur if only two of the resulting outcomes had non-zero probability and
if those outcomes produced orthogonal post-measurement states of the register R. It turns out that all those
conditions cannot be met simultaneously.

The crossing of the dotted lines corresponding to d = 4and d = 5 in figure 3 is an interesting phenomenon.
We have investigated it extensively using multiple methods and numerical solvers on which we now elaborate.
As mentioned in section 3 the problem of optimisation over both input states and measurements is in general
very hard because the optimisation problem that we face is not convex. That is we can have no guarantee that the
solution that we find is the global maximum. Therefore the numerical results are just the lower bounds on the

max as they represent achievable values of p™* that have been found. Nevertheless we have used multiple

2 guess guess
methods to look for these optimal bounds. Apart from the method described in section 3.2 (where part of the

data was checked by rerunning the programme with multiple numerical solvers), we have tried imposing a net
over the statespace and solving the semi-definite programme over the measurements for each of those states.
Then the procedure was repeated with a denser net in the region where the highest guessing probability has been
found. This step of ‘zooming-in” has then been repeated multiple times. Finally we have also used the ‘Penlab’
solver, which can also provide achievability bounds for nonlinear problems. Application of those other methods
however resulted in much worse bounds and so they shed no light on the nature of the crossing in figure 3.
Nevertheless, despite the fact that we only find achievable bounds, we believe that the crossing seen in
figure 3 could in principle arise even for the exact solution. We note that while asymptotically we expect
pgrﬁea:s (7, d) to tend to 0.5 as d tends to infinity, it is possible for pg“::‘s (v, d) tobelarger ford = 5thanford = 4
above some threshold v = ~,. As we mentioned earlier, the optimal guessing probability depends on the
optimal correlations between two-dimensional register R and d-dimensional register B. The resulting state is
asymmetric and so it is possible that certain favourable correlations are possible for d = 5, while not possible for
d = 4.The complexity of the problem can be seen by looking at the Schmidt coefficients of the joint state of
registers Rand Battime t, in figure 2. For d = 2 and v = 1the optimal input states are precisely the ones that
lead to a maximally entangled state between those two registers at time #,. One might intuitively guess that also
for d > 2 forming maximally entangled states within the two-dimensional subspace of B will lead to the optimal
guessing probability for -y = 1. This turns out not be sufficient: we checked specific states that lead to maximal
entanglement in dimensions d = 3, 4, 5and their performance is suboptimal. At the same time, all the optimal
input states found numerically that achieve pgma"’lb (y =1, d)ford = 3, 4, 5lead to unbalanced Schmidt

uess

coefficients. While we have found multiple states that achieve pma"’lb (y =1, d)foreachof d = 3, 4, 5,all of

guess

them lead to exactly the same Schmidt coefficients of the joint state, which we list in table 1. This fact, together
with the irregularity of our numerical curves, reveals the complexity of the geometry of this problem.

7
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Table 1. Schmidt coefficients of the joint state on RB at time f, for the input states that achieve pm"“"lb (y=1,4d).

guess

Schmidt coefficients
d=3 0.8122 0.5834
d=4 0.8314 0.5556
d=>5 0.7415 0.6709

In future work, it would be very natural to consider games with more than two measurements. It would be
interesting to investigate whether a higher dimensional register R could then encode more information about
the measurement outcome. Specifically, for the scenario with d mutually unbiased measurements (if they exist)
and d possible outcomes, it is reasonable to ask whether one can again achieve perfect guessing (e.g., due to the
possibility of creating maximal entanglement between R and B).

Another natural extension of our game would be to provide Bob with access to a quantum memory [2]. In
such a scenario an interesting task would be to investigate the effect of the trade-off between Bob’s amount of
accessible information about the measurement process and the quality of entanglement between B and Bob’s
quantum memory.

Finally, we would like to emphasise that while the described guessing game seems to be only an abstract tool
that we use to investigate the connection between quantum preparation uncertainty and LOI, the game
described in figure 1 could in fact be implemented experimentally, e.g., using a Mach—Zehnder interferometer
for single photons. For simplicity consider the case d = 2, although the following discussion can be extended to
d > 2 by considering an interferometer with more than two paths. Suppose that system R is the photon’s
polarisation, while Bis the photon’s spatial degree of freedom (the path that it takes in the interferometer).
Allowing Bob to have access to the first variable beam splitter of the interferometer allows him to prepare an
arbitrary pure qubit state pj inside the interferometer (Bob is allowed to freely choose the reflectance and the
relative phase of the beam splitter). The controlled Fourier transform in figure 2 is implemented by making the
second beam splitter of the interferometer a so-called quantum balanced beam splitter [17]. That is, the photon’s
polarisation controls whether or not the balanced (50/50) beam splitter appears in the photon’s path. Hence,
this beam splitter can be effectively in a superposition of being absent and present, if one chooses the polarisation
to be in a superposition. This would be a so-called quantum control experiment [5]. Let us note that such a
quantum beam splitter has been implemented experimentally [18, 24, 28]. The winning condition of the game
for Bob is correctly guessing which one of the two photon detectors clicked, after being able to measure the
polarisation state of the photon behind the quantum beam splitter.
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Appendix A. The uncertainty game: definitions and basic derivations

A.1. Time evolution of the quantum circuit

Following the quantum circuit of the uncertainty game in figure 2 (in the main article), we derive the explicit
form of the density matrices that Bob needs to distinguish in order to win the game. There are different classes of
games depending on the parameter d corresponding to the dimension of the Fourier transform or equivalently,
the number of possible outcomes of Alice. Bob prepares a state p, of dimension d and sends it to Alice in register
B. She holds another register Rin a state p, () = %(|0> (0] + 1) (1] + ~4*|0) (1] + ~ [1)(0]), wherey € C
and |y| < 1. This ydetermines how coherent the register is. Specifically, in the later part of this appendix we
show that we can restrict yto be real and y € [0, 1]. Hence at the beginning (time #;) the total state of the entire
system is:
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Pre (V> pp) = Pr(7) @ pp = %(I()) (O + 1) (Lr + ™ 10)(Llr + 7 [1) (0lr) ® pg. (AD

The state pg, (y) determines the measurement basis in the following way: |0) corresponds to the measurement in
the standard basis and | 1) to the measurement in the Fourier basis (which is represented by applying the Fourier
transformation to Bob’s state and then measuring in the standard basis). Hence, the choice of the measurement
basis can be represented by the controlled Fourier transform:

U=10)(0lg ® Ip + [1)(1]g ® Fg. (A2)

We adopt the following convention for the Fourier transform: F |j) = ﬁzz;é wi | k) with w = exp (%)
being the dth root of unity. After Alice applies the above unitary, the state at time ¢, is:

p're(Y> ds pg) = Uppg (7> pp) UT = U (pr(7) ® pp)UT (A3)
1 .
= 5(|0> (0lr @ pg+7*10)(1|r @ PBFg + v [1){0lrFzpp + |1) (1|r ® FppgFy). (A4)

Then Alice performs her measurement and the outcome is stored in the output register X. The total state after
the measurement at time 3 is:

prx (> s pg) = D Trp[ Ik @ |x) (x18) p're (1> d pp)1 @ |x) (x]x. (A5)

Hence, we see that the subnormalised post-measurement states of the basis register corresponding to Alice’s
measurement outcome x are:

Pr (Vs ds pp) = p.(d, pp) pr (V> ds pg) = Trp[ Ik @ |x) (x|p) p'r5]

_1 (x| pg 1x)  * (x| pgF' |x) (A6)

2\ v (x| Fog 1x) (x| FpgF' |x) )

where p (d, pg) = Tr [p}’; (7, d, pg)]is the probability that Alice observes outcome x € {0, 1, ..., d — 1}.Note
that p, does not depend on v, which only appears in the off-diagonal elements of 7. These subnormalised py’s
are the states to which Bob has access and so his ability to predict Alice’s measurement outcome |x) is determined
by how well he can distinguish the quantum states { p3, } occurring with probabilities { p, }.

A.2. Simplifying lemmas
In the second part of this appendix we prove two lemmas, which allow us to restrict the coherence parameter -y to

real and positive numbers and the input state p, to pure states.

Lemma 1. In our problem, we can describe all the possible qualitatively different games just with v € [0, 1]. That s,
all games correspondingto v € C, |y| < 1areequivalent to some game with v € [0, 1].

Proof. Let v = || e!’. Then:

o 1 x| pp lx Iyl e (x| pgF" |x
gy = 1[0 ) (5 7y 1) .
2\|y] e(x| Fpg |x) (x| FpgF" |x)
Let V (6) denote the rotation matrix in the xy plane of the Bloch sphere by angle 0. That is:
1 0
V) = |- A8
©) (0 e,9) (A8)

Then it can be easily verified that:

where |y| € [0, 1]. Hence all the output states p (7, d) up to a unitary rotation V () are the same as the
corresponding states p; (||, d). Clearly, rotating all the output states of register R by a fixed angle § does not
affect their distinguishability. Hence, it is sufficient to consider real and positive y € [0, 1]. O

The probability of successfully discriminating states p, (7, d, pp), optimised over all measurements is [29]:

d—1 d—1
Pauess (1> @ pg) = max 3 p (d, pp) Tr[Mepy (v, dy pg)] = vy > Tt[Mypg (v, ds pp)); (A10)
I x=0 I x=0

where {M,} isa POVM. Here, by p, .. we denote the guessing probability optimised over all POVM’s but for a

specificinput state p,, while later we will use pg';‘:s"s to denote the guessing probability p, .. optimised over all

9
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max

inputs states of Bob. Both Pauess and Py 3T€ calculated for a specific game parameterised by d > 2 and fora

specific v € [0, 1]. Hence, we have pmaX (7, d) = max, Pooess (1> d, pp).

guess

max

Lemma 2. To achieve e " itis sufficient for Bob to consider pure input states.

Proof. Firstly, let us consider the case when not only does Bob hold no quantum memory, but he also does not
have any classical memory. Consider then a scenario in which Bob sends Alice a mixed state p, = >, q; 14;) (&,
where he s given freedom to choose the probabilities {g;}. Then using equation (12):

I I6IE 7 (xle) (6IF )
, d,
PO o) =20, (<¢>|x><x|F|¢> | (xIFl) P ]
= ZqipR,,‘(rY) d, |¢1>)’ (A1D)

where py (7, d, |¢;)) denotes a post-measurement register state iy (7, d, pp) corresponding to Bob inputting a
purestate py = |¢;) (¢;|. In this case the guessing probability from equation (A10) becomes:

d—1
Paaess (0> &> pp) = gyZﬂP4ZWM%dW] EhmuZﬂMMM%dW
X X 0 X
}:q,%mw(v,dl¢> nmxgwﬂxv,dl¢> RW“JVadJ¢h>> (A12)

where Pauess (V> d, |¢;)) = maxyy, Z sTr[M,p 2 (7> d, |¢;))]and by index m we denote the largest of all
Pauess (v, d, |¢;)) overalli’s. Hence it is optlmal for Bob to prepare astate p, = >, q, |¢;) (&1 = |9,,) (&,,] (s0
that a4 = i,m)) such that |¢m> € { |¢1> } and pguess (’Y) d) |¢m>) = max; pguess (7’ d’ |¢1> )

Now, if we allow Bob to have classical memory, he could then prepare a mixed state p, which is classically
correlated to this memory. Then for each of the states pg, corresponding to the state of the classical memory i)y,
we need to solve a separate optimisation problem given by equation (A10). Hence, if Bob prepares a state:

oy = D sipy @ i) (ilm (A13)

according to the probability distribution {s;}, then the guessing probability will be a weighted average of the
individual guessing probabilities corresponding to each of the states pj,, namely:

pguess (7’ d’ pB) = Zsipguess (7’ d’ p}%) < pguess (73 d) Pg% (A14)

where pg is the input state that gives the highest guessing probability out of all the states { p% }. Hence, classical
memory does not allow us to achieve guessing probability higher than individual p’;, for which (as we have just
seen) the guessing probability is upper bounded by its value corresponding to the optimal pure state | ¢, ) in the
decomposition p¥ = 3. g |¢;) (¢il- O

Hence we will restrict our attention to scenarios in which Bob prepares a pure state | ¢)p. In this case the post-
measurement states of the basis register are:

(7’ d |¢>B)

1 o)l y(xle) <¢|FT|X>]. (A15)

I
v (xIFlg) (dlx) | {xIFl$)?

Appendix B. Guessing probability for two-dimensional game (d = 2)

In this appendix we prove theorem 1. That is, we derive the analytical formula for the maximum guessing
probability as a function of v € [0, 1], for a game with two-dimensional Fourier transform (Hadamard
transform) in our circuit and two possible outcomes. In this game the state p, that Bob prepares is a qubit. The
two possible outcomes for Alice are: 0 and 1. We firstly restate this theorem below.

Theorem 1. The maximum guessing probability for a two-dimensional game (d = 2), optimised over all input

states py is given by:
1 N2 + 292
éﬁw,—m=5p+———l} (B1)

2

In particular, for -y = 1 one achieves perfect guessing, thatis p™* (y =1, d = 2) = L

guess
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Proof. The guessing probability is determined by how well Bob can distinguish states 53 and , defined in
equation (A15) (for convenience we will omit writing out explicitly the dependence on yand d). The problem of
distinguishing two states has been solved by Helstrom [16] and the guessing probability is:

1
Pyuess = E(l + 1G> (B2)

where G = p — P = pypr — PP and||-[; denotes the trace-norm of the matrix. Firstly we note that for
d =2, F = F" = H.Secondly, since pg isa qubit, it is convenient to use the Bloch sphere representation:

op = %(H + Zcim), (B3)

with ¢ + cf + ¢ < 1. Although we have already shown in appendix A that the optimal guessing probability
pgrﬂgz‘s will be achieved for a pure input state pg, here we are interested in all the qubit states that achieve this
maximum guessing probability (under the assumption of Bob having no classical memory; if Bob had access to
some classical memory, then any mixture of such optimal states correlated with this memory would also be an
optimal state). Hence, in this appendix we again assume p, to be an arbitrary (possibly mixed) qubit state.

Plugging the Bloch sphere representation of p;; into equation (12), we can first calculate 5 and py, and then G:

7 —icy)

G- ° o2 B4
- E v +icy) c ( )
ﬁ X
The eigenvalues of G are:
(cx + € & \J(ee — €2)* + 721+ )
A= . (B5)

4

Now, let us consider two cases:

@ N-XA =0
Then |G|[f = |A| + [X2] = lex + ¢.| /2 (the superscript @’ labels the case ) - Ay > 0). We are interested

in the maximum possible value of || G ||} for a given -y. Hence we want to maximise the expression |¢, + ¢,|

subject to the constraint ¢} + ¢; + ¢; < 1. Clearly, this gives us ¢, + ¢;| < v/2.Andso |G "™ < g

In particular, this bound is tight for¢, = 0and ¢, = ¢, = :I:% (those states clearly satisfy the condition

A - Ay = 0).Hence, ||G|[P™ = g
b)) M- <O.
Then:
(Cx + €2) + lex — ¢2)* +29°(1+ ¢)
A= > 0, (B6)
4
(Cx + €2) — yJlex — ) + 297 (L + ¢)
Ny = <0 (B7)
4
Hence in this case:
(cx — Cz)2 + 272(1 + CZ)
IGIP =M= X = | > > (B8)
Now we need to optimise this expression subject to the constraint ¢ + c}% + ¢2 < 1.Letususea
substitution a = C"J{Z b= %.Then the constraint becomes: a® + cf + b? < land thenorm of Gis:
L2 2920+ D)
Gl = > : (B9)

Clearly, since the term c)z, is scaled by the positive factor 2v2 < 2, while a’is scaled by a factor of exactly 2,
optimising this expression corresponds to setting a* to its maximum possible value which is 1 (so that
= —C = :I:%). Then ¢, = b = 0 (one can easily verify that those values satisfy the condition of (b)
AL+ A < 0,forall v € [0, 1]). This gives:

11
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|Gl = N2 207

Bl
T (B10)

Clearly || G|[P™> > ||G|*™ forall y € [0, 1](the equality relation holds only for v = 0). Hence:
max 2 + 272
|GI"™ = ———. (B11)
2
Using || G [|[™**, for every ywe can now calculate the maximum value of the guessing probability:

2
%U%HG{mﬂl(l+—Liizl—} (B12)

max ’d:2:
P (y ) 5 5

guess

We see also that for a fully coherent register with v = 1, we obtain pgrlrll::s =1 0

In order to find the optimal states we need to consider 3 separate cases depending on the value of 4.

+ v = 0.Inthiscase || G|™ = g This value occurs for two classes of states. One of them satisfies a> = 1and
b = ¢, = 0 which gives two solutions: ¢, = —c, = :I:%. Hence we obtain two states:

1 1

(Cx> €y 1) = (%, 0, — ﬁ) and (cy, ¢y, ¢;) = (—%, 0, f).The other class can be seen by noticing that

|G| = g = ||G|[P™* and so it can also be obtained from the case (a) for two states that achieve this

value: (Cx> Cy» Cz) = (%) 0, %) and (Cx) Cys CZ) = (-%, 0, —%)

+ v € (0, 1). Here we only have the class a> = land b = ¢, = 0, that is the states: (cy, ¢, ¢;) = (%, 0, f%)

and (¢, ¢, ¢;) = (—% 0, %)

b [2a% 4+ 2(1 + )
« v=1Now||G|} = f’
maximised by the pure states satisfying a® + cy2 = land b = 0. These are all pure states with ¢, = —c, and

,and so this expression subject to the Bloch sphere normalisation is

¢, = 41— 2¢}. We can use angular parametrisation of those coefficients, in which case we can write this
entire family of states as (cy, ¢, ¢;) = (sin(0), £/cos(20), —sin(0)) forall § € [—%, %]. Geometrically,
these states correspond to all pure states on the Bloch sphere that lie in the plane perpendicular to the
Hadamard rotation axis and Hadamard transformation rotates them by 7 rad to their orthogonal
complement.

From equation (B12) we see that the lowest value of p™* occurs for v = 0 anditis pT= = %(1 + %) Asthe

guess guess

max

basis register state is becoming more pure by letting y grow, the p™** grows, until p™** = 1for 7 = 1. We can

guess guess
also rephrase the guessing probability in terms of the purity of the basis register:

1 1 1 22 2

Trlp2] = L Tr ( 7)( 7) B A || P sl (B13)
4 v I 1 4 2y 1442 2
Hence:
1
P (1> d = 2) = (1 + {Trlpp)). (B14)

Appendix C. Guessing probability for the d-dimensional game

We have already seen that in two dimensions utilising entanglement allows for guessing with probability equal to
1. In higher dimensions however, we show that this is not possible. This fact is expressed in theorem 2 in the
main text. We restate and prove this theorem below.

Theorem 2. For d-dimensional games with any d > 2 itis not possible to achieve perfect guessing, i.e.,
P (y,d >2) < 1, V. (C1)

guess
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Proof. We construct a proof by contradiction. Let us assume that there exists d > 2 and v € [0, 1], such that
P (y, d) = 1.Since the states py (7, d, |$)) are two-dimensional, it is only possible to perfectly distinguish at

guess

most 2 such states (if they are orthogonal) Hence, that means that to achieve p‘ﬂ;‘; (v, d) = litisrequired that

atleast d — 2 output states p7, occur with probability zero. Hence, p, = 0 for at most two values of x. Let us
denote those two values of x € {0, 1,...,d — 1} for whichitis possible that sy = 0 by x,and x,. We assume
that those values are distinct so that x = x;. Specifically, let us assume that p° = 0, while p;' may or may not
be equal to zero. Then let us define P = {0, 1,...,d — 1}\ {xo, x}. Therefore we require that pr = Oforall
x € P.Thus we obtain the following two requirements:

(1) (x|]¢) = Oforall x € P,
(2) (x|F|¢) = Oforall x € P.

The requirement (1) implies that the physical input state of Bob must be of the form:
l¢) = ag |xo) + a1 |x1), (C2)
with
lewl* + |au? = 1. (C3)

In this framework, the scenario in which only p,° = 0 would require a; = 0. Now, note that:

Filj) = —= Zw-fk 1K), (C4)
where w = exp( )and sO:
1
| F1 |x) = — (afwx0 4 affw—), (C5)
< > \/E 0 1
Then (2) implies that:
ag + afw G =, Vx e P. (Co)
Equation (C6) together with equation (C3) require that o9 and o are of the form:
|
) = —e'%, C7
=7 (C7)
I &
o = —elth, C8
=5 (C8)

The above requirement shows that cy cannot be zero, which in turn means that the scenario in which only
pp’ = 0isnot possible. Plugging the above forms of a’s into equation (C6) and using the fact that wis the dth
root of unity, we obtain the following requirement:

0p=0,+ 7+ 277[2(& - xo)](mod 27), VxeP. (C9)

Note that for d = 3, this expression can be easily satisfied since in this case | P| = 1,s0e.g.
Oy =0, + 7w+ 27 [%P(xl — xo)], where xp € P satisfies equation (C9). Hence the case d = 3 needs to be
analysed separately. For d > 3 this equation can be satisfied if and only if:

X1

— Xo
—cZ, C10
7 (C10)

where Z denotes the set of integers. However, x¢, x; € {0, d — 1} and x¢ = x;. Therefore this equation cannot
be satisfied. Hence, for d > 3, itis not possible to have Pauess (7, d) = 1.Now, let us consider the case d = 3.
Equation (C2) and equations (C7)—(C9) imply that

|9) = f(lxﬁ — W ), (C1D

where we fix the global phase by setting 6, = 0. Since xp, x¢, x; must be all different, there are 6 possible states

| #) corresponding to the above expression. Let [¢y) = %( |I) — w*{=5 |k)). Then note that for every value

of xp, the state | ) = |¢y) with xg = k, x; = land the state |¢) = |¢y) with xo = I, x; = k up to the global
phase correspond to exactly the same state, since:

|Yu) =%(|l> — w0 k) = —wrr k>f( wrED ) 4+ k) = —w P gy, (C12)

Hence, we need only to consider 3 separate cases:

13
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For xp = 0, xo = 1, x; = 2, thatiswhen [)12 = 0, wehave:

16) = —=(12) = 1) C13)
Then:
Flo) =iZ=(12) ~ 1)) =i 10) (C14)
This means that if we define a matrix
11 =iy
pc(v)—g(w ) ) (C15)

then 70 = 0, 5 = 1(LI¢) PA. (1), 72 = 1(219) P (7). Hence, 7 = 72 = L5, (7) and so we sce that 7 and
f)ﬁ correspond to the same state p. () occurring with probability 0.5. This means that guessing probability in
this caseis 0.5 forall v € [0, 1].

For xp = 1, xg = 2, xy = O with [)113 = 0 the input state is:

l¢) = %(l@ —w?2) = %(|0> —w 2)). (C16)
Then:
Flg) = %(1 — w)(J0) — w? [2)). C17)
Hence,
1 =1 - wh
5= ’ , (C18)
4 1= —w 1
Pr =0, (C19)
1 =1 — wHw*
Pr = i . v (C20)
’yf(l — ww 1

One can now show that Tr[ ﬁl(z) bﬁ] = 0 forall v € [0, 1]. Hence those states are not orthogonal and perfect
guessing is not possible.

For xp = 2, xg = 0, xy = 1, with b}z = 0 theinput state is:
1

l¢) = ﬁ(|1> — w? [0)). (C21)
Then:
Flg) = %«1 — W)10) + V3i [1). (c2)
Hence,
1 (1 = w¥)
== » , (C23)
4 1750 —w 1
Pr = %Pc > (C24)
pg = 0. (C25)

Again Tr [ng ﬁ}z] = 0forall v € [0, 1]. Hence also in this case perfect guessing is not possible.

We have shown that perfect guessingin d = 3 case is not possible either. Therefore we conclude that for all

d > 2andforall y € [0, 1], pT¥ (v, d) < 1.

guess O

The case v = 0isaspecial case and can be solved analytically forall d > 2.

14
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Proposition 1. For v = 0 the maximal guessing probability is:

1 1
max =0,d) =—|1 —, C26
P (y ) 2[ + ﬁ) (C26)

and under assumption of Bob having no classical memory, it is achieved if and only if Bob’s input state p, belongs to
the following family of pure states:

lgg) = c(1j) + FT 1)), (C27)

Jd
2d+2°

where w = exp(%ﬂi),j, le{0,1,....,d — 1}andc =

Proof. If one measures in the standard basis, the guessing probability for a fixed input state py is:

B (> py) = maxTr[|1) (1] pg). (C28)

If one measures in the Fourier basis:

prowier (4 oy = max Tr[|1) (| FppF'] = maxTr[F' |1) (1] Fpgl. (C29)
1 1

guess

Since each measurement occurs with probability 50% and in the classical game the register R only tells Bob
which measurement basis was used, the guessing probability optimised over all input states of Bob is:

1 < 1 N\ /s
Ppuess (V= 0, d) = EmaX(p“andard(d, PB) T Pgoess (A ) = ~ maxmax Tr( (1) (jl + 7 ) (1] F)ps)
Pp B ?

uess uess uess
8 8 8! p j

(C30)
1 )
= max 117 (il 4+ FT 1D (1] Flloo (C31)
I

where ||-||o denotes the infinity norm. The matrix whose infinity norm we need to find is a rank-2 matrix. Let

Pauess = % IM |l and M = |a) (| + |5) (B|be arank-2 matrix. The largest eigenvalue of such a matrix is
IMlso = Amax = 1 + [{a]B)]. Inour case: |«) = |j)and |3) = F' |I). This means that | M ||, = 1 + % and
s0:

P (y =0, d) = l(1 + L] (C32)

guess > NE]
The eigenstate corresponding to this eigenvalue Ay is:
lp) = c(lj) + wFT |I). (C33)

Hence only the states of this form will give us the maximum guessing probability. O

We will now show that for a subclass of the states of this form Bob will be guessing always either j or /, for all
v € [0, 1]and all d > 2, since those 2 outcomes have much higher probabilities of occurrence p; , |¢jl> )and

pi(d, |¢y)) than all other outcomes (i.e. we will show that for input state | ;) = c(|j) + w/F' |I)) such that
j = I the optimal strategy aims at distinguishing only the two states /31{ (v, d, |(;5jl> )and ﬁé (v, d, |¢jl> ))-

Lemma 3. Foralld > 2, forall y € [0, ]and for all states |¢;) = c(|j) + WIFT 1)), such that
7, 1€ {0, 1,...,d — 1}and j = I, the optimal guessing probability can be achieved by Bob if his measurement on

the state of register R isa POVM with only two occurring outcomes, that is the matrix elements of this POVM are:
M; = 0, M; = 0, My = 0, forallk € P, where P = {0, 1,...,d — 1}\ {j, I}.

Proof. The case d = 2 is trivial, since then there are only two output states.

Now considering the general case, let Ain (7, d; [¢;)) denote the guessing probability corresponding to this
restricted POVM. The ‘min’ subscript indicates that this guessing probability is a lower bound on
Pauess (1> 4> 1¢;)), the guessing probability optimised over all POVMs. That is:

)\min (7) d> |¢][>) < pguess ("Y: d; |¢]l>)W6 then have:
Aain (7, 163)) = max TrIM; {7, d, [6))] + TrIMipg (3, d 193))], (C34)
i, M

Effectively this is again the problem of distinguishing 2 states solved by Helstrom [16], the only difference is that
this time p; @, | ¢]z> ) + p(d, | ¢11> ) < 1.Hence
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mln(’ya d |¢jl> [||G(% d |¢]l>)||l + P](d |¢]Z>) + Pl(d |¢]l>)]) (C35)

where G (7, d, | ,) ) = P} iy, d, | ¢ﬂ> pR (v, d, |¢>ﬂ> ). Now we will show that this bound is tight, i.e. we will
show that the above A, (7, d, |¢> 1)) is in fact also an upper bound on Pauess (v, d, |¢ﬂ> ). For this purpose let us
consider the dual programme [29] in which we consider all matrices

Q(v, d, |¢y) € 2, where Z={Qe C¥?:Q=Q " AVke {0,1,....d — 1},
Qs ds |9y)) = B (v ds o) - (C36)

Then foreach Q € Z wedefine A (v, d, |q5jl)) = Tr[Q(~, d, |¢jl) )]. From this it follows that
(v, d, |¢y)) < (7, d, |¢;)) forall Q € Z [29]andso A2 (7, d, |¢;)) is an upper bound on
pguess il max il max 7l pp
Pyuess (> d> 19y)). For simplicity, we will now omit writing explicitly the dependence on v, d and |¢). Consider a
hermitian matrix:

1
Q=@+ pr + 1GD). (C37)

Then:
1
Tr[Q1 = E(P] +p, + |Gl = Amin- (C38)

Now, if Q' satisfies Q' > f)j;, Vk,then Q' € Zandso Tr[Q'] = )\ - Andsince then Tr[Q'] = Ay, = )\max,
this means that Tr[Q'] = Hence, we will now prove that V d > 3,v€ [0, 1]wehave Q' € Z.
Consider

P guess®

Q' = o = 5 (=5} + P+ 1G) = 7 (G + IGD). (C39)

Note that |G| > Gandso Q' — ﬁé > 0.Hence Q' > pé Analogously

07%:4%7%+mn—46+mn (C40)

Clearly: |G| > —Gandso Q" — f)R 0.Hence Q' >
Now we need to prove that Q' > pR, Vk € Pand for all v € [0, 1], d > 3.Inorder to do that, we need to
explicitly calculate all the output states of the register R. Those states are:

1 A ABw I’
Py ds [6,)) = ! , (Ca1)
2| yABwi* B?
1 B ~YABw™"
Py(y d, 1)) = , (C42)
R ? ~ABLE A
B2 1 ’ywﬂ jk—kl
~k _
pR (% d) |¢]l>) - 7(’)/wjk+kljl 1 > (C43)

where A = c(l + ﬁ), k € P.ThenQ' — f){; —(ﬁl{; + p}z — Zﬁ}]z‘ + |G]). Consider the operator:

\f’

; A — B B(Aw ™’ + Aw™" — 2Bwil-ik—H
D:~}%+~}lz_2f’1]§:_{ BT A O (cay

2| 1B(Aw!” + Aw! — 2Bwik+k=il) A — B?

We will now show that for all k € P wehave D > 0.Note thatfor2 x 2 matrices, D > 0ifand only if
Tr[D] > 0and Det(D) > 0. Firstly, we see that Tr[D] = A?> — B? > 0, Vd > 3. Secondly, the determinant of
Dis:

2 p
Det(D) = il(/\z — BY)? — 72B2(2A2 + 4B 4 24 cos(izﬂ(]d : ))

_ 4ABcos(27r(j2 —jk— K +ﬂ)) - 4ABcos(27r(12 —jk— M +ﬂ)))]. (C45)

d d

Now we want to show that Det(D) > Oforall j, [ € {0, 1,...,d — 1}, k € P, v € [0, 1], d > 3.Fromthe
above expression we see that Det(D) is monotonicin v € [0, 1]. Clearly for v = 0,
Det(D) = i(A2 — B?)2 > 0.For v = 1, wehave:
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-
Det(D) = i[A“ — 3B* — 4A2B2 — 2A’B? cos(%ﬁ))
_— ‘ y .
+ 4AB? cos(zw(] ]]; K+ ]l)) + 4AB? cos(zw(l ]kd M+ ]l))]. (C46)
Notethat A = B(1 + +/d). Thus we see that:
4 2 12
Det(D) = %[(1 + A =3 — 41 + Jd)? — 201 + ﬁ)zcos(%l))
5 . y o :
a4 JE)COS(ZW ]1; kI +]l)) a0 4 Jﬁ)cos(”(l ]kd kI +]l))]
4
> 210 V) = 3= 40+ V) = 201+ VI = 41+ ) 40+ VD))
4
= BT(dz + 4dyd — 16y/d — 16). (C47)
Let
y(d) = (d* + 4dJd — 16Vd — 16), (C48)

then Det(D) > %Ny(d).CIearlyB(d) >0,Vd > 3and y(d) > 0, Vd > 4.Hence Det(D) > 0, Vd > 4.

Ford = 3 we use the exact expression from the first part of equation (C47) and we find that for all the cases
j=1,Vk € P,Det(D) > 0.Hence Det(D) > 0, Vd > 3.Sinceboth Det(D) > 0and Tr[D] > 0,D > 0
andso Q' > ﬁ;f, Vke {0,1,...,d — 1}andforall v € [0, 1], d > 3. Therefore Q' € Z and

Tr[Ql] = Agax (71 d) |¢]l>) = )\min (’7’ d) |¢]l>) = Pguess (7) d) |¢11> ) (C49)
O

Now, knowing that the strategy of distinguishing only the two most probable outcomes for the input state
|¢jl> = c(|j) + w/'F" |I)),suchthat j = Iisactually an optimal strategy for those states, we can calculate the
guessing probability for these states forall d > 2 and forall v € [0, 1]:

1
pguess(/y’ d’ |¢]l>) = E(p] + pl + ||G||1)

1 2 (2 — )
= |2+42yd +d+ [dQ + Jd)? + 27920 + Jd)*|1 — cos| =—L—"2|| | (C50)
4(d + Jd) d

Clearly for v = 0 the above expression reduces to equation (C32). That is
Pruess (y=0,d, |¢jl>) = pM¥ (v = 0, d), since the states for which we have evaluated Pyuess (7, d) above are the

guess

optimal states for v = 0. Note that A2 = p™** (v = 0, d) and so itis easy to see that for v = 0 the optimal

guess
measurement is:

_ (1 0 (0 0 -
]VIJ—<O 0), Ml—(o 1), M, =0, VkeP. (C51)

We can also see that for the game with d = 2, thetwo cases j = 0, | = land j = 1, | = 0 correspond to the two
optimal states for all v € [0, 1]. Hence, for these cases the above equation reduces to equation (B12).

Lemma 4. There exist states for which py,. (s s |0)) > Pyies (Y &5 10)) > pil (v = 0, d),

foroyy > v, >0,Vd > 2.

Proof. Consider all input states of the form | ;) = ¢(|j) + w/F' |I)) such that # ¢ ZandVd > 2.Then

firstly, j = [ and so the guessing probability corresponding to those states is given by equation (C50) and
secondly the coefficient in front of 2 is positive. Hence in these cases Pauess (Vs d, | ¢ﬂ> ) is monotonically

increasingin v € [0, 1], Vd > 2.Hence, Vd > 2, for all input states |<bﬂ> = c(]j) + w/'F" |I)) such that
i2_ 2 max
] - & 7 wehave Pauess (v d, |¢jl)) > pguess(%, d, |¢ﬂ>) > Pluces (y=0,d),fory, >, > 0. 0

Theorem 3 follows directly from the above lemma by noting that pg‘:l‘::s (V> @) Z Pyuess (1> 45 1¢)), forall
v € [0, 1], d > 2 and for all states | ¢).
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Hipin

min )
-0.8 —Hyin(P|R) at t

0.2 0.4 0.6 0.8 1

o
Figure C1. Conditional min-entropies as a function of y for the two-dimensional game (d = 2) with Bob’s input state

[¢g;) = c(|0) + |[=))or|d,,) = c(I1) + |+)). Thebluesolid line corresponds to the Hi,i, (BIR) attime t, in figure 2. The red
dashed line shows Hpi, (X|R) at time 5 after Alice’s measurement, where the state is averaged over all the outcomes, as Bob does not
have access to the measurement result. The yellow dotted line corresponds to Hy,;, (P|R) at time #; and hence shows the initial
quantum correlations between R and its purification P. The correlations between those systems at time t, are illustrated by the purple
dash-dotted flatline Hy,;,, (P|R) = 0. By comparing the blue solid and red dashed lines, one can see that for -y = 1 the increase of the
conditional entropy between Hy,;, (B|R) and Hpy, (X|R) due to the measurement on Bis the greatest possible, that s, itis equal to 1.
The reason is that the measurement is the most destructive in this case, as it destroys all the quantum correlations of a maximally
entangled state. On the other end of the spectrum, if v = 0, there are no quantum correlations between B and R present and so the
measurement has a relatively small influence on the system. It only affects the classical correlations, which are not aligned with the
standard basis in which the measurement performed by Alice takes place (the final measurement in the circuit in figure 2). Hence, in
this case the increase of conditional entropy is small. Comparing the yellow dotted and blue solid lines we see that decreasing the
amount of entanglement between P and R results in the increase in the amount of entanglement between B and R that can be generated
using the controlled Fourier transform. Finally, from the flat purple dash-dotted line we see that independently of the coherence of R
and its initial correlations with P, the correlations between those two systems at time #, can be only classical. All the above entropies are
derived in appendix E.

One can also see that for the input states | ;) = c(|j) + WIFT |1)) with j = I but with jzf;lz € Z,

equation (C50) reduces to Pyuess (v, d, |¢jl>) = %(1 + %) = pgr;l::s (v = 0, d). That is for those states
Pyuess (> d> 19;;)) stays constant in -y for all d.

Appendix D. Coherence and quantum correlations

To give a deeper insight into the relation between the guessing probability and the coherence v, we also look at
the correlations between the registers B, R and P (the initial purification of R), at times f,, £, and ¢; in figure 2 (in
the main article). Specifically, we focus on the two-dimensional game with optimal input states. We then
quantify the arising correlations using min-entropy and the results are depicted in figure C1. It needs to be noted
that independently of the dimension of our game, Bob’s requirements for perfect guessing are perfect classical
correlations between R and X, the classical register denoting the measurement outcome after Alice has
performed her measurement on the system B at time ¢; in figure 2. However, classical correlations are basis
dependent and effectively the measurement of Alice involves two mutually unbiased bases. Hence it is
impossible to have perfect guessing with just classically correlating the two systems before the measurement.
From the perspective of the quantum circuit in figure 2, those perfect classical correlations that arise after the
conditional Fourier transform will never be perfectly aligned with the measurement basis of Alice (standard
basis). As aresult, even if the system is classically perfectly correlated before the measurement, the correlations
are no longer maximal after the measurement on B. For two-dimensional game, this can be seen in figure C1
where for v = 0, Hyj, (B|R) = 0, but Hy,y, (X|R) > 0. The advantage for Bob coming from the quantum
coherence in register R and the resulting quantum correlations is that for maximal entanglement (which is
possible if d = 2), independently of the basis in which the system B has been measured, the outcomes of that
measurement are maximally correlated with the state of the register R. Hence, if the two systems become
maximally entangled (Hy,;, (B|[R) = —1for v = 1), then the post-measurement state becomes classically
maximally correlated (Hp,;, (X|R) = 0) enabling perfect guessing.
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Appendix E. Conditional min-entropies for the two-dimensional game

The controlled Fourier transform in the circuit in figure 2 (in the main article) results in (quantum) correlations
between the two systems Band R. These correlations are exploited by Bob in order to guess the measurement
outcome on the state p,. However, this measurement has a destructive effect on these correlations. Here we
quantify this destructive effect of the measurement using min-entropy. The conditional min-entropy will be
calculated using the definition presented in [20]. Firstly let us define a correlation measure:

Geors BIR) = d max F((&r @ 1p)(pgp)s %) (V]rs)?, (E1)

where F is fidelity defined using the trace normas F (p, 0) = [|/p /@ |l (when one of the states is pure, that is

when o = |U) (¥|, the fidelity reduces to F (p, o) = /(¥| p |¥)), dis the dimension of subsystem B, £ isa
local operation described by a trace-preserving completely positive map and | ¥) is a maximally entangled state
(note that q_ . (B|R) is independent of which maximally entangled state we use, since all such states are the same
up to a unitary rotation on one of the qudits; this rotation can always be compensated on pyg by the
corresponding rotation on system R as part of the local operation £). Then one can calculate the conditional
min-entropy of a quantum—quantum (qq) state as Hy,i, (B|[R) = —log(q,,,, (BIR)). Note that for classical-
quantum (cq) states, (X|R) becomes the guessing probability Pyuess (X|R) (here X denotes the classical
subsystem) [20].

We are interested in the relation between the min-entropy Hy,, (B|R) of a qq-state (the min-entropy of the
input state pj, before Alice’s measurement, given access to R) and the min-entropy Hyin (X|R) of the cg-state
after the measurement has been performed (the min-entropy of the classical outcome X after Alice’s
measurement, given access to p). For that purpose we will investigate the tightness of the inequality derived in

[4]:

qcorr

Hmin (XlR) g Hmin (BlR) + log(d)’ (EZ)

where d is the dimension of the outcome space. This inequality tells us that for two-dimensional states, the
increase of the conditional min-entropy due to the measurement cannot exceed 1.

For d = 2 we will now calculate both of those entropies explicitly starting with Hy,;, (B|R). In our calculation
let us pick one of the two states which give us the maximum guessing probability for all values of y, namely | ¢, )

which in the Bloch sphere representation can be expressed as (cx, ¢, ¢;) = (%, 0, — %) [one can analogously

show that the other state | ¢,,) or equivalently (c,, Cy C;) = (— %, 0, %) will give exactly the same

Hiin (BIR)]. For this input state, the overall state p'rg(7, d = 2, |$)) before the measurement at time t, in
figure 2 is:

P're(y, d =2, |9)) = i(|0><0|R ® (H + %(O’x - O’z)) + 'V|:|0><1|R ® (HB + %(Ux - Uz)HB)

1

V2

We can now diagonalise this state so that we obtain:

+ |1> <0|R ® (HB + HB(Ux - Uz))] + |1> <1|R & (H + L(o'z - Jx)))- (E3)

V2

1 1—
rn(r d = 2,10)) = = ) (vl i) (4l (E4)
where the eigenstates written in their Schmidt bases are:
1) = (10 s + 1) [0}, (E5)
1
[h2) = ﬁﬂo/% [1)g + [1”)r 10)p). (E6)

The Schmidtbases: {|0’), |1) }and {]0”), |1”) } are given by:

, :L 1 _ 1
" ﬁ[ﬁ RN e '”]’ -
h_ ] 1 1
1) _ﬁ[ e 0) + — |1>} (E8)




I0OP Publishing NewJ. Phys. 19 (2017) 023038 F Rozpedek eral

w1 1 1
) —3[ — 0) + T I1>} (E9)
w1 1 1 ‘

The states |1);) and |1),) are mutually orthogonal maximally entangled states. To calculate Hyi, (B|R) we use the
formulation of the min-entropy in terms of the semi-definite programmes, as expressed in [20]. The primal, as
stated before, is Hpi, (B|R) = —log(q,,,, (BIR)) where g_, (B|R) is given in equation (E1). The dual problem is:
Huin (BIR) = —log m>151 Tr(og). (E11)
or®I=p RB

For the primal programme, let us consider alocal transformation £ acting on subsystem R which performs a
rotation such that the state will now be diagonal in the basis that includes | ¥)g, with maximal probability in this
mixture corresponding to the state | ¥)g. This feasible solution gives:

max F((E® 1p)(p'rp)s V) (VIrp) > \/? (E12)

Hence:
Qeore (BIR) 2 1 + 7, (E13)

and so:
Hin (BIR) = —logq,,,, (BIR) < —log(1 + 7). (E14)

Similarly, for the dual programme, let us consider a matrix ox = (1 +2"’/ )HR > 0.Thenoy ® Iz = (HTW)]LIM.

Clearly op ® Iy > p’gp, so that we obtain:
Hpin (BIR) > —logTr[oz] = —log(1 + 7). (E15)

Combining the results from the primal and dual programmes allows us to conclude that
Hpin (BIR) = —log(1 + «)forall v € [0, 1].

The min-entropy after the measurement is related to the guessing probability as
Hyin X|R) = —logpguess (X|R) and soitis:

V2 42792 V2 + 292
Hypin (XIR) = —log(%(% + 1]] =1- log[% + 1]. (E16)
Hence:

(E17)

2 2~2 2
Honin (XIR) — Honin (BIR) = 1 — log| 227"+ 2]
2(1 4+ )

We then see that H,;, (X|R) — Hpin (B|R) monotonically increases with v € [0, 1] until it reaches the value of
one for v = 1. Hence the inequality (E2) is tight for v = 1 which corresponds to the greatest possible increase of
the conditional min-entropy during the measurement performed on a qubit (see figure C1).

We also compute the min-entropy Hy,, (P|R) to get some insight into the correlations between basis register
Rand its purification Pas a function of . For that purpose, let us redefine the way we label the states of registers
Rand P with respect to the labelling and notation used in equations (5) to (9). Specifically, let | ), | 3) be now the
two states of the entire register P (joint states of all the environmental subsystems E; that are in P) corresponding
to the states |0), |1) of the register R respectively. The real parameter v € [0, 1], that quantifies the amount of
information that Pholds about R, satisfies now:

(alf) =, (E18)
so that the joint state of registers R and P can be written as:
1
1€ )rp = f(|O>R ladp + [1)r [B)p). (E19)

Note that the state | € () )gp defined in equation (E19) is pure. Then
Hpin (PIR) = —log(Tr[\/p_R])2 = —log(Tr[\/p_P])2 .Notethat Tr[/p; ] = Tr[,/pp]is the sum of the Schmidt
coefficients of the state |£ () )rp. The eigenvalues of p, (77) defined in equation (6) (with real and positive ) are

1+ 11—y
AN = Twand)\z = ~. Hence:
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2

Hpyin (PIR) = log(\/1 “; T4 \/1 ; 7 ) = —log(l + /1 — 42). (E20)

Similarly we calculate H,,;, (P|R) after the conditional Fourier transform in figure 2 has been applied, to
quantify the effect of this operation on the correlations between R and P. Firstly we need to calculate pp;, at time
t,. That s, again following the circuit in figure 2 but now including the purification P, the initial state at time ¢, is

|2y, d, |8)))res = 1£(7))rp @ |@)p. Then the state at time £, is [P (v, d, |$)) )rps = U |2 (7, d, |9)) )rpps
where Uis given by:

U=10)(0r @ [, @ Iz + |1)(1|r ® I ® Fp. (E21)
Hence:
|0y, d, 16)) e = %uo»e Qe 16)5 + 11)x 180 Fs [6)n). (E22)
We can now trace out B.

Prp (1, dy [6)) = §<|0><0|R @ ) (alp + (6] F716)10) (1]x @ |a) (3]»
+ (8] F16) 1) (0l @ 18)(alp + 1) {1z @ |8) (Blp). (E23)

Now let us consider the two-dimensional game again with | ¢)3 being one of the two states that achieve
PP (v, d = 2)forall v € [0, 1] (these are the states | @) = |¢,o) and |¢) = |¢,,)). Then (p| F |¢) = 0,sothe

guess
stateon Rand Pat 1, is:

prp(> d =2, 19)) = %(I()) (0lr @ la) (alp + 11)(1lr @ |5)(B]p)- (E24)

To calculate Hy,;, (P|R) we again use the formulation of min-entropy in terms of the semi-definite programmes

[20]. For the dual programme in equation (E11), note that pg;, has eigenvalues {%, %, 0,0 } Hence oy = %

clearly satisfies the constraints, as then ox ® Ip = th4 andso og > Oand og ® Ip > ppp. The corresponding

solution is Hpy,, (P|R) > 0. Similarly, in equation (E1), let us consider £ to be a quantum channel actingon R
with Krauss operators { M;}, where My = |a) (0]and My = |5) (1]. Then:

p're = (E® 1p)(pgp) = %(|a><a|R ® o) (alp + 18)(Blr @ 18)(Blp). (E25)

Since {(@|3) = 7, wehave (a'|3) = ei®\/1 — ~? for some phase ¢, where (a|a') = 0.Now, let |¥)zp bea
maximally entangled state of the form |¥)zp = %(la}R la)p + €% |at)g |at)p). Therefore:

Geons (PIR) = 2F (0 W) (T]p)?
= ~(alkals + e (a* k(@ I)(la) (alk @ la) (aly
+18)(Blr @ 18) (Blp) (g la)p + €29 |at)r |at)p)
= S+ @B + [ 1B)1* + ((alB)(Fla) + e 2*((Bla) (1))

=S4 (= 2 = )
=1 (E26)

Hence the corresponding solution is Hy, (P|R) < 0. Therefore combining the results from the primal and dual
programmes we conclude that H;, (P|R) = 0 forall v € [0, 1].
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