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Abstract. Compliant (flexure) elements provide highly precise motion
guiding because they do not suffer from friction or backlash. However,
their support stiffness drops dramatically when they are actuated from
their home position. In this paper, we show that the existing Inverse
Finite Element (IFE) method can be used to efficiently design flexure
elements such that they have a high support stiffness in their actuated
state. A folded leaf spring element was redesigned using an IFE code writ-
ten in Matlab™ . The design was validated using the commercial Finite
Element software package Ansys™, showing the desired high support
stiffness in the actuated state. The proposed method could aid in the
design of more compact flexure mechanisms with a larger useful range of
motion.

Keywords: Compliant mechanisms, Flexures, Inverse Finite Elements,
Precision, Support stiffness

1 Introduction

Conventional mechanisms based on sliding or rolling contacts (for example ball
bearings) typically have limited precision due to the inherent friction and play.
Compliant mechanisms provide motion differently, by deflection of slender seg-
ments called flezures [1,2]. In essence, these mechanisms can be regarded as
highly deformable structures and therefore do not suffer from friction or play.
This results in a highly repeatable behavior which is essential in high precision
applications. However, the support stiffness of a flexure element tends to drop
dramatically when the mechanism has undergone a displacement in the actu-
ated direction [3-6]. This limits the useful range of motion and results in bulky
designs.

Efforts to increase support stiffness in the actuated state include the addition
of torsion reinforcement structures [6, 7], using pre-curved flexures [8, 6, 9], addi-
tion of elements in parallel [10, 11] and thickening the middle part of a flexure |2,
12,13]. These methods all aim at designing the flexure mechanism in its relaxed
state, in which it will be fabricated. However, the loss of support stiffness occurs
in the actuated (loaded) state, on which the methods do not have direct control.
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In this paper, we show that a flexure element can be designed in its actu-
ated state, such that it will provide a high support stiffness in that position.
To enable this, we will use the Inverse Finite Element (IFE) Method, originally
proposed by Givindjee and Mihalic [14] and recently introduced to the compli-
ant mechanisms community by Albanesi et al. [15]. Albanesi et al. have used
the IFE method before to design compliant mechanisms. However, the authors
use the method to control contact forces (for example in a compliant gripper).
Instead, we use the IFE method to alter the support stiffness of the compliant
mechanism itself. In other previous work [8, 6, 9], flexures have been pre-curved
in order to obtain a high support stiffness in the actuated state. However, the
authors use an optimization method, whereas we will use the IFE method which
is computationally more efficient. Furthermore, this paper focuses on a different
flexure element which avoids the high actuation forces mentioned in [8,9].

First, the essence of the IFE method will be outlined. Second, the method
used to increase support stiffness will be demonstrated by redesigning an existing
flexure element. We will reflect on the work in the Results and Discussion section
and the main constributions to literature will be summarized in the Conclusions
section.

2 Method

In this section, first the essence of the IFE method from [15, 14] will be outlined.
Second, a flexure element commonly used in industry will be introduced. Using
the proposed method, this element will be redesigned in order to obtain a high
support stiffness in its actuated state. Lastly, an application example will be
given.

2.1 The Inverse Finite Element Method

The Inverse Finite Element (IFE) Method can be used to retrieve the relaxed
(stress-free) shape of a structure when its loaded (stressed) shape and its ex-
ternal forces are specified [15,14]. This includes analyses with large nonlinear
deflections. Note that a compliant mechanism can be regarded as a structure
undergoing large deflections.

First consider a regular (that is, forward) nonlinear Finite Element analysis
in which the shape of a structure in its relaxed state is specified. The goal is
to compute the unknown loaded shape as a result of specified external forces.
Consider these forces to be independent of the shape (no follower-forces). The
goal then is to solve

R(U) =0, (1)
which is the residual vector containing the imbalance of internal and external
forces and moments in the loaded state. U is a vector containing the nodal dis-
placements and rotations which need to be found. Note that for large deflections,
R can have a nonlinear dependence on U. We could also write

U =X - Xo, (2)
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where Xg and X are the nodal coordinates in the relaxed and loaded states,
respectively. Now we can write

R(Xo, X). 3)

In the forward FE method, Xg is specified and remains unchanged in the analy-
sis. After applying boundary conditions, the residual equation is generally solved
using some iterative method (for instance Newton-Rhapson) often relying on the
gradient with respect to the unknowns X:

OR(Xo, X)

X (4)

Krpa =
which is the stiffness matrix of the structure.
In the IFE method, the loaded shape X is specified as an input in R(Xg, X)
which is then solved for the unknown relaxed shape Xgq using the gradient with
respect to these unknowns:

OR(Xo,X)

Kinv =

Note that mathematically, the IFE method is very similar to the regular
forward FE method. Because of this similarity, their computational cost is also
similar. Furthermore, note that the internal forces of the body are not needed as
an input in the IFE method, since these are already determined once the loaded
and unloaded shapes are known. Only the loaded shape, boundary conditions
and external forces have to be known. The IFE routine can be modified such that
instead of an external force, a displacement can be imposed. This modification
is the same as in the case of the forward FE method (see for example [16]).

We have written an IFE code in Matlab using the 2D Euler-Bernoulli beam
formulation. Large, nonlinear deflections are included using a co-rotational for-
mulation as in [17]. The material is assumed to behave linearly elastic.

2.2 The folded leaf spring

Figure 1 shows a linear guide commonly used in industry but less prevalent
in literature [2,18,19]. Its central body is assumed rigid and is guided along
the indicated Y direction by the six Folded Leaf Springs (FLS), which allow this
motion by bending deformations. The blocks at the extremities of the leaf springs
are attached to the fixed world. The design challenge typically is to provide a
low stiffness along the actuated direction (Y in this case), while maintaining a
high support stiffness in all other five spatial degrees of freedom of the central
body.

Figure 2a shows one FLS element isolated from the mechanism. In its initial,
relaxed state, the element provides a high support stiffness to the middle body
in the indicated Z direction. This is because the complete mechanism in its turn
constrains (stiffens) rotations around the X and Y axes of the FLS at this point
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Fig. 1. A compliant linear guide commonly used in industry, existing of six Folded Leaf
Springs (FLS) [2, 18, 19]. These slender elements allow for movement in the Y direction
by elastic bending deformations.

(vefer to [2] for a more detailed explanation). Figure 2b shows a 2D representation
of the same FLS in the XY-plane. The left side is attached to the fixed world.
The right side is constrained in rotation and in the X-direction to simulate the
connection to the central rigid body. The dashed line represents the relaxed state
of the FLS, while the colored solid line shows the FLS in actuated (loaded) state.
The colors indicate the stresses. In this loaded state the FLS inevitably becomes
curved and thereby loses a significant part of its support stiffness in Z direction
[3-6]. This issue will be addressed in the next section.

Stress [MPa]
35

30
Y

Loaded state

(a) Isolated FLS. (b) FE simulation of the FLS

Fig. 2. Figure a) shows a single FLS isolated from the linear guide from Fig. 1. Figure
b) shows the curvature occurring in its loaded state, causing the dramatic decrease in
support stiffness in Z direction.
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2.3 Redesign of the folded leaf spring using the IFE method

In this section, we will redesign the FLS element such that it provides a high
support stiffness in its actuated (loaded) state, instead of in its relaxed home
position. The main idea is to design the FLS such that it has an initial curvature
in its relaxed state. This curvature should be such that the FLS becomes straight
in its loaded state, thereby increasing its support stiffness. Figure 3 shows this
FLS element. Using the IFE method, the FLS can be designed in its actuated
state at some specified displacement. The IFE method will output the relaxed,
pre-curved shape of the FL.S. Note that only the loaded shape and displacement
have to be specified to fully determine the relaxed shape shown in Fig. 3. The
displacement is chosen as 21.4 mm. The straight beams both have a length of
111.8 mm. The choice of these numbers will be explained in the next section.

Specified loaded shape
(straight beams, input IFEM)
Specified
displacement
(input IFEM)

Relaxed shape
(pre-curved beams,
output IFEM)

Fig. 3. This FLS is initially curved such that it will attain a straight shape after
actuation in Y direction, providing a high support stiffness in this position. The pre-
curved relaxed shape can be computed efficiently using the IFE method.

2.4 Design and validation of the combination element

The pre-curved FLS designed in the previous section will provide a high support
stiffness around its actuated position, but a low support stiffness around its
home position. To realize a high support stiffness around both positions, we can
add a pre-curved FLS to a regular FLS to form a combination element as in
Fig. 4. Figure 4a shows this combination element in the relaxed state, where the
mechanism is in its relaxed home position. Here, the regular, straight flexure
provides support stiffness in the Z direction. In the actuated state shown in Fig.
4b, the pre-curved FLS has become straight and now provides support stiffness
in its turn.
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(a) Home position (relaxed) (b) Actuated state (loaded)

Fig. 4. Combination element in which a pre-curved FLS is combined with a regular
FLS. In a), both flexures are relaxed and the straight flexure provides support stiffness
in the Z direction. In its actuated state shown in b), the pre-curved flexure has become
straight and provides support stiffness in its turn.

The combination element is designed as follows. First some properties and
dimensions of the regular FLS are chosen as summarized in Table 1. Using the
commercially available FE package AnsysT™, the support stiffness of this FLS is
computed while it is actuated along its motion range Y as in Fig. 2b. Beam188
elements are used, with the option for nonlinear geometry activated. Note that
this data cannot be computed using the code written in Matlab, because that
code only considers beams in 2D. Using the obtained support stiffness data,
we can now decide at which point in the displacement range the pre-curved
FLS should become straight in order to compensate for the stiffness loss of
the initially straight FLS. The shape of the relaxed pre-curved FLS will be
computed using the IFE code written in Matlab. Finally we will validate the
support stiffness of the combination element over its full range using Ansys.
For a fair comparison with the state-of-the-art, the combination element will be
compared to an element consisting of two regular, initially straight FLS elements.

Table 1. Properties of the folded leaf spring as shown in Fig. 2.

Variable Value

Size X direction 100 mm

Size Y direction 50 mm

Size Z direction 10 mm

Flexure thickness 1 mm

E-modulus (Polyactic Acid, PLA) 4 GPa
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3 Results and Discussion

Figure 5 shows the support stiffness of the combination element shown in Fig.
4 along its displacement range (red solid line). This stiffness is compared to
that of an element with two regular, initially straight FLS elements shown by
the black solid line. As anticipated, the combination element shows a lower
support stiffness for small displacements because only one of the FLS elements
provides support stiffness at this point. However, at larger displacements, the
combination element outperforms the double regular FLS design because the
pre-curved flexure has become straight. Furthermore, the support stiffness of
the combination element is more constant along the displacement range. This
results in a more straight trajectory of the mechanism under influence of gravity
forces.

- - Regular FLS

- - Pre-curved FLS

—— Combination element
—2x Regular FLS

(o2}
T

[¢)]
T

w >
T T
1
1

’

Support stiffness (z dir.) [N/mm]
N

N
T

0 5 10 15 20 25 30
Displacement (y dir.) [mm]

Fig. 5. Support stiffness of the combination element shown in Fig. 4 (red), compared to
the case with two regular, straight flexures (black), showing an extension of the range
with high support stiffness. The dashed lines in green and blue show the contributions
of the two flexures forming the combination element.

More pre-curved FLS elements could be added to cover a larger region of high
support stiffness. These can be designed such that they cover the region in the
negative Y direction, using the same proposed method. Adding more elements
will increase the stiffness in the actuation direction y, which is generally not
desired. However, this could be dealt with by static balancing techniques [20].

The green dashed line in Fig. 5 shows the support stiffness of the pre-curved
redesigned FLS. The stiffness peak is shifted to the actuated state, but its shape
is similar to the stiffness peak of the regular FLS shown in dashed blue. This



2116 J. Rommers and J. L. Herder.

result validates the use of the IFE code in Matlab to shift support stiffness from
the home position to the actuated state. The shifting distance is specified as
21.4 mm, in order to provide an optimal stiffness overlap resulting in a constant
support stiffness of the combination element.

Computing the shape of the pre-curved FLS shown in Fig. 3 was done effi-
ciently using the IFE code written in Matlab. Such a computation takes around
half a second using the code on a regular laptop. Using IFE routines to shift sup-
port stiffness will be more advantageous when considering flexure mechanisms
exhibiting complex spatial behavior. When shell elements need to be used in-
stead of beam elements, the analysis can become computationally too expensive
for the use of optimization methods. The IFE method could be used in these
cases to provide a solution.

The validation of the combination element was done only theoretically. Flex-
ures are often fabricated out of high-strength steels using Wire-Electrical Dis-
charge Machining. This technique readily allows for fabrication of initially curved
flexures. However, it is anticipated that considerable attention should be paid
to tolerances in thickness of the flexures, since the bending stiffness has a cu-
bic relation to this property. Furthermore, the combination element in Fig. 4 is
partly overconstrained (see [2] for a detailed explanation). Overconstraints could
result in unpredictable behavior under the influence of temperature changes or
manufacturing errors. However, this overconstraint is only present in the re-
gion of the displacement range where the two FLS elements provide comparable
support stiffness. In the other configurations, only one of the FLS elements ef-
fectively provides support stiffness and so the system can be considered to not
be overconstrained.

4 Conclusion

In this paper, we showed that the existing Inverse Finite Element (IFE) Method
can be used to efficiently design flexure elements such that they have a high
support stiffness in their actuated state. This is beneficial because most existing
flexure elements only provide support stiffness at their relaxed home position.
The method is efficient because it does not need design iterations, as is the case
in optimization methods.

As an example, a Folded Leaf Spring (FLS) element with a high support
stiffness in its actuated state was designed using an IFE code written in Matlab.
The resulting pre-curved design was analyzed using the commercial Finite Ele-
ment software package Ansys™. The results show that the element indeed has
a large support stiffness in its actuated state instead of in its home position.

We showed an example implementation of this pre-curved FLS, in which it
is combined with a regular FLS element such that it will provide a high support
stiffness in both its home position and its actuated state. Using Ansys, this
combination element was compared to a benchmark design consisting of two
regular FLS elements. As expected, the benchmark design has a higher support
stiffness at the home position, but the combination element outperforms it at the



Design of a Folded Leaf Spring with high support stiffness at large.. 2117

actuated positions and shows a more constant support stiffness along its range
of motion.

The proposed method could aid in improving support stiffness of flexure
mechanisms in their actuated state, resulting in more compact designs with
larger range of motion.
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