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Coupling between cortical oscillations and muscle activity facilitates neuronal
communication during motor control. The linear part of this coupling, known as
corticomuscular coherence, has received substantial attention, even though neuronal
communication underlying motor control has been demonstrated to be highly nonlinear.
A full assessment of corticomuscular coupling, including the nonlinear part, is essential
to understand the neuronal communication within the sensorimotor system. In this
study, we applied the recently developed n:m coherence method to assess nonlinear
corticomuscular coupling during isotonic wrist flexion. The n:m coherence is a
generalized metric for quantifying nonlinear cross-frequency coupling as well as linear
iso-frequency coupling. By using independent component analysis (ICA) and equivalent
current dipole source localization, we identify four sensorimotor related brain areas
based on the locations of the dipoles, i.e., the contralateral primary sensorimotor
areas, supplementary motor area (SMA), prefrontal area (PFA) and posterior parietal
cortex (PPC). For all these areas, linear coupling between electroencephalogram (EEG)
and electromyogram (EMG) is present with peaks in the beta band (15–35 Hz), while
nonlinear coupling is detected with both integer (1:2, 1:3, 1:4) and non-integer (2:3)
harmonics. Significant differences between brain areas is shown in linear coupling with
stronger coherence for the primary sensorimotor areas and motor association cortices
(SMA, PFA) compared to the sensory association area (PPC); but not for the nonlinear
coupling. Moreover, the detected nonlinear coupling is similar to previously reported
nonlinear coupling of cortical activity to somatosensory stimuli. We suggest that the
descending motor pathways mainly contribute to linear corticomuscular coupling, while
nonlinear coupling likely originates from sensory feedback.

Keywords: corticomuscular coupling, nonlinear coherence, sensorimotor system, EEG, EMG

INTRODUCTION

Coupling between neuronal populations facilitates their communication in the nervous system
and may shorten reaction times (Varela et al., 2001; Schoffelen et al., 2005). When performing a
simple muscle contraction, the human sensorimotor cortices typically generate oscillatory activity
coupled with muscle activity (Conway et al., 1995; Kristeva et al., 2007). Corticomuscular coupling
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plays an important role for neuronal communication between
central and peripheral sensorimotor systems (Salenius and
Hari, 2003; van Wijk et al., 2012). This is highlighted
in many pathological cases where abnormal corticomuscular
coupling indicates impaired neuronal communication leading
to both motor and sensory impairments (Caviness et al., 2003;
Grosse et al., 2003; Brown, 2007; Fang et al., 2009). Thus,
a full assessment of corticomuscular coupling is essential to
understand neuronal communication within the sensorimotor
system, and could contribute to clinical studies related to motor
disorders and rehabilitation.

The linear part of corticomuscular coupling, known as
corticomuscular coherence, has received much attention for
decades (Mima and Hallett, 1999; Schoffelen et al., 2005;
Witham et al., 2011; Raethjen and Muthuraman, 2012),
although neuronal communication underlying motor control
have been demonstrated to be highly nonlinear (Darvas et al.,
2009; Chen et al., 2010; Vlaar et al., 2016; Yang et al.,
2016c). Several studies suggest that nonlinear coupling plays
an equally important role as linear coupling in neuronal
communication (Friston, 2001; Breakspear et al., 2003; Chen
et al., 2010). Moreover, the clinical relevance of nonlinear
coupling has also been demonstrated (Sanger et al., 2002;
He et al., 2016). In this work, we use a recently developed
method, i.e., n:m coherence (Yang et al., 2015, 2016a), to
assess nonlinear, as well as linear, corticomuscular coupling
during an isotonic wrist flexion. The n:m coherence is a
straightforward extension of the linear coherence used in the
corticomuscular coherence (Mima and Hallett, 1999) based on
high-order statistics (Nikias and Mendel, 1993) for investigating
both nonlinear and linear correlation between signals. Thus,
the linear part of our results obtained by this method would
be comparable to previous corticomuscular coherence studies.
Using an established experimental paradigm completed by
healthy subjects, our motivation is to establish a reference for
future clinical studies.

In general, motor actions can be either voluntary or
reflexive. Recently, nonlinear neuronal synchronization has
been demonstrated in the human stretch reflex induced by
mechanical perturbation (Yang et al., 2016c). In this study,
we focus on voluntary motor control. In contrast to reflexive
movement, voluntary motor actions start with intent rather than
sensory feedback. The descending corticospinal motor tract is
an obvious pathway resulting in the corticomuscular coupling.
Furthermore, neural oscillations coupled with muscle activity are
found in the primary motor cortex as well as motor association
cortices including the supplementary motor area (SMA) and the
prefrontal cortex (Ohara et al., 2001; Babiloni et al., 2008; Meng
et al., 2008; Chen et al., 2013).

During a motor task, the output from the neuromuscular
system (e.g., force, velocity of movement) is sensed by the
mechanoreceptors in the periphery (i.e., muscle spindles and
Golgi tendon organs) to provide somatosensory feedback (Scott,
2004). This somatosensory feedback can lead to an ascending
conduction of neuronal oscillations from the periphery to the
cortex (Baker et al., 2006; Witham and Baker, 2007; Witham
et al., 2007, 2011). Thereby, coupled oscillations have also been

detected in the somatosensory cortex and sensory association
areas such as posterior parietal cortex (PPC; Witham et al.,
2007, 2010; Meng et al., 2008). Thus, corticomuscular coupling
is mediated in a closed-loop (Schouten and Campfens, 2012; van
Wijk et al., 2012; Campfens et al., 2014).

Many studies have demonstrated nonlinear cross-
frequency coupling between cortical oscillations and external
somatosensory input (Snyder, 1992; Tobimatsu et al., 1999;
Yang et al., 2016b). Specially, both integer (n∗fi) and non-integer
(n∗fi/m, also known as n:m coupling) harmonic coupling has
been reported in the EEG when healthy subjects receive periodic
somatosensory input with a certain frequency fi (Langdon
et al., 2011). These findings indicate a nonlinear neuronal
mechanism in ascending sensory tracts in presence of external
stimuli.

We hypothesize that corticomuscular coupling could be
mediated by the nonlinear neuronal mechanism of ascending
sensory tracts, even without external stimuli, and therefore
shows nonlinear behavior in the closed-loop. To investigate
this hypothesis, we recorded electromyogram (EMG) and
high-density electroencephalogram (EEG) from 11 healthy
volunteers during isotonic flexion of the right wrist. Without
using any external somatosensory stimulus, our study aims to
reveal the intrinsic neuronal interaction between the cerebral
cortex and motor units of the forearm during the voluntary
motor task, expressed as corticomuscular coupling. Performing
independent component analysis (ICA) and equivalent current
dipole source localization, we assessed corticomuscular coupling
within the sensorimotor network involving the primary
sensorimotor areas and sensorimotor association areas.

MATERIALS AND METHODS

Subjects
Eleven healthy volunteers (24 ± 3 years of age, 4 female)
participated in the experiment. All subjects were right-handed.
Written informed consent was provided by all subjects. All
procedures were approved by the Human Research Ethics
Committee of the Delft University of Technology and are in
accordance with the Helsinki Declaration of 1975, as revised in
2008 (Williams, 2008).

Experimental Protocol
The experiment was performed inside a dim sound-proof
cabin (Esmono Sound B.V., Dongen, Netherlands). Figure 1
shows the experimental setup. Subjects sat comfortably next to
a wrist manipulator (Wristalyzer, Moog Inc, Nieuw-Vennep,
Netherlands), which contains a force transducer for measuring
wrist torque. The forearm of the subject was strapped to
the arm rest, while the right hand rested on the handle
of manipulator (fixed with straps to remove the need for
grasping). Subjects were instructed to perform an isotonic flexion
(1 Nm) using their right wrist. The level of muscle contraction
was 10%–15% of the maximum voluntary flexion torque of
each subject. The experiment included 60 trials, lasting 22 s
each. When the trial started, an arrow appeared on screen to
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FIGURE 1 | Illustration of the experimental setup. The subject’s right hand is attached to the handle of a wrist manipulator and the lower arm is firmly fixed in
place. When the trial starts, an arrow appears in the center of screen to provide visual feedback on the exerted torque. The subject is instructed to keep the arrow
pointing upwards (1 Nm flexion torque). EEG and EMG are recorded simultaneously during the task.

provide visual feedback on the exerted torque. The angle of the
arrow was proportional to the torque exerted by the subjects,
with 1 Nm corresponding to 90◦ (arrow pointing upwards).
Between trials, there was a random pause from 10 s to 12 s,
where the subjects were instructed to relax their arm and
hand.

Data Acquisition
High-density EEG was measured using a 128-channel cap
(5/10 systems, WaveGuard cap, ANT Neuro, Netherlands) with
Al/AgCl electrodes. EMG signals were measured from the
extensor and flexor carpi radialis muscles of the right forearm
using bipolar derivations, i.e., two Ag/AgCl electrodes placed
on the muscle belly with 2 cm inter-electrode distance. EEG,
EMG and wrist torque were recorded simultaneously at 2048 Hz
using a bio-signal amplifier (Refa System, TMSi, Netherlands).
The amplifier contains an antialiasing low-pass filter with cut-off
frequency of 552 Hz.

Data Analysis
Preprocessing
The EEG and EMG were first filtered by a band-pass (1–200 Hz)
zero-phase shift FIR filter using EEGLAB (version: 13.2.2b;
Delorme and Makeig, 2004) and then downsampled to 512 Hz.
We segmented the data from each trial into consecutive epochs
of 1 s. We rejected the first and the last epochs in each
trial, as well as epochs with the variance of wrist torque
larger than 1% of required flexion torque, leaving at least
860 epochs (1035 epochs on average) for each subject for further
analysis.

Independent Component Analysis on EEG
A few EEG channels near the neck were removed due to excessive
muscle artifacts. Afterwards, the EEG data were re-referenced to
the common average of the remaining channels. We performed
blind source separation analysis on the EEG data using
the Informax ICA from EEGLAB (Delorme and Makeig, 2004).
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ICA algorithms have proven capable of separating artifact
components from EEG signals (Jung et al., 2000) while
disentangling biologically plausible cortical sources (Delorme
et al., 2012). We used Informax ICA, which is widely used
in neuroscience studies and proved to be a reliable algorithm
(Delorme and Makeig, 2004). We computed the power spectrum
of each independent component (IC) and excluded the ICs
with abnormal power spectra. Typical EEG power spectra show
1/f characteristics and some spectra may have an alpha band
peak around 10 Hz. High power at higher frequencies (above
20 Hz) or sharp peaks in the spectrum indicates an artifact
component (Jung et al., 1998; Delorme et al., 2007). ICs with
typical eye-region scalp maps were also removed (Delorme and
Makeig, 2004). We removed artifact components to improve
the signal-to-noise of EEG, which does not result in negative
effects on later analysis including coherence and statistical
analysis. The biologically plausible ICs typically have their
scalp maps nearly fitting the projection of a single equivalent
current dipole, and therefore their sources should be able to
be localized by the dipole fitting algorithm (Delorme et al.,
2012). Based on this knowledge, we used the DIPFIT algorithm
(Oostenveld et al., 2010) to estimate a best-fitting single
equivalent current dipole for the scalp map of each remaining
IC. A standardized three-shell (i.e., skin, skull and cortex)
boundary element head model extracted from the Montreal
Neurological Institute (MNI) canonical template brain was
used. Standard electrode locations corresponding to 5/10 system
were aligned with this head model. We rejected ICs with an
associated dipole located outside the brain or with residual
variance larger than 10%. We used Talairach Client toolbox1 to
identify the nearby cortex for each dipole. Afterwards, we visually
examined all components to further reject the components with
the dipoles located in the deep brain areas, since previous
studies indicated the difficulty of localizing a deep source
from the scalp EEG (Yao and Dewald, 2005; Bradley et al.,
2016).

We grouped the rest of ICs across subjects based on scalp
maps, estimated dipoles and power spectra (1–200 Hz) of ICs
using principal component analysis and the k-means clustering,
in order to identify the similar ICs for different subjects for
group analysis. The k value (k = 10) was set to have an IC
cluster with the dipole sources located around the primary
sensorimotor areas for all subjects, which is in line with previous
findings that all subjects have active cortical sources in the
primary sensorimotor areas during a voluntary motor control
task (Witham et al., 2011). ICs were identified as outliers if their
locations in the clustering vector space were larger than five times
of standard deviation from the obtained cluster centers. Only
clusters including ICs from more than half of the subjects (i.e., at
least six subjects) were used for further analysis (Wagner et al.,
2016).

EMG Rectification
Since participants were required to produce a flexion torque,
we analyzed the EMG recorded from flexor carpi radialis

1http://www.talairach.org/

muscle. There is an ongoing debate on EMG rectification
for computing (linear) corticomuscular coherence. Rectification
of EMG is thought to improve the detection of beta-band
corticomuscular coherence (Halliday et al., 1995; Myers et al.,
2003; Farina et al., 2013), while several studies argued that
rectification is a nonlinear process that distort the EMG
spectrum (Neto and Christou, 2010; McClelland et al., 2012).
Nevertheless, recent studies demonstrated that there was
no difference in coherence estimates between rectified and
non-rectified EMG (Yao et al., 2007; Bayraktaroglu et al.,
2011). Notably, all these studies focused on the linear
corticomuscular coherence. Here we computed corticomuscular
coupling with both non-rectified and rectified EMG for a
comparison, as there are no references for the effect of
EMG rectification on nonlinear corticomuscular coupling. For
rectified EMG, we applied zero-phase shift high-pass (cut-off
frequency: 5 Hz) and notch (50 Hz) filters to remove possible
movement and power-line artifacts in the EMG before full-wave
rectification.

n:m Coherence Analysis
The n:m coherence is a generalized coherence measure for
quantifying cross-frequency coupling between two frequency
components (Yang et al., 2015, 2016a). Set X be the Fourier
Transform of one IC of EEG, Y be EMG (non-rectified or
rectified), n:m coherence (nmC) between them is computed as

nmC(fX , fY) =

∣∣SXY(fX , fY)
∣∣√

SnXX(fX)SmYY(fY)
(1)

where fX , fY in the range of 1–200 Hz, n:m = fY : fX . SnXX(fX) is the
n-th order auto-spectra:

SnXX(fX) = < Xn(fX)
(
Xn(fX)

)∗
>

= <

∣∣∣∣∣∣X(fX)•X(fX)• · · · •X(f _X)︸ ︷︷ ︸
n

∣∣∣∣∣∣
2

> (2)

where < · > represents the averaging over segments, and SXY
(fX , fY ) is the n:m cross-spectrum:

SXY(fX , fY) =< Xn(fX)
(
Ym(fY)

)∗
> (3)

The n:m coherence reflects the strength of nonlinear cross-
frequency coupling between signals. According to Cauchy-
Schwarz-inequality, we have:∣∣< Xn(fX)

(
Ym(fY)

)∗
>
∣∣ ≤(

<
∣∣Xn(fX)

∣∣2 >
)1/2(

<
∣∣Ym(fY)

∣∣2 >
)1/2 (4)

Thus, n:m coherence is bounded by 0 and 1, where 1 indicates
that two signals are perfectly coupled for the given frequency
pair (f X , f Y ). More details on the calculations of n:m coherence
can be found in a previous study (Yang et al., 2016a). The n:m
coherence values in the frequency pairs involving power-line
frequency (50 Hz) and its harmonics (100, 150 and 200 Hz) are
set to zeros to eliminate the contamination of power-line artifact
on n:m coherence.
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Statistical Analysis
Significance of the n:m coherence values was determined by a
permutation test (Bayraktaroglu et al., 2011), where we randomly
shuffled EMG segments with respect to EEG segments. This
approach is better than using a threshold obtained from two
independent white noise signals, whose spectra are different
from EEG/EMG signals. We performed 1000 permutations to
get a distribution of n:m coherence for each frequency pair
(f X , f Y ). The estimated n:m coherence from non-permutated
data is considered to be significant if its value exceeds the
95% confidence interval of the n:m coherence computed from
permutated data.

We used SPSS (Version 22, IBM) to perform the statistical
analysis regarding to result comparison. We performed the
paired sample t-test to check statistically significant differences
between using non-rectified and rectified EMG to estimate the
cross-frequency coupling between EEG and EMG per frequency
pair. Bonferroni correction was applied to control the type
I error in the paired sample t-test (family-wise error rate
P < 0.05). Statistically significant differences among IC clusters
were examined by a one-way analysis of variance (ANOVA) with
the factor ‘‘cluster’’ (significant level P < 0.05). Due to unequal
sizes of samples among IC clusters, the Brown-Forsythe test of
the equality of means was employed when the homogeneity of
variances was violated. Additionally, the ANOVA with repeated
measures was performed to check the statistical significance
of nonlinearity (details about factors and levels were provided
in the ‘‘Results’’ Section). The Greenhouse-Geisser correction
was made when the sphericity was violated in the repeated
measures.

RESULTS

We identified four clusters containing components from
at least six subjects with the dipoles located in the sensory
and motor related cortices (see Figure 2). The IC cluster
in the left primary sensorimotor areas (S1-M1) contains
components from 11 subjects (one component from each
subject, the same for below) with the mean dipole located
in Brodmann area (BA) 4: [−33, −14, 47] (Talairach
coordinates, unit: mm). The IC cluster in left prefrontal
area (PFA) contains components from 6 subjects with the
mean dipole located nearby BA 9: [−13, 29, 25]. The IC
cluster in the SMA contains components from seven subjects
with the mean dipole located in BA 6: [−3, −14, 46].
The IC cluster in the PPC contains components from
nine subjects with the mean dipole located nearby BA 7:
[−1,−57, 39].

Figure 3 shows the grand average of significant n:m
coherence (across subjects within a cluster) between ICs and
non-rectified/rectified EMG for each cluster. No significant
differences between non-rectified and rectified EMG were found
(P > 0.05 for family-wise error rate). The diagonal (1:1) indicates
linear coupling, the rest in the map shows nonlinear coupling.
To improve visualization, we also plotted linear coupling as a
frequency spectrum in the third column of Figure 3. Linear
coupling between EEG and EMG is present with peak values

in the beta band for all sensorimotor related cortical areas.
Nonlinear cross-frequency coupling between EEG and EMG is
mainly shown in frequency ratios (fEEG:fEEG) of 1:2, 1:3, 1:4, 2:3,
3:2, 2:1, 3:1 and 4:1, for both non-rectified and rectified EMG in
all clusters.

To compare the difference of corticomuscular coupling at
different coupling ratios and different brain areas, we computed
the sum of all significant n:m coherence values at the same
coupling ratio for each brain areas. Noteworthy, the sum value
is determined not only by the strength of coupling at each
individual frequency pair but also by the number of frequency
pairs at the corresponding nonlinear ratio that have significant
n:m coherence values. Thus, the sum value reflects the overall
coupling strength for each ratio. Figure 4 shows the grand
average of this sum value (across subjects within a cluster)
for each coupling ratio and each brain area. Using one-way
ANOVA with the factor ‘‘cluster’’ (four clusters), significant
differences among clusters are detected in the linear coupling for
both non-rectified (F(3,19.545) = 4.133, P = 0.020) and rectified
EMG (F(3,18.054) = 4.259, P = 0.019), showing the highest sum
value for the cluster in the S1-M1 and the lowest value for
the cluster in the PPC. Removing the beta-band (15–35 Hz)
linear coherence, this effect becomes insignificant, indicating
that the significance is mainly related to beta-band coupling. No
significant differences among clusters are found for nonlinear
coupling.

A two-way ANOVA with factors ‘‘ratios’’ (nine frequency
ratios) and ‘‘rectification’’ (non-rectification vs. rectification)
was performed to check the difference of the sum of n:m
coherence values among difference ratios across subjects and
ICs. The effect of ratio on the sum value is significant
(F(8,256) = 74.625, P < 0.001), while the effect of rectification
is insignificant. To check the difference between a ratio n:m
and its inverse m:n, a three-way ANOVA with factor ‘‘nonlinear
order’’ (four orders, i.e., 2nd, 3rd, 4th and a non-integer order),
‘‘asymmetry’’ (n:m vs.m:n) and ‘‘rectification’’ (non-rectification
vs. rectification) was also performed for the nonlinear coupling
alone. Only the effect of nonlinear order is statistically significant
(F(2.772,88.698) = 141.064, P < 0.001).

DISCUSSION

In this study, we used a recently developed cross-frequency
coupling method, n:m coherence, to reveal nonlinear
corticomuscular coupling for the first time. The n:m coherence
is a generalized coherence measure incorporating both phase
and amplitude relationship (Yang et al., 2015, 2016a). A
recent study found that EEG oscillations, originating from the
primary sensorimotor areas, can transmit not only the phase
but also amplitude dynamics through the spinal motoneurons
down to the periphery (Bayraktaroglu et al., 2013). Thus, the n:m
coherence is more suitable to assess the corticomuscular coupling
than other cross-frequency coupling measures purely assessing
phase or amplitude relationships (Young and Eggermont, 2009).
Noteworthy, the n:m coherence is also different from nested
oscillation measures, which reflect that the phase of a slower
oscillation modulates the amplitude of a faster oscillation and
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FIGURE 2 | Cluster-mean scalp projections and the location of equivalent dipole sources for different clusters. The first column shows the cluster-mean
scalp projections. The second and third columns present the location of equivalent dipole sources for each cluster in the coronal and sagittal slides, respectively. The
red point indicates the mean dipole location. Coronal and sagittal slides are given in correspondence of the mean dipole position.
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FIGURE 3 | Corticomuscular coupling for different brain areas. The first column shows the mean maps of significant n:m coherence between independent
component analysis (ICA) components and non-rectified EMG for each cluster. The second column indicates the mean maps of significant n:m coherence between
ICA components and rectified EMG for each cluster. The diagonal shows the linear corticomuscular coherence. The nonlinear coupling ratio is given as EEG
frequency over EMG frequency. The third column presents the comparison of linear corticomuscular coherence using non-rectified and rectified EMG.
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FIGURE 4 | Sum of significant n:m coherence values for each coupling ratio at each brain area. The sum of significant coherence values indicates the
overall coupling strength for each coupling ratio. The grand averages of these values across subjects within each cluster and their standard deviations (error bars) are
shown.

are more often used for cognitive studies, such as learning and
memory (see Aru et al., 2015 for more details about nested
oscillation measures). Using the n:m coherence, our work
provides a full assessment of corticomuscular coupling including
both linear and nonlinear parts in the sensorimotor network
involving the primary sensorimotor cortices and association
areas.

Linear Corticomuscular Coupling
In line with previous studies (Babiloni et al., 2008; Meng
et al., 2008; Witham et al., 2010; Chen et al., 2013), beta-band
corticomuscular coherence (linear) is detected not only at the
primary sensorimotor areas (S1-M1) but also association areas,
including bothmotor association cortices, i.e., PFA and SMA and
sensory association area, i.e., PPC. Although both descending
motor and ascending sensory feedback tracts can contribute to
the corticomuscular coupling (Meng et al., 2008; Witham et al.,
2011), stronger linear coherence was detected at the S1-M1 and
motor association cortices (PFA, SMA) compared to the sensory
associated PPC. This indicates that linear coupling is mostly
related to motor tracts.

This is supported with several previous findings in human and
non-human primates. First of all, it was demonstrated that linear
information flow in the descending pathways from the S1-M1
and association areas to the periphery is much stronger than that
in the ascending pathways (Meng et al., 2008; Tsujimoto et al.,
2009;Witham et al., 2010). Secondly, the number of corticospinal

tracts originating from the M1 is larger than from other areas,
such as SMA and PMA (Dum and Strick, 2002; Maier et al.,
2002). Therefore, higher excitatory effect on motoneurons can
be exerted, resulting in a stronger linear coupling between S1-M1
and muscles. Although linear coupling between SMA/PMA and
muscles are smaller, this is still functionally significant. The
linear corticomuscular coupling measured at SMA and PFA was
suggested to be functionally related to the fine modulation of
force control (Chen et al., 2013).

Nonlinear Corticomuscular Coupling
Nonlinear coupling between the cortex and the periphery was
mainly reported in studies involving sensory input. Harmonic
coupling with integer multiples of the stimulation frequencies
has been widely reported in the both tactile and proprioceptive
studies (Snyder, 1992; Tobimatsu et al., 1999; Jamali and Ross,
2013; Ross et al., 2013; Yang et al., 2016a,b). Recently, Langdon
et al. (2011) reported non-integer coupling with the ratio 2:3 of
brain response to fingertip stimulation. Our study revealed,
for the first time, nonlinear neural coupling between cortical
oscillation and EMG during a voluntary motor control task
without involving any external sensory input. Similar to linear
coupling, the nonlinear corticomuscular coupling was detected
in both S1-M1 and sensorimotor association areas. The nonlinear
coupling was shown in the similar ratios as previously reported
in the somatosensory studies with both integer multiples and
the 2:3 non-integer multiple. Since there is no significant
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‘‘asymmetry’’ effect, we suggest that the ratios of n:m and m:n
likely come from the same type of nonlinearity but appear
in a reciprocal to each other due to the closed-loop effect of
sensorimotor system (Schouten and Campfens, 2012; Campfens
et al., 2014).

Nonlinear neural coupling is thought be associated with
synaptic coupling between interneurons (Hyafil et al., 2015).
Sensory feedback information is encoded by mechanoreceptors
(i.e., muscle spindles and Golgi tendon organs), transmitted
through synapses in the dorsal column nuclei, and finally
reaches the somatosensory cortex via the thalamo-cortical
somatosensory radiation. Compared to corticospinal tracts,
the sensory feedback pathways involve more synapses and
interneurons. Computational studies based on neural mass and
neural field models have demonstrated the nonlinear dynamics
of thalamo-cortical system in the sensory pathway, showing
similar nonlinearity as we detected in this study (Spiegler et al.,
2011; Roberts and Robinson, 2012; Herrmann et al., 2016).
Furthermore, the mechanoreceptors such as muscle spindles are
also known to be highly nonlinear (Mileusnic et al., 2006). Thus,
we suggest that the nonlinear coupling mainly originates from
sensory feedback pathway and is mediated in a closed loop.

The processing of sensory information in the cerebral cortex
starts from the primary sensory cortices. The information flow
does not only pass the sensory associated PPC, but also projects
to the primary motor cortex and motor association areas (SMA
and PFA; Brovelli et al., 2004; Tsujimoto et al., 2009). As
a result, the nonlinear coupling was detected in both S1-M1
and association areas. Different from linear coupling, there are
no significant differences of nonlinear coupling shown among
different cortical areas. A plausible explanation is that the sensory
feedback is essential for closed-loop motor control. Nonlinear
coupling between the periphery and the somatosensory cortices
may be propagated to the motor-related areas without distortion.
In turn, the motor-related areas show similar nonlinear coupling
to the muscles.

EMG Rectification
The surface EMG signal is thought to be a crude representation
of many motor unit action potentials from a muscle. EMG
rectification has been widely used as a pre-processing step
prior to calculating (linear) corticomuscular coherence. Early
studies hypothesized this pre-processing could enhance the
information of action potential timing and therefore make
beta-band corticomuscular coherence more visible (Halliday
et al., 1995; Mima and Hallett, 1999). This hypothesis was
first validated by Myers et al. (2003) in a simulation study

without empirical data. Yao et al. (2007) investigated the effect
of EMG rectification on power and coherence spectra using
EEG and MEG signals. Their results suggested that EMG
rectification possibly improved the identification of motor unit
firing rate; however, there was no significant difference between
using rectified and non-rectified EMG for corticomuscular
coherence estimation. The similar results were also provided
by Bayraktaroglu et al. (2011). In agreement with these
previous findings, we find no significant difference in linear
corticomuscular coupling estimation between using rectified and
non-rectified EMG. Notably, there is also no such difference
in nonlinear corticomuscular coupling estimation. Our results
together with previous findings indicate that EMG rectification
is an acceptable pre-processing procedure in corticomuscular
coupling estimation but not always necessary, in particular for
a static force task.

CONCLUSION
This study revealed for the first time nonlinear corticomuscular
coupling in the sensorimotor network involving the primary
sensorimotor areas and association areas. Our results indicate
that corticospinal tracts mainly mediate linear corticomuscular
coupling, while nonlinear coupling likely relates to sensory
feedback pathways. This work improves our understanding of
the neuronal dynamics within sensorimotor system during a
voluntary motor task. Additionally, the comparison between
using rectified and non-rectified EMG provides first empirical
evidence indicating that EMG rectification is an acceptable
but unnecessary pre-processing step for computing nonlinear
corticomuscular coupling during a static force task. Our results
on nonlinear corticomuscular coupling could provide a reference
for future clinical studies, and the nonlinear analysis approach
could serve as a general tool to characterize the nonlinear
coupling in neural systems.
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