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Dr. A. Šarić UC London
Prof. dr. C. Dekker TU Delft, reserve member

Cover Image: Afshin Vahid

Printed by:

Copyright © 2018 by A. Vahid
Casimir PhD series: 2018-36
ISBN: 978-90-8593-365-6

An electronic version of this dissertation is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


To my beloved parents
and siblings,





Contents

1 Cellular Shapes and Curvature 1
1.1 Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 When physics meets biology . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Theory of membrane curvature . . . . . . . . . . . . . . . . . . . 6
1.2.2 Differential geometry of surfaces. . . . . . . . . . . . . . . . . . . 8
1.2.3 Membrane mediated interactions . . . . . . . . . . . . . . . . . . 10

1.3 Membrane numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Brief outline of this research . . . . . . . . . . . . . . . . . . . . . . . . 12
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

I Tubular Membranes 17

2 Pointlike inclusion interactions in tubular membranes 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Special test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Point-like inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Supplemental Material . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

S. 6.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
S. 6.2 Green’s and energy functions . . . . . . . . . . . . . . . . . . . . 28
S. 6.3 Effect of Casimir forces. . . . . . . . . . . . . . . . . . . . . . . . 29
S. 6.4 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . 30

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Curvature sensing inclusions 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 In a nutshell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Towards stability conditions of membranous tubules covered with interca-
lated molecules 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 In a nutshell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



viii Contents

II Enclosed vesicles 55

5 Membrane mediated interactions between partially wrapped colloids 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 In a nutshell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Curvature variation controls particle aggregation on fluid vesicles 67
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Interaction between microtubule-driven protrusions in a vesicle 79
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8 Final remarks & Outlook 89
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Summary 95

Samenvatting 97

Acknowledgements 99

Curriculum Vitæ 101

List of Publications 103



1
Cellular Shapes and Curvature

Living cells are out of equilibrium systems. Cellular structures are endowed with special
mechanical properties, enabling them to cope with non-equilibrium conditions. A promi-
nent example of such structure is the lipid bilayer. Biological membranes are dynamic en-
tities and equipped with both elastic and fluid properties. Both the plasma membrane on
the outside of a cell and the many surrounding organelles inside a cell constantly remodel,
forming wide range of sometimes peculiar shapes. Membranes are clearly not detached
from other key machines in the cell. For example, numerous inclusions like proteins are
either embedded in or bound to membranes in order to carry out diverse functions. The
interaction of the plasma membrane of a cell with its internal dynamic cytoskeleton is
another example. Physical principles underlie the interplay between the characteristic
shape of membranes and the behavior of attached proteins and cytosekeletal filaments.
Using physical and mathematical tools, we study membrane mediated interactions be-
tween both lipid associated proteins and microtubule-driven protrusions, in order to un-
derstand such phenomena in the realm of membrane biophysics.

1
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Figure 1.1: (a) Schematic shape of a cell containing membranous organelles. These membranes consist of lipid
bilayers. They also host numerous inclusions like proteins. (b-d) The main building blocks of a membrane are
phosphlipids with amphiphilic properties. (e-h) Many internal cellular compartments are also enclosed by
membranes. These organelles constantly remodel and adapt various shapes in, for example, mitochodria (e),
the endoplasmic reticulum (f and h) and the Golgi apparatus (g). Transmission electron microscope images
(e-g) by Louisa Howard and Miguel Marin-Padilla, public domain. Images (a-d) and (h) are reproduced from
[1, 2]

1.1. Membranes

L iving cells are isolated from their external environment by a soft selective barrier
called the plasma membrane (see Fig. 1.1). Lots of other organelles within the cell are

also bound by their own membranes. Membranes exhibit a large variety of shapes, rang-
ing from a simple spherical lysosome to bewildering complex structures like connected
stacks of perforated membrane sheets in the Golgi apparatus to a highly branched net-
work of tubes in the endoplasmic reticulum (ER). In the ER, for example, Terasaki et
al.[1] have recently shown that the 3D structure of membrane sheets in neuronal cells
and secretory salivary gland cells of mice resembles a parking garage with helical ramps
connecting the different membrane levels (Fig. 1.1h). Having such structure enables
the ER, the protein-making factory of a cell, to maximize the space for protein synthesis
within a limited volume. In general, membranous boundaries enable a cell to maintain
its integrity and host proteins to be served as gatekeepers and energy transducers.

The predominant constituents of a biological membrane are phospholipid molecules
(Figs. 1.1b-d). These molecules are amphiphilic, containing both hydrophilic (polar
heads) and hydrophobic (nonpolar tails) regions. As such, when immersed in an aque-
ous solution, depending on their shape, lipid molecules may self-organize themselves
into either a mono-layer or a bilayer with the hydrocarbon chains of each layer point-
ing toward each other. For example, lipids that are conical form micelles and those with
a cylindrical shape construct a bilayer. The hydrophobic and hydrophilic properties of
lipids enable the solution to minimize the contact between hydrophobic tails and polar
molecules, hence reducing the total energy of the system. This scheme of a cell envelope
was depicted for the first time by Gorter and Grendel, the “pioneers” of modern mem-
brane theories, in 1925 [3]. The model lacked any explanations for embedded proteins
inside the membrane. To rectify this deficiency, pulling all the findings of more than a
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decade together, Singer and Nicholson in 1972 drew a new scheme called the “fluid mo-
saic model” to describe the structure of a lipid bilayer [4]. Their model suggests that the
cell’s membrane is a mosaic of proteins (solute) embedded in a fluid bilayer of lipids (sol-
vent). Although the mosaic model has generally been accepted as a reasonable paradigm
for the structure of cell membranes, recently it has been challenged in some aspects,
hence amended models are suggested. For example, the existence of different regions
of lipids that are distinct in size and composition necessitates equipping the previous
model with variable patchiness, variable membrane thickness and a higher occupancy
of proteins as they are of central importance in lipid-lipid and lipid-proteins interactions
[5]. The flexible surface model is another alternative suggested for the mosaic model. It
considers both the membrane and the collection of floating proteins as complex fluids.
Resultantly, the properties and shape of the lipid bilayer can possibly govern the struc-
ture and function of the embedded proteins [6].
Membrane shape is deformed by various actors, the most important of which are pro-

Figure 1.2: Some direct mechanisms of shaping a piece of undisturbed lipid bilayer (a). (b) When interacting
with a membrane, some proteins self-organize themselves intoα-helices, called amphipathic helices. Proteins
with amphipathic helices penetrates like a wedge into the bilayers to induce positive curvature. (c) Some inte-
gral proteins are nearly rigid and can induce different types of deformation. (d,e) Oligomerization and scaffold-
ing of proteins create a structure that can induce curvature on the membrane. (f,g) The force generated either
by specialized motor proteins or by polymerization of acting/tubular filaments is capable of pulling/pushing
tube-like deformations.

teins and cytoskeletal filaments [7–10]. Proteins deform the membrane through three
major mechanisms (Fig. 1.2). Firstly, molecular motors walking on a microtubule con-
vert chemical energy to pushing/pulling forces that can be harnessed to deform a mem-
brane (Fig. 1.2g). Secondly, integral proteins that are much larger than lipids in size,
can induce local curvature on the membrane (Fig. 1.2c). Attachment of proteins to the
membrane by either insertion of an active amphipathic helix into one leaflet of the bi-
layer or anchoring to the lipid heads can also distort a membrane (Fig. 1.2b). Epsin pro-
teins, for instance, utilize a wedging mechanism to drive membrane curvature during
the formation of clathrin coated pits [7] and tubular networks [11]. Finally, oligomeriza-
tion and scaffolding of proteins at the surface of a membrane can dictate the shape of a
protein motif on the lipids (Figs. 1.2d and e). A Bin/Amphiphysin/Rvs (BAR) domain is a
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well-known example that bends the membrane via scaffolding. BAR domains commonly
emerge in crescent-shaped (or banana-shaped) dimers like F-BAR, I-BAR and N-BAR
[12, 13]. The curved region of these dimers is positively charged and interacts with the
head groups of the lipids, via which BAR proteins impose their concave/convex shape
on the lipid bilayer.

The interaction between proteins and membrane shape is bilateral: while the pro-
teins with a fairly rigid structure deform the membrane, they can also sense and re-
spond to the curved regions. For example, the insertion mechanism usually happens
in highly curved regions. Some BAR domains may exist in the shape of oligomers. These
oligomers can discern the curved geometries on the membrane to use as a platform to
assemble on. It is worth mentioning that sensory behavior of proteins often takes place
in the regime of weak interactions with the membrane [14]. All the proteins that act as a
sensor can become curvature inducers at high concentration. Septins, a conserved fam-
ily of cytoskeletal GTP-binding proteins at the cell cortex, are an example of such factors
that are known to recognize shallow curved regions of a membrane and in high concen-
tration can drive curvature [10, 15].

Mechanical deformations of the membrane create a type of interaction between pro-
teins on top of other possible direct interactions like electrostatic or Van der Waals forces.
The interplay between membrane shape and such cooperative interactions between cur-
vature inducers/sensors (of different type) is crucial for driving myriad phenomena in
biology. Examples include the tubulation process during the internalization of virus
particles, clathrin mediated endocytosis and the process of releasing mechanical stress
in the tubular network of mitochondria (see Fig. 1.3). Ewers et al. [16] have studied
the process of cell infection by simian virus 40 (SV40), which is a colloid-like particle.
Particularly, they suggest that SV40 particles bind to the plasma membrane of a cell via
specific ligand-receptor interactions and generate indentations on the membrane. A few
minutes after binding to the membrane, SV40 particles were observed in virus-induced
invaginations and formed tightly-fitted vesicles. For both virus-like and SV40 particles
(if no scission of the vesicle occurs), the membrane promotes tubule formation via ag-
gregation of SV40 particles in order to collectively minimize the deformation energy at
the neck, both in the cellular and reconstituted membranes. In Chapter 5, we will reveal
how similar patterns emerge through introducing membrane mediated interactions be-
tween colloids.
Clathrin-mediated endocytosis (CME) is one of the most extensively studied mecha-
nisms by which cells absorb nutrients and signaling molecules [7]. During this process,
first a membrane invagination is formed via an array of accessory proteins using the
insertion mechanism to deform the membrane. In the next step, coated proteins are
recruited (via specific binding interactions) to construct a cargo that is necessary for sta-
bilization and driving the budding process. In the end, dynamin proteins that have pref-
erence for the curvature of the neck are employed to drive the nascent vesicle scission
(see Fig. 1.3).
On subcellular scales, despite having very limited space and a very complicated network
of membranous tubes, mitochondria do not suffer any tubular entanglement or dras-
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Figure 1.3: (a-d) Different stages of clathrin mediated endocytosis in immature chicken egg cells show the
continuation of vesicle invagination and the scission of the the completed vesicle. From [18]. (e-f) Membrane
tube formation induced by binding of SV40 virus particles. Figure (e) depicts electron micrographs of cells
that were incubated for 7 min with SV40. Note the tight-fitting membrane under SV40 particles. (f) Electron
micrographs of virus-like particles after 30 min incubation with cells. The virus-like particles assembled inside
tubular membrane invaginations are shown by arrowheads. Reprinted from [16].

tic collisions. It has recently been shown [17] that mitochondrial fission factors (MFF)
act as both detectors (in low concentration) and inducers (in high concentration) of the
curvature which is key for the relaxation of such a network. As soon as two tubes collide,
MFF proteins detect the mechanically stressed areas and recruit fission machinery to cut
those regions. On a larger scale, the collective interaction between FtsZ proteins during
cell division is another example of the coordination between inducing/sensing proteins.
Chapters 2-4 explain how this phenomenon and other similar membrane remodeling
processes in a tubular network can be induced only via introducing membrane medi-
ated interactions.

In addition to proteins, cytoskeletal architecture is also strongly coupled to the shape
of a cell (Fig. 1.2f). The cytoskeleton (do not get misled by the word “skeleton”, they are
very soft) of a cell mainly consists of actin filaments, composed of actin monomers, in-
termediated filaments, and microtubules that are composed of tubulin dimers. These
structures provide mechanical support to stabilize the shape of a cell. They also play
an important role in the adhesion and motility of cells. They are involved in crucial
processes during cell migration. For example in filopodia, which cells use to recognize
chemical gradients and make a move correspondingly, both microtubules and actin fila-
ments contribute to provide the driving force. The foremost feature of coupling between
the shape of a cell and the internal filaments are membrane protrusions. Deforming a
membrane costs energy. Therefore, the plasma membrane in turn can participate in the
rearrangement of filaments. For example, the presence of a lipid membrane introduces
an effective attractive interaction between protrusions; hence it influences the spatial
rearrangements of membrane-anchored filaments [19]. Chapter 7 suggests that having
membrane mediated interactions is already sufficient for the microtubules in order to
form the structures commonly found in cells.
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Figure 1.4: (a) Schematic representation of the Monge parametrization. (b) Taylor expansion of the surface
u(x, y) around an arbitrary point (From [20]).

1.2. When physics meets biology
1.2.1. Theory of membrane curvature
As mentioned in the previous section, the variety in the range of shapes that membranes
adopt is very broad. To physically understand membrane reshaping, we first need to
identify the relevant parameters. Having these parameters enables us to associate an
energy functional with the lipid bilayer, the minimization of which would naturally gives
the geometrical shapes consistent with experimental observations.
For now let us assume that a membrane can be considered as a two dimensional surface
(we will see later that this is actually a very good approximation). As such, we can as-
sociate a height function u(x, y) to any point on the membrane (with no overhangs) to
describe its position with respect to a reference plane, where x and y are the Cartesian
coordinates on the reference plane (see Fig. 1.4). As depicted in Fig. 1.4b, we simply use
a Taylor expansion at any arbitrary point u(x0, y0) inside a segment with size d x ×d y to
approximately describe the shape around it. Such an expansion reads [20]:

u(x, y) = u(x0, y0)+ ∂u

∂x
dx + ∂u

∂y
dy + 1

2

[
∂2u

∂x2 dx2 + ∂2u

∂y2 dy2 + ∂2u

∂x∂y
dxdy

]
+ ... (1.1)

The first and second terms in the expansion simply relate to the height and slope of the
surface at that point. These two terms therefore do not really capture the shape. It is
the second order derivatives that measure how bent the surface is. These terms can be
rewritten in the following fashion: 1

2 dxT C dx, where C is a symmetric matrix of second
order partial derivatives called the curvature matrix or Hessian and is defined as :

dx =
(

dx
dy

)
and C =

(
∂xx u ∂x y u
∂x y u ∂y y u

)
(1.2)

The curvature matrix at each point reasonably determines the concavity of the surface
and hence the local shape. When dealing with curves we can osculate circles at each
point, from which we can obtain the curvature at that point. It is possible to do this for a
curve because there is only one direction for the curvature. In contrast, at each point on
a 2D surface there exits a countless number of directions along which we can define the
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u

u

u

Figure 1.5: The curvature of spatial curves and two dimensional surfaces (From [20]).

curvature matrix. Among all the possible directions, however, there are two directions
that correspond to maximum and minimum curvature at the tangent plane with a nor-
mal vector perpendicular to the surface. These directions are called principal directions
and the corresponding curvatures are called the principal curvatures. The principal cur-
vatures and directions are the eigenvalues and eigenvectors of the curvature matrix C ,
respectively. One of the characteristic properties of the principal curvatures is that they
are independent of our choice of spatial coordinates. Therefore, we can construct two
quantities out of them, namely, mean and Gaussian curvature:

H = (C1 +C2)/2 (1.3)

K =C1C2 (1.4)

It’s worth noting that these two numbers are the invariants of the curvature matrix C ,
namely its trace and determinant. If C1 and C2 have the same sign and value the resultant
shape would correspond to a sphere of radius R = 1/C1; if the signs are opposite, the
corresponding local shape would resemble a saddle-like geometry.
Regardless of the exact form, the curvature energy of a membrane can be expanded in
terms of its principal curvatures. Using symmetry consideration, up to quadratic order
in the two principal curvatures, the energy density reads:

fc = f0 + κ

2
(2H)2 +κg K (1.5)

where f0 is the energy of the ground state and the rest accounts for the membrane dis-
tortion. The expansion coefficients κ and κg are the bending rigidity and the elastic
modulus of the Gaussian curvature. The Gaussian modulus is a measure of the energy
penalty associated with changing the topology (from a vesicle to a donut, for example)
of the membrane which can occur when we have drastic deformations. The total excess
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bending energy ∆F is often more relevant and given by:

∆F =
∮

S

(κ
2

(2H −C0)2 +κg K +σ
)

d A (1.6)

This energy, which will be used many times throughout this thesis, is called the Canham-
Helfrich energy functional [21]. The last term in the equation is introduced to penalize
any changes in the number of lipids in the lipid bilayer, hence in the total surface area
of the membrane. C0 is the spontaneous curvature of the membrane and σ is sadly (the
reason becomes clear shortly) called the surface tension of the bilayer1. In bulk fluids
the interface is a result of inhomogeneity in the force acting on the molecules. In the
center of a full bucket of water, for example, molecules attract each other from every di-
rection, resulting in a zero total force. Surface molecules, however, feel this force only
from the neighboring molecules beneath the surface. Consequently, the surface of the
water behaves as if it is made of an elastic membrane, contracting toward the bulk flow.
This elastic tendency of the surface is called surface tension. Similarly treating lipid bi-
layers, the surface tension of a membrane is zero(!) because the stretching energy of a
membrane is humongous compared to the amount of energy required for its bending
(∼ 105 times larger, as we will discuss later). In addition, in the case of a lipid bilayer the
situation is somewhat contrasting. They form an interface even without having a bulk of
lipids. The surface tension that we have in Eq. 1.6 is more like a chemical potential asso-
ciated to including/excluding lipids to the bilayer (correspondingly changing the surface
area). When having a fluctuating membrane, the surface tension (or more precisely, the
membrane frame tension) is connected to the surface of projected area and not that of
the membrane itself [22–24].
As the natural way towards explaining the shape transformations in cellular membranes,
we need to minimize the total energy of the membrane. So far, we have been trying to
physically make an intuitive connection between the equilibrium shapes of membranes
and the relevant parameters. However, it is worth providing the mathematical descrip-
tions of both the curvature and the surface area in an arbitrary framework.

1.2.2. Differential geometry of surfaces
Differential geometry is a mathematical discipline that studies geometrical entities like
curves and surfaces using differential calculus. It is closely related to other fields of math-
ematics including differential equations or topology. Its results have a very broad range
of applications from biologically inspired problems to general relativity. As the geomet-
rical object of our interest, we deal with differential geometry of surfaces here to un-
derstand how we can describe its properties. Our goal is not to dive deeply into the
framework and concepts of differential geometry, but is rather modest (and sometimes
not really mathematically true!). We simply introduce the tools and important geometric
objects that can be utilized to grasp the notion of Gaussian curvature, mean curvature
and principal curvatures. To know more about the concepts please consult the relevant
lecture notes and books like Refs. [25–28].

1When discussing numerical simulations, we show the surface tension with the letter γ
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As will be justified later in this chapter, lipid membranes can be considered as two
dimensional surfaces embedded in 3-D space. All the characteristic geometries like a
cylinder, sphere or ellipsoid can be described in different ways, depending on the co-
ordinate system we are using. Imagine that we have a surface of an arbitrary shape in
space. We can then generalize the parametrization systems we know from before like
the equation of a sphere or the Monge gauge parametrization introduced in the previ-
ous section. We describe such a surface in a general coordinate system (v1, v2) as:

r(v1, v2) =
X (v1, v2)

Y (v1, v2)
Z (v1, v2)

 (1.7)

When introducing the general geometrical objects we will also apply it to a special case in
Cartesian Coordinates System (CCS). The parametrization in CCS reads: r(x, y) = (x, y,u(x, y)).
Having defined the general position vector r(v1, v2), we can construct perpendicular tan-
gent vectors and the normal vector at each point on the surface, from which we can
basically derive the intrinsic and extrinsic properties of the surface! These vectors are
defined as:

ei = ∂r(v1, v2)

∂v i
where iε{1,2} , and n = e1 ×e2

||e1 ×e2||
(1.8)

with ei and n the tangent and normal vectors, respectively. Only the latter has to be
normalized. Continuing with our simple example in CCS, we obtain ex = (1,0,ux ), ey =
(0,1,ey ) and n = (−ux ,−uy ,1)/

√
1+u2

x +u2
y . We can characterize the intrinsic geometry

of the surface in the neighborhood of any point by using the tangent vectors. For ex-
ample, the distance between two infinitesimally close points on the surface (S) can be
approximated from the differential of the position vector dr = rv1 d v1 + rv2 d v2 as:

d s2 = dr.dr

= e1.e1(dv1)2 +e1.e2(dv1)(d v2)+e2.e2(dv2)2

= gi j dv i dv j

(1.9)

where gi j = ei .e j are the elements of a tensor called the metric, or first fundamen-
tal form. Note that we have approximated the actual distance with the corresponding
one on a tangent plane spanned by the two tangent vectors (which are also referred as
Gauss normal coordinates). It can also easily be shown that in general coordinate sys-
tem the area elements equals: dA = |e1 × e2|dv1dv2 = p

g d v1d v2 ,where g is the de-
terminant of the metric tensor. For our problem in CCS, the surface element becomes:

dA =
√(

1+u2
x +u2

y
)
dxdy .

Now let us see how the surface is embedded in the ambient space. To do so we again
look at the same infinitesimally close points and see how much we have deviated from
the actual distance on the surface S (mathematically speaking, |S(o)−S(o′)|−d s) . This
quantity, which provides some information about the extrinsic properties of the surface,
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Figure 1.6: The second fundamental form locally characterizes the shape of a surface (S) around a point (O).

can be written as:

2ds′ =−dr.dn

= rv1v1 .n(dv1)2 + rv1v2 .n(dv1)(dv2)+ rv2v2 .n(dv2)2

= bi j dv i dv j

(1.10)

where the tensor with coefficients bi j = (∂v i v j r).n is called the second fundamental form
of the surface, or the extrinsic curvature tensor, as it determines how the surface is em-
bedded in 3-D. Following our example in CCS, we get:

b = −1p
g

(
uxx ux y

ux y uy y

)
(1.11)

The resultant curvature tensor basically contains all the information we are looking for.
To extract this information we should look for the invariants of such a tensor, which are
the determinant and the trace of b. Indeed it turns out that the mean and Gaussian
curvatures can be written as:

H = trace (g−1b)

2
and K = det (b)

g
(1.12)

Finally for our example in CCS, we obtain: H = (uxx (1+u2
y )+uy y (1+u2

x )−2ux y ux uy )/g 3,

K = (uxx uy y −u2
x y )/g 2 and d A =p

g d xd y , where g =
√

1+u2
x +u2

y .

Now for any given parametrization we can easily derive the mean and Gaussian curva-
tures as well as the surface element.

1.2.3. Membrane mediated interactions
Thus far we have clarified how to get the energy functional associated to the shape of a
membrane (Eq. 1.6). To get the shape equation we need to minimize the energy func-
tional. At the moment let us apply the formalism on a flat membrane. Plugging the
differential objects for the Cartesian coordinates system from the previous section into
Eq. 1.6, we obtain the following expressions for the energy and shape of the membrane
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to the second and first order, respectively:

∆F = 1

2

∮
S

[
κ(∇2u)2σ|∇u|2]dxdy

κ∇4u −σ∇2u = 0
(1.13)

where for the sake of simplicity we have ignored the Gaussian and intrinsic curvatures’
contribution here. The resultant shape equation minimizes the energy associated with
the surface tension and bending energies for any arbitrary set of boundary conditions.
Specifically, these boundary conditions can be the deformation field induced by the
shape of proteins. Exploiting the tendency of the membrane to minimize its distortions
induced on its shape, one can determine protein-proteins communication by chang-
ing their positions and calculating the total energy corresponding to that. Proteins can
either attract or repel each other in order to minimize the membrane perturbation. In
addition to boundary conditions, the nature of interaction between proteins depends on
the intrinsic lenghth scale of the membrane λ−1 =p

κ/σ. For example, while the mem-
brane mediated interaction for two identical isotropic proteins changes as∆E ∝ 1/d 4 for
a flat elastic membrane, in case of a fluid membrane (with non-zero surface tension) the
leading order term in the interaction energy goes as ∆E ∝ log(d) with d the separation
between the proteins. Since the 1990s, a large amount of research has been dedicated to
this process in order to understand the nature of such interactions on cellular scales. In
the introduction of each chapter we have provided a brief literature review correspond-
ing to the biological process investigated in that chapter.
In contrast to electrostatic and van der Waals interactions, the interaction energy be-
tween deformation inducing proteins is non-additive. This complicates the analysis of
the shape equation enormously, because adding any proteins or changing the bound-
ary conditions equals to having a completely new system. Therefore, many models have
been proposed and developed to solve the shape equation for fluid surfaces on different
length scales. The Canham-Helfrich formalism for example describes the membrane as
a continuous surface and looks for a shape that minimizes the total energy. It is a course-
grained method and does not account for the atomistic structure of the lipid bilayer. We
can also numerically solve the corresponding energy functional. Such methods are usu-
ally called particle-based models, among which we will use the triangulated network.
The triangulated model, as will be explained in detail later, assumes that the membrane
is made of many beads forming a triangular network. Regardless of the molecular prop-
erties of such triangular patches, the model tries to minimize the bending energy be-
tween triangles and in our case the free energy associated with the change in the surface
area by randomly moving the beads around. A full description of the method will be
provided in the corresponding chapters. In this thesis we these two models to study our
research problems. There are, however, many other deterministic and molecular-based
models which are not really suitable for our purposes.

1.3. Membrane numbers
It is helpful to characterize membranes by providing and comparing some of the pa-
rameters that are relevant to this research. It also helps to clarify some of the implicit
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assumptions we took in the two previous sections (and for the later assumptions in this
thesis). Depending on the type of a cell and subcellular organelles we can have mem-
branes (in the shape of enclosed vesicles or tubes) of different sizes. For example, the
size of a cell can vary in a range of ∼ 10-100 µm. For intracellular organelles we can
have a vesicle size of ∼ 25-30 nm. The diameter of tubules in the ER is ∼ 60 nm. The
thickness of a typical membrane in the other hand is in the order of ∼ 4 nm. Compar-
ing these numbers and the fact that membrane mediated interactions have long range
effects, for inclusions that are much larger than the size of lipids, membranes to a good
approximation can be considered as two dimensional surfaces embedded in three di-
mensional space. Thus far, we have assumed only that membranes can get bent, but
one may argue that such a material can undergo other modes of deformation like shear-
ing or stretching. The first assumption is actually related to one of the basics properties
of membranes. Lipids in a biological membrane freely diffuse around and are fluid in
the plane of the membrane and therefore cannot withstand shearing (so we don’t need
any number for that). Stretching of a membrane does indeed cost energy and appears
as the change in the surface area of the membrane. Using micropipette pressurization
technique, it has been shown [29] that the area-stretch modulus of the membrane is in
the order of ∼ 50 kT/nm2. During the experiments, membranes from one side sucked
into a pipette in order to put the other side under lateral tension and increase the area.
It turned out that even for the small tension values of about ∼ 2 kT/nm2 the membrane
underwent rupture, confirming that under smaller tensions it is a reasonable approxi-
mation to consider the area constant. Therefore, membranes favor the bending modes
of deformations which are less costly. The bending rigidity of biological membranes is in
the range of ∼ 10−25 kT and the surface tension values are about 10−2 −1 kT/nm2 [30],
indicating a characteristic length scale λ−1 ≈ 3−50 nm.

1.4. Brief outline of this research
In the previous sections, we mentioned that the membrane shape is regulated by protein
inclusions, which can act both as curvature sensors and curvature inducers. The back-
ground shape of the membrane on the other hand can control the interaction between
such objects. A concise investigation of these phenomena is the core of this thesis.
In contrast to previous works, most of which assume membranes as a flat surface, in Part
I we investigate the interaction between membrane deforming objects in highly curved
regimes. We particularly show that the curved and closed nature of cellular membranes
has a significant effect on the self organization of embedded inclusions. With the help of
Monte Carlo simulations, we further show that curvature sensing proteins in high den-
sities can constrict tubular membranes and facilitate their splitting. This chapter also
provides some recent experimental evidences confirming that these interactions are es-
sential for tubular networks in the cell to avoid entanglement.
In Part II, we study the interaction between colloidal-shaped proteins bound to closed
vesicles. First, through a numerical approach, we demonstrate that fully wrapped col-
loids on a spherical membrane attract each other in order to minimize the curvature
energy of the membrane. We then elucidate how the curvature variation controls parti-
cle aggregation on fluid membrane vesicles. We particularly find that particles adhered
to an ellipsoidal vesicle exploit the curvature variation to self-assemble and form a ring
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at the mid-plane of an ellipsoid.
Last but not least, chapter 7 reveals the role of membrane shape on the rearrangement of
cytoskeletal filaments like microtubules. Our results explain the possible effective mech-
anism underlying the preference of filaments for having parallel configurations.
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2
Pointlike inclusion interactions

in tubular membranes

Membrane tubes and tubular networks are ubiquitous in living cells. Inclusions like pro-
teins are vital for both the stability and the dynamics of such networks. These inclusions
interact via the curvature deformations they impose on the membrane. We analytically
study the resulting membrane mediated interactions in strongly curved tubular mem-
branes. We model inclusions as constraints coupled to the curvature tensor of the mem-
brane tube. First, as special test cases, we analyze the interaction between ring and rod-
shaped inclusions. Using Monte Carlo simulations, we further show how pointlike inclu-
sions interact to form linear aggregates. To minimize the curvature energy of the mem-
brane, inclusions self-assemble into either line- or ringlike patterns. Our results show that
the global curvature of the membrane strongly affects the interactions between proteins
embedded in it, and can lead to the spontaneous formation of biologically relevant struc-
tures.

A version of this chapter has been published as: A. Vahid and T. Idema, Pointlike inclusion interactions in
tubular membrane, Phys. Rev. Lett. 117,138102 (2016).
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2.1. Introduction

M embrane nanotubes can be extracted experimentally from ‘giant’ unilamellar vesi-
cles (GUVs) by different techniques like optical tweezers [1] or micropipettes [2–4].

In vivo, for example in the endoplasmic reticulum, these membrane tubes are gener-
ated either by being pulled out by molecular motors [5] or pushed out by polymerizing
cytoskeletal filaments [6]. The formation mechanism and the stability of tubular mem-
branes have been extensively studied both theoretically [7–10] and experimentally [1–
3, 11].

In addition to direct interactions like electrostatic forces, inclusions (like proteins)
embedded in biological membranes experience interactions mediated by the elastic de-
formation of that membrane. Inclusions create these deformations by imposing a cur-
vature field in the lipid bilayer when they are bound to or embedded in a membrane.
Despite the presence of a repulsive pair potential between such inclusions in a flat mem-
brane [12, 13], because of the non-pairwise additive nature of many-body interactions,
they collectively attract each other and form stable spatial patterns [14]. Numerous ana-
lytical investigations [15, 16] and computer simulations [17, 18] have been done to show
that this non-additivity drives vesiculation and budding in biological membranes. In
contrast to flat membranes, membrane-mediated interactions between inclusions em-
bedded in tubular membranes are not well understood. These interactions can be found,
for example, in the last step of exocytosis and in cell division, where some specific pro-
teins make energy-favorable structures to facilitate membrane scission [19]. Compared
to the scale of the plasma membrane which can be approximately considered as a flat
surface, the curved nature of such a tubular membrane can significantly affect these in-
teractions. Recently, it has been revealed that hard particles and semi flexible polymers
absorbed to soft elastic shells, collectively induce aggregates and produce a rich vari-
ety of aggregation patterns [18, 20–26]. Particularly, Pàmies and Cacciuto showed that
spherical nanoparticles adhering to the outer surface of an elastic nanotube can self-
assemble into diverse aggregates [22]. They considered elastic nanotubes as stretchable
and bendable structures; in contrast biological membranes cannot withstand shearing
forces and are stretch free interfaces. Therefore, an obvious question to ask is what kinds
of structure inclusions might induce in a cylindrical fluid surface.

The aim of this paper is to analytically study the interactions between inclusions em-
bedded in a membrane tube. We treat inclusions as point-like constraints imposing local
curvature on the membrane. Previous work done by Dommersnes and Fournier [27, 28]
already suggested a methodology to derive inclusion interactions mediated by mem-
brane deformations in planar geometries. Using this framework, one can easily calculate
the interaction of many point-like inclusions in a non-additive way. Here, we apply that
framework to a membrane tube containing an arbitrary number of inclusions. For sim-
plicity we assume that inclusions do not undergo any conformational changes, though
these could also be accounted for using the same formalism [29]. After giving a brief
outline of the model, first we look at some specific shapes like rings and rods, and af-
terwards we will study interactions between point-like inclusions. Using Monte Carlo
simulations, we investigate the effects of different parameters like the density and the
size of inclusions on their final equilibrium configuration.

Our results reveal that in contrast to the interaction of two rings, two infinite rods em-



2.2. Model

2

21

bedded in a membrane tube behave completely different from the same inclusions in a
flat membrane. While two identical inclusions always repel each other in a flat mem-
brane, in a cylindrical membrane they can also attract. We find a similar behavior for
identical point-like particles, which can also attract and repel on the tube, depending
on their separation and relative orientation. Consequently, for many inclusions, and
depending on their hard-core radius, they form either ring or line like structures. We
conclude that rings of membrane inclusions, such as the dynamin rings found in en-
docytosis, or the FtsZ rings found in bacterial cytokinesis [30], can thus spontaneously
form on tubular membranes, due to membrane-mediated interactions alone.

2.2. Model
As mentioned earlier, we use the theoretical framework introduced in ref. [28]. We apply
this method to membranes with a cylindrical topology. The unperturbed system is a per-
fect cylinder, parametrized by angular (θ) and longitudinal (ζ = Z /R, with R the radius
of the cylinder) coordinates. We describe deviations from the perfect cylindrical shape
using the Monge gauge (see Fig. 1.4):

r(θ,ζ) = R

(1+u(θ,ζ))cos(θ)
(1+u(θ,ζ))sin(θ)

ζ

 , (2.1)

where u(θ,ζ) << 1. Using Canham-Helfrich model explained in chapter 1, the bending
energy of the membrane reads:

E =
∫

S
dA

(
2κH 2 +σ)

, (2.2)

It is well known that, under the application of a constant force f = 2π
p

2κσ to the mem-
brane, a cylindrical tube of radius R = p

κ/2σ is an equilibrium shape minimizing the
energy functional given by Eq. 2.2 [2, 8].

Following the construction by Dommersnes and Fournier, we put N inclusions in the
membrane at positions

(
r1,r2, ...,rp , ...,rN

)
imposing the curvature matrix C = (...,C p

θθ
,C p

ζθ

,C p
ζζ

, ...), where C p
i j = ∂i j u(θ,ζ)δ(θ−θp ,ζ−ζp ). To get the deformation field of the tube,

u(θ,ζ), we minimize the energy functional (Eq. 2.2) given that we have imposed the
curvature constraints. For the details of solving the resulting Euler-Lagrange equations
please see the Model section in the Supplemental Material for the derivation. In the case
of self-interactions, we need to take the actual size of the inclusions into account, and
should therefore introduce two cutoff wave vectors (we cannot have fluctuations with
wavelength smaller than the size of the lipids): Λζ = 1/a and Λθ = 2πR/a, where the
cutoff radius a is chosen such thatΛ−1

θ(ζ) is in the order of the membrane thickness [33].
Using this formalism, we can get an analytical expression for the elastic energy and

the shape of the deformed membrane for any arbitrary number of inclusions. The nondi-
mensionalized components of the curvature tensor C, for a tube with a thickness of
' 5 nm and radius ' 20− 50 nm, are in the order of c−1 ' 0.1− 0.25. In the following,
we measure the energy in units of 2πκc2, which, for the standard values of κ = 30kBT
and c = 10, equals 2πκc2 ' 20×103kBT .
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Figure 2.1: The calculated energy cost of having two inclusions (as compared to none) for a membrane tube as
a function of the distance between (a) two rings and (b) two rods. Inclusions impose either the same (dashed
line) or opposite (solid line) curvatures.

2.3. Special test cases
To show the difference between planar and highly curved regimes, we study two spe-
cial shapes of inclusions using the described formalism. First, we look at the interaction
between two rings, separated by a distance L, in a cylindrical membrane (Fig. 2.1a). Sec-
ond, we analyze the energy favorable configuration of rod-like inclusions embedded in a
membrane tube (Fig. 2.1b). By considering ring shaped constraints, recent studies have
constructed a variational framework to model the constriction process during cytokine-
sis [34, 35]. Also, using an analytical approach, the wrapping process of a rod like particle
by a tubular membrane has been studied via minimization of bending and adhesion en-
ergies [36].

The energy dependence on inclusion separation between two rings is shown in Fig.
2.1a. We find that two identical rings (C = (0,0,c,0,0,c)) have strong short range repul-
sion and weak long range attraction; this behavior causes two rings imposing equal cur-
vature to not coalesce, but equilibrate at a certain distance from each other. The long-
range attraction originates from the fact that the membrane’s size is finite in the angular
direction, resulting in a reduction in the total energy of two overlapping tails when dis-
tant rings move closer together. For different radii of the tube, we get different equilib-
rium separations for the rings; the larger the radius is, the further the rings are away from
each other (See Fig. S1 in the Supplemental Material). The situation for rings imposing
opposite curvature will be reversed. The membrane, to globally minimize its curvature
energy, favors two rings to coalesce despite having a local minimum for larger separa-
tions.

In contrast to rings, two rods interact completely differently. Depending on their
angular separation (Θ), two identical rods (C = (c,0,0,c,0,0)) can either attract or repel
each other (Fig. 2.1b). One clear difference with both flat membranes and the previous
test case is that the tails of deformations in the angular direction are limited to a con-
fined space and overlap. Consequently, there are two contributions to the total energy
of the tube: one is due to the membrane deformation between two rods and the other
one originates from the overlapping tails. For small distances, these two interactions
add to a net attraction between identical rods, as this minimizes the overlap between
their tails. For larger separations, the effect of the deformed membrane between the
inclusions becomes dominant, and in order to minimize the bending energy of the sys-
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Figure 2.2: The energy landscape for a membrane tube containing three rod like inclusions I1, I2 and I3.

tem, they sit on the opposite poles. Similar to rings, the location and the strength of the
energy barrier depends on the radius of the tube. In the limit of very large R, the inter-
action between two rods imposing the same curvature is purely repulsive (see Fig. S2 in
the Supplemental Material), like in a flat membrane [37]. Since membrane mediated in-
teractions, in contrast to for example electrostatic interactions, behave in a non-additive
way, it is interesting to look at a system with more than two inclusions. Particularly, we
find that adding a third rod into the previous system makes the repulsion between the
first two attractive. The global minimum of the three dimensional energy landscape, as
illustrated in Fig. 2.2, corresponds to the situation that two rods are on top of each other
and the third one is on the opposite pole. Similarly, for more than three inclusions, we
find that for an even number of rods the global minimum occurs when they equally dis-
tribute between the two poles; and in case of having an odd number of inclusions, one
of the poles will have one more rod than the other.

2.4. Point-like inclusions
Before focusing on many body interactions between point-like inclusions, let us first
consider a tubular membrane containing two identical inclusions imposing the same
curvature, so C = (c,0,c,c,0,c) (similar to rods and rings, the behavior for inclusions
inducing opposite curvature will be reversed). Fig. 2.3a depicts the excess curvature
energy of the membrane as a function of both angular and longitudinal distances be-
tween two inclusions. At small distances there are two different kinds of behavior cor-
responding to two distinct directions: along the tube axis two inclusions strongly re-
pel each other at short distances and attract each other at longer distances (Fig. 2.3d),
while in the transversal direction the two-body interaction is purely attractive (Fig. 2.3c).
When two identical point-like inclusions have the same transversal coordinates (Θ= 0),
they behave like rings, although the long-range attraction becomes very weak (see inset
in Fig. 2.3d). However, when these inclusions have the same longitudinal coordinates
(L = 0), their behavior differs from that of the infinite rods. While for the rods we find
both short-range attraction and long-range repulsion, identical point-like inclusions at
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Figure 2.3: (a) The curvature energy ( ∆E
2πκc2 ) of a membrane containing two inclusions, as a function of their

angular (Θ) and longitudinal (L) separation, with L in units of the tube radius R. (b) The line around the global
minimum at which the energy equals the local minimum at large separations. For particles whose diameter
exceeds the size of this region, the overall behavior is repulsive (settling in the local minimum at large separa-
tions). Smaller particles globally attract, but have a high energy barrier separating the attractive and repulsive
regime. (c) Two identical inclusions placed at the same longitudinal coordinates (L = 0) attract each other. (d)
Point-like inclusions behave like rings when they are situated on the same transversal coordinates (Θ= 0); the
inset shows the weak long-rage attraction.

the same longitudinal coordinate always attract. The global energy minimum of the sys-
tem corresponds to the two inclusions sitting next to each other in the angular direction
(see Fig. 2.3a). However, if the inclusions are initially separated, there is a large energy
barrier (on the order of ∼ 100kBT ) that the inclusions have to overcome to reach this
global minimum state. Moreover, the region around the global minimum where the en-
ergy is less than that at the local minimum at large separations (see inset in Fig. 2.3d) is
only very small, as shown in Fig. 2.3b. Consequently, small inclusions globally attract,
but may not find each other due to the large barrier; particles with a diameter larger
than the size of the attractive basin in Fig. 2.3b have a global minimum at large but fi-
nite separation, also separated from the (now local) minimum close together by a large
barrier.

Like for rods, adding more inclusions changes the energy landscape. For point-like
inclusions the net effect is a lowering of the barrier between the energy minima at small
and large separations. Consequently, the presence of other inclusions can allow two
inclusions to reach their global equilibrium state, which could potentially take very long
if those other inclusions were absent.
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To elucidate the collective behavior of multiple inclusions packed in the system, we
perform Monte Carlo (MC) simulations on a membrane tube containing inclusions with
different hard-core radii (which are introduced to take into account the finite size of the
particles). During the simulations, we consider periodic boundary conditions in the
longitudinal direction. The only effect of a non-zero hard-core radius of inclusions is
the transition from the short-range attractive-dominated regime to the repulsion dom-
inated area. In all cases the tube’s reduced length is ζ = 10π and correspondingly, the
cut-off wave vectors are Λζ = 314 and Λθ = 62 for the cutoff radius of a = 0.1. During
MC simulations we use the Metropolis algorithm [38] with parallel tempering [39]. As
membrane mediated interactions between inclusions originate from both the average
deformation of the membrane and the constraints imposed on its shape fluctuation, one
may be concerned about the Casimir interactions. In our system, the thermal fluctua-
tion effects nicely decouple from the elastic ones [40], and it is straightforward to show
that their effects are relatively small, quickly fading out with the distance between in-
clusions [41] (see Fig. S3 in the Supplemental Material). We find that for an arbitrary
number of inclusions with a hardcore radius a0 = 0.2, they will attract each other in the
angular direction and self-assemble into ring like configurations (Figs. 2.4a and 2.4b).
Because of having a rough energy landscape, including many barriers like the one shown
in Fig. 2.3a, inclusions could not always completely merge and reach the global energy
minimum. However, we can certainly conclude that in order to minimize the curvature
energy of the membrane, such identical inclusions will assemble into rings. This process
is reminiscent of recruiting dynamin proteins during exocytosis, during which they self-
assemble and form rings to constrict the membrane and, finally, separate the nascent
vesicle from the cell. In contrast, for inclusions having a larger radius (a0 = 1.1), our MC
simulations reveal that they collectively align in the longitudinal direction. Therefore,
as shown in Fig. 2.4c, if the number of particles is less than that fits the length of the
tube they aggregate into one line. The boundary for which the transition from rings to
lines occurs is shown in Fig. 2.3b: if the radius of inclusions is such that it cannot fall in
the attractive area, they self-assemble into lines. If we increase the particle density (Figs.
2.4d and 2.4e), such that they do not all fit on a single line anymore, they do not make
other configurations, but distribute around two lines on the opposite poles. The rea-
son for this is actually hidden in the assumptions of the theoretical model we use. First,
inclusions are treated as point like constraints that impose a uniform curvature in all di-
rections. Second, while as in our model, a fluid membrane cannot resist any stretch, it
has recently been shown that in an elastic membrane the competition between bending
and stretching rigidities gives rise to different configurations like helical structures [22];
in the limit of very small stretching rigidity, linear aggregations like rings and rods are
the only configurations that one can get for an elastic tube.

2.5. Conclusion
We have investigated the curvature mediated interactions between identical inclusions.
We have shown that while rings have strong short-range repulsion (and weak long-range
attraction), identical rods can either attract or repel each other depending on the an-
gular distances between them. For two point like inclusions embedded in a tubular
membrane, our analytical solutions show that they attract and repel each other in the
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Figure 2.4: Equilibrium configurations obtained by Monte Carlo simulation for a system containing (a) 10
inclusions with hard-core radius of a0 = 0.2 (b) 16 inclusions with hard-core radius of a0 = 0.2 (c) 16 inclusions
with hard-core radius of a0 = 1.1 (d) 30 inclusions with hard-core radius of a0 = 1.1 (e) 80 inclusions with
hard-core radius of a0 = 1.1.

transversal and longitudinal direction, respectively. Our study of a membrane tube con-
taining many inclusions has highlighted the importance of many body interactions for
the inclusions in order to collectively induce aggregations. Having done Monte Carlo
simulations on such a system, we observed that depending on the defined hard core ra-
dius, inclusions self-assemble into line or ring like structures. The results may explain
the mechanisms by which inclusions self-assemble during membrane constriction in
the processes like exocytosis and cytokinesis.
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2.6. Supplemental Material

S. 6.1. Model

We use the methodology developed by Dommersnes and Fournier [27, 28]. As stated
in the main text, we apply this method to membranes with a cylindrical topology. The
unperturbed system is a perfect cylinder, parametrized by angular (θ) and longitudinal
(ζ= Z /R, with R the radius of the cylinder) coordinates. We describe deviations from the
perfect cylindrical shape using the Monge gauge:

r(θ,ζ) = R

(1+u(θ,ζ))cos(θ)
(1+u(θ,ζ))sin(θ)

ζ

 , (S. 3)
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where u(θ,ζ) << 1 and R =p
κ/2σ. Assuming that u(θ,ζ) is sufficiently differentiable, we

calculate the mean curvature H and surface element dA as

H =
−2uζuθuθζ− (1+u2

ζ
) (−uθθ+u +1)+uζζ

(
u2
θ
+ (u +1)2

)− 2u2
θ

(u+1)

2R
(
(u +1)2

(
u2
ζ
+1

)
+u2

θ

)
3/2

, (S. 4)

dA = R2(u +1)

√(
u2
ζ
+1

)
+u2

θ
dθdζ, (S. 5)

where uζ = ∂u/∂ζ etc. Assuming N inclusions in the membrane at the positions (r1,r2, ...,rN )

imposing the curvature matrix C =
(
...,C p

θθ
,C p

ζθ
,C p

ζζ
, ...

)
, where C p

i j = ∂i j u(θ,ζ)δ(θ−θp ,ζ−
ζp ), p = 1, ..., N , the curvature energy functional becomes:

E =
∫

S
dA

(
2κH 2 +σ−ΛαCα

)
, (S. 6)

where theΛα are 3N Lagrange multipliers andα= 1, ...,3N . Since we use a Monge gauge
parameterization in which we assume that u(θ,ζ) is very small, the topology of our sys-
tem is invariant. We therefore disregard the Gaussian curvature contribution, because
according to the Gauss-Bonnet theorem the integral over a surface of fixed topology is
constant. We also assume that the spontaneous curvature, which describes the asym-
metry of the membrane, is zero. Substituting H and dA into the energy functional and
minimizing it up to first order in u(θ,ζ), we obtain:(∇4 +2∂θθ+1

)
u (θ,ζ) =ΛαDα (θ,ζ) , (S. 7)

where ∇4 = ∂θθθθ +2∂ζζθθ +∂ζζζζ is the biharmonic operator in cylindrical coordinates,
and

D =
(
δ1
θθ ,δ2

ζθ ,δ3
ζζ, ...,δ3N−2

θθ ,δ3N−1
ζθ ,δ3N

ζζ

)
,

with δαi j = ∂i jδ(θ− θα,ζ− ζα). Because equation (S. 7) is linear, we can solve it using

superposition once we know the Green’s function, for which we obtain:

G (θ,ζ) =
∑

n 6=±1

(
e−ζα−(n)

α−(n) − e−ζα+(n)

α+(n)

)
4π

(
α+(n)2 −α−(n)2

) cos(nθ), (S. 8)

where α±(n)=
√

n2 ±
p

2n2 −1. The solution of equation (S. 7) is then given by

u(θ,ζ) =ΛαGα(θ,ζ), (S. 9)

where the elements of the vector G are given by G =
(
...,C p

θθ
,C p

ζθ
,C p

ζζ
, ...

)
. To relate the

Lagrange multipliersΛα to the actual constraints Cα, we rewrite equation (S. 7) as

Lαu =Cα, (S. 10)
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which gives us Lα(ΛβGβ) =Lα(Gβ)Λβ =Cα. Defining Mαβ =Lα(Gβ), we get:

Λα = M−1
αβCβ, (S. 11)

u(θ,ζ) = M−1
αβGβ(θ,ζ)Cβ, (S. 12)

E = κ

2
M−1
αβCαCβ. (S. 13)

In the case of self-interactions, we calculate the derivatives of the Green’s function in
Fourier space,

Gklr s (0,0) = 1

2π2

Λθ∑
n 6=±1

∫ Λζ

0

∂4

∂k∂l∂r∂s

(
e i (qζ+nθ)

(q2 +n2)2 −2n2 +1

)
|ζ=0,θ=0 dq, (S. 14)

where the indices k, l , r and s are either θ or ζ, and the cutoff wavevectors are related to
the membrane thickness a throughΛζ = 1/a andΛθ = 2πR/a, as given in the main text.

S. 6.2. Green’s and energy functions
To evaluate the interaction between rings whose deformations depend only on the lon-
gitudinal coordinate (ζ), we obtained simplified relations for one dimension. By letting
the position vector of the membrane depend only on the longitudinal coordinate, we
obtain the Green’s function and the excess energy of the membrane between two rings:

G(ζ)=
e−|ζ|/

p
2

p
2

[
sin

( |ζ|p
2

)
+cos

(
ζp
2

)]
, (S. 15)

E(Λζ,L) =
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−2e−
p

2L
(
sin

(p
2L

)+1
) ,

(S. 16)

where Λζ is the cutoff wave vector in the longitudinal direction. All the lengths are
non-dimensionalized by expressing them in terms of the unperturbed tube radius R; by
plugging back R into the equations we find that the equilibrium distance between the
rings increases with R (Fig. S. 5).

For the interactions between two infinite rods, the Green’s function becomes:

G(Θ) = 1

32π

[
cos(Θ)

(
4Li2

(
e−iΘ

)
+4Li2

(
e iΘ

)
−11

)
+12(Θ−π)sin(Θ)

]
, (S. 17)

where Lin(z) = ∑∞
m=1

zm

mn (with z ∈C) is the polylogarithm function. Like the interaction
between two rings, the inclusions’ attraction and repulsion strength depends on the ra-
dius of the tube (Fig. S. 6).
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Figure S. 5: The competition between bending modulus and surface tension of the tube determines both the
radius of the tube (R =p

κ/2σ) and the equilibrium distance between two rings.

Evaluating the summation series in Eq. S. 8, we obtain the Green’s function for point
like inclusions:
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(S. 18)

S. 6.3. Effect of Casimir forces
Membrane mediated interactions between inclusions like proteins embedded in a bio-
logical membrane originate from both the average deformation of the membrane and
the constraints imposed on the fluctuations of the membrane. One can investigate the
thermal fluctuation effects by constructing the canonical partition function of the fluc-
tuation field (which in our work is parametrized by u(θ,ζ)) and applying the boundary
conditions that are imposed by the inclusions. Following early work done by Ref. 43 of
the main text, we would get exactly the same relation for the thermal energy:

∆E C = kB T

2
lndet(M), (S. 19)

where M is the matrix composed of derivatives of the Green’s function that we derived
for a membrane tube. Considering thermal Casimir effects, the total energy of the mem-
brane becomes ∆E = ∆E bend +∆E C, where ∆E bend is the bending energy of the mem-
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Figure S. 6: In the limit of large radii, the interaction between two rods becomes mostly repulsive, approaching
the planar membrane case of pure repulsion.

brane, which is our primary interest in this work. As one can see, ∆E C depends only
on the distance between the inclusions, which is hidden in the matrix M , and not the
amount of curvature that is imposed. As illustrated in Fig. S. 7, the thermal effect is about
an order of magnitude weaker than the mean-field contribution in the total energy of the
membrane.

S. 6.4. Monte Carlo simulations
During MC simulations, we simultaneously equilibrate two copies of our system in two
different inverse temperatures (β = κ/kBT ). For each copy of the system we use the
Metropolis algorithm [41]: we accept any change in the configuration of our system with
the probability P [Ωn →Ωn+1] = min[1,exp(−β∆E)]. Global movements of inclusions are
also allowed during simulations. The maximum step size of inclusions is adjusted such
that acceptance rate of proposed moves is 50 %. In the end, in addition to (locally) mini-
mizing the energy of the system in two different temperatures (β1 and β2) separately, we
also (globally) exchange the whole configurations corresponding to the temperatures
based on the Metropolis algorithm: PExch. = min[1,exp

(−(β2 −β1)(E2 −E1)
)
]. More de-

tails about the method can be found in Refs. 41 and 42 of the main text.
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[23] A. Šarić and A. Cacciuto, particle self-assembly on soft elastic shells, Soft Matter 7,
1874 (2011).

[24] D. Zhang, A. Chai, X. Wen, L. He, L. Zhang, and H. Liang, Ordered regular pentagons
for semiflexible polymers on soft elastic shells, Soft Matter 8, 2152 (2012).
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3
Curvature sensing inclusions

Eukaryotic cells are densely packed with macromolecular complexes and intertwining or-
ganelles, which are continually transported and reshaped. Intriguingly, organelles avoid
clashing and entangling with each other in such limited space. Mitochondria, for ex-
ample, form extensive networks that are constantly remodeled by fission and fusion. In
this chapter we study how such fission and fusion events can be triggered, facilitated and
even driven by mechanical forces generated by the shape of proteins. Collective mem-
brane induced interactions particulaly occur in highly curved and closed organelle mem-
branes. Using Monte Carlo simulations, we investigate the effect of protein shape on their
interactions in a tubular membrane. We particularly reveal that spherical proteins col-
lectively self-assemble into ringlike structures. We further demostrate that depending on
the curvature of crescent-shaped proteins, they form different patterns. Finally, we use
our simulations to explain some recently obtained experimental results showing that the
mitochondrial fission machinery utilizes a similar mechanism to discern mechanically
stressed (highly curved) regions of tubular membranes. Consequently, they are recruited
by such regions and in sufficiently high densities proteins drive subsequent division in or-
der to prevent entanglement with tubes of the ER network.

A version of this chapter has been published as: S. C. J. Helle et al., Mechanical force induces mitochondrial
fission, eLife 6 (2017)
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3.1. Introduction

C onstant shape transformations are a hallmark of cellular and subcellular lipid mem-
branes. Despite the constant fission and fusion of membranes, a cell can maintain

its integrity and compartmentalization to a fascinately high degree. The extrinsic shape
of membranous organelles are controlled by various mechanisms, most of which are
comprehensively discussed in chapter 1. Dynamic feature of membranes leads to span-
ning the whole volume of the cell and of the organelles inside the cell with intercon-
nected and intertwining membranous structures. Flattened sacs of membranes con-
nected with tubular networks and enclosed vesicles in organelles like the Golgi appara-
tus, the endoplasmic reticulum (ER) and mitochondria are the prime examples (see [1, 2]
and the references therein). In all of these organelles, such diversity in shape and size can
exist without entanglement or encroachment of the confined structures. In the partic-
ular case of mitochondria, a complicated network of tubular membranes are enclosed
in a limited volume. The occurence of drastic entanglements could lead to the release
of cytochrome c from mitochondria into the cytosol which is a key step in the induc-
tion of apoptosis [3] – the process of cell self-destruction. Recent studies have identified
some specific proteins called mitochondrial fission factors (MFF) that are responsible
for recruiting the necessary machineries like Drp1 proteins involved in mitochondrial
constrictions [4]. It has also been uncovered that in the ER, specific types of membrane-
shaping proteins contribute in the generation of highly curved tubules [5].

Having unraveled the protein-dependent shape of membranes, it is intriguing to in-
vestigate how proteins can collectively discern and respond to membrane curvature. An
enormous amount of experimental[6–10] and numerical[11–17] research has therefore
been dedicated to understand how proteins induce curvature and subsequently how
they interact via the deformation they impose on the shape of membrane. Proteins
not only can induce the curvature, but also sense the geometrical shape of membranes.
These two features are closely connected to each other, acting as two sides of the same
coin. In high concentrations, curvature sensing inclusions can aggregate into a cluster
and as a whole stabilize the shape and even deform the membrane (see chapter 1). In
contrast to previous studies, in most of which membranes usually follows the preferen-
tial shape of proteins, we investigate how curved proteins on the surface of a tubular
membrane can dictate the curvature.

Through a numerical approach, using a triangulated network, we explain how these
two seemingly paradoxical features are connected to each other. We first explain the
model in detail as it will be used in the later chapters as well. We then show that the
curvature of membranes results in completely different emergent patterns of proteins:
Spherical colloids self-assemble into ringlike structures and crescent-shaped proteins
form either lines or clusters of many inclusions. We further demonstrate that mechan-
ically stressed regions of a membrane tube drive proteins to accumulate there. In the
end, we use our results to explain some recently obtained experimental findings on the
constriction of mitochondria. The results show that mitochondrial fission factors (MFF)
in high concentration, attract each other and constrict the membrane. They also ex-
hibit an affinity for mechanically pre-constricted regions, consistent with the result of
our simulations.
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3.2. Model
It is not always possible to analytically solve the shape equation of a membrane for any
given arbitrary geometry. Hence, as a remedy, many models has been developed to nu-
merically analyze the curvature energy. Depending on the scale of the problem, one may
choose between the proposed models. For example, models like molecular dynamics
simulations have extensively been used to study the atomistic structure of BAR domains
[18]. Since it is computationally too costly to use full atomistic models to investigate
the phenomena like membrane mediated interactions occurring on larger length scales
1, various course-grained methods have been suggested. Such modelings can be done
either using numerical tools or in continuum regimes. Continuum models are already
explained in chapter 1 and applied to tubular membranes in chapter 2. In contrast to
fully atomistic models which are explicit, numerical coarse-grained methods treat the
membrane implicitly. They describe the membrane as a thin layer composed of many
segments, where each unit represents a collection of atoms in the actual membrane [19].
One of the popular coarse grained models is the dynamically triangulated network (see
Ref. [16] and references therein) which we use as our approach throughout this thesis.

As shown in Fig. 3.1A and B, we assume our hollow membrane tube is composed
of many vertices (shown in the figure and henceforth referred to as beads) which are
connected by proper bonds to form a triangulated mesh. The model assumes that the
lipid bilayer consists of many patches (of size ∼ 10 nm), with each patch representing a
collection of molecules. We use the classical Canham-Helfrich model (in the form of a
dihedral angle potential) to define the curvature energy of the membrane:

∆ECH = κ ∑
<i j>

1−ni ·n j , (3.1)

where ni and n j are the normal vectors of each pair of triangles (as shown in Fig. 3.1B)
and κ is the bending modulus. The summation runs over all pairs of neighboring trian-
gles i and j . To simulate the fluidity of the membrane, we allow the common edge be-
tween any pair of neighboring triangles to flip, provided that it is energetically beneficial
for the system (Fig. 3.1D). We have ignored the spontaneous and Gaussian curvatures in
this approach. Including the latter, based on Gauss-Bonnet theorem, would not change
the final results as our topology is conserved during the simulation. The change in the
membrane area due to the movement of beads is not for free and associated with an
energy penalty as:

∆Es = γdA. (3.2)

We impose no conditions on the total area and volume of the tube. To enable the pro-
teins to adhere to the membrane, we introduce a ligand-receptor like attraction potential
between the colloids and membrane beads, given by:

∆EAd =


−ε

(
Dmin

r

)6
, θ < θwr

0, otherwise

(3.3)

1For the lengths that are several order of magnitude greater than the thickness of the membrane which is about
5 nm.
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Figure 3.1: We model the membrane tube as composed of many vertices (red beads in (A)) which form a tri-
angulated network (B). Fluidity of membrane is simulated by changing the connection in any two neghboring
pairs of triangles (D). In order to study the membrane mediated interactions, we introduce an adhesion force
between the colloids (colored in green in (A)) and beads to deform the tube (C). The surface area of every col-
loid is paratitioned into two passive and active (controlled by angle θwr) parts. We found the membrane beads
that are exposed to the active part via introducing an angle between the director vector of the active patch (nc)
and the vector connecting the center of the colloid to any arbitrary neighboring bead i (ni−c).

where ε is the adhesive strength, and Dmin and r are, respectively, the minimum allowed
distance and the center to center distance between colloids and membrane beads. Using
the Kern and Frenkel patchy model [20], we introduce a wrapping angle θwr as shown in
Fig. 3.1C, so proteins attract the membrane only by the active part of their structure.

Having defined all the terms contributing to the total energy of the tube (∆E =∆EAd+
∆Es +∆ECH), we use Monte Carlo simulations to minimize the total energy of the mem-
brane and find the most energetically favorable configuration. We use the common
Metropolis algorithm for this purpose [21]. This algorithm perturbs the system by ran-
dom moves and then checks for the energy change to examine whether it is beneficial
for the system or not. It correspondingly accepts the move with a certain probability
(see supplemental material in chapter 2). The configuration of the system is distorted by
various moves: First, we randomly move the proteins and membrane beads. Second, we
slightly rotate the colloids’ normal vector ( nc in Fig. 3.1C ).

We also want to examine the interaction between crescent-like proteins, for which
we first need to model such shapes. In order to do so, we construct the proteins with a
linear chain of five spheres positioned on a circular arc with a radius of Rpr (Fig. 3.2A).
Having introduced such proteins into the system, in addition to the previous MC moves,
we also include rotating the two wings of a protein around its central colloid (keeping
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Figure 3.2: Monte Carlo simulation of protein-membrane interactions for different conditions. (A) Proteins
were modelled as a linear chain built out of five spheres positioned on a circular arc. Each sphere has a diam-
eter of 4 σ. (B) Spherical proteins form ring-like structures. (C) Highly curved proteins attracted each other,
but only in the longitudinal, and not angular, direction. (D) Slightly curved proteins do not self-assemble at
all. In contrast to D and C there is an optimum curvature of proteins for which they attract each other in both
angular and longitudinal directions. This requires high density of proteins. (E and F) Proteins with optimum
curvature do not exhibit significant collective interaction in low densities. (G and H) In contrast, when the
tube is pre-constricted, they sense the region that is under stress and accumulate there. (I) In sufficiently high
number, proteins attract each other and constrict the tube (without having pre-constriction).

the angle between them fixed), rotating the whole protein around a random axis, and
changing the angle between the wings of any randomly chosen protein.

All the lengths are measured in the units of the diameter of membrane beads (σ).
Correspondingly, we choose the following biologically relevant values for the parame-
ters in our model during the simulations: Dcol = 4σ, κ= 20 kT, ε= 3.8 kT, γ= 1 kT/σ2.
For the coarse-grained length scale of σ= 20 nm (large enough to neglect any kinds of
intermolecular interactions), we have proteins of diameter 80 nm and a surface tension
of γ= 0.01 pN/nm.

3.3. Results
First we simulate a system with a tube of diameter Dt = 13σ and length Lt = 55σ, contain-
ing Npr = 30 spherical proteins and Nb = 2000 beads. MC simulations were performed
in the npT ensemble with periodic boundary conditions, with p = 0, to generate the
most energetically favorable configuration. We choose the initial configuration of pro-
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Figure 3.3: Membrane fission machinery recruitment by mechanical cues in mitochondria. (A) Immunofluo-
rescence of KERMIT cells transduced with shDRP1, using an anti-MFF antibody (green). Mitochondrial matrix
(mtBFP) is shown in red. Insets on the right correspond to the framed areas on the left. Arrowheads point at
naturally occuring constrictions on the mitochondria. Plots are linescans of the mitochondria (red) and MFF
(green) signals around the constriction. X-axis is in µm. Y-axis is normalized fluorescence in arbitrary units.
(B) MFF is recruited to sites of encounter with S. flexneri (white arrowheads). Right panels also show two exam-
ples of MFF enrichment at sites of mitochondria thinning (curly brackets), as indicated by reduction of matrix
mtBFP signal, independent of Shigella encounter. (C) Line scan of mtBFP and MFF signal of the white dotted
line in (B). Arrowhead and curly bracket correspond to same zones in (B). Normalized background-subtracted
pixel values are plotted as arbitrary units. (D) MFF spontaneously stabilizes thin mitochondrial section (curly
brackets) that are devoid of matrix staining but retain continuous OMM signal. (F) Line scan of mtBFP, GFP-
MFF and OMM signal of the curly bracket in (D).
Scale bars, A: 5 µm, B,D: 2 µm. Reprinted from [8].
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teins randomly (Fig. 3.1A). As depicted in Fig. 3.2B, spherical proteins attract each other
only in the transversal, and not in the longitudinal direction. When there are many of
them, they form ring like structures. This result is consistent with the analytical calcu-
lations we did in chapter 2. One might expect helical like structures for the final shape
of self-assembled colloids, but we found that these do not occur on fluid membranes.
Having done similar simulations on elastic tubes, Pàmies and Cacciuto [17] showed that
spherical nanoparticles adhering to the outer surface of an elastic nanotube form diverse
aggregates including helical, linelike and ringlike structures. They also showed that in
the regime where the membranes are stretch-free (like fluid membranes), particles form
rings.

Next, we examine the interaction between banana-shaped proteins (Fig. 3.2A). The
center-to-center distance between the spheres within a protein was adjusted to 2/3 of
the diameter of the individual spheres. The two “wings” of the protein (constituted by
the two spheres on each side of the central one) were rigid and allowed to rotate around
the middle sphere. We also incorporated flexibility between the two wings by impos-
ing an angular potential between them as: Eflex = 1

2 kflex(θ−θeq)2, where kflex and θeq are
the strength of the potential and the equilibrium angle between the two wings, respec-
tively. We set these parameters as kflex = 20kT and θeq = 2π/3. As one can imagine, we
can get different patterns depending on how curved the proteins are. Our proteins have
two features: First they can discern the curvature of the tube via their inner surface area.
Second, they imposed their shape on the tube. The equilibrium shape of the tube there-
fore depends on which of these two effects dominates. For low protein curvature the
proteins act as rigid rods and show no significant patterns, as they repel each other in all
directions (Fig. 3.2D). In contrast, when proteins are highly curved, they favor accumu-
lating in longitudinal direction (Fig. 3.2C). The reason that the resultant lines of proteins
do not merge originates from the sharp tails of the deformation following the shape of
proteins in the transversal direction.

After finding the optimal ratio of the protein and tube diameters that lead to protein
assembly, we perform another simulation, where we use an arbitrarily low protein den-
sity (Fig. 3.2E). Under such conditions, the proteins diffuse freely on the membrane tube
and remain homogenously distributed (Fig. 3.2F). We then run the simulation again,
but this time, we pre-impose a constriction in the membrane tube, to mimic mechanical
stimulation, and observe that the proteins accumulate at the pre-constricted site (Figs.
3.2 G and H). Next, we simulate a system with a high density of protein. Interestingly,
under these conditions the proteins spontaneously constrict the membrane tube even
without a pre-imposed constriction (Fig. 3.2I). The results of our generic model suggest
that in high protein densities, curvature sensing proteins can act as curvature inducing
objects. Proteins can respond to mechanical forces on the membrane through the in-
duced deformations. They sense the shape, accumulate at the region of deformation
and stabilize the pre-curved regions, leading to membrane fission. In a high density,
proteins can also constrict membrane tubes.

The results of our simulations strongly resemble the MFF-stabilized, matrix-free thin
mitochondria sections observed in recently published experiments by Helle et al. [8].
They have investigated the molecular mechanisms in mitochondria underlying not only
their response to biochemical, but also to mechanical cues. Such forces drive the recruit-
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ment and activation of the fission effector DRP1, and raised the question of how such
mechanical stimulus was sensed at the molecular level. DRP1 is a cytosolic protein, and
is recruited to mitochondria by integral mitochondrial membrane adaptor molecules
such as MFF. Helle et al. have done the experiments in two ways: First, they have in-
vestigated to see how mitochondria cope with being hit by an intracellular fast-moving
object, namely, Shigella flexneri. Upon entry into the cytoplasm of infected cells, a sub-
population of the bacteria hijacks the actin cytoskeleton and stimulates its polymeriza-
tion on the bacterial surface, forming so-called actin comet tails [22] allowing them to
propel rapidly through the cytoplasm reaching speeds of up to 0.5µm/s. Second, they
have over-expressed MFF to see if it can constrict mitochondria.

As depicted in Fig. 3.3A (arrowheads in right panels), MFF has a tendency to accumu-
late at constrictions that happen sporadically on a non-perturbed mitochondrial tubule.
Also, upon Shigella-triggered mechanical stimulations, MFF exhibits an affinity towards
those spots (Figs. 3.3B and C). Finally, in sufficiently high density of MFF, they accumu-
late and constrict mitochondria even without any externally mechanical triggers(Figs.
3.3D and E).

3.4. In a nutshell
Because it seemed contradicting that some proteins behave as both a sensor and inducer
of membrane curvature, we wondered whether these two properties may be coupled.
To test this hypothesis, we turned to computer-assisted Monte Carlo (MC) simulations
and modelled a generic protein with an affinity for constricted tubes like those in mi-
tochondria. We showed that proteins in a high density and with an optimum curvature
self-assemble, in consistence with aggregation of mitochodrial fission factor proteins in
recently reported experiments. Similar collective curvature mediated interactions can
also occur in other sub-cellular organelles.
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4
Towards stability conditions of
membranous tubules covered

with intercalated molecules

Cellular membranes define the physical boundaries of a cell and intracellular organelles,
in addition to serving as a platform for the function of many inclusions like proteins. The
recruitment and spatial organization of macromolecules on the surface of membranes is
crucial for driving dynamic cellular phenomena such as cell division or endo-/exo-cytosis.
In this chapter, we study how the presence of intercalated molecules in a tubular lipid bi-
layer influences their characteristic properties, including bending modulus and effective
surface tension. We further show that the lipid bilayer in turn induces an inhomogeneous
distribution of the embedded molecules. In particular, a uniform density of proteins on
a tubular membrane exhibits unstable behavior and segregates into different domains.
Understanding such an interplay between the membrane shape and the organization of
embedded proteins is of fundamental interest and necessary for the ongoing attempts to
artificially mimic membrane associated processes – as a crucial step in the creation of syn-
thetic cells.

This chapter is based on: A. Vahid and T. Idema, Pattern formation of intercalated molecules in tubular mem-
branes (in preparation)
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4. Towards stability conditions of membranous tubules covered with intercalated

molecules

4.1. Introduction

C ellular membranes such as the plasma membrane are soft thin layers that encapsu-
late the internal content of a cell and intracellular organelles, separating their inside

from the outside environment. Such biological membranes posses a range of character-
istic shapes. Lipid membranes also host a diverse collection of inclusions, from integral
and peripheral proteins to small impurities like cholesterol molecules. The spatial orga-
nization of membranes plays a substantial role in the interactions between embedded
proteins, underlying diverse dynamic cellular phenomena like intracellular transport,
cell division, and signal transduction [1]. The stability of membranous structures in turn
depends on the shape and density of the molecules they contain [2, 3]. Such a coupling
mechanism between membrane and proteins stems from the physical properties that
biological membranes are endowed with. A membrane behaves like an elastic material
when it undergoes any out-of-plane deformations. The deformations can be imposed
by inclusions that are either embedded in or adhered to the membrane. The in-plane
fluidity of the membrane, on the other hand, allows for the diffusion of the concomitant
inclusions. Changing the membrane composition also affects this diffusion process. For
example, it has recently been shown that protein crowding induces membrane defor-
mations such as buds and tubules [4, 5] (see also chapter 3). Recruitment of dynamin
proteins during the scission of endocytic/exocytic buds from the plasma membrane of
a cell is another example of the extraordinary coordination between the membrane and
proteins [1, 6].

Studying the physical principals governing the shape and dynamics of cellular mem-
branes during the above-mentioned processes has been the subject of many theoretical
[7–11] and experimental works [12, 13] (see also [1] and the references therein). On the
theory side, it’s been well understood that individual inclusions that are much larger
than the size of lipids, communicate through non-pairwise interactions [11, 14, 15]. As
a result, the membrane adopts a conformation that corresponds to the least deforma-
tion energy cost. We have used such a framework in previous chapters. We have partic-
ularly revealed various patterns that are spontaneously formed depending on interac-
tion between the imposed curvature and the shape of the membrane. We can however
have a different regime where the size (and number) of the proteins are comparable to
that of the lipids. The compositional inhomogeneity of the lipid bilayer also belongs to
such a scenario which is common both in a biological context and in artificial systems.
Therefore, it is of great interest to understand how the cooperation between membrane
shapes and the distribution of proteins is orchestrated. Here, we model a continuous
density of proteins (or other types of inclusions) that can laterally diffuse on the plane
of a membrane tube. We assume that the proteins act as a source of non-zero spon-
taneous curvature on the tube (and are, resultantly, coupled to the shape), otherwise a
random distribution of the proteins would naturally ensue. Consequently, the proteins
undergo segregation, both of which are strongly controlled by the elastic behavior of the
membrane and the size of induced curvature.

We first describe the modified version of the Canham-Helfrich energy functional ex-
plained in chapter 1, coupled to the density of proteins. The modifications account for
the curvature inducing feature of the proteins. We then obtain the new stability condi-
tions for a tube in the presence of such molecules. Next, we derive two sets of evolution



4.2. Results and discussion

4

47

equations for the distribution of proteins and the membrane shape. We apply linear sta-
bility analysis to the dynamic equations to characterize the unstable regime as a function
of the relevant phenomenological parameters. Finally, we present some preliminary re-
sults that illustrate the spontaneous pattern formation of the proteins.

4.2. Results and discussion
We model the proteins as a continuous density that varies from one point to the other
on the surface of the tube, in addition to its dependence on time. We assume that they
induce weak deformations on the shape of the membrane. Using the phenomenologi-
cal Landau-Ginsburg energy functional, we describe the density of molecules 1 on the
membrane as:

Eφ =
∫ [

−α
2
φ2 + β

4
φ4 + γ

2

∣∣∇φ∣∣2
]

dS, (4.1)

where φ is the density difference, dS is the surface element, and α, β and γ are phe-
nomenological coefficients determining the properties of molecules. The competition

between β and α controls the equilibrium density difference in the system,
∣∣φeq

∣∣=√
α
β ,

and the interface thickness between the final phase is in the order of δ∗ =
√

γ
α [16]. We

define the curvature energy of the membrane using the common Canham-Helfrich en-
ergy functional as:

Eel =
∫ [κ

2
(2H −φH0)2 +σ

]
dS, (4.2)

where H , H0 and σ are the mean curvature, the spontaneous curvature imposed by
molecules and the surface tension of the membrane tube, respectively. The spontaneous
curvature is defined as the amount of curvature (h0) imposed by a patch of membrane
of area s: H0 = h0 × s [3]. For a uniform density of molecules (φ0) with a similar induced
spontaneous curvature on the tube, the total energy density (Etot) reads:

Etot = 2πRL

[
−α

2
φ2

0 +
β

4
φ4

0 +
κ

2
(

1

R
−φ0H0)2 +σ

]
− f L (4.3)

with f the applied force required to pull a tube with length L and radius R from a “giant”
unilamellar vesicle (GUV). Such tubes can be extracted experimentally from GUVs by
various techniques like optical tweezers [12]. Having minimized Eq. 4.3 with respect
to R and L, we obtain the following important relations for the equilibrium radius of a
stable tube and corresponding required force:

R =
√

2κ

φ2
0

(−2α+βφ2
0 +2H 2

0κ
)+4σ

f =−2πκφ0H0 +π
√

2κφ2
0

(−2α+βφ2
0 +2H 2

0κ
)+8κσ

(4.4)

1We use the words proteins and molecules interchangeably throughout the whole chapter!
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molecules

Setting the density of molecules to φ0 = 0 yields the same relations as in Ref. [12]. These
predictions may experimentally be examined by pulling a tube out of a GUV composed
of lipids of different types. In the presence of weak deformations, we use the Monge
parametrization to describe the deformed surface of the tube as a function of the or-
thonormal coordinates (θ, z) in the plane:~r(θ, z) = [(R+u(θ, z))cos(θ), (R+u(θ, z))sin(θ), z],
where 0 ≤ θ ≤ 2π, 0 ≤ z ≤ L and u(θ, z) is the deformation field. From differential geom-
etry, up to second order, we obtain:

dS = R +u + u2
θ

2R
+ Ru2

z

2
,

H =− 1

2R
+ u

2R2 − u2

2R3 − u2
θ

4R3 + uθθ
2R2 − uuθθ

R3 + 3u2
z

4R
+ uzz

2
,

(4.5)

where the subscripts “θ” or “z” in these expressions denote partial differential with re-
spect to them. Substituting Eq. 4.5 into Eqs. 4.2 and 4.1, the total energy of the mem-
brane (E = Eel +Eφ) reads:

E

κ/R2 =
∫ (

1

2
+ R2σ

κ
+

[
Rσ

κ
− 1

2R

]
u + u2

2R2 +
[

R2σ

2κ
− 5

4

]
|∇u|2 + 2uuθθ

R2

+ 2uθ2

R2 + R2

2

[∇2u
]2 −

[
R + H0φR2

2

]
∇2u − (α+κH 2

0 )R2

2κ
φ2 + H0Rφ

2

+ βR2

4κ
φ4 + γR2

2κ
|∇φ|2

)
d(Rθ)d z.

(4.6)

To function correctly, cells have to reshape constantly forming an out-of-equilibrium
system. Therefore, it is important to understand how the density function and defor-
mation field of the membrane tube evolve in time. For the dynamical analysis of the
membrane there exist various approaches [17]. For example, one can couple these equa-
tions to the Navier-Stocks hydrodynamic equations standing for the fluid underneath
the membrane, as S. Leibler has proposed in Ref. [18]. Here we use the following kinetic
equations:

∂u

∂t
=−Lu

δE

δu
,

∂φ

∂t
= Lφ∇2 δE

δφ
.

(4.7)

In these equations Lu and Lφ are the transport coefficients related to the mobility of the
membrane. We set both of these parameters to 1, meaning that we measure time and
length in units of τh and

√
Lφτh , with τh the typical relaxation time in the system [19].

Inserting the energy functional (Eq. 6) into Eq. 4.7, the time evolution for our quantities
of interest φ(θ, z) and u(θ, z) is given by:

∂u(θ, z)

∂t
=−κ∇4u(θ, z)−

( κ

2R2 −σ
)
∇2u(θ, z)+κH0∇2φ(θ, z)

− 2κ

R4 uθθ(θ, z)− κu(θ, z)

R4 + κ

2R3 − σ

R
,

(4.8)



4.2. Results and discussion

4

49

0 2 4 6 8

0

2

4

6

8

10

12

14

q

m

0 1 2 3 4 5

0

5

10

15

20

q

m

in
cr

ea
si
ng

 H
0

b)a)

0 1 2 3 4

0

5

10

15

20

25

30

q

m

c)
in
cr
ea

si
ng

 

in
cr

ea
si
n
g

R

Figure 4.1: Contour plots of the largest eigenvalue ω+ of the evolution matrix of our system, as a function
of angular and longitudinal modes. For the modes below the plotted contour lines, ω+ is positive and the
membrane tube becomes unstable. a) Increasing the spontaneous curvature makes the tube more unstable.
The black solid, blue dashed and red dashed-dotted lines correspond to H0 = 0.2, H0 = 0.4 and H0 = 1.2,
respectively. b) Decreasing the surface tension increases (although very slightly) the unstable area. The black
solid, blue dashed and red dashed-dotted lines correspond to σ= 20, σ= 10 and σ= 10/8, respectively. c) The
larger the radius of the tube is, the more unstable the tube becomes in the angular direction. The black solid,
blue dashed and red dashed-dotted lines correspond to R = 2, R = 4 and R = 8, respectively. In all the cases,
γ= 1 and α= 1.
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molecules

∂φ(θ, z)

∂t
=−γ∇4φ(θ, z)−κH0∇4u − (α+κH 2

0 )∇2φ(θ, z)+β∇2(φ(θ, z)3). (4.9)

Next, we evaluate the stability of both the membrane tube and the absorbed proteins.
We test the stability of Eqs. 4.8 and 4.9 by adding small perturbations to the uniform
stationary states of the density and deformation fields. In the limit of an infinite tube,
Fourier transform of these equations yields:(

u̇q,m

φ̇q,m

)
=

(
M11 M12

M21 M22

)(
uq,m

φq,m

)
, where

M11 =−κ
(

q2 + m2

R2

)2

+
( κ

2R2 −σ
)(

q2 + m2

R2

)
+ κ

R4 (2m2 −1),

M12 =−κH0

(
q2 + m2

R2

)
,

M21 =−κH0

(
q2 + m2

R2

)2

and

M22 =−γ
(

q2 + m2

R2

)2

+ (
α+κH 2

0

)(
q2 + m2

R2

)

(4.10)

where m = 0,±1, ...,±M and q = 0,±1, ...,±Q. The upper limits M and Q are related to
the smallest wave vector that exists in the membrane (which relates to the number and
size of lipids), and hence are in the order of membrane thickness [20]. We examine the
eigenvalues of Eq. 4.10 to extract the possible unstable regions. In this regime, any small
fluctuations in either the shape of the membrane tube or the density of molecules grow
in time. The eigenvalues read:

ω± = 1

2

(
Tr(M)±

√
Tr(M)2 −4Det(M)

)
, (4.11)

which can clearly cause instabilities only for the positive value (ω+). Fig. 4.1 depicts the
unstable region for the biologically relevant values of physical parameters in Eq. 4.10.
As shown, increasing the amount of spontaneous curvature and the radius of the tube
dramatically increases the instability region. Although choosing a surface tension of

σ=
√

κ
2R2 would stabilize a bare tube, introducing any types of inclusions in the system

causes the membrane to suffer from instability – as the new stability conditions obey
Eq. 4.4. Thus, a uniform density of molecules on the surface of a membrane tube is not
stable. The natural question that arises is: What are then the stable solutions? To answer
this question and elucidate the final equilibrium density and shape of the membrane, we
numerically solve their corresponding evolution equations (Eqs. 4.8 and 4.9). We start
the simulation from a small random perturbation around the u = 0 and φ= 0 state. For
short (but still large, compared to the radius) lengths of the tube, we get either line-like
or helical structures. A typical snapshot (for helical structures) of the equilibrium shape
of the system is shown in Fig. 7.2. The depicted result illustrates the fact that phase
separation and aggregation of similar proteins is a signature of having a membrane with
impurities. This is biologically relevant. For example, in cell division, endo-/exco-cytosis
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a) b)

Figure 4.2: The final deformation field (a) and the density of molecules (b) for a membrane started from a state
with small random perturbations around u = 0 and φ = 0. The relevant parameters are set to H0 = 0.2, R = 5,
L = 35, γ= 1 and α= 1.

and membrane fissions in intracellular organelles like in the ER, inclusions of the same
type show preference for the regions of the same shape (curvature), and as a cluster they
start bending the membrane.

Solving equations 4.8 and 4.9 numerically is not straightforward, because of the non-
linear terms. This is the reason why we have chosen a very large radius for the tube. Fu-
ture research is necessary in order to enhance the convergence rate 2, accuracy and sta-
bility of the numerical method, from which we can obtain more conclusive simulation
results on how the pattern formation of proteins depends on the physical parameters we
have in the model.

4.3. In a nutshell
Starting from a simple model of a tubular fluid membrane covered with intercalated
curvature-inducing proteins, we have shown how introducing a density of proteins al-
ters the stability conditions of the tube. We further revealed how the unstable regions
depend on the physical parameters like the amount of induced curvature, surface ten-
sion and radius of the tube. Finally, we have elucidated that segregation and integration
of proteins is a natural result of the interplay between the shape of membrane and the
density of proteins. Such a mechanism may underlie the biological dynamic processes
where the spontaneous spatial organization of proteins (or other types of embedded in-
clusions) is required.

2With the current semi-implicit method we have a time step of ∆t = 10−9 for the convergence rate.
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5
Membrane mediated interactions

between partially wrapped
colloids

The interplay of membrane proteins is vital for many biological processes, such as cellular
transport, cell division, and signal transduction between nerve cells. Theoretical consid-
erations have led to the idea that the membrane itself mediates protein self-organization
through minimization of membrane curvature energy. In this section, we present a com-
bined experimental and numerical study of the interaction between fully wrapped col-
loids. We use coarse-grained Monte-Carlo simulations to study such interactions. Our
results illustrate that colloids that are (almost) fully wrapped by the lipids of a spherical
membrane attract each other. Having many of such fully wrapped colloids on a spheri-
cal vesicle results in the formation of linear patterns. Our theoretical predictions are in
agreement with recently performed experiments, in which such interactions are directly
quantified for the first time. The numerical results of this chapter in combination with the
experimental evidence point to membrane curvature as a common physical origin for in-
teractions between any membrane-deforming objects, from nanometre-sized proteins to
micrometre-sized particles.

Parts of this chapter are based on:
C. M. van der Wel, A. Vahid et al., Lipid membrane-mediated attraction between curvature inducing objects,
Scientific reports 6, 32825 (2016)
A. Vahid et al., Collective interaction between Janus-like objects on fluid vesicles, in preparation
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5.1. Introduction

I nteractions between membrane proteins are of key importance for the survival of cells
as they are involved in many dynamical processes. The organization of membrane

proteins into complexes and their effect on membrane shape enables for instance intra-
cellular transport, cell division, cell migration, and signal transduction [1]. Understand-
ing the underlying principles of protein organization is therefore crucial to unravel pro-
cesses such as cell-cell signalling in the brain [2] or disease mechanisms like membrane-
associated protein aggregation in Parkinson’s disease [3].

As comprehensively discussed in Chapter 1 and Part I, besides specific protein–
protein interactions and interactions with the cytoskeleton, protein organization in mem-
branes is also driven by a universal interaction force arising from membrane deforma-
tions. Theoretical models [4–7] and simulations [8–11] predict that by deforming the
membrane locally, membrane proteins can self-assemble into complex structures such
as lines, rings, and ordered packings like the patterns we have reported in chapters 2-
5 on tubular membranes. Observations in living cells [3, 12] support the existence of
such membrane-mediated interactions, but have yet to provide conclusive experimental
proof of their common physical origin: separation of contributions arising from specific
protein-protein interactions and interactions with the cytoskeleton is extremely chal-
lenging.

Previous studies [13, 14] have investigated the interaction between membrane –
wrapped colloids. The interaction between colloids may depend on the wrapping frac-
tion of the colloids and various constraints. For example, depending on how we treat
the constraints associated with the surface area and volume of the vesicle, completely
different interactions can be reached. In the particular case of the wrapping fraction, for
example, while previous studies have reported a repulsion between partially wrapped
particles [13], recent experiments characterized for the first time the effect of a single ad-
hesive colloidal particle on the local membrane shape using confocal microscopy [15].
The experiments show that a colloidal particle adhered to a vesicle is either fully wrapped
by the membrane or not wrapped at all, depending on the adhesion strength. Therefore,
it is warranted to investigate the interaction between such fully wrapped objects as they
are experimentally relevant.

In this chapter we first briefly explain the model and an experimental setup corre-
sponding to the method we take. Using Monte Carlo simulations, we then reveal that two
particles, fully wrapped by the membrane, attract each other. Having multiple of such
partially wrapped particles on a vesicle results in either linear patterns or vesiculation
of the membrane. Since these simulations do not contain any absolute length scale, we
conclude that the measured attraction caused by lipid membrane deformations is scale-
independent. Therefore, we can compare our numerical results to experiments in which
our colleagues have measured the interaction between two fully wrapped particles on
Giant Unilamellar Vesicles (GUVs). They found that only fully wrapped particles show
a reversible attraction, which implies that the attraction is purely caused by the mem-
brane deformation. Our combined simulations and experimental results quantitatively
describe the interactions of any membrane deforming object, ranging from nanometre-
sized proteins to micrometre-sized colloidal particles.
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5.2. Model
We utilize the model that is explained in detail in Chapter 3. There are however some
differences. We therefore briefly explain the model again in this chapter.

We describe the vesicle by a network of vertices that are connected in a triangular
network with a minimum edge length σ. The curvature energy of our discretized mem-
brane is given by:

∆ECurv =
p

3κ
∑
<i j>

1−ni ·n j , (5.1)

where ni and n j are the normal vectors to any pair of adjacent triangles i and j , respec-
tively. The summation runs over all pairs of such triangles. To simulate the fluidity of
the membrane, we change the connectivity of the network: we cut and reattach con-
nections between the four vertices of any two neighbouring triangles. The surface area
A and volume V of the vesicle are maintained by constraints ∆E A = K A(A− At )2/At and
∆EV = KV (V −Vt )2/Vt with K A = 103kB T /σ2 and KV = 4×103kB T /Dpσ

2, where kB T , Dp ,
At and Vt are the thermal energy, the diameter of the particles, the target surface area
and the target volume of the vesicle, respectively. In each simulation we set the target
values of surface area and volume of the vesicle with diameter Dv = 50σ as At = 1.05A0

and Vt = V0, respectively. A0 and V0 are the initial surface area and volume of the vesi-
cle. These parameters cause the final volume and surface area to deviate less than 0.01%
from the target values. To let the vertices of the membrane wrap around the particles,
we introduce an attraction potential between them:

∆EAd =
{
−ε(lm/r )6 if θ ≤ θWr,

0 otherwise,
(5.2)

where ε is the particles’ adhesion energy and r is the centre to centre distance between
particles and vertices. θ is the angle between the vector normal to the active area of
the particles and the vectors that connect the particles to vertices (see Fig. 5.1a). The
maximum angle θWr is defined to control the area that is forced to be wrapped by the
membrane, preventing very sharp membrane bends (see Fig. 3.1C in Chapter 3 for more
details). lm = (σ+Dp )/2 is the shortest distance between particles and vertices, where
the diameter of the particles is set to Dp = 8σ. We set a cut-off radius for the attrac-
tion potential at 1.2σ to make sure that other than forming a layer of membrane on the
surface of the particles, it has no extra effects. The total energy ∆ET of the system is the
sum of the curvature energy (Eq. 5.1), the energy associated with geometrical constraints
(∆EA and ∆EV), and the adhesion energy (Eq. 5.2).

To analyse the equilibrium shape of the membrane, we implement the Monte Carlo
simulated annealing algorithm in order to minimize the total energy of the system. For
our Monte Carlo simulations, we use the Metropolis algorithm to move vertices and par-
ticles, and flip the edges of the membrane triangulation, in order to change the config-
uration of the system (shape of the membrane). The temperature of the system is also
slowly decreased so that we suppress the fluctuation of the membrane and identify the
minimum-energy configuration.
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Figure 5.1: Wrapping of particles by the membrane and the resulting total membrane energy in our numerical
model. (a) Wrapping happens through adhesion of membrane vertices to colloid particles, due to a strong
adhesion potential (Eq. 5.2). We can specify an inactive region at the top of the colloid, preventing the mem-
brane from making very sharp turns (with very high bending energies); in the given example, θW r = 11π/12.
(b) Curvature, adhesion, and total energy of the system, with zero set at the value of two wrapped particles lo-
cated at opposite poles of the vesicle. After the wrapping process, the adhesion energy (∆E Ad ) does not change
significantly and therefore the curvature energy (∆ECurv) determines the behaviour of the particles.

5.3. Results
We set the volume and surface area of the vesicle to the target values such that about
90% of the particles’ total area is wrapped by the membrane beads. Note that there is no
absolute length scale involved in these simulations.

We first examine the interaction between two fully-wrapped particles. We let the
membrane wrap around the active part of the colloids at different separations, equili-
brate the shape of the vesicle and record the value of the relevant terms in the total en-
ergy including the adhesion, curvature and total energies. As depicted in Fig. 5.1b, after
reaching the equilibrium shape, the adhesion energy remains constant. In contrast, the
curvature energy of the membrane decreases by decreasing the geodesic distance be-
tween the two colloids. This implies that the attraction of the colloids is purely due to
the shape distortion of the vesicle – because of not only the imposed curved membrane
between the colloids but also the closed nature of the vesicle. For larger distances the
energy of the vesicle is barely affected by a change of the separation between the parti-
cles. The minimum distance is set by the resolution of our coarse grained description of
the membrane: at 1.5Dp we can be sure to always have two layers of vertices between
the particles. Because of this limitation our simulations cannot capture the short-range
effects observed in the higher resolution simulations of Reynwar et al. [8, 16].

The attraction of particles is strong enough ( about ∼ 4 times stronger than thermal
fluctuations) to be measured using experimental tools. Our collaborators 1 in Leiden
university have measured such membrane induced interactions for the first time. They

1Dr. Casper van der Wel and Dr. Daniela Kraft



5.3. Results

5

61

c

em. 500-550 nm

em. 565-625 nm

d

e

f

g

h

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

s [µm]

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

[k
B
T

]

i

Dv = 16.8 µm, γ > 1 µN / m

Dv = 20.2 µm, > 1 µN / mγ

Dv = 40.0 µm, < 10 nN / mγ

1.0 1.5 2.0 2.5 3.0 3.5 4.0

s [µm]

j

> 1 µN / mγ

< 10 nN / mγ

Figure 5.2: Experimental data (a) Three-dimensional confocal image of a typical Giant Unilamellar Vesicle
(GUV, in magenta) with attached colloidal particles (in green). (b) Schematic of the avidin-biotin linkage be-
tween membrane and particle. By varying the avidin concentration on the particles we control the adhesion
strength. Polyethylene glycol (PEG) suppresses electrostatic interactions between membrane and particles,
as well as non-specific adhesion between particles. (c) Fluorescence signal of a non-wrapped particle (green)
and a membrane (magenta). The separate fluorescence signals of the membrane and particle are displayed in
(d,e), respectively. In (f–h) the wrapped state is displayed analogously. (i, j) Interaction energy ∆E as a func-
tion of geodesic particle separation distance s for (i) two non-wrapped particles and (j) two wrapped particles.
For non-wrapped particles (i) there is no significant interaction on both tense and floppy membranes. For
wrapped particles (j) the interaction potential shows a long-ranged attraction. The scale bars are 1µm.

have constructed a system very similar to our numerical set-up: Micrometre-sized col-
loidal particles (polystyrene, 0.98 ± 0.03 µm in diameter) adhered to single-component
Giant Unilamellar Vesicles (GUVs, diameters ranging from 5− 100 µm), which allowed
them to study membrane-mediated interactions with confocal microscopy (see Fig. 5.2a).
Such an adhering mechanism is very similar to the one we have implemented in the
simulations. The GUV membrane consists of DOPC lipids, which are above their melt-
ing point at room temperature, ensuring a single-phase liquid membrane. The connec-
tion between membrane and particle is realized by coating the particles with varying
amounts of avidin, a protein that binds strongly and specifically to biotin, which we at-
tach to the membrane through a functionalised lipid. By choosing different fluorescent
markers for the particles and lipid membranes, the effect of a single particle on a lipid
membrane is visualized (see Figs. 5.2c-h). Particles exist in either a completely wrapped
state or a completely non-wrapped state: partial wrapping is only observed as a tran-
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Figure 5.3: Altering the determining constraints relating to the wrapping angle (θwr ), total surface area and
enclosed volume leads to completely different collective behaviors. (a and b) There is no conditions on the
total surface area and volume of the vesicle, but we only penalize any changes in the surface area. Having fully
active particles drives the tubulation of the membrane (a) and partially active particles (θwr =π/2) collectively
induce membrane vesiculation. The adhesion strength and surface tension are set to ε = 2.8kB T and γ =
1kB T /σ2, respectively. (c) Imposing a constant-volume condition drives the formation of linear patterns on
the surface of the vesicle.

sient situation. Non-wrapped particles are located on the outside of the vesicle without
deforming the membrane (Figs. 5.2c-e), while wrapped particles are protruding into the
interior of the vesicle (Figs. 5.2f-h). As depicted in Figs. 5.2i-j, only for fully wrapped par-
ticles a significant interaction between colloids is detected. When the particles approach
within a distance of several particle diameters, there exists a reversible, long-ranged at-
traction between them. The interaction strength for floppy membranes is −3.3kB T and
the attraction extends over a range of 2.5µm, which is equivalent to 2.5 particle diame-
ters. These measurements are in agreement with the results of our simulations.

Next we investigate the many-body interaction between colloids, with a focus on
the effect of the determinant factors including the wrapping angle of colloids (θwr ), to-
tal surface area and enclosed volume of the vesicle. The initial size of the vesicle and
colloids are adjusted to Dv = 28σ and Dp = 4σ, respectively. We also set the adhesion
strength and surface tension of the membrane to ε = 2.8kB T and γ = 1kB T /σ2. Typical
results of these simulations are shown in Fig. 5.3. In the absence of a constant-volume
condition, particles either formed tubules or generated vesiculation of the membrane,
depending on the wrapping angle of the colloids. Fully wrapped particles form tubes
in order to minimize both the adhesion energy and curvature energy of the membrane
(Fig. 5.3a). Similar patterns have previously been reported both theoretically [17] and
experimentally [18]. Partially wrapped particles, on the other hand, induce vesiculation
of the membrane. Such pattern formation has also been observed in living system [19].
Having no constraint on the total volume and surface area of the vesicle corresponds to a
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situation in which our system is supported by a reservoir of lipids. As shown in Fig. 5.3c,
constant-volume constraints leads to linear patterns of the colloids. Such aggregation
of particles, as we will discuss in the next chapter, can be controlled via introducing a
curvature variation on the shape the vesicle.

5.4. In a nutshell
We have discussed the interaction between colloidal particles that are adhered to spher-
ical membranes. We revealed that two fully wrapped colloids on the surface of a vesicle
with constant surface area and enclosed volume attract each other, in order to minimize
the curvature energy of the membrane. Our numerical prediction of such an attraction
force agrees with recently performed experimental results on the interaction of particles
adhering to Giant Unilamellar Vesicles. The simulation results combined with the ex-
perimental evidence quantitatively describe the interactions of membrane-deforming
objects, ranging from nanometre-sized proteins to micrometre-sized colloidal particles,
as there is no length scale in the theoretical model. In this chapter we further provided
some results to clarify the effect of various parameters on the pattern formation of col-
loids and macromolecules adhered to a vesicle. These results indicate that the wrapping
angle of colloids, the total surface area of the vesicle and its enclosed volume have sig-
nificant influence on the emerging patterns of the colloids.



5

64 References

References
[1] H. T. McMahon and J. L. Gallop, Membrane curvature and mechanisms of dynamic

cell membrane remodelling, Nature 438, 590 (2005).

[2] D. Freche, U. Pannasch, N. Rouach, and D. Holcman, Synapse geometry and recep-
tor dynamics modulate synaptic strength, PloS one 6, e25122 (2011).

[3] C. M. Pfefferkorn, Z. Jiang, and J. C. Lee, Biophysics ofα-synuclein membrane inter-
actions, Biochimica et Biophysica Acta (BBA)-Biomembranes 1818, 162 (2012).

[4] M. Goulian, R. Bruinsma, and P. Pincus, Long-range forces in heterogeneous fluid
membranes, Europhys. Lett. 22, 145 (1993).

[5] K. Kim, J. Neu, and G. Oster, Curvature-mediated interactions between membrane
proteins, Biophys. J. 75, 2274 (1998).

[6] P. G. Dommersnes and J.-B. Fournier, N-body study of anisotropic membrane inclu-
sions: Membrane mediated interactions and ordered aggregation, Eur. Phys. J. E 12,
9 (1999).

[7] M. M. Müller, M. Deserno, and J. Guven, Interface-mediated interactions between
particles: a geometrical approach, Physical Review E 72, 061407 (2005).

[8] B. J. Reynwar, G. Illya, V. A. Harmandaris, M. M. Müller, K. Kremer, and M. Deserno,
Aggregation and vesiculation of membrane proteins by curvature-mediated interac-
tions, Nature 447, 461 (2007).

[9] J. C. Pàmies and A. Cacciuto, Reshaping elastic nanotubes via self-assembly of
surface-adhesive nanoparticles, Phys. Rev. Lett. 106, 045702 (2011).

[10] M. Simunovic, A. Srivastava, and G. A. Voth, Linear aggregation of proteins on the
membrane as a prelude to membrane remodeling, Proc. Natl. Acad. Sci. U.S.A. 110,
20396 (2013).
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6
Curvature variation controls
particle aggregation on fluid

vesicles

Cellular membranes exhibit a large variety of shapes, strongly coupled to their function.
Many biological processes involve dynamic reshaping of membranes, usually mediated
by proteins. This interaction works both ways: while proteins influence the membrane
shape, the membrane shape affects the interactions between the proteins. To study these
membrane-mediated interactions on closed and anisotropically curved membranes, we
use colloids adhered to ellipsoidal membrane vesicles as a model system. We find that two
particles on a closed system always attract each other, and tend to align with the direction
of largest curvature. Multiple particles form arcs, or, at large enough numbers, a complete
ring surrounding the vesicle in its equatorial plane. The resulting vesicle shape resem-
bles a snowman. Our results indicate that these physical interactions on membranes with
anisotropic shapes can be exploited by cells to drive macromolecules to preferred regions
of cellular or intracellular membranes, and utilized to initiate dynamic processes such as
cell division. The same principle could be used to find the midplane of an artificial vesicle,
as a first step towards dividing it into two equal parts.

Parts of this chapter have been published as: A. Vahid et al., Curvature variation controls particle aggregation
on fluid vesicles, Soft Matter 13, 4924-4930 (2017)
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6.1. Introduction

C ellular membranes are two-dimensional fluid interfaces that consist of a large vari-
ety of components. They form the boundary between the cell and the outside world,

and, for eukaryotic cells, separate the inside of the cell into numerous compartments
known as organelles. In order for biological processes like cell division, vesicular traf-
ficking and endo/exocytosis to occur, cellular membranes have to reshape constantly.
Consequently, membranes exhibit a variety of morphologies, from a simple spherical
liposome to bewildering complex structures like interconnected tubular networks as
found in Mitochondria and the Endoplasmic Reticulum (ER), or connected stacks of per-
forated membrane sheets in the Golgi apparatus[1–4]. There are different mechanisms
by which membranes achieve these structures, the most important of which is through
the interplay between membrane lipids and various proteins[5–7]. A biological mem-
brane is home to different types of proteins that are adhered to or embedded in it. These
proteins deform the membrane and, consequently, they can either repel or attract each
other [8–13]. Spatial organization of such proteins in biological membranes is essen-
tial for stabilizing the membrane and for the dynamic behaviour of cellular organelles
[14–17].

Recently, it has been experimentally [18–20] and theoretically [8, 9, 11, 21–26] re-
vealed that membrane-curving particles, like colloids or identical proteins, adhered to
a membrane self-assemble into striking patterns. For instance it has been shown that
colloids adhered to a spherical membrane form linear aggregations [18, 24]. In all of the
studies to date, the global shape of the membrane is selected from one of three options:
planar, spherical, or tubular. These global membrane shapes impose a homogeneous
background curvature, which is considered to be conserved throughout the process un-
der investigation. Outside factors changing the membrane have not yet been included
in the study of membrane-mediated interactions. Membranes in cellular compartments
such as in ER and the Golgi complex are however dynamic entities and possess pecu-
liar shapes forming regions with high local curvature and regions with less curvature [3].
Forming and stabilizing such shape inhomogeneities is necessary for cellular functions
like sensing and trafficking [27]. It is therefore warranted to investigate how the inter-
actions between membrane inclusions are affected by anisotropies in the membrane
curvature.

Recently, studies have been performed to understand the role of non-uniform cur-
vature in the interaction of single particles with a fluid membrane, both in the tension-
dominated [28] and bending-dominated [29, 30] regimes. In this study, through a nu-
merical experiment, we investigate many body interactions between colloids adhered to
a quasi-ellipsoidal membrane with a varying curvature. We also include all other fac-
tors from earlier studies such as surface tension, adhesion energy (required for colloids
to adhere to the membrane) and constant volume effects. We use a dynamic triangula-
tion network to model the membrane, and computationally minimize the total energy
of the membrane via a Monte Carlo algorithm. Firstly, we show that the interaction be-
tween two colloids adhered to spherical vesicles is significantly affected by the vesicle
curvature. Secondly, we demonstrate that linear aggregates of colloids exploit the cur-
vature anisotropy and adjust their orientation to minimize the total energy on a quasi-
ellipsoidal membrane. Using umbrella sampling, we further show that the total energy
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Figure 6.1: Curvature energy of the membrane for spherical vesicles of diameters Dv = 28σ (circles) and Dv =
39σ (pluses) containing two colloids. The force between colloids in the smaller vesicle is stronger and has a
larger interaction range.

of the membrane favors two colloids to attract each other at the mid-plane of a prolate
ellipsoid that is perpendicular to its major axis. Finally, we investigate how the various
terms in the total energy of the membrane affect the strength of the interactions. Our
results show that the variation in the membrane shape can play a crucial role in a variety
of cellular functions that require macromolecular assembly or membrane remodeling.

6.2. Model
The conformation of a fluid membrane can be described as the shape minimizing the
classical Helfrich energy functional (see chapter 1). Here, we use a computational scheme
that discretizes the membrane by a triangulated network, whose triangles represent course-
grained patches of the membrane [32, 33]. As explained in chapter 3, using a discretized
form of the Helfrich energy, we define the curvature energy as: ∆ECurv = κ∑

<i j> 1−ni ·n j ,
In order to guarantee the fluidity of the membrane, we cut and reattach the connec-
tion between the four vertices (which we label with and refer to as beads) of any two
neighboring triangles. The membrane in our system does not undergo any topological
changes and we can thus ignore the Gaussian curvature contribution in the bending en-
ergy. We impose the conservation of membrane surface area (A) and enclosed volume
(V ) by adding the terms ∆EA = KA(A − At )2/At and ∆EV = KV(V −Vt )2/Vt to the energy
during the minimization process, with At and Vt the target values of the membrane’s
area and enclosed volume. In the following these target values are set as: Vt = V0 and
At = 1.1A0, where A0 and V0 are, respectively, the initial surface area and volume of a
perfect spherical vesicle with diameter Dv . We provide an excess area of d A = 0.1A0 to
vesicles in order to enable the adhered particles to interact with each other. The cor-
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Figure 6.2: Colloids adhered to a quasi-ellipsoidal membrane behave differently in different directions. De-
creasing the ellipticity of the vesicle, which is defined as e = a/b, (a) strengthens the attractions between the
colloids along the major axis and (b) weakens the interaction between the colloids along the minor axis. Figure
(c) illustrates that the energy of a membrane containing a pair of colloids decreases when the angle between
the pair and the semi-major axis increases.

responding constants are chosen such that both the area and volume deviate less than
0.05% from their target values. To enable colloids to adhere to the membrane, we in-
troduce an adhesion potential, ∆EAd =−ε(lm/r )6, between colloids and the membrane,
where ε is the strength of the adhesion energy and, r and lm are, respectively, the center
to center distance and the minimum allowed separation between colloids and mem-
brane beads. Finally, we need to give the membrane an anisotropic shape for which we
deform our spherical membrane into a prolate ellipsoid. In order to do so, we introduce
two weak (compared to the strength of the adhesion energy) spring-like potentials be-
tween two small areas of the vesicle (the two poles of the ellipsoid) and the center of
the vesicle, ∆EEll = KEll(L − a)2; KEll, a and L are the potential strength, the major axis
of the ellipsoid and the length of any line connecting the beads situated at the poles of
the ellipsoid to the center, respectively. Since the adhesion energy is stronger than the
applied harmonic potential, colloids effectively do not feel any difference between the
energy cost for bending the membrane at these two areas and at the regions belonging
to the rest of the ellipsoid. We verified this claim by considering a spherical membrane,
and find that there is no significant difference between the case of including uEll with a
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being the radius of the vesicle, and the case we do not include such a potential.
Having defined all the contributions to the total energy of the membrane (∆ETotal =
∆ECurv +∆EA +∆EV +∆EAd +∆EEll), we perform Monte Carlo simulations to reach the
equilibrium shape of an ellipsoid containing an arbitrary number of colloids. To do so,
we implement the Metropolis algorithm, in which we have three types of moves: we can
modify the position of a random bead of the membrane, impose a rearrangement in the
connections of beads, or move the colloids around. The first two moves are energetically
evaluated based on the total energy, while any changes in the position of colloids are only
based on the adhesion energy. Our computer model is coarse-grained and cannot cap-
ture the fine corrugations of biological membranes that take place at small length-scales.
The relative size of such corrugations is very small in comparison to that of colloids in
this study [34]. Therefore their effects will be much smaller than the elastic interactions
caused by colloids [35].
During the simulations, we keep the number of particles constant and set all the rele-
vant parameters as: κ = 36kBT , ε = 8.5kBT , KA = 2×103kBT /σ2, KV = 250kBT /σ3 and
KEll = 0.1kBT /σ2, where kBT is the thermal energy and σ is the diameter of the beads
constructing the membrane. The values of κ and ε are chosen such that the colloids are
partially wrapped and form linear patterns [24]. For very low values of ε colloids would
not bind to the membrane and for very high values they aggregate into tubes. The diam-
eter of the colloids is set to σColl = 5σ.
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6.3. Results and discussion
First, we analyze the interaction between two colloids adhered to the surface of two vesi-
cles of different diameters. We keep the size of colloids and beads the same in both cases.
We use umbrella sampling [36] to calculate the excess energy of the membrane as a func-
tion of the distance between the colloids. In effect, we apply a harmonic potential u =
1
2 k(D−D0)2, as our biased potential, between the two colloids directed along the coordi-
nate of interest in order to restrain the system to sample around each distance D0. Hav-
ing performed the sampling process, we use the weighted histogram analysis method
(WHAM) for obtaining the optimal estimate of the unbiased probability distribution,
from which we can calculate the free energy of the system. The free energy is calculated
with respect to the initial position of the colloids ∆E = E(at the coordinate of interest)−
E(initial coordinate). As expected from earlier experimental and computational work
[37], colloids in both vesicles attract each other. In contrast to the case studied in Ref.
[37], here the attraction is not solely because of the bending energy and closed nature of
vesicles, but also due to maximizing the adhesion energy of the system. As illustrated in
Fig. 6.1, the depth of the excess energy of the membrane with a smaller radius is signifi-
cantly larger. In contrast, for the larger vesicle after a short distance colloids do not feel
each other and the energy becomes flat. As the only difference between two test cases is
the curvature, we conclude that this effect is due to vesicles being of different radii.

Next, we examine the interaction between two colloids on the surface of a quasi-
ellipsoidal membrane. Following the recipe given in Section 2, we form an ellipsoidal
membrane from spherical vesicles of size Dv = 28σ. We position the colloids symmet-
rically along the major axis of the ellipsoid (see Fig. 7.2d(i) ). We repeat the sampling
procedure for different aspect ratios, e = a/b, of the ellipsoid. Since the volume is con-
served during the shape evolution, one can easily calculate the semi-minor axis, b, as:
b =p

3V /4πa. As depicted in Fig. 7.2a, along the major axis colloids attract each other in
order to minimize both the adhesion and curvature energies. Decreasing the aspheric-
ity of the ellipsoid (e → 1.0+) in this direction enhances the amount of available excess
area, hence the strength of the attraction energy increases. Suppose that we have two
ellipsoids with major axes a1 > a2 with the same excess area (d A). The ellipsoid with the
larger major axis (a1) is more elongated and has smaller cross section, hence the amount
of initially given excess area (d A) available at the mid-plane between the colloids is less
than for the case we have the smaller axis a2. Therefore, the more elongated the vesicle
is (meaning that the more asphericity we have), the less available initially-given excess
area we have at the mid-plane.

Similarly, particles that are situated along the semi-minor axis (as depicted in Fig.
7.2d(ii)) attract each other. There is, however, an important difference between the two
directions. In contrast to the previous case, decreasing the asphericity of the ellipsoid
makes the attraction force between colloids weaker. Since the number of membrane
beads adhered to each colloid remains the same, this behavior cannot be explained by
the adhesion energy of the membrane. To illuminate the reason that colloids select the
direction along the minor axis to attract each other, we investigate the energy of a pair
of colloids along a different coordinate. As shown in Fig. 7.2d(iii), we rotate a pair of
colloids, that are constrained at the fixed distance of 3σ to their center, along the angle
spanning the space between the semi-major and -minor axes. As Fig. 7.2c depicts, the
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Figure 6.4: Colloids attract each other on ellipsoids, and in order to minimize the curvature energy, they form
an arc (a & b) and a ring (c & d) at the mid-plane of the ellipsoid.

most energetically favorable configuration is when the colloids are aligned with the di-
rection perpendicular to the major axis. This itself introduces a mechanism by which,
without involving any other factors, two colloids find the mid-plane perpendicular to
the symmetry axes of the ellipsoid, as it minimizes the total energy of the membrane. In
contrast, in the case of having a perfect spherical membrane, it is not possible to predict
the localization of colloidal aggregates as it will be randomly chosen. Increasing the ma-
jor axis of the membrane (making e larger), drives the colloid reorientation stronger. One
should be careful about the values for the bending moduli and adhesion coefficients dur-
ing the simulations, as it can cause an effect where colloids are arrested and prevented
from diffusing on the surface of the membrane [24]. In addition, a very high value of KEll,
in addition to influencing the adhesion energy between the colloids and the membrane,
would also pull two tubes out of the vesicle.
Although the above results quantitatively show different behavior in two directions, the
dominant contribution in the total energy of the membrane causing this effect is not
yet clarified. In order to approximately determine it, we proceed as follows: we pick a
vesicle with e = 1.351 and constrain the position of the colloids with a strong potential
at distance of 6σ from each other. Here, in contrast to earlier, we do not use the sam-
pling method. Instead we let the system explore possible configurations of the mem-
brane after reaching equilibrium, and then take the average of the energies for all those
configurations. As depicted in Fig. 7.3, both the adhesion energy and the curvature of
the membrane decrease when the angle between the line connecting two colloids and
the semi-major axis of the ellipsoid (Fig. 7.3d) approaches π/2. The bending energy, as
quantified in Fig. 7.3b, has a larger contribution to the total energy than the adhesion
energy (Fig. 7.3c).
Putting all the results together, we expect that when we have more than two colloids they
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will initially attract each other to form linear aggregates (to minimize the adhesion en-
ergy), and afterwards these aggregations change their orientation to align with the minor
axes of the ellipsoid. This is indeed what we observe in our simulations. Fig. 7.4 depicts
the equilibrium shape of the membrane for different numbers of colloids. In all the test
cases colloids tend to form a ring-like structure in the mid-plane of the ellipsoid. With
a sufficiently large number of colloids (Figs. 7.4c and 7.4d), they form a full ring in this
plane (see also the supplemental movie SM1). It is important to mention that these pat-
terns are quite stable during the whole simulation. In contrast, in spherical vesicles there
is no preferred direction for the aggregation of particles. Although colloids attract each
other on a spherical membrane (Fig. 6.1), there is no preference for the direction of the
attraction. This means that even in case of forming a perfect ring on a vesicle, parti-
cles self-assemble in an arbitrary direction on the membrane. It has also recently been
predicted that particles adhered to a prolate vesicle can feel the curvature gradient and
localize at the equatorial line of a vesicle[30].

As the final experiment, we look at the movement of particles on a vesicle containing
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Figure 6.5: Histogram of the geometric center of a colloid dimer on a vesicle (of size Dv = 40σ) with negatively
curved regions (inset). The dimer spends most of the time in the negatively curved part of the vesicle.

regions with negative mean curvature. To create these vesicles, we first overstretch the
springs and form two small negatively curved regions in a big vesicle (Dv = 40σ). Over-
stretching the spring increases the tension in the membrane, making the role of tension
more significant compared to the previous test cases. Having inserted a dimer in the
system, we then look at the migration of the dimer. As shown in Fig. 7.5 in this case
the dimer does not stay at the mid-plane of the vesicle. It instead spends much of its
time during MC simulation at the areas that are closer to the negatively curved regions.
Since the springs are overstretched, in the regions close to poles there is no excess area
for the dimer to adhere to and therefore the dimer cannot explore that area (see also
supplemental movies SM2-4). This prediction is consistent with Ref. [28] where the mi-
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gration of a dimer in the tension dominant regime has experimentally been investigated.

The type of pattern formation we observe in our simulations is reminiscent of re-
cruiting proteins by the membrane during different biological processes. It has been
shown that, for example, dynamin proteins form a ring like structure during exocyto-
sis to facilitate membrane scission [38] and that FtsZ proteins self-assemble into rings
during the last step of bacterial cell division, namely cytokinesis [39]. Because most of
the proteins in biological cells are either anchored to or embedded in the membrane,
their interaction is a response to the deformation of the membrane they themselves im-
pose. As in our simulation the varying curvature is a determining factor that drives the
pattern formation, we can relate our results to those membrane trafficking machinery
functions. Although in this study we adjusted the included harmonic potential strength
KEll such that it would not affect the interaction of the colloids with the membrane, it
has been proven that during the cell division we have the same situation. Cytoplasmic
dynein, as a multi-subunit molecular motor, generates the force that is exploited by the
cell to direct the orientation of the division axis by mitotic spindles [40]. Our results show
that curvature inhomogeneity and anisotropy can at least facilitate the process of pro-
tein self-assembly in the mid-plane of the cell.
Although we have only investigated the interaction between identical isotropic inclu-
sions, our results can explain the behavior of a system containing anisotropically shaped
inclusions as well. Based on the local deformation of an ellipsoid, we expect that anisotropic
inclusions adhered to a spherical membrane attract each other in the direction of neg-
ative curvature (with respect to the curvature of the membrane). This situation corre-
sponds to having an isotropic inclusion embedded in a membrane with an anisotropic
shape, which is the case we have studied here.

6.4. Conclusion
We studied the role of curvature heterogeneity and anisotropy on the interaction be-
tween colloids adhered to a membrane. First, we showed that the strength of the inter-
action between two colloids on the surface of a spherical vesicle is altered by changing
the size of the vesicle. Next, we focused on such interactions on a membrane with an
ellipsoidal shape. We revealed that the interaction on such an inhomogeneously shaped
membrane depends on direction. For example, decreasing the asphericity of an ellip-
soidal membrane makes the attraction between the colloids stronger along the semi-
major axis and weaker in the semi-minor direction. Similarly, it has been previously
shown in simulations that, on an elastic cylindrical membrane, colloids assemble per-
pendicularly to its major axis in the regime dominated by the bending energy [26, 33].
In case of fluid membranes, through an analytical framework, it has also been shown
that inclusions “embedded” in a tubular membrane can attract each other in a transver-
sal direction[21]. Simulating a vesicle containing many colloids, we showed how they
form a ringlike structure around the mid-plane of the ellipsoid. While the cluster of
colloids freely explores all the surface of a spherical membrane, less curved area ener-
getically is more favorable for colloids on an ellipsoid. Our results suggest that forming
regions of different curvatures on membrane vesicles can control pattern formation of
inclusions, and this can be important from both nanotechnological application and bi-
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ological points of view.
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7
Interaction between

microtubule-driven protrusions
in a vesicle

The plasma membrane and cytoskeleton of living cells are closely coupled dynamical sys-
tems. Internal cytoskeletal elements such as actin filaments and microtubules continually
exert forces on the membrane, resulting in the formation of membrane protrusions. In this
paper we investigate the interplay between the shape of a cell distorted by pushing and
pulling forces generated by microtubules and the resulting rearrangement of the micro-
tubule network. From analytical calculations, we find that two microtubules that deform
the vesicle can both attract or repel each other, depending on their angular separations,
the size, and the direction of imposed perturbations. We likewise find the necessary con-
ditions for attractive interactions between multiple microtubules. Our results suggest that
the commonly reported parallel structures of microtubules in both biological and artificial
systems can be a natural consequence of membrane mediated interactions.

This chapter is based on: A. Vahid and T. Idema, Interactions between microtubule-driven membrane protru-
sions induce filament bundling (submitted)
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.

7.1. Introduction

C ells are enveloped by a plasma membrane which serves as a selective soft physical
barrier as well as being home to many functional proteins. The stability and shape

of cellular membranes are determined not only by inherent properties of the membrane,
but also by interactions with the cell’s cytoskeleton [1]. The highly dynamic cytoskeletal
network is vital for numerous biological processes, including cell motility, cell migration,
and cell signaling [2, 3]. A typical feature occurring in such processes is the formation of
membrane protrusions. Protrusions commonly emerge in the form of microvilli, filopo-
dia or lamellipodia [4, 5]. These leading-edge protrusions, the existence of which is vital
for responding to external cues, can be driven, controlled and elongated by a compli-
cated crosstalk between the membrane and underlying filaments.
The spatial arrangement of cytoskeletal filaments, force generation mechanisms, and
cytoskeletal networks coupling to the shape of cells have been investigated extensively,
both theoretically and experimentally [6–10]. For example, when growing encapsulated
microtubules inside an artificial spherical membrane, it has been shown that the vesicle
exhibits a diverse range of morphologies, from a simple elongated shape to dumbbell-
like geometries [7]. The diversity in the shape of such vesicles results from both the elon-
gation dynamics of the filaments inside them and the material properties of the mem-
brane. Such spatial rearrangement of filaments does not occur spontaneously but stems
from the conditions imposed on them from various elements, one of which is the cell
shape.
In this chapter, we investigate the interplay between the shape of vesicles, that are de-
formed by internal force generating filaments like microtubules, and the rearrangement
of those filaments. In a biological cell, microtubules undergo treadmilling and dynamic
instabilities (catastrophes) which are controlled by associated proteins [11]. Only a few
of the microtubules that grow inside a cell can reach the cell membrane [12]. The push-
ing and pulling forces generated by those few microtubules can be harnessed for cre-
ating protrusions of the membrane [13]. Membrane mediated interactions between
microtubule-induced protrusions may influence the arrangement of other functional
filaments in addition to microtubules themselves [14, 15]. Therefore, it is warranted to
study how the presence of a biological membrane, which has both elastic and fluid prop-
erties, alters the interaction between microtubules. This interaction could both drive
processes like the formation of filament bundles or inhibit microtubule aggregation.
We use a modified version of the theoretical framework that has been developed for in-
vestigating membrane mediated interactions between proteins embedded in or bounded
to a fluid membrane [16, 17]. We first explain the model in detail. We then study the ef-
fects of all the possible elements on the interaction between microtubules. In particular,
we demonstrate that changing the in-plane tension in the membrane qualitatively af-
fects the equilibrium shape that a vesicle can adopt. We further reveal that the size and
relative orientation of the imposed deformations determines the nature of their interac-
tions. Our results thus elucidate the effective role of the membrane in determining the
equilibrium arrangement of protrusions imposed by the cytoskeleton.
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7.2. Model
We assume that microtubules (including their tip) are rigid and impose sharp deforma-
tions on the membrane. To analyze the effect of such perturbations on the shape of an
undeformed spherical membrane, we use the conventional Canham-Helfrich bending
free energy including fixed surface area (S) and volume (V ) constraints, given by:

ECH =
∫

dS
[
2κH 2 +σ]+∆P

∫
dV (7.1)

with H , σ and ∆P the sum of the two principal curvatures, surface tension and pressure
difference, respectively. Due to the conservation of topology we can ignore the Gaussian
curvature contribution in the energy functional. Using the spherical analog of the Monge
parametrization, we describe the shape of a deformed vesicle as:

r (θ,φ) = R
(
1+u(θ,φ)

)
(7.2)

where R is the radius of an undisturbed vesicle and u(θ,φ) is the deformation field. As
the only constraints present are those imposed by the microtubules, we fix the amount
of induced deformation at their tip (Fig. 7.1), ū0 = (u(θ1,φ1), . . . ,u(θN ,φN )) with N the
number of microtubules. Mathematically, we apply this condition via Lagrange multi-
pliers,

EMTs =
∫

dS
[
L · (δ̄(Ω−Ω0)u(θ,φ)

)]
,where δ̄(Ω−Ω0) =


δ(Ω−Ω1)

.

.

.
δ(Ω−ΩN )

 (7.3)

where L is a vector of Lagrange multipliers and δ(Ω−Ωi ) = δ (cos(θ−θi ))δ(φ−φi ) is the
Dirac delta function for spherical coordinates. In terms of the deformation field and the
applied constrains, the total energy of the membrane is given by:

ETotal

κ
=

∫
dΩ

[
2

(
1−∇2u + 1

4
(∇2u)2 +u∇2u + 1

2
|∇u|2

)
+ σ̄

(
(1+u)2 + 1

2
|∇u|2

)
− ∆P

3
(1+u)3 −L · (δ̄u)

]
,

(7.4)

where the nondimensionalized surface tension and pressure difference are defined as

σ̄ = R2σ
κ and ∆P = R3∆P

κ , respectively. In the small deformation regime, we can approx-
imate the relative behavior of the pressure difference and surface tension as that of the
Laplace pressure for a sphere: ∆P = 2σ̄. We then obtain the linearized form of the shape
equation by minimizing Eq. 7.4, which gives:

∇2∇2u + (2− σ̄)∇2 −2σ̄u = L.δ̄ (7.5)
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u(θ1, φ1)

u(θ2, φ2)

u(θN, φN)

Figure 7.1: Schematic shape of a cell containing some microtubules. We model the microtubules by the im-
posed deformation (ū0 = (u(θ1,φ1), . . . ,u(θN ,φN ))) at their tips.

Because the resultant equation is linear, the final solution for the deformation field of
the membrane can be constructed as:

u(θ,φ) = L · ḡ(Ω−Ω0),where ḡ(Ω−Ω0) =


G(Ω−Ω1)

.

.

.
G(Ω−ΩN )

 . (7.6)

In these equations G(Ω−Ωi ) is the Green’s function of the left hand side of Eq. 7.5. We ex-
pand the Dirac delta function in terms of spherical harmonics1, and solve for the Green’s
function, which gives:

G(θ−θ′,φ−φ′) =
∞∑

l=2

l∑
m=−l

Y m
l (θ,φ)Y m

l
∗(θ′,φ′)

l 2(l +1)2 − (2− σ̄)l (l +1)−2σ̄
. (7.7)

In Eq. 7.7 we have excluded the first two modes. The zeroth mode corresponds to mo-
tion of the center of mass. Excluding the first mode is necessary to prevent inflation
of the vesicle, as we have already penalized any changes in the volume in Eq. 7.4. Ex-
cluding these modes implies correcting the Dirac delta in Eq. 7.5, which is reasonable
for small deformations. Finally, taking into account the constraints associated with the

1δ(φ−φ′)δ
(
cos

(
θ−θ′))=∑∞

l=0
∑l

m=−l Y m
l (θ,φ)Y m

l
∗(θ′,φ′), where the symbol ‘∗’ denotes complex conjugate.
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Figure 7.2: Membrane deformation due to the presence of microtubules. (a) Snapshots of a deformed vesicle
for low (1) and high (2) values of the surface tension. The imposed deformation vector reads ū0 = (0.1,0.1,0.1).
(b) Increasing the in-plane tension makes the membrane deformation more spiky, in contrast to low surface
tension regimes where we have rounded deformations. Numbers correspond to the images in (a). (c) The
deformation energy of a spherical membrane containing two growing microtubules for different values of the
surface tension.

microtubules (the vector ū0), we obtain the Lagrange multipliers and the induced defor-
mation field as:

L = ūT
0 ·M−1, and u(θ,φ) = ūT

0 ·M−1 · ḡ(Ω−Ω0), (7.8)

where M is an N ×N matrix whose components are constructed as mi j =G(θi −θ j ,φi −
φ j ), with i = 1, . . . , N and j = 1, . . . , N . For the diagonal components of the matrix M
(when i = j , corresponding to self-interactions), because we have a constant number
of lipids and the vesicle is closed, we consider a maximum mode l = Lmax in Eq. 7.7.
Substituting the derived deformation field u(θ,φ) in Eq. 7.4, one can get the total energy
of the membrane as:

ETotal

κ
= 1

2
ūT

0 ·M−1 · ū0 +8π

(
1+ σ̄

3

)
. (7.9)

Given an arbitrary number of microtubules, all we need is the amount of deformation
they impose to investigate their interactions. The only relevant length scale of our sys-
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Figure 7.3: The interaction between microtubule-driven protrusions. (a) Microtubules that deform the mem-
brane identically, attract each other and bundle for separations smaller than a critical angle ∆θc ' 5π/12. The
elastic nature of the membrane hinders microtubule coalescence for larger separations. (b) Protrusions of op-
posite orientation repel each other for small distances and attract for large angular separations. Right panel:
Snapshots of two protrusions that are imposed either identically (c) or oppositely (d).

tem relates surface tension to the bending modulus, given by λ =p
κ/σ. In a biological

context, the pertinent values of λ are in the range of 60− 100 nm [18, 19]. Given this
length scale, one can obtain the nondimesionalized physiologically relevant values of
surface tension as: σ̄= (R/λ)2. For a value of λ= 100 nm, for example, we get σ̄= 100 for
a vesicle size of R = 1µm.

To examine the effect of surface tension on the equilibrium shape of the membrane,
we position three microtubules inside a vesicle such that they form an equilateral trian-
gle, and all impose the same amount of deformation on the membrane (u0 = 0.1). For
small values of σ̄, we are in a bending dominated regime. The membrane, therefore,
minimizes the total mean curvature, as illustrated in Fig. 7.2a. Increasing σ̄ alters the
local shape of membrane at the tip of microtubules from being smoothly curved into
sharp spikes with higher total energy (Fig. 7.2b). Next, we analyze the total energy of
a vesicle encapsulating two growing microtubules that push the membrane in opposite
directions (Fig. 7.2c). We assume that the two microtubules distort the membrane sim-
ilarly. As expected, the more a vesicle elongates, the larger the stored energy becomes.
Also, membrane vesicles with a high in-plane tension require more energy to initiate a
protrusion process. Microtubules are dynamic entities and constantly switch between
growing and shrinking phases that are characterized by rescue and catastrophe events [?
]. Not only are they able to generate a pushing force during growing into obstacles like
membrane, microtubules can also release a force in the course of shrinking, which can
be harnessed for pulling purposes (in case of deformable obstacles). The pushing forces
are in the range of 2−3 pN [20], leading to an energy of 40−60 κ for a deformation2 of
u0 = 0.1. Therefore, having membrane protrusions that cost a total energy (ETotal) of not
more than 60−100 κ would still allow tubulin dimers to aggregate at the end of the mi-
crotubules. The depolymerization-dependent forces are about one order of magnitude
stronger (∼ 30− 65 pN [21]) than those generated during the growth state. Therefore,
the force numbers in the biological context are high enough to impose distortions of a
similar size as we suppose in our calculations – although depending on the length of the
microtubules, some processes like buckling may decrease the maximum force they exert

2We assume a bending modulus of κ= 25kBT for the membrane and a vesicle size of 1µm.
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Figure 7.4: Interaction between microtubule-driven protrusions of different strength. As shown in the graph,
introducing a difference in the magnitude of the protrusions results in a very strong short range repulsion
between them (u0 = 0.1; σ̄= 10).

on the membrane.
The arrangement of filaments plays a key role in the emergent shape of protrusions and
consequently in sensing the extracellular environment. To unravel the nature of elas-
tic interaction between protrusions, we investigate a vesicle containing two protrusions
with a varying angular separation between them. For identical deformations, as illus-
trated in Fig. 7.3, we have both short-range attraction and long-range repulsion regimes,
that are connected at a critical angle θc = 5π/12. The plot suggests that cellular mem-
branes facilitate the aggregation of microtubules for short separations and hinder their
assembly for longer distances. Although the global minimum of the energy is when two
protrusions are merged, there is an energy barrier, the value of which increases with the
surface tension. Inversely, two oppositely oriented protrusions repel each other for short
and attract for larger distances. When analyzing the interaction between protrusions of
different sizes, we realize that altering the magnitude of deformation for one of the mi-
crotubules strikingly changes the nature of interactions in their small separations. For
example, as illustrated in Fig. 7.4, making one of the constraints stronger/weaker than
the other turns short range attraction into repulsion. This suggests that having such dis-
tortions on a vesicle is costly, and that cells will therefore try to minimize the amount of
deformed material between them by adjusting their protrusions. Putting the results of
the two previous experiments together, we find that when interacting with membranes,
microtubules rearrange themselves in such a way to form parallel filaments. Such re-
arrangements are ubiquitous in cells, for instance in the early stages of filopodia. Our
results therefore suggest that these phenomena can be a natural result of membrane
mediated interactions between microtubules.

Our system easily extends to vesicles that contain more than two microtubules, with
similar results. To illustrate this point, we plot the whole configuration space for the
case of three microtubules (Fig. 7.5) to look for the possible (semi) stable configurations.
It turns out that the global minimum of the resultant energy landscape is when all the
microtubules are attached to each other. There are, however, some local minima, all of
which correspond to the situation where two microtubules are bundled together and the
other points to the opposite pole of the vesicle.
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Figure 7.5: Plot of the configuration space of a vesicle with three enclosed microtubules, with the energy of
each configuration shown in color. The closed shape of the vesicle favors the formation of parallel structures
of microtubules. The global minimum of the energy corresponds to the situation where all the filaments are
bundled, with local minima for the case of having two tubules together and one pointing in the opposite di-
rection. Because filaments polymerize from the centrosome in opposite directions, the local minima may be
biologically relevant.

7.3. Conclusion
Together with actin and intermediate filaments, microtubules form an architecture that
governs the shape of a cell, and therefore that of the plasma membrane surrounding
it. The membrane, in turn, mediates the interaction between attached microtubules.
Using analytical tools, we studied the effect of membrane mediated interactions on the
rearrangement of microtubules. Our results suggest that the elastic properties of cellular
membranes facilitate the bundling of microtubules. In particular, we showed that two
vesicle-encapsulated microtubules attract each other for small angular separations and
repel for large angles. As we explicitly demonstrated for three microtubules, the outcome
of collective interactions between multiple filaments is microtubule coalescence, which
may be harnessed for protrusion formation [22]. Our results reveal that force generating
microtubules, when colliding with a deformable obstacle like a fluid membrane, can
coordinate their growing state through the shape of distorted membrane between them.
Putting all the results together, our study suggests a possible mechanism underlying the
preference of filaments for organizing in parallel configurations [23].
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L ipid membranes are crucial to cell function. Their combination of fluid and elas-
tic properties allows cells to cope with an out of equilibrium environment. Conse-

quently, biological membranes possess various characteristic shapes and surface struc-
tures such as spheres and cylinders with extremely high curvatures. The shape of mem-
branes is regulated by various factors, the most important of which are proteins and
cytoskeletal filaments. In the beginning of this thesis, we have also seen that such a se-
lective and soft barrier is necessary for regulating various biological functions ranging
from cell division to vesicle trafficking.

Throughout this research, we have used mathematical tools and numerical simula-
tions to investigate how the lipid bilayer mediates the interaction between either inclu-
sions or microtubules attached to membranes of different geometries. One of the ge-
ometries that is commonly observed in intracellular organelles such as mitochondria is
cylinder. Tubes can also be extracted from GUVs in artificial systems by optical tweezers
[1]. Part I has thus been assigned to membrane mediated interactions between inclu-
sions of different shapes embedded in or bounded to tubular membranes. We have first
analyzed the interaction between point-like inclusions in Chapter2. In contrast to their
planar counterpart where the interaction between two identical proteins is always re-
pulsive [2], we have predicted that tubular membranes impose attraction between two
identical inclusions. This type of interaction originates from both the curved and closed
nature of tubes. With the help of simulated annealing Monte Carlo simulations, we
have further revealed that inclusions spontaneously self-assemble into line- and ring-
like structures, in consistent with previous numerical findings in elastic tubes [3]. We
have modeled proteins as point-like perturbations which means taking a far-field ap-
proach. It’s worthwhile to study the interaction between finite-sized objects embedded
in a tubular membrane by solving its shape equation and applying appropriate condi-
tions at the boundaries of inclusions.

In biological context proteins adopt different molecular conformations, hence they
can either dictate their shape on the surface of the membrane or discern the curvature
of different regions. To simulate such a scenario, we have again turned to computer
simulations. We have particularly examined the emergent assembly of spherical and
crescent-like proteins adhered to the membrane. As expected from our previous analyt-
ical calculations, spherical proteins form ring-like structures. In contrast, crescent-like
proteins self-assemble into cluster of different shapes, depending on their curvature.
Highly curved proteins aggregate in the longitudinal direction, forming line-like struc-
tures. For low protein curvature, we have observed no specific pattern formation as all
the proteins repel each other. Strikingly, we have found an optimal curvature between
two previous regimes, for which proteins attract each other in both longitudinal and
transversal directions and subsequently constrict the tube. We have then used our re-
sults to explain some recently observed phenomena regarding to the fission and fusion
events occurring in mitochondria. We have concluded that the curvature inducing and
curvature sensing features are two parts of the same thing, depending on the density
of proteins. In a high density, curvature sensing proteins (curvature sensors) accumu-
late in mechanically stressed regions, and then the resultant cluster act as a source of
inducing deformation (curvature inducer). Indeed, as has been supported by providing
recently obtained experimental evidences in Chapter 3, such properties of proteins are
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harnessed by cellular organelles to avoid entangling with each other. For future direc-
tions, there are several questions that have remained untouched. For example, it would
be interesting to investigate for what values of curvature, crescent-like proteins can sta-
bilize an otherwise constricted region. It will also be worthwhile to explore the whole
values of protein curvatures and, correspondingly, construct a phase diagram based on
the emergent patterns.

As the final chapter of this part, we have focused on a completely different regime
where some molecules, whose size is comparable to that of lipids, that are intercalated in
the membrane can undergo fission and fusion (previously it was not allowed). To model
such a system, we have taken a continuum theory approach. We have particularly pre-
dicted how introducing a density of molecules in a tubular lipid bilayer alters its stability
conditions. For example, having a uniform density of molecules on the surface of a tube
is not stable and will therefore segregate into different spatial domains (which is often
referred as cell polarity). Understanding the interplay between membrane shape and its
concomitant molecules may play an important role in the dynamic cellular phenomena.
Due to time constraints, the simulation results have been remained far from complete.
Therefore, as the next step, it would be interesting to see how the spatial organization
of the molecules are dependent on the relevant parameters including the radius of tube,
density of molecules and the amount of imposed curvature. Investigating the obtained
stability conditions for a tube containing intercalated molecules experimentally can also
advance our understanding of this phenomenon.

We have mostly elucidated the role of curvature in membrane mediated interactions
between colloids adhered to spherical vesicles. Our results highlight two key points:
First, depending on the wrapping angle, we can get different behaviors for the collective
interaction of colloids. For example, we have shown that the formation tubulation, vesic-
ulation and linear patterns can be achieved only by changing the wrapping angle of the
colloids. Deriving a thorough phase diagram of the most energetically favorable patterns
of the colloids as a function of their wrapping angle can better demystify their cooper-
ative interaction mechanisms. Second, we have elucidated the role of background cur-
vature on the collective interaction between colloids. Our results suggest that partially
wrapped colloids have a preference for accumulation on the shallow-curved regions on
the surface of membranes. An important question which has not been addressed yet
is clarifying the exact effects of various geometrical parameters like the enclosed vol-
ume and surface area associated constraints on the interaction of colloids on a vesicle.
In addition to these parameters, it would be also interesting to see how the presence
of (crosslinked) cytoskeletal filaments will alter the interaction between membrane de-
forming objects. R. Okamoto et al. [4] have recently unraveled the effects of an elastic
cytoskeletal network on the dynamics of a floating lipid bilayer membrane. It could be a
reasonable follow-up to development the numerical approach we have taken through-
out this work to include this effect in the system.

The cytoskeleton architecture plays a crucial role in the membrane remodeling pro-
cesses. Chapter 7 has investigated the link between the rearrangement of microtubule
and their induced deformation to the shape of a cell. Such protrusions can also be driven
by other types of filaments like actin and intermediate filaments. We have revealed the
subtle effect of various parameters such as the surface tension of the membrane, size
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of protrusions and the number of protrusions on the global shape of membrane. We
have also unraveled that the commonly observed parallel configuration and bundling
of microtubules (especially in artificial liposomes) can be a natural result of membrane
mediated interactions. Here, we have only examined the interaction between weak pro-
trusions, but we can also go beyond that and have drastic protrusions in flopodia-like
structures. It will be worthwhile to study how such extreme protrusions interact with
each other. Although the mathematics of such a problem will be very difficult, numer-
ical approaches as the triangulated-network models can be of help in this regard. Such
models have recently been used to simulate the bundling of growing microtubules at-
tached to a planar membrane[5]. Employing a crosslinked actin network or coupling
the treadmilling dynamics of microtubules to the membrane shape can be considered
as other future directions, in order to enhance our understanding of the physical mech-
anisms underlying actin driven protrusions and, on the larger scales, cell migration.
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Summary

Biological membranes are selective soft barriers that compartmentalize internal struc-
ture of a cell into organelles and separate them as a whole from the external environ-
ment. Due to their innate feature of being able to undergo constant reshaping, cellu-
lar membranes spatially attain diverse shapes ranging from simple spherical vesicles to
more peculiar structures like the interconnected network of tubes found in the endo-
plasmic reticulum. Membranes are not only composed of lipids, but also host an enor-
mous number of inclusions like proteins. Recent studies of biological membranes have
revealed that such inclusions play a key role in diverse biological processes through ei-
ther sensing or inducing perturbations to the membrane shape. In this dissertation, we
studied the interplay between the shape of membrane and the spatial organization of at-
tached curvature inducing objects using mathematical tools and numerical simulations
in highly curved spherical and cylindrical geometries.

First, we investigated the interaction between inclusions of different shapes embed-
ded in/adhered to tubular membranes. Our combined theoretical analysis and numeri-
cal simulation results evinced that tubular membranes, in contrast to their planar coun-
terpart, transmit an attractive force between inclusions, stemming from their closed and
curved geometry. We then elucidated that collective interaction between proteins re-
sults in the formation of line-like and ring-like clusters, depending on the their intrinsic
shape (Chapters 2–4). We further showed how curvature sensing crescent-like proteins
in high densities can constrict tubular membranes and facilitate their splitting, demon-
strating that both the curvature-sensing and curvature-inducing property of proteins are
two sides of the same coin. Moreover, we used our simulation results to explain how mi-
tochondorial machinery triggers, facilitates and drives membrane fission in its tubular
network to avoid entanglements (Chapter 3).

Next, we examined the interaction of spherical proteins adhered to closed vesicles.
Our simulation results – supported by recent experimental evidence – revealed mem-
brane curvature as a common physical origin for interactions between any membrane-
deforming objects, from nanometre-sized proteins to micrometre-sized particles (Chap-
ter 5). Our further simulations unraveled how introducing curvature variation on the
surface of a closed vesicle can be exploited by inanimate particles to regulate their pat-
tern formation (Chapter 6).

Finally, through theoretical calculations, we analyzed the interplay between the shape
of a cell and the rearrangement of attached microtubules (Chapter 7). Our results par-
ticularly suggested that the commonly reported parallel structure and bundling of mi-
crotubules can be induced by membrane mediated interactions.
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Samenvatting

Biologische membranen zijn selectief, soepel en scheiden zowel interne onderdelen bin-
nen de cel van elkaar, waardoor zich organellen vormen, als de cel zelf van zijn externe
omgeving. Aangezien membranen soepel zijn kunnen deze constant van vorm veran-
deren. Cellulaire membranen nemen dan ook diverse vormen aan, van relatief simpele
sferische blaasjes tot de meer complexe structuur van het endoplasmatisch reticulum
bestaande uit een netwerk van buizen die met elkaar zijn verbonden. Behalve lipiden,
omvat het membraan andere moleculen zoals proteïnen. Recente studies hebben la-
ten zien deze “insluitsels” sleutelrollen vervullen in verscheidende Biologische proces-
sen door te regeren op, of door het mede bepalen van, de vorm van het membraan. In
dit proefschrift hebben wij de wisselwerking tussen de vorm van sterk gekromde sferi-
sche en cilindrische membranen en de ruimtelijke organisatie van de daarin aanwezige
objecten die op hun beurt het membraan kunnen deformeren bestudeerd met behulp
van wiskundige technieken en numerieke simulaties. Als eerste hebben wij cilindrische
membranen met daarin ingesloten moleculen bestudeerd. Onze theoretische analyse
en numerieke simulaties tonen aan dat buisvormige membranen door hun gesloten en
sterk gekromde geometrie, in tegenstelling tot vlakke membranen, een aantrekkende
kracht tussen proteïnen induceren. Vervolgens hebben wij uitgelegd hoe een collec-
tief van ingesloten proteïnen, aanvankelijk van hun intrinsieke vorm, samen ophopen
in lijn-achtige of ring-achtige formaties (Hoofdstuk 2-4). Verder hebben wij laten zien
dat hoge concentraties van proteïnen die de form van een halvemaan hebben niet al-
leen de vorm van het membraan kunnen voelen, maar ook het membraan kunnen laten
samentrekken tot het zich in tweeën opdeelt. Hiermee hebben wij laten zien dat het
reageren op de vorm en het bepalen van de vorm van de membraan twee zijden van de-
zelfde medaille zijn. Met behulp van simulaties hebben wij uitgelegd hoe de machinerie
van het mitochondriën het splijten van het membraan in gang zet en drijft te midden
van een netwerk van buizen zonder dat deze in elkaar verstrengeld raken (Hoofdstuk
3). Vervolgens hebben we de interactie tussen bolvormige proteïnen en gesloten mem-
branen bestudeerd. Onze simulaties, en recent experimenteel onderzoek, laten zien dat
de intrinsieke kromming van membranen een overeenkomende fysische oorzaak is van
interacties tussen ingesloten objecten die het membraan kunnen deformeren. Dit geldt
voor zowel proteïnen op de nanoschaal als grotere deeltjes op de microschaal (Hoofd-
stuk 5). Verder lieten onze simulaties zien dat aspecifieke proteïnen patronen op een
gesloten membraan vormen door gebruik te maken van variaties in de kromming van
het membraanoppervlak (Hoofdstuk 6). Tot slot, hebben wij de wisselwerking tussen de
vorm van een cel en de reorganisatie van de daaraan vastzittende microtubili bestudeerd
(Hoofdstuk 7). Onze resultaten toonden aan dat microtubili –bundels, zoals veelvuldig
gerapporteerd in de literatuur, zich mede kunnen vormen door interacties met het mem-
braan aan te gaan.
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