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Abstract

Optimization models are widely used in energy system planning to identify cost-effective investment
strategies. However, relying solely on a single optimal solution can be misleading, as it fails to ac-
count for model uncertainty, competing objectives, and stakeholder preferences. To address this,
near-optimal alternatives, solutions that are close in cost to the optimum but structurally different, are
increasingly used to support robust and flexible decision-making.

This thesis explores the generation and evaluation of near-optimal alternatives within energy systems,
with a focus on improving the decision relevance of the generated alternatives. This thesis introduces
a unified analytical framework, formalizing existing Modeling to Generate Alternatives (MGA) methods
using weight vector formulations. This formulation enables a clearer comparison of different techniques
that generate these alternatives. This analysis highlights the limitations of current evaluation metrics,
particularly their inability to distinguish decision-relevant alternatives from decision-irrelevant ones.

To overcome this gap, the thesis proposes a novel evaluation metric based on dominance relations
from multi-objective optimization. This metric identifies non-dominated alternatives, those not strictly
worse than any other across all decision variables, as decision-relevant. The thesis introduces a new
method that uses Directionally Weighted Variables to generate alternatives aligned with this dominance
criterion.

The proposed approach is evaluated using a stylized energy investment model and benchmarked
against existing MGA techniques. Results show that traditional methods tend to generate fewer non-
dominated alternatives, while the new method generates more non-dominated alternatives within the
near-optimal space. This work contributes a new perspective on alternative generation, bridging the
gap between mathematical optimality and practical decision support.
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1
Introduction

Energy systems planning plays a critical role in shaping the transition toward reliable, affordable, and
sustainable energy futures. As societies face rising energy demand, decarbonization targets, and in-
creasing integration of renewable resources, planning decisionsmust balance technical, economic, and
environmental considerations. The International Energy Agency emphasizes that such planning guides
decisions on when, where, and how to invest in the energy sector within broader policy frameworks
[15].

Optimizationmodels are widely applied to support complex decisions in energy system planning. These
models often aim to find a single cost-optimal solution, under the assumption that minimizing economic
cost leads to the most desirable outcome. However, this focus on optimality can be too narrow. In
real-world contexts, where multiple objectives, stakeholder preferences, and model uncertainties must
be considered, a single optimal solution offers limited value. It may obscure trade-offs, fail to account
for model misspecifications, and not take into account the robustness of decisions [21, 31].

To address this limitation, there is growing interest in generating near-optimal alternatives, solutions
that lie within a defined tolerance of the optimal objective value but differ structurally in their decision
variables. These alternatives help reveal the flexibility of the solution space, expose hidden trade-
offs, and enable decision-makers to consider a broader set of options. Near-optimal alternatives are
particularly useful in energy transition modeling, where competing investment priorities and political
constraints must be balanced [9, 18].

Several methods have been proposed to generate such alternatives, most notably Modeling to Gen-
erate Alternatives (MGA) techniques, including deterministic methods such as Hop-Skip-Jump (HSJ)
[5] or stochastic methods such as Min/Max Variables [33]. While effective in simple settings, these
methods face limitations: they often do not explore the near-optimal solution space evenly, may pro-
duce redundant alternatives, and can be computationally intensive for large-scale problems. Moreover,
current evaluation metrics fail to capture the decision relevance of alternatives, favoring alternatives
that either cover the near-optimal solution space or are robust, but not necessarily meaningful.

This thesis makes four key contributions. First, it provides a unified analytical framework for analyzing
existing MGA methods by expressing them in terms of weight vector formulations, allowing for clearer
comparison and exposing implicit assumptions. Second, the thesis compares current MGAmethods by
using the metrics used in literature and showcases their shortcomings. Based on these shortcomings, a
newmetric called dominance is introduced, which is based on dominance in multi-objective optimization
problems. Alternatives are considered non-dominated if there is no other alternative that is strictly better
across all variables. Third, it introduces a novel algorithm that uses Directionally Weighted Variables to
explicitly guide the search of the near-optimal solution space to non-dominated alternatives, inspired
by multi-objective optimization. Lastly, this new algorithm is validated based on experiments done on
the Generation Expansion Planning (GEP) problem. For which the results show that the new algorithm
produces a large share of non-dominated alternatives, while remaining computationally feasible.

1



1.1. Research Question 2

1.1. Research Question
This thesis addresses the following research questions:

RQ 1: What are the conceptual differences between knownMGAapproaches for generating near-optimal
alternatives?

RQ 2: How can these differences be exploited to reformulate the alternative generation problem in a
way that supports decision relevance?

RQ 3: How does the proposed dominance-basedmethod perform compared to existingMGA techniques
in terms of decision relevance and computational efficiency?

1.2. Outline
Chapter 2 introduces the core concepts of near-optimal alternatives and establishes the theoretical
foundation for their use in modeling, with a focus on modeling in energy models. It presents the formu-
lation of the original optimization model and explains how a near-optimal solution space can be defined
through the use of slack variables. The chapter then surveys a broad range of existing techniques for
generating alternatives and discusses their computational characteristics and limitations.

In chapter 3, the focus shifts to the challenges of evaluating near-optimal alternatives. While various
methods exist to generate alternatives, assessing their usefulness and quality is non-trivial. This chap-
ter explores the key difficulties in comparing alternatives and introduces existing evaluation metrics,
such as convex hull coverage and shadow pricing, which are commonly used in the literature.

Chapter 4 builds on comparing the existing alternative generation methods by critically analyzing and
evaluating them. It argues that current evaluation metrics, while informative, fail to capture whether
alternatives are genuinely relevant for decision-making. To address this, the chapter introduces a new
perspective grounded in multi-objective optimization theory, proposing that each decision variable can
be interpreted as an implicit objective. This leads to a new evaluation framework based on dominance
relations, where non-dominated alternatives are prioritized.

Chapter 5 formalizes a dominance-based approach and presents a new metric for evaluating near-
optimal alternatives. This metric identifies alternatives that are not strictly worse across all variables
compared to others in the set, providing a more decision-relevant basis for evaluation.

Chapter 6 proposes a novel method for generating alternatives using Directionally Weighted Variables.
This method is designed to align with the dominance metric introduced in chapter 5, guiding the search
process toward structurally non-dominated alternatives within the near-optimal region.

Chapter 7 describes the experimental setup used to evaluate the performance of the proposed method.
It outlines the model formulation, solver configuration, and algorithmic workflow, including the proce-
dures used to benchmark existing and new techniques.

The results of these experiments are presented in chapter 8. Here, traditional MGA methods are com-
pared against the proposed dominance-aligned approach across decision relevance and computational
efficiency. The analysis demonstrates that, while conventional techniques often produce redundant and
dominated alternatives, the new method yields a more representative and meaningful set of alterna-
tives.

Finally, chapter 9 discusses the broader implications of the findings, reflects on the limitations of the
study, and outlines promising directions for future research. It concludes by revisiting the research
questions and summarizing the main contributions of the thesis.



2
Modeling of Near-Optimal

Alternatives

The transition toward sustainable energy systems requires decision-support tools. Energy systemmod-
els have become central to this effort, helping stakeholders evaluate trade-offs that align with technical,
economic, and policy goals. These models typically optimize for a well-defined objective, such as
minimizing cost. However, relying solely on an optimal single-objective solution can be misleading or
insufficient, especially when dealing with real-world uncertainties, competing objectives, or the need
for stakeholder engagement.

This chapter introduces the concept and methodology of generating near-optimal alternatives, which
provide decision-makers with a broader and more informative set of options than a single optimal solu-
tion. The alternatives generated through these methods are referred to as sets of alternatives. It begins
by describing the formulation of the original energy systemmodels and the definition of the near-optimal
solution space. A simple example is provided to illustrate these concepts visually. The chapter then
surveys a variety of techniques used to generate these sets of alternatives, first, it discusses Modeling
to Generate Alternatives (MGA) methods such as Hop-Skip-Jump [9], Spores [22], Min/Max Variables
[23, 33], Random Vector [3] and Maximizing Distance Metrics [28]. Finally, it explores newer devel-
opments, including Modeling for All Alternatives [26], Parallel Optimization [12], and Multi-Objective
Optimization [16].

2.1. Defining and Exploring the Near-Optimal Solution Space
Solving complex energy network models is increasingly used to support decision-making in the energy
transition. These models minimize economic costs, which can be insufficient, as reported by real-world
stakeholders [31] and literature surveys [21, 29]. In such cases, near-optimal alternatives of the optimal
solution are considered. These alternatives can better support decisions by offering vastly different
alternatives, or—when the parameters of the original model are not fully known—give alternatives that
could be optimal given small changes in the model, improving its robustness. To achieve this, methods
that generate near-optimal alternatives are used to find sets of alternatives that are—in some way—as
different as possible from the optimal solution while being bounded by the near-optimal solution space.

2.1.1. Motivation
Classic energy network optimization models typically minimize a single (or multiple) objective func-
tion(s), often expressed as a summation of investment variables. E.g., the sum of all investment vari-
ables that minimizes the total economic cost.

The key insight motivating the exploration of near-optimal alternatives is to view these classic models
not as definitive representations of a “true” objective, but rather as synthetic representations of different,
potentially competing investment decisions. E.g., instead of viewing the sum of all investments as the
“true” objective. Each investment variable can be interpreted as reflecting its own implicit objective,

3



2.1. Defining and Exploring the Near-Optimal Solution Space 4

shaped by distinct political, institutional, or social constraints. This insight allows for the exploration of
fundamentally different variable assignments that still yield low objective function values.

The process begins from a single reference solution, either the globally optimal solution or a well-
representative point from the Pareto front when considering Multi-Objective Optimization [7]. This op-
timal solution represents the minimal cost of the model. Because the different investment variables
can be seen as competing investment decisions, the optimal solution is used as an indicator for the
near-optimal solution space. Based on this reference solution, it systematically generates alternatives
that deviate structurally from this baseline, but stay within a predefined tolerance of optimality.

An example of this process is given here: If the cost-optimal solution recommends investing €10 million
in renewable energy and €10 million in fossil fuels (minimizing the total sum), a viable near-optimal
alternative might involve €15 million in renewable energy and €6 million in fossil fuels (politically more
attractive). Although the overall cost increases slightly, the alternative presents a significantly different
investment configuration, thus offering meaningful insight into trade-offs.

Crucially, this process aims to generate sets of diverse alternatives, not merely isolated alternatives.
Each alternative is—in some way—constructed to be as different as possible from the others while
maintaining acceptable objective performance. This set of diverse alternatives enhances understand-
ing of the decision landscape, particularly for decision-makers who must account for policy, uncertainty,
or qualitative preferences alongside strict cost minimization. In this way, the method supports a richer,
more informed basis for strategic investment planning [9].

2.1.2. Energy Systems
Models of energy systems follow the following structure:

Minimize f(x)

subject to Ax ≤ b,

x ≥ 0.

(2.1)

The model minimizes its linear objective functions f . x is a vector containing all variables xi, and all
variables are constrained to be greater than or equal to 0. A and b, a matrix and a vector respectively,
are the coefficients used to specify all the constraints, where the inequality Ax ≤ b is understood
element-wise. This model is assumed to be a Linear Program (LP) problem. The objective function
can be described as

f(x) =
∑
i

cixi, (2.2)

where ci indicates the coefficient of variable xi in the objective function. It is assumed that the optimal
solution of this model is known. A critical reader might wonder why there are no equality constraints.
These constraints, however, can be modeled by clever use of the inequality constraints, where each
equality is split up into two inequalities so that the upper and lower bounds are the same [4].

2.1.3. Near-Optimal Solution Space
The solution space is the space defined by the constraints of the original model [9]. When determining
the near-optimal solution space, a slack variable s is used. This near-optimal solution space is defined
in

subject to f(x) ≤ (1 + s)T

Ax ≤ b,

x ≥ 0.

(2.3)

Here s indicates the slack for the objective function and T indicates the original objective value of the
objective function. A, b, and x are the same as in the original model. As the original model is an
LP problem, finding alternatives within this newly created near-optimal solution space is also an LP
problem. A lot of research has been done to find alternatives in this near-optimal solution space [3, 9,
12, 16, 22, 23, 26, 28, 33].
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It is important to emphasize that this thesis focuses exclusively on single-objective optimization prob-
lems. However, the concept of exploring near-optimal alternatives can also be extended to models with
multiple objectives. In a multi-objective setting, each objective function can be indexed by an index j,
and a near-optimal solution space would be defined by applying a separate slack condition to each
objective. This means that for each objective, a new near-optimal constraint is added to the model
instead of a singular one as is done with a single-objective optimization problem. Specifically, if Tj

denotes the optimal value of objective fj , the near-optimal constraints are described:

fj(x) ≤ (1 + sj)Tj ∀j, (2.4)

where sj represents the permissible slack for each respective objective. While the near-optimal solution
space is defined differently when multiple objectives are considered, the methods that generate the
alternatives can be applied to this new near-optimal solution space without needing adjustments. While
this generalization is well-established in the literature, it lies outside the scope of this work, which is
limited to the single-objective case for conceptual clarity.

2.1.4. Example
Given the definitions of the original model and near-optimal solution space, let us consider a simple
visual example. First, an original model needs to be defined. The problem that this chapter considers
tries to minimize x and y, in more technical terms, f(x) = x1 + x2. The variables x1 and x2 are bound
by 0 subject to some other constraints, which are specified in (2.5). The solution space encapsulated
by these constraints is shown in Figure 2.1. When solved, the optimal solution will have an objective
value of f(x) = 0.5 with x1 = 0.25 and x2 = 0.25.

Minimize f(x)

subject to x1 + 3x2 ≥ 1

3x1 + x2 ≥ 1

x ≥ 0

(2.5)

Based on the original model and its optimal value, this section defines the near-optimal with a typical
slack from literature, 10% [32]. In this case, s takes on a value of 0.1. The near-optimal solution space
consists of the original solution space bounded by the f(x) ≤ (1+s)T . This example problem considers
the objective f(x) and thus this new bound is defined as x1+x2 ≤ (1+0.1) ·0.5, as shown in (2.6). The
near-optimal solution space encapsulated by these constraints is shown in Figure 2.2. The feasible
region is colored in blue.

subject to f(x) ≤ (1 + s)T

x1 + 3x2 ≥ 1

3x1 + x2 ≥ 1

x ≥ 0

(2.6)
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x

y

Figure 2.1: Feasible region and optimal point of the simple example problem

x

y

Figure 2.2: Near-optimal solution space, 10% slack is applied to the objective.



2.2. Modeling for Generating Alternatives 7

2.2. Modeling for Generating Alternatives
Modeling for Generating Alternatives, also known as MGA, was first introduced in 1982 by Brill Jr,
Chang, and Hopkins [5]. DeCarolis [9] introduced MGA to energy network models, where it sees the
most use [18].

MGA works on a one-at-a-time approach, where n alternatives are generated sequentially. Each alter-
native k, 1 ≤ k ≤ n minimizes the sum of the weight vector wk—which indicates the search direction
in the near-optimal solution space—and the decision variable vector x, as shown in (2.7). This is sub-
ject to the near-optimal solution space defined in (2.3). In this section, various methods with different
weight vectors are discussed. It is essential to note that this one-at-a-time approach is effective if the
model is simple; however, as the model’s size increases, generating even a single alternative becomes
computationally expensive.

Minimize wk · x (2.7)

Weight vectors are not explicitly formulated in most MGA techniques, and tomy knowledge, only Spores
[22] formally defines and uses aweight vector. I have observed that many of the knownMGA techniques
implicitly use a weight vector to steer the alternative generation in a particular direction. In this thesis,
I formalize this interpretation by expressing each method in terms of an equivalent weight vector. This
unifying framework helps compare different MGA techniques more clearly and exposes underlying
assumptions that might otherwise go unnoticed. In this section, the algorithms are described and
discussed with a generalized weight vector.

A key feature of the MGA framework is its flexibility: with appropriate domain knowledge, the modeler
can intentionally modify the update rule for a selected subset of decision variables. This ability to embed
expert insight directly into the alternative-generation process allows for more targeted exploration of
the near-optimal alternatives. This section presents the general update rules used by each method;
however, these can be adapted or overridden to reflect context-specific priorities or constraints.

There are three different deterministic heuristics namely Hop-Skip-Jump [9], Spores [22], and Max-
Distance [28]. There are also considers two different stochastic heuristics, namely Min/Max Variables
[33], and Random Vector [3].

2.2.1. Hop-Skip-Jump
Hop-Skip-Jump (HSJ) [5] is a method that tries to find alternatives by minimizing the variables that
had a non-zero value in the previous iteration. This is done to find alternatives that invest less in the
decision variable, which was already invested in in the previous iteration. More precisely, it minimizes
(2.7) based on the value of the variables in the previous iteration. The weights are defined in

wk
i =

{
0 if xk−1

i = 0

1 otherwise.
(2.8)

For example, if the variable values of the previous iteration included xk−1
1 = 0∧ xk−1

2 = 1 then of those
2 variables wk

1 = 0, while wk
2 = 1. When using these weights, note that x0

i is defined based on the
value of variable xi in the original model.

The advantage of this approach is that the resulting problem is relatively simple. First, solving for the
alternatives is computationally as expensive as solving for the original model. Lastly, HSJ explores the
region of the near-optimal solution space that had zero investment in the previously found alternative,
guiding the search to generate as different as possible alternatives.

There are also some disadvantages. The method does not guarantee that the solution space is
spanned evenly and every region of the near-optimal solution space is explored [10, 24]. Not span-
ning the space evenly can be detrimental when searching for sets that best represent the whole near-
optimal solution space. Another disadvantage is that the method can fail to find additional meaningful
alternatives if each variable in the previous alternative has a non-zero value, and the sum of those
values is already the minimum possible sum. In that case, the generated alternative is the same as the
previously generated alternative.
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2.2.2. Spores
Spores [22] is a modification of HSJ. It does not discard the weights of the previous iteration. Instead,
it updates them using the update rule as described in

wk
i = wk−1

i +
xk−1
i

xmax
i

∀k, 1 ≤ k ≤ n,

w0
i = 0.

(2.9)

This equation introduces xmax
i , which refers to the maximum possible value that xi can take. This

update rule assigns a high weight to variables whose value is close to the maximum value, while
assigning a low weight to variables whose value is close to zero. This is similar to the HSJ method, but
with the ability to be more expressive. This weight is the basis of the Spores method.

Spores has the same advantage as HSJ, where finding alternatives is as expensive as solving the
original model. Spores also improves on HSJ in one major way. It does not discard previously found al-
ternatives by updating its weight and thus guiding the search in the less explored regions and improving
the spanned space.

However, similar to HSJ, Spores still has no guarantee to evenly span the near-optimal solution space,
and the method can get stuck if the function for updating weights does not generate new points, which
can happen if in between iterations the relative weight of each variable stays the same (so that only
the length of the weight vector changes, but not its direction). To the extent of my knowledge, no linear
weight function exists that prevents this. Spores also has some new disadvantages. First, each of the
variables requires a carefully chosen upper bound, which other MGA methods do not need. Otherwise,
the update rule cannot be used efficiently. Lastly, in contrast to HSJ, Spores can need multiple solves
to update the weights, as a small change in the weight vector can lead to finding no new alternatives;
in this case, multiple iterations are needed to find a new alternative.

Spores [22] also reports a new idea to tackle the problem, where there is no guarantee to explore
the solution space evenly. They addressed this problem by introducing a technique to guarantee the
exploration of “important” variables. Domain knowledge is needed to indicate which variables are im-
portant. Instead of minimizing as considered in (2.7), this approach introduces an arbitrary number of
new objective functions. These objective functions all take into account a specific “important” variable
xi, which is minimized together with the original objective function, see (2.10). This has the advantage
that every “important” variable will be explored when minimizing. However, this specific use case of
Spores is outside the scope of this thesis and is not considered further.

Minimize xi +wk · x (2.10)

2.2.3. Min/Max Variables
Min/Max Variables [33, 23] is an approach that minimizes and/or maximizes a random sample of vari-
ables. This is done by randomly sampling the weights as specified in

wi ∼ Uniform({−1, 0, 1}) ∀i. (2.11)

Contrary to HSJ and Spores, theMin/Max Variables does not consider any previously found alternatives.
When applying this approach, all variables with weight 1 get minimized, the variable with weight−1 gets
maximized, and the variables with weight 0 are free.

Using Min/Max Variables has some advantages. First, Min/Max Variables has the added benefit of
randomly sampling the space, thus allowing for the use of known sampling methods to get a better
idea of the true near-optimal solution space. Second, Min/Max Variables has the added benefit that,
given enough iterations, each possible unique weight vector can be considered. Thus, it will find all
alternatives that can be found by using the specific weight set of {−1, 0, 1}. In practice, there are too
many different weight vectors to consider, so this means that each iteration has a distinct weight vector.

However, it still has some of the same disadvantages. The space spanned by this method is not
guaranteed to be spanned evenly. It is also not very expressive in the possible weights by which the
variables are explored, −1 or 1, thus potentially leaving some dimensions unexplored.
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2.2.4. Random Vector
Random Vector [3] is similar to Min/Max Variables. Where Min/Max Variables samples either −1, 0, or
1, Random Vector samples a predefined distribution for all variables, most of the time this distribution
is the uniform distribution between −1 and 1, as described in

wi ∼ Uniform(−1, 1) ∀i. (2.12)

However, the distribution can be different for each variable to best fit the model being solved.

This method has mostly the same advantages and disadvantages as Min/Max Variables. The biggest
difference is that the weight vector used in Random Vector is more expressive and can more easily
explore parts of the near-optimal solution space that are not found byMin/Max Variables. This, however,
comes at the cost that there are an infinite number of possible random weight vectors, which leads to
the curse of dimensionality when exploring high-dimensional models [1].

2.2.5. Max-Distance Metrics
Max-Distance Metrics are different from previous approaches that scale the variables by weight. In-
stead of minimizing the dot product between the weight w and the variables x, it maximizes the distance
between the variables x and the sum of all previous alternatives (2.13). Although there are different
distance metrics, not much research regarding different distance metrics has been conducted within
the literature. To the extent of my knowledge, only Price and Keppo [28] used the L1 norm (also known
as Manhattan or city-block distance), which results in a linear objective function. Price and Keppo also
considered other distances (such as the Euclidean distance), which changes the new objective function
to a quadratic programming problem. This was quickly discarded because solving these problems is
computationally expensive.

Maximize
k−1∑
i=0

Distance(xk,xi) (2.13)
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2.3. Modeling for All Alternatives
Modeling for All Alternatives (MAA) tries to find all alternatives within the near-optimal solution space
[26] as its convex hull. MAA improves on the one-at-a-time approach of generating alternatives that
each MGA method employs by finding all possible alternatives in the near-optimal solution space. The
method works by finding all the points on the edge of the feasible near-optimal solution space. This
can be found by solving (2.7). Similarly to MGA, where weight vectors guide the generation of alter-
natives in different directions of the solution space, MAA also employs a weight vector wk to explore
the boundaries of the near-optimal region. In the context of MAA, wk is a unit vector that specifies the
search direction to locate points on the convex hull of the feasible space. While MGA typically varies
the weight vector iteratively to find diverse alternatives one at a time, MAA uses the geometry of the so-
lution space, specifically the face-normal vectors of the convex hull, to systematically guide wk toward
unexplored boundary regions. The method works by first finding the optimal solution of the problem
and additionally d arbitrary points on the edge of the near-optimal solution space, where d is the prob-
lem’s dimensionality, such that a convex hull can be formed. Of this hull, the face-normal vectors of
the half-space are calculated. The vector on the biggest face of the convex hull is used as the weight
vector in the new iteration. This is all subject to the near-optimal solution space as described in (2.3).
This process is iterated until the volume of the convex hull converges. That ensures that all points of
the convex hull will eventually be found and thus all possible alternatives have been generated.

In practice, the volume of this space is calculated using the quickhull algorithm [2]. When this volume
converges to a value and does not increase anymore, the algorithm stops. Using the alternatives
found, the polyhedron of the near-optimal solution space can be sampled to generate a representative
dataset of the near-optimal solution space. This sampling is done by drawing simplexes using the
same quickhull algorithm. These simplexes are a triangle in 2D, a tetrahedron in 3D, etc. They are
then sampled based on the fraction of the volume of the simplex and the number of alternatives required,
which makes it possible to sample the space evenly.

Using this approach has the advantage of guaranteeing that all possible alternatives are considered
within the solution space. The biggest disadvantage is that this approach does not scale very well into
higher dimensions. Calculating the convex hull of spaces inmore than 10 dimensions is computationally
expensive. Known methods that calculate the convex hull either fail or do not finish in a reasonable
amount of time.

2.4. Co-Evolution
Another method to improve the one-at-a-time approach used in standard MGA is finding multiple alter-
natives in parallel [12]. In this approach, evolutionary algorithms co-evolve to find the optimal value of
the problem. The main idea of co-evolution is to partition the alternatives into P different sets consisting
of K alternatives. Where each partition p ∈ P has a different set of K alternatives. Each set P has a
target value as to how much the alternative in that set may differ from the original objective function. In
other words, each set of alternatives has a target slack to which it will evolve. It is discussed that it is
possible to use multiple metaheuristics to guide the evolution. To the extent of my knowledge, only the
firefly algorithm has been used as a metaheuristic for this method of generating alternatives [12, 14].
Using the firefly algorithm improves the runtime of finding alternatives. However, the co-evolution of
multiple evolutionary algorithms increases the computational burden of the model.

2.5. Generating Alternatives for Multi-Objective Problems
The methods for finding alternatives are not limited to singular alternatives. Methods that generate
alternative Pareto fronts are also considered within the field [16]. These new fronts are generated not
by introducing a new objective function, but by constraining different variables to take on values that
are different than the original solution, while still adhering to the near-optimal solution space. This
constraint takes on two distinct approaches. The first approach to finding an alternative Pareto front
is to completely exclude certain variables from being invested in. In other words, constraining those
variables to be zero in the alternatives. For example, if the original model invests in fossil fuels, an
alternative Pareto front can be generated by excluding any investments in fossil fuels altogether. The
second is to restrict the capital of certain variables. This introduces a new constraint that limits the
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amount invested in those variables. Continuing on the previous example, instead of excluding invest-
ments in fossil fuels, a maximum investment cap is used. In both cases, these new constraints, together
with the near-optimal constraint, are added to the original model. This updated model is solved, and a
new Pareto front is found.

2.6. Summary
In this chapter, we explored the importance and methodology of generating near-optimal alternatives in
energy system modeling. While traditional optimization focuses on identifying a single optimal solution,
this approach can be too narrow for real-world decision-making, where uncertainty, conflicting objec-
tives, and stakeholder preferences must be considered. Near-optimal alternatives expand the solution
space, offering decision-makers a more nuanced and resilient foundation for strategic planning.

We introduced the formal structure of the original linear programming model and how a near-optimal
solution space is defined through the introduction of slack variables. A simple illustrative example
helped visualize the concepts, showing how additional alternatives can exist close to the optimal one
but differ significantly in structure.

A range of methodologies for generating alternatives was then reviewed. Classic MGA techniques such
as Hop-Skip-Jump and Spores offer intuitive and computationally manageable ways to explore the solu-
tion space, though they have limitations in coverage. Randomized methods like Min/Max Variables and
Random Vector sampling improve coverage and allow for domain-informed exploration, while distance-
based metrics introduce a focus on maximizing dissimilarity. Modeling for All Alternatives attempts
to systematically capture the full set of feasible alternatives, though at a higher computational cost.
Parallel Optimization tries to improve the runtime by increasing the computational cost. Lastly, gener-
ating alternatives for Multi-Objective Optimization extends the usage of MGA to apply to multi-objective
models.

Eachmethod presents trade-offs between the generated alternatives. No single approach is universally
superior; the best choice depends on the problem context, model complexity, and the decision-making
environment. Collectively, these techniques empower modelers to provide richer and more actionable
insights, ultimately supporting more robust and informed decisions in the transition to sustainable en-
ergy systems.



3
Challenges and Metrics of Evaluating

Near-Optimal Alternatives

This chapter examines the challenges of evaluating and comparing alternatives produced by near-
optimal alternative generationmethods, with a focus on their quality and usefulness for decision-making.
Current practice often relies on domain experts to interpret and select alternatives, which can be time-
consuming and subjective. Ideally, decision-makers (such as policymakers) should be supported by
systems that do not only generate alternatives but also prioritize them in a way that highlights the most
meaningful, diverse, and robust options. For this to happen, we need reliable and interpretable metrics
that can help evaluate the alternatives, both individually and as sets.

To achieve reliable and interpretable metrics, this chapter first discusses the key challenges that should
be considered when comparing different alternatives. Based on these requirements, the chapter lists
a short survey of existing metrics from the literature used to evaluate either individual alternatives or
sets of alternatives.

3.1. Challenges
Methods that generate near-optimal alternatives typically produce sets of alternatives, rather than single
alternatives. These sets form the basis for exploring the coverage of the near-optimal solution space
and robustness of alternatives within the near-optimal space. However, several key challenges arise
in generating, evaluating, and comparing these sets effectively.

3.1.1. Ranking of Alternatives
Each set of alternatives may contain multiple feasible alternatives that differ in structure or composition.
A central challenge is to prioritize and rank these alternatives according to how well they align with
the decision-making criteria of policymakers. Effective ranking reduces the time and cognitive effort
required for decision-making by highlighting the most relevant options first. It is inefficient, for example,
to present a clearly inferior alternative ahead of a demonstrably superior one.

3.1.2. Comparison between Sets
In addition to evaluating individual alternatives, it is often necessary to compare entire sets of alterna-
tives generated by different methods or under varying assumptions. A critical aspect of this comparison
is how well each set covers the near-optimal solution space. Sets that cover a broader range of distinct
and meaningful alternatives are generally more valuable than sets composed of highly similar alterna-
tives. For instance, a set where all alternatives disproportionately reduce investment in one technology
at the expense of another, without exploring other viable trade-offs, may fail to provide useful insights.
A set of alternatives that only considers the trade-offs between fossil fuels and renewables, without
exploring the trade-offs that nuclear energy brings to the table, fails to provide insights into the option
of nuclear energy planning.

12
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3.1.3. Computational Efficiency
Generating diverse, high-quality sets of near-optimal alternatives, especially for large multi-objective
LP problems, can be computationally expensive to solve. Efficient algorithms that can handle the
dimensionality of energy systems models while producing meaningful alternatives in acceptable time
frames are essential for widespread application. For example, in a national energy system optimization
model with thousands of variables and constraints, solving for a single optimal solution may already
take several hours. Generating a representative set of diverse near-optimal alternatives can multiply
this cost substantially. Without efficient algorithms, the computational burden becomes prohibitive for
real-time policy support or iterative stakeholder engagement.

3.2. Comparison Metrics
Alternative generation methods serve different purposes, ranging from supporting policymaking deci-
sions to identifying optimal alternatives under uncertainty or model misspecification. Consequently,
various comparison approaches have emerged. Despite their importance, most of the literature does
not employ formal metrics to evaluate alternative sets. Instead, domain experts typically assess alter-
natives qualitatively and draw conclusions based on their assessment.

Next to the analysis of domain experts, two distinct metrics are commonly used to evaluate the outputs
of different alternative-generating methods: convex hull [18] and shadow pricing [29]. The convex
hull metric evaluates the overall set of alternatives produced by a method, assessing their collective
coverage. In contrast, shadow pricing evaluates individual alternatives, focusing on the robustness of
each alternative. Both approaches offer valuable insights and are in detail discussed in this section.

3.2.1. Convex hull
Comparing convex hulls [18] is a metric introduced to compare the output of two methods that generate
near-optimal alternatives, by comparing the two different output sets. The convex hull is calculated by
taking all the proposed alternatives created by a method and comparing the volume of the convex hull
of these proposed alternatives. A method that produces a larger convex hull is considered to have
found a more diverse set of alternatives, as there are more possible trade-offs considered between
the two sets. This is shown by Pedersen et al. [26], where many alternatives are generated within the
convex hull. So the larger the convex hull, the more alternatives one can consider.

For example, consider a two-dimensional decision problem with objectives like cost and environmental
impact. If a method generates five alternatives that are tightly clustered in one corner of the objective
space, while a different method produces five alternatives spread out more broadly across the space,
the convex hull of the alternatives of the latter method encloses a larger area when compared to the
former. This allows the latter method to give more diverse trade-offs and flexibility when it comes to
decision-making.

Themetric has some limitations. To generate a convex hull, there have to be at least d+1 representative
alternatives, where d is the number of dimensions of the problem. An alternative is representative
when it is not a convex combination of other alternatives. When there are not d + 1 representative
alternatives, the volume of the high-dimensional solution space will be zero, and the metric gives no
information about the method. Lastly, calculating the convex hull for high dimensions is already a
computationally expensive problem, so this method does not lend itself to quick comparisons between
different methods.

3.2.2. Shadow Pricing
In contrast to comparing convex hulls, shadow pricing [29] is a metric that compares individual alter-
natives. Shadow pricing does not compare the method that produces the alternatives. These shadow
prices compare the price deficit, the difference in the price calculated by the model and the actual price,
of different alternatives that can occur when the model is slightly off. The core idea is to prefer the
alternatives that stay feasible, even when there are slight perturbations in the model. This is done by
calculating the dual vector of each alternative based on the original model. This dual vector is element-
wise minimized; this is called the shadow price of the alternative. The alternative that has the lowest
shadow price is the preferred alternative. In other words, given some small changes in the real world
regarding the constraints, shadow pricing estimates the impact of these changes on each alternative.
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For example, decision variable x was modeled with the constraint x ·a ≤ 1000, where a in this example
represents the price of oil, modeled based on observations in the real world. For this example, assume
a is set to 10. The method would prefer an alternative with x = 90 over an alternative with x = 95.
This preference is guided by the shadow price associated with each constraint. The shadow price can
be interpreted as a lower bound on the objective function’s sensitivity to that constraint, essentially
quantifying how tight or “active” the constraint is. A lower shadow price implies more slack in the
constraint, indicating that the alternative is less sensitive to perturbations in the parameter a, and thus
more robust.

A key limitation of shadow pricing is that it evaluates constraint violations relative to the original opti-
mization model. By design, the optimal solution to this model will have a high shadow price, since the
shadow price reflects the marginal value of relaxing constraints. As the most “optimal” solution tends
to push constraints to their limits. This leads to the optimal solution often appearing the least robust
under this metric, even though it performs best in terms of the original objective.

This highlights an important aspect of shadow pricing: it does not reward alternatives that strictly opti-
mize performance, but rather those that are resilient to small changes in constraints. In this sense, the
metric is more about identifying robustness than optimality. As the authors have emphasized, shadow
pricing is best suited for filtering through a set of already high-quality alternatives to identify those that
maintain performance under perturbation.

3.3. Summary
This chapter has explored the key challenges and existing metrics associated with evaluating near-
optimal alternatives in decision-making contexts. While the generation of alternatives has received
increasing attention, comparatively little focus has been placed on how to assess the quality and utility
of these alternatives, either individually or as sets.

Three major challenges were identified:

• Ranking of Alternatives, which deals with prioritizing alternatives in a way that aligns with decision-
making criteria.

• Comparison between Sets, which emphasizes the need to assess the coverage and representa-
tiveness of sets of alternatives.

• Computational Efficiency, which highlights the need for scalable algorithms that can support timely
and iterative decision processes, especially in large-scale models.

To address these challenges, two prominent comparison metrics were reviewed:

• Convex Hull measures the coverage of a set of alternatives by evaluating the volume of the so-
lution space they span. A larger convex hull implies a broader range of meaningful trade-offs
possible within the alternatives. However, the method struggles with high-dimensional problems
and requires a sufficient number of convex independent alternatives to produce informative re-
sults.

• Shadow Pricing focuses on the robustness of individual alternatives by analyzing their sensitivity
to small perturbations inmodel parameters. Alternatives with a lower shadow price are considered
more robust. This leads to the metric inherently penalizing cost-efficient alternatives over robust
ones.

Together, these metrics highlight different dimensions of quality in near-optimal alternatives. In the
next chapter, these metrics are analyzed, and shortcomings based on the decision relevance of the
alternatives will be discussed.



4
Analyzing the Metrics that Compare

Near-Optimal Alternatives

The previous chapter evaluated a range of methods using established metrics like convex hull area and
shadow pricing. These metrics offer valuable insights but tend to emphasize either coverage of the full
near-optimal solution space or the robustness of the alternatives themselves. This chapter analyzes
current metrics and establishes a disconnect between the theoretical foundation of the metrics and the
quality of the alternatives in decision-making contexts.

The lack of explicit relation of the theory to the quality of the alternatives motivates a more principled
approach. This chapter analyses the known metrics and Modeling for Generating Alternatives (MGA)
methods used in the literature and identifies their shortcomings based on decision relevance. To combat
these shortcomings, this thesis introduces a novel concept of evaluating near-optimal alternatives with
concepts from multi-objective optimization theory, specifically the Pareto front. Rather than treating
each decision variable of the alternatives as a decision parameter, they are instead treated as their
implicit objective function. Where the alternatives can be structured by a dominance relation based on
trade-offs between the decision variables. This new perspective enables a deeper understanding of
what makes one alternative more relevant than any other.

4.1. Evaluating Existing Metrics and Methods for Near-Optimal Al-
ternatives

To understand how near-optimal alternatives can bemeaningfully evaluated and compared, we conduct
a dual analysis, where the idea is to evaluate existing metrics used to compare the different MGA
methods, while also comparing MGA techniques used to generate those alternatives. This two-sided
approach is necessary because the effectiveness of a metric is only meaningful in the context of the
alternatives it evaluates, and the usefulness of a method depends not just on how many alternatives it
finds, but on the kind of alternatives it generates.

To understand the strengths and limitations of existing metrics used to evaluate near-optimal alterna-
tives, this section compares all MGA techniques discussed in section 2.2 using a controlled, illustrative
problem. This comparison focuses exclusively on methods that share a common structural foundation:
they all generate alternatives by iteratively modifying the objective function between runs. This shared
framework allows for consistent comparison of how each technique explores the near-optimal solution
space.

Although Modeling for All Alternatives (MAA) discussed in section 2.3, also relies on iteratively updating
the objective function, it is excluded from this analysis for two key reasons. First, while MAA is well-
suited to small models, it becomes computationally infeasible in higher dimensions, often failing beyond
10 decision variables. Second, MAA does not require the user to specify the number of alternatives
in advance; instead, it exhaustively enumerates all corner points of the near-optimal region, producing

15
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a set of alternatives that includes the whole near-optimal solution space. This makes it fundamentally
incompatible with other MGA methods, which allow for only a predetermined number of alternatives.
As such, while MAA is a useful tool for exhaustive problem characterization, its unique assumptions
and scalability issues make it unsuitable for side-by-side comparison with more general-purpose MGA
methods. Altogether, this pushes the analysis of MAA beyond the scope of this thesis.

4.1.1. Two-dimensional illustrative problem
To analyze the behaviour of the different methods when generating alternatives, a two-dimensional
illustrative problem is created. This problem is created to show the differences between each method.
The optimization problem used is defined in (4.1), with constraints that define a convex feasible region.
The goal is to minimize a simple linear cost function, while exploring how different methods traverse
the space of near-optimal solutions.

Minimize x+ 3y

subject to 0 ≤ x ≤ 10

0 ≤ y ≤ 30

6x+ y − 13 ≥ 0

x+ y − 3.5 ≥ 0

0.4x+ y − 2 ≥ 0

3.5x+ y − 8.5 ≥ 0

− 3x+ y + 15.9 ≥ 0

− 3x+ y + 2 ≥ 0

(4.1)

Its optimal solution is the point x = 5, y = 0, with optimal solution value 5. Together with a slack of 1.3,
this gives the following near-optimal solution space, see (4.2). This space is bounded and characterized
by key corner points, labeled a1 to a8 in Figure 4.1. These points serve as a reference for comparing
how well each method covers the decision-relevant space. The optimal solution to this model is the
solution a3, which does not have to be generated as an alternative and is only shown when generated
as an alternative.

subject to 0 ≤ x ≤ 10

0 ≤ y ≤ 30

6x+ y − 13 ≥ 0

x+ y − 3.5 ≥ 0

0.4x+ y − 2 ≥ 0

3.5x+ y − 8.5 ≥ 0

− 3x+ y + 15.9 ≥ 0

− 3x+ y + 2 ≥ 0

x+ 3y ≤ (1 + 1.3) · 5

(4.2)
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Figure 4.1: The corner points and convex hull of the near-optimal solution space.

It is important to note that the Min/Max Variables and Random Vector methods incorporate stochastic
elements in their generation processes. As a result, repeated runs can yield slightly different sets
of alternatives and, consequently, variations in the volume of the resulting convex hull. While this
variability exists, the examples presented here are representative of the typical behavior observed
across multiple runs. The patterns and insights drawn from these observations remain consistent and
support the broader conclusions of this analysis.

All five MGA techniques were applied to the problem to generate both a set of alternatives with 5 and
20 iterations, respectively. With only 5 iterations, the results show which regions the methods explore
when searching alternatives. While the set of 20 alternatives is chosen to show which parts of the
near-optimal solution space each method does not explore, even if the number of alternatives allows
for the total search space to be fully explored with an ideal method. The generated alternatives in the
set of alternatives for a set size of 5 are visualized in Figure 4.2 to Figure 4.6. Table 4.1 shows how
many times each alternative was generated. The resulting set of alternatives with a set size of 20 and
their convex hulls are visualized in Figure 4.7 to Figure 4.11. These plots also reveal how different
techniques explore the near-optimal solution space or where they fail to do so. The Table 4.2 shows
how many times each method found each alternative, and Table 4.3 shows how long each method took
to find these alternatives when using the hardware as discussed in Appendix A.

Table 4.1: Number of times each reference point was generated by each method when generating 5 alternatives.

Method a1 a2 a3 a4 a5 a6 a7 a8 set size
Max-Distances 1 1 0 0 0 0 0 3 3
HSJ 0 0 0 4 0 0 1 0 2
Spores 0 0 0 0 1 2 2 0 3
Min/Max Variables 3 0 0 2 0 0 0 0 2
Random Vector 0 2 0 0 0 0 2 1 3
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Figure 4.2: The corner points and convex hull found by using the Max-Distance method when generating 5 alternatives.
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Figure 4.3: The corner points and convex hull found by using the HSJ method when generating 5 alternatives.
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Figure 4.4: The corner points and convex hull found by using the Spores method when generating 5 alternatives.
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Figure 4.5: The corner points and convex hull found by using the Min/Max Variables method when generating 5 alternatives.
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Figure 4.6: The corner points and convex hull found by using the Random Vector method when generating 5 alternatives.

Table 4.2: Number of times each reference point was generated by each method when generating 20 alternatives.

Method a1 a2 a3 a4 a5 a6 a7 a8 set size

Max-Distances 1 9 0 0 0 0 0 10 3
HSJ 0 0 0 19 0 0 1 0 2
Spores 0 0 0 0 12 6 2 0 3
Min/Max Variables 2 4 1 0 3 0 0 10 5
Random Vector 6 4 0 1 1 0 2 6 6

Table 4.3: Total runtime of each method when generating 20 alternatives.

Method Runtime (s)
Max-Distances 0.321
HSJ 0.067
Spores 0.058
Min/Max Variables 0.064
Random Vector 0.061
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Figure 4.7: The corner points and convex hull found by using the Max-Distance method when generating 20 alternatives.
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Figure 4.8: The corner points and convex hull found by using the HSJ method when generating 20 alternatives.
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Figure 4.9: The corner points and convex hull found by using the Spores method when generating 20 alternatives.
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Figure 4.10: The corner points and convex hull found by using the Min/Max Variables method when generating 20 alternatives.
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Figure 4.11: The corner points and convex hull found by using the Random Vector method when generating 20 alternatives.

An important observation is that certain deterministic methods, namely Max-Distance, Spores, and
HSJ, exhibit stagnation in the generation of alternatives. Specifically, these methods fail to identify new
alternatives beyond the fifth iteration, as indicated by the fact that the cardinality of the set of alternatives
remains constant between iterations 5 and 20. This behavior suggests that such methods can become
confined to a limited subset of the near-optimal solution space.

A similar, though less pronounced, phenomenon can be observed in stochastic search methods. In
these cases, the largest increases in the number of discovered alternatives occur during the initial
iterations, while subsequent iterations yield diminishing returns. This trend arises from the structure
of the near-optimal solution space: once an alternative has been identified, the region it occupies is
effectively covered, thereby reducing the probability that a randomly generated weight vector will yield
a new alternative.

Nevertheless, stochastic approaches differ from deterministic ones in a crucial respect. Due to their
inherent randomness, they retain the ability to occasionally discover new regions of the solution space,
even after repeated encounters with previously identified alternatives. As a result, they avoid perma-
nent stagnation.

It should also be noted, however, that this distinction introduces a disadvantage for stochastic methods.
Since deterministic methods ultimately converge to a stable set of alternatives, their execution can
be terminated as soon as convergence is detected, thereby avoiding unnecessary computation. By
contrast, stochastic methods do not exhibit such a clear stopping criterion, as there is always a non-
zero probability of uncovering additional alternatives, regardless of how many iterations have already
been performed.

Another notable point concerns computational efficiency. As reported in Table 4.3, the Max-Distance
method is significantly slower than the others, with a total runtime exceeding 0.3 seconds, nearly an
order of magnitude longer than all other techniques. While this runtime might be acceptable in this
relatively simple 2D example, it highlights a critical limitation. If the runtime of this method stays an
order of magnitude higher for more complex models, Max-Distance is not fast enough to compete with
the other methods of generating alternatives.

4.1.2. Convex hull
The convex hull of the alternatives generated by each method provides insight into how well each
technique explores the near-optimal solution space. From the results shown in Figures 4.2 to 4.6,
when only considering 5 iterations, we observe not that much difference in the size of the convex hull,
with one notable exception:
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• The Max-Distance method clearly has the biggest convex hull of all the methods.
• HSJ, Spores, Min/Max Variables, and Random Vector all have a relatively small convex hull.

From the results shown in Figures 4.7 to 4.11, when considering 20 iterations we observe notable
differences in coverage:

• RandomVector andMin/Max Variablesmethods demonstrate themost effective exploration. Both
span a large portion of the feasible near-optimal region, successfully identifying most alternatives
of the near-optimal solution space.

• The Max-Distance approach performs moderately well. While it avoids clustering in a small area,
it tends to get trapped bouncing between extreme points, leading to redundant alternatives in the
extreme points of the near-optimal solution space and reduced overall spread.

• HSJ and Spores perform the worst in terms of coverage. Their generated alternatives are tightly
clustered, missing significant portions of the near-optimal solution space. These methods fail to
cover a large part of the near-optimal solution space.

In summary, when only considering 5 iterations, Max-Distance performs best. When considering 20 iter-
ations, stochastic heuristics (Random Vector, Min/Max Variables) offer better convex coverage, while
deterministic heuristics (HSJ, Spores, and Max-Distance) often struggle to escape regions of found
alternatives.

4.1.3. Shadow pricing
Shadow pricing evaluates the robustness of alternatives by examining their proximity to constraint
boundaries, as reflected by the dual values. From this perspective, alternatives further from active
constraints are considered more robust. In this example the most robust alternatives are a1 followed
by a2 and a8.

When considering 5 iterations, the results show that:

• Max-Distance identifies only the most robust alternatives, including all of the most robust alterna-
tives, which exhibit the lowest shadow prices and lie furthest from multiple constraint boundaries.

• Min/Max Variables and Random Vector also identify robust alternatives, but their search does not
find all alternatives that are considered to be the most robust.

• HSJ and Spores produce alternatives with consistently high shadow prices. This suggests that
the alternatives they generate lie close to active constraints and lack robustness.

When considering 20 iterations, the results show that:

• Max-Distance identifies only the most robust alternatives, including all of the most robust alterna-
tives, which exhibit the lowest shadow prices and lie furthest from multiple constraint boundaries.

• Min/Max Variables and Random Vector also identify robust alternatives, but their search includes
a broader set of alternatives, some of which have higher shadow prices and thus lower robust-
ness.

• HSJ and Spores produce alternatives with consistently high shadow prices. This suggests that
the alternatives they generate lie close to active constraints and lack robustness.

In summary, while Max-Distance prioritizes robustness by targeting alternatives distant from constraints,
Min/Max Variables and Random Vector identify robust alternatives, but do not focus on finding them.
HSJ and Spores, however, are less effective in identifying robust alternatives due to their narrow search
focus.

4.1.4. Knowledge Gap
While quantitative metrics such as convex hull and shadow pricing provide useful insights into the per-
formance of MGA techniques, they do not fully capture the nuances that influence method effectiveness
in real-world applications. Despite performing the worst on both spread and robustness metrics in both
cases of 5 and 20 alternatives, HSJ and Spores are considered state-of-the-art methods when gen-
erating alternatives [11, 20, 21, 30]. This indicates a gap between what current metrics capture and
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what decision makers use to help decision-making. Possible explanations may include interpretability,
perceived alignment with user preferences, or decision-relevant alternative selection of these methods.

This gap reinforces the need for a broader evaluation framework. Metrics like convex hull and shadow
pricing, while useful, are not sufficient on their own to assess decision-relevance in alternative gener-
ation, as is supported by what decision makers actually use. This gap motivates the exploration of
multi-objective evaluation techniques in the following section, which aims to compare MGA methods
by accounting for trade-offs between the decision variables of the model.

4.2. Multi-Objective Optimization as a Framework for Evaluating
Alternatives

A clear theoretical framework for evaluating the decision-making value of alternatives is still miss-
ing. This thesis introduces a new perspective: interpreting the evaluation of near-optimal alternatives
through the lens of multi-objective optimization (MOO). While MOO has been widely used in real-world
applications [13]. It has not been used to evaluate sets of alternatives produced by near-optimal gen-
eration methods.

The key insight is: even if a model is formally optimized using a single objective function (e.g., cost), the
decision variables themselves often reflect implicit trade-offs between competing priorities. This allows
us to interpret each decision variable as its own implicit objective. Under this view, each near-optimal
alternative represents a particular trade-off between the different decision variables.

From this perspective, we can borrow a central concept from multi-objective optimization: the Pareto
front. An alternative is Pareto-optimal (or non-dominated) if no objective can be improved without
worsening another. Analogously, in the context of near-optimal alternatives, an alternative is decision-
relevant (or non-dominated) if it represents a distinct trade-off between its decision variables.

This interpretation leads to an important realization: current evaluation metrics fail to distinguish be-
tween alternatives that are truly decision-relevant and those that are not. An alternative that increases
investment across all technologies, for instance, may appear “diverse” in convex hull space, yet offer
no strategic value to a policymaker.

To the best of my knowledge, this thesis is the first attempt to apply multi-objective optimization theory,
not to generate alternatives, but to evaluate their structural and strategic usefulness. The next section
illustrates this concept through a two-dimensional example andmotivates the need for a new evaluation
metric based on dominance relations among alternatives.

4.3. Filtering for Decision-Relevant Alternatives
If this reasoning is applied to the two-dimensional illustrative example, we can directly inspect and
compare specific alternatives to highlight the power of the multi-objective perspective.

Let us consider three alternatives: a1, a5, and a7. The two decision variables, x and y, are interpreted
as proxies for competing objectives, e.g., investments in renewable and fossil infrastructure. Under
this interpretation, each alternative corresponds to a vector in the objective space, with component
magnitudes representing the level of investment in each “objective.”

a1 : (x, y) = (5.92, 1.86)

a5 : (x, y) = (2, 1.5)

a7 : (x, y) = (1.67, 3.0)

Visualized as bars or vectors, we observe:

• a5 requires 2 units of renewable and 1.5 units of fossil investments.
• a7 emphasizes fossil over renewable, with 1.67 and 3.0 units, respectively.
• a1 has significantly higher values on both axes: 5.92 and 1.86.
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Now, applying the logic of dominance from multi-objective optimization:

• Between a5 and a7, neither dominates the other. a5 uses less fossil input, while a7 uses less
renewable. Each represents a different trade-off, both valid depending on decision-maker prefer-
ences.

• However, when comparing a1 with a5, we see that a1 has higher values on both x and y. That
is, it requires more of both renewable and fossil investments compared to a5, while yielding a
near-optimal cost.

This implies that a1 is dominated by a5, there are no trade-offs to justify choosing a1, as a5 is strictly
better on both decision variables.

This small example underscores a crucial point:

Some alternatives, although feasible and near-optimal in terms of cost, are not decision-
relevant because they are structurally worse than other alternatives across all decision vari-
ables.

Current metrics like convex hull area or even shadow pricing would still consider a1 a valid and even
desirable addition to a set of alternatives because it expands the geometric coverage of the set and is
distant from most constraint boundaries. But from a decision-making standpoint, it is not useful; it adds
redundancy and potentially misleads stakeholders.

Thus, the multi-objective lens helps filter out dominated alternatives and identify those that represent
meaningful trade-offs, improving both the quality and interpretability of the set of alternatives. When the
problem is analyzed using dominance-based criteria, alternatives that are non-dominated are preferred.
These alternatives are shown in Figure 4.12. When comparing current methods to these decision-
relevant alternatives, an important observation emerges: some alternatives that are undervalued by
traditional metrics, but favored by domain experts, perform well under the multi-objective perspective.
For instance, the state-of-the-art methods HSJ and Spores, which are not prioritized by existing quan-
titative metrics due to convex hull or robustness, are revealed to be preferred when evaluated in terms
of dominance and trade-off relevance. This observation reinforces the limitations of conventional met-
rics in isolating decision-relevant alternatives and highlights the value of incorporating a multi-objective
perspective.

This insight forms the foundation of the dominance metric introduced in chapter 5, and motivates the
development of the method in chapter 6, which explicitly searches for non-dominated and thus decision-
relevant alternatives.
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Figure 4.12: The corner points and convex hull found when analyzing for non-dominated alternatives
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4.4. Summary
This chapter investigates different approaches for generating near-optimal alternatives in optimization
problems. It evaluates several established methods, the stochastic techniques (Random Vector and
Min/Max Variables), and the deterministic methods (HSJ, Spores, and Max-Distance). The analysis
reveals that stochastic methods generally produce a wider spread of alternatives, effectively cover-
ing more of the near-optimal solution space and offering greater coverage. In contrast, deterministic
methods often generate alternatives that are more specialized and less diverse.

Even though the stochastic methods seem to outperform the deterministic methods in most metrics,
HSJ and Spores are still preferred by experts. This discrepancy between the observations and usage
in the real world indicates a gap in current understanding. To combat this gap, the chapter introduces
a multi-objective view that identifies alternatives that are decision-relevant. This perspective allows for
a deeper understanding of the trade-offs between alternatives and claims that:

Some alternatives, although feasible and near-optimal in terms of cost, are not decision-
relevant because they are structurally worse than other alternatives across all decision vari-
ables.

The rest of the thesis investigates this claim to see if a multi-objective perspective can reliably distin-
guish between truly valuable alternatives and those that are merely mathematically feasible. By apply-
ing this perspective, the research aims to identify which alternatives provide meaningful trade-offs for
decision-makers and which can be excluded without loss of strategic value.



5
Dominance

Decision-making often involves evaluating a set of alternatives. In such contexts, it is essential to
distinguish between genuinely valuable alternatives and those that offer no meaningful improvement.
This chapter introduces a dominance-based framework to formally assess and compare alternatives.

This chapter begins by defining the notion of dominance between alternatives, establishing the founda-
tion for identifying non-dominated alternatives. The chapter extends this concept by introducing strict
dominance, dominance equivalence, and dominance regions, all supported by different visualizations.
These concepts enable us to move beyond binary comparisons and a metric for evaluating sets of
alternatives, which we will call dominance.

Finally, we apply this new dominance metric to the evaluation of alternative-generation methods. By
defining the dominant set and introducing a layered dominance ranking, we create a quantitative basis
for comparing methods in terms of the quality and variety of the alternatives they produce. This enables
a more meaningful comparison than traditional geometric metrics such as spread or convex coverage.

5.1. Dominance
To address the challenge of quantitatively comparing methods for identifying alternatives, this thesis
introduces a new concept to alternative generation, called dominance, which is defined and used as a
basis for comparison between different alternatives.

Definition 5.1.1 (Dominance). Let k and l be vectors containing the variable assignments of two al-
ternatives. Let ki refer to the variable value of alternative k with index i and li to the variable value of
alternative l with index i. Let ci be the coefficient of the variable i in the objective function. We say that
k dominates l, denoted k ⪰ l, if:

∀i ciki ≤ cili (5.1)

For clarity, this can be equivalently written case-by-case as:

∀i,


ki ≤ li if ci > 0,

ki ≥ li if ci < 0,

true if ci = 0.

(5.2)

To establish the practical relevance of the dominance relation, it is necessary to demonstrate its impli-
cations for the evaluation of alternatives with respect to the objective function. The following lemma
formalizes this connection by showing that if one alternative dominates another according to the given
definition, then it yields no worse objective function values across all criteria. This result provides a

28
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theoretical justification for employing dominance as a quantitative basis for comparing alternatives.

Lemma 5.1.1. k ⪰ l→ f(k) ≤ f(l)

Proof. Recall the definition of the linear objective functions

f(x) =
∑
i

cixi (5.3)

Also it is given that k ⪰ l thus:
∀i ciki ≤ cili (5.4)

Sum both sides over all i, we get: ∑
i

ciki ≤
∑
i

cili (5.5)

By the definition of f(x) in (5.3), this is equivalent to:

f(k) ≤ f(l) (5.6)

Thus, we can conclude that:
k ⪰ l → f(k) ≤ f(l) (5.7)

While the dominance relation provides a means of comparing alternatives, it is important to character-
ize other conditions with which two alternatives can be compared. In case two alternatives dominate
each other, the notion of equivalence is introduced.

Definition 5.1.2 (Equivalence). Let k and l be two alternatives. Alternatives k and l are equivalent
with respect to dominance, denoted k ∼ l, if and only if:

k ⪰ l ∧ l ⪰ k (5.8)

To distinguish cases in which one alternative is not only not worse but strictly better than another, we
introduce the notion of strict dominance.

Definition 5.1.3 (Strict Dominance). Let k and l be two alternatives. Alternative k strictly dominates l,
denoted k ≻ l, if and only if:

k ⪰ l ∧ l ⪰̸ k (5.9)

That is, k strictly dominates l if it dominates l according to the previously defined relation, and the two
alternatives are not identical in their variable assignments. This definition ensures that strict dominance
captures genuine improvement in at least one dimension, while maintaining non-inferiority across all
others.

In some cases, two alternatives may not dominate one another in either direction. To capture this situ-
ation, we define the notion of dominance equivalence.

Definition 5.1.4 (Incomparable). Let k and l be two alternatives. Alternatives k and l are incomparable
with respect to dominance, denoted k | l, if and only if:

k ⪰̸ l ∧ l ⪰̸ k (5.10)
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That is, k and l are dominance-incomparable if neither alternative dominates the other under the dom-
inance relation previously defined. This indicates that the alternatives are incomparable in terms of
dominance and suggests that each may offer trade-offs that prevent a clear ordering according to the
given objective functions.

In addition to comparing pairs of alternatives, it is often useful to understand the extent of an alterna-
tive’s dominance, that is, the set of alternatives it dominates. This leads to the concept of a dominance
region, which captures the full scope of alternatives that are no better than a given alternative under the
dominance relation. The dominance region can be thought of as a dominance “footprint” in the space
of all feasible alternatives.

Definition 5.1.5 (Dominance Region). Given an alternative k, the dominance region of k, denoted
D(k), is the region of near-optimal solution space Q where all alternatives l that lie in this region Q are
dominated by k such that k ⪰ l, i.e., the region of all near-optimal solution space dominated by k:

D(k) = {l ∈ Q | k ⪰ l}. (5.11)

5.2. Visualization of Dominance
To provide an intuitive understanding of the dominance relation and its variants, we now turn to a
geometric interpretation in two dimensions. The corresponding visualizations illustrate how dominance,
strict dominance, and dominance equivalence manifest when alternatives are represented as points in
a two-dimensional variable space.

In Figure 5.1, a fixed alternative a1 is shown along with its dominance region. This example assumes
the objective function to be minimized is f(x, y) = x + y, and thus, the dominance region consists of
points that lie to the upper right of a1 in the coordinate space (i.e., with greater or equal values in both
dimensions). This region reflects the structure imposed by the dominance relation, whereby any point
lying within it is considered no better than a1 in terms of dominance and thus objective functions. In
this example, one can see that a1 ≻ a2, a1 ≻ a7, and a1 ≻ a6.

Figure 5.2 illustrates the concept of dominance incomparability. Two alternatives, a1 and a5, are shown
along with their respective dominance regions. The figure makes clear that neither alternative is fully
contained within the other: neither dominates nor is dominated by the other. This mutual lack of domi-
nance aligns with the formal definition of incomparability in dominance, denoted a1 | a5.
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Figure 5.1: Dominance region of a1
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Figure 5.2: Dominance incomparability of a1 and a5
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5.3. Dominant Set
In addition to evaluating individual alternatives, it is often useful to assess the quality of an entire set
of alternatives generated by a given method. To this end, we introduce the concept of the dominant set.

Definition 5.3.1 (Dominant Set). Given a set of alternatives S, the dominant set of S is defined as the
subset of alternatives in S that are not dominated by any other alternative in S. That is,

Dmn(S) = {k ∈ S | ∄l ∈ S such that l ≻ k} (5.12)

In Figure 5.3, the dominant set and its combined dominance region are shown. In this example, three al-
ternatives: a1, a3, and a5 are non-dominated. These alternatives are shown along with the regions that
they dominate, emphasizing their relative advantage over the other alternatives in the set. The shaded
region represents the subset of the space for which the corresponding alternative offers performance
that is no worse in any objective and strictly better in at least one.

Figure 5.3 clearly shows that all other alternatives lie within this dominated region, indicating that they
are strictly worse than one of a1, a3, or a5 and therefore excluded from the dominant set. This visual
structure reinforces the definition of the dominant set as the collection of alternatives that are not strictly
dominated by any other within the set.
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Figure 5.3: The dominated set (red) and the region that they dominate with dominated alternatives (blue)

5.4. Dominance Ranking
The dominance-based metric introduced in this chapter not only allows for a clear comparison between
individual alternatives. It also opens the door for more advanced analysis and the ranking of alternatives.
This allows for a deeper evaluation of the entire alternative generating methods. The framework of
dominance is extended to hierarchically rank the alternatives based on the degree to which they are
dominated.

While the current dominance definition provides a binary classification, alternatives are either domi-
nated or non-dominated. More information can be derived when ranking them in successive layers of
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dominance. This process results in a dominance ranking, where alternatives are grouped by the extent
to which they are dominated.

Definition 5.4.1 (Dominance ranking). Given a set of alternatives S, dominance ranking is defined on
levels as follows:
Let D1 be the dominant set S.
Let D2 be the set of all alternatives S \D1 that is dominated by at least one alternatives in D1.
Let D3 be the set of all alternatives S \ (D1 ∪D2) that is dominated by at least one alternative in D2.
Etc.

In this process D0 is defined as:

D0 = ∅ (5.13)

This process continues iteratively defining Dk for k > 0, k ∈ N as:

Dk(S) =
{
k ∈ S \

k−1⋃
1

Di

∣∣∣ ∃l ∈ Dk−1 such that l ≻ k ∧ ∄m ∈ Dk+1 such that m ≻ k
}
. (5.14)

This results in ranking each alternative in some Dk until S \ (D0 ∪ ... ∪Dk) is an empty set.

This layered structure provides a more nuanced evaluation of alternative quality than the dominant set
alone. For example, in comparing methods that generate alternatives, one may not only assess the
size of the dominant set (i.e., D1), but also examine the distribution of alternatives across dominance
levels. A method that generates more alternatives in the higher tiers (e.g., D1 ∪D2) may be preferred
over one whose alternatives mostly occupy lower-ranked levels.

This layered structure is also illustrated visually. In the corresponding Figure 5.4, alternatives are plot-
ted in a two-dimensional objective space, and grouped by their dominance level. The first level, D1,
contains the non-dominated alternatives, which form the outer frontier; no other alternative in the set
dominates any of them. These are typically positioned toward the lower-left corner in minimization
problems, representing optimal trade-offs.
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Figure 5.4: Ranking of the alternatives

5.5. Comparing Methods using Dominance
The concept of a dominant set allows for a principled comparison of methods based on the quality of the
alternatives they produce. Let method x produce a set of representative alternatives X, and method y
produce a set of representative alternatives Y . We say that method x is preferred over method y if in
Dmn(X ∪ Y ) there are more alternatives from set X then from set Y , i.e.∣∣Dmn(X ∪ Y ) ∩X

∣∣ ≥ ∣∣Dmn(X ∪ Y ) ∩ Y
∣∣. (5.15)

This criterion focuses on the number of distinct, non-dominated alternatives, those that are not strictly
worse than any others within the set. In doing so, it measures the decision-making value of the gener-
ated alternative sets. A method that contributes more non-dominated alternatives offers a broader and
potentially more useful range of choices, enhancing the decision space with options that are clearly not
inferior to others.

A crucial reason why the dominant set should only include representative alternatives and not all gen-
erated alternatives is to avoid infinite cardinality. If convex combinations of dominant alternatives are
allowed, then infinite alternatives can be generated, this is because the property of a convex problem
is that any convex combination between two alternatives is also a valid alternative. This is a problem
because it is impossible to numerically compare the sizes of two dominant sets if both sets have infinite
alternatives. Thus, before starting a comparison between two dominant sets, the convex combinations
should first be removed from those sets.

For example, suppose method x generates the alternatives X = {a1,a2,a3}, and method y generates
the alternatives Y = {a4,a5,a6,a7}, as visualized in Figure 5.5. Note that a7 is a convex combination
of a4, a5, and a6 it should be removed from set Y . Now, consider the dominant set of these alternatives:

Dmn(X ∪ Y ) = {a1,a3,a5}, (5.16)

where a1,a3 ∈ X and a5 ∈ Y . In this case, we have:∣∣Dmn(X ∪ Y ) ∩X
∣∣ = 2 and

∣∣Dmn(X ∪ Y ) ∩ Y
∣∣ = 1. (5.17)
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According to the criterion, since more elements in the dominant set come from X than from Y , method
x is preferred over method y. In this thesis, this criterion is used to compare methods that generate
alternatives.
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Figure 5.5: Visualization of alternatives from method x in red and method y in blue

5.6. Extension to Dominant Set and Dominance Ranking
In this section, we explore an extension to the concept of the dominance set and dominance ranking.
Specifically, we consider how convex combinations of alternatives can be leveraged to refine the dom-
inance set, allowing for the exclusion of more alternatives than the current definition permits. While
the existing framework restricts the use of convex combinations when forming sets of alternatives, it
does not impose the same limitations when comparing these sets. By explicitly incorporating convex
combinations into the comparison process, we can achieve a more discriminating dominance ranking
that better captures the relative strengths of alternative options.

Definition 5.6.1 (Convex Dominant Set). Given a set of alternatives S, the dominant set of S is defined
as the subset of alternatives in S that are not dominated by any convex combination of alternatives in
S. That is,

Dmnc(S) = {k ∈ S | ∄l ∈ conv(S) such that l ≻ k}, (5.18)

where conv(S) denotes the convex hull of S, i.e., the set of all convex combinations of elements in S.

In Figure 5.6, the convex dominant set and its combined dominance region are shown. In this example,
two alternatives: a3 and a5 are non-dominated. Which is different compared to just the dominant set,
which also included a1. These alternatives are shown along with the regions that they dominate, em-
phasizing their relative advantage over the other alternatives in the set. The shaded region represents
the subset of the space that is dominated by either a3, a5, or a convex combination of a3 and a5. To
further extend the use of the convex dominant set, the alternatives can also be ranked based on their
convex dominance. Which leads to Figure 5.7.
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Figure 5.6: The dominated set (red) and the region that they dominate with dominated alternatives (blue)
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Figure 5.7: Ranking of the alternatives when using a convex dominant set
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5.7. Summary
The dominance-based framework presented in this chapter provides a principled methodology for eval-
uating alternatives and sets of alternatives. By defining formal dominance relations and the dominant
set, it becomes possible to distinguish between alternatives not only in terms of absolute performance
but also in terms of their relative position within the decision space.

In the context of evaluating alternative-generation methods, the dominant set offers a meaningful cri-
terion for assessing the usefulness of a set of alternatives. Methods that produce a higher proportion
of non-dominated alternatives provide greater decision-making value. The layered dominance ranking
further refines this assessment by identifying alternatives that, while dominated, remain closer to the
non-dominated frontier.

Lastly, this chapter extends the concepts of dominance set and ranking by incorporating convex combi-
nations of alternatives. By considering the convex hull of a set, more alternatives can be excluded than
under the standard definition, yielding a convex dominant set. This refined set identifies alternatives
that are not dominated by any convex combination of others.

Overall, the dominance framework introduced here offers a robust foundation for both analyzing indi-
vidual alternatives and comparing the performance of alternative generation techniques.



6
Directionally Weighted Variables

This chapter introduces a new algorithm called Directionally Weighted Variables, which is a heuristic
that generates near-optimal alternatives that are likely to be dominating. This Directionally Weighted
Variables builds on and refines the Min/Max Variable method. By incorporating structural insights from
the problem’s formulation and the structure of the near-optimal solution space, the algorithm restricts
the weight generation to alternatives that are more likely to be within the dominant set of all near-optimal
alternatives.

6.1. Motivation
Traditionally, in MGA methods, alternatives are generated by solving a series of weighted optimization
problems, where the weight vector is updated for each alternative. In the case of the Min/Max variable
method, for each alternative, the values of the weights are sampled from the set: −1, 0, 1. This approach
ensures a diverse sampling of the near-optimal space, but it lacks a mechanism to focus on regions
that are more likely to contain dominating alternatives.

A key observation is that not all decision variables contribute the same way to the solution space with
respect to dominance. In particular, there are three different options possible for any decision variable
i, each influencing the objective function according to the sign of ci:

1. Positive: ci > 0.
2. Negative: ci < 0.
3. Zero: ci = 0, i.e., the variable does not appear in the objective.

Based on this observation, the possible values that are sampled when generating the weights for a
weight vector can be reduced when the goal is to find non-dominated alternatives.

This can be more intuitively explained with an example. This example illustrates why the sign of the
objective coefficient should influence the selection of weights. When comparing two alternatives that
differ only by the sign of a single weight wi, and where ci > 0, assigning wi = 1 pushes the decision
variable xi toward its lower bound, while wi = −1 pushes it toward its upper bound. Because lower
values of xi yield better objective values when ci > 0, the alternative withwi = 1 dominates the one with
wi = −1. This suggests that exploring weights aligned with the sign of ci is more likely to yield dominant
alternatives. While this example considers a simplified case, it demonstrates the benefit of restricting
weight values based on objective coefficients. This motivates the creation of a heuristic that searches
the near-optimal solution space for alternatives that are more promising in terms of dominance.

6.2. Implementation
The Directionally Weighted Variables generate near-optimal alternatives by solving a series of weighted
optimization problems. The key distinction of this method lies in how the weight vector is constructed:
rather than being sampled uniformly from a fixed set, weights are selectively drawn based on the
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structure of the objective function. This method is based on the Min/Max Variables method, which
only considers possible values for the weights in the weight vector to be in the set {−1, 0, 1}. Limiting
the possible weight values based on the coefficient in the objective function.

For each decision variable xi, the algorithm considers the sign of its corresponding objective coefficient
ci and restricts the set of possible weights accordingly:

• If ci > 0, the variable contributes positively to the objective. To prioritize minimizing this contribu-
tion, wi is sampled from {0, 1}.

• If ci < 0, the variable contributes negatively to the objective. To reduce its (negative) impact, wi

is sampled from {0,−1}.
• If ci = 0, the variable does not influence the objective directly, so wi is sampled from the full set
{−1, 0, 1}.

The method generates in total n weight vectors, where n is the number of alternatives that should be
generated. Together with the theory of MGA, the method minimizes the following objective at each
iteration k

wk · x, (6.1)

The whole method is also shown in Algorithm 1

This directional sampling introduces a problem-aware bias into the weight generation process, steering
the search toward areas of the near-optimal solution space where dominance is more likely. Once
a complete weight vector is generated, it is used to find an alternative in the near-optimal solution
space problem. Similar to the other MGA methods, this process is repeated to construct a portfolio of
alternatives, with each iteration generating a new weight vector.

The result is a more targeted exploration of the solution space, yielding alternatives that are not only
near-optimal but also more decision-informative.

Algorithm 1 Directionally Weighted Variables
Require: Model (original optimization problem), n (number of alternatives), s (slack)
Ensure: Set of alternatives
1: Solve original model:
2: T ← solve(Model)
3: Define near-optimal model:
4: Add constraint f(x) ≤ (1 + s)T
5: Initialize alternative set P ← {T}
6: for k = 1 to kmax do
7: Generate weight vector wk:
8: for each variable i do
9: if ci > 0 then

10: Sample wi ∈ {0, 1}
11: else if ci < 0 then
12: Sample wi ∈ {0,−1}
13: else
14: Sample wi ∈ {−1, 0, 1}
15: end if
16: end for
17: Define auxiliary objective: minimize wk · x
18: Solve near-optimal model with new objective:
19: xk ← solve(Model)
20: Add xk to set of alternatives P
21: end for
22: return P
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6.3. Illustrative Example
To illustrate the behavior of the Directionally Weighted Variables, we extend chapter 4 by analyzing
the same illustrative example with the Directionally Weighted Variables method described above. This
example allows us to demonstrate how directional weight sampling affects the generation of alternatives
in a simple, visual setting.

Consider a problem with two decision variables, x and y, with associated objective coefficients c1 > 0
and c2 > 0. According to the algorithm’s weight sampling strategy, both x and y adjust the sampled set
to {0, 1}, encouraging the minimization of x and y.

When generating 5 alternatives for this illustrative problem, the resulting alternative set is visualized in
Figure 6.1.
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Figure 6.1: The corner points and convex hull found by using the Directionally Weighted Variables method when generating 5
alternatives.

When generating 20 alternatives for this illustrative problem, the resulting alternative set is visualized
in Figure 6.2.
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Figure 6.2: The corner points and convex hull found by using the Directionally Weighted Variables method when generating 20
alternatives.

Overall, the results illustrate that while the heuristic does not guarantee only finding alternatives within
the dominant set, it finds the most decision-relevant regions of the near-optimal space of this illustrative
problem, showing the promise of limiting the weight vectors to explore only certain regions of the near-
optimal solution space.

6.4. Summary
This chapter introduced theDirectionallyWeighted Variables, a heuristic approach designed to generate
near-optimal alternatives with a higher likelihood of dominance. Building upon the Min/Max Variable
method, this algorithm refines the alternative generation process by using the sign of the objective
function coefficients to inform weight vector construction. This directional bias leads to a more focused
exploration of the near-optimal solution space, targeting regions that are more decision-relevant.

The illustrative 2D example highlighted how the algorithm guides the search toward more promising
areas. While the approach does not guarantee only alternatives within the dominant set, it offers a prac-
tical and intuitive enhancement over traditional MGA methods by better aligning the weight generation
process with problem structure.

In the following chapters, this algorithm will be evaluated more extensively using larger and more
complex models. These experiments will explore the effectiveness and scalability of the Directionally
Weighted Variables in high-dimensional settings, further validating its potential for real-world decision
support.



7
Setup

This chapter outlines the experimental framework used to evaluate methods for generating high-quality,
non-dominated, near-optimal alternatives. The focus is on understanding how different strategies for
guiding the search, via weight vector generation, influence the dominance of alternative investment
alternatives. This chapter clearly defines themodel used for validation, establishes a clear experimental
design to test the effectiveness of the proposed method, and discusses the evaluation of the findings.

The Generation Expansion Planning (GEP) model is used as the core optimization problem. Its struc-
ture, decision variables, and constraints are well-suited for exploring near-optimality, as multiple invest-
ment configurations can yield similar costs but differ significantly in structure. This makes the GEP
model particularly valuable for examining trade-offs between decision variables, since these variables
reflect the inherent flexibility in long-term capacity planning and highlight how small deviations from the
optimal solution can have meaningful implications for system design, policy, and investment strategies.

The chapter is organized into five main sections. First, the GEP model is defined in detail, including
all sets, parameters, and decision variables, followed by the mathematical formulation. Second, two
model instances are introduced: a full-scale European model and a simplified version used for con-
trolled analysis. Third, the algorithmic workflow is described—how alternatives are generated, filtered,
and evaluated using different weight vector strategies. Fourth, this chapter shows how the dominance
ranking is calculated. Lastly, the experimental setup is detailed, including solver configuration, unique-
ness thresholds, and performance metrics.

7.1. Model
The model that is used to test the idea of domination is the Generation Expansion Planning (GEP)
problem. GEP is a model that aims to minimize the economic cost of installing power plants to meet
the expected demand of a given planning horizon. The objectives of GEP are fourfold [25]:

• Identify what types of power generation technologies should be added to the grid.
• Determine how much capacity of each generation type should be installed.
• Decide where the power plants should be located within the network.
• Establish when each power plant should be implemented.

There are many ways to implement the GEP model, each tailored to specific needs or contexts. These
implementations may vary in planning horizons, network topology, and the inclusion of real-world con-
straints such as environmental regulations, fuel prices, or transmission limitations. Additionally, models
can differ in how they handle uncertainty (e.g., through deterministic or stochastic approaches), as well
as in whether they assume centralized or decentralized decision-making. Depending on their focus, the
GEP model can incorporate various technical, economic, and environmental factors to more accurately
reflect real-world energy systems.
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GEP offers decision-makers a strong setting for flexible and robust long-term planning. Because it com-
bines discrete investment choices with complex system constraints, the GEP model naturally exposes
a landscape of near-optimal alternatives that reveal markedly different investment structures despite
similar costs. This makes GEP well-suited for exploring near-optimal alternatives, which highlight trade-
offs in cost, technological diversity, geographic distribution, and environmental impact, supporting more
informed and resilient energy policy decisions [27].

This thesis focuses on a simplified, deterministic version of the GEP model. In this version, all invest-
ment decisions are made at the start of the planning horizon. As a result, the model does not address
the timing of power plant construction, one of the original four GEP objectives. Instead, the goal of this
simplified GEP is to minimize both investment and operational costs across the entire planning period.

Investment costs correspond to the expenses associated with building new power plants and directly
address the first three goals of the GEP model: technology type, amount, and location. Operational
costs represent the expenses required to run the power system once the investments are made. These
consist of the cost of energy production, penalties for unmet demand, and any other costs associated
with keeping the system functional.

Importantly, the GEP model is by design a doubly minimization problem. First, at the investment level,
the model seeks the least-cost portfolio of technologies, capacities, and locations. Second, conditional
on this investment portfolio, the operational subproblemminimizes the cost of dispatching the system to
meet demand under technical and system constraints. In practice, these two problems are solved jointly
in a single integrated optimization, but conceptually, the GEP embeds one minimization (operations)
within another (investment), making it a hierarchical problem by nature.

7.1.1. Model Components
The model is defined using three categories: sets, parameters, and decision variables. Each compo-
nent plays a role in formulating the GEP optimization problem. The sets describe the structure of the
energy system (such as locations, technologies, time periods), the parameters define system-specific
characteristics (such as demand, cost, and availability), and the variables represent the decisions to
be optimized (such as how much to invest or produce).

Sets
The sets Table 7.1 define the core indexing structures used throughout the model. These consist of
the locations or nodes (N ), available generation technologies (G), and their combinations (NG) that
indicate where a technology can be deployed. The model also considers discrete time steps (T ) for
temporal analysis and a set of bi-directional transmission lines (L) that connect different nodes. In this
simplified model, the transmission lines do not lose any energy.

Table 7.1: Model Sets

Symbol Description Index
N Locations (nodes) n
G Generation technologies g
NG ⊆ N ×G Technology-location availability pairs (n, g)
T Time steps t
L ⊆ N ×N Bi-directional transmission lines l = (n, n′)

Parameters
The parameters Table 7.2 outline the fixed input values that define system characteristics and con-
straints. This consist of demand (Dn,t), technology availability (An,g,t), investment costs In,g, opera-
tional costs Vn,g), technical specifications like unit capacity (Un,g) and ramping rate (Rn,g), as well as
transmission constraints (Lexp

l , Limp
l ). Additionally, the model accounts for the value of lost load (V loss),

which penalizes unmet demand.
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Table 7.2: Model Parameters

Symbol Description Unit Domain
Dn,t Demand node n and time t MW R+

An,g,t Availability of technology g at node n at time t 1/unit [0, 1]
In,g Annual investment cost for technology g at node n EUR/MW R+

Vn,g Hourly operational cost for technology g at node n EUR/MWh R+

Un,g Maximum capacity per unit of technology g at node n MW/unit R+

Rn,g Ramping rate for technology g at node n 1/unit [0, 1]
Lexp
l Export capacity of transmission line l MW R+

Limp
l Import capacity of transmission line l MW R+

V loss Value of lost load EUR/MWh R+

Decision Variables
The decision variables Table 7.3 present the optimization outputs that the model will determine. These
consist of total costs, both investment (cinv) and operational (cop), as well as investment decisions (in,g),
production levels (pn,g,t), transmission flows (fl,t), and any unmet demand (plossn,t ). These variables are
constrained by the parameters and are optimized to minimize system costs while satisfying technical
and demand requirements. The model supports solving an LP relaxation of the problem, changing the
domain of investment decision to the positive real numbers.

Table 7.3: Decision Variables

Symbol Description Unit Domain
cinv Total investment cost EUR R+

cop Total operational cost EUR R+

in,g Number of technology units g invested at node n unit Z+ (or R+ if relaxed)
pn,g,t Production of technology g at node n at time t MW R+

fl,t Flow in transmission line l at time t MW R
plossn,t Unmet demand at node n and time t MW R+

7.1.2. Full Model Formulation
The complete formulation of the GEPmodel is structured into four main components: the objective func-
tion, the demand balance constraint, the generation capacity constraint, and the ramping constraints.
Together, these components capture both the investment and operational aspects of power system
planning over a defined time horizon.

Objective Function
The objective of the model is to minimize the total system cost, which consists of two components:
investment costs and operational costs, described in

min (cinv + cop). (7.1)

Investment costs are incurred upfront when installing generation technologies and are based on the
number of units, their capacity, and associated capital costs, as shown in

cinv =
∑

(n,g)∈NG

In,g · Un,g · in,g. (7.2)

Operational costs are accumulated over the planning horizon and consist of variable generation costs
as well as penalties for any unmet demand, referred to as lost load, as shown in

cop =
∑

(n,g)∈NG

∑
t∈T

Vn,g · pn,g,t +
∑
n∈N

∑
t∈T

V loss · plossn,t . (7.3)
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Demand Balance
The demand balance constraint ensures that, at every node and for each time step, electricity demand
is met either through local generation, net imports and exports from connected nodes via transmission
lines, or if necessary, by allowing unmet demand (lost load). This constraint enforces energy conser-
vation within the network and serves as the central operational requirement of the model, as described
in

Dn,t =
∑

g∈G:(n,g)∈NG

pn,g,t +
∑

n′|(n′,n)∈L

f(n′,n),t −
∑

n′|(n,n′)∈L

f(n,n′),t + plossn,t ∀n ∈ N, ∀t ∈ T. (7.4)

Generation Capacity
The generation capacity constraint limits the amount of electricity that each technology can produce at
a given node and time step. This upper bound depends on the number of units installed, the per-unit
capacity, and the availability of the technology, which can vary over time (e.g., due to weather conditions
for renewables). This constraint ensures that generation levels remain physically realistic and do not
exceed the technically feasible output of the installed infrastructure. The constraint is described in

pn,g,t ≤ An,g,t · Un,g · in,g ∀(n, g) ∈ NG, ∀t ∈ T. (7.5)

Ramping Constraints
Lastly, ramping constraints limit the rate at which power generation can increase or decrease between
consecutive time steps. These constraints reflect the operational flexibility of each technology, ensuring
that production changes remain within feasible bounds determined by the ramping rate and installed
capacity. By enforcing these dynamics, the model captures important temporal limitations on how
quickly different technologies can respond to fluctuations in demand or system conditions. The ramping
constraint for ramping up is described in

pn,g,t − pn,g,t−1 ≤ Rn,g · Un,g · in,g ∀(n, g) ∈ NG, ∀t ∈ T \ {1}, (7.6)

and ramping down in

pn,g,t − pn,g,t−1 ≥ −Rn,g · Un,g · in,g ∀(n, g) ∈ NG, ∀t ∈ T \ {1}. (7.7)

7.2. Model instance
To evaluate the proposed dominance-aware MGA algorithm, we conduct experiments on two variants
of a European dataset, containing hourly data for each parameter for a full year. The two variants that
are considered in this thesis are:

1. The full European dataset, consisting of a more realistic, high-dimensional planning problem.
2. A simplified European dataset, with a reduced problem nodes and technologies for tractability

and controlled analysis.

These two problem instances allow us to validate both the behavior and scalability of the proposed
algorithm under different levels of complexity.

7.2.1. Full Model
The full dataset contains 20 different countries, all represented by nodes:

• Austria
• Belgium
• Balkan countries
• Baltic countries
• Czech Republic
• Denmark
• Finland

• France
• Germany
• Ireland
• Italy
• Netherlands
• Norway
• Poland

• Portugal

• Slovakia

• Spain

• Sweden

• Switzerland

• United Kingdom
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Each node is connected to at least one other node by transmission lines. Furthermore, the model also
supports eight different technologies:

• Coal
• Gas
• Lignite

• Nuclear
• Oil
• Solar energy

• Offshore wind

• Onshore wind

Together, they form 106 decision variables, as not all combinations between the countries and technolo-
gies are valid. Experiments on this model test the algorithm’s scalability and ability to find dominating
alternatives in a high-dimensional space.

7.2.2. Simplified Model
In the simplified setup, the original European dataset is reduced to include only five countries:

• Belgium
• France

• Germany
• Netherlands

• United Kingdom

As well as only two different technologies:

• Gas
• Onshore wind

This results in only nine investment decision variables, as one country-technology pair, the Netherlands-
gas pair, is infeasible. The model does not allow for any investments in gas in the Netherlands. The
reduced dimensionality allows detailed insight into how weight vectors influence the generation of near-
optimal alternatives as well as the dominance of those alternatives.

7.2.3. Focus on Investment Variables
Because the GEPmodel is, by design, a double minimization problem in both model variants, the exper-
iments only generate alternatives with respect to the decision variables that decide on the investment
cost. Alternatives are only generated with respect to investment costs because these decisions rep-
resent the long-term, irreversible choices in the GEP problem. Namely, which technology should be
built, how much of each should be invested in, and where it should be invested. Operational costs, by
contrast, are outcomes of these investment choices rather than strategic decisions. Focusing on the
investment costs, therefore, highlights the feasible strategies within the near-optimal solution space.
However, the alternatives, which still have both the operational costs and investment costs, are still
limited by the addition of the near-optimal constraint when defining the near-optimal solution space.

Similarly, this double minimization alters how domination is evaluated. While the optimal solution min-
imizes total system cost (investment + operational), dominance is assessed solely on the investment
variables, since these are the only dimensions along which alternatives are generated. Consequently,
the cost-optimal solution often does not dominate many near-optimal alternatives, as it may rely on
lower operational costs rather than strictly lower investment expenditures.

7.2.4. Near-optimal solution space
To formally define the near-optimal solution space of the GEP model, we introduce an additional con-
straint:

cinv + copt ≤ (1 + s)T (7.8)

Where cinv represents the investment cost, copt corresponds to the operating cost, and T denotes the
cost in the optimal solution. The parameter s specifies the allowable slack, thereby controlling how
much the sum of all costs can deviate from the optimal solution.

Within this constrained near-optimal space, the objective function at iteration k can be expressed as:

min(wk · cinv) (7.9)
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Where wk is an iteration-dependent weighting vector at iteration k that depends based the method used
for generating alternatives.

7.3. Experimental Workflow
This section outlines the experimental workflow, including the model-solving steps, comparison meth-
ods, uniqueness criteria, solver settings, and evaluation framework. The overarching goal of this chap-
ter is to evaluate different strategies for generating high-quality, non-dominated, near-optimal alterna-
tives. In particular, we aim to understand how varying approaches to weight vector generation influence
the exploration of the feasible solution space and the dominance of the resulting investment alternatives.
To this end, the following workflow establishes a structured and reproducible procedure for alternative
generation, comparison, and evaluation.

7.3.1. General Procedure
Each experiment follows this structured process to generate and evaluate near-optimal alternatives:

1. Baseline Solution: Solve the baselinemodel to obtain the cost-optimal investment and operational
plan, save the optimal solution found this way as a viable alternative in the set of alternatives.

2. Introduce Slack: Add a constraint to allow for near-optimality by permitting alternatives within a
fixed optimality gap (typically 10%). This introduces flexibility to explore alternative investment
plans.

3. Weight Vector Generation: Generate a new weight vector for the investment variables using one
of the selected weight update methods.

4. Alternative Generation: Update and resolve the model using the new weight vector by minimizing
the dot product of the weight vector and the variable vector. Add the found alternative to the set
of alternatives.

5. Repeat: Continue generating alternatives by returning to Step 3 (Weight Vector Generation) until
the desired number of alternatives is reached.

6. Time Tracking: Record the time required by each method to generate the full set of alternatives.

This process is repeated for each method described below.

7.3.2. Methods for Weight Vector Generation
The following six methods are compared to explore the space of near-optimal investment alternatives:

• HSJ
• Spores
• Min/Max Variables
• Random Vector
• Max-Distance
• Directionally Weighted Variables

Each method guides the search through the feasible space differently, aiming to produce meaningful
alternatives.

7.3.3. Model and Solver Setup
To ensure feasibility and scalability across both small and large model variants, the following configu-
ration is used:

• Solver: Gurobi (exact solver)
• Relaxation: Linear Programming (LP) relaxation is used to reduce runtime
• Optimality Gap (Slack): Set at 10% unless otherwise specified
• Equality Threshold: Set to 1.0e−4 unless otherwise specified
• Number of Alternatives per Method: Configurable based on the scenario
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• Model Variants:

– Simplified Model: 9 investment variables
– Full Model: 106 investment variables

• Time Steps: Configurable based on the scenario. Investment costs are scaled according to the
length of each time step relative to the expected lifetime of the asset. This ensures that long-lived
investments, such as a power plant expected to last 50 years, contribute only the appropriate
fraction of their total cost based on the number of time steps (e.g., 1/50th per year) rather than
the full upfront cost.

After generating the same number of alternatives for each of the six methods, a combined set of alter-
natives is constructed. Dominance ranking section 5.4 is used to classify alternatives into the ranking
sets (D1, D2, . . .). In theory, this ranking should be based on the convex dominant set. However, this
full theoretical framework is challenging to implement in practice.

To approximate the intended behavior, simplifications are made. The first simplification is that we as-
sume that all alternatives are single corner points. This is assumed because having (two or more)
optimal corner points (and thus the possibility to find an optimal point not in a corner) is extremely rare
[6]. This assumption allows for sets not to include any convex combination of two other alternatives,
making comparison between sets of alternatives possible. Secondly, due to the difficulty of generating
all convex combinations of the alternatives and excluding alternatives dominated by any of such combi-
nations being extremely difficult in high-dimensional space, the experiments will compare the set size
of the dominant set and not the convex dominant set.

Due to the use of floating values, two alternatives are considered equal when each decision variable
differs by at most this numerical threshold. If an alternative is considered equal to any other, it will not
be included in the set of alternatives.

Performance is assessed based on both the quality (e.g., dominance rank) of the alternatives, as well
as the runtime of finding the set of alternatives for each method.

7.3.4. Dominance Ranking
To assess the structural quality of the generated alternatives, each alternative is evaluated using dom-
inance. For each experiment, all alternatives generated by each method are considered when deter-
mining dominance.

The ranking of alternatives is computed using the Fast Non-Dominated Sorting algorithm introduced
in the NSGA-II framework [8]. This method efficiently partitions the set of alternatives into dominance
sets:

• D1: The set of all non-dominated alternatives.
• D2: The set of alternatives dominated only by those in D1.
• D3: The set of alternatives dominated only by those in D1 ∪D2, and so on.

The use of the fast non-dominated sorting algorithm enables scalability to larger sets of high-dimensional
alternatives while preserving the theoretical properties of dominance. It is particularly suitable for com-
paring the effectiveness of different weight vector generation strategies in producing high-quality alter-
natives. The method that contributed the most alternatives to the set D1 is considered to perform best
when comparing for dominance.

7.4. Summary
This chapter defines the experimental foundation for evaluating near-optimal alternatives in Generation
Expansion Planning problems. The GEP model is described in full, along with its simplified and full-
scale variants, each offering a different level of complexity.

A structured workflow is presented for generating alternatives within a predefined cost slack, using
various methods for weight vector generation. Each alternative is filtered for uniqueness and evaluated
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based on its dominance rank. Only investment variables are considered when assessing structural
quality, allowing for a focused analysis on long-term planning decisions.

The chapter also specifies solver settings, LP relaxation assumptions, thresholds used across exper-
iments, and the optimality gap. Together, these elements form a consistent framework for comparing
different strategies to explore the near-optimal solution space effectively.



8
Results

The goal of this chapter is twofold. First, it evaluates the performance of the newly proposed Direc-
tionally Weighted Variables method, introduced in chapter 6. The chapter tests whether the heuristic
delivers on its promise of efficiently guiding the search toward non-dominated alternatives. Second,
it benchmarks this method against five established alternatives — HSJ, Spores, Min/Max Variables,
Random Vector, and Max-Distance — on the Generation Expansion Planning (GEP) model introduced
in chapter 7.

The motivation for this evaluation lies in both method development and practical application. From
a methodological perspective, Directionally Weighted Variables is designed to improve the quality of
generated alternatives by focusing on dominance, and it is crucial to assess whether it provides mea-
surable advantages over existing approaches. From a practical perspective, applying all methods to a
real-world, large-scale optimization problem allows us to compare their strengths and weaknesses in
terms of the size of the set of non-dominated alternatives and computational efficiency.

8.1. Baseline Experiments
The first experiments are done as described in section 7.3. For these experiments, each method
generates 1000 near-optimal alternatives per scenario. Experiments are performed for different time
step configurations: 1, 10, 100, and 500 for the simplified model, and 1, 10, and 100 for the full model.
The 500 time step configuration is omitted for the full model due to its significantly increased complexity,
which makes such long time horizons computationally impractical. This setup allows us to evaluate the
influence of temporal complexity and model size on the performance of each method, as well as their
ability to generate dominant alternatives.

8.1.1. Simplified Model
To better understand the fundamental behavior of each method under controlled conditions, this section
first evaluates their performance on a simplified GEP model.

Before presenting the results, it is important to outline a few expectations based on the structure of
the problem. First, we expect that as the number of time steps increases, each method will be able
to generate more unique alternatives. This is because additional time steps create more flexibility in
operational cost scheduling, which in turn supports a larger variety of investment costs in near-optimal
alternatives.

Second, we anticipate that DirectionallyWeighted Variables, which is designed to generate non-dominated
alternatives, to contribute a high proportion of alternatives it generates to the dominant set. Similarly, as
seen in the toy example discussed in chapter 4, it is expected that HSJ and Spores will also contribute
a large proportion of their generated alternatives to the dominant set. In contrast, the other methods
are expected to contribute a smaller proportion of their generated alternatives to the dominant set.

Third, the deterministic methods (HSJ, Spores, and Max-Distance), which are constrained by their
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update rules, are expected to produce fewer alternatives overall.

Fourth, because there are only nine decision variables, HSJ and Directionally Weighted Variables only
produce 29 = 512 distinct weight vectors. This means that both methods are expected to generate at
most 512 unique alternatives.

Lastly, we expect that each method, except Max-Distance, has similar computational costs, with Max-
Distance having a significantly increased runtime, due to its non-linearity in its objective function.

Dominance Rank Distribution
The results of the dominance rank of the simplified model for the four different time step configurations
are shown in Table 8.1 through Table 8.4.

Table 8.1: Dominance rank distribution for the simplified model with 1 time step

Method D1 D2 D3 D4 D5 D6 D7 D8 D9 D10+

HSJ 2 1 0 0 0 0 0 0 0 0
Spores 11 3 0 0 0 0 0 0 0 0
Max-Distance 128 23 13 12 14 8 5 3 3 3
Min/Max Variables 286 202 118 34 28 5 7 6 5 10
Random Vector 120 212 161 82 43 15 8 5 6 8
Directionally Weighted Variables 609 44 3 0 0 0 0 0 0 0

Table 8.2: Dominance rank distribution for the simplified model with 10 time steps

Method D1 D2 D3 D4 D5 D6 D7 D8 D9 D10+

HSJ 7 0 0 0 0 0 0 0 0 0
Spores 13 2 0 0 0 0 0 0 0 0
Max-Distance 70 22 30 25 5 9 6 4 1 8
Min/Max Variables 439 141 82 37 19 13 10 4 7 21
Random Vector 266 194 94 42 17 12 7 3 2 15
Directionally Weighted Variables 813 31 10 3 1 0 0 0 0 1

Table 8.3: Dominance rank distribution for the simplified model with 100 time steps

Method D1 D2 D3 D4 D5 D6 D7 D8 D9 D10+

HSJ 173 1 0 0 0 0 0 0 0 0
Spores 45 1 0 0 0 0 0 0 0 0
Max-Distance 168 94 68 15 7 5 5 5 5 29
Min/Max Variables 533 113 52 26 17 5 1 0 0 26
Random Vector 615 74 51 19 11 3 0 0 0 14
Directionally Weighted Variables 877 30 3 1 0 0 0 0 0 1

Table 8.4: Dominance rank distribution for the simplified model with 500 time steps

Method D1 D2 D3 D4 D5 D6 D7 D8 D9 D10+

HSJ 775 5 0 0 0 0 0 0 0 0
Spores 57 1 0 0 0 0 0 0 0 0
Max-Distance 89 16 18 55 9 6 1 3 3 18
Min/Max Variables 413 114 55 29 11 9 12 8 3 19
Random Vector 566 35 37 23 10 3 2 2 2 9
Directionally Weighted Variables 718 49 10 1 0 0 0 0 0 0
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Runtime Comparison
In this part, the results of the runtime of the simplifiedmodel for the four different time step configurations
are shown in Table 8.5 and Figure 8.1.

Table 8.5: Runtime (seconds) of each method to generate 1000 alternatives for the simplified model

Time steps 1 10 100 500

HSJ 2.6 4.3 10.0 56.6
Spores 2.7 4.6 13.0 44.7
Max-Distance 44.3 118.6 1105.1 8513.6
Min/Max Variables 2.9 5.6 20.7 234.7
Random Vector 2.8 5.9 25.6 367.6
Directionally Weighted Variables 2.7 5.2 17.4 113.4

Figure 8.1: Log–log plot of runtime for the simplified model when generating 1000 alternatives under different time-step
configurations.

Discussion
The results of the baseline experiments on the simplified GEP model reveal clear trade-offs between
the dominance of the generated alternatives and the computational efficiency of each method.

First, it was expected that, given more time steps, each method would generate more unique alterna-
tives. This is true for the methods Spores and HSJ. However, the other methods produce the most
unique alternatives when there are 100 time steps, and produce fewer unique alternatives when the
time steps increase to 500 time steps.

Second, across all time step configurations, the alternatives generated with either DirectionallyWeighted
Variables, HSJ, and Spores, consistently are among the alternatives in the dominant set (D1). This
demonstrates their strong ability to identify non-dominated alternatives. This confirms that in lower-
dimensional settings, the use of these methods guides the search toward superior regions of the solu-
tion space. As expected, the other methods, Max-Distance, Min/Max Variables, and Random Vector,
contribute a lower proportion of their alternatives to the dominant set.
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Third, as expected, methods such as HSJ, Spores, and Max-Distance generally generate significantly
fewer unique alternatives across most configurations. In contrast, Directionally Weighted Variables,
Random Vector, and Min/Max Variables produce significantly more unique alternatives across all con-
figurations. An exception occurs in the case of HSJ with 500 time steps, where it produces several
unique alternatives, that is comparable to the stochastic methods. Further research on how well the al-
ternatives generated by each method represent the near-optimal solution space should be investigated
further.

Fourth, the fact that HSJ and Directionally Weighted Variables were able to generate more than 512
distinct alternatives suggests that some core concept of generating alternatives is missed. This should
be investigated further.

Lastly, when considering computational burden, as expected, Max-Distance performs the worst by a
significant margin, especially as the number of time steps increases. Surprisingly, HSJ and Spores
emerge as the most computationally efficient methods, consistently achieving low runtimes across
all scenarios. Maybe even more unexpected is the performance of Directionally Weighted Variables,
which, for low dimensions, seems to be computationally more efficient than the other stochastic meth-
ods. The lower runtimes of the deterministic methods warrant more research to find out why these
methods perform computationally better than others.

In low-dimensional problems, this experiment shows particularly promising results, indicating that the
Directionally Weighted Variables method is not only the most effective in guiding the search toward
regions with non-dominated alternatives, by generating many non-dominated alternatives, but Direc-
tionally Weighted Variables also has lower computation costs compared to other stochastic methods.
For exploratory purposes or where runtime is severely constrained, HSJ and Spores present a smaller
set of non-dominated alternatives compared to Directionally Weighted Variables.

8.1.2. Full Model
To investigate the difference of each method in a real-world environment, this section evaluates the
performance of the full GEP model.

Before presenting the results, it is important to outline a few expectations based on the structure of
the problem. First, given the large number of decision variables and the definition of dominance, which
includes all these decision variables, it is expected that the vast majority—if not all–—alternatives will fall
within the dominant set. This is likely due to the sheer size of the solution space: even considering each
investment decision variable as binary (active or inactive), the total number of possible combinations
is on the order of 2106, an astronomically large number compared to the 1000 alternatives generated
by each method in this experiment. This disparity underscores that only a minuscule fraction of the full
decision space can be explored, and thus, most generated alternatives are unlikely to dominate any
other, purely by chance.

Second, deterministic methods are generally known to generate fewer unique alternatives compared
to stochastic approaches. As such, we anticipate that HSJ, Spores, and Max-Distance methods will
yield a smaller number of unique alternatives than the stochastic methods.

Last, based on prior results, HSJ and Spores have demonstrated strong performance in terms of com-
putational efficiency. We expect this trend to continue in the full model. Conversely, Max-Distance
is expected to incur the highest computational burden due to its distance-based search mechanism.
Among the stochastic methods, we anticipate that Directionally Weighted Variables will continue to
outperform Min/Max Variables and Random Vector in both alternative quality and runtime efficiency.

Important to note is that these results do not include Max-Distance, as generating just 1 alternative for
1 time step already took more than an hour.

Dominance Rank Distribution
In this part, the results of the dominance rank of the full model for the four different time step configu-
rations are shown in Table 8.6 through Table 8.8.
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Table 8.6: Dominance rank distribution for the full model with 1 time steps

Method D1

HSJ 8
Spores 866
Min/Max 1000
Random Vector 1000
Domination Vector 1000

Table 8.7: Dominance rank distribution for the full model with 10 time steps

Method D1

HSJ 999
Spores 993
Min/Max 1000
Random Vector 1000
Domination Vector 1000

Table 8.8: Dominance rank distribution for the full model with 100 time steps

Method D1

HSJ 893
Spores 1000
Min/Max 1000
Random Vector 1000
Domination Vector 1000

Runtime Comparison
In this part, the results of the runtime of the full model for the four different time step configurations are
shown in Table 8.9 and Figure 8.2. Note that Max-Distance did not finish for any configuration.

Table 8.9: Runtime (seconds) of each method to generate 1000 alternatives for the full model

Time steps 1 10 100

HSJ 5.4 35.3 1644.0
Spores 3.5 11.6 116.5
Max-Distance - - -
Min/Max Variables 3.8 22.7 702.6
Random Vector 3.9 22.4 691.6
Directionally Weighted Variables 3.7 30.0 1521.5
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Figure 8.2: Log–log plot of runtime for the full model when generating 1000 alternatives under different time-step configurations

Discussion
The dominance rank distributions for the full GEP model show that all methods consistently produce
alternatives exclusively within the dominant set (D1). This is expected, given the model’s complexity
with 106 decision variables, 1000 alternatives generated per method are unlikely to sample enough of
the near-optimal solution space to find both a pair of alternatives for which one of them dominates the
other.

Another interesting observation is that HSJ and Spores do not generate 1000 unique alternatives. This
aligns with expectations, as these methods are known for limited exploration of the near-optimal space.

In terms of computational efficiency, Spores remains the most time-efficient method across all tested
time steps and is significantly more efficient than any other method. This runtime is followed by the
Min/Max Variables and Random Vector approaches, which both take a similar amount of time. While
HSJ performs well for smaller models, its runtime increases substantially at more difficult models, indi-
cating potential scalability challenges. The Directionally Weighted Variables method, although effective
at producing dominant alternatives, exhibits higher runtimes in the full model. More research is needed
to compare why the runtime of Directionally Weighted Vectors performs worse in comparison to other
random methods for the full model.

8.1.3. Conclusion
These results show great use of generating alternatives with respect to dominance in low-dimensional
settings. These results also highlight a limitation of the dominance metric itself: dominance seems to
be a weaker discriminator in high-dimensional spaces. As such, dominance alone may not be sufficient
for evaluating the quality of alternatives in complex, high-dimensional problems and should be comple-
mented by other metrics such as coverage of the near-optimal solution space or the robustness of the
alternatives.

Overall, these experiments demonstrate that no single method is universally optimal across all scenar-
ios. Directionally Weighted Variables offer the best quality in terms of dominance. Spores are the most
efficient computationally, and Min/Max Variables and Random Vector methods provide a balance be-
tween exploration and efficiency. The choice of method should thus be guided by the specific priorities
of the application—dominance quality or computational budget.
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8.2. Runtime Analysis of Alternative Generation Methods
One of the key observations from the previous experiments is that the computational performance of
the alternative generation methods varies significantly. This variation can be summarized in three main
findings:

1. Spores consistently outperforms all other methods in terms of runtime, both in the simplified and
full models.

2. Max-Distance performs the worst, with runtimes so high that generating even a single alternative
in the full model took over an hour.

3. HSJ and Directionally Weighted Variables are more efficient in the simplified model, whereas
Min/Max Variables and Random Vector methods perform better in the full model.

This section explores the underlying reasons behind these differences in runtime. We propose three
hypotheses that may explain the observed disparities:

1. Impact of the Near-Optimal Solution Space: The shape and structure of the near-optimal solu-
tion space may influence the difficulty of solving subproblems. To investigate this, we compare
runtimes with a similar configuration and only differing optimality gap. If a wider or narrower gap
significantly affects runtime, it would suggest that the shape of the near-optimal solution space
plays a role.

2. Exploration of Different Regions in the Near-Optimal Solution Space: Some methods may natu-
rally explore regions of the solution space that are computationally easier or harder to solve. To
test this, we introduce a variant of the Directionally Weighted Variables method that is specifically
designed to target dominated alternatives rather than non-dominated ones. If this inverted search
direction leads to different runtimes, it could indicate that certain regions of the near-optimal so-
lution space are inherently more difficult to explore.

3. Role of Objective Function vs. Model Updating: Since all methods differ only in how the objective
function is formulated for each iteration, the observed runtime differences may stem from how
these objectives interact with the solver’s optimization process. To isolate this effect, we rerun
experiments in which the model is rebuilt from scratch at each iteration. This allows us to deter-
mine whether the speed of some methods (like Spores) is due to the structure of the objective
function itself or from the way the model is incrementally updated.

By systematically evaluating these three hypotheses, we aim to better understand the computational
characteristics of each method and provide guidance for their practical use in different model settings.
In addition to runtime, we also report significant changes in dominance behavior across methods and
configurations, offering further insight into how different strategies influence both the quality and com-
putational cost of the generated alternatives.

8.2.1. Impact of Near-Optimal Solution Space
The structure of the near-optimal solution space can play a critical role in determining the efficiency and
behavior of alternative generation methods. One hypothesis is that the computational effort required to
generate alternatives is influenced by how easily the solver can locate feasible near-optimal alternatives
within a given optimality gap.

This leads to the following hypothesis: Changing the optimality gap and thereby the near-optimal solu-
tion space impacts the computational efficiency of each method differently

To evaluate this hypothesis, the optimality gap is varied, which ensures that the near-optimal solution
space is varied as well. The results show how a differing optimality gap influences computational costs
for the different methods. This analysis helps reveal whether the shape of the near-optimal space
contributes to the observed performance differences among the methods. Whereas in the existing
literature the optimality gap is typically restricted to values between 0.05 and 0.2, the present experiment
employs a wider range of values, 0.001, 0.01, 0.1, and 1, to more thoroughly explore the boundaries of
the near-optimal space and to test the patterns that might emerge outside typical values.

In this experiment, for the full model 10 time steps are used, and for the simplified model 100 time steps
are used.
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The runtime with respect to the optimality gap of both the full model (see Figure 8.3) and simplified
model (see Figure 8.4) is shown.

Figure 8.3: Runtime versus log-scaled optimality gap for the full model with 10 time steps

Figure 8.4: Runtime versus log-scaled optimality gap for the simplified model with 100 time steps

The results indicate that the optimality gap exerts ameasurable influence on the runtime of eachmethod.
For both models, computational efficiency generally increases with a larger optimality gap. However,
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its impact does not appear to differ substantially across the differing methods. While a relationship
between optimality gap and runtime is evident, this relationship was not quantified numerically. This
decision is justified by the fact that the experiments deliberately explored optimality gaps well beyond
those typically encountered in practice, and the observed differences in runtime across this extended
range remain comparatively modest.

An additional noteworthy observation arises with respect to the size of the dominant set. For the simpli-
fied model and for the HSJ method, it seems that an increase in the optimality gap heavily influences
the number of alternatives within the dominant set, see Table 8.10. For the full model and for the
Spores method, it seems that for an optimality gap of 0.1, it only contributes about half of its generated
alternatives compared to all other optimality gaps, see Table 8.11. For all other model and method
combinations, there was almost no difference between the differing optimality gaps. Although further
investigation would be required to determine the precise cause, this finding highlights that adjustments
to the optimality gap can lead to qualitatively different outcomes of the size of the dominant set.

Table 8.10: Alternatives contributed to the dominant set by HSJ in the simplified model

Optimality gap 0.001 0.01 0.1 1

HSJ 2 13 173 918

Table 8.11: Alternatives contributed to the dominant set by Spores in the full model

Optimality gap 0.001 0.01 0.1 1

HSJ 988 488 993 988

8.2.2. Exploration of Different Regions in the Near-Optimal Solution Space
From the previous results, we observed that Min/Max Variables and Random Vector methods perform
computationally better than Directionally Weighted Variables and HSJ in the full model, but computa-
tionally worse in the simplified model. It is also observed that from all alternatives generated by both
HSJ and Directionally Weighted Variables, these generated alternatives are mostly performing well
with respect to dominance. In contrast, the alternatives generated by Min/Max Variables and Random
Vector have no such guarantee.

This leads to the following hypothesis: The region explored by Directionally Weighted Variables in the
simplified model is relatively easy to explore, while in the full model, the region explored by Directionally
Weighted Variables is relatively difficult to explore.

To test this hypothesis, an altered Variables method is created, which generates all possible weight
vectors that can be generated by the Min/Max Variables method, but excludes all the weight vectors
that could be generated by the Directionally Weighted Variables method. To confirm the hypothesis,
this method should perform computationally worse than Min/Max and Directionally Weighted Variables
in the simplified model and better in the full model.

In both model instances, the Min/Max Variables are expected to yield the median results. For the sim-
plified model, the Directionally Weighted Variables should perform the best computationally, since they
explore a region that is not computationally intensive. By contrast, in the simplified model, the Altered
Variables method should perform the worst, as it deliberately avoids exploring the less computationally
demanding region. However, this effect is expected to reverse in the full model, where the Altered
Variables approach is anticipated to be computationally more efficient than the Directionally Weighted
Variables.

When comparing the runtimes of these methods for the simplified and full models, we can clearly see
that this hypothesis is correct, see Table 8.12. With this observation, it can be concluded that most of the
runtime differences between the runtime of Min/Max Variables and Directionally Weighted Variables are
directly affected by the region of the near-optimal solution space that they explore. This shows that any
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runtime advantage gained from either method is purely based on the underlying near-optimal solution
space.

Table 8.12: Runtime (s) of each method to find 1000 alternatives

Simplified model 500 time steps Full model 100 time steps

Altered Variables method 247.1764578 762.5362692
Min/Max Variables 236.038391 781.6368696
Directionally Weighted Variables 113.7205672 1596.3874411

Another key observation is that this altered method, essentially an inverse of the heuristic used in Di-
rectionally Weighted Variables, finds fewer non-dominated alternatives in the simplified model than the
Min/Max Variables method, see Table 8.13. This provides further evidence that the regions explored by
the Directionally Weighted Variables method are indeed rich in non-dominated alternatives, reinforcing
its value in guiding the search process effectively. However, as expected, the dominance metric does
not give any insights into the full model, see Table 8.14.

Table 8.13: Dominance rank distribution for the simplified model with 500 time steps

Method D1 D2 D3 D4 D5 D6 D7 D8 D9 D10+

HSJ 773 7 0 0 0 0 0 0 0 0
Spores 57 1 0 0 0 0 0 0 0 0
Min/Max Variables 398 108 67 40 21 17 12 11 9 18
Random Vector 588 11 26 21 18 15 5 4 3 11
Directionally Weighted Variables 709 62 21 2 1 0 0 0 0 0
Altered Variables method 353 124 50 49 32 12 12 8 9 20

Table 8.14: Dominance rank distribution for the full model with 100 time steps

Method D1

HSJ 893
Spores 1000
Min/Max Variables 1000
Random Vector 1000
Directionally Weighted Variables 1000
Altered Variables method 1000

8.2.3. Role of Objective Function vs. Model Updating
The only difference between the different methods is the updating rule that each of them uses. This
raises an important question: Are these runtime differences primarily driven by the regions of the near-
optimal solution space that eachmethod explores, or by how the optimizationmodel is updated between
iterations?

To investigate this, we alter step 4 of the general procedure 7.3.1 where, instead of updating and solving
the model, the model is rebuilt from scratch and then solved. Normally, when the model updates
the objective function, it retains the optimal variable values obtained by the previous weight vector
minimization, starting the search from the previously found alternative. Rebuilding the model from
scratch at each iteration removes the previously obtained variable values, in which case the variables
have the same starting value in each iteration. If a method like Spores, which is the only method that
incrementally changes its weight vector, remains significantly faster even when the model is rebuilt
at each iteration, it would suggest that its efficiency stems from the nature of the underlying near-
optimal solution space, and not from the way that the weight vector is updated throughout the iterations.
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Conversely, if the runtime increases substantially under this approach, the efficiency may largely be
attributed to how the solver benefits from incrementally updating the weight vector.

The results when solving with this alteration on the full model are shown in Table 8.15.

Table 8.15: Runtime (s) of each method to find 1000 alternatives (Updating vs. Rebuilding the Solver)

Time steps 1 10 100
Updating Rebuilding Updating Rebuilding Updating Rebuilding

HSJ 5.4 10.3 35.3 87.8 1644.0 2696.9
Spores 3.5 7.3 11.6 95.2 116.5 2280.1
Min/Max Variables 3.8 7.9 22.7 44.3 702.6 1559.4
Random Vector 3.9 6.7 22.4 44.4 691.6 1579.0
Directionally Weighted Variables 3.7 6.3 30.0 87.6 1521.5 2273.5

The results clearly show that all methods experience a significant increase in computational burden
when the model is rebuilt for each alternative. This confirms that reusing the model across iterations
offers substantial performance benefits. Spores is particularly affected, with Spores’ runtime increasing
the most, indicating that Spores’ incremental weight updates are computationally efficient when reusing
the model across iterations.

These results highlight a promising direction for future work: developing or adapting other methods
to better exploit the solver’s internal mechanisms, similar to Spores, could lead to significant improve-
ments in computational efficiency.

An observation worth mentioning when rebuilding the model from scratch at each iteration was that HSJ
produced significantly fewer unique alternatives compared to when the model was not rebuilt, shown in
Table 8.16. This suggests that rebuilding the model influences the solver’s behavior in finding certain
unique alternatives. The biggest change that happens when a model is rebuilt is that its starting point is
always the same, in contrast to what happens when updating the model, in which case each decision
variable’s starting value is the value of that specific variable in the previously found alternative. We
hypothesize that methods that use weight vectors, which can include weights with value 0, will find
fewer unique alternatives when rebuilding the model compared to when the model is updated at each
time step.

Table 8.16: Unique alternatives generated by HSJ

Time steps 1 10 100

Rebuilt the near-optimal model at each iteration 5 7 6
Updating the model at each iteration 8 999 893

To confirm this suspicion, we will test it on the simplified model. This is done because Directionally
Weighted Variables found more than 512 unique alternatives when updating the model. If the model is
rebuilt at every iteration, it is expected that Directionally Weighted Variables finds fewer than 512 unique
alternatives. The results of the simplified model with 100 time steps are shown in Table 8.17.

Table 8.17: Dominance rank distribution for the simplified model with 100 time steps

Method D1 D2 D3 D4 D5 D6 D7 D8 D9 D10+

HSJ 4 0 0 0 0 0 0 0 0 0
Spores 46 0 0 0 0 0 0 0 0 0
Min/Max Variables 434 150 82 49 23 15 8 2 1 2
Random Vector 608 78 44 16 5 2 7 4 0 1
Directionally Weighted Variables 245 19 0 0 0 0 0 0 0 0
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As expected, HSJ, Directionally Weighted Variables, and Min/Max Variables all found fewer unique
alternatives, with HSJ having the relatively biggest difference and Min/Max Variables the smallest. The
other methods had almost no difference in the number of unique alternatives found. This confirms the
suspicion that methods using weight values of 0 find more unique alternatives when updating the model,
when compared to rebuilding the model.

8.3. Summary
This chapter presented a detailed evaluation of six alternative generation methods — HSJ, Spores,
Max-Distance, Min/Max Variables, Random Vector, and Directionally Weighted Vector — applied to
both simplified and full models. The assessment focused on alternative dominance and computational
efficiency across varying levels of temporal complexity.

Key findings from the baseline experiments are as follows. First, Directionally Weighted Variables
consistently generate alternatives in the dominant set. Specifically, in the simplified model where it
is clearly the best method for finding non-dominated alternatives. Second, in high dimensionality, the
dominance metric does not find any dominated alternatives. Indicating that comparing alternatives
with respect to dominance is unreliable in high-dimensional problems. Third, the runtime difference
between Directionally Weighted Variables and the Min/Max Variables (which it alters) is shown to be
based on the near-optimal solution space in which the methods generate alternatives, showing that
both methods are computationally competitive. Fourth, it is also shown that, in low dimensions, the
inverse of the Directionally Weighted Variables method generates fewer non-dominated alternatives
than the Min/Max Variables, which further supports the claim that the Directionally Weighted Variables
method generates alternatives within the dominant set. Lastly, it is shown that there is a big difference
between updating the objective function of the model between iterations and rebuilding the model from
scratch. Updating the model allows methods with weight values of 0 to find more alternatives, and
allows for each method to find alternatives computationally faster.
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Conclusion

This chapter concludes the thesis by reflecting on the role of dominance in near-optimal alternative
generation. It also reflects on the proposed new method, which is based on a heuristic to find non-
dominated alternatives.

9.1. Contributions
Traditional optimization approaches, which focus on identifying a single cost-optimal solution, fail to
capture the full range of distinct, yet economically viable, alternatives. Most methods that generate
alternatives do so blindly within the near-optimal solution space. Recognizing this gap, the thesis
reframes the alternative generation problem to prioritize decision relevance rather than mere diversity
or proximity to optimality.

This work provides a systematic analysis of several well-established MGA techniques, including Hop-
Skip-Jump, Spores, Min/Max Variables, Random Vector, and Max-Distance metrics within energy sys-
tem optimization. Although these methods differ in their heuristics and implementation strategies, a key
insight of the thesis is that they can all be reformulated within a shared framework based on weight vec-
tor formulations. Doing so reveals the implicit assumptions, directional biases, and structural limitations
of each method, such as their tendencies to explore only certain regions of the near-optimal solution
space or produce redundant alternatives. This unifying perspective not only clarifies their conceptual
differences, but also enables direct and consistent comparison across methods. This answers RQ1:
What are the conceptual differences between known MGA approaches for generating near-optimal
alternatives?

The thesis proposes a way to leverage the insights gained by conceptually comparing the existing
methods by redefining what constitutes a useful or decision-relevant alternative. Existing MGA meth-
ods often focus on finding alternatives as different as possible from a reference point or randomly
searching the near-optimal solution space. These methods lack a principled mechanism to prioritize
alternatives that align with real-world decision-making needs. To bridge this gap, a dominance-based
evaluation framework is proposed. By treating each decision variable as an implicit objective, this
approach assesses alternatives based on dominance, ensuring that preferred alternatives represent
distinct trade-offs between the different decision variables. This answers RQ2: How can these differ-
ences be exploited to reformulate the alternative generation problem in a way that supports decision
relevance?

Building upon the definition of dominance, a new alternative generation method was developed us-
ing Directionally Weighted Variables that are aligned with dominance. This method actively searches
for non-dominated alternatives within the near-optimal space, those that offer meaningful trade-offs
between the decision variables. The thesis validates the proposed metric and generation approach
through experiments on the Generation Expansion Planning problem. The results demonstrate that
the new method produces a larger share of non-dominated alternatives, while remaining computation-
ally feasible. This establishes the method as both a theoretical contribution and a practical resource
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for decision-makers aiming to analyze and manage complex energy planning scenarios. This answers
RQ3: How does the proposed dominance-based method perform compared to existing MGA tech-
niques in terms of decision relevance and computational efficiency?

9.2. Limitations
While this thesis presents a novel framework for generating and evaluating near-optimal alternatives,
several limitations should be acknowledged.

First, the dominance-based evaluation metric, while effective in identifying decision-relevant alterna-
tives in low-dimensional settings, appears less informative in higher dimensions. This limitation can be
interpreted in two ways. The first possibility is that dominance does remain meaningful, but the number
of generated alternatives is too small to observe dominance relations reliably. The second possibility is
that dominance itself may lose practical value as dimensionality increases, but the current experiments
do not generate enough alternatives to determine this conclusively. In other words, either dominance
works but is under-sampled, or it does not work, but this cannot yet be confirmed due to insufficient
coverage of the solution space.

Second, while the Directionally Weighted Variables method aims to improve decision relevance, it relies
on weight vector selection strategies that may still be sensitive to sampling bias or model structure. The
method’s performance in terms of dominance and computational costs may vary depending on the initial
conditions, solver behavior, and model formulation.

Third, in the Generation Expansion Planning problem, the coefficients of investment costs are positive,
as investment costs always increase the objective functions. Other models within the energy domain
might have negative coefficients, and while in theory that should work with Directionally Weighted Vari-
ables, it is not applied to such problems in this thesis. These models might give differing results from
what is shown in this thesis.

Finally, although this work emphasizes decision relevance, the evaluation remains primarily quantitative.
The practical utility of the proposed alternatives for stakeholders or decision-makers has not been
empirically validated, and further work is needed to integrate qualitative feedback or domain-specific
preferences into the alternative generation and filtering processes.

9.3. Future works
Several promising directions remain for extending and improving the methods presented in this thesis.

First, this thesis focuses on the energy domain. Using near-optimal alternatives and, by extension,
dominance within near-optimal alternatives might be interesting in other domains. In future work, one
might be able to bridge the gap between the domains and apply dominance to these other domains.

Second, the space searched for alternatives can have a big impact on the alternatives that eachmethod
generates. This includes the alternatives in the dominant set. Changing the underlying near-optimal
solution space can be achieved by either varying the optimality gap or using a different method that
explores different parts of the near-optimal solution space. However, the reason why there are such
changes and how these differences can be exploited is not discussed within this thesis. Future work
should investigate why and how the underlying near-optimal solution space impacts the performance
of different alternative generating methods.

Third, evaluating alternatives based on dominance proved difficult in higher dimensions. One potential
improvement is to investigate the application of the convex dominant set, described in section 5.6, when
comparing alternatives instead of just the dominant set, described in section 5.3, as done in this thesis.
Additionally, generating more alternatives in higher dimensions allows for more rigorous dominance
analysis, as more alternatives give clearer insight into the structure of the solution space and reduce
the risk of drawing conclusions from sparsely sampled regions.

Fourth, further investigation is needed into the role of updating versus rebuilding themodel. In particular,
starting the search from a previously found alternative can both reduce the computational costs as
well as increase the number of alternatives found. Future work could explore adaptive strategies that
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dynamically decide when to update or rebuild the solver based on characteristics of the solution space,
the optimality gap, or the specific method employed.

Lastly, another avenue worth exploring is the use of quasi-random sampling methods, such as Sobol
Sequences [17] or Latin Hypercube Sampling [19], to more uniformly explore the near-optimal solution
space. These quasi-random sampling methods may enable faster convergence and improve space
coverage. When using these quasi-random sampling methods, the sequence order should be studied
to see the effect it has on the alternatives that are generated.

Together, these directions offer exciting opportunities to build upon the foundations established in this
thesis, enhancing the practical applicability, scalability, and theoretical robustness of near-optimal al-
ternative generation in energy system models.
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