
Computer Engineering
Mekelweg 4

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2009

ACE Associated Compiler
Experts

De Ruyterkade 113
1011 AB Amsterdam

The Netherlands

MSc THESIS

A solution to misaligned data access in a
vectorizing compiler framework

Sander de Smalen

Faculty of Electrical Engineering, Mathematics and Computer Science

A solution to misaligned data access in a
vectorizing compiler framework

thesis

submitted in partial fulfillment of the
requirement for the degree of

master of science

in

Embedded Systems

by

Sander de Smalen

born in Alkmaar, The Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

A solution to misaligned data access in a
vectorizing compiler framework

by Sander de Smalen

Abstract

Vectorizing code for short vector architectures as employed by today’s multimedia extensions comes
with a number of issues. The responsibilities of these issues are moved to the compiler in order to
keep hardware simple. One of those issues is memory-alignment, which requires the compiler to
guarantee loading and storing vectors at aligned addresses.
Previous work that covered this issue proposed a mechanism to reorder vectors at runtime to ensure
proper alignments, while other work has focussed on finding a minimal number of reorderings. We
combined these subjects into an in-depth research and implemented the optimization for the retar-
getable CoSy R© compiler framework. Instead of solely focussing on the minimal number of reorder-
ings, we also considered dynamic (runtime) properties which may enable latency-hiding of reordering
operations. Furthermore, we performed a comparison of the presented reordering-techniques and
researched the impact of other compiler optimizations on the proposed transformation. Finally,
we placed our results into perspective with unaligned load/store operations supplied by our target
architecture.
With our implementation, we were able to vectorize a number of applications for SSE and SSE2
vector extensions where alignment-issues were involved. For randomly generated loops we were able
to achieve between 50% and 80% of the speedup obtained by unaligned memory instructions. (Our
targeted architecture is less strict on memory alignment and supplies instructions that can handle
misalignments by hardware). As for the benchmarks, we were able to achieve speedup factors
of about 2.25x for a block-matching algorithm (combined with loop versioning to avoid runtime
alignment), 1.6x for the SPEC95 Swim benchmark and a factor 4x for a Sobel FIR filter.

Laboratory : Computer Engineering
Codenumber : CE-MS-2009-31

Committee Members :

Advisor: Ben Juurlink, CE, TU Delft

Chairperson: Koen Langendoen, PDS, TU Delft

Member: Marcel Beemster, ACE Associated Compiler Experts bv.

Member: Hans van Someren, ACE Associated Compiler Experts bv.

Contents

1 Introduction 4

2 Background 5
2.1 (Short) Vector instructions . 6
2.2 Applications suited for SIMD . 6
2.3 Hardware architecture support . 9

2.3.1 SSE extensions . 9
2.3.2 Altivec extensions . 10
2.3.3 Hardware vs Compiler considerations . 10
2.3.4 Support for irregular and unaligned data access 10
2.3.5 Graphics hardware . 11

2.4 Automatic vectorization . 11
2.4.1 Loop Carried Dependences . 11
2.4.2 Code and loop transformations . 12
2.4.3 Cost model . 14
2.4.4 Generating SIMD instructions . 15

2.5 Loading and storing of vector data . 16
2.5.1 Data types . 16
2.5.2 Memory accesses . 17

2.6 Alignment issues . 17
2.6.1 Implicit realignment techniques . 18
2.6.2 Explicit realignment techniques . 20

2.7 Focus of this thesis . 21

3 Explicit Realignment 22
3.1 Introduction . 22
3.2 Definitions . 22
3.3 Shifting register streams . 23

3.3.1 Finding a shift configuration . 24
3.3.2 Optimal shift configurations . 25
3.3.3 Realignment transformation . 27

1

CONTENTS CONTENTS

4 Algorithm 30
4.1 Input . 30

4.1.1 Constraints . 30
4.2 Definitions . 32
4.3 Calculating shift configurations . 32

4.3.1 Calculating the peel factor . 33
4.3.2 Initialization . 33
4.3.3 Determining offsets and stream-shifts . 34
4.3.4 Example of applying heuristics . 35
4.3.5 Optimal offset labeling . 35
4.3.6 Example of finding optimal labeling . 37

4.4 Towards vectorization . 38
4.4.1 Important observations . 38
4.4.2 Calculating Steady state loop boundaries; ProPeel and EpiPeel 39
4.4.3 Adjusting vector offsets . 40
4.4.4 Generating shift operations . 41
4.4.5 Runtime alignments . 41

5 Implementation 43
5.1 The compiler framework . 43

5.1.1 General overview . 44
5.1.2 SIMD Optimization . 44
5.1.3 Integrating explicit realignment in CoSy . 45

5.2 Analysis engine . 47
5.3 Transformation engine . 47

5.3.1 Implementing shift operations . 47
5.3.2 Multiple statements in Loop Body . 50

5.4 Code generation . 50
5.4.1 Permutation instructions . 51
5.4.2 Shift mappings . 54

5.5 Implementation issues . 55
5.5.1 Multiple data types within statements . 55
5.5.2 Common subexpressions . 56
5.5.3 Loop versioning . 57

6 Results 58
6.1 Benchmarking platform . 58
6.2 Benchmarking observations . 59
6.3 Benchmarks . 62

6.3.1 Generated loops . 62
6.3.2 SPEC95 Tomcatv . 64
6.3.3 SPEC95 Swim . 68
6.3.4 Livermore kernels . 69
6.3.5 Motion estimation . 69
6.3.6 Sobel filter . 71
6.3.7 Mediabench GSM . 71

2

CONTENTS CONTENTS

7 Conclusions 74

8 Future Work 76

A Benchmarking source code 79
A.1 Spec95.Swim . 79
A.2 Spec95.Tomcatv . 85
A.3 Livermore . 88
A.4 Generated loop (example) . 90
A.5 Motion estimation . 91

B A Compiler Comparison 94

3

Chapter 1

Introduction

This thesis covers a compiler optimization that serves as a solution for alignment issues that are
found when automatically vectorizing applications for SIMD architectures. It follows from a research
that was performed at ACE c© Associated Compiler Experts, and finally the proposed solution was
implemented for the CoSy R© compiler framework. Developing the proposed optimization for a
vectorization framework that is still in development, proved to be a challenging task. Our work
involved more than the proposed optimization alone, as we encountered a number of details in the
framework that needed to be reviewed in order to get proper results.

We will begin this thesis with an introduction to Short vector instructions (SIMD), auto-
vectorization and the corresponding issues in Chapter 2. This chapter will also present an overview
of the research that has been done on the field of auto-vectorization. Finally, Chapter 2 will elab-
orate on alignment issues and give the motivation for this thesis. This will be followed by Chapter
3, which will try to establish a conceptual understanding of our proposed solution. Chapter 4 will
elaborate on the details of this solution, along with a more formal description of our approach. The
actual implementation of the algorithm will be discussed in Chapter 5, as well as problems that we
encountered during the implementation process. Chapter 6 will present the results of benchmark-
ing our proposed optimization and will also elaborate on our benchmarking platform and several
artifacts we encountered while benchmarking. We draw our conclusions in Chapter 7, followed by
Chapter 8 which elaborates on areas of research that could extend our work. Finally Appendix A
displays the source code of our benchmarks, and Appendix B 1 presents a report comparing the
auto-vectorizing capabilities of several compiler frameworks.

1These pages may be left out, as it contains confidential information disclosed under an agreement with ACE
Associated Compiler Experts bv.

4

Chapter 2

Background

Over the past few decades, the presence of vector architectures has resulted in a lot of research on
the use of parallel vector instructions. However, the developed techniques are only partially valid for
newly developed architectures that allow a restricted form of vector instructions. These restrictions
typically include small vector lengths, alignment restrictions and restrictions on the used data types.
This chapter will give an overview of the research that has been done on automatic vectorization
for Short vector architectures, and shows the perspective and context in which this thesis should
be placed.

#define SIZE (1024∗1024)

/∗ a , b , c are arrays represent ing
∗ greyco lor images ∗/

f loat a [SIZE] ;
f loat b [SIZE] ;
f loat c [SIZE] ;

void blend images (f loat alpha)
{

int i ;
f loat C1 ;
f loat C2 ;

C1 = alpha ;
C2 = 1 .0 − alpha ;

for (i =0; i<SIZE ; i++)
{

a [i] = C1∗b [i] + C2∗c [i] ;
}

}

(a) C-code

. . .

. . .
.SCALARKERNEL:

movss c (,%eax ,4) ,%xmm5 // load sca lar c [i]
movss %xmm1,%xmm4
movss %xmm0,%xmm6
mulss %xmm5,%xmm4 // mutiply C2∗c [i]
movss b(,%eax ,4) ,%xmm5 // load sca lar b [i]
mulss %xmm5,%xmm6 // mul t ip ly C1∗b [i]
addss %xmm4,%xmm6 // add sca lar r e s u l t s
movss %xmm6, a(,%eax , 4) // s tore sca lar
i n c l %eax // i++
. . .
. . .

.SIMDKERNEL:
movups c (,%eax ,4) ,%xmm4 // load vector from c
movups b(,%eax ,4) ,%xmm5 // load vector from b
mulps %xmm3,%xmm4 // mul t ip ly with C2−vector
mulps %xmm2,%xmm5 // mul t ip ly with C1−vector
addps %xmm4,%xmm5 // add r e s u l t vec tors
movups %xmm5, a(,%eax , 4) // s tore vector
addl $4 ,%eax // i+=4
. . .
. . .

(b) Assembly-code for SSE

Figure 2.1: Example of alpha blending two grey-scale images

5

2.1. (SHORT) VECTOR INSTRUCTIONS CHAPTER 2. BACKGROUND

2.1 (Short) Vector instructions

Most programming paradigms are conceptually based on performing scalar operations with scalar
data values. As physical limits for creating smaller and faster hardware are starting to appear on
the horizon, the industry is beginning to focus more on parallelism. Programs often iteratively
perform the same operations on large data collections. To exploit data parallelism in applications,
instructions to handle multiple data values at a time have been proposed.

Traditional vector architectures try to implement this by performing a single instruction on a
series of values (i.e. vectors). Traditionally, these vector architectures operate on large vectors, and
often have support for scatter and gather operations to support non-sequential data access. Gather
operations load multiple scalar values from several places in memory into a single vector, while
scatter operations store scalar values from a single vector register to multiple locations in memory.
But implementing these complicated operations in hardware is very expensive, and therefore not
feasible for every application.

Short vector architectures try to bridge the gap between complicated vector architectures and
scalar execution. By imposing restrictions on the memory architecture, the responsibility of properly
exploiting data parallelism is shifted more towards the programmer and compiler. Scatter and
gather operations will need to be programmed explicitly by the programmer. Streaming SIMD
vector Extensions (SSE) for Intel processors are an example of such short vector architectures.
SSE has SIMD (Single Instruction, Multiple Data) instructions that operate on vector registers
of 16 bytes in length, containing either floating point or integer valued data. Supporting short
vectors can have several advantages as opposed to larger vectors supported by traditional vector
architectures. Short vectors do not require large numbers of arithmetic units, keeping the hardware
cost manageable. The imposed restrictions on the use of these instructions (like supporting only
aligned vector loads at consecutive addresses in memory), keeps the hardware simple, and therefore
the latency of vector operations to acceptable proportions. This way, large stalls in the processor
pipeline are prevented, causing SIMD operations to be used interchangeably with scalar operations,
thus utilizing both scalar and vector units on the chip.

As the rest of this chapter is devoted to explaining the restrictions of short SIMD architectures,
we will not go into further details here. We will end this section however, with an illustration of short
vector instructions, which is displayed in Figure 2. The figure displays a program that blends two
grey-scale images with a given blending factor. The assembly code of the loop-kernel is displayed on
the right, showing both code for scalar instructions as well as SIMD instructions. Vector instructions
have the ’ps’ suffix in their name, meaning they operate on Packed Single precision floating point
data, whereas scalar instructions use the ’ss’ suffix denoting Scalar Single precision FP. Apart from
the instruction names, the semantics are different as the vector instructions operate on 4 data values
simultaneously.

2.2 Applications suited for SIMD

When performing SIMD operations on vectors, these vectors need to be read from and written to
the memory respectively. When the vector elements are at adjacent addresses in memory, a single
memory operation can load or store the vector. Otherwise, instructions that combine scalar values
into a vector, or extract a vector into scalar values need to be issued. Therefore, the way data-
structures are laid out in memory can be decisive whether an algorithm can be efficiently vectorized.
Depending on the memory layout and the access pattern (see section 2.5.2) some algorithms are

6

2.2. APPLICATIONS SUITED FOR SIMD CHAPTER 2. BACKGROUND

struct
{

f loat a [N] , b [N] , c [N] ;
} obj ;

(a) Structure of Arrays

struct
{

f loat a , b , c ;
} obj [N] ;

(b) Array of Structures

struct
{

f loat a [4] , b [4] , c [4] ;
} obj [N/ 4] ;

(c) Hybrid

Figure 2.2: Memory Layouts

more suited for SIMD execution than others. Before discussing applications suitable for SIMD
execution, some definitions on memory layout are given.

Structure of Arrays (SoA) The layout shown in Figure 2.2.a shows a structure of arrays. The
example shows that vectors can be accessed in one instruction since the objects are adjacent
in memory. A drawback of this approach arises when there are a large number of members
in a structure. All memory systems have a limit on the number of pages that are cached for
quick access. When the number of members is too large, the memory system will have to
reopen pages, causing unwanted overhead.

Array of Structures (AoS) Figure 2.2.b shows an array of structures, which is an intuitive
paradigm for programmers. With an AoS, the elements are not adjacent which complicates
compiler-analysis for vectorization. Depending on the algorithm, a matrix as formed by multi-
ple vectors must be transposed before they can be executed by SIMD instructions. Compared
to an SoA however, there are no caching and paging issues, but there may be the additional
cost of transposing the values before being able to perform a batch of similar operations using
SIMD instructions.

Hybrid A hybrid approach as shown in 2.2.c combines the advantages of AoS and SoA. The
caching issues are overcome by having smaller member arrays while the property of adjacency
is preserved.

The memory layouts as explained above form an important fundament on data parallelism which
is exploited with SIMD instructions. The next section will describe some applications that exhibit
the property of data parallelism.

Image Processing is one of the most obvious uses for SIMD operations. Most of these appli-
cations access the memory sequentially, transforming the data by constants or by a linear
transformation of neighboring values. Color conversions are a good example of the former
since they multiply a constant conversion matrix with each pixel, while FIR filters are a good
example of the latter, since they perform a linear transformation of a pixel with its surround-
ing pixels. For image processing applications, the memory layout is important. Having an
AoS (i.e. array of {R, G, B, A} values) or SoA (i.e. structure containing R, G, B, A arrays)
can have an impact on the performance, since an algorithm can either apply their operations
to each color layer separately, or on multiple color layers simultaneously.

Integer based calculations suffice for the precision in basic image processing algorithms. How-
ever, for more complex image processing algorithms where a higher precision is required,
floating point operations are needed. An example of such an application is bilinear inter-
polation, where each pixel value is calculated by interpolating between its neighboring pixel

7

2.2. APPLICATIONS SUITED FOR SIMD CHAPTER 2. BACKGROUND

values. The precision requires floating point arithmetic, causing two data type conversions.
One from integer (which is the image data type) to floating point before the transformation,
and one back from floating point to integer after the transformation. Most SIMD architectures
support this functionality.

A class of algorithms that is less suitable for SIMD instructions are algorithms that use the
concept of histograms. With histograms, the value of a pixel is used as index in a table. This
requires the SIMD architecture to support instructions where data can be used as an address
for table lookup, which may not be available on any platform. Intel’s SSE instruction set
provides specific instructions for this purpose ([2]).

3D Applications perform many transformations on coordinate vectors. To transform a vector to
another coordinate space, a vector must be multiplied with a transformation matrix. This
transformation has to be performed on all the vectors in a 3D mesh by a single transformation
matrix, so instead of performing additions and multiplications for each coordinate separately,
these operations can be performed on vectors. Again, the memory layout is important, since
having a AoS requires a transposition of the loaded vectors using permutation operations.

A transformation takes the form:
v′ = Av

For coordinate space transformations, this becomes: x′

...
w′

 =

 a00 · · · a03

...
. . .

...
a30 · · · a33

 x

...
w

When execution is performed on scalars, each element value is calculated as:

x′ = x ∗ a00 + y ∗ a01 + z ∗ a02 + w ∗ a03

When executed in parallel this becomes:
x′0
x′1
x′2
x′3

 =

a00

a00

a00

a00

x0

x1

x2

x3

 +

a01

a01

a01

a01

y0

y1

y2

y3

 +

a02

a02

a02

a02

z0

z1

z2

z3

 +

a03

a03

a03

a03

w0

w1

w2

w3

Assuming the vector length is 4, this will calculate the transformation for 4 vertices at the
same time, instead of one. As can be noted in the equation above, each element in the
transformation matrix should be duplicated into a vector. Intel’s SSE extensions can perform
this operation in one instruction. An additional perspective divide for each element with 1

w
can be performed by multiplying with a vector of values resulting from a reciprocal instruction
(Section 2.3.1).

Video Applications are another example of data parallel applications, where MPEG is one of
the most often used algorithms to code and decode image data. MPEG contains several steps
that can truly benefit from vectorization. These steps include motion estimation, motion
compensation, DCT and variable length encoding.

8

2.3. HARDWARE ARCHITECTURE SUPPORT CHAPTER 2. BACKGROUND

Motion estimation calculates the sum of absolute differences (SAD) of 16x16 blocks. The SAD
is computed for a number of offsets in x and y direction from the source block. The offsets
with the minimum SAD value (i.e. best match), are combined into a direction vector. By
performing the SAD row-wise, the memory can be accessed sequentially. Matching for each
offset is a computationally intensive process, as a result of which hierarchical subsampling is
often performed as this decreases the size of the blocks and thus simplifies the search. This
does however require some additional subsampling operations. For more on subsampling and
motion estimation for SIMD instructions, see [2].

The Discrete Cosine Transform (DCT) and its inverse (IDCT) are computationally intensive
parts in video compression and decompression respectively. The DCT transforms 8x8 blocks
of spatial image data into a block of values in the DCT-domain. A two-dimensional (2D) DCT
is performed efficiently by a one-dimensional (1D) DCT in the horizontal dimension, and a
1D DCT in vertical direction afterwards. [18] describes an algorithm that can implement the
1D DCT with only 11 multiplications and 29 additions for an 8 point DCT.

The first stage of the DCT/IDCT algorithm consists of additions/substractions of a combina-
tion of 8 values. By loading the values into vectors and reshuffling the order of the elements,
the operations can be performed in parallel. The other stages of the DCT/IDCT can also
be performed in parallel, but that requires some more reordering operations. The interested
reader is referred to [23, 18].

DSP Applications perform their operations on one-dimensional arrays of data. Image processing
applications are actually a specific (two-dimensional) case of DSP applications. DCT and
Fourier transformations are widely used in DSP applications. As noted above, FIR filters and
DCT coding and decoding are well suited for SIMD instructions. An example of a basic FIR
filter can be seen in Figure 2.6.

2.3 Hardware architecture support

2.3.1 SSE extensions

Intel’s Streaming SIMD Extensions (SSE) aim to optimize multimedia applications. SSE has evolved
from the older MMX extensions, which provided integer SIMD instructions on 64-bit vectors (which
were actually the x87 FPU stack registers). SSE however supports eight 128 bit dedicated vectors.
It also provides a more extensive set of operations and supported data types (floating point SIMD
instructions were introduced with SSE).[1] The SSE extensions have SIMD units that can process
single and double precision floating point values, and word, double-word, quad-word integer values,
and also provides corresponding conversion instructions. SSE supports several data reordering
operations for elements within the vectors.

Since SSE is specifically suited for multimedia applications, it contains some instructions that
are often used in these applications. Some example vector instructions are the reciprocal (1

x) which
is used for perspective divides, square-root (

√
x) for calculating distances, and an SAD instruction

(Sum of Absolute Differences) for motion estimation.[2] The square-root and its reciprocal (i.e. 1√
x

)
are computationally intensive operations. Therefore, the processor obtains the value from a table of
pre-calculated values, instead of calculating the value at runtime. To keep the tables manageable,
the precision of the mantissa is limited to 11 bits, while 23 bits precision is offered by scalar single

9

2.3. HARDWARE ARCHITECTURE SUPPORT CHAPTER 2. BACKGROUND

precision instructions. To double the accuracy to 22 bits, the Newton-Raphson method could be
used, which performs the operations as shown in equations 2.1 and 2.2.

rcp′(a) = 2 ∗ rcp(a)− a ∗ rcp(a)2 (2.1)

rsqt′(a) = 0.5 ∗ rsqt(a) ∗ (3− a ∗ rsqt(a)2) (2.2)

The above example shows the non-uniformity of SIMD processors, as several operations may have
different precisions, instead of complying to the standard IEEE 754 floating point standard for each
floating point instruction.

When it comes to alignment issues, SSE does not impose high constraints on the alignment of
data, since it provides both an optimized aligned vector move (i.e. load/store) instruction, as well
as an unaligned move instruction. The unaligned instruction imposes overhead compared to the
aligned instruction (see Section 6.2), but allows some flexibility for the compiler. It is not allowed
to give an unaligned address to the aligned vector move instruction, as this causes an exception.

2.3.2 Altivec extensions

Altivec extensions do not support unaligned memory access, even though the processor does not
generate an exception when a vector from an unaligned address is requested. The low-order n bits
(where n =2 log(vectorlength)) of the address are discarded such that the address is always accessed
at an aligned boundary. This restriction is compensated by an extensive unit for data reordering
operations, such that explicit realignment operations can be efficiently implemented. The vperm
instruction provides for any possible element reordering of a vector while allowing runtime operands
for the reordering (i.e. the way the vector is reordered does not need to be a constant known at
compile-time, but can be a varying value at runtime).

2.3.3 Hardware vs Compiler considerations

The simplicity and non-uniformity of the available SIMD architectures result in more complex
compilers. By shifting the responsibility more towards the compiler, this allows for cheaper, faster,
more energy-efficient hardware. However, these restrictions limit the set of code segments that
can profit from vectorization, and the compiler will have to incorporate complicated analysis and
techniques to deal with these restrictions to try and fully utilize the SIMD capabilities. The non-
uniformity of the architectures is formed by a large variety in the set of supported data types, the
architecture-specific constraints for alignment, variety in precision for different instructions and the
set of provided instructions (Altivec has extensive reordering instructions, while SSE provides some
multimedia specific instructions).

2.3.4 Support for irregular and unaligned data access

A hardware solution as proposed by [7] solves alignment issues and irregular array access patterns.
Alignment issues are solved by implementing an align and shift-unit in hardware which extracts
the unaligned vector from two buffers. One possible implementation is to have a split line buffer
with a single-bank cache. A single cache line is buffered and shifted into the result of the other
load, thus requiring two consecutive loads. Another implementation would be to have a dual-bank
cache, separating the cache lines by their odd and even lines respectively. When a load crosses two
cache-lines, these two lines can be accessed in parallel.

10

2.4. AUTOMATIC VECTORIZATION CHAPTER 2. BACKGROUND

Irregular array access is implemented with a small multi-port memory unit. The unit is given
the base address and array-indices, and returns the resulting vector by combining multiple loads.
This operation requires that the unit is embedded in the memory architecture, which can be done
transparently by implementing it as a cache, or more explicit by implementing it as on-chip memory.
As a cache, this will require additional tagging logic on top of the packing logic. To keep the
packing-cache coherent with the cache-memory, the packing-cache will need to be accessed for each
(ordinary) memory access. This causes unnecessary overhead which may not be desirable (possibly
due to power constraints). As an on-chip memory, the packing-buffer will have its own memory
space. The compiler will have to insert operations to handle the dynamic memory management
such as copy/copy-back functions.

2.3.5 Graphics hardware

Graphic cards rely heavily on the data-parallelism in graphical models and computations. Identical
computations need to be performed on a large number of pixels or vertices, which is perfect for
SIMD execution, having only one instruction for multiple data elements. This hardware can be
found in game consoles like XBox and Playstation, which require extensive processing power trying
to create life-like experiences.

Graphic cards have different SIMD processors called shader units for each step in the graphics
pipeline [21]. Vertex and geometry shaders operate on multiple vertices simultaneously to perform
geometrical and lighting computations. Fragment and texture shaders perform clipping, culling,
texturing and other fragment related operations. Increasing the vector size of the SIMD unit
increases the number vertices that can be handled simultaneously. However, the nature of SIMD
is an issue when state-changes between model-primitives cause vertices to be processed differently.
Therefore, the trend of shader-units in recent graphics hardware is shifting more toward the MIMD
(Multiple Instructions Multiple Data) execution model, which often results in a hybrid of both
MIMD and SIMD execution models [6].

2.4 Automatic vectorization

The purpose of automatic vectorization is that sequential code sequences can be automatically
transformed into vector sequences. By performing general transformations for vectorization on
sequential code, no architecture dependent details need to be embedded in the source program,
keeping it portable for other architectures. A vectorizing compiler needs to find consecutive scalar
operations to transform them to vector operations. Since ’loops’ iteratively apply the same opera-
tions, they are very suitable for this transformation.

2.4.1 Loop Carried Dependences

Vectorization of code can be hindered by dependences, either between consecutive statements or
between loop iterations. Dependency analysis needs to determine which dependences are present
in the loops. If dependences exist or independence cannot be proven, the compiler should be con-
servative and assume dependence. Reading from and writing to the same memory locations in one
statement or basic block can cause dependences, possibly preventing the use of vector instructions.
When writing to a memory location that is read some iterations later, there is a loop carried (flow-
) dependence between the statements. If the distance between the iterations is greater than the

11

2.4. AUTOMATIC VECTORIZATION CHAPTER 2. BACKGROUND

/∗ g l o b a l data ∗/
f loat a [N] , b [N] ;

for (i =0; i<N; i++)
{

S1 : a [i +1] = a [i] + Const ;
S2 : b [i +5] = b [i] + Const ;
S3 : c [i] = c [i +1] + Const ;

}

Figure 2.3: Reading and writing from/to the same address can cause dependences

vector length, vectorization can still proceed, since there will be no dependences between elements
within the vector itself. To illustrate, let us review the dependences as depicted in Figure 2.3.

Statement S1 contains a loop carried (flow-) dependence of distance 1. The (backward) flow-
dependence makes S1 recursive:

a[i] = Const ∗ (i) + a[0],∀i > 0 (2.3)

When S1 is performed with vectors, the vector a from array a will be loaded from memory,
and the vector const = [Ck, .., Ck] is added to a. Equation 2.3 shows that the values within the
vector should accumulate. Assuming the vector length is 4, the problem as described above does
not hold for S2, even though the (backward) flow-dependence remains. In this case the distance is
greater than the vector length, and therefore doesn’t result in inter-vector dependences. Statement
S3 contains a (forward) anti-dependence. Anti-dependences form no problem for vectorization
since the value of c[i] is not dependent on the result of the previous iteration, so a vector can be
safely loaded before the operation is performed. Do note however that anti-dependences cannot be
discarded in general.

To be sure whether dependences exist, the compiler is required to know which memory is
accessed. When the memory is accessed from a pointer (given for example as a function argument),
the compiler has no knowledge about the layout of the memory. It is possible that the memory-
blocks overlap, resulting in data-dependences. The compiler could try to check every use of the
function, and try to determine whether the given pointers reference an aliased memory block.
However, when the function is declared globally, it can be accessed outside of program scope, and
the analysis does not hold. Another solution to this situation is to explicitly tell the compiler
whether the function arguments have overlap in memory. The C99 standard uses the ’restrict’
keyword for this purpose. When the compiler knows that the memory referenced by the pointers
is not aliased, vectorization can proceed safely. An example of this can be seen in Figure 2.4.

2.4.2 Code and loop transformations

There are some code and loop transformations that can provide a solution when dependences are
involved. Below we will describe some of these techniques. When dependences still remain despite
the transformations, vectorization should be disallowed.

If-conversion

Control-flow by if-else-constructs cause control dependences withinin a loop body. As the control
flow is calculated on a scalar value as opposed to a vector, this may result in different control

12

2.4. AUTOMATIC VECTORIZATION CHAPTER 2. BACKGROUND

f loat array [N] ;

// compil ing foo w i l l r e s u l t in erroneous output
void f oo (void)
{

b a r r e s t r i c t (array+1, array) ; // error
ba r n on r e s t r i c t (array+1, array) ; // ok

}

void b a r r e s t r i c t (r e s t r i c t f loat ∗ a , r e s t r i c t f loat ∗ b)
{ /∗ Guaranteed to have no dependences => v e c t o r i z a b l e ∗/

for (i =0; i<N−1; i++)
a [i +1] = b [i] ;

}

void ba r n on r e s t r i c t (f loat ∗ a , f loat ∗ b)
{ /∗ Should not be vector i zed , as there

are no guarantees about po in ters ∗/
for (i =0; i<N−1; i++)

a [i +1] = b [i] ;
}

Figure 2.4: Using the restrict keyword

/∗ be fore ∗/
for (i =0; i<N; i++)

i f (a==0)
b [i] = 0 ;

else
b [i] = c [i] ;

/∗ a f t e r ∗/
i f (a==0){

for (i =0; i<N; i++)
b [i] = 0 ;

} else {
for (i =0; i<N; i++)

b [i] = c [i] ;
}

(a) Loop Unswitching

/∗ be fore ∗/
for (i =0; i<N; i++){

a [i] = b [i] + 1 ;
/∗ dependence a [i−1] ∗/
b [i] = a [i −1] + constant ;
c [i] = d [i] ;

}

/∗ a f t e r ∗/
for (i =0; i<N; i++)

c [i] = d [i] ;
for (i =0; i<N; i++){

a [i] = b [i] + 1 ;
b [i] = a [i −1] + constant ;

}

(b) Loop Distribution

/∗ be fore ∗/
for (x=0; x<N; x++)

for (y=0; y<M; y++)
a [y] [x] = constant ;

/∗ a f t e r ∗/
for (y=0; y<M; y++)

for (x=0; x<N; x++)
a [y] [x] = constant ;

(c) Loop Interchange

Figure 2.5: Several loop transformations

13

2.4. AUTOMATIC VECTORIZATION CHAPTER 2. BACKGROUND

flows for values within a vector. As the control flow should be the same for all values within
the vector, this cannot be allowed. Some of these conditional statements can be rewritten using if-
conversion by converting an if-else-construct into a series of and and or operations, that manipulate
the outcome of the expressions, and transform a flow dependency into a data dependency [5, 3].
However, if-conversion is not always possible or feasible since both the if and else part need to be
computed. If the expressions are large, the overhead imposed by computing both the if and else
part may prove to be too high. Side-effects may limit the use of if-conversion as this can invalidate
the transformation. Both edges of the condition are executed, so possible side-effects that had
been previously guarded by the condition will be executed as well. Alternatively, some hardware
architectures provide predicated instructions which are only executed when their corresponding
condition is evaluated to true,

Loop unswitching

Another solution to control-flow dependences in basic blocks is loop unswitching (Figure 2.5(a)). If
the test-expression of the statement is invariant, the compiler could create two versions of the loop.
One loop when the condition is true, and one for which the condition is false. Now the control flow
dependence is moved outside the loop, so the loop can be optimized for parallel execution.

Loop distribution

When there are multiple dependences in a loop body, loop distribution as depicted in Figure 2.5(b)
can help to divide loop bodies by distributing statements coupled by dependences to separate loops.
By moving statements unaffected by dependences into a new loop, these loops can be effectively
vectorized, while the other loops are executed with scalars.

Loop interchange

Depending on the access pattern of the inner-loop, it may be beneficial to interchange the inner-
loop with the outer-loop if this results in continuous memory access (types of access patterns are
further elaborated in section 2.5.2). An example of loop-interchange can be seen in Figure 2.5(c).
[14] provides a more detailed discussion on loop-interchange. [20] describes a similar approach that
vectorizes outer-loops instead of inner-loops, using an unroll-and-jam technique (see Section 2.4.4).
Depending on how the loop-nest is ’unrolled-and-jammed’ it can be similar to performing loop
interchange. However, unroll-and-jam is a more direct and more importantly, broader approach to
vectorizing loop-nests.

2.4.3 Cost model

Even though the use of vector instructions could theoretically speed up the program, it is not
always beneficial. The restrictions imposed by most SIMD architectures, can cause data reordering
operations to be inserted to keep the vector-orderings and data-sizes consistent with each-other.
This could occur when the program accesses the memory in a non-consecutive order while the
SIMD-architecture does not support indexed vector loads/stores. Another situation that causes the
compiler to produce overhead is when basic blocks can only be partially vectorized. The compiler
generates instructions to extract/compact vectors from/to scalar values, to switch between vector
and scalar execution. The produced overhead might render the execution with vector instructions

14

2.4. AUTOMATIC VECTORIZATION CHAPTER 2. BACKGROUND

/∗ o r i g i na l loop ∗/
for (i =0; i<N; i++){

s = 0 ;
for (j =0; j<M; j++)

s += x [i+j] ∗ c [j] ;
y [i] = s ;

}

/∗ unro l l outer loop 4x ∗/
for (i =0; i<N; i+=4){

s = 0 ;
for (j =0; j<M; j++)

s += x [i+0+j] ∗ c [j] ;
y [i +0] = s ;
s = 0 ;
for (j =0; j<M; j++)

s += x [i+1+j] ∗ c [j] ;
y [i +1] = s ;
s = 0 ;
for (j =0; j<M; j++)

s += x [i+2+j] ∗ c [j] ;
y [i +2] = s ;
s = 0 ;
for (j =0; j<M; j++)

s += x [i+3+j] ∗ c [j] ;
y [i +3] = s ;

}

/∗ jam ∗/
for (i =0; i<N; i+=4){

s = {0 , 0 , 0 , 0} ;
for (j =0; j<M; j++){

s [0] += x [i+0+j] ∗ c [j] ;
s [1] += x [i+1+j] ∗ c [j] ;
s [2] += x [i+2+j] ∗ c [j] ;
s [3] += x [i+3+j] ∗ c [j] ;

}
y [i +0] = s [0] ;
y [i +1] = s [1] ;
y [i +2] = s [2] ;
y [i +3] = s [3] ;

}

Figure 2.6: Unroll and Jam enhances performance of vector reductions for typical FIR filter

less efficient than when executed with scalars. The report in Appendix B reveals this effect for
several benchmarks performed on the GCC and Intel compilers.

These undesirable situations can be prevented by using a cost-model that indicates whether or
not vectorization is feasible. The cost-model could either be applied before or after vector-specific
code transformations. By applying the cost-model before transformations, the estimated cost may
prevent transformations from taking place. An example of such a cost model is described by [15].
By performing the cost-model afterwards, the costs can be calculated accurately and depending on
the results, the compiler may choose to revert the vector-specific transformations.

Since vectorization generates overhead, it gains a benefit when the number of loop iterations
crosses a certain threshold. Since the number of loop iterations can often not be determined at
compile time, profiling the compiled program could help to determine the dynamic properties of
the loops.

2.4.4 Generating SIMD instructions

Several techniques to generate SIMD instructions for statements in a loop body have been proposed.
One widely used technique is based on Super-word Level Parallelism (SLP)[25, 17, 24]. With SLP,
an innerloop is unrolled several times, and the algorithm aggregates statements that could form
a SIMD instruction. The criteria to aggregate statements are based on the memory access and
the performed operation. The number of times the loop is unrolled should at least correspond to
the vector-length. However, when the vector-length is too large, the problem of finding a suitable
grouping may become unmanageably large for a compiler. Therefore, this technique is specifically
suited for short-vector SIMD architectures.

SLP forms an initial set of pairs by aggregating statements that access consecutive memory
addresses with isomorphic operations. This initial set of pairs is then extended with other pairs
by following their def-use/use-def chains. Pairs can only be added if their statement accesses an
adjacent memory location, contain no dependences, are isomorphic and do not cross alignment
boundaries. In a next step, these pairs are combined into groups of isomorphic statements. When

15

2.5. LOADING AND STORING OF VECTOR DATA CHAPTER 2. BACKGROUND

no dependences are violated, the statements in the groups are scheduled, and SIMD instructions
are emitted.

By concentrating on the inner-loop in the loop-nest, only information about the memory access
pattern of the inner-loop is known. A technique called unroll and jam unrolls the loop that encloses
the inner-loop, and combines the statements in the inner-loop body (i.e. the jam). By vectorizing
the outer-loop, the SLP algorithm has more information available on the memory access pattern, and
could aggregate the statements differently than it would if only the inner-loop would be concerned.
Especially reductions from an inner loop can benefit from this transformation, as can be seen
in Figure 2.6. When reductions are present and only the inner loop is vectorized, this requires
an additional loop that sums all the scalar values within the vector. Using the unroll-and-jam
transformation however, a more natural vectorization of reduction is performed, without the need
of an additional summation loop. Note that this also holds for other reduction operations like min
and max.

Another technique by [26] uses virtual vectors. Instead of unrolling the loop and aggregating
statements in a basic block, this technique performs its aggregation on unaltered loop bodies. This
does not require unrolling of the loop or other transformations which may need to be reverted if
vectorization appears unfeasible. A virtual vector of arbitrary length is created by aggregating
isomorphic operations that operate on consecutive memory. At a later stage these virtual instruc-
tions are mapped onto actual instructions of the architecture vector length. [26] also implements
recognition for reductions in short loops (loop bounds need to be known at compile-time).

Another common occurrence in loops are the presence of induction variables, that are used in
computations. Inductions are difficult to vectorize for compilers, as they require a special construc-
tion. Expressions containing an induction variable need an induction vector that is updated each
iteration. An induction vector (for an induction variable of form ax + b) is initialized with

[0 ∗ vincr, 1 ∗ vincr, ..., n ∗ vincr]

where vincr is the increment-value of the induction variable. This vector needs to be updated each
iteration with the vector

[n ∗ vincr, n ∗ vincr, ..., n ∗ vincr]

This does however require that the iteration step-size is a compile-time-known constant.

2.5 Loading and storing of vector data

2.5.1 Data types

There is a large variety in data type support on the various SIMD architectures. Some architectures
allow only a small set of data types, while other architectures support a wide range of data types
and operations on these types. SIMD operations in GPUs (see Section 2.3 for example), require
a specific data type in each stage of the pipeline. The compiler needs to know whether certain
conversions between one data type and the other are supported by the target platform. Mapping
scalar code to vector code is not always possible or profitable due to architecture restrictions that
might prevent data type conversions, or have limited support for packing and unpacking of data.

Issues could arise for code that operates on multiple data types within a single statement, thus
requiring data size conversions within expressions. When the data types have different sizes, length
conversion is required. Different data sizes result in vectors with a different number of elements.

16

2.6. ALIGNMENT ISSUES CHAPTER 2. BACKGROUND

/∗ g l o ba l data ∗/
f loat a [N] , b [N] , c [N] ; // a l l are 16−by tes a l i gned

/∗ o r i g i na l loop ∗/
for (i =1; i<N; i++){

a [i] = b [i +1] + c [i +2] ; // Three unaligned accesses
}

/∗ loop unro l l ed for f i r s t 4 i t e r a t i on s ∗/
a [1] = b [2] + c [3] ; // loads vector from :
a [2] = b [3] + c [4] ; // ’a ’ at o f f s e t 4.
a [3] = b [4] + c [5] ; // ’ b ’ at o f f s e t 8.
a [4] = b [5] + c [6] ; // ’ c ’ at o f f s e t 12.
. . .

Figure 2.7: Example of unaligned vector access

Packing and unpacking instructions will need to be issued to convert these vectors to have identical
data sizes and number of elements.

2.5.2 Memory accesses

Accessing the memory can be done in several ways. The accesses can be either consecutive or
non-consecutive, where the latter can be strided or non strided. Below we list some definitions.

Unit-stride memory access: This is the simplest case and is supported by all vector architec-
tures. In case of unit-stride access, values with consecutive memory addresses are accessed.
This is also known as continuous, consecutive or stride-1 memory access.

Strided memory access: Accesses to the memory where the addresses are not consecutive, but
are spaced with a fixed step size (the stride), causing the memory-addresses to be linear. Hav-
ing strided memory accesses often prevents the compiler from vectorizing the code, since the
overhead of permutation instructions needed to combine/extract the vector often outweights
its advantage with respect to scalar execution. [19] describes a technique that effectively vec-
torizes strided memory accesses having a power of 2. When the address is required to be a
power of 2, the compiler always knows the location of the value within the vector for each ac-
cess. This enables the use of the simple virtual instructions, ’extract even’ and ’extract odd’,
which can be efficiently mapped onto actual instructions for most platforms.

Indexed memory access: When the memory is accessed in a non-linear order, than this is called
an indexed memory access. To access an indexed vector from the memory, scatter and gather
operations must be supported by the hardware. For vectorization to be beneficial, hard-
ware units must implement these operations, requiring complex and expensive scatter/gather
units.[7] proposes a hardware solution that performs the task of packing and unpacking scalar
values into/from vectors respectively (See section 2.3 for more details).

2.6 Alignment issues

The simplified memory architectures of SIMD processors often impose constraints on the alignment
when accessing vectors in the memory. They require that the vectors are accessed at aligned

17

2.6. ALIGNMENT ISSUES CHAPTER 2. BACKGROUND

/∗ Assuming a , b and c have same alignment ∗/
void f oo (r e s t r i c t f loat ∗ a , r e s t r i c t f loat ∗ b , r e s t r i c t f loat ∗ c , int s i z e){

/∗ sca lar execut ion ∗/
for (int i =0; mod(&a [i] ,VL) != 0 && i<s i z e ; i++)

a [i] = b [i] + c [i] ;

/∗ p a r a l l e l exect ion , loop i s now a l igned to a [i] ∗/
for (; i<s i z e ; i++)

a [i] = b [i] + c [i] ;
}

Figure 2.8: Dynamic loop peeling

boundaries in the memory, which means that the memory addresses must be a multiple of the
vector length.

An example can be seen in Figure 2.7. Here the vectors are loaded at byte offsets 4, 8 and 12
for variables a, b and c respectively. Since the base addresses of all the memory blocks are aligned,
the memory at these offsets (assuming V L = 4) will be unaligned.

While some architectures strictly disallow accesses at unaligned memory addresses, other ar-
chitectures access memory only at aligned boundaries. Intel’s SSE extensions relax the alignment
constraints by providing specialized instructions that can access vectors at unaligned boundaries,
but the use of these unaligned instructions imposes significant overhead, which should be avoided
whenever possible. If no realignment techniques are used, vectorization might either not be possible
or may not be profitable. Therefore, several techniques have been proposed to solve these issues,
which will be elaborated on in this section.

2.6.1 Implicit realignment techniques

Several realignment techniques have been proposed to deal with misalignments for SIMD processors.
Implicit as opposed to explicit realignment techniques, do not realign the data at runtime using
specific instructions. It either aligns the data at compile time, or inserts code to select the load/store
instructions depending on the alignment of the data. Each of the proposed implicit techniques has
its pros and cons, and none of them can be seen as an optimal solution. A thorough comparison
between the proposed solutions is given in [22]. We will discuss each of the techniques below.

Static Loop peeling This technique can be used to align one of the memory accesses in the loop,
by peeling off a fixed and compile-time-known number of iterations from the loop. When
multiple misalignments are involved, only one of them can be aligned by loop peeling, since
aligning one of the memory accesses can misalign another formerly aligned access. Therefore,
static loop peeling is only profitable when all memory accesses have the same misalignment.
This technique is often limited by the restrictions that the alignments need to be known at
compile time, which is a rather strict limitation. In that case dynamic loop peeling can prove
itself useful.

Dynamic Loop peeling When alignment information is not known at compile-time, this tech-
nique can peel off several loop iterations from a loop until one of the memory addresses is
aligned. When there are multiple misalignments in the loop body, dynamic loop peeling can
be used in conjunction with other realignment techniques. An example of Dynamic loop
peeling can be seen in Figure 2.8.

18

2.6. ALIGNMENT ISSUES CHAPTER 2. BACKGROUND

The algorithm introduces a small overhead, since the first few iterations need to be checked
for their alignment. After that the loop is executed in parallel without any overhead. This
causes the algorithm to be beneficial when the number of iterations is more than the vector
length.

Multidimensional Array Padding When the innermost dimension of a multidimensional array
is not a multiple of the number of elements in a vector, the alignment of the accessed values
becomes dependent of the indices, and cannot be predicted at compile time. This effect can
be seen in the following example, where the inner dimension of the array is one element short
of being a multiple of the vector length.
/∗ assume VL of 4 elements ∗/
/∗ g l o ba l data ∗/
f loat a [N] [M] [3 1] ;

for (i =0; i<N; i++)
for (j =0; j<M; j++)

for (k=0; k<31; k++)
a [i] [j] [k] = cons tant va lue ;

The alignment of the array values of ’a’, cannot be computed at compile time, since the
alignment depends on the values for i and j. This prevents the loop from being properly
vectorized. A solution to this problem would be to pad the inner-dimensions of the array
with ’dummy’ elements, causing the inner-array to have a size that is a multiple of the vector-
length, thus resulting in compile time known alignments.

A problem with this approach is the need of support from the language standard. If the
language provides no support, viewing the multidimensional array as a one-dimensional ar-
ray after padding (for example when using a type-cast in C) would have undefined results.
Accessing the elements in the one-dimensional array will not correspond with the elements
in the two-dimensional array, since the padded elements are accessed as normal elements.
To prevent this from happening, the compiler will have to perform an analysis to see if this
situation occurs somewhere throughout the program. When the array is defined globally, and
is accessible to code outside of the compiled program, the scope of the analysis is insufficient,
as a result of which multi-dimensional array padding should not be allowed at all.

Multi-version code A relatively straightforward way to solve the problem of runtime-known
alignments, is to use multi-version code. A dynamic check is performed to test the align-
ment of the memory access, and the corresponding code-version that is optimized to deal
with that particular set of misalignments is executed. Depending on the number of possible
misalignments, the combinations of these misalignments, and extensiveness of the implemen-
tation, the code size may ’explode’. Depending on the application, the compiler will have
to decide between code size and performance. For desktop applications code size may be
less important than for embedded devices. Profiling of the program could provide a better
assessment [5].

Duplication of constant tables Applications that use constant tables in their calculations like
DSP or Image processing applications (see section 2.2) could benefit from having multiple
versions of their constant tables, one version for each misalignment. Often, constant tables
are small in size (like most FIR filters for example), and duplicating the tables does not add
too much overhead in memory size. By duplicating the constant tables, the algorithm can

19

2.6. ALIGNMENT ISSUES CHAPTER 2. BACKGROUND

/∗ o r i g i na l loop ∗/
for (i =0; i<N; i++)

a [i] = b [i +1] + c [i +1] ;

/∗ rea l i gn the express ion ∗/
for (i =0; i<N; i++)

a [i] = r e a l i g n t o o f f s e t 0 (b [i +1] + c [i +1]) ;
/∗ or s im i l a r l y (but using two rea l i gn operat ions) ∗/
a [i] = r e a l i g n t o o f f s e t 0 (b [i +1]) + r e a l i g n t o o f f s e t 0 (c [i +1]) ;

Figure 2.9: The realign-operation explicitly realigns the expression from element-offset 1 and 2, to
offset 0

dynamically check the runtime misalignment, and use the corresponding aligned table. This
is actually a special case of multi-version code.

2.6.2 Explicit realignment techniques

Even though the implicit realignment techniques as mentioned in the previous section can improve
the alignment properties of the expressions, statements or data elements, it does not cover all
situations where alignment issues are involved. The alignment issues as depicted in Figure 2.7
cannot be handled by using an implicit realignment technique. For this situation, loop peeling
would only be able to align one of the accesses, while the other two expressions remain unaligned.
In situations where the alignment of expressions are unknown at compile time (when pointers are
involved, or runtime address offsets), only multi-version code would be able to form a solution.

[9, 10] Proposes a technique to create aligned accesses for each vector load, by inserting explicit
instructions to extract the misaligned data from two consecutive aligned vectors. These permutation
instructions realign the data at runtime by conceptually shifting the data-streams from one offset
to another. A simplified example can be seen in Figure 2.9, while a thorough explanation is given
in Chapter 3. Extracting misaligned data requires support for permutation instructions from the
targeted platform. Profitability of vectorization depends on the number of required permutations
and the cost of a permutation instruction on the targeted platform.

Figure 2.9 already shows that there are multiple ways to realign expressions, so finding the
configuration with a minimal number of permutation operations is important. An algorithm as
proposed by [9] uses heuristics to find a configuration for the permutation instructions. [11] claims
that the problem of finding an optimal arrangement for realignment instructions resembles the
proven NP-Hard problem in [8], but is different in some important details. The SIMD alignment
problem is therefore presumed to be an NP problem, but no NP-hardness or NP-completeness proof
has been given so far.

The heuristics given by [9] (so called ’shift-policies’) each have its own characteristics. The least
efficient policy (zero-shift) can be used in situations where unknown misalignments are present,
while the other policies focus more on suppressing the number of permutations. These policies are
further elaborated in Chapter 3.

Two algorithms as proposed by [11] try to find the minimal number of permutations for two
specific situations. One being a statement with no common subexpressions, the other being a
statement with only two misalignments and where common subexpressions are allowed. Both
algorithms only focus on the placement of the shifts, and assume that each shift operation is
performed with equal costs. [16] proposes an approach that is based on an ILP solver, to find an

20

2.7. FOCUS OF THIS THESIS CHAPTER 2. BACKGROUND

optimal shift configuration.

2.7 Focus of this thesis

For this thesis project, the focus is on explicit realignment techniques. Explicit realignment tech-
niques provide for a complete solution to alignment issues. The overhead of the permutation
instructions is the result of a trade-off between performance, code-size and functionality when com-
pared to the previously presented implicit realignment techniques. When the overhead caused by
these instructions is minimized due to a minimal realignment configuration, the use of short vector
instructions is still a great benefit compared to scalar execution (see Chapter 6). This thesis project
is performed at the company ACE, which is known for its compiler framework, CoSy. As ACE is
currently developing components that can optimize a compiler for short vector architectures, align-
ment issues are something they see as an improvement to their compiler framework. As both the
interests of the university, as well as ACE needs to be conceded, our approach will show a trade-off
between theoretical and pragmatical solutions.

This thesis covers both heuristics as well as an algorithm to find an optimized shift configuration
based on the number of realignment and permutation instruction characteristics. Common subex-
pressions are not considered as we believe that this is outside the scope of the subject. Furthermore,
an algorithm to insert the shift operations is covered, as well as an implementation of the proposed
algorithms.

21

Chapter 3

Explicit Realignment

This chapter will will try to establish a conceptual understanding of explicit realignment and the
solution that is presented in later chapters. Section 3.1 will begin with an example that illustrates
the problems with multiple misalignments. Section 3.2 will present some definitions that are used
throughout this report. The section that follows, 3.3, will explain how the misalignments can be
resolved. This section is divided in two parts, one part that explains how to find a configuration to
explicitly realign the expression (3.3.1), and another part that explains the generation of operations
to perform this realignment (3.3.3).

3.1 Introduction

Expressions containing memory operations with multiple alignments cannot be handled properly by
implicit realignment techniques, as these can only remove one of the misalignments in an expression
(see Section 2.6.1). To allow vector operations to be used for these expressions, explicit realignment
techniques are required.

To illustrate this situation with an example, let’s take a look at figure 3.1a, which shows the
memory for operations of the expression x[i] = a[i+1] + b[i+2] + c[i+3]. The store for x[i] is aligned,
as the vector to be stored does not cross any alignment boundaries. However, the vector load for
a[i+1] is not properly aligned, as the load crosses the alignment boundary by one element. The same
holds for b and c, where the loads cross the alignment boundary by 2 and 3 elements respectively.
Note that in this specific case the store itself is already aligned by the statement definition itself.
We assume that vector-store operations are not allowed to cross alignment boundaries. When the
store is misaligned as is the case in the above-mentioned example, several loop-iterations should
be ’peeled off’ (see Section 2.6.1) to assure an aligned store. Note that peeling does not affect the
relative offsets between the streams, and as a result only the loads are misaligned.

3.2 Definitions

In order to find a systematic approach to this problem, we first need to introduce the concept of
’streams’ and ’stream offsets’.

22

3.3. SHIFTING REGISTER STREAMS CHAPTER 3. EXPLICIT REALIGNMENT

Sheet1

Page 1

Offset 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12
Address 0 16 32 48 64 80 96

c[i+3] c0 c1 c2 c3 c4 c5 c6 c7 ... c[i+3]
b[i+2] b0 b1 b2 b3 b4 b5 b6 ... b[i+2]
a[i+1] a0 a1 a2 a3 a4 a5 ... a[i+1]
x[i] x0 x1 x2 x3 x4 ... x[i]

Address 0 16 32 48 64 80 96

c[i+3] c3 c4 c5 c6 c7 ... c[i+3]
b[i+2] b2 b3 b4 b5 b6 ... b[i+2]
a[i+1] shifted left by 1 element a1 a2 a3 a4 a5 ... a[i+1] ←
x[i] x0 x1 x2 x3 x4 ... x[i]

Address 0 16 32 48 64 80 96

c[i+3] shifted left by 3 elements c3 c4 c5 c6 c7 ... c[i+3] ←
b[i+2] shifted left by 2 elements b2 b3 b4 b5 b6 ... b[i+2] ←
a[i+1] shifted left by 1 element a1 a2 a3 a4 a5 ... a[i+1] ←
x[i] x0 x1 x2 x3 x4 ... x[i]

Address (i starts @ 1) 0 16 32 48 64 80 96
c[i+3] curr c next c ...

... shift c ...
b[i+2] + shift(c[i+3]) curr b + shift... next b + shift(c) ...

... ... shift b
a[i+1] + shift(b[i+2] + shift (c[i+3])) curr a + shift... next a + shift(b) ...

... shift a
x[i] = shift(a[i+1] + shift(b[i+2] + shift(c[i+3]))) scalar prologue vector prologue steady-state steady-state steady-state steady-state ...

Address 0 16 32 48 64 80 96
b[i+1] → prev b curr b ...

shift b
a[i+2] + shift(...) → prev a + shift... curr a + shift(b) ...

shift a
x[i+3] = shift(...) x[i+3] ...

Address 0 16 32 48 64 80 96
b[i+1] → prev prev b prev b curr b ...

shift prev b shift b
a[i+2] + shift(...) → prev a + shift... curr a + shift(b) ...

shift a
x[i+3] = shift(...) x[i+3] ...

Address 0 16 32 48 64 80 96
c[i+0] prev prev prev c prev prev c prev c curr c

shift prev prev c shift prev c shift c
b[i+1] + shift(...) prev prev b prev b curr b ...

shift prev b shift b
a[i+2] + shift(...) prev a + shift... curr a + shift(b) ...

(a) Unshifted streams

Sheet1

Page 1

Offset 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12
Address 0 16 32 48 64 80 96

c[i+3] c0 c1 c2 c3 c4 c5 c6 c7 ... c[i+3]
b[i+2] b0 b1 b2 b3 b4 b5 b6 ... b[i+2]
a[i+1] a0 a1 a2 a3 a4 a5 ... a[i+1]
x[i] x0 x1 x2 x3 x4 ... x[i]

Address 0 16 32 48 64 80 96

c[i+3] c3 c4 c5 c6 c7 ... c[i+3]
b[i+2] b2 b3 b4 b5 b6 ... b[i+2]
a[i+1] shifted left by 1 element a1 a2 a3 a4 a5 ... a[i+1] ←
x[i] x0 x1 x2 x3 x4 ... x[i]

Address 0 16 32 48 64 80 96

c[i+3] shifted left by 3 elements c3 c4 c5 c6 c7 ... c[i+3] ←
b[i+2] shifted left by 2 elements b2 b3 b4 b5 b6 ... b[i+2] ←
a[i+1] shifted left by 1 element a1 a2 a3 a4 a5 ... a[i+1] ←
x[i] x0 x1 x2 x3 x4 ... x[i]

Address (i starts @ 1) 0 16 32 48 64 80 96
c[i+3] curr c next c ...

... shift c ...
b[i+2] + shift(c[i+3]) curr b + shift... next b + shift(c) ...

... ... shift b
a[i+1] + shift(b[i+2] + shift (c[i+3])) curr a + shift... next a + shift(b) ...

... shift a
x[i] = shift(a[i+1] + shift(b[i+2] + shift(c[i+3]))) scalar prologue vector prologue steady-state steady-state steady-state steady-state ...

Address 0 16 32 48 64 80 96
b[i+1] → prev b curr b ...

shift b
a[i+2] + shift(...) → prev a + shift... curr a + shift(b) ...

shift a
x[i+3] = shift(...) x[i+3] ...

Address 0 16 32 48 64 80 96
b[i+1] → prev prev b prev b curr b ...

shift prev b shift b
a[i+2] + shift(...) → prev a + shift... curr a + shift(b) ...

shift a
x[i+3] = shift(...) x[i+3] ...

Address 0 16 32 48 64 80 96
c[i+0] prev prev prev c prev prev c prev c curr c

shift prev prev c shift prev c shift c
b[i+1] + shift(...) prev prev b prev b curr b ...

shift prev b shift b
a[i+2] + shift(...) prev a + shift... curr a + shift(b) ...

(b) Shifting stream a, b and c

Figure 3.1: Shifting the expression x[i] = (a[i+1]0←1 + b[i+2]0←2 + c[i+3]0←3)
(the 0←1 indicates a left shift operation from offset 1 to offset 0 on the expression node)

Memory Stream is the sequence of scalar values obtained by accessing an array during the life-
time of a loop. Note that in this research we only focus on memory streams having a unit-stride
access pattern. For the subscript expression b[i+2] in Figure 3.1a, the memory stream results
in the value-sequence: {b2, b3, b4, b5, . . .}.

Register Stream is the sequence of vector registers produced by a single operation during the
lifetime of a loop. This operation can be either a logical, arithmetic or memory-load op-
eration. The stream of vectors resulting from such an operation is denoted as the register
stream. For load operations, we assume that vector registers are loaded at aligned boundaries.
This may cause the memory stream to be different from the resulting register stream. This
can be seen in Figure 3.1a, where the register stream resulting from b[i+2] is the sequence
{[b0, b1, b2, b3], [b4, b5, b6, b7], . . .}. Note that the first two elements of the register stream
are different from the first two elements of the memory-stream.

Shifted Stream is the sequence of vector registers produced after ’shifting’ the elements in the
register stream to a different offset (see Section 3.3). Shifting a stream can be seen as mov-
ing all (scalar) elements within the (vector) register stream several elements to the left or
right, depending on the shift-direction. For the register stream b[i+2] as shown in Fig-
ure 3.1a, shifting the register stream two elements to the left results in the register stream
{[b2, b3, b4, b5], [b6, b7, b8, b9], . . .}.

Stream Offset can be defined as the byte offset of the first desired element in the register stream.
For expression b[i+2], the first desired value is b2, having an offset of 8.

Vector Length (VL) is the length of a vector in bytes.

Blocking Factor (BF) is the number of elements within a vector.

3.3 Shifting register streams

As demonstrated above, the sequence of values obtained from a memory stream can be different
from a resulting (vector) register stream. A consequence of this is that operations defined on

23

3.3. SHIFTING REGISTER STREAMS CHAPTER 3. EXPLICIT REALIGNMENT

scalar values cannot be directly mapped to vector operations when the elements within the register
streams have different offsets. This would cause incorrect elements within the vector to be used for
the operation. Therefore, vector operations can only be performed on register streams when they
have similar offsets. As the memory-stream itself is fixed (i.e. the contents of the memory may not
be changed as a side-effect to an expression), the discrepancy of offsets will have to be compensated
in the register stream.

An example of this can be seen in Figure 3.1a, where the register stream of c cannot be added to
the register stream of b, as the former stream is shifted right by one element compared to the latter
stream. The same holds for stream b with respect to a, and a with respect to x. By conceptually
shifting all streams to the same offset, the vector operations can be performed. The result of shifting
all streams to offset 0 can be seen in Figure 3.1b. Note that shifting is conceptually simple, but
requires actual instructions to perform the streamshift-operation at runtime. Section 3.3.3 explains
what constitutes such an operation.

3.3.1 Finding a shift configuration

The previously mentioned example showed one possible way to shift the register streams and perform
the vector operations, but multiple orderings are possible, where some orderings may be more
efficient than others. Therefore, inserting shift-operations requires calculations of shift positions
within the expression as well as the desired offsets.

The number of shifts has several important consequences on the program. For one, shifting a
register stream to a different offset requires one or more permutation instructions (depending on the
Instruction Set Architecture). When the overhead of inserting these instructions is significant, the
speed-up which is obtained by the use of vector calculations may be diminished by the overhead
produced by stream shift operations. Second, a shift-operation is performed on two consecutive
vectors. Only one of those vectors has to be loaded on each vector iteration, as long as the other
vector is kept from the previous iteration. Depending on the architecture and the number of shift
operations in the expression, the program may be caused to spill some of these registers to memory
if there are an insufficient number of available registers to store all the intermediate results. This
may have a serious impact on performance as well. Intel’s SSE2 extensions for example, provide
only 8 vector registers. These 8 registers can contain at maximum three shifts, as three intermediate
results can be stored for the next iteration, three vectors are calculated in the next iteration, and
might require an additional ’scratch’ vector-register for the shift operation itself.

Finding a configuration for the shifts within an expression can be a computationally intensive
process as the problem itself is believed to be of the class of NP-complete problems ([11]). [11]
proposes two algorithms to find the minimal set of shifts. These algorithms only focus on the
positioning of the shifts and assume similar costs for each shift operation. As this assumption does
not appear to be valid for our targeted platform (see Chapter 5), we will present an algorithm that
tries to find a minimal solution that also involves individual costs for the shift operations. However,
we will start with the heuristics as proposed by [9], also referred to as shift-policies.

Zero-shift policy This shift policy shifts the offset of every register-stream to zero, after which
all the vector operations can be performed since all the registers now have the same stream
offset. Finally, the resulting register-stream is shifted to the offset of the store in order to
perform the store operation.

Eager-shift policy This policy is similar to the zero-shift policy, with the exception that the

24

3.3. SHIFTING REGISTER STREAMS CHAPTER 3. EXPLICIT REALIGNMENT

(a) Zero shift (b) Eager shift (c) Dominant shift (d) Lazy property

Figure 3.2: Several Shift Policies

register-streams are shifted to the same offset as the store, instead of zero. This may save one
shift operations compared to the zero-shift policy, as the additional shift to the store-offset
may be omitted.

Dominant-shift policy This policy determines the most common stream-offset within the state-
ment, and shifts the register-stream to that offset.

A useful property that can further reduce the number of shift-operations is the Lazy shift prop-
erty, which causes the algorithm to postpone shifting when two connected nodes in the expression
tree have the same offset, meaning that the result of an operator is shifted, instead of it’s operands.
This is allowed, since operations can be performed when two register streams share the same
stream-offset. However, when the offsets are distinct, the shift-policy needs to decide the desired
offset.

As described above, the zero-shift policy produces the least optimized results, and one can
wonder whether the policy is useful. However, the zero-shift policy contains a property that can
be useful when the offsets are unknown at compile-time but are runtime constants. The property
that this policy inhibits, is that the shift-directions are known at compile-time, as opposed to the
value of the constants. First, all offsets are shifted left, to offset 0, after which the offsets are shifted
right to offset Osrc. In theory only the direction of the shift needs to be known at compile time,
but some hardware support to permute data with runtime-defined orderings is required as well. If
supported by hardware, zero-shift policy is the only possible alternative when offsets are runtime
defined.

3.3.2 Optimal shift configurations

As the number of misaligned accesses within an expression increase, chances of finding an optimal
configuration using the simple heuristics decrease. The heuristics only use global properties from

25

3.3. SHIFTING REGISTER STREAMS CHAPTER 3. EXPLICIT REALIGNMENT

the expression tree to calculate the offsets, disregarding local properties. Apart from looking solely
at the number of shift operations within an expression tree, the above-mentioned heuristics cannot
take the cost of the shift operations into account, while Section 5.4.2 points out that the shift-costs
are not uniform for different shift offsets.

A dynamic programming algorithm can be used to find an optimal shift configuration. The
algorithm generates an optimal offset-labeling for every inner-node in the expression tree while
minimizing the cost of shifting from one offset to another. It does this by calculating partial (and
optimal) solutions for each subtree in the expression. This process is started by considering the
leaves of the expression. In each iteration, a larger subtree is considered, and the partial optimal
solution for this subtree is calculated from the partial solutions of the child-nodes. This results
in a list of costs (a cost for every possible alignment offset) for each of the inner-nodes. When all
partial solutions have been calculated, a final walk through the expression tree chooses the optimal
labeling given the predefined offset from the expression’s left hand side.

Figure 3.3: Optimal Shift configuration

To illustrate the possible performance gain, Figure 3.3 shows the offset labeling for an expression
that is vectorized for Intel’s SSE platform. The costs for each shift is shown in the upper-left corner
of Figure 3.3. Using the zero-shift heuristic (with lazy-property) would result in a shift-cost of 24
cycles { 2 x (2→ 0), 1 x (1→ 0), 1 x (0→ 1) }, while the eager-shift and dominant-shift heuristic
would both result in a shift-cost of 32 { 2 x (0→ 1), 2 x (2→ 1) }. An optimal labeling however,
only requires 16 cycles { 2 x (2 → 0), 1 x ((0 → 1) }. This result is not achieved by any of the
heuristics using only global properties.

26

3.3. SHIFTING REGISTER STREAMS CHAPTER 3. EXPLICIT REALIGNMENT

!"##$%

&'(#)%

*++,#-- . %/ 01 23 /2 3. 4/

567809 50 52 5: 5/ 5; <<< 567809

=67819 =1 =0 =2 =: =/ <<< =67819

'678%9 '% '1 '0 '2 ': <<< '678%9

>679 >. >% >1 >0 >2 <<< >679

*++,#-- . %/ 01 23 /2 3. 4/

567809 50 52 5: 5/ 5; <<< 567809

=67819 =1 =0 =2 =: =/ <<< =67819

'678%9)-"7?$#+)@#?$)=A)%)BC-7$7CD '% '1 '0 '2 ': <<< '678%9

>679 >. >% >1 >0 >2 <<< >679

*++,#-- . %/ 01 23 /2 3. 4/

567809)-"7?$#+)@#?$)=A)%)BC-7$7CD 51 50 52 5: 5/ <<< 567809

=67819)-"7?$#+)@#?$)=A)%)BC-7$7CD =% =1 =0 =2 =: <<< =67819

'678%9)-"7?$#+)@#?$)=A)%)BC-7$7CD '. '% '1 '0 '2 <<< '678%9

>679 >. >% >1 >0 >2 <<< >679

)

*++,#--)E7)-$',$-)F)%G . %/ 01 23 /2 3. 4/

567809 5H,,)5 D#>$)5 <<<

<<< <<< <<< -"7?$)5 <<<

=67819)8)-"7?$E)567809)G 5H,,)=)8)-"7?$<<< D#>$)=)8)-"7?$E5G <<<

<<< <<< -"7?$)= <<< <<<

'678%9)8)-"7?$E)=67819)8)-"7?$)E567809G)G 5H,,)')8)-"7?$<<< D#>$)')8)-"7?$E=G <<<

<<< -"7?$)' <<< <<<

>679)I)-"7?$E'678%9)8)-"7?$E)=67819)8)-"7?$E)567809)GGG -5'@',)B,C@C(H# J#5$C,)B,C@C(H# -$#'+AK-$'$# -$#'+AK-$'$# -$#'+AK-$'$# -$#'+AK-$'$# <<<

*++,#-- . %/ 01 23 /2 3. 4/

=678%9 B,#J)= 5H,,)= <<<

-"7?$)=

'67819)8)-"7?$E<<<G B,#J)')8)-"7?$<<< 5H,,)')8)-"7?$E=G <<<

-"7?$)'

>67809)I)-"7?$E<<<G >67809 <<<

*++,#-- . %/ 01 23 /2 3. 4/

=678%9 B,#J)B,#J)= B,#J)= 5H,,)= <<<

-"7?$)B,#J)= -"7?$)=

'67819)8)-"7?$E<<<G B,#J)')8)-"7?$<<< 5H,,)')8)-"7?$E=G <<<

-"7?$)'

>67809)I)-"7?$E<<<G >67809 <<<

*++,#-- . %/ 01 23 /2 3. 4/

5678.9 B,#J)B,#J)B,#J)5 B,#J)B,#J)5 B,#J)5 5H,,)5

-"7?$)B,#J)B,#J)5 -"7?$)B,#J)5 -"7?$)5

=678%9)8)-"7?$E<<<G B,#J)B,#J)= B,#J)= 5H,,)= <<<

-"7?$)B,#J)= -"7?$)=

'67819)8)-"7?$E<<<G B,#J)')8)-"7?$<<< 5H,,)')8)-"7?$E=G <<<

-"7?$)'

(a) Three left-shifts (SP) for the expression x[i] = a[i+1] +0←1 b[i+2] +1←2 c[i+3]2←3

!"##$%

&'(#)%

*++,#-- . %/ 01 23 /2 3. 4/

567809 50 52 5: 5/ 5; <<< 567809

=67819 =1 =0 =2 =: =/ <<< =67819

'678%9 '% '1 '0 '2 ': <<< '678%9

>679 >. >% >1 >0 >2 <<< >679

*++,#-- . %/ 01 23 /2 3. 4/

567809 50 52 5: 5/ 5; <<< 567809

=67819 =1 =0 =2 =: =/ <<< =67819

'678%9)-"7?$#+)@#?$)=A)%)BC-7$7CD '% '1 '0 '2 ': <<< '678%9

>679 >. >% >1 >0 >2 <<< >679

*++,#-- . %/ 01 23 /2 3. 4/

567809)-"7?$#+)@#?$)=A)%)BC-7$7CD 51 50 52 5: 5/ <<< 567809

=67819)-"7?$#+)@#?$)=A)%)BC-7$7CD =% =1 =0 =2 =: <<< =67819

'678%9)-"7?$#+)@#?$)=A)%)BC-7$7CD '. '% '1 '0 '2 <<< '678%9

>679 >. >% >1 >0 >2 <<< >679

)

*++,#--)E7)-$',$-)F)%G . %/ 01 23 /2 3. 4/

567809 B,#H)5 5I,,)5 <<<

<<< <<< <<< -"7?$)5 <<<

=67819)8)-"7?$E)567809)G B,#H)=)8)-"7?$<<< 5I,,)=)8)-"7?$E5G <<<

<<< <<< -"7?$)= <<< <<<

'678%9)8)-"7?$E)=67819)8)-"7?$)E567809G)G B,#H)')8)-"7?$<<< 5I,,)')8)-"7?$E=G <<<

<<< -"7?$)' <<< <<<

>679)J)-"7?$E'678%9)8)-"7?$E)=67819)8)-"7?$E)567809)GGG -5'@',)B,C@C(I# H#5$C,)B,C@C(I# -$#'+AK-$'$# -$#'+AK-$'$# -$#'+AK-$'$# -$#'+AK-$'$# <<<

*++,#-- . %/ 01 23 /2 3. 4/

=678%9 B,#H)= 5I,,)= <<<

-"7?$)=

'67819)8)-"7?$E<<<G B,#H)')8)-"7?$<<< 5I,,)')8)-"7?$E=G <<<

-"7?$)'

>67809)J)-"7?$E<<<G >67809 <<<

*++,#-- . %/ 01 23 /2 3. 4/

=678%9 B,#H)B,#H)= B,#H)= 5I,,)= <<<

-"7?$)B,#H)= -"7?$)=

'67819)8)-"7?$E<<<G B,#H)')8)-"7?$<<< 5I,,)')8)-"7?$E=G <<<

-"7?$)'

>67809)J)-"7?$E<<<G >67809 <<<

*++,#-- . %/ 01 23 /2 3. 4/

5678.9 B,#H)B,#H)B,#H)5 B,#H)B,#H)5 B,#H)5 5I,,)5

-"7?$)B,#H)B,#H)5 -"7?$)B,#H)5 -"7?$)5

=678%9)8)-"7?$E<<<G B,#H)B,#H)= B,#H)= 5I,,)= <<<

-"7?$)B,#H)= -"7?$)=

'67819)8)-"7?$E<<<G B,#H)')8)-"7?$<<< 5I,,)')8)-"7?$E=G <<<

-"7?$)'

(b) Two right-shifts (non-SP) for expression x[i+3] = a[i+2] +2→3 b[i+1]1→2

!"##$%

&'(#)%

*++,#-- . %/ 01 23 /2 3. 4/

567809 50 52 5: 5/ 5; <<< 567809

=67819 =1 =0 =2 =: =/ <<< =67819

'678%9 '% '1 '0 '2 ': <<< '678%9

>679 >. >% >1 >0 >2 <<< >679

*++,#-- . %/ 01 23 /2 3. 4/

567809 50 52 5: 5/ 5; <<< 567809

=67819 =1 =0 =2 =: =/ <<< =67819

'678%9)-"7?$#+)@#?$)=A)%)BC-7$7CD '% '1 '0 '2 ': <<< '678%9

>679 >. >% >1 >0 >2 <<< >679

*++,#-- . %/ 01 23 /2 3. 4/

567809)-"7?$#+)@#?$)=A)%)BC-7$7CD 51 50 52 5: 5/ <<< 567809

=67819)-"7?$#+)@#?$)=A)%)BC-7$7CD =% =1 =0 =2 =: <<< =67819

'678%9)-"7?$#+)@#?$)=A)%)BC-7$7CD '. '% '1 '0 '2 <<< '678%9

>679 >. >% >1 >0 >2 <<< >679

)

*++,#--)E7)-$',$-)F)%G . %/ 01 23 /2 3. 4/

567809 B,#H)5 5I,,)5 <<<

<<< <<< <<< -"7?$)5 <<<

=67819)8)-"7?$E)567809)G B,#H)=)8)-"7?$<<< 5I,,)=)8)-"7?$E5G <<<

<<< <<< -"7?$)= <<< <<<

'678%9)8)-"7?$E)=67819)8)-"7?$)E567809G)G B,#H)')8)-"7?$<<< 5I,,)')8)-"7?$E=G <<<

<<< -"7?$)' <<< <<<

>679)J)-"7?$E'678%9)8)-"7?$E)=67819)8)-"7?$E)567809)GGG -5'@',)B,C@C(I# H#5$C,)B,C@C(I# -$#'+AK-$'$# -$#'+AK-$'$# -$#'+AK-$'$# -$#'+AK-$'$# <<<

*++,#-- . %/ 01 23 /2 3. 4/

=678%9 B,#H)= 5I,,)= <<<

-"7?$)=

'67819)8)-"7?$E<<<G B,#H)')8)-"7?$<<< 5I,,)')8)-"7?$E=G <<<

-"7?$)'

>67809)J)-"7?$E<<<G >67809 <<<

*++,#-- . %/ 01 23 /2 3. 4/

=678%9 B,#H)B,#H)= B,#H)= 5I,,)= <<<

-"7?$)B,#H)= -"7?$)=

'67819)8)-"7?$E<<<G B,#H)')8)-"7?$<<< 5I,,)')8)-"7?$E=G <<<

-"7?$)'

>67809)J)-"7?$E<<<G >67809 <<<

*++,#-- . %/ 01 23 /2 3. 4/

5678.9 B,#H)B,#H)B,#H)5 B,#H)B,#H)5 B,#H)5 5I,,)5

-"7?$)B,#H)B,#H)5 -"7?$)B,#H)5 -"7?$)5

=678%9)8)-"7?$E<<<G B,#H)B,#H)= B,#H)= 5I,,)= <<<

-"7?$)B,#H)= -"7?$)=

'67819)8)-"7?$E<<<G B,#H)')8)-"7?$<<< 5I,,)')8)-"7?$E=G <<<

-"7?$)'

(c) Same as (b) but ’software pipelined’

Figure 3.4: Several stream shifts, containing both left and right shift operations

3.3.3 Realignment transformation

When a configuration for the shift-operations have been found, code can be inserted into the
program, so the realignment can be performed at runtime.

The concept of shifting a stream to another offset, can also be seen as extracting the desired
(i.e. unaligned) register stream from two aligned and consecutive register streams. These streams
can be denoted as current and previous register streams or current and next register streams for
right and left shifts respectively. Combining these streams is done by extracting the desired values
from the two vectors, and combining them into the new ’shifted’ vector, which forms the shifted
register stream. Extracting and combining the elements of a vector, can be done using permutation
instructions that are available on most architectures.

Figure 3.5 illustrates the procedure with a simple example, by showing both (pseudo) code
and graphical representation of the stream-shifting procedure. As can be seen, an aligned register
stream is extracted from the misaligned register stream resulting from the vector load operation
b[i+1]. Extracting is done by taking two subsequent vectors and selecting the required values to
combine them into a new vector, thus forming a new (shifted) register stream. The pseudo-code
in Figure 3.5a shows how this is performed element by element using scalar operations, but this
can be mapped to specific permutation instructions for vectors in the back-end. As the resulting
stream now has similar offsets as the other streams in the expression, it can be used to calculate
b[i+1] + c[i]. Finally, the resulting vectors can be stored in a. Note that only 1 new vector actually
needs to be loaded each iteration, as v2 could be used as v1 in the subsequent iteration.

Figure 3.4a illustrates a more complicated example where stream-shifts are performed on results
of other stream-shift operations. In this example, the vector shift(a) extracts elements from curr(a)
and next(a), the vector-registers of the current and next register stream respectively. However,

27

3.3. SHIFTING REGISTER STREAMS CHAPTER 3. EXPLICIT REALIGNMENT

int a [N] , b [N] , c [N] ; /∗ a l i gned arrays ∗/

/∗ Origina l loop ∗/
for (i =0; i<K; i++)

a [i] = b [i +1] + c [i] ;

=>

/∗ vec tor i z ed (unaligned) ∗/
for (i =0; i<K; i+=4) {

a [i +0. . i +3] = b [i +1. . i +4] + c [i +0. . i +3] ;
}

=>

/∗ vector i zed , rea l i gned ∗/
for (i =0; i<N; i+=4) {

/∗ vector r e g i s t e r s ∗/
int v1 [4] , v2 [4] , v3 [4] ;

/∗ two a l i gned vector reads ∗/
v1 [0 . . 3] = b [i +0. . i +3] ;
v2 [0 . . 3] = b [i +4. . i +7] ;

/∗ s h i f t l e f t by 1 element ∗/
v3 [0] = v1 [1] ;
v3 [1] = v1 [2] ;
v3 [2] = v1 [3] ;
v3 [3] = v2 [0] ;

/∗ two a l i gned vector reads and one a l igned s tore ∗/
a [i +0. . i +3] = v3 [0 . . 3] + c [i +0. . i +3] ;

}

(a) Realigning expression b[i+1] in statement a[i] = b[i+1] + c[i]

(b) Visualization of (a)

Figure 3.5: Pseudo-code and corresponding visualization of extracting an aligned register-stream
from a misaligned register stream.

28

3.3. SHIFTING REGISTER STREAMS CHAPTER 3. EXPLICIT REALIGNMENT

next(a) is dependent on the vector shift(b), which again extracts elements of the vectors curr(b)
and next(b). next(b) on it’s own turn is dependent on the vector shift(c), which is composed of
elements from curr(c) and next(c). Note that the example only shows how to compute the current
vector of each shifted register stream, assuming the previous vector has been calculated in a previous
iteration. In literature ([10, 9]), this is referred to as the Software-Pipelined (SP) version of the
procedure, which stores the current vector as the previous vector for the next iteration. A non-
SP version of the procedure will have to (re)calculate the previous vector every loop iteration as
well. Figure 3.4c and 3.4b show both the SP and non-SP version for an expression with two (right)
stream-shift operations. Note however that this definition of software pipelining is different from the
original definition, as the latter actually refers to a combination of loop-unrolling and scheduling
to remove latencies between instructions by filling the pipeline with instructions of subsequent
loop-iterations.

When the register-stream of the store is misaligned as well, loop peeling is required to handle
the first iterations until the stream is aligned, or until an alignment boundary has been crossed (due
to address truncation, see Chapter 4). Storing partial vectors is not supported by most instruction
sets, and writing outside the bounds of an array is illegal. Therefore, the first few iterations must
be peeled off and handled using scalar execution. The same holds for the last few iterations that
will cause a partial vector store. Therefore, the original loop is divided into three parts; a prologue
which calculates the first few iterations using scalar arithmetic until the store is aligned, the steady-
state loop, which performs the vector calculations and shifting of the streams, and an epilogue that
handles the last few iterations of the loop using scalar arithmetic.

The steady-state loop is performed efficiently when software pipelining is used. However, when
using the SP-version of the shifting-process, the values of the previous iteration need to be calculated
in advance. Therefore, another prologue is required that calculates the vector registers from the
previous iteration. This vector-prologue is scheduled right after the original scalar prologue, and is
similar to the steady-state loop, but it does not use software pipelining and only calculates a single
iteration (i.e. one whole vector). Figure 3.4a shows this partitioning of the loop.

As well as writing outside the bounds of an array might be illegal, the same holds for reading
from memory locations outside array bounds. The example as shown in Figure 3.4a shows that
calculating the result of the current vector, requires loading a vector of register stream a from 3
alignment boundaries ahead. This number is dependent on configuration and direction of the shifts
(this will be elaborated on further in Section 4.4.2). This effect needs to be taken into account, as
accessing memory outside bounds of the array may be disallowed, and care must be taken when
setting the bounds of the steady-state loop. This has an impact on the number of iterations that
are performed in the epilogue. A similar situation arises when the shifts are directed the other way,
but this will influence the prologue instead of the epilogue.

29

Chapter 4

Algorithm

In this chapter we will present an algorithm that performs a code transformation to explicitly
realign register streams.

This chapter is partitioned in four sections. We will start in Section 4.1 by defining the input to
the algorithm and several constraints that apply in order for the code transformations to be valid.
This is followed in Section 4.2 by several definitions that are used throughout this chapter. Section
4.3 explains an algorithm to calculate the shift configurations, followed by Section 4.4 that presents
an algorithm to transform a shift-annotated expression into an expression containing solely aligned
memory references.

4.1 Input

Section 2.4 described that inner-loops are most likely candidates for vectorization. As register
streams follow from these consecutive loop iterations, the input to the algorithm are inner-loops
with iteration counter i, lower bound LB, upper bound UB, increment incr and body basic block
bodybb.

4.1.1 Constraints

To validate the algorithm, several constraints are imposed on the inner-loop. As the underlying
reasons are not similar for each constraint, we will classify the constraints into three categories:

Fundamental Constraints (FC) As the name implies, these constraints are imposed to prevent
further processing of loops having fundamental limitations for vectorization. These limitations
make the application of the algorithm theoretically impossible.

Constraints due to Implementation (IC) Limitations of the implementation are another rea-
son to impose constraints on the input.

Constraints due to Performance (PC) Compilers always have to make a trade-off between
performance and functionality. The proposed code transformations may not be profitable
when certain code constructs are present. Therefore, violating these constraints may result
in a decrease of performance.

30

4.1. INPUT CHAPTER 4. ALGORITHM

(C1) All memory references are either loop invariant or stride one array references
(PC). To be able to load consecutive values into one vector, the array references must be of
stride one. When the stride is higher than 1, scatter and gather operations are required to
store and load vectors respectively. These operations are often not supported by short vector
architectures, and performing them manually may completely diminish the effect of vector-
ization. For loop invariant memory references, the value of the operation can be assumed to
be in a register during the loop. This constraint can be split up into several other constraints,
as shown below.

(i) Memory references are linear subscript expressions with stride one (i.e.
baseaddr[i + C]). When calculating the properties of a memory reference during
compilation, we can only take one variable dimension into account. The loop variable
that is most applicable to span this dimension, is the iteration counter, which itself is
subject to constraints (C1ii). To simplify the analysis, we prohibit the use of other
(induced) loop variables.

(ii) The loop Increment, incr, is a constant equal to 1. To be able to determine
whether memory references are of unit-stride, the increment of the loop must be constant.
When the constant is equal to 1, determining the stride of a linear subscript expression
is straight-forward.

(C2) The alignment of each memory-reference is calculable at compile-time (FC). To
calculate the relative offsets between memory-streams, we need to determine the alignment
of memory-references. As the algorithm is based on these relative offsets, this constraint is
fundamental (see also Section 4.4.5). The alignments are determined by all elements that make
up a linear subscript expression. The constraints below require some of these elements to be
either compile-time constants, or require their modulo behavior with respect to the Blocking
Factor to be known (i.e. value mod BF). A loop-versioning transformation can bypass the
below-mentioned constraints by generating separate loops where each of the constraints are
met.

(i) C mod BF in baseaddr[i+C] is known at compiletime.

(ii) LB mod BF is known at compile time.

(iii) Base alignment of each array is known at compile time. This constraint is
important for arrays that are referenced by pointers and arrays that are allocated on a
non-aligned stack frame.

(C3) The body of the loop contains solely unconditional assignment statements (IC /
FC). Conditional statements (like if-else constructs or conditional assignments) might create
inter-vector dependences or change the control flow of the program. A thorough analysis of the
loop body might be able to determine whether these dependences disallow vectorization, but as
these analysis are currently not reliable enough, we chose to prohibit conditional statements
within the loop body. For the same reason, this constraint also applies to unconditional
branches and function calls.

(C4) There are no loop-carried dependences that hinder the vectorization process (FC).
As explained in Chapter 2, dependences can influence vector calculation. This means that

31

4.2. DEFINITIONS CHAPTER 4. ALGORITHM

no loop-carried flow dependences with a length smaller or equal to the blocking factor are
allowed. Note that this also covers reductions (like x += a[i];), as there is a loop carried flow
dependence between the value in the previous iteration and the current iteration. To still
allow vectorization of reductions, a manual unroll-and-jam scheme (see Section 2.6) could be
applied.

(C5) All memory references write and access data of the same length (IC). No type
conversions between data of different lengths are allowed due to implementation issues as
explained in Chapter 5.

(C6) Iteration counter only appears in address computation of stride-one references
(IC). Vectorizing expressions containing the iteration counter (or other loop induction vari-
ables) is possible but require the use of special induction-vectors. As this problem is outside
the scope of this thesis, we will not elaborate on this any further.

(C7) The loop must have an incrementing iteration counter (IC). This is purely an im-
plementation constraint to keep the implementation a bit more simple. When the iteration
counter is decrementing, the calculations for loop boundaries and offsets are different. One
could choose to perform a loop-reversal transformation before applying explicit realignment.

The constraints as presented above apply to both explicit realignment and to vectorization in
general. Constraints C2, C5 and C7 are specific to our implementation of explicit realignment.

4.2 Definitions

The algorithms as presented below use the following data types.

(i) AlignmentTuple = { Expression, Alignment, Offset}
This data type is used to store alignment and offset information for each node in an expression
tree. The Alignment field denotes the base-alignment of all referenced arrays in the subtree.
The Offset denotes the position of the first desired element in the register stream.

(ii) ShiftstreamTuple = { Expression, From, To}
This data type represents the stream-shift operation as found by the analysis algorithm.
Applicable nodes within the expression tree are annotated with this information. The register
stream of Expression is shifted from byte offset From, to byte offset To.

4.3 Calculating shift configurations

The calculation of a shift configuration for an expression basically consists of three operations. First,
the algorithm needs to be initialized by annotating the expression tree with AlignmentTuples. Then
the alignment/offset information that is calculated for the leaves, needs to be propagated towards
the root of the expression tree. When the propagation conflicts due to a multitude of possible offsets,
a shift operation needs to be inserted. The type of shift chosen during this step is determined by
the desired policy.

32

4.3. CALCULATING SHIFT CONFIGURATIONS CHAPTER 4. ALGORITHM

4.3.1 Calculating the peel factor

To facilitate the prologue loop, a peeling factor needs to be calculated. This is done to assure that
for each statement, at least all partial stores have been handled by scalar operations, before vector
instructions can handle the full vector stores. As the loop body may contain multiple assignment
statements, the peeling factor depends on the store offsets of all assignments. When all store
offsets are equal, the required peeling is equal to BF - offset(stmt.LHS). Peeling to this amount will
precisely align the store offset for each statement. When the store offsets are distinct, the peeling
factor depends on the smallest offset. The reason for this is that the algorithm will truncate memory
references to result in aligned addresses. Therefore, the store offsets should have been peeled the
right amount of iterations, such that for each statement an alignment boundary has been reached.
Therefore, the required peeling factor when offsets are distinct, is equal to:

Peel = BF −min(offsets)
offsets = {offset(x.LHS) | stmt(x), x ∈ LoopBody} (4.1)

This peeling factor is combined a step later with the value ProPeel (see Section 4.4.2). It is
important that the peeling factor is determined before calculating the shift configuration, as the
number of peeled iterations influences the starting offset of each memory reference expression (as
these depend on the initial value of the iteration counter), and therefore influences the directions
of the shifts.

4.3.2 Initialization

Initialization of the algorithm is done by calculating alignment and offset information from infor-
mation already available in the program like the base address, index expression, and peeling factor,
for every leaf node in the expression tree. Equations 4.5 and 4.6 show how to calculate the offset
and (base) alignment of each memory reference respectively.

When the alignment of a base address is not known (like for instance when dereferencing a
pointer), the Alignment value is defined as the natural alignment of the expression type, as this is
the minimally required alignment for an array. For this case the offset is always set to 0 (as there
is no offset with respect to a vector). For constants, no offset information applies, as shown in
Equations 4.7. For non-leaf nodes in the tree (4.8), the offset cannot yet be determined.

AlignmentTuple(expr) = {expr, Offset(expr), Alignment(expr)} (4.2)

Offset(a) = Address(a[0])%V L (4.3)

Alignment(a) =

{
V L if Offset(a) = 0
elementsizebytes(a) Otherwise

(4.4)

Offset(a[i + k]) = Offset(a) + elementsizebytes(a) ∗ (i0 + k) (4.5)
Alignment(a[i + k]) = Alignment(a) (4.6)

Offset(C) = NO OFFSET (4.7)
Offset(operation) = UNKNOWN OFFSET (4.8)

33

4.3. CALCULATING SHIFT CONFIGURATIONS CHAPTER 4. ALGORITHM

4.3.3 Determining offsets and stream-shifts

When all the leaf-nodes have been supplied with offset and alignment information, the other nodes
in the expression will need to be supplied with these annotations as well. Note that this only
needs to be done for offset-annotations, as the alignment information is only required to impose
the constraints (C2). The offset-annotations can be propagated upwards from the leafs toward
the root of the tree. The shift-policies determine rules to do this. We will assume the property
of lazy-propagation as this reduces the number of unnecessary shift operations. Lazy propagation
implies that when a node has child nodes with similar offsets, it will be given the same offset as
its children. Invariant child-nodes have no memory-offset or alignment. Therefore, the offset of the
parent-node will depend on the offset of the non-invariant child-node. When both child-nodes are
non-invariant and both have dissimilar offsets, the shift-policy determines the offset of the parent
node. These shift policies differ in their choice of offset. For the zero-shift policy, the choice is
constant, namely offset 0. The eager-shift policy takes the offset of the statement’s LHS as its
choice. The dominant-shift policy chooses the most common offset found throughout the statement
as the offset. Finally, the child-nodes will be annotated with Shiftstream-tuples to indicate that
the expression subtree needs to be shifted to another offset.

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ This funct ion ca l cu l a t e s the s h i f t−
∗ conf igura t ion based on given po l i cy
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

c a l c s h i f t s (stmt : Statement , s h i f t : Po l i cy)
{

switch (s h i f t)
{

case z e r o s h i f t :
d e s i r e d o f f s e t = 0 ;
break ;

case e a g e r s h i f t :
d e s i r e d o f f s e t = stmt . Lhs . o f f s e t ;
break ;

case dominant sh i f t :
d e s i r e d o f f s e t =

max(histogram (g e t o f f s e t s (stmt))) ;
break ;

}

postwalk (
i n s e r t s h i f t s (stmt . Rhs , d e s i r e d o f f s e t)

) ;

c r e a t e s h i f t (
Shi f t s t reamTuple (

stmt . Rhs ,
stmt . Rhs . o f f s e t ,
stmt . Lhs . o f f s e t

)
) ;

}

(a) Algorithm to align a statement

/∗∗∗
∗ Walk the express ion tree in post order ,
∗ and c a l l t h i s funct ion for each node
∗∗/
i n s e r t s h i f t s (root : Node , d e s i r e d o f f s e t : int){

i f (root . o f f s e t != UNKNOWNOFFSET){
return ;

else i f (i s una ry (root)){
root . o f f s e t = ch i l d (root) . o f f s e t ;

} else i f (i s b i n a r y (root)){
i f (l e f t (root) . o f f s e t == r i gh t (root) . o f f s e t){

root . o f f s e t = l e f t (root) . o f f s e t ; // = r i gh t (. . .
} else i f (l e f t (root) . o f f s e t == NO OFFSET){

root . o f f s e t = r i gh t (root) . o f f s e t ;
} else i f (r i gh t (root) . o f f s e t == NO OFFSET){

root . o f f s e t = l e f t (root) . o f f s e t ;
} else {

c r e a t e s h i f t (
Shi f t s t reamTuple (

l e f t c h i l d ,
l e f t c h i l d . o f f s e t ,
d e s i r e d o f f s e t

)) ;
c r e a t e s h i f t (

Shi f t s t reamTuple (
r i g h t c h i l d ,
r i g h t c h i l d . o f f s e t ,
d e s i r e d o f f s e t

)) ;
root . o f f s e t = d e s i r e d o f f s e t ;

}
}

}

(b) Insert shifts where necessary

Figure 4.1: Pseudo-code to determine shift-configuration with heuristics.

34

4.3. CALCULATING SHIFT CONFIGURATIONS CHAPTER 4. ALGORITHM

(a) Step 1 (b) Step 2

Figure 4.2: Example of algorithm

4.3.4 Example of applying heuristics

To clarify the above algorithm, we will end this section with an example. Figure 4.2a shows the
annotated expression tree after initialization of the algorithm. Here, all memory references are
accessing an array with an aligned base address. As the loop iteration counter i starts at 0 (we
assume no peeling in this example), the offsets are equal to the index expressions. For the loop-
invariant value C, no alignment and offset information is available. The offset values of all non-leaf
nodes (multiplication and addition) are initialized as unknown.

As shown in Figure 4.2b the (byte)offset of the node d[i+2]*C is 8, because C has no offset
causing the offset of d[i+2] to be propagated. For the multiplication node a[i+1] * b[i+2], the
offsets of a[i+1] and b[i+2] are distinct, and a shift-policy will have to determine an appropriate
offset. In this example we have chosen for the dominant shift policy, which determines that (byte)
offset of 8 is the most common offset in the statement. As a result, a[i+1] must be shifted to offset
8. For the addition node, the offsets of both child-nodes are equal causing the lazy-shift property to
determine the same offset for their parent-node. Finally, the whole right-hand-side of the statement
(now having offset=8) should be shifted towards the offset of the store (i.e. offset=0).

4.3.5 Optimal offset labeling

Calculating an optimal shift configuration follows from labeling the expression tree in a way that
minimizes distinct offset between parent and child nodes1. This labeling is done using a dynamic

1We should note that this algorithm only applies to simple expressions without common subexpressions.

35

4.3. CALCULATING SHIFT CONFIGURATIONS CHAPTER 4. ALGORITHM

programming algorithm that consists of two stages. The first stage calculates the cost for each offset
for every inner-node in the tree. For an expression tree with K inner-nodes, this means calculating
all values of the K x BF cost matrix. The calculated cost for offset j is defined as the lowest
calculated cost of moving from offset i to offset j for any i. The resulting cost for offset j of node
k is assumed to be the minimal cost of the entire subtree when offset j is chosen. This assumes
however that the costs of the offsets for the subtree of k are calculated similarly (and therefore
display the minimal costs as well). The labeling cost for the leafs of the expression are initialized
by setting the cost for the actual offset to 0, while the other offsets are initialized with infinity, as
the leafs initially have a fixed offset. This step is performed bottom up, by considering a larger
subtree every iteration.

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Cal l in post−order
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void s tep1 (node){
i f (i s l e a f (node)){

f o r each (o f f s e t in 0 to BF)
i f (node . o f f s e t == o f f s e t)

co s t [node] [o f f s e t] = 0 ;
else

co s t [node] [o f f s e t] = INFINITY ;
} else {

f o r each (o f f s e t p in 0 to BF){
co s t = 0 ;
f o r each (ch i l d in node . ch i l d r en){

for (o f f s e t c=0 to BF)
min = MIN(min , co s t [c h i l d] [o f f s e t c]

+ c a l c c o s t (o f f s e t c , o f f s e t p)) ;
co s t = cos t + min ;

}
co s t [node] [o f f s e t p] = min ;

}
}

}

(a) Calculate and initialize cost for each offset and node

/∗∗∗
∗ Cal l in pre−order
∗ (statement .LHS i s considered as the
∗ ’ root ’ of the express ion tree)
∗∗∗/

void s tep2 (node)
{

i f (i s l e a f (node))
return ;

f o r each (ch i l d in node . ch i l d r en)
{

i f (! i s l e a f (c h i l d)
{

f o r each (o f f s e t in 0 to BF){
co s t [c h i l d] [o f f s e t] +=

c a l c c o s t (o f f s e t , node . o f f s e t) ;
}

ch i l d . o f f s e t = ARGMIN(cos t [c h i l d]) ;
}

}
}

(b) Choose alignment offset for nodes

void op t ima l s h i f t (statement)
{

int co s t [s i z e (get nodes (statement))] [BF] ;

postwalk (statement , s tep1) ;
prewalk (statement , s tep2) ;

}

(c) Start of algorithm

Figure 4.3: Algorithm to calculate an optimal shift configuration

A second stage will actually label the nodes by choosing the cheapest offsets using offset-
information of the left-hand side of the assignment. This is done in a top-down fashion, with
the offset of the left hand side determining the choice of the root node for the right hand side. For
each inner node, the costs are recalculated for every possible offset using the offset of its parent-node.
The resulting offset will display the offset with lowest cost of choosing labeling j, given labeling i
of the parent node. This step uses the cost of the entire subtree which has been calculated in the
first stage. The pseudo-code for the algorithm is shown in Figure 4.3.

The above algorithm calculates the cost based on the individual cost of shift operations. How-

36

4.3. CALCULATING SHIFT CONFIGURATIONS CHAPTER 4. ALGORITHM

ever, instead of only considering the cost of shift operations, the dependence between shift operations
may have an influence on performance as well. When considering a left recursive tree for example,
generating the shift operations to be on the critical path may result in poor performance, as there is
a data dependence between every step of the calculation from which the latency cannot be hidden.
Generating the shift operations to be on the leafs of the expression, does allow for latency-hiding,
as the shift operations can be scheduled along with other loads or arithmetic operations. Figure 4.4
displays this effect. To provide a mechanism to reduce this dependence the cost calculation can be
expanded. This translates into adding additional cost for having a different labeling between the
parent node, and a non-leaf node. This will encourage the algorithm to support shifting the offset
of the leaf nodes instead of the inner-nodes. This prevents the algorithm from choosing a distinct
labeling between two nodes on the critical path.

(a) Shift operations on leaf nodes (blocks
around nodes indicate hiding of latency, as
these can be performed simultaneously)

(b) Shift operations on inner nodes
(arrows indicate data dependence be-
tween nodes, preventing latency hid-
ing)

Figure 4.4: Latency hiding for left recursive trees

4.3.6 Example of finding optimal labeling

Figure 4.5 displays the expression tree for x[i+1] = (a[i+2]*b[i+0] + c[i+2]*d[i+0]) + (e[i+1]*f[i+1]).
The first pass of the algorithm will try to calculate the cost for each offset, for every non-leaf node
in the expression. This is done from the bottom up towards the root. Calculating the cost for offset
0 for the subtree c[i+2]*d[i+0] for example, the cost is defined as min(C) + min(D) where

C = [(0→ 0) :∞+ 0 =∞, (1→ 0) :∞+ 8 =∞, (2→ 0) : 0 + 4 = 4, (3→ 0) :∞+ 8 =∞]
D = [(0→ 0) : 0 + 0 = 0, (1→ 0) :∞+ 8 =∞, (2→ 0) :∞+ 4 =∞, (3→ 0) :∞+ 8 =∞]

resulting in min(C) = 4 and min(D) = 0 resulting in a cost of 4. The resulting cost-vector of this
subtree is used to calculate the cost of its parent node, (a[i+2]*b[i+0] + c[i+2]*d[i+0). Finally,
when the cost-vectors of all subtrees have been calculated, the labeling is performed using the LHS

37

4.4. TOWARDS VECTORIZATION CHAPTER 4. ALGORITHM

of the statement. In this case, the LHS has an (element) offset of 1. For the root-node, the chosen
label is defined by

argmin((0→ 1) : 16 + 8, (1→ 1) : 16 + 0 , (2→ 1) : 16 + 8 , (3→ 1) : 32 + 4)

This offset is then used to determine the offsets of their child-nodes in the same way as shown above.
By recursively labeling the nodes down towards the leafs, an optimal labeling for the expression-tree
is chosen.

(a))

Figure 4.5: Finding an optimal offset labelling for: x[i+1] = (a[i+2]*b[i+0] + c[i+2]*d[i+0]) +
(e[i+1]*f[i+1])

4.4 Towards vectorization

4.4.1 Important observations

In order to define the loop boundaries later this chapter, some observations need to be discussed.
To explain the first observation, let’s review an example shown in Figure 4.6. The contents of

register shift (a) depend on the content of registers prev (a) and curr (a). And again, prev (a)
depends on the shift (prev (b)), where shift (prev (b)) depends on prev (prev (b)) and prev (b).

Note that in calculating shift (a), only one element of prev (a) is used (marked in this example
by ’xx’). This value is the fourth element in the register of prev (a). In order to calculate this value,
only the last element in the shift register shift (prev (b)) is needed. Now note that register shift
(prev (b)) depends on prev (prev (b)), while none of its values are used! Therefore, the vector prev
(prev (b)) is not relevant in calculating shift (b). In this example, the shift-operations both shift

38

4.4. TOWARDS VECTORIZATION CHAPTER 4. ALGORITHM

only by one element. But this is no different for other shift-operations with different parameters.
Because, in order for the vector prev (prev (b)) to contain useful information, this would require
that the sum of the shift-parameters is larger than the vector length. As shifting more than the
vector length makes no sense, this situation never occurs, and the observation remains valid. This
same observation holds for next (next (...)) as well.

Therefore we can conclude that:

(i) The vector prev (prev (...)) is not used in calculating the vector shift (...).

(ii) The vector next (next (...)) is not used in calculating the vector shift (...).

!"##$%

&'(#)*

+,-./0)1)2"-3$45556 +,-./0 555

7889#22)4-)2$'9$2):)%6 ; %< /* => <= >; ?<

@,-.%0 A9#B)@ @C99)@ 555

2"-3$)@

D,-.*0).)2"-3$4)@,-.%0)6 A9#B)D).)2"-3$555 @C99)D).)2"-3$4@6 555

555 555 2"-3$)D 555 555

',-.%0).)2"-3$4)D,-.*0).)2"-3$)4@,-.%06)6 A9#B)').)2"-3$555 @C99)').)2"-3$4D6 555

555 2"-3$)' 555 555

+,-0)1)2"-3$4',-.%0).)2"-3$4)D,-.*0).)2"-3$4)@,-.%0)6662@'E'9)A9FEF(C# B#@$F9)A9FEF(C# 2$#'8GH2$'$# 2$#'8GH2$'$# 2$#'8GH2$'$# 2$#'8GH2$'$# 555

7889#22 ; %< /* => <= >; ?<

D,-.%0 A9#B4A9#B4D66 A9#B4D6 ++ 555

2"-3$4D6 2"-3$4A9#B4D66 ++

',-.*0).)2"-3$45556 A9#B4'6 ++ @C994'6 555

2"-3$4'6 2"-3$4'6 ++

+,-./0)1)2"-3$45556 ++ 555

-)2$'9$2):); ; % * / = I < J > ? %; %% %* %/ %= %I %< %J %> %? *; *% ** */ *= *I *< *J

D,-./0

+,-.*0 ; % * / = I < J > ? %; %% %* %/ %= %I %< %J %> %? *; *% ** */

B#@$F9)A9FEF(C# 2$#'8GH2$'$# KKK 2@'E'9)#A-EF(C#

D,-./0

+,-.%0 ; % * / = I < J > ? %; %% %* %/ %= %I %< %J %> %? *; *% ** */

B#@$F9)A9FEF(C# 2$#'8GH2$'$# 2@'E'9)#A-EF(C#

Figure 4.6: Two accumulated right shift-operations

4.4.2 Calculating Steady state loop boundaries; ProPeel and EpiPeel

As explained in Section 3.3.3, the whole stream is subdivided into four parts, a scalar prologue,
vector prologue, steady-state and scalar epilogue. Calculating the precise bounds for these parts is
important, as the goal is to achieve a maximum steady-state, while not loading and writing outside
the bounds of the array as given by the program. We will begin by analyzing the ’range’ of vector
loads that is caused by the shift-configuration. This range influences the bounds of the vector
prologue, steady state and epilogue.

The hierarchy of shifts resulting from some shift-configurations accumulates the ’boundaries’ of
the range of vectors that is calculated each iteration. For instance, the expression ’a[i+1] + b[i+2]’,
where the stream of b[i+2] is shifted to offset 1, and the stream a[i+1] + shifted(b[i+2]) is shifted
to offset zero, contains two shifts to the left forming a hierarchy in vector operations. To calculate
the current vector, this requires loading two vectors ahead (see the example in Section 4.4.1). Even
though Section 4.4.1 tells us that next(next(...)) and prev(prev(...)) are not relevant in calculating
the current vector, let’s first concentrate on calculating these bounds.

To calculate the bounds of a statement, we will have to walk the expression tree of the statements
right-hand-side in pre-order (i.e. the root is always visited first). We define for each node in the
expression tree, a tuple (Lbound, Ubound) for Lower and Upper bound respectively. These values
are initialized with (0, 0). For each node in the expression tree, if the node is annotated with a
left shift operation, the Ubound is incremented by one. If the node is annotated with a right shift
operation, the Lbound is decremented by one. The desired information is the minimum Lbound
and the maximum Ubound found in the entire loop body, as these define the maximum range of
vectors that need to be loaded in order to store a single vector. We will define the minimum Lbound
as ProPeel (Equation 4.9) and the the maximum Ubound as EpiPeel (Equation 4.10).

Figure 4.7 shows the pseudo code of an algorithm that calculates these bounds.

39

4.4. TOWARDS VECTORIZATION CHAPTER 4. ALGORITHM

int minlbound ;
int maxrbound ;

// f ind boundaries of express ion
f ind bounds (stmts : ba s i cb l o ck)
{

minlbound = 0 ;
maxrbound = 0 ;

for (i =0; i<stmts . l ength ; i++){
f ind bounds (stmts [i] . RHS, 0 , 0) ;

}

// truncate
minlbound = max(minlbound , −1);

}

(a) Apply for each statement in loop body

f ind bounds (root : node , lbound : int , rbound : int){
l b ound l o ca l = lbound ;
rbound loca l = rbound ;

i f (i s l e f t s h i f t (root))
rbound loca l += 1 ;

else i f (i s r i g h t s h i f t (root))
l bound l o ca l −= 1 ;

maxrbound = max(maxrbound , rbound+1);
minlbound = min(minlbound , lbound −1);

// top down recursion
f ind bounds (root . l e f t , l bound loca l , rbound loca l) ;
f ind bounds (root . r i ght , lbound loca l , rbound loca l) ;

}

(b) Calculate ProPeel and EpiPeel recursively

Figure 4.7: Algorithm to calculate the boundaries of an expression

ProPeel = min(lbounds), (4.9)
lbounds = {Lbound(e) | subexpression(e, stmt),∀stmt ∈ LoopBody}

EpiPeel = max(ubounds), (4.10)
ubounds = {Ubound(e) | subexpression(e, stmt),∀stmt ∈ LoopBody}

Now that we have these bounds, we can look at truncating these bounds to minimize the
required peeling factors. As discussed in Section 4.4.1, for expressions containing a hierarchy of
right-shift operations, calculating the current vector requires loading at most one vector from a
previous vector iteration. All the vectors before that point are irrelevant in calculating the current
vector. Therefore, the left bound can be truncated to (- Blocking Factor). For the right bound,
this truncation cannot be performed, as for the software pipelined algorithm a ’previous’ vector
needs to be stored for each shift operation in the next iteration. For right-shift operations this only
requires the previous vector from one vector back, but for left-shift operations this may require next
iterations from several vectors in advance. Therefore, the final boundaries for the steady-state loop
become:

ProPeel = max(ProPeel,−BF) (4.11)
EpiPeel = EpiPeel (4.12)

4.4.3 Adjusting vector offsets

Some vector architectures automatically perform address truncation to access address at aligned
boundaries. As we can not assume address truncation in this thesis (the compiler framework used
in this thesis, should be able to target any architecture), we will have to let the compiler insert
code to truncate the addresses manually to create aligned memory streams. As the peeling factor
has already been taken into account before the calculation of the shift operations, only truncating

40

4.4. TOWARDS VECTORIZATION CHAPTER 4. ALGORITHM

the address calculation to an aligned boundary is required. The index of an address calculation like
’a[i+k]’ thus becomes:

index(expr) = index(expr)− offset afterpeeling(expr) (4.13)

4.4.4 Generating shift operations

After analyzing the expressions and finding shift configurations, the final thing to do is to actually
generate the shift operations. The algorithm will have to be able to generate the shift operations
in two ways, in a software pipelined fashion for the steady state loop, and a non-software pipelined
fashion to initialize the steady state loop in a vector prologue. To simplify some terminology for
the rest of this section, let’s discuss the previous, current or current, next registers as the old and
new registers respectively.

The generation of shift operations is done by walking the right-hand-side of each statement
in the loop body, in pre-order, and generating code for each shift operation that is encountered.
This is done recursively for each shift operation. When a stream-shift node is found, the algorithm
will generate an expression for the vector-prologue, as well as for the steady-state. For the vector-
prologue, the algorithm generates code to load both the old and the new vectors (i.e. Non-SP), and
an additional shift-operation to return the desired result. For the steady state, the algorithm only
generates code to load the new vector. It will then generate code to shift the already loaded old
vector with the newly loaded new vector (i.e. SP). Finally, the new vector needs to be preserved
for the next iteration by copying it into the old vector register. For the generation of the shift itself,
the direction is important. When the found shift is a left shift, this means that the old iteration
is loaded at offset, while the new iteration is loaded at offset + VL. When the found shift is a
right-shift, the converse is true, as the old iteration is loaded at offset - VL, while the new iteration
is loaded at offset. The algorithm to generate the code for shift instructions is shown in Figure 4.8.

As was explained in Section 4.4.1, the value prev(prev(...)) is not required in calculating the
current vector in the vector prologue loop. Therefore, instead of generating code to calculate that
vector, one is free to choose another register for the shift operation. Being free to choose any register
saves one or more registers and memory load operations. It also saves a number of iterations for
peeling thus allowing a larger range for the steady-state loop (only when there is a hierarchy of
shifts directed right). Note that this optimization can only be done for the vector prologue loop
and will only have a noteworthy effect on performance for loops with a small number of iterations.

The mapping of shift-operations onto actual instructions is done in the code generation phase
of the compiler. As code generation itself is implementation specific, it will not be discussed here,
but in Chapter 5.

4.4.5 Runtime alignments

As has been previously mentioned in Constraint C1i, we require all parts of a memory address
calculation to be constant (apart from the loop iteration counter). However, for expressions like
a[i+k] where k is loop invariant but not a compile-time constant, this constraint could be considered
too strict, as this disallows runtime misalignments. Section 3.3.1 mentioned that expressions with
runtime misalignments can still be vectorized by using the zero-shift policy. This chapter has shown
that only the direction of the shift (as opposed to the length of the shift) is important in determining
the characteristics of the steady state loop, boundaries and the generation of the addresses of the
load operations. For the zero-shift policy, the direction of the shift operations is always defined,

41

4.4. TOWARDS VECTORIZATION CHAPTER 4. ALGORITHM

genSIMD NOSP(root : Node , o f f s e t : int){
i f (c o n t a i n s s h i f t (root)) {

s h i f t = g e t s h i f t (root) ;

i f (s h i f t . from > s h i f t . to){ // s h i f t l e f t
old = genSIMD(root , o f f s e t) ;
new = genSIMD(root , o f f s e t + VL) ;

}
else i f (s h i f t . from < s h i f t . to){ // s h i f t r i g h t

old = genSIMD(root , o f f s e t − VL) ;
new = genSIMD(root , o f f s e t) ;

}
s h i f t = genSh i f t (old , new , o f f s e t) ;
return s h i f t ;

} else i f (i s l e a f (root)){ // load operation
return genLoad (root) ;

} else i f (is OP (root)){ // other operation
return genOp(root) ;

}
}

(a) Non Software Pipelined

genSIMD SP(root : Node , o f f s e t : int){
i f (c o n t a i n s s h i f t (root)){

s h i f t = g e t s h i f t (root) ;

i f (s h i f t . from > s h i f t . to){ // s h i f t l e f t
new = genSIMD(root , o f f s e t + VL) ;

}
else i f (s h i f t . from < s h i f t . to){ // s h i f t r i g h t

new = genSIMD(root , o f f s e t) ;
}
s h i f t = genSh i f t (old , new , o f f s e t) ;
genStore (old , new) ;
return s h i f t ;

} else i f (i s l e a f (root)){ // load operation
return genLoad (root) ;

} else i f (is OP (root)){ // other operation
return genOp(root) ;

}
}

(b) Software Pipelined

genSIMD(stmt : Statement , inPro logue : Bool){
i f (inPro logue)

RHS = genSIMD NOSP(stmt .RHS, 0) ;
else

RHS = genSIMD SP(stmt .RHS, 0) ;
genStore (stmt .LHS, RHS) ;

}

(c) Statement

Figure 4.8: Algorithm to generate SIMD from a single statement with shift operations

as all load operations are shifted left, and each store operation is shifted right. However, for our
targeted platform no mapping is possible that maps shift operations with runtime shift-constants
to actual instructions. As we will not implement any features that cannot be tested on our targeted
platform, we will not consider runtime misalignments in the rest of this thesis.

42

Chapter 5

Implementation

This chapter will elaborate on the implementation details of the algorithms that were presented
in the previous chapter. We will start in Section 5.1 by giving an overview of the CoSy compiler
framework, and explain how we integrated our algorithms. Section 5.2 will present the imple-
mentation details of the analysis component. This will be followed in Section 5.3, by presenting
the implementation details of the component responsible for performing the code transformations.
Finally, Section 5.4 will explain how to map the shift-operations onto instructions for our tar-
geted platform, and we will conclude in Section 5.5 with several anecdotes on difficulties that were
encountered during this research.

5.1 The compiler framework

To explain the details of our implementation, we first need to give an overview of the CoSy compiler
framework.

Figure 5.1: CoSy framework

43

5.1. THE COMPILER FRAMEWORK CHAPTER 5. IMPLEMENTATION

5.1.1 General overview

The CoSy framework subdivides a compiler into several components, called engines. These engines
perform analysis and transformations on the internal representation (IR) of the program. The IR
used by the CoSy framework is a particular instance of a medium level intermediate representation
(MIR), and is known as the CCMIR. As engines work on a single instance of the IR, engines can
be easily ’plugged’ into the compiler, depending on the transformations that are desired.

The engines follow a typical ordering, starting with a front end that transforms textual data (i.e.
the program) into the CCMIR representation. This is followed by several high-level and architecture
independent optimizations. These include for example engines for constant folding/propagation,
if-conversion, function inlining and loop unrolling. When all high-level optimizations have been
performed, the IR is lowered into an architecture dependent representation, known as the LIR.
Finally, the back-end of the compiler will transform the exit-LIR into LIR, and finally into actual
instructions for the targeted platform. Figure 5.2 shows the typical engine ordering of a compiler.

Figure 5.2: SIMD Engine Order

5.1.2 SIMD Optimization

For short vector architectures, the CoSy framework contains several engines that perform CCMIR-
level analysis and transformations to optimize the program for vector execution. These engines
are grouped together in a composite SIMD engine. The composite engine ordering can be roughly
divided into two parts; The engines at the front analyze loop structures, annotating the loops that
can be vectorized efficiently. The engines that follow transform the loop structure and generate
vector operations.

The loop analysis engine is executed first. This engine regenerates loop information from the
CCMIR by analyzing it’s control flow graph, as the loop information is not retained by the compiler

44

5.1. THE COMPILER FRAMEWORK CHAPTER 5. IMPLEMENTATION

front-end 1. This is followed by a dependence analysis, which collects all (loop-carried) dependences
for every loop structure. The SIMD analysis engine that follows uses this information to decide
which loops are suitable for vector execution. Apart from dependences, loop characteristics such as
memory access patterns, alignment issues and induction variables are taken into the consideration.
When loops are annotated as vectorizable, a stripmining transformation is performed, which parti-
tions the loop into vector-sized chunks (see Figure 5.4a). The stripmining transformation is followed
by scalar expansion, which expands all loop invariant scalar values to a vector. Consecutively, a
loop unrolling engine unrolls the stripmined loop, resulting in a series of operations that can be
grouped together as vector operations. The aggregation is done by the SIMD generation engine,
which aggregates groups of operations into virtual vector instructions. These vector instructions
are virtual, as they are mapped onto actual instructions in the final phase of the compiler.

5.1.3 Integrating explicit realignment in CoSy

Our proposed optimization can be subdivided into four operations; imposing constraints on the
input, determining a configuration of shifts, inserting code for loading the old and new vectors and
the shift operation, and finally mapping shift operations onto instructions.

As the SIMD analysis engine already imposes most of the constraints from Section 4.1.1, it is
convenient to add the additional constraints to this engine. Apart from imposing constraints, this
engine also performs analysis on alignment and memory access schemes. As the functionality of our
alignment analysis overlaps with the SIMD analysis engine, we agreed to combine our algorithms
into this engine. When the alignment analysis fails due to alignment issues that cannot be resolved
by explicit realignment, this will cause the entire SIMD analysis to fail, causing all subsequent
SIMD engines to be skipped for the given loop.

Positioning the component that inserts the shift operations needs to be considered carefully.
It is important to understand that a shift operation is performed on vectors, and that there is
no semantical meaning of a shift operation on scalar values. Even though there is no semantical
meaning of scalar shift operations, we did consider inserting ’scalar’ shift operations on scalar
elements, which can be grouped by a later engine as a vector shift operation on a vector register.
However, doing this temporarily creates an invalid representation of the program, due to invalid
dependences. These invalid dependences are a result from the fact that the shift operation extracts
only a number of values from two vectors, to form a new vector.

To explain why this is an issue, Figure 5.3 shows an example code fragment in which the shift
operation is inserted before the stripmining engine (and is thus performed on scalar elements). In
statement SHF1 a scalar shift operation is inserted, loading both the old and new element. State-
ments UNR1-UNR4 show the statements after unrolling the stripmined loop. Statement UNR1
implies that there is a dependence between the (scalar) element a[i+0] and elements b[i+0] and
b[i+BF+0], while this dependence is not true for the original loop. There is however a dependence
between a[i+0] and b[i+1], but this dependence is not represented by the expression! Pragmati-
cally, one might not consider this an issue, as the scalar shift operations are mapped correctly onto
a vector shift operation at the end of the composite SIMD engine. However, this would mean that
the compiler temporarily has an incorrect and semantically different representation of the program.

1The actual reason for not retaining loop-information in the front-end is that C does not guarantee for/while-
constructs to actually be loops, as a goto or break statement within a for/while-construct can result in non-looping
behavior. Contrastingly, a sequence of goto-statements can form a loop without being explicitly defined as a loop. As
the latter must be recognized as a loop and the former requires loop-analysis anyway, reconstructing loops becomes
a good alternative to retaining loop-constructs by the front-end.

45

5.1. THE COMPILER FRAMEWORK CHAPTER 5. IMPLEMENTATION

/∗ o r i g i na l loop ∗/
for (i =0; i<N; i++)
ORG1: a [i] = b [i +1] ;

/∗ a f t e r in s e r t i ng s h i f t ∗/
for (i =0; i<N; i++)
SHF1 : a [i] = s h i f t (b [i] , b [i+BF] , −1);

/∗ a f t e r s tr ipmining ∗/
for (i =0; i<N;)

for (j =0; j<BF; j++, i++)
// STR1 represents nonexis tent dependence between elements a [i] and b [i] , b [i+BF]

STR1 : a [i] = s h i f t (b [i] , b [i+BF] , −1);

/∗ a f t e r unro l l i ng ∗/
for (i =0; i<N; i+=4){

// UNR1 does not represent dependence between elements a [i +0] and b [i +1]
UNR1: a [i +0] = s h i f t (b [i +0] , b [i+BF+0] , −1);

// UNR2 does not represent dependence between elements a [i +1] and b [i +2]
UNR2: a [i +1] = s h i f t (b [i +1] , b [i+BF+1] , −1);

// UNR3 does not represent dependence between elements a [i +2] and b [i +3]
UNR3: a [i +2] = s h i f t (b [i +2] , b [i+BF+2] , −1);

// UNR4 does not represent dependence between elements a [i +3] and b [i +4]
UNR4: a [i +3] = s h i f t (b [i +3] , b [i+BF+3] , −1);
}

Figure 5.3: Inserting shift operations before stripmining is not allowed due to dependences

As it is possible to ’plug’ engines into the compiler, it becomes possible that plugged-in engines will
perform transformations that are not allowed. As this is totally unacceptable for a compiler, we
quickly discarded this option.

Another option would be to add the shift operations after generating the virtual vector instruc-
tions (i.e. after the SIMD generation engine). There are several reasons why this option isn’t
attractive. First, code for the prev and next iteration will have to be generated. This is preferably
done on the high-level IR, as this representation is easy to manipulate and review. These high-level
expression trees are easier to manipulate than a series of statements of vector instructions (as the
generated vector instructions is like ’virtual’ assembly code). Another important aspect, is that
the shift annotations are not yet supported by the rest of the compiler framework. As the SIMD
engines transform the IR, the shift annotations should be kept in place until the SIMD engine has
finished. This would mean adjusting each engine in the SIMD composite engine from the analysis
engine up-to the SIMD generation engine.

Alternatively, we chose for a solution that is a compromise between the ideas presented above,
and involves the insertion of shift operations right after the stripmining transformation. Performing
the transformation at this point is allowed, because after a single stripmined iteration, all the
operations are (element-wise) performed on vector registers, and it can safely be assumed that all the
calculated values are in a vector register. To keep the distance between the analysis and alignment
transformation as short as possible, we chose to combine our algorithm with the stripmining engine.

Finally, to map the virtual shift operations onto actual instructions, several matching rules need
to be added to the code generator in the back end of the compiler.

46

5.2. ANALYSIS ENGINE CHAPTER 5. IMPLEMENTATION

5.2 Analysis engine

The alignment analysis closely follows the algorithms as presented in Chapter 4, and were imple-
mented without raising any notable details. Therefore, we will not elaborate on the analysis engine
any further.

5.3 Transformation engine

Before continuing on the details of inserting shift operations, let’s begin by explaining the stripmin-
ing transformation, as this transformation precedes the insertion of shifts. The stripmining engine
transforms the inner-loop of a loop-nest into a stripmined loop, by ’tiling’ the loop into strips of
K ∗ blockingfactor (also known as the stripsize). This is done by replacing the body of the inner-
loop by a new loop, i.e. the stripmine loop, that ranges from 0 to the stripsize. The original body
of the inner-loop is moved into the body of the new stripmine loop and the step size of the original
inner-loop is set to the stripsize. The stripsize is the blocking factor of the smallest type found
within the loop body, and can be defined as

stripsize = V L/min(sizes), sizes = {sizeof(x.LHS) | stmt(x),∀x ∈ LoopBody} (5.1)

As the size of the original loop may not be a multiple of the blocking factor, the stripmining
engine generates an epilogue loop, for the remaining iterations that are not serviced by the entire
stripmined loop. The stripmining engine also calculates a peeling factor, to align one or more
statements in the loop body. Figure 5.4a shows an example of a stripmined loop.

5.3.1 Implementing shift operations

Section 5.1 explained that the SIMD generation engine transforms a series of vectorizable expression
trees into series of virtual vector instructions. These instructions are implemented as calls to
Compiler Known Functions (CKF). These CKFs are mapped in the code generation phase onto
actual instructions. We chose to take the same approach for implementing the vector shift operation,
and created several compiler known functions that are used for shifting register streams. As function
calls are natively supported by the framework, no adjustments to the IR or framework are required.
The following part of this section will explain how to generate code for the old and new iterations,
and how to insert the function call to the shift-CKF.

Creating registers

The reason for having a vector prologue is to initialize the old registers for the steady-state loop.
The old registers are used in creating both the prologue and steady-state loop, and have a fixed
mapping with respect to their corresponding shift operation. As they are used in creating both
loops, this requires that they have to generated before performing the transformation.

For each shift annotation in the expression tree, a register is generated for the old iteration. A
key-value map is then used to couple the shift operation with the generated old register. When
generating code for the software pipelined algorithm, the compiler will look up the corresponding
old register from the key-value map, and use it as the old value for the shift operation. For the
vector prologue it is the other way around, as it will use the old register to hold the new value.

47

5.3. TRANSFORMATION ENGINE CHAPTER 5. IMPLEMENTATION

Loop splitting

When a stripmine loop has processed all it’s iterations, it means that one vector iteration has been
processed. As shifts operate on vectors, the operation itself will have to be outside the stripmine
loop. But by placing the shift outside the stripmine loop, the result cannot be used within the
loop itself. A solution to this problem is to split up the stripmine-loop every time a shift operation
is encountered. Splitting up the stripmine loop into several loops is a valid transformation, as
we assume that there are no hindering dependences within a distance of BF iterations, and we
guarantee that the ordering of the statements is not changed by the transformation.

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Origina l loop
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

f loat a [SIZE] , b [SIZE] , c [SIZE] ;

for (i=s t a r t ; i<end ; i++){
a [i] = b [i +1] + c [i +2] ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ After str ipmining
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

//prologue
for (i=s t a r t ; i<propee l ; i++){

a [i] = b [i +1] ;
}

// steady−s t a t e
for (i=propee l ; i<ep i p e e l ;)
{

for (j =0; j<S t r i pS i z e ; j++, i++){
a [i] = b [i +1] + c [i +2] ;

}
}

// ep i logue
for (i=ep i p e e l ; i<end ; i++){

a [i] = b [i +1] ;
}

(a) Stripmining transformation

/∗ Declarat ions of vector r e g i s t e r s ∗/
f loat bnew [BF] , cnew [BF] , bold [BF] , co ld [BF] ;
f loat b s h i f t r e s [BF] , c s h i f t r e s [BF] ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ After in s e r t i ng the s h i f t
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

s c a l a r p r o l o gu e () ;
v e c t o r p ro l ogue () ; // (i n i t i a l i z e s bo ld and co ld)

// steady−s t a t e
for (i=propee l ; i<ep i p e e l ;){

for (j =0; j<S t r i pS i z e ; j++, i++){
bnew [j] = b [i+S t r i pS i z e] ;
cnew [j] = c [i+S t r i pS i z e] ;

}

b s h i f t r e s = s h i f t (bold , bnew , −4);
c s h i f t r e s = s h i f t (cold , cnew , −8);

i = i−S t r i pS i z e ;
for (j =0; j<S t r i pS i z e ; j++, i++){

a [i] = b s h i f t r e s [j] + c s h i f t r e s [j] ;
bold [j] = bnew [j] ;
co ld [j] = cnew [j] ;

}
}

ep i l ogue () ;

(b) Shift insertion

Figure 5.4: Example of stripmining transformation and shift insertion

The transformation follows the algorithm from Chapter 4, generating code for the old and new
vector for each shift that is encountered. When both the old and new vector have been calculated,
the shift operation itself must be inserted. As this must be done outside the loop, the loop is closed,
and is followed by a statement that contains a function call to the corresponding shift-CKF. Finally,
the original expression must substitute the shift-annotated expression with the result from the shift-
CKF, and a new stripmine loop must be created to handle the remaining part of the statement and
loop body that are currently being processed. As this process is performed recursively, loops may be
split several times. Splitting the loop means closing the ’current’ context (i.e. the stripmine loop),
adjusting the (un)conditional jumps to exit-blocks, and finally creating the new context for the
remaining loop body. This process involves quite some internal ’bookkeeping’ to keep the control
flow graph and jump targets correct.

Figure 5.4b shows a code-example of loop-splitting. The statement is annotated with two shift

48

5.3. TRANSFORMATION ENGINE CHAPTER 5. IMPLEMENTATION

operations to shift both b[i+1] and c[i+2] to offset 0. It first creates a statement to load the aligned
new vector for b. As the shift is performed on vectors, the loop is closed, and a statement that
shifts the stream using the old and new vectors of b is issued. A new stripmine loop is created,
which stores the new vector of b for the next iteration. Also the new vector for c is loaded, and
the process repeats itself. Finally, the unaligned memory references in the original expression are
substituted by the shift-result, and the result of the addition is stored at a[i]. The accompanying
control flow graph is shown in Figure 5.5. Here the colored nodes denote the basic blocks which
operate on vectors, while the non-colored nodes denote the basic blocks operating on scalars.

(a) Stripmining transformation

Figure 5.5: Control flow graph of stripmined after inserting shift operations

Adjusting induction variables

As can be seen in Figure 5.4a, the iteration counter of the loop, i, has become a basic induction
variable in the stripmine-loop. When splitting the loop into multiple stripmine-loops, this value
will keep increasing several times during a single vector iteration, as the value of i is incremented
each stripmine loop iteration. As a result, all subsequent stripmine loops that have been generated
by loop splitting, will have an incorrect value for i (note that this also holds for all other induction
variables in the original loop). Therefore, all induction variables that are incremented in the inner-
loop should be adjusted by BF times the value of its increment expression before starting a new

49

5.4. CODE GENERATION CHAPTER 5. IMPLEMENTATION

stripmine loop. Figure 5.4b shows that the induction variable i is adjusted just before the new
stripmine-loop with i = i - BF.

5.3.2 Multiple statements in Loop Body

When the loop body consists of multiple statements with distinct offsets, several loop iterations are
peeled off at the beginning of the loop, such that each vector store can safely start at offset 0. For
the steady state loop, each store-offset is truncated to offset zero, such that only full vector stores
are performed. When the steady-state loop ends, a scalar epilogue finishes the remaining iterations.
But instead of continuing at offset 0 for each of the stores, each store will continue with it’s original
offset. When the original offset is greater than zero, the scalar epilogue will skip iterations for that
statement. An example of this issue can be seen in Figure 5.6, where z[i+2] (with offset 1, after
peeling) skips one scalar iteration. To resolve this issue, some iterations will need to be peeled off at
the end as well. This number of iterations can be defined as the maximum store offset (in elements,
not bytes) found in the loop body. The iterations are peeled off by subtracting this number from
every induction variable in the loop body.

!"##$%

&'(#)*

+,-./0)1)2"-3$45556 +,-./0 555

7889#22)4-)2$'9$2):)%6; %< /* => <= >; ?<

@,-.%0 A9#B)@ @C99)@ 555

2"-3$)@

D,-.*0).)2"-3$4)@,-.%0)6 A9#B)D).)2"-3$555 @C99)D).)2"-3$4@6 555

555 555 2"-3$)D 555 555

',-.%0).)2"-3$4)D,-.*0).)2"-3$)4@,-.%06)6 A9#B)').)2"-3$555 @C99)').)2"-3$4D6 555

555 2"-3$)' 555 555

+,-0)1)2"-3$4',-.%0).)2"-3$4)D,-.*0).)2"-3$4)@,-.%0)6662@'E'9)A9FEF(C# B#@$F9)A9FEF(C# 2$#'8GH2$'$# 2$#'8GH2$'$# 2$#'8GH2$'$# 2$#'8GH2$'$# 555

7889#22 ; %< /* => <= >; ?<

D,-.%0 A9#B4A9#B4D66 A9#B4D6 ++ 555

2"-3$4D6 2"-3$4A9#B4D66 ++

',-.*0).)2"-3$45556 A9#B4'6 ++ @C994'6 555

2"-3$4'6 2"-3$4'6 ++

+,-./0)1)2"-3$45556 ++ 555

-)2$'9$2):); ; % * / = I < J > ? %; %% %* %/ %= %I %< %J %> %? *; *% ** */ *= *I *< *J

D,-./0

+,-.*0 ; % * / = I < J > ? %; %% %* %/ %= %I %< %J %> %? *; *% ** */

B#@$F9)A9FEF(C# 2$#'8GH2$'$# KKK 2@'E'9)#A-EF(C#

D,-./0

+,-.%0 ; % * / = I < J > ? %; %% %* %/ %= %I %< %J %> %? *; *% ** */

B#@$F9)A9FEF(C# 2$#'8GH2$'$# 2@'E'9)#A-EF(C#

-)2$'9$2):);

L,-.*0)1)555 F332#$)%)'3$#9)A##E-M(F332#$); NNN F332#$)%
G,-.%0)1)555 F332#$);)'3$#9)A##E-M(F332#$); F332#$);

+,-.%0)1)555 F332#$);)'3$#9)A##E-M(F332#$); F332#$);

2@'E'9)A9FEF(C# B#@$F9)A9FEF(C# 2$#'8GH2$'$# 2@'E'9)#A-EF(C#

Figure 5.6: Peeling epilogue due to distinct store offsets

5.4 Code generation

The back-end of the compiler generates the actual instructions. As opposed to the sequential order-
ing of operations as presented earlier in the composite SIMD engine, code generation is performed
iteratively. The intermediate results are refined each iteration until an optimal sequence of instruc-
tions is found. The code generator performs algorithms for pseudo register annotation, register
allocation, code scheduling, pattern matching, and code selection. To target instructions, the CoSy
framework requires a set of rules to map subexpressions onto instructions. By specifying a minimum
set of rules, the compiler will be able to generate code for the given expressions. More advanced
instructions can be targeted by adding more specific rules to the code generator. For each rule, a
cost can be defined, such that the set of rules with lowest cost can be applied in order to generate
the cheapest (set of) instructions for the given statement.

To implement the shift operation, we will need to add several rules to the code generator to match
the compiler known function calls. As the semantics of a shift operations are not representable in
the IR, we will manually need to generate our own instruction-mapping for the function calls. We
will start this section by explaining the available instructions that can be used for shifting on our
targeted platform, and we will end the chapter with the optimal shift mapping for each possible
shift.

50

5.4. CODE GENERATION CHAPTER 5. IMPLEMENTATION

5.4.1 Permutation instructions

For our implementation we targeted the x86 instruction set architecture, with SSE and SSE2 exten-
sions. SSE and SSE2 provide 8 vector registers with a length of 16 bytes, and provides instructions
to operate on 8 short valued integers, 4 single precision floating point and double-word integer
values, or 2 double precision floating point and quad-word values. Some permutation instructions
are data type specific, requiring a different strategy for the different data types. Stream-shift oper-
ations can be implemented in a variety of ways with these different permutation instructions. This
section is devoted to explain the available permutation instructions of our target architecture and
their possible implementation of stream-shift operations.

All vectors: Shift and logical OR

One of the most generic ways to extract a misaligned vector from two vector registers, is by shifting
each vector register to the right offset in the vector using a logical shift instruction, masking the
values that are not used, and OR-ing both vectors together into a single vector. The old vector
needs to be shifted left by shift amount bytes, while the new vector needs to be shifted right by
VL - shift amount bytes. As an example, consider shifting a stream three elements to the left.

1. Input: C = [C0, C1, C2, C3], N = [N0, N1, N2, N3]

2. Shift C left by 3 elements: [C3,−−,−−,−−]

3. Shift N right by 1 element: [−−, N0, N1, N2]

4. Result of OR-ing C and N: [C3, N0, N1, N2]

To shift an entire vector register one or more bytes to the left or right, the SSE2 extensions
provide the pslldq and psrldq instructions respectively. These instructions shift a double quadword
register value (i.e. a whole SSE register) one or more bytes left or right and zero’s the empty
high/low-order bytes.

Integer vectors: Unpack and shuffle

The SSE instruction set has separate shuffle instructions for integer and floating point vectors,
both with different semantics. The shuffle instructions for integer vectors, pshufw and pshufd (for
words and doublewords), can reorder the elements within a vector given any ordering, as long as
the ordering-operand is an immediate (i.e. compile time) constant. Figure 5.7 shows the semantics
of the operation.

SSE2’s unpacking instructions can be used to interleave two vectors, as shown in Figure 5.8.
There are unpacking instructions to interleave the lower half of two vectors (punpckldq, punpcklwd),
and instructions to interleave the higher half of two vectors (punpckhdq, punpckhwd).

By combining the integer shuffle instructions with unpacking instructions, two vectors can be
merged together with the desired ordering. First an unpacking operation can combine values from
two vectors together, which are reordered in the right order by a shuffle operation. However, these
instructions always take either the low part of both vectors, or the high part. For shifting a stream,
it is required to take the high part of one vector, and the low part of the other vector. This could
be done by issuing a shuffle instruction for one of the vector registers first. For shift operations

51

5.4. CODE GENERATION CHAPTER 5. IMPLEMENTATION

Figure 5.7: SSE2 Integer shuffle instruction where bytes 0-7 determine the ordering for the elements
in SRC. The result is stored in DEST.

Figure 5.8: SSE2 Unpacking Instruction interleave elements of two vectors.

where the number of values required from one vector, is larger than the number of values required
from the other vector, multiple passes will need to be issued.

To illustrate this with an example, consider again the case of shifting a vector stream 3 elements
to the left.

1. Input: C = [C0, C1, C2, C3], N = [N0, N1, N2, N3]

2. Unpack high C, N: T1 = [C2, N2, C3, N3]

3. Shuffle T1: T2 = [C3, N2, C2, N3]

4. Unpack low: T2,N: T3 = [C3, N0, N2, N1]

5. Shuffle T3: Result = [C3, N0, N1, N2]

As is intuitively clear from the above example, integer shuffle and unpacking operations are not
very well suited for shifting register streams. Therefore, we will not consider them in the remaining
part of this section.

Floating point vectors: Unpack and shuffle

Shuffle operations for floating point vectors have different semantics than those for integer vectors.
Instead of reordering the data within a single vector, the floating point shuffle instruction allows the

52

5.4. CODE GENERATION CHAPTER 5. IMPLEMENTATION

possibility to select any BF/2 values from one vector, and any BF/2 values from another vector,
and combine them (in fixed order) into the result vector. Figure 5.9 demonstrates the semantics of
such an instruction. As this instruction can both combine and reorder values from two vectors, it
has nice characteristics for shifting register streams.

Figure 5.9: SSE2 Floating point shuffle instruction. Bytes 0-3 select two elements of SRC, while
Bytes 4-7 select two elements of DEST. The resulting elements are combined in fixed order into the
destination register.

Even though the floating point shuffle operations are meant to work on floating point vectors,
in practice they can also operate on integer vectors. Effectively, only a reordering of the data is
done, and no arithmetic is performed on the data. Therefore, only the size of the data elements
is important, as opposed to the content of the registers. Before making this claim however, we
checked that no floating point exceptions could occur due to specific values of the data. Even
though the instruction set reference pointed out that no floating point exceptions are triggered by
the instruction, executing several test-cases assured us that assigning an integer value denoting a
’signaling NaN’ for example did not trigger any exceptions. The unpacking instructions are also
available for floating point vectors, and operate similar to those for integer vectors. However, as
the shuffle instruction already performs the task of ’combining’ of vectors and the fact that un-
packing operations are not well suited for shifting register streams, we will disregard the unpacking
instructions in the remainder of this chapter.

Let’s once again review the example of shifting a register stream to the left by 3 elements.

1. Input: C = [C0, C1, C2, C3], N = [N0, N1, N2, N3]

2. Shuffle C, N: T1 = [C1, C0, N1, N2] (Select C = {1, 0}, Select N = {1, 2})

3. Shuffle T1, N: Result = [C0, N1, N2, N3] (Select T1 = {1, 2}, Select N = {2, 3})

As can be seen, using the floating point shuffle instructions requires only two operations, but can
only be used for sizes equal to those of float and doubles.

Instruction latency

To be able to find a minimal mapping for shift operations to actual instructions, the latency of
the permutation instructions need to be considered as well. The latency of the SSE instructions
for our platform are obtained from [4]. Note that the given latencies are static estimates for the

53

5.4. CODE GENERATION CHAPTER 5. IMPLEMENTATION

latency and are based on the several assumptions. These assumptions include that the instruction
has already been fetched and decoded, the memory operands are in the L1 data cache, and that
there is no contention for execution resources or load-store unit resources.

Operation Instruction Cycles
Logical shift pslldq,psrldq 2
Unpack int punpckhdq 2
Unpack float punpckhqdq 3
Unpack double unpckhps 2
Unpack long long unpckhpd 2
Shuffle int pshufd 4
Shuffle float shufps 4
Shuffle double shufpd 4
Bitwise OR por 2
Move register to register movdqa/movaps/... 2

Figure 5.10: Latency table for SSE/SSE2 instructions that can be used for shift operations

The following section will give the optimal shift mappings that we used in our implementation.

5.4.2 Shift mappings

This section will present optimal mappings for the stream-shift operation. Note that we only have to
create shift mappings based on the shift amount as opposed to the shift direction. This is because
the shift operator itself is conceptually similar for both left and right shifts. Shifting left by K
bytes is similar to shifting right by V L −K bytes, with the distinction that a left shifts uses the
current and next vectors, whereas a right shift uses the previous and current vector as input for
the operation. However, selecting the input to the operator is not part of the operator definition.

As not all permutation instructions have similar latencies, we will need to consider the cost
of individual instructions when calculating the cost of a shift operation. We will define the cost
of a shift operator as the sum of latencies of its instructions. The dynamic cost of a series of
instructions heavily depends on the pipeline characteristics. Therefore, using the sum of latencies
is not an accurate representation for the actual cost. However, as the pipeline characteristics of our
target platform are not publicly available, we will have to resort to static latencies in calculating
the cost.

Optimal mapping for shifting left K bytes, where K is not a multiple of 4

For shift operations where the shift-operand is not a multiple of 4 (this is the case for shifting
register streams containing elements of the short integer and byte data type), SSE’s floating point
shuffle instructions cannot be used, as they cannot operate on data types smaller than floats. As
unpacking and integer shuffle instructions are not suited for the purpose of shifting streams (as this
requires multiple passes), using a combination of logical shift instructions and an OR operation
gives the best results, as this always requires a maximum of 4 instructions.

One instruction is needed to create a copy of the new vector. This is required because the
logical shift instructions changes the contents of the new vector, while the contents of the vector

54

5.5. IMPLEMENTATION ISSUES CHAPTER 5. IMPLEMENTATION

are needed for the next vector iteration. Then two instructions are needed to shift the old and new
vector to the corresponding offsets. And finally, an OR operation should be used to combine the
result. The estimated cost is 8 cycles.

Optimal mapping for shifting left 12 bytes

Shifting left by 12 bytes, can be done with a minimum of two instructions and a cost of 8 cycles. The
combination of using logical shifts and a logical OR operation, costs 4 instructions and 8 cycles.
The use of floating point shuffle instructions however, require only two shuffle instructions (also
with a cost of 8 cycles). To compare the costs of two shift mappings with similar static costs (in
latency) to see the influence of hardware pipeline characteristics, we measured the execution time
of both mappings. This involved shifting using logical-shifts and an OR-instruction, and two shuffle
instructions. The results did not show any significant difference in performance between the two
mappings. As the new vector is not used as the destination register in any of the two instructions,
it’s contents are not changed and the vector doesn’t need to be copied. The shift mapping with
shuffle instructions is shown below.

1. Input: C = [C0, C1, C2, C3], N = [N0, N1, N2, N3]

2. Shuffle C, N: T1 = [C1, C0, N1, N2]

3. Shuffle T1, N: Result = [C0, N1, N2, N3]

Optimal mapping for shifting left 8 bytes

Shifting 8 bytes to the left, requires only a single shuffle instruction. By using the new vector as
source operand, and the old vector as the destination operand, the contents of the new vector are
not altered thus not requiring a copy. By selecting the high-order bytes from the old vector, and
the low-order bytes of the new vector, the data is combined into the vector using a single shuffle
operation. The cost of this shuffle operation is only 4 cycles.

Optimal mapping for shifting left 4 bytes

When shifting left by 4 bytes, the use of the shuffle instruction is not optimal. Two shuffle in-
structions are required similar to shifting 12 bytes, but in this case the new vector is used as a
destination, thus requiring an additional instruction to copy the new vector. This brings the total
cost to 10 cycles as opposed to 8 cycles when using logical shifts and an additional OR operation.

5.5 Implementation issues

We will conclude this chapter with several issues that resulted from the presented implementation.

5.5.1 Multiple data types within statements

When statements with distinct data sizes exist within a loop body, the SIMD analysis engine selects
the stripmining factor (i.e. the size of a stripmine loop) according to the smallest data size in the
loop body. Our implementation splits up a loop when a stream-shift operation is encountered inside
a statement. This loop splitting assumes the blocking factor to be equal to the stripmining size,

55

5.5. IMPLEMENTATION ISSUES CHAPTER 5. IMPLEMENTATION

as it is assumed that a single vector iteration is performed after the stripmine loop. But when
there are multiple data sizes in a loop body, this assumption is not valid. The stripmining factor is
calculated as the blocking factor the smallest data size. Statements operating on larger data sizes,
perform more than one vector iterations in the stripmine loop. This would mean that not one, but
multiple shift operations are required.

As we were not able to implement a solution for this problem, we prevented this issue by adding
constraint (C5) to the loop body. However, a possible solution could be to distribute the original
loop into a series of loops with homogenous statements. This way, each loop has its own stripmining
factor, causing the blocking factor for every statement in the loop to be equal to the stripmining
factor. By considering less statements, it might improve the cache-hit ratio, as the cache is more
dedicated to the lower number of expressions. Another possible solution is to leave the concept of
loop splitting, and insert the shift operation after vector instructions have been generated. This
way, issues with distinct data sizes will become solvable, but due to the nature of the SIMD engine
it will prove to be quite the engineering challenge.

5.5.2 Common subexpressions

During implementation we came across an issue when considering statements where the left-hand
side has no memory-offset. Figure 5.11 demonstrates the situation where an expression is moved
to a temporary variable to avoid re-computation in multiple statements. When the left-hand side
of the assignment is not a memory address it will also lack a memory-offset and the question what
offset to chose for the right-hand side arises. One could choose the left-hand side to have a memory-
offset of 0. However, as the chosen offset impacts the shift placement of other statements as well,
selecting offset 0 may or may not be the best choice. Our proposed algorithm for calculating an
optimal shift-configuration does not take common subexpressions into account ([11, 12] elaborates
more on this subject). Even when a (convenient) offset has been chosen, the resulting variable will
have a fixed offset in subsequent expressions, as it is not a memory stream that can be shifted to
another offset because this would require a ’previous’ or ’next’ vector as well. A solution would be
to generate three vectors (previous, current and next) for each statement where the left-hand side
has no offset and substitute every use of that variable with an appropriate shift to a preferable offset
using these vectors. In this way, the result of the statement will be transformed into a ’stream’ as
well, instead of a single value. However we were unable to implement this feature within the given
timeframe.

for (i =0; i<N; i++)
{

/∗ What o f f s e t to g ive tmp ? ∗/
tmp = a [i +1] + b [i +2] ∗ c [i +3] ;

x [i] = a [i] + tmp ;
y [i] = a [i +1] + tmp ;

}

Figure 5.11: Left-hand of assignment statement side has no offset

56

5.5. IMPLEMENTATION ISSUES CHAPTER 5. IMPLEMENTATION

5.5.3 Loop versioning

Some of the benchmarks contained runtime alignments due to multi-dimensional arrays with an
inner-dimension that was not a multiple of the vector length. By versioning the loop using the
iteration-variable of the outer-loop, the alignment of the inner-dimension can be determined as
demonstrated in Figure 5.12. This is done using the modulo-operator, as the memory-offsets of the
inner-dimension exhibit modulo-behavior. The CoSy framework offers value range analysis that
calculates the possible values (i.e. ranges) a variable can have in any basic block. This knowledge
can be used to determine information for many purposes like for instance determining reachability
of code. This knowledge is also used in calculation of alignments and memory-offsets. Even though
the value-range framework was quite elaborate, the modulo was still left for us to be implemented.

// inner dimension causes runtime alignments
for (i =0; i<N; i++)

for (j =0; j<K; j++)
in [i] [j] = out [i] [j] ;

// vers ion the inner−dimension for compiletime alignments
for (i =0; i<N; i++){

i f (i % B == C){
for (j =0; j<K; j++)

in [i] [j] = out [i] [j] ;
} else i f (i % B == C+1){

for (j =0; j<K; j++)
in [i] [j] = out [i] [j] ;

} else i f (. . .) {
. . .

} . . .
}

Figure 5.12: Versioning

Value range analysis uses set-theory to represent ranges and perform calculations. For the
statement as shown in Figure 5.12, the set of values resulting from the true-branch of the modulo
operation, is a set of integer values with stride B, where C is one of the values in the set. By
intersecting this set with the value-range of i, we achieve the possible set of values for i. For the
else-branch of the statement, the value-range is the complemented set of the one calculated for i in
the true-branch (see Equations 5.4, 5.2. Note that values B and C need to be positive constants in
order to make assumptions about the alignments.

rangemod,true(Z, B,C) = {C − k ∗B, . . . , C −B, C,C + B, . . . , C + k ∗B} where k →∞
(5.2)

rangemod,true(var, B, C) = range(var) ∩ rangemod,true(Z, B, C) (5.3)

rangemod,false(var, B, C) = rangeC
true (5.4)

57

Chapter 6

Results

Benchmarking on our targeted platform proved to be quite a challenge. Instead of solely measuring
the effect of explicit realignment alone, one also measures many side effects of the memory hierarchy,
operating system and processor pipeline behavior. Looking ’inside’ the processor is difficult, as cycle-
accurate analysis tools for our architecture are not available. A tool by AMD called CodeAnalyst
can gather statistics about an application like the number of cache misses, branch (mis-)predictions
and executed instructions. However, the resolution of the supplied tools did not allow for assembly
level analysis. Section 6.2 explains how we attempted to get reliable results.

It should be mentioned that explicit realignment is not required to vectorize loops with mis-
alignments for our targeted architecture, as the SSE instruction-set provides move-instructions
for unaligned data. Section 6.2 elaborates on the characteristics of unaligned instructions even
though we do not aim at comparing unaligned move instructions with our explicit realignment
solution. Our primary goal is to measure the speedup of vectorized applications that cannot be
vectorized without explicit realignment and to investigate whether SIMD still benefits when per-
mutation instructions are required to realign the data streams. Furthermore, we want to compare
the performance differences of the proposed shift-placement algorithms. To place the results of the
explicit realignment solution in context with unaligned instructions however, we included results of
unaligned instructions as well.

This chapter will be structured as follows. Section 6.1 will elaborate on our targeted plat-
form. Section 6.2 will explain some of the problems we encountered during benchmarking and will
elaborate on effects that influenced our measurements. The results of the actual benchmarks are
presented in Section 6.3.

6.1 Benchmarking platform

The system we used for benchmarking, consisted of an AMD Athlon X2 Dual Core processor, 4GB
of main memory, running Red Had Linux. The processor has 512 KB of L2 shared data/instruction
cache and 64KB of dedicated L1 data and instructino cach. The Athlon X2 is based on AMD’s
K8 architecture and supports MMX, SSE and SSE2 vector extensions. A noteworthy detail of this
architecture is that the machine can only load 64 bits from the cache at a time. This means that
128 bit vector loads are actually composed of two 64 bit loads. As a result, vector loads themselves
will become more dominant in vector expressions than on other architectures. Table 6.1 sums up

58

6.2. BENCHMARKING OBSERVATIONS CHAPTER 6. RESULTS

the specifications.

Processor AMD Athlon X2 Dual Core Processor 5600+
Clock speed 2915 Mhz
Level 2 Cache 512KB
Level 1 Cache (data) 64KB
Level 1 Cache (instructions) 64KB
System Memory 4GB
Vector Extensions SSE, SSE2, MMX
OS Linux, kernel version 2.6.9-67.0.4

Table 6.1: Platform specifications

6.2 Benchmarking observations

To obtain reliable results, we executed several runs of every benchmark and took the shortest time
as the result. This reduces the impact of context switches from the operating system and also
ensures a warmed up cache for all except the first run. The linux ’time’ function proved most
accurate for the measurements. Even though the resolution of the timer function is not very high,
it measures the program time disregarding any time taken by context switches to other operating
system tasks. As the benchmarks were executed a large number of times, the resolution of the timer
was not that important.

During the benchmarking process however, we noticed that the achieved results were somewhat
uncorrelated. In some cases the results displayed a dramatic decrease in performance when using
SIMD instructions, while in other cases the speedup increased with a factor that was higher than the
blocking factor. These uncorrelated results are experienced throughout the entire benchmarking
process, even for trivial programs containing a single loop without any misalignments. As we
wanted to make sure we measured the effects of vectorization instead of irrelevant side-effects of
our targeted architecture, we decided to investigate the issue.

Caching

When benchmarking on a platform like the AMD Athlon the caching mechanism plays a dominant
role in the execution. As for this platform the caching mechanism cannot be switched off, it must
be circumvented. This can be done by keeping the data small enough to fit in the L1 cache, and
warming up the cache before use. However, even with these precautions a simple loop which adds
two arrays without any misalignments, still causes cache-related problems. Figure 6.1 displays the
measurements for both SIMD as well as scalar instructions for variable array sizes. When the
array size is a multiple of 1024, a large number of cache misses occur and the performance drops
significantly. Our hypothesis is that the mapping of memory address to cache line inhibits modulo
behavior, where the last 10 bits of the address specify the cache line (this also corresponds to the
1024 number of cache lines of the K8 architecture). When accessing the arrays, a cache miss follows
on each access, as the data from separate arrays is mapped to the same cache-line, causing the
cache-line to be refilled each access. For SIMD execution the effects have less impact, as this only

59

6.2. BENCHMARKING OBSERVATIONS CHAPTER 6. RESULTS

happens for each vector access, instead of each element access. As a result, the measured speedups
will approach the blocking factor. At first glance it will seem as though the achieved speedup
approximates the estimated (and desired) speedup, but the results are not due to vector arithmetic
but due to caching issues. To resolve this, the arrays must have different starting address which
can be imposed by padding the power-of-two arrays with several elements.

!"##$%

&'(#)%

%** * %*

%*% * %*

%*+ * %*

%*, * %*

%*- * %*

%*. * %*

%*/ * %*

%*0 * %*

%*1 * %*

%*2 * %*

%%* * %*

%%% * %*

%%+ * %*

%%, * %*

%%- * %*

%%. * %*

%%/ * %*

%%0 * %*

%%1 * %*

%%2 * %*

%+* * %*

%+% * %*

%++ * %*

%+, * %*

%+- * %*

%+. * %*

%+/ * %*

%+0 * %*

%+1 * %*

%+2 * %*

%,* * %*

%,% * %*

%,+ * %*

%,, * %*

%,- * %*

%,. * %*

%,/ * %*

%,0 * %*

%,1 * %*

%,2 * %*

%-* * %*

%-% * %*

%-+ * %*

%-, * %*

%-- * %*

%-. * %*

%-/ * %*

%-0 * %*

%-1 * %*

%-2 * %*

%.* * %*

%.% * %*

%.+ * %*

%., * %*

%*
,

%/
0

+,
%

+2
.

,.
2

-+
,

-1
0

..
%

/%
.

/0
2

0-
,

1*
0

10
%

2,
.

22
2
%*
/,

%%
+0

%%
2%

%+
..

%,
%2

%,
1,

%-
-0

%.
%%

%.
0.

%/
,2

%0
*,

%0
/0

%1
,%

%1
2.

%2
.2

+*
+,

+*
10

*

.**

%***

%.**

+***

+.**

,***

,.**

344'5)!67#

8
9
#
:
;
$6
<
=
)>
6?
#
)@
9
)%
*
)?
A
B

!"#$

!%&'&(

Figure 6.1: Address mapping causes cache-misses for array sizes that are a multiple of 1024

When the data fits only partially in the L1 cache, which is the case for many of the benchmark
applications, the influence of the L2 cache and main memory may need to be taken into account
as well. When this is the case, the program will spend more time in the memory hierarchy than
it will spend performing arithmetic calculations. This will cause the memory to be the dominant
factor in the calculation, therefore reducing the benefits obtained from vector arithmetic. 1

Other compiler optimizations

Apart from runtime side-effects, we noticed that common subexpression elimination (CSE) compli-
cates the results. When adjacent values are loaded from an array, the shift-configuration influences
the behavior of CSE. To illustrate the issue, Figure 6.2 shows a code segment where neighboring
values from an array are added together. In the steady-state loop, two vectors will be loaded on
each vector-iteration. Because the memory-addresses are truncated to load at aligned boundaries,
the same ’next’-vector will be loaded twice when the shift-operations are placed on the leafs (both
b[i+1], b[i+2] will be truncated to b[i+0], loading the vector at b[i+0] as the ’current’ vector and
b[i+4] as the ’next’ vector). This allows CSE to eliminate one of the load-operations. However,

1Our hypotheses on caching were backed-up by CodeAnalyst that can count the number of L1 and L2 cache
misses for a given application.

60

6.2. BENCHMARKING OBSERVATIONS CHAPTER 6. RESULTS

when considering a shift-configuration where one shift is performed on one of the leafs and the
other shift-operation is performed on the result of the addition, two different vectors will be loaded
each iteration. Array-reference b[i+2] will cause the ’next’-vector at address b[i+8] to be loaded,
while b[i+1] will cause the vector at b[i+4] to be loaded as the ’next’-vector, due to the hierar-
chy of shifts as described in Chapter 4. As both load-operations load their vectors at different
addresses, CSE cannot eliminate one of the loads. This means that there is an additional penalty
for shift-operations on the critical path when CSE is involved.

for (i =0; i<K; i++){
x [i] = b [i +1] + b [i +2] ;

}

(a) Original loop

pro logue () ; // ca l cu l a t e s b1curr , b2curr
for (i =0; i<K; i+=BL) // steady−s t a t e
{

b1next = l o ad v e c t o r a t (b [i+BL]) ;
b2next = l o ad v e c t o r a t (b [i+BL]) ; //CSE el iminated

b1 sh i f t = s h i f t (b1curr , b1next , −1);
b 2 s h i f t = s h i f t (b2curr , b2next , −2);

s t o r e v e c t o r a t (x [i] , b 1 s h i f t + b2 sh i f t) ;

b1curr = b1next ;
b2curr = b2next ;

}
ep i l ogue () ;

(b) Shift operations on leafs

pro logue () ; // ca l cu l a t e s b1curr , b2curr
for (i =0; i<K; i+=BL) // steady−s t a t e
{

b1next = l o ad v e c t o r a t (b [i+BL]) ;
b2next = l o ad v e c t o r a t (b [i+2∗BL]) ;

b 2 s h i f t = s h i f t (b2curr , b2next , −1);
b1next = b1next + b2 sh i f t ;

s t o r e v e c t o r a t (x [i] , s h i f t (b1curr , b1next −1));

b1curr = b1next ;
b2curr = b2next ;

}
ep i l ogue () ;

(c) One shift operation on leaf, other on result of addition

Figure 6.2: Same number of stream-shifts but different configuration causes CSE to eliminate 1
load for (b), but no loads for (c)

Apart from CSE, we also tried a number of other optimizations including an optimization that
removed the unnecessary ’i += 8; i -= 8’ statement-pairs that resulted from our optimization (see
Section 5.3.1). In some cases this caused the performance to decrease for reasons that we were
unable to explain. Therefore, in the remainder of this chapter we take some precaution when trying
to explain the results of our measurements.

Performance of SSE’s unaligned instructions

In order to place the results of explicit realignment in context with SSE’s unaligned instructions,
we need to know properties of their behavior. We created a program that measures the differences
in performance between unaligned and aligned instructions. By comparing the performance against
the number of load operations, we can see if there is correlation between unaligned overhead and
the number of vector loads. We initially expected the processor to perform a similar operation as
with explicit realignment, by loading two vectors and extracting the unaligned vector, meanwhile
buffering some of these vectors for subsequent iterations. However, the linear behavior shown in
Figure 6.2 does not show any effect of buffering.

It does appear that the program with unaligned loads performs on average about 25% worse
than it’s aligned counterpart. As unaligned loads make up 50% of the instructions (i.e. the other
50% are aligned store instructions), we can conclude that unaligned loads are about 50% slower

61

6.3. BENCHMARKS CHAPTER 6. RESULTS

than aligned loads.

Sheet1

Page 1

Aligned Unaligned Difference Ratio
50 60 10 1.2

230 270 40 1.17
360 450 90 1.25
460 550 90 1.2
580 790 210 1.36
680 900 220 1.32
840 930 90 1.11
900 1090 190 1.21

1000 1210 210 1.21
1130 1530 400 1.35
1310 1610 300 1.23
1410 1700 290 1.21
1510 1870 360 1.24
1620 1960 340 1.21
1790 2200 410 1.23
1820 2170 350 1.19

1.23

padd = 1 padd = 3 padd = 7
60 60 60

270 270 300
450 450 390
550 550 600
790 790 770
900 880 810
930 930 1020

1090 1090 1150
1210 1210 1300
1530 1510 1420
1610 1600 1670
1700 1700 1700
1870 1870 2030
1960 1950 2030
2200 2200 2110
2170 2180 2160

1 2 3 4 5 6 7 8 9 10111213141516
0

500

1000

1500

2000

2500

Aligned
Unaligned

Number of load operations

C
P

U
 T

im
e

 (
m

s)

1 2 3 4 5 6 7 8 9 10111213141516

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Column D

Figure 6.3: Results showing the overhead of unaligned- over aligned load instructions.

6.3 Benchmarks

This section elaborates on the benchmark results we acquired. Apart from showing the speedup
achieved by explicit realignment we also specify which elements make up the execution time for some
of the benchmarks. We subdivided the execution time into three elements; the number of aligned
instructions and vector operations, the (explicit) shift overhead, and additional overhead caused by
the realignment algorithm. The latter may be caused by loop peeling, vector prologue loop, loop
versioning, register spilling (due to the additional registers required for explicit realignment) and
saving of ’next’-vectors for subsequent vector iterations (for software-pipelining).

6.3.1 Generated loops

To examine the effects of the presented stream-shift placement methods, we created a suite of
loop constructs from a loop-generator (see Appendix A.4 for an example). We gave this loop-
generator a number of parameters to differentiate the data type, the number of array-references
within a statement, the number of statements, and the choice for left-recursive or non-left-recursive
expression trees. The latter choice is implemented by choosing the operation to be either addition
or multiplication for the left-recursive trees, or a combination of the two for non-left-recursive trees.
We decided to load the values from two separate arrays and storing the results in a third array. By
operating on only three arrays, we enhance the spatial locality in memory, and circumvent the use
of the cache hierarchy by making sure all three arrays fit in L1 data cache. We chose not to use
the CSE optimization for these loops, as we want to compare the differences between the proposed
shift-placement techniques without any side-effects.

The offsets of the array-references are chosen randomly using a normal distribution, where the
mean of this distribution is chosen from a uniform distribution. For the variance we chose a sigma of

62

6.3. BENCHMARKS CHAPTER 6. RESULTS

two, as this still allows shift-policies to benefit from loads at similar offsets. When choosing a sigma
higher than two, the offsets are too far apart to gain advantage from lazy or dominant-shifting,
while choosing a sigma of one on the other hand did not result in a significant number of dissimilar
shift-configurations. Note that for larger data types, a lower number of possible offsets are available
as different array-offsets are mapped to a smaller set of memory-offsets. For smaller data types this
has the inverse effect, and memory-offsets will more often be further apart from each-other with a
similar set of array-offsets. As a result, it becomes difficult to benefit from the locality in offsets
by combining them with several stream-shift operations, causing a larger number of stream-shift
operations to be required to realign the expressions. This causes the speedup to degrade and the
benefit from clever shifting to drop.

Figure 6.5 shows the results from vectorizing the generated loops. As performance measure we
chose to take the speedup from (explicitly) realigned vectors with respect to the unaligned vector
speedup. By doing this, all possible side-effects from vectorization itself are hidden from the results,
allowing us to compare the shift-placements amongst each-other instead of comparing vectorized
and scalar code. Because the amount of generated loops are massive, the results show only the
average speedups. When considering loops with multiple statements, the speedups from individual
expressions are automatically averaged with the other statements in the loop body. For many
expressions the calculated shift-configurations do not differ all too much. Therefore, the results of
the proposed shift-placement techniques are rather similar, making it difficult to draw conclusions.

Example

Page 1

Optimal Dominant Eager Zero
stmts=1,exprs=6,loop0 7.66 4.66 4.66 4.66 4.66 4.66 4.66 0.61 0.61 0.61 0.61 0.61
stmts=1,exprs=6,loop1 8.5 4.25 4.25 4.25 4.25 4.25 4.25 0.5 0.5 0.5 0.5 0.5
stmts=1,exprs=6,loop2 8.5 6.27 6.27 6.27 6.27 6.27 6.27 0.74 0.74 0.74 0.74 0.74
stmts=1,exprs=6,loop3 8.5 4.31 4.31 4.31 1.64 1.68 1.72 0.51 0.51 0.19 0.2 0.2
stmts=1,exprs=6,loop4 8.5 6.27 6.27 6.27 6.27 6.27 6.27 0.74 0.74 0.74 0.74 0.74
stmts=1,exprs=6,loop5 8.37 1.61 1.61 1.61 1.61 1.61 1.61 0.19 0.19 0.19 0.19 0.19
stmts=1,exprs=6,loop6 7.66 4.05 4.05 4.05 1.81 1.72 1.72 0.53 0.53 0.24 0.22 0.22
stmts=1,exprs=6,loop7 8.5 4.25 4.53 4 2.51 1.78 1.78 0.5 0.47 0.3 0.21 0.21
stmts=1,exprs=6,loop8 8.5 2.76 2.76 2.76 2.76 2.76 2.76 0.32 0.32 0.32 0.32 0.32
stmts=1,exprs=6,loop9 8.5 5.83 5.83 5.83 5.83 5.83 5.83 0.69 0.69 0.69 0.69 0.69

stmts=3,exprs=6,loop0 9.85 4 4 4 4 3.57 2.51 0.41 0.41 0.41 0.36 0.25
stmts=3,exprs=6,loop1 8.62 3.45 3.45 3.45 3.45 2.87 2.55 0.4 0.4 0.4 0.33 0.3
stmts=3,exprs=6,loop2 8.62 3.72 3.72 3.35 3.72 3.19 2.57 0.43 0.39 0.43 0.37 0.3
stmts=3,exprs=6,loop3 8.5 3.77 3.77 3.77 3.77 3.77 2.83 0.44 0.44 0.44 0.44 0.33
stmts=3,exprs=6,loop4 8.62 3.28 3.28 3.45 3.45 3.28 2.46 0.38 0.4 0.4 0.38 0.29
stmts=3,exprs=6,loop5 9.71 3.77 3.77 3.23 3.57 3.57 2.83 0.39 0.33 0.37 0.37 0.29
stmts=3,exprs=6,loop6 9.85 4 4.25 4 3.77 3.57 2.83 0.41 0.41 0.38 0.36 0.29
stmts=3,exprs=6,loop7 8.62 3.72 3.72 3.94 4.18 3.72 3.04 0.43 0.46 0.48 0.43 0.35
stmts=3,exprs=6,loop8 8.62 3.83 3.83 3.63 3.83 3.83 2.76 0.44 0.42 0.44 0.44 0.32
stmts=3,exprs=6,loop9 8.62 2.65 2.65 3 2.87 3.28 3.28 0.31 0.35 0.33 0.38 0.38

stmts=5,exprs=6,loop0 8.5 4.25 4.25 4.25 4.25 4.25 2.72 0.5 0.5 0.5 0.5 0.32
stmts=5,exprs=6,loop1 8.5 4.05 4.05 3.83 3.83 3.13 2.76 0.48 0.45 0.45 0.37 0.32
stmts=5,exprs=6,loop2 9.57 3.04 3.04 3.19 3.35 3.04 3.04 0.32 0.33 0.35 0.32 0.32
stmts=5,exprs=6,loop3 9.71 4 4 3.57 3.77 4 2.72 0.41 0.37 0.39 0.41 0.28
stmts=5,exprs=6,loop4 9.71 3.83 3.83 3.83 4.05 3.63 3 0.39 0.39 0.42 0.37 0.31
stmts=5,exprs=6,loop5 8.25 4.05 4.05 3.83 4.05 3.45 2.76 0.49 0.46 0.49 0.42 0.33
stmts=5,exprs=6,loop6 9.71 4 3.77 3.77 3.57 4 3.23 0.41 0.39 0.37 0.41 0.33
stmts=5,exprs=6,loop7 8.5 4.6 4.31 4.31 4.31 4.05 2.76 0.54 0.51 0.51 0.48 0.32
stmts=5,exprs=6,loop8 9.71 5.38 5.38 5.38 4.11 5 3.04 0.55 0.55 0.42 0.51 0.31
stmts=5,exprs=6,loop9 9.71 3.77 3.77 3.77 4 3.57 2.61 0.39 0.39 0.41 0.37 0.27

stmts=
1,exprs=6,loop0

stmts=
1,exprs=6,loop1

stmts=
1,exprs=6,loop2

stmts=
1,exprs=6,loop3

stmts=
1,exprs=6,loop4

stmts=
1,exprs=6,loop5

stmts=
1,exprs=6,loop6

stmts=
1,exprs=6,loop7

stmts=
1,exprs=6,loop8

stmts=
1,exprs=6,loop9

stmts=
3,exprs=6,loop0

stmts=
3,exprs=6,loop1

stmts=
3,exprs=6,loop2

stmts=
3,exprs=6,loop3

stmts=
3,exprs=6,loop4

stmts=
3,exprs=6,loop5

stmts=
3,exprs=6,loop6

stmts=
3,exprs=6,loop7

stmts=
3,exprs=6,loop8

stmts=
3,exprs=6,loop9

stmts=
5,exprs=6,loop0

stmts=
5,exprs=6,loop1

stmts=
5,exprs=6,loop2

stmts=
5,exprs=6,loop3

stmts=
5,exprs=6,loop4

stmts=
5,exprs=6,loop5

stmts=
5,exprs=6,loop6

stmts=
5,exprs=6,loop7

stmts=
5,exprs=6,loop8

stmts=
5,exprs=6,loop9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Results of individual loops

Optimal
Dominant
Eager
Zero

R
el

a
tiv

e
sp

e
e

du
p

Double Float Short

0

500

1000

1500

2000

2500

3000

Optimal
(+cost dep)
Optimal
Dominant
Eager
ZeroN

um
b

e
r

o
f s

hi
fts

Double Float Short

0

500

1000

1500

2000

2500

3000

Optimal
(+cost dep)
Optimal
Dominant
Eager
ZeroN

um
b

e
r

o
f s

hi
fts

(a) Non left recursive expressions

Example

Page 1

Optimal Dominant Eager Zero
stmts=1,exprs=6,loop0 7.66 4.66 4.66 4.66 4.66 4.66 4.66 0.61 0.61 0.61 0.61 0.61
stmts=1,exprs=6,loop1 8.5 4.25 4.25 4.25 4.25 4.25 4.25 0.5 0.5 0.5 0.5 0.5
stmts=1,exprs=6,loop2 8.5 6.27 6.27 6.27 6.27 6.27 6.27 0.74 0.74 0.74 0.74 0.74
stmts=1,exprs=6,loop3 8.5 4.31 4.31 4.31 1.64 1.68 1.72 0.51 0.51 0.19 0.2 0.2
stmts=1,exprs=6,loop4 8.5 6.27 6.27 6.27 6.27 6.27 6.27 0.74 0.74 0.74 0.74 0.74
stmts=1,exprs=6,loop5 8.37 1.61 1.61 1.61 1.61 1.61 1.61 0.19 0.19 0.19 0.19 0.19
stmts=1,exprs=6,loop6 7.66 4.05 4.05 4.05 1.81 1.72 1.72 0.53 0.53 0.24 0.22 0.22
stmts=1,exprs=6,loop7 8.5 4.25 4.53 4 2.51 1.78 1.78 0.5 0.47 0.3 0.21 0.21
stmts=1,exprs=6,loop8 8.5 2.76 2.76 2.76 2.76 2.76 2.76 0.32 0.32 0.32 0.32 0.32
stmts=1,exprs=6,loop9 8.5 5.83 5.83 5.83 5.83 5.83 5.83 0.69 0.69 0.69 0.69 0.69

stmts=3,exprs=6,loop0 9.85 4 4 4 4 3.57 2.51 0.41 0.41 0.41 0.36 0.25
stmts=3,exprs=6,loop1 8.62 3.45 3.45 3.45 3.45 2.87 2.55 0.4 0.4 0.4 0.33 0.3
stmts=3,exprs=6,loop2 8.62 3.72 3.72 3.35 3.72 3.19 2.57 0.43 0.39 0.43 0.37 0.3
stmts=3,exprs=6,loop3 8.5 3.77 3.77 3.77 3.77 3.77 2.83 0.44 0.44 0.44 0.44 0.33
stmts=3,exprs=6,loop4 8.62 3.28 3.28 3.45 3.45 3.28 2.46 0.38 0.4 0.4 0.38 0.29
stmts=3,exprs=6,loop5 9.71 3.77 3.77 3.23 3.57 3.57 2.83 0.39 0.33 0.37 0.37 0.29
stmts=3,exprs=6,loop6 9.85 4 4.25 4 3.77 3.57 2.83 0.41 0.41 0.38 0.36 0.29
stmts=3,exprs=6,loop7 8.62 3.72 3.72 3.94 4.18 3.72 3.04 0.43 0.46 0.48 0.43 0.35
stmts=3,exprs=6,loop8 8.62 3.83 3.83 3.63 3.83 3.83 2.76 0.44 0.42 0.44 0.44 0.32
stmts=3,exprs=6,loop9 8.62 2.65 2.65 3 2.87 3.28 3.28 0.31 0.35 0.33 0.38 0.38

stmts=5,exprs=6,loop0 8.5 4.25 4.25 4.25 4.25 4.25 2.72 0.5 0.5 0.5 0.5 0.32
stmts=5,exprs=6,loop1 8.5 4.05 4.05 3.83 3.83 3.13 2.76 0.48 0.45 0.45 0.37 0.32
stmts=5,exprs=6,loop2 9.57 3.04 3.04 3.19 3.35 3.04 3.04 0.32 0.33 0.35 0.32 0.32
stmts=5,exprs=6,loop3 9.71 4 4 3.57 3.77 4 2.72 0.41 0.37 0.39 0.41 0.28
stmts=5,exprs=6,loop4 9.71 3.83 3.83 3.83 4.05 3.63 3 0.39 0.39 0.42 0.37 0.31
stmts=5,exprs=6,loop5 8.25 4.05 4.05 3.83 4.05 3.45 2.76 0.49 0.46 0.49 0.42 0.33
stmts=5,exprs=6,loop6 9.71 4 3.77 3.77 3.57 4 3.23 0.41 0.39 0.37 0.41 0.33
stmts=5,exprs=6,loop7 8.5 4.6 4.31 4.31 4.31 4.05 2.76 0.54 0.51 0.51 0.48 0.32
stmts=5,exprs=6,loop8 9.71 5.38 5.38 5.38 4.11 5 3.04 0.55 0.55 0.42 0.51 0.31
stmts=5,exprs=6,loop9 9.71 3.77 3.77 3.77 4 3.57 2.61 0.39 0.39 0.41 0.37 0.27

stmts=
1,exprs=6,loop0

stmts=
1,exprs=6,loop1

stmts=
1,exprs=6,loop2

stmts=
1,exprs=6,loop3

stmts=
1,exprs=6,loop4

stmts=
1,exprs=6,loop5

stmts=
1,exprs=6,loop6

stmts=
1,exprs=6,loop7

stmts=
1,exprs=6,loop8

stmts=
1,exprs=6,loop9

stmts=
3,exprs=6,loop0

stmts=
3,exprs=6,loop1

stmts=
3,exprs=6,loop2

stmts=
3,exprs=6,loop3

stmts=
3,exprs=6,loop4

stmts=
3,exprs=6,loop5

stmts=
3,exprs=6,loop6

stmts=
3,exprs=6,loop7

stmts=
3,exprs=6,loop8

stmts=
3,exprs=6,loop9

stmts=
5,exprs=6,loop0

stmts=
5,exprs=6,loop1

stmts=
5,exprs=6,loop2

stmts=
5,exprs=6,loop3

stmts=
5,exprs=6,loop4

stmts=
5,exprs=6,loop5

stmts=
5,exprs=6,loop6

stmts=
5,exprs=6,loop7

stmts=
5,exprs=6,loop8

stmts=
5,exprs=6,loop9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Results of individual loops

Optimal
Dominant
Eager
Zero

R
el

a
tiv

e
sp

e
e

du
p

Double Float Short

0

500

1000

1500

2000

2500

3000

Optimal
(+cost dep)
Optimal
Dominant
Eager
ZeroN

um
b

e
r

o
f s

hi
fts

Double Float Short

0

500

1000

1500

2000

2500

3000

Optimal
(+cost dep)
Optimal
Dominant
Eager
ZeroN

um
b

e
r

o
f s

hi
fts

(b) Left recursive expressions

Figure 6.4: Number of stream-shift operations per type

We noticed that differences in performance are more apparent for left-recursive trees than for
non-left-recursive trees. When examining the issue, we noticed that left-recursive trees are impacted
more by the lazy-shift property. When an expression contains several array-references with similar
offsets, the lazy-property will automatically group them when they are in the same subtree. For
left-recursive trees, there is only a single subtree, while for non-left-recursive trees there is a larger
’variety’ of subtrees. This causes the lazy-shift property to be more dominant in the shift-placement
process for non-left-recursive trees.

Figure 6.4 does not show a large discrepancy in the amount of stream-shift operations between
the proposed shift-placement methods. It shows that on average, the proposed dynamic program-
ming algorithm results in the lowest number of stream-shift operations, followed by dominant, eager
and finally the zero-shift placement methods. However, the number of shift-operations cannot be di-
rectly linked to the performance. Figure 6.5 shows that most cases, dominant shift performs poorly

63

6.3. BENCHMARKS CHAPTER 6. RESULTS

when compared to eager shift, even though the dominant shift-policy generates less stream-shifts.
The results do indicate clearly that optimal shifting gives best results overall. Especially for

large left-recursive expressions, we can see that the heuristics have more difficulty in choosing an
optimal configuration and calculating an optimal configuration increases the average speedup about
10% with respect to the other shift-placement heuristics. For some loops, optimal shift-placement
can even perform about twice as good, while for other loops the speedup may be a little worse, up to
about 25% depending on the expression. Figure 6.5c illustrates the speedups of several individual
loops. It is difficult to understand why our proposed ’optimal’ solution does not always appear
to be optimal. Maybe our cost-model is not sufficient enough to take support for latency-hiding
into account. Or maybe the scheduler could be to blame for not scheduling the transformed code
optimally. The compiler back-end is configured for a generic x86 processor where specific properties
like pipelining characteristics, instruction latencies and other properties that define the instruction
cost could be somewhat different from the AMD implementation we used. This may cause the code
to be scheduled less optimal than expected.

Adding cost to prevent shift-operations on the critical path does not indicate a clear effect on
the results. For some expressions the added cost benefit, while for other expressions it does not.
We were however unable to find any correlation in the results for the expanded cost model.

6.3.2 SPEC95 Tomcatv

The SPEC95 Tomcatv benchmark is a mesh generation program, that operates on a double pre-
cision floating point matrix of 513 by 513 elements. As the inner-dimension of the array is not a
multiple of the blocking factor 2, the alignments are runtime. In order to be able to vectorize the
benchmark, we first had to convert the source code from Fortran to C, as our compiler is configured
with a C front-end. To deal with runtime alignments, we modified the algorithm slightly resulting
in two versions. One version uses loop-versioning to select the vector loop optimized for the given
misalignment. The other version uses multi-dimensional array padding, resulting in a matrix of
513x514 elements. The Tomcatv benchmark has only one suitable loop-candidate for vectorization.
Other loops are hindered by dependences or involve reductions. The original algorithm stores com-
mon subexpressions into local variables, so they can be reused in other parts of the calculation. As
common subexpressions are currently not yet supported for vector statements containing misalign-
ments (see Section 5.5.2), we had to overcome this issue by storing the intermediate results in a
temporary array. To reuse these values, they need to be reloaded into registers every time they are
needed. Appendix A.2 displays both the modified and unmodified (original) loop constructs.

We compiled the benchmarks both with and without CSE. The results are depicted in Figure
6.6. One may notice that CSE makes a large differences for either scalar and vector instructions,
which cannot be entirely contributed to our findings from Section 6.2. One may notice that there
is a large distinction in performance between scalar and vector instructions when CSE is issued.
The distinction is too large to be contributed to our findings from Section 6.2. The reason for this,
is that for scalar code the back-end generates arithmetic instructions to calculate the addresses for
the multi-dimensional array accesses, while for the vector code more elaborate addressing modes
available for the architecture are used. CSE eliminates the intermediate results from the address
calculations, significantly reducing the number of operations for scalar-execution. For vector execu-
tion, CSE cannot optimize the address calculation as it is delegated to hardware. As a result, CSE
causes a significant speedup for scalar instructions, but not for vector instructions. This accounts
for the 40% of performance difference.

64

6.3. BENCHMARKS CHAPTER 6. RESULTS

Non-recursive

Page 1

Aligned Misaligned Gauss(0, 2.0)
Optimal 4 Optimal 2 Optimal 0 Dominant Eager Zero Optimal (+cost dep)Optimal 2 Optimal Dominant Eager Zero

float/stmts1/exprs3/auto_test0.c 5.25 3.33 3.33 3.33 3.33 3.33 3.33 stmts=1; exprs=3 0.77 0.77 0.77 0.76 0.77 0.77
float/stmts1/exprs3/auto_test1.c 5 4.2 4.2 4.2 4.2 4.2 4.2 stmts=1; exprs=6 0.63 0.62 0.61 0.56 0.58 0.57
float/stmts1/exprs3/auto_test2.c 5 5.25 5.25 5.25 5.25 5.25 5.25 stmts=1; exprs=9 0.57 0.57 0.58 0.55 0.56 0.56
float/stmts1/exprs3/auto_test3.c 5.25 5.25 5.25 5.25 5.25 5.25 5.25
float/stmts1/exprs3/auto_test4.c 5.25 2.62 2.33 2.33 2.33 1.61 1.61 stmts=3; exprs=3 0.82 0.82 0.82 0.74 0.82 0.66
float/stmts1/exprs3/auto_test5.c 5 3.5 3.5 4.2 4.2 4.2 3.5 stmts=3; exprs=6 0.57 0.57 0.56 0.57 0.56 0.45
float/stmts1/exprs3/auto_test6.c 5.25 2.62 2.62 2.62 2.62 2.62 2.62 stmts=3; exprs=9 0.93 0.93 0.93 0.88 0.93 0.77
float/stmts1/exprs3/auto_test7.c 5 2.33 2.33 2.33 2.33 2.33 2.33
float/stmts1/exprs3/auto_test8.c 5.25 1.75 1.61 1.61 1.61 1.61 1.75 stmts=5; exprs=3 0.82 0.82 0.83 0.8 0.82 0.7
float/stmts1/exprs3/auto_test9.c 5.25 2.22 2.22 2.22 2.22 2.22 2.22 stmts=5; exprs=6 0.63 0.63 0.63 0.61 0.63 0.52

stmts=5; exprs=9 0.64 0.65 0.66 0.6 0.63 0.58
float/stmts1/exprs6/auto_test0.c 8.5 1.54 1.54 1.54 1.6 1.54 1.54 Double 1044 1044 1044 1120 1102 1476
float/stmts1/exprs6/auto_test1.c 7.5 1.82 1.82 1.82 1.82 1.82 1.82
float/stmts1/exprs6/auto_test2.c 7.55 6.7 6.7 6.7 6.7 6.7 6.7
float/stmts1/exprs6/auto_test3.c 8 2.33 2.33 2.33 1.58 2.33 2.33 stmts=1; exprs=3 0.64 0.63 0.65 0.65 0.63 0.62
float/stmts1/exprs6/auto_test4.c 7.66 1.2 1.2 1.2 1.06 1.2 1.2 stmts=1; exprs=6 0.41 0.41 0.41 0.4 0.41 0.41
float/stmts1/exprs6/auto_test5.c 6.11 4.6 4.6 4.6 4.6 4.6 4.6 stmts=1; exprs=9 0.5 0.5 0.52 0.46 0.5 0.5
float/stmts1/exprs6/auto_test6.c 8.42 2.2 2.2 2.2 2.2 2.2 2.2
float/stmts1/exprs6/auto_test7.c 7.66 3.45 3.45 3.45 3.45 3.45 3.45 stmts=3; exprs=3 0.57 0.58 0.57 0.56 0.56 0.41
float/stmts1/exprs6/auto_test8.c 8 4.63 4.63 4.63 4.63 4.63 4.63 stmts=3; exprs=6 0.47 0.47 0.45 0.47 0.46 0.36
float/stmts1/exprs6/auto_test9.c 7.85 3.13 3.13 3.13 3.13 3.13 3.13 stmts=3; exprs=9 0.73 0.74 0.73 0.71 0.71 0.54

float/stmts1/exprs9/auto_test0.c 4.85 1.94 1.94 1.94 1.94 1.94 1.94 stmts=5; exprs=3 0.51 0.51 0.51 0.5 0.5 0.37
float/stmts1/exprs9/auto_test1.c 4.54 2.36 2.31 2.31 1.76 1.92 1.92 stmts=5; exprs=6 0.47 0.47 0.46 0.45 0.44 0.35
float/stmts1/exprs9/auto_test2.c 6.5 2.56 2.56 2.5 2.01 2.56 2.56 stmts=5; exprs=9 0.6 0.6 0.61 0.57 0.56 0.48
float/stmts1/exprs9/auto_test3.c 4.39 2.51 2.51 2.51 2.57 2.57 2.57 Float 1588 1584 1584 1648 1710 2370
float/stmts1/exprs9/auto_test4.c 3.88 2.25 2.25 3.19 2.01 2.61 2.61
float/stmts1/exprs9/auto_test5.c 4.95 2.64 2.64 2.64 2.64 2.64 2.64
float/stmts1/exprs9/auto_test6.c 3.58 2.59 2.59 2.54 2.54 2.54 2.54 stmts=1; exprs=3 0.58 0.58 0.58 0.58 0.58 0.58
float/stmts1/exprs9/auto_test7.c 6.57 2.59 2.59 2.59 2.59 2.59 2.59 stmts=1; exprs=6 0.44 0.42 0.44 0.4 0.42 0.42
float/stmts1/exprs9/auto_test8.c 5.66 2.42 2.42 2.42 2.42 2.42 2.48 stmts=1; exprs=9 0.38 0.38 0.38 0.34 0.36 0.36
float/stmts1/exprs9/auto_test9.c 3.81 2.6 2.6 2.6 1.96 2.6 2.6

stmts=3; exprs=3 0.54 0.53 0.53 0.52 0.52 0.39
stmts=3; exprs=6 0.44 0.43 0.42 0.43 0.43 0.32
stmts=3; exprs=9 0.48 0.48 0.48 0.46 0.47 0.36

float/stmts3/exprs3/auto_test0.c 5 2.22 2.5 2.5 2.5 2.22 1.66
float/stmts3/exprs3/auto_test1.c 5 4 4 4 4 4 2 stmts=5; exprs=3 0.5 0.5 0.49 0.49 0.48 0.31
float/stmts3/exprs3/auto_test2.c 5 2 2 2 2 2 1.42 stmts=5; exprs=6 0.47 0.48 0.47 0.47 0.46 0.31
float/stmts3/exprs3/auto_test3.c 5 3.33 3.33 3.33 3.33 3.33 3.33 stmts=5; exprs=9 0.53 0.53 0.53 0.51 0.51 0.35
float/stmts3/exprs3/auto_test4.c 5 2.22 2.22 2 2 2 1.53 Short 1780 1776 1776 1834 1858 2746
float/stmts3/exprs3/auto_test5.c 5 2.5 2.5 2.5 2.22 2.5 1.81
float/stmts3/exprs3/auto_test6.c 5 4 4 4 4 4 4
float/stmts3/exprs3/auto_test7.c 5 2.85 2.85 2.85 2.85 2.5 1.53
float/stmts3/exprs3/auto_test8.c 5 2.22 2.22 2.22 2.22 2.22 1.66
float/stmts3/exprs3/auto_test9.c 5 3.33 3.33 3.33 2.85 3.33 1.53

float/stmts3/exprs6/auto_test0.c 9.71 4.13 4.13 3.26 4.13 4.13 2.58
float/stmts3/exprs6/auto_test1.c 7.75 4.75 4.75 3.8 4.75 4.75 2.85
float/stmts3/exprs6/auto_test2.c 8.25 3.93 3.93 3.93 3.93 3.93 2.86
float/stmts3/exprs6/auto_test3.c 7.85 3.31 3.31 3.31 3.31 3.15 3.31
float/stmts3/exprs6/auto_test4.c 7.62 3.66 3.66 3.66 3.66 3.66 2.61
float/stmts3/exprs6/auto_test5.c 8 4.2 4.2 4.2 4.2 4.2 2.73
float/stmts3/exprs6/auto_test6.c 8.12 3.43 3.43 3.43 3.05 2.89 2.75
float/stmts3/exprs6/auto_test7.c 7.87 4.12 4.12 4.12 4.12 4.4 3.66
float/stmts3/exprs6/auto_test8.c 7.75 3.33 3.33 3.33 3.33 3.33 2.6
float/stmts3/exprs6/auto_test9.c 8.14 3.23 3.23 3.23 3.23 3.23 2.89

float/stmts3/exprs9/auto_test0.c 5.57 3.29 3.29 3.4 3.29 3.29 2.61
float/stmts3/exprs9/auto_test1.c 5.47 2.96 2.96 3.16 2.96 2.96 2.57
float/stmts3/exprs9/auto_test2.c 5.04 3.6 3.83 3.3 3.21 3.6 2.97
float/stmts3/exprs9/auto_test3.c 4.78 4.3 4.3 4.14 4.14 4.14 3.02
float/stmts3/exprs9/auto_test4.c 4.78 3.38 3.38 3.38 3.38 3.28 2.33
float/stmts3/exprs9/auto_test5.c 4.95 5.04 5.04 5.04 5.04 5.04 3.31
float/stmts3/exprs9/auto_test6.c 6.05 4.07 4.07 4.07 3.45 3.56 2.78
float/stmts3/exprs9/auto_test7.c 5.7 5.34 5.34 5.12 5.34 5.34 3.96
float/stmts3/exprs9/auto_test8.c 4.08 4.14 4.14 4.29 4.29 4.14 3.22
float/stmts3/exprs9/auto_test9.c 7.58 3.35 3.35 3.35 3.24 3.24 2.47

54

float/stmts5/exprs3/auto_test0.c 5 2.5 2.5 2.22 2.22 2 1.53
float/stmts5/exprs3/auto_test1.c 5 2.5 2.5 2.5 2.5 2.5 2
float/stmts5/exprs3/auto_test2.c 5 3.33 3.33 3.33 3.33 3.33 2.5
float/stmts5/exprs3/auto_test3.c 5 2.5 2.5 2.5 2.5 2.5 1.42
float/stmts5/exprs3/auto_test4.c 5 2.5 2.5 2.5 2.22 2.5 1.81
float/stmts5/exprs3/auto_test5.c 5 2.85 2.85 2.85 2.85 2.85 2
float/stmts5/exprs3/auto_test6.c 5 2 2 2 2.5 2 1.81
float/stmts5/exprs3/auto_test7.c 5 2.22 2.22 2.5 2.22 2.22 1.66
float/stmts5/exprs3/auto_test8.c 5 2.85 2.85 2.85 2.85 2.85 2.22
float/stmts5/exprs3/auto_test9.c 5 2.22 2.22 2 2 2.22 1.53

float/stmts5/exprs6/auto_test0.c 9.14 4.57 4.57 4.26 4.57 4 3.36
float/stmts5/exprs6/auto_test1.c 8.71 5.16 5.16 5.16 5.16 5.16 3.26
float/stmts5/exprs6/auto_test2.c 8.71 4 3.76 3.76 3.76 3.55 3.04
float/stmts5/exprs6/auto_test3.c 8.57 3.17 3.17 3.17 3.17 3.17 2.57
float/stmts5/exprs6/auto_test4.c 8.57 3.87 3.87 3.87 3.87 3.87 2.29
float/stmts5/exprs6/auto_test5.c 7.87 3.81 3.81 3.81 3.38 3.58 3.05
float/stmts5/exprs6/auto_test6.c 9.28 4.18 4.18 4.18 3.72 4.18 3.52
float/stmts5/exprs6/auto_test7.c 8.12 3.76 4 4 3.76 3.55 2.78
float/stmts5/exprs6/auto_test8.c 9.14 4.5 4.5 4.5 4.5 4.2 3.5
float/stmts5/exprs6/auto_test9.c 8.57 3.55 3.55 3.55 3.2 3.2 2.56

float/stmts5/exprs9/auto_test0.c 7.76 4.82 4.82 4.82 4.11 3.82 3.7
float/stmts5/exprs9/auto_test1.c 8.84 5.04 5.04 5.04 5.04 5.04 3.65
float/stmts5/exprs9/auto_test2.c 4.73 3.51 3.51 3.62 3.22 3.13 2.97
float/stmts5/exprs9/auto_test3.c 5.71 4.73 4.73 4.54 4.95 4.73 4.03
float/stmts5/exprs9/auto_test4.c 8.76 3.89 3.89 4.19 3.51 3.4 3.2
float/stmts5/exprs9/auto_test5.c 8.38 4.58 4.78 4.58 4.4 4.4 3.54
float/stmts5/exprs9/auto_test6.c 4.86 3.89 3.89 3.89 3.64 3.53 3.13
float/stmts5/exprs9/auto_test7.c 6 3.74 3.74 4.2 3.6 3.74 2.52
float/stmts5/exprs9/auto_test8.c 6.05 3.56 3.56 3.45 3.24 3.24 2.89
float/stmts5/exprs9/auto_test9.c 8.3 3.92 3.92 4.23 3.66 3.66 3.54

double/stmts1/exprs3/auto_test0.c 2.5 2 2 2 2 2 2
double/stmts1/exprs3/auto_test1.c 2.5 2 2 2 2 2 2
double/stmts1/exprs3/auto_test2.c 2.5 1.66 1.66 1.66 1.66 1.66 1.66
double/stmts1/exprs3/auto_test3.c 2.5 2 2 2 2 2 2
double/stmts1/exprs3/auto_test4.c 2.5 1.66 1.66 1.66 1.66 1.66 1.66
double/stmts1/exprs3/auto_test5.c 2.5 2 2 2 2 2 2
double/stmts1/exprs3/auto_test6.c 2.5 1.66 1.66 1.66 1.42 1.66 1.66
double/stmts1/exprs3/auto_test7.c 2.5 1.66 1.66 1.66 1.66 1.66 1.66
double/stmts1/exprs3/auto_test8.c 2.5 2 2 2 2 2 2

stmts=
1; exprs=3

stmts=
1; exprs=6

stmts=
1; exprs=9

stmts=
3; exprs=3

stmts=
3; exprs=6

stmts=
3; exprs=9

stmts=
5; exprs=3

stmts=
5; exprs=6

stmts=
5; exprs=9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Float

Optimal (+cost dep)
Optimal
Dominant
Eager
Zero

N
or

m
a

liz
e

d
 S

p
ee

d
up

stmts=
1; exprs=3

stmts=
1; exprs=6

stmts=
1; exprs=9

stmts=
3; exprs=3

stmts=
3; exprs=6

stmts=
3; exprs=9

stmts=
5; exprs=3

stmts=
5; exprs=6

stmts=
5; exprs=9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Double

Optimal (+cost dep)
Optimal
Dominant
Eager
Zero

N
or

m
a

liz
e

d
 S

p
ee

d
up

stmts=
1; exprs=3

stmts=
1; exprs=6

stmts=
1; exprs=9

stmts=
3; exprs=3

stmts=
3; exprs=6

stmts=
3; exprs=9

stmts=
5; exprs=3

stmts=
5; exprs=6

stmts=
5; exprs=9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Short

Optimal (+cost dep)
Optimal
Dominant
Eager
Zero

N
or

m
a

liz
e

d
 S

p
ee

d
up

Double Float Short

0

500

1000

1500

2000

2500

3000

Optimal
(+cost dep)
Optimal
Dominant
Eager
ZeroN

um
b

e
r

of
 s

h
ift

s

(a) Average performance for ’normal’ expression trees

Left-recursive

Page 1

Aligned Misaligned Gauss(0, 2.0)
Optimal 4 Optimal 2 Optimal 0 Dominant Eager Zero Optimal (+cost dep)Optimal 2 Optimal Dominant Eager Zero

float/stmts1/exprs3/auto_test0.c 5.25 2.85 2.85 2.85 2.85 2.85 2.85 stmts=1; exprs=3 0.75 0.77 0.77 0.73 0.75 0.75
float/stmts1/exprs3/auto_test1.c 5.25 2.22 2.22 2.5 2.22 2.5 2.5 stmts=1; exprs=6 0.65 0.65 0.65 0.61 0.61 0.6
float/stmts1/exprs3/auto_test2.c 5.25 2.85 2.85 2.85 2.85 2.85 2.85 stmts=1; exprs=9 0.59 0.64 0.63 0.57 0.56 0.55
float/stmts1/exprs3/auto_test3.c 5 2.85 2.5 2.85 2.85 2.85 2.85
float/stmts1/exprs3/auto_test4.c 5.25 4 4 4 3.33 4 4 stmts=3; exprs=3 0.86 0.86 0.86 0.82 0.84 0.77
float/stmts1/exprs3/auto_test5.c 5.25 2.1 2.1 2.1 2.1 2.1 2.1 stmts=3; exprs=6 0.6 0.6 0.6 0.58 0.59 0.5
float/stmts1/exprs3/auto_test6.c 5.25 3.33 3.33 3.33 3.33 3.33 3.33 stmts=3; exprs=9 0.59 0.61 0.61 0.53 0.54 0.5
float/stmts1/exprs3/auto_test7.c 5.25 2.5 2.5 2.5 2.5 2 2
float/stmts1/exprs3/auto_test8.c 5.25 4.2 4.2 4.2 3 4.2 4.2 stmts=5; exprs=3 0.87 0.87 0.86 0.81 0.87 0.73
float/stmts1/exprs3/auto_test9.c 5.25 3 3 3 3 3 3 stmts=5; exprs=6 0.56 0.57 0.56 0.55 0.55 0.43

stmts=5; exprs=9 0.56 0.57 0.58 0.51 0.51 0.43
float/stmts1/exprs6/auto_test0.c 7.66 4.66 4.66 4.66 4.66 4.66 4.66 Double 1044 1044 1044 1120 1102 1476
float/stmts1/exprs6/auto_test1.c 8.5 4.25 4.25 4.25 4.25 4.25 4.25
float/stmts1/exprs6/auto_test2.c 8.5 6.27 6.27 6.27 6.27 6.27 6.27
float/stmts1/exprs6/auto_test3.c 8.5 4.31 4.31 4.31 1.64 1.68 1.72 stmts=1; exprs=3 0.57 0.57 0.58 0.54 0.57 0.57
float/stmts1/exprs6/auto_test4.c 8.5 6.27 6.27 6.27 6.27 6.27 6.27 stmts=1; exprs=6 0.53 0.54 0.53 0.45 0.44 0.44
float/stmts1/exprs6/auto_test5.c 8.37 1.61 1.61 1.61 1.61 1.61 1.61 stmts=1; exprs=9 0.56 0.56 0.56 0.49 0.5 0.49
float/stmts1/exprs6/auto_test6.c 7.66 4.05 4.05 4.05 1.81 1.72 1.72
float/stmts1/exprs6/auto_test7.c 8.5 4.25 4.53 4 2.51 1.78 1.78 stmts=3; exprs=3 0.57 0.57 0.56 0.53 0.54 0.38
float/stmts1/exprs6/auto_test8.c 8.5 2.76 2.76 2.76 2.76 2.76 2.76 stmts=3; exprs=6 0.4 0.41 0.4 0.41 0.39 0.31
float/stmts1/exprs6/auto_test9.c 8.5 5.83 5.83 5.83 5.83 5.83 5.83 stmts=3; exprs=9 0.48 0.48 0.48 0.44 0.44 0.37

float/stmts1/exprs9/auto_test0.c 6.73 3.55 3.65 3.55 3.55 3.55 3.55 stmts=5; exprs=3 0.5 0.5 0.5 0.51 0.49 0.34
float/stmts1/exprs9/auto_test1.c 6.84 3.9 3.9 3.9 3.9 4.03 3.9 stmts=5; exprs=6 0.45 0.44 0.43 0.43 0.41 0.31
float/stmts1/exprs9/auto_test2.c 6.55 4.3 4.3 4.3 4.3 4.3 4.3 stmts=5; exprs=9 0.43 0.44 0.45 0.4 0.4 0.32
float/stmts1/exprs9/auto_test3.c 6.5 2.88 2.82 3.09 2.82 3.09 3.09 Float 1588 1584 1584 1648 1710 2370
float/stmts1/exprs9/auto_test4.c 6.4 5.08 4.88 4.88 1.95 1.95 1.95
float/stmts1/exprs9/auto_test5.c 6.84 3.42 3.42 3.33 3.09 3.42 3.42
float/stmts1/exprs9/auto_test6.c 7.35 3.07 3.07 3.07 3.07 3.07 3.07 stmts1; exprs=3 0.51 0.51 0.51 0.49 0.5 0.5
float/stmts1/exprs9/auto_test7.c 6.55 3.43 3.52 3.43 3.43 3.43 3.43 stmts1; exprs=6 0.46 0.47 0.46 0.43 0.44 0.43
float/stmts1/exprs9/auto_test8.c 6.55 3.48 3.48 3.48 3.48 3.48 3.48 stmts1; exprs=9 0.5 0.51 0.53 0.49 0.48 0.49
float/stmts1/exprs9/auto_test9.c 6.55 4.57 4.57 4.57 2.9 2.9 2.9

stmts3; exprs=3 0.55 0.56 0.55 0.52 0.55 0.39
stmts3; exprs=6 0.46 0.45 0.45 0.44 0.43 0.32
stmts3; exprs=9 0.51 0.52 0.52 0.49 0.48 0.38

float/stmts3/exprs3/auto_test0.c 5 2.5 2.5 2.22 2.22 1.66 1.53
float/stmts3/exprs3/auto_test1.c 5 2.85 2.85 2.85 2.5 3.33 1.53 stmts5; exprs=3 0.52 0.52 0.51 0.52 0.51 0.35
float/stmts3/exprs3/auto_test2.c 5 3.33 3.33 3.33 3.33 3.33 2 stmts5; exprs=6 0.44 0.43 0.43 0.42 0.41 0.29
float/stmts3/exprs3/auto_test3.c 5 3.33 3.33 3.33 3.33 3.33 1.81 stmts5; exprs=9 0.57 0.57 0.58 0.55 0.55 0.4
float/stmts3/exprs3/auto_test4.c 5 1.81 1.81 2.22 2.22 1.81 2 Short 1780 1776 1776 1834 1858 2746
float/stmts3/exprs3/auto_test5.c 5 3.33 3.33 3.33 2.5 3.33 1.81
float/stmts3/exprs3/auto_test6.c 5 2.5 2.5 2.5 2.5 2.5 1.66
float/stmts3/exprs3/auto_test7.c 5 2.85 2.85 2.5 2.5 2.85 2
float/stmts3/exprs3/auto_test8.c 5 2.85 2.85 2.85 2.5 2.85 2.22
float/stmts3/exprs3/auto_test9.c 5 3.33 3.33 2.85 2.85 1.81 2.5

float/stmts3/exprs6/auto_test0.c 9.85 4 4 4 4 3.57 2.51
float/stmts3/exprs6/auto_test1.c 8.62 3.45 3.45 3.45 3.45 2.87 2.55
float/stmts3/exprs6/auto_test2.c 8.62 3.72 3.72 3.35 3.72 3.19 2.57
float/stmts3/exprs6/auto_test3.c 8.5 3.77 3.77 3.77 3.77 3.77 2.83
float/stmts3/exprs6/auto_test4.c 8.62 3.28 3.28 3.45 3.45 3.28 2.46
float/stmts3/exprs6/auto_test5.c 9.71 3.77 3.77 3.23 3.57 3.57 2.83
float/stmts3/exprs6/auto_test6.c 9.85 4 4.25 4 3.77 3.57 2.83
float/stmts3/exprs6/auto_test7.c 8.62 3.72 3.72 3.94 4.18 3.72 3.04
float/stmts3/exprs6/auto_test8.c 8.62 3.83 3.83 3.63 3.83 3.83 2.76
float/stmts3/exprs6/auto_test9.c 8.62 2.65 2.65 3 2.87 3.28 3.28

float/stmts3/exprs9/auto_test0.c 8.4 3.9 3.9 4.03 3.3 3.39 3.3
float/stmts3/exprs9/auto_test1.c 8.66 4.23 4.37 4.23 4.23 4.23 3.52
float/stmts3/exprs9/auto_test2.c 8.26 4.33 4.48 4.19 4.06 4.06 2.7
float/stmts3/exprs9/auto_test3.c 8.66 5.08 5.08 4.37 4.37 4.53 3.96
float/stmts3/exprs9/auto_test4.c 8.6 3.96 4.09 4.09 3.96 3.96 2.78
float/stmts3/exprs9/auto_test5.c 8.53 4.2 4.66 4.66 3.4 3.5 2.52
float/stmts3/exprs9/auto_test6.c 8.06 3.87 3.64 4 3.44 3.35 2.75
float/stmts3/exprs9/auto_test7.c 8.6 3.52 3.52 3.52 3.34 3.34 3.34
float/stmts3/exprs9/auto_test8.c 8.73 3.6 3.6 4.06 3.6 3.6 3
float/stmts3/exprs9/auto_test9.c 8.73 4.06 3.93 4.06 3.7 3.5 3.4

float/stmts5/exprs3/auto_test0.c 5 2.5 2.5 2.5 2.5 2.22 1.81
float/stmts5/exprs3/auto_test1.c 5 2 2 2.5 2.5 2.22 1.81
float/stmts5/exprs3/auto_test2.c 5 4 4 4 4 4 1.81
float/stmts5/exprs3/auto_test3.c 4.75 2 2 1.66 1.81 2 1.53
float/stmts5/exprs3/auto_test4.c 5 1.81 1.81 1.81 2.22 2 1.81
float/stmts5/exprs3/auto_test5.c 5 2.85 2.85 2.5 2.5 2.85 1.53
float/stmts5/exprs3/auto_test6.c 5 2.85 2.85 2.85 2.85 2.5 2
float/stmts5/exprs3/auto_test7.c 5 2.85 2.85 2.85 2.85 2.5 1.33
float/stmts5/exprs3/auto_test8.c 5 2 2 2.22 2 2 1.53
float/stmts5/exprs3/auto_test9.c 5 1.81 1.81 2 2 2 1.53

float/stmts5/exprs6/auto_test0.c 8.5 4.25 4.25 4.25 4.25 4.25 2.72
float/stmts5/exprs6/auto_test1.c 8.5 4.05 4.05 3.83 3.83 3.13 2.76
float/stmts5/exprs6/auto_test2.c 9.57 3.04 3.04 3.19 3.35 3.04 3.04
float/stmts5/exprs6/auto_test3.c 9.71 4 4 3.57 3.77 4 2.72
float/stmts5/exprs6/auto_test4.c 9.71 3.83 3.83 3.83 4.05 3.63 3
float/stmts5/exprs6/auto_test5.c 8.25 4.05 4.05 3.83 4.05 3.45 2.76
float/stmts5/exprs6/auto_test6.c 9.71 4 3.77 3.77 3.57 4 3.23
float/stmts5/exprs6/auto_test7.c 8.5 4.6 4.31 4.31 4.31 4.05 2.76
float/stmts5/exprs6/auto_test8.c 9.71 5.38 5.38 5.38 4.11 5 3.04
float/stmts5/exprs6/auto_test9.c 9.71 3.77 3.77 3.77 4 3.57 2.61

float/stmts5/exprs9/auto_test0.c 9.28 4.19 4.48 4.81 3.82 3.82 3.25
float/stmts5/exprs9/auto_test1.c 9.28 4.44 4.44 4.44 4.16 3.79 3.39
float/stmts5/exprs9/auto_test2.c 10 4.23 4.37 4.37 4.09 3.96 3.09
float/stmts5/exprs9/auto_test3.c 9.28 3.9 4.03 4.16 3.47 3.9 2.9
float/stmts5/exprs9/auto_test4.c 9.28 4.44 4.44 4.3 4.03 4.03 3.22
float/stmts5/exprs9/auto_test5.c 9.92 3.68 3.9 3.9 3.3 3.39 3.14
float/stmts5/exprs9/auto_test6.c 10 3.9 3.9 4.16 3.58 3.58 2.74
float/stmts5/exprs9/auto_test7.c 10.07 4.12 4.26 4.12 4 4 3.2
float/stmts5/exprs9/auto_test8.c 9.28 4.41 4.26 4.41 3.87 4.26 3.28
float/stmts5/exprs9/auto_test9.c 9.84 4 4 4.41 3.76 3.76 2.72

double/stmts1/exprs3/auto_test0.c 2.5 2 2 2 2 2 2
double/stmts1/exprs3/auto_test1.c 2.5 1.66 2 2 1.66 1.66 1.66
double/stmts1/exprs3/auto_test2.c 2.25 1.42 1.42 1.42 1.42 1.42 1.42
double/stmts1/exprs3/auto_test3.c 2.25 1.42 1.42 1.42 1.42 1.42 1.42
double/stmts1/exprs3/auto_test4.c 2.5 2 2 2 2 2 2
double/stmts1/exprs3/auto_test5.c 2.5 2 2 2 1.42 2 2
double/stmts1/exprs3/auto_test6.c 2.5 2.5 2.5 2.5 2.5 2.5 2.5
double/stmts1/exprs3/auto_test7.c 2.5 2 2 2 2 2 2
double/stmts1/exprs3/auto_test8.c 2.5 2 2 2 2 2 2

stmts=
1; exprs=3

stmts=
1; exprs=6

stmts=
1; exprs=9

stmts=
3; exprs=3

stmts=
3; exprs=6

stmts=
3; exprs=9

stmts=
5; exprs=3

stmts=
5; exprs=6

stmts=
5; exprs=9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Double

Optimal (+cost dep)
Optimal
Dominant
Eager
Zero

N
or

m
a

liz
e

d
 S

p
ee

d
up

stmts=
1; exprs=3

stmts=
1; exprs=6

stmts=
1; exprs=9

stmts=
3; exprs=3

stmts=
3; exprs=6

stmts=
3; exprs=9

stmts=
5; exprs=3

stmts=
5; exprs=6

stmts=
5; exprs=9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Float

Optimal (+cost dep)
Optimal
Dominant
Eager
Zero

N
or

m
a

liz
e

d
 S

p
ee

d
up

stmts1
; e

xprs=
3

stmts1
; e

xprs=
6

stmts1
; e

xprs=
9

stmts3
; e

xprs=
3

stmts3
; e

xprs=
6

stmts3
; e

xprs=
9

stmts5
; e

xprs=
3

stmts5
; e

xprs=
6

stmts5
; e

xprs=
9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Short

Optimal (+cost dep)
Optimal
Dominant
Eager
Zero

N
or

m
a

liz
e

d
 S

p
ee

d
up

Double Float Short

0

500

1000

1500

2000

2500

3000

Optimal
(+cost dep)
Optimal
Dominant
Eager
ZeroN

um
b

e
r

o
f s

h
ift

s

(b) Average performance for Left-recursive expression trees

Example

Page 1

Optimal Dominant Eager Zero
stmts=1,exprs=6,loop0 7.66 4.66 4.66 4.66 4.66 4.66 4.66 0.61 0.61 0.61 0.61 0.61
stmts=1,exprs=6,loop1 8.5 4.25 4.25 4.25 4.25 4.25 4.25 0.5 0.5 0.5 0.5 0.5
stmts=1,exprs=6,loop2 8.5 6.27 6.27 6.27 6.27 6.27 6.27 0.74 0.74 0.74 0.74 0.74
stmts=1,exprs=6,loop3 8.5 4.31 4.31 4.31 1.64 1.68 1.72 0.51 0.51 0.19 0.2 0.2
stmts=1,exprs=6,loop4 8.5 6.27 6.27 6.27 6.27 6.27 6.27 0.74 0.74 0.74 0.74 0.74
stmts=1,exprs=6,loop5 8.37 1.61 1.61 1.61 1.61 1.61 1.61 0.19 0.19 0.19 0.19 0.19
stmts=1,exprs=6,loop6 7.66 4.05 4.05 4.05 1.81 1.72 1.72 0.53 0.53 0.24 0.22 0.22
stmts=1,exprs=6,loop7 8.5 4.25 4.53 4 2.51 1.78 1.78 0.5 0.47 0.3 0.21 0.21
stmts=1,exprs=6,loop8 8.5 2.76 2.76 2.76 2.76 2.76 2.76 0.32 0.32 0.32 0.32 0.32
stmts=1,exprs=6,loop9 8.5 5.83 5.83 5.83 5.83 5.83 5.83 0.69 0.69 0.69 0.69 0.69

stmts=3,exprs=6,loop0 9.85 4 4 4 4 3.57 2.51 0.41 0.41 0.41 0.36 0.25
stmts=3,exprs=6,loop1 8.62 3.45 3.45 3.45 3.45 2.87 2.55 0.4 0.4 0.4 0.33 0.3
stmts=3,exprs=6,loop2 8.62 3.72 3.72 3.35 3.72 3.19 2.57 0.43 0.39 0.43 0.37 0.3
stmts=3,exprs=6,loop3 8.5 3.77 3.77 3.77 3.77 3.77 2.83 0.44 0.44 0.44 0.44 0.33
stmts=3,exprs=6,loop4 8.62 3.28 3.28 3.45 3.45 3.28 2.46 0.38 0.4 0.4 0.38 0.29
stmts=3,exprs=6,loop5 9.71 3.77 3.77 3.23 3.57 3.57 2.83 0.39 0.33 0.37 0.37 0.29
stmts=3,exprs=6,loop6 9.85 4 4.25 4 3.77 3.57 2.83 0.41 0.41 0.38 0.36 0.29
stmts=3,exprs=6,loop7 8.62 3.72 3.72 3.94 4.18 3.72 3.04 0.43 0.46 0.48 0.43 0.35
stmts=3,exprs=6,loop8 8.62 3.83 3.83 3.63 3.83 3.83 2.76 0.44 0.42 0.44 0.44 0.32
stmts=3,exprs=6,loop9 8.62 2.65 2.65 3 2.87 3.28 3.28 0.31 0.35 0.33 0.38 0.38

stmts=5,exprs=6,loop0 8.5 4.25 4.25 4.25 4.25 4.25 2.72 0.5 0.5 0.5 0.5 0.32
stmts=5,exprs=6,loop1 8.5 4.05 4.05 3.83 3.83 3.13 2.76 0.48 0.45 0.45 0.37 0.32
stmts=5,exprs=6,loop2 9.57 3.04 3.04 3.19 3.35 3.04 3.04 0.32 0.33 0.35 0.32 0.32
stmts=5,exprs=6,loop3 9.71 4 4 3.57 3.77 4 2.72 0.41 0.37 0.39 0.41 0.28
stmts=5,exprs=6,loop4 9.71 3.83 3.83 3.83 4.05 3.63 3 0.39 0.39 0.42 0.37 0.31
stmts=5,exprs=6,loop5 8.25 4.05 4.05 3.83 4.05 3.45 2.76 0.49 0.46 0.49 0.42 0.33
stmts=5,exprs=6,loop6 9.71 4 3.77 3.77 3.57 4 3.23 0.41 0.39 0.37 0.41 0.33
stmts=5,exprs=6,loop7 8.5 4.6 4.31 4.31 4.31 4.05 2.76 0.54 0.51 0.51 0.48 0.32
stmts=5,exprs=6,loop8 9.71 5.38 5.38 5.38 4.11 5 3.04 0.55 0.55 0.42 0.51 0.31
stmts=5,exprs=6,loop9 9.71 3.77 3.77 3.77 4 3.57 2.61 0.39 0.39 0.41 0.37 0.27

stmts=1,exprs=6,loop0

stmts=1,exprs=6,loop1

stmts=1,exprs=6,loop2

stmts=1,exprs=6,loop3

stmts=1,exprs=6,loop4

stmts=1,exprs=6,loop5

stmts=1,exprs=6,loop6

stmts=1,exprs=6,loop7

stmts=1,exprs=6,loop8

stmts=1,exprs=6,loop9

stmts=3,exprs=6,loop0

stmts=3,exprs=6,loop1

stmts=3,exprs=6,loop2

stmts=3,exprs=6,loop3

stmts=3,exprs=6,loop4

stmts=3,exprs=6,loop5

stmts=3,exprs=6,loop6

stmts=3,exprs=6,loop7

stmts=3,exprs=6,loop8

stmts=3,exprs=6,loop9

stmts=5,exprs=6,loop0

stmts=5,exprs=6,loop1

stmts=5,exprs=6,loop2

stmts=5,exprs=6,loop3

stmts=5,exprs=6,loop4

stmts=5,exprs=6,loop5

stmts=5,exprs=6,loop6

stmts=5,exprs=6,loop7

stmts=5,exprs=6,loop8

stmts=5,exprs=6,loop9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Results of individual loops

Optimal
Dominant
Eager
Zero

R
el

a
tiv

e
sp

e
e

du
p

(c) A sample of results for loops of type float showing the variance in performance for some loops

Figure 6.5: Performance of generated loops. The results are normalized and display the speedup of
explicitly realigned expressions relative to the speedup achieved by using unaligned instructions (i.e.
realigned/unaligned, meaning that a result of 1.0 would indicate similar performance as unaligned
instructions.

65

6.3. BENCHMARKS CHAPTER 6. RESULTS

!"##$%

&'(#)%

!&*+,-./012'$3)40567# 8#90:;"<=$ *'(#9:;"<=$ 401<>'>$:;"<=$?@$<1'7:;"<=$)ABC ?@$<1'7:;"<=$)ADC ?@$<1'7:;"<=$)AEC ?@$<1'7:;"<=$)AFC !2'7'9 G>'7<(>#H)<>;$9

-%IJ-%I)A3#9;<0>#HK)+!*C IBBBB DF-,B DLEIB DF,%B DF,MB DF,BB DF,MB DL-FB DD-FB

-%EJ-%E)A@'HH#HK)+!*C DMFDB DMFIB DML%B DMFMB DMFMB DMFIB DMF-B DLF%B DD-FB

!@##H5@ 8#90:;"<=$ *'(#9:;"<=$ 401<>'>$:;"<=$?@$<1'7:;"<=$?@$<1'7:;"<=$)ADC ?@$<1'7:;"<=$)AEC ?@$<1'7:;"<=$)AFC !NO4)G>'7<(>#H

-%IJ-%I)A3#9;<0>#HK)+!*C B.,- %.BM % %.BF %.BF %.BF %.BF %.DM

-%EJ-%E)A@'HH#HK)+!*C %.BE %.BE %.BI %.BI %.BI %.BE %.BI %.DM

!&*+,-./012'$3)40567# 8#90:;"<=$ *'(#9:;"<=$ 401<>'>$:;"<=$?@$<1'7:;"<=$)ABC ?@$<1'7:;"<=$)ADC ?@$<1'7:;"<=$)AEC ?@$<1'7:;"<=$)AFC !2'7'9 G>'7<(>#H)<>;$9

-%IJ-%I)A3#9;<0>#HK)>0)+!*C IDDIB I%-MB IDBIB I%MDB I%L-B I%LFB I%LEB EF-%B DLIMB

-%EJ-%E)A@'HH#HK)>0)+!*C IBEFB IB-BB IBEDB IBEMB IBEMB IB-%B IBE-B EMFFB DLIMB

!@##H5@ 8#90:;"<=$ *'(#9:;"<=$ 401<>'>$:;"<=$?@$<1'7:;"<=$?@$<1'7:;"<=$)ADC ?@$<1'7:;"<=$)AEC ?@$<1'7:;"<=$)AFC !NO4)G>'7<(>#H

-%IJ-%I)A3#9;<0>#HK)>0)+!*C %.EL %.-% %.E, %.- %.- %.- %.- %.FL

-%EJ-%E)A@'HH#HK)>0)+!*C %.-F %.-F %.-M %.-F %.-F %.-F %.-M %.FL

-%IJ-%I)A3#9;<0>#HK)+!*C
-%EJ-%E)A@'HH#HK)+!*C

-%IJ-%I)A3#9;<0>#HK)>0)+!*C
-%EJ-%E)A@'HH#HK)>0)+!*C

B.,

%

%.%

%.D

%.I

%.E

%.-

%.F

%.M

8#90:;"<=$

*'(#9:;"<=$

401<>'>$:;"<=$

?@$<1'7:;"<=$

?@$<1'7:;"<=$)AEC

!NO4)G>'7<(>#H

!
@
#
#
H
5
@

(a) SIMD speedup

Sheet1

Page 1

SPEC95.Tomcatv Double Zero-shift Eager-shift Dominant-shift Optimal-shift (0) Optimal-shift (2) Optimal-shift (4) Optimal-shift (6) Scalar Unaligned instr
513x513 (versioned, CSE) 30000 26590 28430 26910 26970 26900 26970 28560 22560
514x514 (padded, CSE) 27620 27630 27810 27670 27670 27630 27650 28610 22560

Speedup Zero-shift Eager-shift Dominant-shift Optimal-shift Optimal-shift (2) Optimal-shift (4) Optimal-shift (6) SIMD Unaligned
513x513 (versioned, CSE) 0.95 1.07 1 1.06 1.06 1.06 1.06 1.27
514x514 (padded, CSE) 1.04 1.04 1.03 1.03 1.03 1.04 1.03 1.27

SPEC95.Tomcatv Double Zero-shift Eager-shift Dominant-shift Optimal-shift (0) Optimal-shift (2) Optimal-shift (4) Optimal-shift (6) Scalar Unaligned instr
513x513 (versioned, no CSE) 32230 31570 32030 31720 31850 31860 31840 46510 28370
514x514 (padded, no CSE) 30460 30500 30420 30470 30470 30510 30450 47660 28370

Speedup Zero-shift Eager-shift Dominant-shift Optimal-shift Optimal-shift (2) Optimal-shift (4) Optimal-shift (6) SIMD Unaligned
513x513 (versioned, no CSE) 1.48 1.51 1.49 1.5 1.5 1.5 1.5 1.68
514x514 (padded, no CSE) 1.56 1.56 1.57 1.56 1.56 1.56 1.57 1.68

CSE = 0, versioned Aligned Unaligned Scalar Realigned-Shift Realigned+Shift Vector OPS Shift OverheadAdditional Overhead
Zero 27850 28470 47390 31650 32230 Unaligned 0.98 0.02 0
Eager 27850 28470 47390 30980 31570 Zero 0.86 0.12 0.02
Dominant 27850 28470 47390 31190 32030 Eager 0.88 0.1 0.02
Optimal 27850 28470 47390 30980 31720 Dominant 0.87 0.1 0.03
Optimal + cost dep. 27850 28470 47390 31280 31860 Optimal 0.88 0.1 0.02

Optimal + cost dep. 0.87 0.11 0.02
CSE = 0, padded
Zero 27850 28470 48430 29950 30460 Unaligned 0.98 0.02 0
Eager 27850 28470 48430 29860 30500 Zero 0.91 0.07 0.02
Dominant 27850 28470 48430 29810 30420 Eager 0.91 0.07 0.02
Optimal 27850 28470 48430 29900 30470 Dominant 0.92 0.06 0.02
Optimal + cost dep. 27850 28470 48430 29880 30510 Optimal 0.91 0.07 0.02

Optimal + cost dep. 0.91 0.07 0.02

513x513 (versioned, CSE)
514x514 (padded, CSE)

513x513 (versioned, no CSE)
514x514 (padded, no CSE)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Zero-shift
Eager-shift
Dominant-shift
Optimal-shift
Optimal-shift (4)
SIMD Unaligned

S
p

ee
d

up

Unaligned
Zero

Eager

Dominant

Optim
al

Optim
al + cost d

ep.

Unaligned
Zero

Eager

Dominant

Optim
al

Optim
al + cost d

ep.
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Additional Overhead
Shift Overhead
Vector OPS

(b) Specification of results for versioned (left) and padded (right) versions (no
CSE)

Figure 6.6: Benchmark results of Tomcatv

Compared to the eager-shift policy, we notice that the dominant shift policy performs poorly
for the loop-versioned algorithm without CSE. After examination, we concluded that both shift
policies create the same number of stream-shift operations with similar cost, but with different
configurations. As mentioned in Section 4.3.5, the dominant shift policy places the stream-shift
operations on the ’critical path’ of several expression such that the latency of the operation cannot
be scheduled together with another vector operation, while the eager shift policy places both stream-
shift operations on the leaves of the expression. Figure 6.7 demonstrates the situation. This
accounts for the performance difference of about 7% with CSE, and 3% without CSE between
the two policies. For the padded algorithm, this difference does not exist, as the initial offsets of
the memory references and therefore the shift configurations are different. Also note that the 5%
benefit of padding becomes apparent when CSE is not used. When padding the arrays, no runtime
checks for loop-versioning need to be performed and the offsets require less stream-shift operations.
However, the impact of versioning is hardly noticeable as shown in Figure 6.6b, while the same
figure displays that padding the arrays does reduce the number of shift-operations.

The intermediate arrays used to temporarily store the common subexpressions unnecessarily
pollute the cache and thus increase the number of cache-misses for the actual data. This is shown
as Additional overhead in Figure 6.6b. Due to the lack of support for common subexpressions, we
currently cannot compare the results of using either registers and memory as placeholders for the
intermediate results. On the other hand we should note that using registers as opposed to arrays
causes register spilling as SSE only has 8 vector registers. However, this will hardly impact the
cache, as the top values of the stack are accessed frequently enough to remain in the cache.

Overall we can conclude that the benchmark still benefits from explicit realignment even though

66

6.3. BENCHMARKS CHAPTER 6. RESULTS

(a) Eager-shift policy, latencies
can be combined with arith-
metic operations

(b) Dominant-shift policy, shift
operations on critical path

Figure 6.7: Shift configurations from eager and dominant shift

67

6.3. BENCHMARKS CHAPTER 6. RESULTS

a ’trick’ is needed to reuse common subexpressions.

6.3.3 SPEC95 Swim

The SPEC95 Swim benchmark solves shallow water equations used in the prediction of weather
conditions. The benchmark has 10 vectorizable loops, where 3 of them require realignment. Swim
operates on single precision floating point matrices of 513x513 elements, resulting in a blocking
factor of 4. Similarly to Tomcatv, we modified the algorithm to use either loop-versioning or multi-
dimensional array padding to deal with the runtime alignments. The translated C code for the
Swim benchmark can be found in Appendix A.1.

Figure 6.8 shows that the benchmark really profits from vector execution. Using our realignment
technique, the achieved speedups range from 1.3 to 2.3 with and without CSE respectively. When
CSE is not applied, the differences between shift policies are minimal varying 1 to 2 percent between
each of the shift policies (except zero-shift). For most loops, the shift configurations are similar as
the expressions are small in size. Only several statements have more complicated expression trees,
resulting in different configurations. However there are too few of these statements to seriously
impact the performance of the benchmark overall.

Sheet1

Page 1

WIth CSE Zero-shift Eager-shift Dominant-shift Optimal-shift (0) Optimal-shift (2) Optimal-shift (4) Optimal-shift (6) Scalar Unaligned Instr
513x513 (versioned) 18000 15990 17350 17310 16030 16050 16020 22780 12220
513x516 (padded) 15890 14040 14080 15390 14120 14130 14130 22960 12220

257x257 (versioned) 4650 4070 4510 4430 4140 4140 4140 6430 3210
257x260 (padded) 4190 3690 3650 3960 3690 3660 3690 6580 3210

Speedup Zero-shift Eager-shift Dominant-shift Optimal-shift Optimal-shift (2) Optimal + dep. cost Optimal-shift (6) SIMD Unaligned
Versioned, CSE 1.27 1.42 1.31 1.32 1.32 1.42 1.42 1.86
Padded, CSE 1.44 1.64 1.63 1.49 1.63 1.62 1.62 1.88
257x257 (versioned) 1.42 1.62 1.46 1.49 1.59 1.59 1.59 2.05
257x260 (padded) 1.57 1.78 1.8 1.66 1.78 1.8 1.78 2.05

Without CSE Zero-shift Eager-shift Dominant-shift Optimal-shift (0) Optimal-shift (2) Optimal-shift (4) Optimal-shift (6) Scalar Unaligned Instr
513x513 (versioned) 21640 19320 19540 19470 19230 19250 19250 40550 14920
513x516 (padded) 18910 18090 18030 17820 17990 18010 18090 40720 14920

257x257 (versioned) 5470 4870 4970 4920 4900 4870 4840 10080 3750
257x260 (padded) 4850 4660 4600 4600 4630 4650 4550 10020 3750

Speedup Zero-shift Eager-shift Dominant-shift Optimal-shift Optimal-shift (2) Optimal-shift (4) Optimal-shift (6) SIMD Unaligned
Versioned, No CSE 1.87 2.1 2.08 2.08 2.11 2.11 2.11 2.72
Padded, No CSE 2.15 2.25 2.26 2.29 2.26 2.26 2.25 2.73
257x257 (versioned) 1.84 2.07 2.03 2.05 2.06 2.07 2.08 2.69
257x260 (padded) 2.07 2.15 2.18 2.18 2.16 2.15 2.2 2.67

CSE = 0, versioned Aligned Unaligned Scalar Realigned-Shift Realigned+shift Vector OPS Shift Overhead Additional Overhead
Zero 16240 16830 41510 20570 21640 Unaligned 0.96 0.04 0
Eager 16240 16830 41510 18630 19360 Zero 0.75 0.2 0.05
Dominant 16240 16830 41510 18390 19370 Eager 0.84 0.12 0.04
Optimal 16240 16830 41510 18500 19360 Dominant 0.84 0.11 0.05
Optimal +cost dep. 16240 16830 41510 18600 19330 Optimal 0.84 0.12 0.04

Optimal +cost dep. 0.84 0.12 0.04
CSE = 0, padded
Zero 16240 16830 41510 17870 18630 Unaligned 0.96 0.04 0
Eager 16240 16830 41510 17340 17820 Zero 0.87 0.09 0.04
Dominant 16240 16830 41510 17360 17850 Eager 0.91 0.06 0.03
Optimal 16240 16830 41510 17060 17530 Dominant 0.91 0.06 0.03
Optimal +cost dep. 16240 16830 41510 17350 17850 Optimal 0.93 0.05 0.03

Optimal +cost dep. 0.91 0.06 0.03

Versioned, CSE

Padded, CSE

Versioned, No CSE

Padded, No CSE

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Zero-shift
Eager-shift
Dominant-shift
Optimal-shift
Optimal + dep. cost
SIMD Unaligned

S
p

e
e

du
p

Unaligned
Zero

Eager
Dominant

Optimal
Optimal +cost dep.

Unaligned
Zero

Eager
Dominant

Optimal
Optimal +cost dep.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Additional Overhead
Shift Overhead
Vector OPS

(a) SIMD Speedup

Sheet1

Page 1

WIth CSE Zero-shift Eager-shift Dominant-shift Optimal-shift (0) Optimal-shift (2) Optimal-shift (4) Optimal-shift (6) Scalar Unaligned Instr
513x513 (versioned) 18000 15990 17350 17310 16030 16050 16020 22780 12220
513x516 (padded) 15890 14040 14080 15390 14120 14130 14130 22960 12220

257x257 (versioned) 4650 4070 4510 4430 4140 4140 4140 6430 3210
257x260 (padded) 4190 3690 3650 3960 3690 3660 3690 6580 3210

Speedup Zero-shift Eager-shift Dominant-shift Optimal-shift Optimal-shift (2) Optimal + dep. cost Optimal-shift (6) SIMD Unaligned
Versioned, CSE 1.27 1.42 1.31 1.32 1.32 1.42 1.42 1.86
Padded, CSE 1.44 1.64 1.63 1.49 1.63 1.62 1.62 1.88
257x257 (versioned) 1.42 1.62 1.46 1.49 1.59 1.59 1.59 2.05
257x260 (padded) 1.57 1.78 1.8 1.66 1.78 1.8 1.78 2.05

Without CSE Zero-shift Eager-shift Dominant-shift Optimal-shift (0) Optimal-shift (2) Optimal-shift (4) Optimal-shift (6) Scalar Unaligned Instr
513x513 (versioned) 21640 19320 19540 19470 19230 19250 19250 40550 14920
513x516 (padded) 18910 18090 18030 17820 17990 18010 18090 40720 14920

257x257 (versioned) 5470 4870 4970 4920 4900 4870 4840 10080 3750
257x260 (padded) 4850 4660 4600 4600 4630 4650 4550 10020 3750

Speedup Zero-shift Eager-shift Dominant-shift Optimal-shift Optimal-shift (2) Optimal-shift (4) Optimal-shift (6) SIMD Unaligned
Versioned, No CSE 1.87 2.1 2.08 2.08 2.11 2.11 2.11 2.72
Padded, No CSE 2.15 2.25 2.26 2.29 2.26 2.26 2.25 2.73
257x257 (versioned) 1.84 2.07 2.03 2.05 2.06 2.07 2.08 2.69
257x260 (padded) 2.07 2.15 2.18 2.18 2.16 2.15 2.2 2.67

CSE = 0, versioned Aligned Unaligned Scalar Realigned-Shift Realigned+shift Vector OPS Shift Overhead Additional Overhead
Zero 16240 16830 41510 20570 21640 Unaligned 0.96 0.04 0
Eager 16240 16830 41510 18630 19360 Zero 0.75 0.2 0.05
Dominant 16240 16830 41510 18390 19370 Eager 0.84 0.12 0.04
Optimal 16240 16830 41510 18500 19360 Dominant 0.84 0.11 0.05
Optimal +cost dep. 16240 16830 41510 18600 19330 Optimal 0.84 0.12 0.04

Optimal +cost dep. 0.84 0.12 0.04
CSE = 0, padded
Zero 16240 16830 41510 17870 18630 Unaligned 0.96 0.04 0
Eager 16240 16830 41510 17340 17820 Zero 0.87 0.09 0.04
Dominant 16240 16830 41510 17360 17850 Eager 0.91 0.06 0.03
Optimal 16240 16830 41510 17060 17530 Dominant 0.91 0.06 0.03
Optimal +cost dep. 16240 16830 41510 17350 17850 Optimal 0.93 0.05 0.03

Optimal +cost dep. 0.91 0.06 0.03

Versioned, CSE

Padded, CSE

Versioned, No CSE

Padded, No CSE

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Zero-shift
Eager-shift
Dominant-shift
Optimal-shift
Optimal + dep. cost
SIMD Unaligned

S
p

e
e

du
p

Unaligned
Zero

Eager

Dominant

Optim
al

Optim
al +cost d

ep.

Unaligned
Zero

Eager

Dominant

Optim
al

Optim
al +cost d

ep.
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Additional Overhead
Shift Overhead
Vector OPS

(b) Specification of results for versioned (left) and padded
(right) versions (no CSE)

Figure 6.8: Benchmark results of Swim

From Figure 6.8 it is evident that CSE complicates the results. For the Swim benchmark, we
can see that our dynamic programming algorithm to find a shift-configuration achieves a similar
performance to the zero-shift policy when CSE is applied. The benchmark contains a number
of statements in which operations are performed on consecutive elements from the same array.
Placing stream shift-operations on inner-nodes effects the ability of CSE to eliminate a number
of load operations, which corresponds to exactly the same issue as explained in Section 6.2. This
results in a performance-loss of about 10% to 12% for optimal-shifting.

When calculating the shift configuration the effect of CSE is not taken into account. Still,
even with CSE, vectorization yields optimistic results. Padding the arrays gives an additional
improvement of about 30% because vector loads at similar columns and distinct rows have similar
offsets which reduces the number of misalignments within some of the statements. Furthermore,

68

6.3. BENCHMARKS CHAPTER 6. RESULTS

Figure 6.8b shows that padding the arrays also reduces additional overhead due to the lack of
loop-versioning. For Swim, loop-versioning plays a larger role than for Tomcatv, as the smaller
element-size causes more versions to be generated.

6.3.4 Livermore kernels

The Livermore benchmark consists of 24 kernels that represent computations found in numerical
applications. We were able to successfully vectorize 4 of these kernels, which all have (compile-time
known) misalignments. The code for these kernels is given in Appendix A.3. The kernels exhibit
a high vector-operation to memory-load ratio, as there are a lot of constant-multiplications in the
expressions. Kernel 9 can be optimized by grouping together load operations with similar memory-
offsets, resulting in an additional speedup of 50%. The results as shown in Figure 6.9 indicate
that the different shift-placement methods do not differ that much. Only Kernel 1 seems to really
profit from the dynamic programming algorithm. When looking more closely at the configurations,
the ’optimal’ configuration only differs from the heuristics in the fact that the shift-operations are
placed on the loads, instead of placing it on the multiplication of that load with a scalar constant.
We were however unable to explain the distinction in the results, as both configurations are very
similar. Finally though, we can conclude that vectorizing with explicit realignment did prove to be
profitable, as we were able to achieve speedup factors of 1.5x -4x depending on the kernel.

Sheet1

Page 1

CSE=0 CSE=1
kernel 1 CSE=0, OPT=0 CSE=0, OPT=1 CSE=1, OPT=1 CSE=1, OPT=0
Zero 3.7 (1110/300) 4.03 (1130/280) 2.34 (610/260) 2.22 (600/270)
Eager 3.7 (1110/300) 4.03 (1130/280) 2.34 (610/260) 2.22 (600/270)
Dominant 3.7 (1110/300) 4.03 (1130/280) 2.34 (610/260) 2.22 (600/270)
Optimal 4.26 (1110/260) 4.52 (1130/250) 2.77 (610/220) 2.5 (600/240)
shift32 4.44 (1110/250) 4.52 (1130/250) 2.77 (610/220) 2.5 (600/240)
Optimal (+cost dep) 4.26 (1110/260) 4.52 (1130/250) 2.77 (610/220) 2.5 (600/240)

kernel 7
Zero 4.72 (2790/590) 4.81 (2790/580) 1.55 (1040/670) 1.53 (1060/690)
Eager 4.72 (2790/590) 4.81 (2790/580) 1.52 (1040/680) 1.53 (1060/690)
Dominant 4.72 (2790/590) 4.81 (2790/580) 1.52 (1040/680) 1.55 (1060/680)
Optimal 4.81 (2790/580) 4.89 (2790/570) 1.92 (1040/540) 1.96 (1060/540)
shift32 4.81 (2790/580) 4.89 (2790/570) 1.96 (1040/530) 1.96 (1060/540)
Optimal (+cost dep) 4.81 (2790/580) 4.98 (2790/560) 2 (1040/520) 1.96 (1060/540)

kernel 9
Zero 2.53 (3530/1390) 3.16 (3550/1120) 1.45 (1900/1310) 1.05 (1890/1800)
Eager 2.52 (3530/1400) 3.11 (3550/1140) 1.47 (1900/1290) 1.05 (1890/1800)
Dominant 2.52 (3530/1400) 3.14 (3550/1130) 1.45 (1900/1310) 1.05 (1890/1800)
Optimal 2.59 (3530/1360) 3.14 (3550/1130) 1.5 (1900/1260) 1.06 (1890/1770)
shift32 2.63 (3530/1340) 3.14 (3550/1130) 1.5 (1900/1260) 1.05 (1890/1800)
Optimal (+cost dep) 2.59 (3530/1360) 3.14 (3550/1130) 1.5 (1900/1260) 1.05 (1890/1790)

kernel 12
Zero 1.86 (800/430) 1.95 (840/430) 1.32 (570/430) 1.25 (540/430)
Eager 1.86 (800/430) 1.95 (840/430) 1.32 (570/430) 1.25 (540/430)
Dominant 1.86 (800/430) 2 (840/420) 1.32 (570/430) 1.28 (540/420)
Optimal 1.86 (800/430) 1.95 (840/430) 1.32 (570/430) 1.25 (540/430)
shift32 1.86 (800/430) 1.95 (840/430) 1.32 (570/430) 1.25 (540/430)
Optimal (+cost dep) 1.86 (800/430) 1.95 (840/430) 1.32 (570/430) 1.25 (540/430)

CSE=0, OPT=0 CSE=0, OPT=1 CSE=1, OPT=1 CSE=1, OPT=0

0

0.5

1

1.5

2

2.5

3

3.5

4

Kernel 9

CSE=0 CSE=1

1

1.5

2

2.5

3

3.5

4

4.5

5

Kernel 1

S
pe

ed
up

 F
ac

to
r

CSE=0 CSE=1

1

1.5

2

2.5

3

3.5

4

4.5

5

Kernel 7

CSE=0 CSE=1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Kernel 12

Zero
Eager
Dominant
Optimal
Optimal
(+cost dep)

(a) SIMD speedup

Figure 6.9: Benchmark results of Livermore kernels

6.3.5 Motion estimation

Video encoders use motion estimation algorithms to determine the motion vectors describing a
transformation from one 2 dimensional image to another. This is usually calculated between sub-
sequent frames in a video. A motion vector is determined for each N x N sized block in the image.
Several motion estimation algorithms are available, but for the purpose of automatic vectorization,
we have chosen full-search block matching as a benchmark. The reference block is matched against
a block in the subsequent frame for any offset in the horizontal and vertical direction by calculating
the minimal sum of absolute differences. This is done for any possible offset in a given area around
the block. The size of this area (kernel size) impacts the approximated movement of the object. The
block size impacts the granularity of the objects for which the motion is approximated. Therefore,
the choice of these parameters is important. The criteria we use to match the blocks is the sum
of absolute differences. As this involves both a reduction and a type conversion, we split the loop
into two loops. One loop calculates the differences, the other loop performs the reduction (sum).

69

6.3. BENCHMARKS CHAPTER 6. RESULTS

The sum also requires a type-conversion from byte to integer. Note that for this benchmark we
made sure the reference block is always aligned, as opposed to block which it is matched against,
as this block is shifted several elements in both the horizontal and vertical direction. Figure 6.3.5
illustrates the procedure, whereas Appendix A.5 displays the code for the benchmark kernel. We
tried different number of block sizes, as an increased size of the inner-loop reduces the overhead
imposed by loop-peeling and loop-versioning. We combined the different block-sizes with two kernel
sizes to scale the motion distances along with the block sizes.

!"##$%

&'(#)%

*+,)-).)$)/)$0

*+,)-).)$)/)$%

Figure 6.10: Full search block matching. Matching is performed by calculating the SAD between
two blocks at different time intervals.

Sheet1

Page 1

Blockmatch 1080x1920 Blocksize Scalar Shift Unaligned Instr
Kernel = 8x8 16 1510 1230 460
Kernel = 8x8 32 1520 1510 390
Kernel = 16x16 64 5850 3290 1590
Kernel = 16x16 128 5460 2610 1610

Speedup Blocksize Shift Unaligned Instr
Kernel = 8x8 16 1.23 3.28
Kernel = 8x8 32 1.01 3.9
Kernel = 16x16 64 1.78 3.68
Kernel = 16x16 128 2.09 3.39

Blockmatch 800x600 Blocksize Scalar Shift Unaligned Instr
Kernel = 8x8 16 350 280 110
Kernel = 8x8 32 340 340 100
Kernel = 16x16 64 1340 770 360
Kernel = 16x16 128 1170 560 350

1080x1980 800x600
Speedup Blocksize Shift Unaligned Instr
Kernel = 8x8 16 1.25 3.18
Kernel = 8x8 32 1 3.4
Kernel = 16x16 64 1.74 3.72
Kernel = 16x16 128 2.09 3.34

bytes for diff (misaligned)
Blockmatch 1080x1920 Blocksize Scalar Shift Unaligned Instr
Kernel = 16x16 KS=16, BS=16 5970 6830 1820
Kernel = 16x16 KS=16, BS=32 6110 5260 1690
Kernel = 32x32 KS=32, BS=64 23600 15560 6330
Kernel = 32x32 KS=32, BS=128 22070 9840 6550

Speedup Blocksize Shift Unaligned Instr
Kernel = 16x16 KS=16, BS=16 0.87 3.28
Kernel = 16x16 KS=16, BS=32 1.16 3.62
Kernel = 32x32 KS=32, BS=64 1.52 3.73
Kernel = 32x32 KS=32, BS=128 2.24 3.37

Blockmatch 600x800 Blocksize Scalar Shift Unaligned Instr
Kernel = 16x16 16 1390 1590 460
Kernel = 16x16 32 1390 1180 390
Kernel = 32x32 64 4420 2900 1160
Kernel = 32x32 128 3960 1750 1160

Speedup Blocksize Shift Unaligned Instr
Kernel = 16x16 16 0.87 3.02
Kernel = 16x16 32 1.18 3.56
Kernel = 32x32 64 1.52 3.81
Kernel = 32x32 128 2.26 3.41

Blocksize Scalar Unaligned Instr Aligned Realigned + shift Realigned - shift
KS=16, BS=16 6170 1870 1820 6830 5000
KS=16, BS=32 6310 1850 1730 5260 3490
KS=32, BS=64 24190 6880 6420 15560 11520
KS=32, BS=128 22660 6660 6230 9840 8310

KS=16, BS=16 Vector OPS Shift overhead Additional overhead
KS=16, BS=16 1820 1830 3180
KS=16, BS=32 1730 1770 1760
KS=32, BS=64 6420 4040 5100
KS=32, BS=128 6230 1530 2080

Unaligned KS=16, BS=16 1820 50 0
Unaligned KS=16, BS=32 1730 120 0
Unaligned KS=32, BS=64 6420 460 0
Unaligned KS=32, BS=128 6230 430 0

16 32 64 128

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Shift
Unaligned
Instr

16 32 64 128

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Shift
Unaligned
Instr

KS=16, B
S=16

KS=16, B
S=32

KS=32, B
S=64

KS=32, B
S=128

0

0.5

1

1.5

2

2.5

3

3.5

4

Shift
Unaligned Instr

S
p

ee
du

p

16 32 64 128

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Shift
Unaligned
Instr

KS=16, BS=16

KS=16, BS=32

KS=32, BS=64

KS=32, BS=128

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Additional
overhead
Shift
overhead
Vector
OPS

(a) Results of blockmatching algorithm

Sheet1

Page 1

Blockmatch 1080x1920 Blocksize Scalar Shift Unaligned Instr
Kernel = 8x8 16 1510 1230 460
Kernel = 8x8 32 1520 1510 390
Kernel = 16x16 64 5850 3290 1590
Kernel = 16x16 128 5460 2610 1610

Speedup Blocksize Shift Unaligned Instr
Kernel = 8x8 16 1.23 3.28
Kernel = 8x8 32 1.01 3.9
Kernel = 16x16 64 1.78 3.68
Kernel = 16x16 128 2.09 3.39

Blockmatch 800x600 Blocksize Scalar Shift Unaligned Instr
Kernel = 8x8 16 350 280 110
Kernel = 8x8 32 340 340 100
Kernel = 16x16 64 1340 770 360
Kernel = 16x16 128 1170 560 350

1080x1980 800x600
Speedup Blocksize Shift Unaligned Instr
Kernel = 8x8 16 1.25 3.18
Kernel = 8x8 32 1 3.4
Kernel = 16x16 64 1.74 3.72
Kernel = 16x16 128 2.09 3.34

bytes for diff (misaligned)
Blockmatch 1080x1920 Blocksize Scalar Shift Unaligned Instr
Kernel = 16x16 KS=16, BS=16 5970 6830 1820
Kernel = 16x16 KS=16, BS=32 6110 5260 1690
Kernel = 32x32 KS=32, BS=64 23600 15560 6330
Kernel = 32x32 KS=32, BS=128 22070 9840 6550

Speedup Blocksize Shift Unaligned Instr
Kernel = 16x16 KS=16, BS=16 0.87 3.28
Kernel = 16x16 KS=16, BS=32 1.16 3.62
Kernel = 32x32 KS=32, BS=64 1.52 3.73
Kernel = 32x32 KS=32, BS=128 2.24 3.37

Blockmatch 600x800 Blocksize Scalar Shift Unaligned Instr
Kernel = 16x16 16 1390 1590 460
Kernel = 16x16 32 1390 1180 390
Kernel = 32x32 64 4420 2900 1160
Kernel = 32x32 128 3960 1750 1160

Speedup Blocksize Shift Unaligned Instr
Kernel = 16x16 16 0.87 3.02
Kernel = 16x16 32 1.18 3.56
Kernel = 32x32 64 1.52 3.81
Kernel = 32x32 128 2.26 3.41

Blocksize Scalar Unaligned Instr Aligned Realigned + shift Realigned - shift
KS=16, BS=16 6170 1870 1820 6830 5000
KS=16, BS=32 6310 1850 1730 5260 3490
KS=32, BS=64 24190 6880 6420 15560 11520
KS=32, BS=128 22660 6660 6230 9840 8310

KS=16, BS=16 Vector OPS Shift overhead Additional overhead
KS=16, BS=16 1820 1830 3180
KS=16, BS=32 1730 1770 1760
KS=32, BS=64 6420 4040 5100
KS=32, BS=128 6230 1530 2080

Unaligned KS=16, BS=16 1820 50 0
Unaligned KS=16, BS=32 1730 120 0
Unaligned KS=32, BS=64 6420 460 0
Unaligned KS=32, BS=128 6230 430 0

16 32 64 128

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Shift
Unaligned
Instr

16 32 64 128

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Shift
Unaligned
Instr

KS=16, B
S=16

KS=16, B
S=32

KS=32, B
S=64

KS=32, B
S=128

0

0.5

1

1.5

2

2.5

3

3.5

4

Shift
Unaligned Instr

16 32 64 128

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Shift
Unaligned
Instr

KS=16, BS=16

KS=16, BS=32

KS=32, BS=64

KS=32, BS=128

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Additional
overhead
Shift
overhead
Vector
OPS

(b) Specification of results

Figure 6.11: Motion estimation results

The results of performing block-matching on a 1080x1920 pixel image are shown in Figure 6.11a.
For this benchmark we have not made a distinction between the different shift-policies. The state-
ment contains a single misalignment causing all shift-policies to generate the same configuration.
For a block size of 16, no speedup can be obtained. At least 32 iterations are required before vector

70

6.3. BENCHMARKS CHAPTER 6. RESULTS

instructions can be used, as the first 16 iterations will be peeled off in the prologue. This is due to
the fact that 16 is also the blocking factor for the given data type, and at least one iteration will
have to be loaded in advance, as explained in Section 3.3.3. It does however display the overhead
imposed by loop versioning. By increasing the block size of the algorithm, more vector iterations
are possible. We tried a number of block sizes ranging from 16 to 128 pixels, corresponding to 0 to
7 vector iterations respectively. The larger the block size, the more efficient and therefore beneficial
SIMD execution becomes due to the reducing impact of loop-versioning overhead. This is clearly
seen in Figure 6.11b where the ratio of ’additional overhead’ is reduced and the ratio of vector
operations increases. Finally, a speedup factor of 2.25x can be obtained with explicit realignment,
as opposed to a factor 3.7 from unaligned move instructions.

6.3.6 Sobel filter

In image processing the Sobel filter is used to detect edges. The filter is a Finite Impulse Response
filter which convolutes a block of filter coefficients with an image. Equations 6.1 and 6.2 show
the filter coefficients for filtering edges in both the horizontal and vertical directions. Two images
showing the effects of the Sobel operation are shown in Figure 6.12. Even though most images are
represented as three single-byte values for the red, green and blue component, we implemented the
benchmark to work on arrays of 2-byte values. We did this to avoid type conversion (to support
larger data sizes) and because SSE does not support byte multiplication. The benchmark could be
rewritten to work with single-byte values, but this does not add to the goal of benchmarking our
optimization.

We applied the filter on two images, one image of 800x600 pixels with compile-time alignments
and the other 801x600 with runtime alignments. We were able to optimize the expressions by
grouping together similar offsets, enhancing the properties for realignment for the image with
compile-time alignments. For the 801x600 image (i.e. with runtime misalignments) the number
of distinct misalignments is larger than for the 800x600 image. As a result, this does not allow
the possibility of grouping load-operations with similar offsets. With compile-time alignments, we
are able to achieve a speedup factor of about 2x. As can be seen from the results in Figure 6.12,
the zero and eager shift policies perform equal. This is because the LHS of the statement already
has offset 0. Note that an additional speedup can be achieved by reusing values (or vectors) from
subsequent kernel-iterations. Unrolling the kernel three times will expose loads at similar addresses,
which can be removed by a CSE optimization. Also note that loop-versioning has a large impact
on the results, accounting for about 15%-20% of the total performance (see Figure 6.12b).

Gx =

 +1 0 −1
+2 0 −2
+1 0 −1

 ∗ image (6.1)

Gy =

 +1 +2 +1
0 0 0
−1 −2 −1

 ∗ image (6.2)

6.3.7 Mediabench GSM

The encoder in the Mediabench GSM benchmark has one loop that can potentially be vectorized.
The loop and it’s transformed version for SIMD are shown in Figure 6.13. The operations are

71

6.3. BENCHMARKS CHAPTER 6. RESULTS

(a) Original image (b) Filtered

Sheet2

Page 1

With CSE Zero-shift Eager-shift Dominant-shift Optimal-shift (0)Optimal-shift (2)Optimal-shift (4)Optimal-shift (6)Scalar Unaligned Instr
Not Optimized (800x600) 320 310 350 310 320 320 320 790 190
Optimized (800x600) 240 240 260 230 240 240 240 790 190
Not Optimized (801x600) 330 330 330 320 320 310 320 550 190
Optimized (801x600) 330 340 340 320 320 320 320 550 190

Speedup Zero-shift Eager-shift Dominant-shift Optimal-shift Optimal-shift (2)Optimal-shift (4)Optimal-shift (6)SIMD Unaligned
Not Optimized (800x600) 2.47 2.55 2.26 2.55 2.47 2.47 2.47 4.16
Optimized (800x600) 3.29 3.29 3.04 3.43 3.29 3.29 3.29 4.16
Not Optimized (801x600) 1.67 1.67 1.67 1.72 1.72 1.77 1.72 2.89
Optimized (801x600) 1.67 1.62 1.62 1.72 1.72 1.72 1.72 2.89

Without CSE Zero-shift Eager-shift Dominant-shift Optimal-shift (0)Optimal-shift (2)Optimal-shift (4)Optimal-shift (6)Scalar Unaligned Instr
Not Optimized (800x600) 420 420 460 400 400 410 410 1490 200
Optimized (800x600) 330 330 390 330 320 330 330 1490 200
Not Optimized (801x600) 450 450 450 450 450 450 450 1470 200
Optimized (801x600) 450 450 440 450 450 450 450 1470 200

Speedup Zero-shift Eager-shift Dominant-shift Optimal-shift Optimal-shift (2)Optimal + dep. costOptimal-shift (6)SIMD Unaligned
Not Optimized (800x600) 3.55 3.55 3.24 3.73 3.73 3.63 3.63 7.45
Optimized (800x600) 4.52 4.52 3.82 4.52 4.66 4.52 4.52 7.45
Not Optimized (801x600) 3.27 3.27 3.27 3.27 3.27 3.27 3.27 7.35
Optimized (801x600) 3.27 3.27 3.34 3.27 3.27 3.27 3.27 7.35

Runtime
Scalar Unaligned Aligned Realigned+shift Realigned-shift Vector OPS Shift Overhead Additional Overhead

Zero 990 230 200 330 280 Zero 200 50 80
Eager 990 230 200 330 280 Eager 200 50 80
Dominant 990 230 200 330 280 Dominant 200 50 80
Optimal 990 230 200 330 280 Optimal 200 50 80
Optimal (+cost dep) 990 230 200 330 280 Optimal (+cost dep) 200 50 80

Runtime Optim
Scalar Unaligned Aligned Realigned+shift Realigned-shift Vector OPS Shift Overhead Additional Overhead

Zero 990 230 200 330 280 Zero 200 50 80
Eager 990 230 200 320 280 Eager 200 40 80
Dominant 990 230 200 330 280 Dominant 200 50 80
Optimal 990 230 200 320 280 Optimal 200 40 80
Optimal (+cost dep) 990 230 200 330 280 Optimal (+cost dep) 200 50 80

Compiletime
Scalar Unaligned Aligned Realigned+shift Realigned-shift Vector OPS Shift Overhead Additional Overhead

Zero 990 230 200 340 290 Zero 200 50 90
Eager 990 230 200 330 290 Eager 200 40 90
Dominant 990 230 200 340 300 Dominant 200 40 100
Optimal 990 230 200 310 270 Optimal 200 40 70
Optimal (+cost dep) 990 230 200 310 270 Optimal (+cost dep) 200 40 70

Compiletime Optim
Scalar Unaligned Aligned Realigned+shift Realigned-shift Vector OPS Shift Overhead Additional Overhead

Zero 990 230 200 260 240 Zero 200 20 40
Eager 990 230 200 260 240 Eager 200 20 40
Dominant 990 230 200 290 260 Dominant 200 30 60
Optimal 990 230 200 260 230 Optimal 200 30 30
Optimal (+cost dep) 990 230 200 260 240 Optimal (+cost dep) 200 20 40

Not Optimized (800x600)
Not Optimized (801x600)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Sobel with CSE

Zero-shift
Eager-shift
Dominant-shift
Optimal-shift
Optimal-shift (2)
Optimal-shift (4)
Optimal-shift (6)
SIMD Unaligned

Not Optimized (800x600)
Not Optimized (801x600)

0

1

2

3

4

5

6

7

8

Sobel without CSE

Zero-shift
Eager-shift
Dominant-shift
Optimal-shift
Optimal-shift (2)
Optimal + dep.
cost
Optimal-shift (6)
SIMD Unaligned

Not Optimized (800x600)
Optimized (800x600)

Not Optimized (801x600)
Optimized (801x600)

0

1

2

3

4

5

6

7

8

Zero-shift
Eager-shift
Dominant-shift
Optimal-shift
Optimal + dep. cost
SIMD Unaligned

S
p

ee
du

p

Zero
Eager

Dominant

Optim
al

Optim
al (+

cost d
ep)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Runtime

Additional
Overhead
Shift
Overhead
Vector OPS

Zero
Eager

Dominant

Optim
al

Optim
al (+

cost d
ep)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Runtime OPTIM

Additional
Overhead
Shift
Overhead
Vector OPS

Zero
Eager

Dominant

Optim
al

Optim
al (+

cost d
ep)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Compiletime

Additional
Overhead
Shift
Overhead
Vector OPS

Zero
Eager

Dominant

Optim
al

Optim
al (+

cost d
ep)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Compiletime OPTIM

Additional
Overhead
Shift
Overhead
Vector OPS

(a) Benchmark results from Sobel

Sheet2

Page 1

With CSE Zero-shift Eager-shift Dominant-shift Optimal-shift (0)Optimal-shift (2)Optimal-shift (4)Optimal-shift (6)Scalar Unaligned Instr
Not Optimized (800x600) 320 310 350 310 320 320 320 790 190
Optimized (800x600) 240 240 260 230 240 240 240 790 190
Not Optimized (801x600) 330 330 330 320 320 310 320 550 190
Optimized (801x600) 330 340 340 320 320 320 320 550 190

Speedup Zero-shift Eager-shift Dominant-shift Optimal-shift Optimal-shift (2)Optimal-shift (4)Optimal-shift (6)SIMD Unaligned
Not Optimized (800x600) 2.47 2.55 2.26 2.55 2.47 2.47 2.47 4.16
Optimized (800x600) 3.29 3.29 3.04 3.43 3.29 3.29 3.29 4.16
Not Optimized (801x600) 1.67 1.67 1.67 1.72 1.72 1.77 1.72 2.89
Optimized (801x600) 1.67 1.62 1.62 1.72 1.72 1.72 1.72 2.89

Without CSE Zero-shift Eager-shift Dominant-shift Optimal-shift (0)Optimal-shift (2)Optimal-shift (4)Optimal-shift (6)Scalar Unaligned Instr
Not Optimized (800x600) 420 420 460 400 400 410 410 1490 200
Optimized (800x600) 330 330 390 330 320 330 330 1490 200
Not Optimized (801x600) 450 450 450 450 450 450 450 1470 200
Optimized (801x600) 450 450 440 450 450 450 450 1470 200

Speedup Zero-shift Eager-shift Dominant-shift Optimal-shift Optimal-shift (2)Optimal-shift (4)Optimal-shift (6)SIMD Unaligned
Not Optimized (800x600) 3.55 3.55 3.24 3.73 3.73 3.63 3.63 7.45
Optimized (800x600) 4.52 4.52 3.82 4.52 4.66 4.52 4.52 7.45
Not Optimized (801x600) 3.27 3.27 3.27 3.27 3.27 3.27 3.27 7.35
Optimized (801x600) 3.27 3.27 3.34 3.27 3.27 3.27 3.27 7.35

Runtime
Scalar Unaligned Aligned Realigned+shift Realigned-shift Vector OPS Shift Overhead Additional Overhead

Zero 990 230 200 330 280 Zero 200 50 80
Eager 990 230 200 330 280 Eager 200 50 80
Dominant 990 230 200 330 280 Dominant 200 50 80
Optimal 990 230 200 330 280 Optimal 200 50 80
Optimal (+cost dep) 990 230 200 330 280 Optimal (+cost dep) 200 50 80

Runtime Optim
Scalar Unaligned Aligned Realigned+shift Realigned-shift Vector OPS Shift Overhead Additional Overhead

Zero 990 230 200 330 280 Zero 200 50 80
Eager 990 230 200 320 280 Eager 200 40 80
Dominant 990 230 200 330 280 Dominant 200 50 80
Optimal 990 230 200 320 280 Optimal 200 40 80
Optimal (+cost dep) 990 230 200 330 280 Optimal (+cost dep) 200 50 80

Compiletime
Scalar Unaligned Aligned Realigned+shift Realigned-shift Vector OPS Shift Overhead Additional Overhead

Zero 990 230 200 340 290 Zero 200 50 90
Eager 990 230 200 330 290 Eager 200 40 90
Dominant 990 230 200 340 300 Dominant 200 40 100
Optimal 990 230 200 310 270 Optimal 200 40 70
Optimal (+cost dep) 990 230 200 310 270 Optimal (+cost dep) 200 40 70

Compiletime Optim
Scalar Unaligned Aligned Realigned+shift Realigned-shift Vector OPS Shift Overhead Additional Overhead

Zero 990 230 200 260 240 Zero 200 20 40
Eager 990 230 200 260 240 Eager 200 20 40
Dominant 990 230 200 290 260 Dominant 200 30 60
Optimal 990 230 200 260 230 Optimal 200 30 30
Optimal (+cost dep) 990 230 200 260 240 Optimal (+cost dep) 200 20 40

Not Optimized (800x600)
Not Optimized (801x600)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Sobel with CSE

Zero-shift
Eager-shift
Dominant-shift
Optimal-shift
Optimal-shift (2)
Optimal-shift (4)
Optimal-shift (6)
SIMD Unaligned

Not Optimized (800x600)
Not Optimized (801x600)

0

1

2

3

4

5

6

7

8

Sobel without CSE

Zero-shift
Eager-shift
Dominant-shift
Optimal-shift
Optimal-shift (2)
Optimal-shift (4)
Optimal-shift (6)
SIMD Unaligned

Not Optimized (800x600)
Optimized (800x600)

Not Optimized (801x600)
Optimized (801x600)

0

1

2

3

4

5

6

7

8

Zero-shift
Eager-shift
Dominant-shift
Optimal-shift
Optimal-shift (4)
SIMD Unaligned

S
p

ee
d

up

Zero
Eager

Dominant

Optim
al

Optim
al (+

cost d
ep)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Runtime

Additional
Overhead
Shift
Overhead
Vector OPS

Zero
Eager

Dominant

Optim
al

Optim
al (+

cost d
ep)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Runtime OPTIM

Additional
Overhead
Shift
Overhead
Vector OPS

Zero
Eager

Dominant

Optim
al

Optim
al (+

cost d
ep)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Compiletime

Additional
Overhead
Shift
Overhead
Vector OPS

Zero
Eager

Dominant

Optim
al

Optim
al (+

cost d
ep)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Compiletime OPTIM

Additional
Overhead
Shift
Overhead
Vector OPS

(b) Specifications of results

Figure 6.12: Results of Sobel FIR filter

72

6.3. BENCHMARKS CHAPTER 6. RESULTS

performed on 16-bit data types. However, the code shows that the loop is only 8 iterations in
length, and a dependence between intermediate results every 8 iterations does not allow a trans-
formation that results in more loop-iterations and therefore more vector iterations. Performing
only 8 iterations on 16-bit data types, is equal to a single vector operation on a 128-bit vector.
However, these 8 iterations will be ’peeled’ by the algorithm because loading vectors outside the
bounds of the arrays is not allowed. At least 16 iterations will be required before vector arithmetic
can be performed. Therefore the results are only impacted by the overhead from peeling and suffer
a performance decrease of about 5%-10%. As no actual vector-instructions are executed, we do not
explicitly show the results here.

// Short term ana ly s i s f i l t e r for GSM ∗/
void f i l t e r (LARp, s , sav , d , u , k n)
{

// note dependence between :
// d <−> u <−> sav , of l eng th 8

while (k n−−)
{

sav [0] = ∗ s ;
d [0] = ∗ s ;

#ifde f SIMD
s imd kerne l (LARp, d , sav , u) ;

#else
s c a l a r k e r n e l (LARp, d , sav , u) ;

for (i =0; i <8; i++)
{

u [i] = sav [i] ;
}

∗ s++ = d [8] ;
}

}

(a)

void s c a l a r k e r n e l (LARp, d , sav , u){
for (i =0; i <8; i++) {

tmp1 = (LARp[i]∗d [i] + ROUND)>>15;
sav [i +1] = c l i p 1 6 (u [i] + tmp1) ;

tmp2 = (LARp[i]∗u [i] + ROUND)>>15;
d [i +1] = c l i p 1 6 (d [i] + tmp2) ;

}
}

void s imd kerne l (LARp, d , sav , u){
/∗ Loop d i s t r i b u t a i on app l ied
∗ to remove dependence in loop
∗ ’ (. . .+ROUND)>>15’ can be
∗ performed by mulhw−i n s t ruc t i on ∗/

// not vec to r i zab l e , true dependence
for (i =0; i <8; i++)

d [i +1] = d [i] + LARp[i]∗u [i] ;

// v e c t o r i z a b l e with misalignment
for (i =0; i <8; i++)

sav [i +1] = u [i] + LARp[i]∗d [i] ;
}

(b)

Figure 6.13: GSM Benchmark, Short term filter contains vectorizable kernel

73

Chapter 7

Conclusions

Explicit realignment allows loops with misaligned memory accesses to be vectorized when loop peel-
ing, data duplication and multi-dimensional array padding are insufficient to resolve the alignment-
issues. Following from Chapter 6, we can conclude that explicit realignment remains beneficial even
though some overhead is produced from inserting shift operations to realign the data streams. We
should note that obtaining reliable results was extremely difficult given our benchmarking platform
as the caching mechanism affected the results. Even though we tried to minimize these influences,
we made some observations we were unable to explain. Unfortunately, no tools were available that
display the inner-workings of our target processor in sufficient detail that could help us find all
explanations.

Even though explicit realignment allows loops with alignment-issues to be vectorized, there are
several things that need to be taken into account before rigorously applying the transformation.
First, the number of loop iterations largely determine the usefulness of the transformation, as
two prologue loops (one scalar, one vector) and a (scalar) epilogue are generated. The shift-
configuration determines the number of loops that are to be peeled off, as explained in Chapter 4.
For any vector operations to be performed, the number of loop iterations must exceed the number
of iterations peeled off in the prologue and epilogue. Second, the shift-operations needed to realign
an expression impose overhead. We have not been able to find any expressions where this overhead
dominates the speedup from SIMD instructions when all but the zero-shift policy was used for
determining the shift-configuration. However, we should note that this depends on both the array-
indices as well as the the data size. For large data types, array-offsets are mapped to a smaller set
of memory-offsets. This allows the shift-placement algorithms to more easily create combinations
of loads with similar offsets. Smaller data types may require more shift-operations as the set of
possible memory-offsets is larger. On the other hand, more data can be processed with a single
vector operation which again reduces the impact of a shift-operation. Even though we have not
found any expressions where the overhead from shift operations rendered vectorization useless, it
is important to understand that this largely depends on the target architecture and the available
instructions for shifting register streams. While researching the capabilities of other compilers as
well, we observed that automatically vectorizing applications often proves unprofitable due to the
large number of expensive transformations involved to support short vector operations. Therefore,
we believe it is important to accurately determine the cost of vectorization before performing all
the transformations.

74

CHAPTER 7. CONCLUSIONS

We presented four shift-placement methods in this thesis. Chapter 6 pointed out that the zero-
shift policy produces most overhead, sometimes resulting in worse performance than when scalar
instructions are used. We were unable to implement zero-shifting for runtime alignments, as these
can not be mapped to vector instructions due to limitations of our target architecture. However,
when they are supported by the architecture, vectorization may not be profitable. Overall, eager-
and dominant-shifting performed more or less similar to each other. Depending on the expression,
one may be more advantageous than the other, but the results did not indicate a clear winner. We
were unable to determine exactly which expressions performed better with eager or dominant shift.
Our other shift-placement method that is supposed to provide an optimal solution gave the best
results on average. There were however some expressions where the optimal solution performed
worse than the configurations as calculated by the eager or dominant shift placement policies.
We assume that this is due to the disability of the algorithm to take latency-hiding into account.
Stream-shift operations can be scheduled to be performed in parallel with arithmetic or memory
operations. When there are data dependences between two subsequent shift-operations, this delay
cannot be masked. Adding additional costs to model this dependence did not prove to be sufficient,
as the overall performance was no better than without these costs. We should note however that
some expressions do benefit from the expanded cost-model, but it may also have an opposite effect
on other expressions.

Finally, Chapter 6 leads us to conclude that the performance of the distinct shifting-configurations
are impacted by common subexpression elimination. This causes for example ’optimal’ shift-
configurations to be far from optimal in some scenarios. CSE is an important optimization that has
a large impact on the performance of shift-configurations. We can therefore not ignore the effects
of CSE on the placement of stream shift-operations. We therefore believe more research is needed
to coordinate the functionality of both transformations.

75

Chapter 8

Future Work

We would like to conclude our findings with some remarks on possible future work on the field of
automatic vectorization.

Apart from alignment issues, other issues like inductions, reductions, length conversion, non-
unit stride access, conditional statements and dependences are often encountered in applications.
Quite some research has been performed on these topics, as has been explained in Chapter 2.
Incorporating optimizations to (partly) remove these issues could have a large impact on the number
of applications that can be vectorized. However, all these optimizations may cause too much
overhead to render the use of short vector instructions to be useful. Therefore we propose to
incorporate a good approximation of the actual cost before applying transformations. Choosing a
good configuration for the compiler is known to be a difficult problem. [13] proposes a technique that
extracts certain features from the program’s IR, and looks up the best compiler configuration from
a database, which has been trained by a large number of applications. By choosing SIMD-specific
features, this technique might be applied for auto-vectorizing transformations as well.

We concluded that CSE has a significant impact on the chosen shift-configurations. We were
however unable to understand the exact relationship between the two optimizations, and therefore
unable to come up with a more suitable algorithm to place stream-shift operations. We therefore
believe more research on the interaction between SIMD and ’standard’ compiler optimizations needs
to be done in order to understand their relation.

Finally, we should note that this research has focussed on improving execution times. Unaligned
instructions may prove to be more efficient than the proposed realignment solution in terms of
execution time, but this may be different in terms of power. Unaligned instructions require a
permutation unit in hardware to extract aligned vectors. This additional unit requires power even
when it is not used. For embedded devices power is an important criterium, which may be a good
reason to use the realignment solution instead of a specific unaligned load unit. Currently, we
cannot make any conclusions about this trade-off, but it may be an interesting topic to elaborate
on in future research.

76

Bibliography

[1] Intel 64 and IA-32 Architectures Software Developer’s manual. Volume 1: Basic Architecture.

[2] J. Abel. Applications tuning for streaming simd extensions. 1999.

[3] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures - A Dependence
based approach. Morgan Kaufmann, 2001.

[4] AMD. Software optimization Guide for AMD64 Processors.

[5] A. J. Bik. The Software Vectorization Handbook. Intel Press, 2004.

[6] D. Blythe. The direct3d 10 system. 2006.

[7] H. Chang. Efficient vectorization of simd programs with non-aligned and irregular data access
hardware. Proceedings of the 2008 international conference on Compilers, architectures and
synthesis for embedded systems, 2008.

[8] A. Darte and Y. Robert. On the alignment problem. 2007.

[9] A. E. Eichenberger. Vectorization for simd architectures with alignment constraints. Confer-
ence on Programming Language Design and Implementation, 2004.

[10] A. E. Eichenberger. Efficient simd code generation for runtime alignment and length conversion.
Proceedings of the International Symposium on Code Generation and Optimization, 2005.

[11] L. Fireman. The complexity of simd alignment. 2007.

[12] L. Fireman. New algorithms for simd alignment. Lecture Notes in Computer Science, 2007.

[13] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks, B. Mendelson,
P. Barnard, E. Ashton, E. Courtois, F. Bodin, E. Bonilla, J. Thomson, H. Leather, C. Williams,
and M. O’Boyle. Milepost gcc: machine learning based research compiler. In Proceedings of
the GCC Developers’ Summit, June 2008.

[14] M. Kirsten. Loop nest optimization for simd architectures.

[15] B. D. Koblenz. Constraint based vectorization. Proceedings of the 3rd international conference
on Supercomputing, 1989.

[16] A. Kudriatsev. Generation of permutations for simd processors. LCTES, 2005.

77

BIBLIOGRAPHY BIBLIOGRAPHY

[17] S. Larsen. Exploiting superword level parallelism with multimedia instruction sets. Conference
on Programming Language Design and Implementation, 2000.

[18] C. Loeffler. Practical fast 1-d dct algorithms with 11 multiplications. 1989.

[19] D. Nuzman. Auto-vectorization of interleaved data for simd. PLDI, 2006.

[20] D. Nuzman. Outer-loop vectorization - revisited for short simd architectures. Proceedings of
the 17th international conference on Parallel architectures and compilation techniques, 2008.

[21] M. Phar, E. Kilgariff, and R. Fernando. GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation. Addison-Wesley Professional, 2005.

[22] A. Shahbahrami. Performance impact of misaligned accesses in simd extensions. Proceedings
of the 17th Annual Workshop on Circuits, Systems and Signal Processing, 2006.

[23] A. Shahbahrami. Avoiding Conversion and Rearrangement Overhead in SIMD Architectures.
TU Delft, 2008.

[24] J. Shin. Superword-level parallelism in the presence of control flow. Proceedings of the Inter-
national Symposium on Code Generation and Optimization, 2005.

[25] C. Tenllado. Improving superword level parallelism support in modern compilers.
CODES+ISSS’05, 2005.

[26] P. Wu. An integrated simdization framework using virtual vectors. Proceedings of the 19th
annual international conference on Supercomputing, 2005.

78

Appendix A

Benchmarking source code

A.1 Spec95.Swim

#include <s t d i o . h>
#include <sys / t imes . h>
#include <uni s td . h>
#include <math . h>

#define N1 513
#define N2 513

#define m (N1−2)
#define n (N2−2)
#define min(a , b) (a < b ? a : b)
#define abs (a) (a < 0 ? (−a) : a)
f loat u [N2] [N1] ;
f loat v [N2] [N1] ;
f loat p [N2] [N1] ;

f loat unew [N2] [N1] ;
f loat vnew [N2] [N1] ;
f loat pnew [N2] [N1] ;

f loat uold [N2] [N1] ;
f loat vold [N2] [N1] ;
f loat pold [N2] [N1] ;

f loat cu [N2] [N1] ;
f loat cv [N2] [N1] ;
f loat z [N2] [N1] ;
f loat h [N2] [N1] ;
f loat ps i [N2] [N1] ;

f loat dt , tdt , dx , dy , a , alpha ;
f loat e l , pi , tp i , di , dj , pc f ;
int itmax , mprint , mp1 , np1 ;

void i n i t i a l (void)
{

int i , j ;
/∗ IO Read ∗/
dt = 20 .0 f ;
dx = 0.25 E5f ;
dy = 0.25 E5f ;
a = 1 .6 E6f ;
alpha = 0.001 f ;

79

A.1. SPEC95.SWIM APPENDIX A. BENCHMARKING SOURCE CODE

itmax = 1200 ;
mprint = 1200 ;
tdt = dt ;
mp1 = m+1;
np1 = n+1;
e l = (f loat) n ∗ dx ;
p i = 4 .0 f ∗ atan f (1 . 0 f) ;
t p i = pi+pi ;
d i = tp i /(f loat)m;
dj = tp i /(f loat)n ;
pc f = (pi ∗pi ∗a∗a) / (e l ∗ e l) ;

/∗ 50 ∗/
for (j =1; j<=np1 ; j++){

for (i =1; i<=mp1 ; i++){
ps i [j] [i] = a ∗ s i n f (((f loat) i −0.5 f)∗ di)

∗ s i n f (((f loat) j −0.5 f)∗ dj) ;
p [j] [i] = pc f ∗(c o s f (2 . 0 f ∗(f loat) (i −1)∗di)

+ co s f (2 . 0 f ∗(f loat) (j−1)∗dj)) + 50000;
}

}

/∗ 60 ∗/
for (j =1; j<=n ; j++){

i f (j%4 == 0){
for (i =1; i<=m; i++){

u [j] [i +1] = −(p s i [j +1] [i +1] − ps i [j] [i +1])/dy ;
v [j +1] [i] = (p s i [j +1] [i +1]−ps i [j +1] [i]) / dx ;

}
} else i f (j%4 == 1){

for (i =1; i<=m; i++){
u [j] [i +1] = −(p s i [j +1] [i +1] − ps i [j] [i +1])/dy ;
v [j +1] [i] = (p s i [j +1] [i +1]−ps i [j +1] [i]) / dx ;

}
} else i f (j%4 == 2){

for (i =1; i<=m; i++){
u [j] [i +1] = −(p s i [j +1] [i +1] − ps i [j] [i +1])/dy ;
v [j +1] [i] = (p s i [j +1] [i +1]−ps i [j +1] [i]) / dx ;

}
} else i f (j%4 == 3){

for (i =1; i<=m; i++){
u [j] [i +1] = −(p s i [j +1] [i +1] − ps i [j] [i +1])/dy ;
v [j +1] [i] = (p s i [j +1] [i +1]−ps i [j +1] [i]) / dx ;

}
}

}

/∗ 70 ∗/
for (j =1; j<=n ; j++){

u [j] [1] = u [j] [m+1] ;
v [j +1] [m+1] = v [j + 1] [1] ;

}

/∗ 75 ∗/
for (i =1; i<=m; i++){

u [n+1] [i +1] = u [1] [i +1] ;
v [1] [i] = v [n+1] [i] ;

}

u [n+1] [1] = u [1] [m+1] ;
v [1] [m+1] = v [n +1] [1] ;

for (j =1; j<=np1 ; j++){
for (i =1; i<=mp1 ; i++){

uold [j] [i] = u [j] [i] ;
vold [j] [i] = v [j] [i] ;
pold [j] [i] = p [j] [i] ;

}
}

80

A.1. SPEC95.SWIM APPENDIX A. BENCHMARKING SOURCE CODE

}

void ca l c 1 (void)
{

int i , j ;
f loat f sdx = 4 .0 f /dx ;
f loat f sdy = 4 .0 f /dy ;

/∗ 100 ∗/
for (j =1; j<=n ; j++){

i f (j%4 == 0){
for (i =1; i<=m; i++){

cu [j] [i +1] = 0 .5 f ∗(p [j] [i +1]+p [j] [i])∗ u [j] [i +1] ;
cv [j +1] [i] = 0 .5 f ∗(p [j +1] [i]+p [j] [i])∗ v [j +1] [i] ;

z [j +1] [i +1] = (f sdx ∗(v [j +1] [i +1]−v [j +1] [i])
− f sdy ∗(u [j +1] [i +1]−u [j] [i +1]))
/(p [j] [i]+p [j] [i +1]+p [j +1] [i +1]+p [j +1] [i]) ;

h [j] [i] = p [j] [i] + 0 .25 f ∗(
u [j] [i +1]∗u [j] [i +1] + u [j] [i]∗u [j] [i]
+ v [j +1] [i]∗ v [j +1] [i] + v [j] [i]∗ v [j] [i]) ;

}
} else i f (j%4 == 1){
for (i =1; i<=m; i++){

cu [j] [i +1] = 0 .5 f ∗(p [j] [i +1]+p [j] [i])∗ u [j] [i +1] ;
cv [j +1] [i] = 0 .5 f ∗(p [j +1] [i]+p [j] [i])∗ v [j +1] [i] ;

z [j +1] [i +1] = (f sdx ∗(v [j +1] [i +1]−v [j +1] [i])
− f sdy ∗(u [j +1] [i +1]−u [j] [i +1]))
/(p [j] [i]+p [j] [i +1]+p [j +1] [i +1]+p [j +1] [i]) ;

h [j] [i] = p [j] [i] + 0 .25 f ∗(
u [j] [i +1]∗u [j] [i +1] + u [j] [i]∗u [j] [i]
+ v [j +1] [i]∗ v [j +1] [i] + v [j] [i]∗ v [j] [i]) ;

}
} else i f (j%4 == 2){
for (i =1; i<=m; i++){

cu [j] [i +1] = 0 .5 f ∗(p [j] [i +1]+p [j] [i])∗ u [j] [i +1] ;
cv [j +1] [i] = 0 .5 f ∗(p [j +1] [i]+p [j] [i])∗ v [j +1] [i] ;

z [j +1] [i +1] = (f sdx ∗(v [j +1] [i +1]−v [j +1] [i])
− f sdy ∗(u [j +1] [i +1]−u [j] [i +1]))
/(p [j] [i]+p [j] [i +1]+p [j +1] [i +1]+p [j +1] [i]) ;

h [j] [i] = p [j] [i] + 0 .25 f ∗(
u [j] [i +1]∗u [j] [i +1] + u [j] [i]∗u [j] [i]
+ v [j +1] [i]∗ v [j +1] [i] + v [j] [i]∗ v [j] [i]) ;

}
} else i f (j%4 == 3){
for (i =1; i<=m; i++){

cu [j] [i +1] = 0 .5 f ∗(p [j] [i +1]+p [j] [i])∗ u [j] [i +1] ;
cv [j +1] [i] = 0 .5 f ∗(p [j +1] [i]+p [j] [i])∗ v [j +1] [i] ;

z [j +1] [i +1] = (f sdx ∗(v [j +1] [i +1]−v [j +1] [i])
− f sdy ∗(u [j +1] [i +1]−u [j] [i +1]))
/(p [j] [i]+p [j] [i +1]+p [j +1] [i +1]+p [j +1] [i]) ;

h [j] [i] = p [j] [i] + 0 .25 f ∗(
u [j] [i +1]∗u [j] [i +1] + u [j] [i]∗u [j] [i]
+ v [j +1] [i]∗ v [j +1] [i] + v [j] [i]∗ v [j] [i]) ;

}
}

}
/∗ 110 ∗/

for (j =1; j<=n ; j++){
u [j] [1] = cu [j] [m+1] ;
cv [j +1] [m+1] = cv [j + 1] [1] ;
z [j +1] [1] = z [j +1] [m+1] ;
h [j] [m+1] = h [j] [1] ;

}

/∗ 115 ∗/

81

A.1. SPEC95.SWIM APPENDIX A. BENCHMARKING SOURCE CODE

for (i =1; i<=m; i++){
cu [n+1] [i +1] = cu [1] [i +1] ;
cv [1] [i] = cv [n+1] [i] ;
z [1] [i +1] = z [n+1] [i +1] ;
h [1] [i] = h [n+1] [i] ;

}

cu [n+1] [1] = cu [1] [m+1] ;
cv [1] [m+1] = cv [n +1] [1] ;
z [1] [1] = z [n+1] [m+1] ;
h [n+1] [m+1] = h [1] [1] ;

}

void ca l c 2 (void)
{

int i , j ;
f loat tdt s8 = tdt /8 .0 f ;
f loat tdtsdx = tdt /dx ;
f loat tdtsdy = tdt /dy ;

/∗ 200 ∗/
for (j =1; j<=n ; j++){

i f (j%4 == 0){
for (i =1; i<=m; i++){

unew [j] [i +1] = uold [j] [i +1] + tdt s8 ∗(z [j +1] [i +1]+z [j] [i +1])
∗ (cv [j +1] [i +1]+cv [j +1] [i]+cv [j] [i]+cv [j] [i +1])
− tdtsdx ∗(h [j] [i +1] − h [j] [i]) ;

vnew [j +1] [i] = vold [j +1] [i] − tdt s8 ∗(z [j +1] [i +1]+z [j +1] [i])
∗ (cu [j +1] [i +1]+cu [j +1] [i] + cu [j] [i]+cu [j] [i +1])
− tdtsdy ∗(h [j +1] [i]−h [j] [i]) ;

pnew [j] [i] = pold [j] [i] − tdtsdx ∗(cu [j] [i +1]−cu [j] [i])
− tdtsdy ∗(cv [j +1] [i]−cv [j] [i]) ;

}
} else i f (j%4 == 1){
for (i =1; i<=m; i++){

unew [j] [i +1] = uold [j] [i +1] + tdt s8 ∗(z [j +1] [i +1]+z [j] [i +1])
∗ (cv [j +1] [i +1]+cv [j +1] [i]+cv [j] [i]+cv [j] [i +1])
− tdtsdx ∗(h [j] [i +1] − h [j] [i]) ;

vnew [j +1] [i] = vold [j +1] [i] − tdt s8 ∗(z [j +1] [i +1]+z [j +1] [i])
∗ (cu [j +1] [i +1]+cu [j +1] [i] + cu [j] [i]+cu [j] [i +1])
− tdtsdy ∗(h [j +1] [i]−h [j] [i]) ;

pnew [j] [i] = pold [j] [i] − tdtsdx ∗(cu [j] [i +1]−cu [j] [i])
− tdtsdy ∗(cv [j +1] [i]−cv [j] [i]) ;

}
} else i f (j%4 == 2){
for (i =1; i<=m; i++){

unew [j] [i +1] = uold [j] [i +1] + tdt s8 ∗(z [j +1] [i +1]+z [j] [i +1])
∗ (cv [j +1] [i +1]+cv [j +1] [i]+cv [j] [i]+cv [j] [i +1])
− tdtsdx ∗(h [j] [i +1] − h [j] [i]) ;

vnew [j +1] [i] = vold [j +1] [i] − tdt s8 ∗(z [j +1] [i +1]+z [j +1] [i])
∗ (cu [j +1] [i +1]+cu [j +1] [i] + cu [j] [i]+cu [j] [i +1])
− tdtsdy ∗(h [j +1] [i]−h [j] [i]) ;

pnew [j] [i] = pold [j] [i] − tdtsdx ∗(cu [j] [i +1]−cu [j] [i])
− tdtsdy ∗(cv [j +1] [i]−cv [j] [i]) ;

}
} else i f (j%4 == 3){
for (i =1; i<=m; i++){

unew [j] [i +1] = uold [j] [i +1] + tdt s8 ∗(z [j +1] [i +1]+z [j] [i +1])
∗ (cv [j +1] [i +1]+cv [j +1] [i]+cv [j] [i]+cv [j] [i +1])
− tdtsdx ∗(h [j] [i +1] − h [j] [i]) ;

vnew [j +1] [i] = vold [j +1] [i] − tdt s8 ∗(z [j +1] [i +1]+z [j +1] [i])
∗ (cu [j +1] [i +1]+cu [j +1] [i] + cu [j] [i]+cu [j] [i +1])
− tdtsdy ∗(h [j +1] [i]−h [j] [i]) ;

pnew [j] [i] = pold [j] [i] − tdtsdx ∗(cu [j] [i +1]−cu [j] [i])
− tdtsdy ∗(cv [j +1] [i]−cv [j] [i]) ;

}
}

}

82

A.1. SPEC95.SWIM APPENDIX A. BENCHMARKING SOURCE CODE

/∗ 210 ∗/
for (j =1; j<=n ; j++){

unew [j] [1] = unew [j] [m+1] ;
vnew [j +1] [m+1] = vnew [j + 1] [1] ;
pnew [j] [m+1] = pnew [j] [1] ;

}

/∗ 215 ∗/
for (i =1; i<=m; i++){

unew [n+1] [i +1] = unew [1] [i +1] ;
vnew [1] [i] = vnew [n+1] [i] ;
pnew [n+1] [i] = pnew [1] [i] ;

}

unew [n+1] [1] = unew [1] [m+1] ;
vnew [1] [m+1] = vnew [n +1] [1] ;
pnew [n+1] [m+1] = pnew [1] [1] ;

}

void ca l c 3 (void)
{

int i , j ;
/∗ 300 ∗/

for (j =1; j<=n ; j++){
for (i =1; i<=m; i++){

uold [j] [i] = u [j] [i]
+ alpha ∗(unew [j] [i]−2.0 f ∗u [j] [i]+uold [j] [i]) ;

vold [j] [i] = v [j] [i]
+ alpha ∗(vnew [j] [i]−2.0 f ∗v [j] [i]+vold [j] [i]) ;

pold [j] [i] = p [j] [i]
+ alpha ∗(pnew [j] [i]−2.0 f ∗p [j] [i]+pold [j] [i]) ;

u [j] [i] = unew [j] [i] ;
v [j] [i] = vnew [j] [i] ;
p [j] [i] = pnew [j] [i] ;

}
}

/∗ 320 ∗/
for (j =1; j<=n ; j++){

uold [j] [m+1] = uold [j] [1] ;
vold [j] [m+1] = vold [j] [1] ;
pold [j] [m+1] = pold [j] [1] ;
u [m+1] [j] = u [j] [1] ;
v [m+1] [j] = v [j] [1] ;
p [m+1] [j] = p [j] [1] ;

}
/∗ 325 ∗/

for (i =1; i<=m; i++){
uold [n+1] [i] = uold [1] [i] ;
vold [n+1] [i] = vold [1] [i] ;
pold [n+1] [i] = pold [1] [i] ;
u [n+1] [i] = u [1] [i] ;
v [n+1] [i] = v [1] [i] ;
p [n+1] [i] = p [1] [i] ;

}

uold [n+1] [m+1] = uold [1] [1] ;
vold [n+1] [m+1] = vold [1] [1] ;
pold [n+1] [m+1] = pold [1] [1] ;
u [n+1] [m+1] = u [1] [1] ;
v [n+1] [m+1] = v [1] [1] ;
p [n+1] [m+1] = p [1] [1] ;

}

void ca l c 3 z (void)

83

A.1. SPEC95.SWIM APPENDIX A. BENCHMARKING SOURCE CODE

{
int i , j ;
tdt = tdt+tdt ;
for (j =1; j<=np1 ; j++){

for (i =1; i<=mp1 ; i++){
uold [j] [i] = u [i] [j] ;
vold [j] [i] = v [j] [i] ;
pold [j] [i] = p [j] [i] ;
u [j] [i] = unew [j] [i] ;
v [j] [i] = vnew [j] [i] ;
p [j] [i] = pnew [j] [i] ;

}
}

}

void do swim (void)
{

int i , j ;
int ncycle , icheck , j check ;
f loat mnmin , time ;
f loat pcheck , ucheck , vcheck , ptime ;

i n i t i a l () ;
/∗

p r i n t f (”Number of points in the x d i r ec t i on %d\n”\
”Number of poi tns in the y d i r ec t i on %d\n”\
”Grid spacing in the x d i r ec t i on %f \n”\
”Grid spacing in the y d i r ec t i on %f \n”\
”Time step %f \n”\
”Time f i l t e r parameter %f \n”\
”Number of i t e r a t i on s %d\n” , n , m, dx , dy , dt , alpha , itmax) ;

∗/
mnmin = min (m, n) ;
time = 0 ;
ncyc l e = 0 ;

L90 : ncyc l e = ncyc l e + 1 ;

ca l c 1 () ;
c a l c 2 () ;

time = time + dt ;
i f (ncyc l e % mprint != 0)

goto L370 ;

ptime = time /3600.0 f ;
/∗

p r i n t f (”Cycle number %d\n Model time in hours %f \n” , ncycle , ptime) ;
∗/

pcheck = 0 .0 f ;
ucheck = 0 .0 f ;
vcheck = 0 .0 f ;

/∗ 3500 ∗/
for (i check = 1 ; i check <= mnmin ; i check++){

for (j check = 1 ; j check <= mnmin ; j check++){
pcheck = pcheck + abs (pnew [j check] [i check]) ;
ucheck = ucheck + abs (unew [j check] [i check]) ;
vcheck = vcheck + abs (vnew [j check] [i check]) ;

}
}

/∗
p r i n t f (”Pcheck = %f \nUcheck = %f \nVcheck = %f \n” , pcheck , ucheck , vcheck) ;

∗/
L370 :

i f (ncyc l e >= itmax)
return ;

i f (ncyc l e <= 1)

84

A.2. SPEC95.TOMCATV APPENDIX A. BENCHMARKING SOURCE CODE

ca l c 3 z () ;
else

ca l c 3 () ;

goto L90 ;
}

int main (void)
{

int i , j ;
struct tms s t a r t ;
struct tms end ;
long min , d i f f ;
min = 9999999;

for (j =0; j <5; j++)
{

t imes(& s t a r t) ;
do swim () ;
t imes(&end) ;
d i f f = ((end . tms utime − s t a r t . tms utime) ∗ 1000 .0) / sy s con f (SC CLK TCK) ;
min = min > d i f f ? d i f f : min ;

}

p r i n t f (”%ld \n” , min) ;

return 0 ;
}

A.2 Spec95.Tomcatv

#include <s t d i o . h>
#include <sys / t imes . h>
#include <uni s td . h>

#define max(a , b) (a > b ? a : b)
#define abs (a) (a < 0 ?(−a) : a)
#define NMAX 513
#define ITMAX 1000
int n , i t a c t , i t e r ;

double c25 = 0 . 2 5 ;
double c125 = 0 . 1 2 5 ;
double c2 = 2 . 0 ;
double neg = −1.0;
double r e l = 2 . 0 / 0 . 9 8 ;
double r e l f a = 0 . 9 8 ;
double eps = 0 .5E−8;

double dd [NMAX] [NMAX] ;
double aa [NMAX] [NMAX] ;
double x [NMAX] [NMAX] ;
double y [NMAX] [NMAX] ;
double rx [NMAX] [NMAX] ;
double ry [NMAX] [NMAX] ;

double d [NMAX] [NMAX] ;
double rxm [ITMAX] , rym [ITMAX] ;
double r , abx , aby ;
double pxx [NMAX] , qxx [NMAX] , pyy [NMAX] , qyy [NMAX] , pxy [NMAX] , qxy [NMAX] ;
double a [NMAX] , b [NMAX] , c [NMAX] ;

int i n i t (void)
{

int i , j ;
FILE∗ f i l e ;

85

A.2. SPEC95.TOMCATV APPENDIX A. BENCHMARKING SOURCE CODE

/∗ do input/output ∗/
f i l e = fopen (”TOMCATV.MODEL” , ” r ”) ;
i f (! f i l e){

p r i n t f (” f i l e ’TOMCATV.MODEL’ does not e x i s t ; stop \n”) ;
return 1 ;

}
for (j =1; j<=NMAX−1; j++)
{

for (i =1; i<=NMAX−1; i++)
{

double tmp1 , tmp2 ;
f s c a n f (f i l e , ”%e%e” , &tmp1 , &tmp2) ;
x [j] [i] = (double) tmp1 ;
y [j] [i] = (double) tmp2 ;

}
}
f c l o s e (f i l e) ;

}

void f i n i s h (void)
{

int i , j ;
/∗ do IO ∗/
p r i n t f (” 2−D ITERATION BEHAVIOR\n”) ;
p r i n t f (” IT X−RES Y−RES\n”) ;

for (i =1; i<=i t e r −1; i++)
{

p r i n t f (” %d %011 f %011 f \n” , i , rxm [i] , rym [i]) ;
}
p r i n t f (”\n\n”) ;

}

int do tomcatv (void)
{

int i , j ;
/∗ i n i t i a l i z e constant va lues ∗/
n = NMAX;
i t a c t = ITMAX;

/∗ perform algorithm ∗/
for (i t e r =1; i t e r <=i t a c t ; i t e r++)
{

rxm [i t e r] = 0 . 0 ;
rym [i t e r] = 0 . 0 ;

/∗ r e s i dua l s of i t e r i t e r a t i on ∗/
for (j =1; j<=n−1; j++)
{

i f (j%4==0){
for (i =1; i<=n−1; i++)
{

pxx [i] = x [j] [i +1]−x [j] [i −1] ;
qxy [i] = y [j] [i +1]−y [j] [i −1] ;
pxy [i] = x [j +1] [i]−x [j −1] [i] ;
pyy [i] = y [j +1] [i]−y [j −1] [i] ;
a [i] = c25 ∗ (pxy [i]∗ pxy [i]+pyy [i]∗ pyy [i]) ;
b [i] = c25 ∗ (pxx [i]∗ pxx [i]+qxy [i]∗ qxy [i]) ;
c [i] = c125 ∗ (pxx [i]∗ pxy [i]+qxy [i]∗ pyy [i]) ;
aa [j] [i] = neg ∗ b [i] ;
dd [j] [i] = b [i]+b [i]+a [i]∗ r e l ;
pxx [i] = x [j] [i +1]−c2∗x [j] [i]+x [j] [i −1] ;
qxx [i] = y [j] [i +1]−c2∗y [j] [i]+y [j] [i −1] ;
pyy [i] = x [j +1] [i]−c2∗x [j] [i]+x [j −1] [i] ;
qyy [i] = y [j +1] [i]−c2∗y [j] [i]+y [j −1] [i] ;
pxy [i] = x [j +1] [i +1]−x [j −1] [i +1]−x [j +1] [i−1]+x [j −1] [i −1] ;
qxy [i] = y [j +1] [i +1]−y [j −1] [i +1]−y [j +1] [i−1]+y [j −1] [i −1] ;

86

A.2. SPEC95.TOMCATV APPENDIX A. BENCHMARKING SOURCE CODE

rx [j] [i] = a [i]∗ pxx [i]+b [i]∗ pyy [i]−c [i]∗ pxy [i] ;
ry [j] [i] = a [i]∗ qxx [i]+b [i]∗ qyy [i]−c [i]∗ qxy [i] ;

}
} else i f (j%4==1){

for (i =1; i<=n−1; i++)
{

pxx [i] = x [j] [i +1]−x [j] [i −1] ;
qxy [i] = y [j] [i +1]−y [j] [i −1] ;
pxy [i] = x [j +1] [i]−x [j −1] [i] ;
pyy [i] = y [j +1] [i]−y [j −1] [i] ;
a [i] = c25 ∗ (pxy [i]∗ pxy [i]+pyy [i]∗ pyy [i]) ;
b [i] = c25 ∗ (pxx [i]∗ pxx [i]+qxy [i]∗ qxy [i]) ;
c [i] = c125 ∗ (pxx [i]∗ pxy [i]+qxy [i]∗ pyy [i]) ;
aa [j] [i] = neg ∗ b [i] ;
dd [j] [i] = b [i]+b [i]+a [i]∗ r e l ;
pxx [i] = x [j] [i +1]−c2∗x [j] [i]+x [j] [i −1] ;
qxx [i] = y [j] [i +1]−c2∗y [j] [i]+y [j] [i −1] ;
pyy [i] = x [j +1] [i]−c2∗x [j] [i]+x [j −1] [i] ;
qyy [i] = y [j +1] [i]−c2∗y [j] [i]+y [j −1] [i] ;
pxy [i] = x [j +1] [i +1]−x [j −1] [i +1]−x [j +1] [i−1]+x [j −1] [i −1] ;
qxy [i] = y [j +1] [i +1]−y [j −1] [i +1]−y [j +1] [i−1]+y [j −1] [i −1] ;
rx [j] [i] = a [i]∗ pxx [i]+b [i]∗ pyy [i]−c [i]∗ pxy [i] ;
ry [j] [i] = a [i]∗ qxx [i]+b [i]∗ qyy [i]−c [i]∗ qxy [i] ;

}
}

}

/∗ Determine maximum values rxm , rym of r e s i dua l s ∗/
/∗V 80 ∗/ for (j =1; j<=n−1; j++)

{
for (i =1; i<n−1; i++)
{

rxm [i t e r] = max(rxm [i t e r] , abs (rx [j] [i])) ;
rym [i t e r] = max(rym [i t e r] , abs (ry [j] [i])) ;

}
}

/∗V 90 ∗/ for (i =1; i<=n−1; i++)
{

d [2] [i] = 1 .0/dd [2] [i] ;
}

/∗V 100 ∗/ for (j =2; j<= n−1; j++)
{

for (i =1; i<=n−1; i++)
{

r = aa [j] [i]∗d [j −1] [i] ;
d [j] [i] = 1 .0/ (dd [j] [i] − aa [j −1] [i] ∗ r) ;
rx [j] [i] = rx [j] [i] − rx [j −1] [i]∗ r ;
ry [j] [i] = ry [j] [i] − ry [j −1] [i]∗ r ;

}
}

/∗V 110 ∗/ for (i =1; i<=n−1; i++)
{

rx [n−1] [i] = rx [n−1] [i]∗d [n−1] [i] ;
ry [n−1] [i] = ry [n−1] [i]∗d [n−1] [i] ;

}

/∗V 120 ∗/ for (j=n−2; j >=1; j−−)
{

for (i =1; i<= n−1; i++)
{

rx [j] [i] = (rx [j] [i]−aa [j] [i]∗ rx [j +1] [i])∗ d [j] [i] ;
ry [j] [i] = (ry [j] [i]−aa [j] [i]∗ ry [j +1] [i])∗ d [j] [i] ;

}
}

87

A.3. LIVERMORE APPENDIX A. BENCHMARKING SOURCE CODE

/∗V 130 ∗/ for (j =1; j<=n−1; j++)
{

for (i =1; i<=n−1; i++)
{

x [j] [i] = x [j] [i] + rx [j] [i] ;
y [j] [i] = y [j] [i] + ry [j] [i] ;

}
}

abx = abs (rxm [i t e r]) ;
aby = abs (rym [i t e r]) ;

/∗ i f (abx <= eps && aby <= eps)
break ;

∗/
}

return 0 ;
}

int main (void)
{

int i , j ;
struct tms s t a r t ;
struct tms end ;
long min , d i f f ;
min = 9999999;

/∗ I n i t i a l i z e ∗/
i f (i n i t ())

return 1 ;

for (j =0; j <5; j++)
{

t imes(& s t a r t) ;
do tomcatv () ;
t imes(&end) ;
d i f f = ((end . tms utime − s t a r t . tms utime) ∗ 1000 .0) / sy s con f (SC CLK TCK) ;
min = min > d i f f ? d i f f : min ;

}
// f i n i s h () ;

p r i n t f (”%ld \n” , min) ;

return 0 ;
}

A.3 Livermore

#include <s t d i o . h>
#include <a s s e r t . h>
#include <sys / t imes . h>
#include <uni s td . h>

f loat dm22 , dm23 , dm24 , dm25 , dm26 , dm27 , dm28 , q , r , t , c0 ;
f loat u [1 0 0 1] , x [1 0 0 1] , y [1 0 0 1] , z [1 0 0 1] ;
f loat px [2 5] [1 0 0 1] ;

/∗ Hydro fragment ∗/
void kerne l 1 ()
{

int l , k ;
int n = 1001 ;
int lp = 80000;

88

A.3. LIVERMORE APPENDIX A. BENCHMARKING SOURCE CODE

for (l = 0 ; l < lp ; l++)
for (k = 0 ; k < n ; k++)

x [k]= q + y [k]∗ (r∗z [k+10] + t∗z [k+11]) ;
}

/∗ Equation of s t a t e fragment ∗/
void kerne l 7 ()
{

int l , k ;
int n = 1001 ;
int lp = 80000;

for (l = 0 ; l < lp ; l++){
for (k = 0 ; k < n ; k++) {

x [k]= u [k] + r ∗(z [k] + r∗y [k])
+ t ∗(u [k+3] + r ∗(u [k+2] + r∗u [k+1])
+ t ∗(u [k+6] + r ∗(u [k+5] + r∗u [k +4]))) ;

}
}

}

/∗ i n t e g ra t e Predictors ∗/
void kerne l 9 ()
{

int i , l ;
int n = 1001 ;
int lp = 80000;

for (l = 0 ; l < lp ; l++){
for (i = 0 ; i < n ; i++) {

#ifndef OPTIM
px [0] [i] = dm28∗px [1 2] [i] + dm27∗px [1 1] [i] + dm26∗px [1 0] [i] +

dm25∗px [9] [i] + dm24∗px [8] [i] + dm23∗px [7] [i] +
dm22∗px [6] [i] + c0 ∗(px [4] [i] + px [5] [i]) + px [2] [i] ;

#else
px [0] [i]=

(dm28∗px [1 2] [i] + dm24∗px [8] [i])
+ (dm27∗px [1 1] [i] + dm23∗px [7] [i])
+ (dm26∗px [1 0] [i] + dm22∗px [6] [i] + px [2] [i])
+ (dm25∗px [9] [i] + c0 ∗ px [5] [i])
+ c0∗ px [4] [i] ;

#endif
}

}
}

/∗ Firs t d i f f e r ence ∗/
void kerne l12 ()
{

int l , k ;
int n = 1001 ;
int lp = 500000;

for (l = 0 ; l < lp ; l++)
for (k = 0 ; k < n ; k++)

x [k]= y [k+1] − y [k] ;
}

typedef void (∗ ke rn fp) (void) ;

int main (int argc , char∗∗ argv)
{

int i , j , k ;
struct tms s t a r t ;
struct tms end ;
long min , d i f f ;
k e rn fp ke rne l ;

/∗ Get kerne l ∗/

89

A.4. GENERATED LOOP (EXAMPLE) APPENDIX A. BENCHMARKING SOURCE CODE

i f (argc != 2){
p r i n t f (” . / l i v e rmore [1 , 7 , 9 , 12]\n”\
”\tExample : . / l i v e rmore 9\n”) ;
return 1 ;

}
a s s e r t (s s c an f (argv [1] , ”%d” , &k)) ;
switch (k){

case 1 : k e rne l = kerne l1 ; break ;
case 7 : k e rne l = kerne l7 ; break ;
case 9 : k e rne l = kerne l9 ; break ;
case 12 : k e rne l = kerne l12 ; break ;

}

/∗ Benchmark ∗/
min = 9999999;
for (j =0; j <10; j++)
{

t imes(& s t a r t) ;
k e rne l () ;

t imes(&end) ;
d i f f = ((end . tms utime − s t a r t . tms utime) ∗ 1000 .0) / sy s con f (SC CLK TCK) ;
min = min > d i f f ? d i f f : min ;

}

p r i n t f (”%ld \n” , min) ;

return 0 ;
}

A.4 Generated loop (example)

#include <s t d i o . h>
#include <uni s td . h>
#include <sys / t imes . h>

f loat z [1 0 2 4] ;
f loat dummy2 [3 1] ;
f loat b [1 0 2 4] ;
f loat dummy1 [3 1] ;
f loat a [1 0 2 4] ;
f loat dummy0 [3 1] ;

void i n i t (void)
{

int i t e r ;
for (i t e r =0; i t e r <1024; i t e r++)
{

a [i t e r] = (f loat) (i t e r %20);
}
for (i t e r =0; i t e r <1024; i t e r++)
{

b [i t e r] = (f loat) (i t e r %20);
}

}

void check (void)
{

int i t e r ;
int check ;
check = 1 ;
for (i t e r =0; i t e r <1020; i t e r++)
{

check = check && (z [i t e r +8] == a [i t e r +8] − b [i t e r +9] ∗ a [i t e r +9] ∗ b [i t e r +8] ∗ a [i t e r +8] − b [i t e r +7]) ;
check = check && (z [i t e r +7] == a [i t e r +10] + b [i t e r +6] ∗ a [i t e r +7] − b [i t e r +7] ∗ a [i t e r +7] ∗ b [i t e r +7]) ;
check = check && (z [i t e r +6] == a [i t e r +6] ∗ b [i t e r +6] ∗ a [i t e r +3] ∗ b [i t e r +9] + a [i t e r +8] ∗ b [i t e r +6]) ;
check = check && (z [i t e r +5] == a [i t e r +2] ∗ b [i t e r +3] ∗ a [i t e r +6] ∗ b [i t e r +3] ∗ a [i t e r +6] + b [i t e r +6]) ;
check = check && (z [i t e r +4] == a [i t e r +5] ∗ b [i t e r +2] ∗ a [i t e r +4] − b [i t e r +4] ∗ a [i t e r +2] ∗ b [i t e r +3]) ;

90

A.5. MOTION ESTIMATION APPENDIX A. BENCHMARKING SOURCE CODE

}
p r i n t f (”Check ”) ; check ? p r i n t f (”Passed\n”) : p r i n t f (” Fa i l ed \n”) ;

}
stat ic void ke rne l (void)
{

int i t e r ;
for (i t e r =0; i t e r <1020; i t e r++)
{

z [i t e r +8] = a [i t e r +8] − b [i t e r +9] ∗ a [i t e r +9] ∗ b [i t e r +8] ∗ a [i t e r +8] − b [i t e r +7] ;
z [i t e r +7] = a [i t e r +10] + b [i t e r +6] ∗ a [i t e r +7] − b [i t e r +7] ∗ a [i t e r +7] ∗ b [i t e r +7] ;
z [i t e r +6] = a [i t e r +6] ∗ b [i t e r +6] ∗ a [i t e r +3] ∗ b [i t e r +9] + a [i t e r +8] ∗ b [i t e r +6] ;
z [i t e r +5] = a [i t e r +2] ∗ b [i t e r +3] ∗ a [i t e r +6] ∗ b [i t e r +3] ∗ a [i t e r +6] + b [i t e r +6] ;
z [i t e r +4] = a [i t e r +5] ∗ b [i t e r +2] ∗ a [i t e r +4] − b [i t e r +4] ∗ a [i t e r +2] ∗ b [i t e r +3] ;

}
}

int main (void)
{

int i t e r , j ;
struct tms s t a r t ;
struct tms end ;
long min , d i f f ;
min = 9999999;

i n i t () ;
for (i t e r =0; i t e r <5; i t e r++)
{

t imes(& s t a r t) ;
for (j =0; j < 12000; j++)
{

ke rne l () ;
}
t imes(&end) ;
d i f f = ((end . tms utime − s t a r t . tms utime) ∗ 1000 .0) / sy s con f (SC CLK TCK) ;
min = min > d i f f ? d i f f : min ;

}
check () ;
p r i n t f (”%ld \n” , min) ;
return 0 ;

}

A.5 Motion estimation

#include <sys / t imes . h>
#include <uni s td . h>

#define make vector (. . .) 0
#define abs (a) ((a) < 0 ? −(a) : (a))
#define KSL −KS/2
#define KSU KS/2

short r e f [HEIGHT] [WIDTH] ;
short other [HEIGHT+KS] [WIDTH+KS] ;
short match [BS] [BS] ;

stat ic i n l i n e void d i f f (int blocky , int blockx , int dy , int dx)
{

int y , x ;
for (y=0; y<BS ; y++)

for (x=0; x<BS ; x++)
match [y] [x] = r e f [blocky+y] [blockx+x] − other [blocky+dy+y] [blockx+dx+x] ;

}

91

A.5. MOTION ESTIMATION APPENDIX A. BENCHMARKING SOURCE CODE

stat ic i n l i n e int sad (void)
{

int sum , y , x ;

sum = 0 ;
for (y=0; y<BS ; y++)

for (x=0; x<BS ; x++)
sum += abs (match [y] [x]) ;

return sum ;
}

void blockmatch (void)
{

int dy , dx ;
int blocky , blockx ;
int mindx , mindy , min , tmp ;

// b lock
for (blocky = KS; blocky < HEIGHT−BS ; blocky += BS)
{

for (blockx = KS; blockx < WIDTH−BS ; blockx += BS)
{

tmp = 99999;
for (dy = KSL; dy < KSU; dy++)
{

for (dx = KSL; dx < KSU; dx++)
{

i f (dx%BS < −4){
i f (dx%BS < −6){

i f (dx%BS == −7)
d i f f (blocky , blockx , dy , dx) ;

else i f (dx%BS == −8)
d i f f (blocky , blockx , dy , dx) ;

} else {
i f (dx%BS == −6)

d i f f (blocky , blockx , dy , dx) ;
else i f (dx%BS == −5)

d i f f (blocky , blockx , dy , dx) ;
}

} else i f (dx%BS < 0){
i f (dx%BS < −2){

i f (dx%BS == −3)
d i f f (blocky , blockx , dy , dx) ;

else i f (dx%BS == −4)
d i f f (blocky , blockx , dy , dx) ;

} else {
i f (dx%BS == −2)

d i f f (blocky , blockx , dy , dx) ;
else i f (dx%BS == −1)

d i f f (blocky , blockx , dy , dx) ;
}

} else i f (dx%BS > 4){
i f (dx%BS > 6){

i f (dx%BS == 7)
d i f f (blocky , blockx , dy , dx) ;

else i f (dx%BS == 8)
d i f f (blocky , blockx , dy , dx) ;

} else {
i f (dx%BS == 6)

d i f f (blocky , blockx , dy , dx) ;
else i f (dx%BS == 5)

d i f f (blocky , blockx , dy , dx) ;
}

} else i f (dx%BS > 0){
i f (dx%BS > 2){

i f (dx%BS == 3)
d i f f (blocky , blockx , dy , dx) ;

else i f (dx%BS == 4)

92

A.5. MOTION ESTIMATION APPENDIX A. BENCHMARKING SOURCE CODE

d i f f (blocky , blockx , dy , dx) ;
} else {

i f (dx%BS == 2)
d i f f (blocky , blockx , dy , dx) ;

else i f (dx%BS == 1)
d i f f (blocky , blockx , dy , dx) ;

}
} else i f (dx%BS == 0){

d i f f (blocky , blockx , dy , dx) ;
}

tmp = sad () ;
i f (tmp < min){

mindy = dy ;
mindx = dx ;
min = tmp ;

}
}

}
}

}
}

void main (void)
{

int i , j ;
struct tms s t a r t ;
struct tms end ;
long min , d i f f ;
min = 9999999;

for (j =0; j <10; j++)
{

t imes(& s t a r t) ;
blockmatch () ;

t imes(&end) ;
d i f f = ((end . tms utime − s t a r t . tms utime) ∗ 1000 .0) / sy s con f (SC CLK TCK) ;
min = min > d i f f ? d i f f : min ;

}

p r i n t f (”%ld \n” , min) ;
}

93

Appendix B

A Compiler Comparison

94

	1 Introduction
	2 Background
	2.1 (Short) Vector instructions
	2.2 Applications suited for SIMD
	2.3 Hardware architecture support
	2.3.1 SSE extensions
	2.3.2 Altivec extensions
	2.3.3 Hardware vs Compiler considerations
	2.3.4 Support for irregular and unaligned data access
	2.3.5 Graphics hardware

	2.4 Automatic vectorization
	2.4.1 Loop Carried Dependences
	2.4.2 Code and loop transformations
	2.4.3 Cost model
	2.4.4 Generating SIMD instructions

	2.5 Loading and storing of vector data
	2.5.1 Data types
	2.5.2 Memory accesses

	2.6 Alignment issues
	2.6.1 Implicit realignment techniques
	2.6.2 Explicit realignment techniques

	2.7 Focus of this thesis

	3 Explicit Realignment
	3.1 Introduction
	3.2 Definitions
	3.3 Shifting register streams
	3.3.1 Finding a shift configuration
	3.3.2 Optimal shift configurations
	3.3.3 Realignment transformation

	4 Algorithm
	4.1 Input
	4.1.1 Constraints

	4.2 Definitions
	4.3 Calculating shift configurations
	4.3.1 Calculating the peel factor
	4.3.2 Initialization
	4.3.3 Determining offsets and stream-shifts
	4.3.4 Example of applying heuristics
	4.3.5 Optimal offset labeling
	4.3.6 Example of finding optimal labeling

	4.4 Towards vectorization
	4.4.1 Important observations
	4.4.2 Calculating Steady state loop boundaries; ProPeel and EpiPeel
	4.4.3 Adjusting vector offsets
	4.4.4 Generating shift operations
	4.4.5 Runtime alignments

	5 Implementation
	5.1 The compiler framework
	5.1.1 General overview
	5.1.2 SIMD Optimization
	5.1.3 Integrating explicit realignment in CoSy

	5.2 Analysis engine
	5.3 Transformation engine
	5.3.1 Implementing shift operations
	5.3.2 Multiple statements in Loop Body

	5.4 Code generation
	5.4.1 Permutation instructions
	5.4.2 Shift mappings

	5.5 Implementation issues
	5.5.1 Multiple data types within statements
	5.5.2 Common subexpressions
	5.5.3 Loop versioning

	6 Results
	6.1 Benchmarking platform
	6.2 Benchmarking observations
	6.3 Benchmarks
	6.3.1 Generated loops
	6.3.2 SPEC95 Tomcatv
	6.3.3 SPEC95 Swim
	6.3.4 Livermore kernels
	6.3.5 Motion estimation
	6.3.6 Sobel filter
	6.3.7 Mediabench GSM

	7 Conclusions
	8 Future Work
	A Benchmarking source code
	A.1 Spec95.Swim
	A.2 Spec95.Tomcatv
	A.3 Livermore
	A.4 Generated loop (example)
	A.5 Motion estimation

	B A Compiler Comparison

