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Continuous Control for High-Dimensional State Spaces: An Interactive
Learning Approach

Rodrigo Pérez-Dattari', Carlos Celemin?,

Abstract— Deep Reinforcement Learning (DRL) has become
a powerful methodology to solve complex decision-making
problems. However, DRL has several limitations when used in
real-world problems (e.g., robotics applications). For instance,
long training times are required and cannot be accelerated in
contrast to simulated environments, and reward functions may
be hard to specify/model and/or to compute. Moreover, the
transfer of policies learned in a simulator to the real-world has
limitations (reality gap). On the other hand, machine learning
methods that rely on the transfer of human knowledge to
an agent have shown to be time efficient for obtaining well
performing policies and do not require a reward function.
In this context, we analyze the use of human corrective
feedback during task execution to learn policies with high-
dimensional state spaces, by using the D-COACH framework,
and we propose new variants of this framework. D-COACH is a
Deep Learning based extension of COACH (COrrective Advice
Communicated by Humans), where humans are able to shape
policies through corrective advice. The enhanced version of D-
COACH, which is proposed in this paper, largely reduces the
time and effort of a human for training a policy. Experimental
results validate the efficiency of the D-COACH framework in
three different problems (simulated and with real robots), and
show that its enhanced version reduces the human training
effort considerably, and makes it feasible to learn policies
within periods of time in which a DRL agent do not reach
any improvement.

I. INTRODUCTION

In recent years, outstanding results in complex decision-
making problems have been obtained with Deep Rein-
forcement Learning (DRL). State-of-the-art algorithms have
solved problems with large state spaces and discrete action
spaces, such as playing Atari games [1], or beating the world
champion in GO [2], along with low level simulated continu-
ous control tasks in environments such as the ones included
in the OpenAl Gym [3] and the DeepMind Control Suite
[4]. Learning policies, parameterized with Convolutional
Neural Networks (CNN) for high-dimensional state spaces,
such as raw images, gives agents the possibility to build
rich state representations of the environment without feature
engineering on the side of the designer (which was always
necessary in classical RL). These properties can be very
useful in robotics, since it is common to find applications
with high-dimensional observations, such as RGB images.
Giving robots the ability to learn from such high-dimensional
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data will allow to scale up the complexity of what robots are
able to do.

Nevertheless, DRL has several limitations when used to
address real world systems [5]. For instance, DRL algorithms
require large amounts of data, which means long training
times that in contrast to simulated environments cannot be
accelerated with more computational power. If somehow this
shortcoming was addressed, sometimes the reward function
would still pose a problem as it is hard to specify/model
and/or to compute in many cases in the real-world. For
instance, sometimes additional perception capabilities to the
ones of the agent are needed for computing the reward
function, since in theory the reward is given “by the en-
vironment”, not by the agent.

In this regard, the transfer of knowledge learned in a
simulator to the real world is a typical solution. However,
the mismatch between the virtual and real environment,
known as “Reality Gap”, is often problematic [6]. This
results in agents that do not perform at their best in the
real world. Thus, it would be preferable to learn/fine-tune
policies directly in the real world.

On the other hand, machine learning methods that rely on
the transfer of human knowledge to an agent have shown
to be time efficient for obtaining good performance policies.
Moreover, some methods do not need expert human teachers
for training high performance agents [7]-[9]. This is why
they appear to be good candidates to tackle the DRL real-
world issues mentioned before.

Therefore, in this work, we study the use of human
corrective feedback during task execution, to learn policies
with high-dimensional state spaces, in continuous action
problems using CNNs. Our work extends D-COACH [10],
which is a Deep Learning (DL) based extension of the
COrrective Advice Communicated by Humans (COACH)
framework [9]. In the original D-COACH formulation, a
demonstration session is required, at the beginning of the
training process, for tuning the convolutional layers used for
state dimensionality reduction. After that, a fully-connected
network policy (connected to the previously trained encoder)
is interactively trained during task execution with the human
corrective feedback, similarly to the human-agent interaction
of the original COACH.

In this paper we introduce an enhanced version of D-
COACH, which eliminates the need of demonstration ses-
sions and trains the whole CNN simultaneously, reducing
the time and effort of the user/coach for teaching a policy. In
D-COACH no reward functions are needed, and the amount
of learning episodes are significantly reduced in comparison
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to alternative DRL approaches. Enhanced D-COACH is
validated in three different problems through simulations
and real-world scenarios. In each problem, the original and
enhanced D-COACH are analyzed and compared with the
DDPG method.

This paper is organized as follows: Section II briefly
introduces related Interactive Machine Learning (IML) meth-
ods, and Section III shows the general idea of the orig-
inal COACH. The enhanced D-COACH is presented in
Section IV, followed by the validation experiments in the
Section V. Finally, conclusions are drawn in Section VI.

II. RELATED WORK

IML gathers all techniques in which users interact with
agents to shape policies. For instance, Learning from Demon-
stration (LfD) strategies consist of deriving policies from
examples of the state to action mapping (imitation) [11],
[12] or exploiting the knowledge of a user to teach this
mapping from occasional human feedback that could be
either corrective or evaluative. Evaluative feedback has been
used similarly to RL in methods wherein a human teacher
communicates the desirability of the executed action or
policy, with validations in problems of state spaces of either
low dimensionality [7], [8], [13] or high dimensionality [14],
[15]. Corrective feedback is given by the teacher directly in
the action domain to modify the magnitude computed by the
policy. To the best of our knowledge, corrective feedback
has been only validated in problems with state spaces of
low dimensionality [9], [16], and D-COACH [10] is the first
approach targeting high-dimensional state spaces.

Deep RL showed that it is possible to approach problems
with state spaces of high dimensionality [17]. In LfD some
work has already been done [18], as well as with evaluative
feedback approaches [14], [15]. So, this paper complements
these studies in the direction of corrective advice.

Imitation LfD approaches based on data aggregation, such
as DAgger [19], are conceptually close to COACH in the
sense that in both cases labels are generated online and as
consequence of the states visited by the agent. The main
difference is that in the former case the labels are optimal
actions, whereas with COACH, corrections are relative im-
provements over the current agent’s actions.

III. BASICS OF THE LEARNING FRAMEWORK

When teaching with human corrective advice, if the agent
executes an action a that the human considers to be er-
roneous, then s/he will indicate the direction in which the
action should be corrected (thus, COACH was proposed for
problems with continuous actions). Each dimension of the
action has a corresponding correction signal h with values
0, —1 or 1 which produces an error signal with arbitrary
magnitude e that is used to shape directly the policy. Thus,
the error is:

error =h-e (1)

where h = 0 indicates that no correction has been advised.
h = =1 indicates the direction of the advised correction.

Algorithm 1 Basic Structure of COACH

1: Require: error magnitude e, human model learning rate
B, time steps N
2: fort=1,2,..,.N do

3: observe state s;

4: execute action a; = 7(sy)

5: feedback human corrective advice h;

6: if h; is not O then

7: update H(s;) with Ay = - (he — H(st)) - f
8: oy = |H(s141)]

9: errory = hy - e

10: update 7(s;) with A9 = « - errory - f

Before introducing the Deep COACH framework, we de-
scribe the algorithm of the original COACH framework that
inspired this work.

COACH

In this framework no value function is modeled, since
no reward/cost is used in the learning process [9]. A
parametrized policy is directly learned in the parameter
space, as in Policy Search (PS) RL. The classic COACH
algorithm shapes two functions parametrized as a linear
combinations of basis functions (LCBFs). The objective of
the first function is to learn the policy of the agent 7(s) =
fT6; the objective of the second function, H(s) = f 1, is
to learn a prediction of the human feedback. The vector of
basis functions f(s), for simplicity is called f. The parameter
vectors # and v are updated to shape the models. As it can
be seen, f is the same vector for both the Policy Model
m(s) and the Human Feedback Model H(s). The Human
Feedback Model is used to adapt the size of the error
signal that is then used to update the weights of 7(s). Both
functions are updated using stochastic gradient descent each
time feedback is received. The pseudocode of COACH is
shown in Algorithm 1.

IV. COACH FOR HIGH DIMENSIONAL STATE SPACES

The Deep COACH (D-COACH) framework [10] takes the
ideas introduced by COACH but, instead of parametrizing
policies with LCBFs, it uses deep neural networks for
problems of low or high dimensional state spaces. Different
architectures may be used depending on the characteristics
of the problems.

In D-COACH, the Human Feedback Model is replaced
by a memory buffer from which the agent samples past
corrections and replays them, in a similar manner as used in
DRL problems [1]. Both the memory buffer and the Human
Feedback Model use information given by past corrections
to modify the effects of newer ones. Every time feedback is
received, to ensure that recent corrections have an immediate
effect on the policy, the network gets updated by that
feedback signal, and subsequently the network is updated
with a batch sampled from the memory buffer. Also, the
network gets updated from the buffer with a fixed frequency
every b number of time steps.
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Fig. 1: Basic D-COACH.

Training CNN policies with human feedback is a challeng-
ing problem: both the state representation from raw data (this
work focuses on applications that observe raw images), and
the policy must be learned from data generated by a human
teacher. Deep neural networks have shown to need massive
sets of data and experience to adequately converge. The
requirement of massive amounts of trials can be problematic
because human users cannot keep on assisting the training
for a long time due to stress, fatigue, or other factors that
may lead to a lack of concentration.

To tackle this shortcoming, state representation learning
strategies are employed. The state representation of the pol-
icy is trained with additional criteria, adding an autoencoder
to help with the training of the convolutional layers (or
encoding layers) of the network.

A. Basic Deep COACH

The early version of Deep COACH proposed in [10]
is a 3-step sequential process. In the first step a session
of demonstrations is recorded. Then in a second step, the
convolutional layers are trained with the recorded data,
while tuning an autoencoder used for state representation of
reduced dimensionality, (Fig. 1(a)). The state is embedded
in the latent space of an autoencoder. Finally, in the third
step, the convolutional layers of the trained encoder are
frozen, then the subsequent non-convolutional layers (right
hand side of Fig. 1(b)) are trained interactively based on
the corrections that the teacher advises to the agent. Fig. 1
depicts the second and third steps of this strategy. This kind
of sequential strategy has been proven to work in decision-
making problems [15], [20], [21], but it has the shortcoming
that it needs a database with images of the environment to
work. This can be time consuming and not robust to changes
in the environment.

B. Enhanced Deep COACH

In order to eliminate the requirement of recording demon-
strations and pre-training an autoencoder, an enhanced ver-
sion of Deep COACH is proposed, which learns everything
in a single interaction step, as the original COACH does.
Hence, it allows to train all the parameters of the network
interactively from scratch. State representation strategies
have been included in order to make the networks converge
faster. The basic idea is to train the state representation of
the policy with additional auxiliary criteria (autoencoding).
So, in addition to the loss function for predicting the policy
based on the data generated by the human corrections, it also

Decoder

N\ s ez

FNN
Fig. 2: Enhanced D-COACH. The state representation is
shared between the autoencoder and the policy training.

includes the loss function of the reconstruction at the output
of the autoencoder, based on the same data stored during the
human corrections.

Both networks, the policy and the autoencoder, share the
convolutional layers of the encoder as shown in Fig. 2. The
policy network has the convolutional layers at the input,
followed by a second part that is a fully-connected layer,
then this network maps from STATE to ACTION, while the
autoencoder network involves the computation from STATE
to STATE*, wherein STATE”* is the reconstructed image at
the output of the decoder, according to Fig. 2.

Algorithm 2 describes the enhanced version of D-COACH.
The algorithm first sets the hyper-parameters like the mag-
nitude of the error (1), and the ones used for the corrections
replay. In cases when the teacher advises a correction (line
15), the subsequent lines are evaluated, wherein the policy
network is updated along with the autoencoder network.

Two different updates are computed, one for the layers
involved in the policy computation, and another for the layers
of the autoencoder. When an advice of correction is given,
the update policy instruction updates the policy network for
the current state and the batch_update subroutine is called.
This subroutine updates the policy and the autoencoder
using a mini-batch sampled from the replay buffer. If the
reconstruction error of the autoencoder (difference between
STATE and STATE*) is greater than a threshold e (line 6),
the autoencoder is updated with the same mini-batch using
the instruction update AFE (autoencoder). Otherwise, the
convolutional layers are frozen, so that the instruction update
policy in lines 5 and 19, only modifies the non-convolutional
layers with the Stochastic Gradient Descent (SGD) operation.
The batch_update subroutine is also called every b time steps
(line 24).

The update policy instruction uses [state,yjapel] pairs
(where Yiabei(t)y = a¢ + errory), whereas update AE only
uses states. The aforementioned condition in line 6 is used for
avoiding conflicts in the gradients of both cost functions, so
when the latent vector of the AE is considered a good smaller
representation of the state, the gradient of the policy must
be prevented from harming the learned encoding. Hence, the
encoder is kept frozen, unless unknown regions of the state
space are visited.

V. EXPERIMENTAL RESULTS

Three different types of experiments were carried out
for validating the enhanced D-COACH: i) experiments with
simulated teachers for evaluating the learning method under
controlled conditions without influence of human factors, ii)
validations with real human teachers, and iii) extra valida-
tions on real physical systems.
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Algorithm 2 D-COACH

1: Require: error magnitude e, buffer update interval b,
buffer sampling size N, buffer max. size K, buffer
min. size k, pre-trained encoder parameters (if 3-step
sequential learning)

22Initt B =[] # .initialize memory buffer

3: function batch_update # define batch update function

4: if length(B) > k then

5: update policy using SGD with a mini-batch
sampled from B

6: if AE..or > € then
7: unfreeze convolutional layers
: update AF using SGD with a mini-batch
sampled from B
9: else
10: freeze convolutional layers

11:
12: for t = 1,2,... do # main loop

13: observe state s;

14: execute action a; = 7(s¢)

15: feedback human corrective advice h;

16: if h; is not 0 then

17: error; = hy - e

18: Ylabel(t) = Q¢ + €ITOIy

19: update policy using SGD with pair (s¢, Y1abel(t))
20: call batch_update

21: append (staylabel(t)) to B
22: if length(B) > K then

23 B=DB[2: K +1]
24: if mod(t, b) is O then
25: call batch_update

In these experiments we denote the enhanced D-COACH
simply with ‘D-COACH’, while from now on we call the
previous version ‘basic D-COACH’. In the experiments, the
learning processes are analyzed in three different problems:

Car Racing: A simulated problem (from OpenAl gym [3])
in which the agent has to learn to drive from a top-down view
of a racing car game (see Fig. 3). The objective of the task
is to drive a racetrack as fast as possible without leaving
it. The default state that is given by the environment is a
96 x 96 x 3 top-down view of the car which we downsampled
to 64 x 64 x 1. The continuous action space consists of 3
dimensions: [direction, acceleration, brake]. The direction
range goes from —1 to 1, the acceleration from 0 to 1 and
the brake from 0O to 1. In this problem, experiments with the
simulated teacher and human teachers were carried out. The
coupled feedback strategy was used in the experiments with
human teachers, as presented in [10].

Duckie Racing: This is also a driving task, but in this case
with a real/simulated robot which has an onboard camera
that gives a first-person view of the environment. The real
robot consist of a Duckiebot from the project Duckietown
[22]. The simulated robot is based on [23]. A 120 x 160 x 3

Fig. 3: Car Racing, environment view.

observation image is received from the environment which
is downsampled to 64 x 64 x 1. The same road was used
for both the simulated and real robot. In the simulations,
at the start of each episode, the robot can start, randomly,
at the points A or B (plus random noise) of the map (see
Fig. 4). Each simulated episode lasts 1000 time steps (unless
the robot leaves the road before) and as a performance
metric a modified version of the default reward function
of the environment is used, which has the following shape:
R = Cv0—Dd. C and D are constants (C = 100, D = 1), v
is the linear velocity of the duckiebot, 6 is its orientation with
respect to y (a bezier curve that defines the path the agent is
expected to follow) and d is its distance to . The duckiebot
is a differential robot, so the default actions consisted of
speed commands ranging from -1 to 1 for each of the two
wheels. To make it more intuitive for a human teacher to give
feedback, the environment had an inverse kinematics module
for the actions to be linear and rotational speeds instead,
also ranging from -1 to 1. This problem is also used for
experiments and validation with simulated and real human
teachers.

Pusher/Reacher: Two validation tasks with a 3DoF
robotic arm (see Fig. 5). The problems of pushing and
reaching an object were addressed. For both tasks the robot
arm is placed in front of the work-space and an RGB camera
is fixed overhead for capturing the top-down view of the
environment with images of 640 x 480 x 3 size. The images
are downsampled to 64 x 64 x 3. The objective of the Pusher
task is to move the object placed in the work-space down,
until it is out, as depicted in Fig. 5(b). The objective of
the Reacher is to track the position of the object with the
arm’s end effector (Fig. 5(c)). In these problems, the teacher
advises corrections of the position commands of the arm in
the Cartesian space. The experiments of the tasks with the
3DoF robot arm were intended only to validate the proposed
learning method in another real setup, no comparisons were
carried out.

All the results that present averaged data in the form of
a curve have confidence intervals that represent the 60"
percentile of the data. The neural network hyperparameters
proposed in [10] were used in this work. The experiments

(a) Duckiebot. (b)
view.

First-person (c) First-person sim-
ulated view.

Fig. 4: Duckietown.

(d) Map.
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(c) Reacher task.

(a) 3DoF
robot arm.

(b) Pusher task.

Fig. 5: Pusher/Reacher.

are illustrated in the attached video!.

A. Study with simulated teacher

In order to evaluate the method along with subtle variants
under more controlled conditions, a high performance policy
standing-in as a teacher, which was actually trained with
D-COACH and a real human teacher, was used (similar
approach to the one used in [9]). The simulated teacher
generates feedback computing h = sign(aieacher — Qagent )
whereas the decision on whether to provide feedback at each
time step is given by the probability P, = « - exp(—7 -
timestep), where {a e R [0 <a <1} {reR|0< 7}

To perform an ablation study that evaluates the contribu-
tion of the new components of the enhanced D-COACH,
the complete method (Algorithm 2) is compared to a second
variant that does not include the AE contribution, and learns
the whole policy network only with the cost of predicting
the action. This variant works like the basic D-COACH
proposed in [10], but skipping the first two steps of recording
demonstrations and pre-training the AE, i.e., learning from
scratch, which means that the convolutional layers are also
learned with the teacher’s corrections.

The third evaluated variant includes the AE cost function,
but never freezes the convolutional layers, so it always
modifies the parameters of the complete policy network using
the gradient of both cost functions (i.e. setting € = 0 for the
condition in line 6). The learning curves of the three cases
of D-COACH are compared against the baseline one of a
DDPG-based RL agent [24], using the OpenAl implemen-
tation [25]. The curves are the average of 30 runs for each
case, showing the evolution of the return through the learning
time. The time considered is measured when rendering the
environments, i.e., no environment acceleration, since D-
COACH is intended for learning with real systems wherein
speeding up the environment is not possible.

As shown in the Fig. 6 for the experiments with the
Car Racing, the complete D-COACH has a considerable
improvement when simultaneously using the gradients of
the auto-encoding cost function for learning the state rep-
resentation, along with the gradient of the policy (blue and
orange curves), in contrast to using only the gradient of the
policy (green curve), which is slower, and reaches less than
50% of outcome with respect to the complete algorithm after
20 minutes of training. Additionally, there is no noticeable

Thttps://youtu.be/i4f 1 DACH26E

Duckie Racing Enhanced D-COACH Training

Car Racing Enhanced D-COACH Training ot
X

L~ 3

00 s | f A
‘ e |
£ 600 —— D-COACH A N A b
& / D-COACH B e’ J i WA
) 1001 | D-COACH C ] ,/\1/ D-COACH A
20 | oore /7 /] 21{f D-COACH B
~ / —— D-COACH C
0 ~—— DDPG
0
0 5 10 15 20 0 5 10 15 20
Time (min) Time (min)

(a) Car Racing. (b) Duckie Racing.
Fig. 6: Car/Duckie Racing results for simulated teacher with
D-COACH and DDPG. D-COACH A: policy and AE costs,
freezing conv. layers; D-COACH B: policy and AE costs;
D-COACH C: only policy cost. Buffer: K = 1000; k = 20;
b=10; N =8. P,: a = 0.6; 7 = 0.000015.

improvement in the performance for the RL agent within this
time frame.

The results of the experiments with the Duckie Racing
problem (Fig. 6) show similar trends as observed with the
Car Racing problem, wherein the contribution of the AE
cost function makes a considerable difference with respect
to only using the policy cost. However, in this problem the
variant of D-COACH using only the policy cost manages to
reach the same level of performance of the other variants
after 17 minutes of training. This variant can learn good
policies for this problem, but for reaching 95% of the final
performance, it is around 5 times slower than the variants
using simultaneous auto-encoding. For this problem again
the DDPG learning process does not obtain any improvement
during the first 20 minutes of learning process.

Finally, it is possible to see the contribution of the
condition stated for freezing the convolutional layers, when
the error of the decoder is small. This rule provides more
stability to the learning process. In the Car Racing experi-
ments, the variant that always updates the AE undergoes an
“unlearning” stage after 10 minutes of training, whereas in
the Duckie Racing experiments is not possible to notice any
considerable difference between both approaches. When the
error of the decoder is small it means that the latent vector is
a good representation of the state, but still the gradient and
the error of the policy can be large; therefore, in some cases
there may be conflicts that harm the AE performance and
consequently the performance of the policy. Freezing these
layers is a detail that solves this conflict.

B. Experiments with real human teachers

The experiments with simulated teachers are useful for
analyzing the evolution of the learning process. However,
D-COACH is an interactive learning method; therefore, it is
necessary to carry out experiments with real human teachers
for complementing its evaluation. Specifically, we perform
experiments for measuring the human effort in terms of
the time dedicated to teach the agent. The experiments
compare the basic D-COACH and the enhanced D-COACH,
evaluating the necessary effort (time) to achieve some levels
of performance. Ten participants between 20 and 27 years
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(a) Car Racing. (b) Duckie Racing.
Fig. 7: Comparison of the average human time dedicated to
achieve for the first time some levels of return (on average).

old were asked to act as teachers for both the Car Racing and
the Duckie Racing problem. In each problem, the participants
corrected the agent’s actions with the arrow symbols of a
keyboard for a limited session of 20 minutes. The average
results are presented and discussed.

In Fig. 7 the time dedicated for training the agents is
depicted. In the cases of learning with the basic D-COACH,
the blue bar indicates the time dedicated by the teachers
in its first step of recording demonstrations, which for both
problems is actually longer than the time used for reaching
the highest level of performance with the enhanced D-
COACH. In total, the new method saves around 45% of the
training time for the Car Racing problem, and above 80%
for the Duckie Racing problem. These results do not include
the time dedicated to train the AE in the basic D-COACH,
which would depend on the available hardware. The bar
diagram is complemented with the learning curves in Fig. 8
(for the basic D-COACH the curve is only after training
the AE), wherein it is shown that the enhanced D-COACH
has a similar progress with a very slight advantage over its
basic version, even without considering the additional time
required for the AE training step.

% 10° CarRacing Training x10*
3.0
Vi

ol 5 /\/\A« "/\v\/v/\/ﬁ WV/\/\,-M 25 f/v\//fv\/,/\/\\/\/\/ /Vf \
201 W
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— Basic D-COACH
Enhanced D-COACH
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Time (min) Time (min)

(a) Car Racing. (b) Duckie Racing.
Fig. 8: Results of learning with human teachers. Buffer: K =
1000; £k =20; b =10; N =8.

C. Additional validation with real systems

Additional experiments with human teachers interacting
with real robots through the enhanced D-COACH were
carried out. These tests are for validating the results obtained
with the previous two types of experiments, and no compar-
isons are presented.

A real Duckiebot was used for validating the results ob-
tained with the simulations. An experienced teacher advised

Enhanced D-COACH Reacher Training

0.0

2 4 6 8 10 12 14
Time (min)

Fig. 9: Evolution of the error while learning the reacher task.

the policy of Duckiebot from scratch and obtained a good
policy in six minutes.

Similarly, in the pusher/reacher problems well performing
policies were obtained within twenty minutes.

Fig. 9 shows an extra validation that was done for the
reacher case. A cost function was defined as the Euclidean
distance between the end-effector of the arm and the object to
track, normalized with the largest possible distance within the
image (distance of opposite corners). Seven training sessions
of 15 minutes were run and averaged. It is possible to observe
that the cost decreases as the learning process advances.

VI. CONCLUSIONS

This work has introduced an improved version of an
interactive method for training policies represented with
deep neural networks, particularly for problems wherein the
observed state is defined in a high-dimensional space like a
raw image.

The proposed enhanced D-COACH offers a simpler learn-
ing scheme of only one step in which state representation
and the policy itself are learned jointly using the two
optimization criteria (the AE cost and the regression error of
the policy). This method eliminates the necessity of recording
demonstrations for the pre-training of the AE, which is a time
consuming effort for the user, and sometimes is not possible
due to complexity of the problem and lack of complex
skills of the user in the task domain. In the approached
problems, the effort of the users was reduced between 45%
and 80%. The enhanced D-COACH can adapt and extract
features to represent reached unknown states during the
learning process, which would be problematic for its basic
version. Additionally, computational effort is reduced with
the possibility of skipping the offline training of the AE,
which is usually expensive.

This simultaneous method is very data efficient for training
the state representation. The AE is trained with the data gath-
ered when human teachers advise corrections, which ensures
a very representative database. Those samples correspond to
the most important regions of the state space wherein the
policy needs to discriminate different actions to execute.

The results also show that the interactive method can
obtain higher performances than DRL in very few episodes.
The level of the performance achieved by the interactive
method would be obtained by DRL agents after several
hundreds or thousands of episodes, which means that our
proposed method is actually feasible, for learning with real
robots in many applications wherein RL is not yet.
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