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Abstract

Deep Reinforcement Learning (DRL) enables us to design controllers for complex tasks with
a deep learning approach. It allows us to design controllers that are otherwise cumbersome
to design with conventional control methodologies. Often, an objective for RL is binary in na-
ture. However, exploring in environments with sparse rewards is a problem in RL, and finding
positive reward becomes exponentially more difficult with increased environment complexity.

For this project, our objective is to design an RL based controller for the landing of a quad-
copter on inclined surfaces. Landing is defined as reaching these inclined surfaces with
reasonable speed, such that no damage is done to either the quadcopter or the surface to
land on upon impact.

We aim to use a binary reward for this task. We use methods to aid exploration in sparse re-
ward environments, namely Hindsight Experience Replay (HER), and non-optimized demon-
strations. HER can resample goals from the demonstrator data and the policy rollouts. The
resampling of goals is done by considering a portion of the visited states during policy rollouts
as the intended goals. The demonstrations are non-optimized in the sense that the demon-
strations do not follow the same objective as ours. We consider demonstrations valid if these
demonstrations are obtained from arbitrary stable policies.

Our results show that the RL system does generalize to other goals when using HER and
demonstrations. The demonstrations are not imitated as were to happen in pure imitation
learning. HER, on the other hand, enabled us to receive reward in our complex environment,
while also allowing us to experience multiple goals in one policy rollout. We found that lack
of HER and demonstrations were not able to overcome the problems of exploration in sparse
reward environments. We were able to land our quadcopter on a surface with an inclination
of grad with 51,200 Q-function updates approximately 40% of the time. For angles with an

inclination of = rad the success rate is approximately 10%. We suspect that with increased
training performance will increase.

We found that landing a quadcopter on inclined surfaces using an RL controller is feasible.
Our trajectories clearly showed a swinging motion which in theory should be a valid control
strategy for this problem. This swinging motion results in dead spots with the quadcopter
being in a state with a minimal translational and rotational velocities under a relatively large
angle. Further research is needed to increase the accuracy and robustness of our RL based
controller.
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This list of symbols describes used symbols that are used throughout multiple chapters of
this document

a Learning Rate

y Discount Factor

u Dynamics Parameters
w () Policy

T Target Update Rate

A(s,a) Advantage Function

a Action

e, Position Error
e, Velocity Error
g Goal State
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Obijective & Thesis Outline

The goal of this research is to develop a controller for a quadcopter with the objective of
landing this quadcopter on inclined surfaces using Reinforcement Learning (RL). Landing is
defined as reaching these inclined surfaces with reasonable speed, such that no damage is
done to either the quadcopter or the surface to land on upon impact.

The main question is “What reinforcement learning algorithm is best suitable to train a quad-
copter to land on inclined surfaces?” Due to the vast amount of RL algorithms, we limit
ourselves to Actor Critic methods and deep RL. This is due to recent popularity in these
techniques. The three sub-questions we ask for this research are:

1.
2.

This

What algorithms minimize bias in the trained policy?

What strategies are required for the successful training due to complexity within our ob-
Jjective?

. What methods are required to obtain a robust RL trained controller which successfully

performs outside of simulation?
thesis consists of 9 chapters. The chapters are structured as follows:

Chapter 1 introduces our research objective and gives a mathematical description of
our quadcopter environment.

Chapter 2.1 provides background information about the reinforcement learning problem
and its associated mathematical principals. The general mechanics and benefits of Actor
Critic methods are introduced as last.

Chapter 2.2 describes the notion of deep learning and deep neural networks. This chap-
ter introduces the mathematical foundations of deep learning and different architectures
of deep neural networks.

Chapter 2.3 combines the methods of Chapters 2.1 and 2.2 and introduces the tech-
nique of deep reinforcement learning through recently developed algorithms.

Chapter 3 proposes solutions from literature to train robust reinforcement learning poli-
cies that can transfer successfully to the real world.

Chapter 4 provides solutions for the problem of exploration in complex sparse reward
environments.

Chapter 5 is the chapter where the findings of the previous chapters are implemented.
We translate the findings of the literature end to apply it to our control problem.

Chapter 6 evaluates the performance of different algorithms applied to our control prob-
lem.

Chapter 7 shows our conclusions based on the performance of the implemented tech-
niques. The chapter gives directions on how to continue with research using other
reinforcement learning algorithms.

Xi






Introduction

Unmanned aerial vehicles (UAVs) are becoming more present in society. AUVs are of interest
for operations high above ground, which normally is a dangerous task when operated by
humans. Thnks to their capability to reach high heights, its small size, ease of operation and
relatively low cost, quadcopters (also called quadrotors or drones) are especially of interest
to perform these dangerous tasks high above ground. However, to perform operations with
drones near to other objects, manual control is unfeasible due to catastrophic human error,
and a computer-controlled quadcopter is a more feasible solution. This can be done in mul-
tiple ways.

In cooperation with ENGIE, I investigated how this control problem can be solved through
Reinforcement Learning (RL). A controller is designed for quadcopters using an autonomously
learned control strategy, which trains based upon a certain objective. In our case, this ob-
jective is the landing of a quadcopter on inclined surfaces using a Reinforcement Learning
approach. Landing is defined as reaching these inclined surfaces with reasonable speed,
such that no damage is done to either the quadcopter or the surface to land on upon impact.
The aim of this research is to safely land a camera on top of a surveillance camera.

We use Deep Neural Networks (DNN) as

function approximators for solving this RL

problem. This promising technique, known

as Deep Reinforcement Learning (DRL), has

shown impressive results in controlling com-

plex robotic systems. Actor Critic methods

(ACs) have been proven to perform well on

these tasks. In ACs, two networks are ?\@\

trained. One network performs the actions

in the environment, which is called the actor

network. The critic network functions eval-

uates the quality of the actions taken by the

actor netowrk. This construction allows for

training the appropriate actions, which yield Figure 1.1: An iIIustratio_n of our objective of safely landing a
the optimal performance. When the system camera on top of a surveillance camera.

is in operation, and not being trained, only

the actor-network performs the actions, and the value network is not in operation.

This chapter will introduce the quadcopter and will discuss the challenges of applying RL
to real systems, and what has been done to solve this and what the objective of this Thesis
is.



2 1. Introduction

1.1. Quadcopter

This research aims to develop a controller design procedure for complex non-conventional
control tasks by incorporating Reinforcement Learning (RL) controllers into conventional con-
trollers, where RL should enhance the control of a quadcopter which allows for complex land-
ing maneuvers on inclined surfaces. In Figure 1.1 this concept is visualized. This means that
we aim to perform actions with quadcopters that lie outside the “stable” regions (the stable
regions being hovering and steering under an angle, for example). This technology is de-
veloped for quadcopter applications that aim to operate the quadcopter in close proximity
to other objects, performing challenging tasks. We propose an RL-controller structure that
aims to leverage stable drone flight using conventional controllers, e.g. non-linear PD con-
trollers [35]. The RL agent seeks to find a symbiotic collaboration between the conventional
onboard controller and the benefits of the trained policy of the RL agent. This method allows
for relatively quick development of specific control tasks design because we can leverage the
stability of the conventional controller and we can leverage the ability of an RL controller to
solve complex tasks.

The following sections will describe the system, how its dynamics are modeled and how it
can be controlled via a non-linear controller. All information from the following sections are
from [18] for the system model and quaternion math on quadcopters and [35] for the system
model and non-linear control of the quadcopter.

1.1.1. System Description
The quadcopter is a UAV that is propelled by four rotors. The state of a quadcopter is de-
scribed by

T
_ . . . X y z
s= [xglobal' Yglobal' Zglobal’ 90,91, 92,93, xglobal' yglobal' Zglobal' Wiocal» Wiocals Wlocal]

where Xgiopat, Ygiobar @0d Zgiopq1 are the position coordinates in the global reference frame of
the quadcopter, qo,q1,92,q3 is the rotation of the quadcopter expressed in unit quaternion
notation, Xgiopan Ygionar @Nd Zgioper are the time derivatives of the position coordinates and
Whodys Wgody and wyp,4, are the rotational velocities expressed in the body frame coordinates
which are the derivatives of the roll, pitch and yaw angles.

The low-level control input to the quadcopter is

a= [wiies’ wges' wst,ies’ wges]T

with 0%, 0$%, 0§ and w{® as the desired rotational velocities of the rotors (as illustrated
in Figure 1.2). These desired rotational velocities are controlled by the on-board computer
of the quadcopter. The control input to the controller might, and likely will, differ from the
low-level control input (i.e. the controller can take a variety of high-level control inputs). The
motor dynamics are relatively fast compared to the rigid body dynamics and aerodynamics.
Thus for the controller development in this work we assume the desired rotational velocities
can be instantaneously achieved [42].

1.1.2. System Dynamics

The quadcopter has two pairs of rotors. One pair rotates in the clockwise direction and the
other pair rotates in the counterclockwise direction, as shown in Figure 1.2.

The force and moment generated by the quadcopter in the local coordinate frame is modeled
as follows:

Ty | _ 0 ka 0 —ka 0)22 (1 1)
Ty - —ka 0 ka 0 (1)32 )
Tz K  —km  km —kp llw,?

where kf and k,, are constants which map the rotor velocities to resulting forces and moments
created by the rotor velocities.
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Figure 1.2: The global reference frame g, consisting of x, y, and z axis, and the body-fixed reference frame b, consisting of x’,
y', and z’ axis. Rotors 1 and 3 spin in counterclockwise direction and rotors 2 and 4 spin in the clockwise direction. The thrust
of all rotors is directed in the positive z’ axis.

The force exerted by the quadcopter in the global frame is described by

0
Frotor = ng 0 (1.2)
By

where RY is the rotation matrix from the local coordinate frame to the global coordinate frame.
Due to the design of a regular quadcopter without tilting rotors, the force exerted by the motor
is always in the positive z direction of the local coordinate frame. The gravitational force in
the global frame is described by

0

Fy=m| 0 (1.3)

-9
where m is the mass of the quadcopter and g is the gravitational constant. The drag force in
the local coordinate frame is modeled by

A, 0 0][Csx O O

Fdrag,local = _Ep 0 Ay 0 0 Cdy 0 | viocar IViocall (1.4)
0 0 A,[| 0 0 Cy,

where p is the mass density of the fluid, Ay, 4, and A, are the areas of the drone in x,y,z
directions respectively, Cqy, Cqy, and Cy, are the drag coefficients of the drone in x, y, z directions

. T
respectively, and vipcar = [Ve, ¥y, V], -
frame is

Fdrag = quFdrag,local (1.9)

Adding (1.2), (1.3) and (1.5) gives the total force F,,.,; on the system in the global reference
frame,;

The drag force expressed in the global coordinate

Fiotar = Frotor T+ Fg + Fdrag- (1.6)

The rotation of the quadcopter is expressed in unit quaternions, which eliminate the chance
of singularities which Euler angles might suffer from, known as "gimbal lock”. Since we aim
to explore randomly in the state space of the quadcopter, it is likely that it would encounter
situations where gimbal lock becomes a problem, if we were to choose Euler angles instead
of the quaternion rotation notation. A quaternion ¢ is a hyper complex number of rank 4;

d=qo+ql+q:j +ask (1.7)
or in vector notation r
i=[2% @ 9 a . (1.8)

The rotation matrix from the local coordinate frame to the global coordinate frame is as
follows:

g +ai—a5—-aq5 2(q192—q093)  2(q193 + 90q2)
R =| 2(q102 + q0a3) 43 —aq?+a—a% 24293 — q0q1) |- (1.9)
2(91q3 — 9092) 2(9293 + 90q1) 96 —ai — a5 + 45



4 1. Introduction

When modeling the quadcopter for simulation purposes we need to create the equations of
motions. This differential equation should be a function of

= f (ﬁ: ‘_i; 1_7); (B: (Brotor) (110)

[STERNIRE YRR )

where p is the position vector in the global coordinate frame, ¢ is the orientation expressed
in unit quaternions, ¥ is the linear velocity vector expressed in global coordinates, & is the
angular velocity vector expressed around its local coordinate axes and @y, is the angular
velocity vector of the rotors, which is controlled by the controller.

We can formulate the equations of motion using the Newton-Euler equations (1.11) to de-
scribe the translation and rotation dynamics of a rigid body.

FIl _Im 0 ||acy 0
o1 Tlo Lol o | ox U, o

F Is the force experienced by the system as described by (1.6) and 7 the torque exerted by the
system from (1.1).

(1.11)

The time derivative of a quaternion in a local reference frame is described by

5 1 O -

q—z[w]q (1.12)
where w is the rotational velocity vector around the local reference frame.

The translational and rotational dynamics of the system can be described by (1.11) and (1.12)
which result in;
Aem =M Foorar
5 1]0f,

q=3 w]q . (1.13)

d)zlc_r}l"[_lc_r}l[wx(lcm'w)]

1.1.3. Non-linear Control

When controlling a quadcopter that should allow for large rotations, a non-linear controller
is needed, instead of a controller based on a linearized model. The error metrics on position
and velocity are defined as

é’p =7 — Tps (1.14)
and
€y, =T — Tges (1.15)

respectively. The vector describing the desired total force applied to the quadcopter is com-
puted using
Fdes = —Kpgp - Kyév + Fg + Fdrag + mi’des ’ (1 16)

where K, and K, are positive definite gain matrices. With this force vector we can compute
the desired F, using
Fu =Fdes'zb. (117)

The body frame z-axis z;, of the quadcopter should align with the desired force vector of the
drone, since the quadcopter can only produce a force in this direction. With this information
we can specify the desired rotation matrix R;.5. The error metric for rotation can be defined
as

. 1 v
é =35 (RTR — R"Ryes) (1.18)

des
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where V transforms a skew-symmetric matrix back into a vector.

The angular velocity error is the difference between the actual and desired angular veloc-
ity in body frame coordinates:

8, = w! —wf’des (1.19)

where w/ and w} des are the angular velocity and desired angular velocity respectively of the

quadcopter in the body frame. w} 4es Can be computed using the discrete time derivative of
R4es- Now the torques of the axes on the quadcopter are defined as

Tx
1| = —K,8, — K,&, (1.20)
TZ

where K, and K, are positive definite gain matrices. We can now compute the rotor velocities
by substituting (1.17) and (1.20) into (1.1) and solving for w;. In practice, this is done by

inverting the linearization of (1.1) about w; = }fT“f [35].

1.1.4. RL Controller Design

We propose to use an RL controller where the agents learn to control high-level inputs to
a conventional controller from [35]. For the control inputs used by the RL controller, we
propose to use a part of) the error metric e, (1.14). The PD controller regulates the low-level
motor actions. This allows the RL agent to exploit properties of stability of the conventional
controller. This method could be considered as an automatic reference trajectory generator,
which is trained to plan the optimal reference signal at every time step for a given controller.

1.2. Summary

This chapter introduced the basics of the quadcopter in mathematical formulations, and
what our objective is of the research. The state-space of the system has been described as
well as its low-level control input to the motors of the rotors. Furthermore, a mathematical
description of the forces on the quadcopter has been given, and we specified its reference
frame with respect to a global reference frame. Lastly, a non-linear PD controller has been
formulated and we proposed how we implemented an RL controller with this non-linear PD
controller symbiotically.






Deep Reinforcement Learning
Background

This chapter will give a theoretical background of Deep Reinforcement Learning (DRL) meth-
ods. First, we will explain what Actor Critic (AC) Methods are and why they are recommended
to be used in robotics and it will also introduce the Reinforcement Learning (RL) framework.
Then we will give a brief overview of what neural networks are and we give a selection of
neural network architectures. Lastly, we combine neural networks and RL for DRL. We will
discuss the most notable DRL algorithms, namely; Deep Q-Learning (DQN), Deep Determin-
istic policy gradient (DDPG) and its extensions, Proximal Policy Optimization (PPO), and Soft
Actor Critic (SAC). But we start by discussing the possible side effects of sparse and dense
reward functions.

2.1. Actor Critic Methods

AC methods are a subset of RL algorithms [53]. An AC algorithm is a variant of the policy
gradient methods, which uses (an estimation of) a value function for bootstrapping. This
method introduces bias, and lower variance which increases learning rates.

2.1.1. Reinforcement Learning

RL is a machine learning approach, which aims to maximize the notion of cumulative reward.
By training which actions in an environment an agent should take to maximize this reward,
a policy (often called controller in classical control theory) is found. In supervised learning, a
policy is trained through data that is known beforehand and the performance of the trained
policy can be compared to its known reference data, whilst RL generates data itself through
experimentation and has to train itself on this data.

Markov Decision Process
The problem of RL can be described as a Markov Decision Process (MDP). An MDP is a 6-tuple
<S§,ARP, T,y > with respectively; state, action, reward, environment transition dynamics,
terminal indicator and discount factor. An MDP consists of a set of states S, a set of actions
A, let s € RS be the state of the agent in the MDP, and let a € R4 be the action. Let the
environment transition dynamics be transitioning to a next state s’, from state s performing
action a be;

P(s'|s,a) = P{S;41 =5'|S; =s,A; = a} (2.1)
and let the reward function be;

r=R(s,a) (2.2)

in which a scalar reward r is received after performing action a in state s [53].

We consider episodic tasks, where at termination at the episode is indicated with the boolean
terminal indicator T, which is 1 at a termination state and 0 otherwise.

7
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Policy
The policy is the decision-making mechanism of the agent, in which the agent maps states
to actions. An agent using a deterministic policy, a = n(s), will execute an action determin-
istically, i.e. it will always execute the same actions in particular states. Stochastic policies,
n(als) = P [a; = a|s; = s], will pick an action a according to a probability distribution given a
state.

Value Functions and Bellman Equations
In RL, an agent seeks to maximize the cumulative discounted reward called the discounted
return, which is a measure of long-time performance. This return is defined as:

G =T + Ve H VT Vg + o0 = Z Y*rsk (2.3)
k=0

Where 0 < y < 1 is the discount factor, which weights the value of future rewards [53]. To
evaluate the quality of state action pairs, the action value, and value functions (Equations 2.4
,2.9 and 2.5) can be used.

Qn(s,0) = Er [Z V¥risils.a (2.4)
k=0
V($)r = max Qa(s, @) (2.5)

The Bellman equations expresses the optimal value function for a optimal policy [S3]. When
a policy 7 takes actions such that the discounted return is maximized.

The optimal action value function can be defined as;
Q*(s,a) = maxQ™(s,a) (2.6)
V

and the optimal value function can be defined as

V*(s) = max Q*(s,a) (2.7)

Expanding Equation 2.7 gives;

[e0)
Vi (s) = max Eq. Z Yerikls, a
k=0

V*(s) = max Eq. |R(S, @) s + yz Pr.(s'|s, a)V*(s") (2.8)
a
Sl

Q*(s,a) = max Eqe |R(S, Q) s + yz Pr.(s'|s,a) max Q" (s',a’) (2.9)
a
SI

Equations 2.8 and 2.9 are referred to as the bellman optimality equation for V*(s) and Q*(s, a),
respectively.

Exploration vs Exploitation

The trade-off of exploration and exploitation is an important subject in RL [53]. In RL we
seek to find an optimal policy, this involves trying different strategies (exploration), but also
training our policy based on the best strategy found yet (exploitation). To have an RL agent
that performs well after training, it should have explored enough of the environment to find
an optimal policy. It should also train on the optimal policy found, to ensure the quality of
this policy.
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2.1.2. Actor Critic Background

An AC algorithm is a variant of traditional policy gradient methods, which uses (an estimation
of) a value function for bootstrapping [9, 60]. This method allows for continuous actions
due to the policy gradient [S3] and this method introduces bias, and lower variance which
increases learning rates from the bootstrapping of the value function on the policy gradient.
The actor in an AC algorithm can be compared with a traditional policy function. The actor is
responsible for executing an action a given current state s. The critic can be compared with
a traditional value function such as Q(s,a) or V(s), it outputs the estimated value of being in
a state based on the rewards it received in the past, using the actions and states presented
by the actor. In Algorithm 1 the Vanilla AC approach is demonstrated briefly.

Algorithm 1 Vanilla Actor Critic

while not converged do
take action a ~ mg(als), get (s,a,s’,r)
fit V' (s) using target r + y Vi (s")
evaluate A™(s,a) =r(s,a) + yVg(s") — Vg (s)
Vo] (0) = X; Vo Inmg(a;[s)A™ (si, a;)
6 <0+ aVyj(8)
end while

Here 6 are the parameters for the parameterized policy, and VgJ(0) is the policy gradient. The
learning rate is denoted as a. The policy gradient should be maximized to its global maxi-
mum using gradient ascent. Both functions for the actor and the critic can be represented
in a deep neural network.

AC algorithms, especially integrated with deep neural networks, have shown promising re-
sults in continuous control challenges, with continuous actions [34, 37]. Due to their ability
to be applied on continuous control tasks with continuous observations, it is a popular ap-
proach for the control of physical systems, in which discretization of the state and action
space is often unfavorable [28].

2.2. Deep Neural Networks

Thanks to increasing computing power capabilities and access to big data, deep neural net-
works (DNNs) have been of major influence on the development of machine learning. Deep
neural networks are non-linear function approximators consisting of multiple layers between
the input and output layer of an Artificial neural network (ANN). Machine learning with Deep
neural networks is often referred to as Deep Learning [30]. Tasks often solved through Deep
Learning include image recognition [43], speech recognition [7] and robot control [3, 34, 38].
DNNs are capable of approximating any non-linear function, given pairs of input-output data.
Through backpropagation, the DNN is able to adapt its internal parameters that change its
output so that more closely resembles its intended output.

2.2.1. Configuration

Broadly speaking, Artificial Neural Networks (ANNs) consist of multiple layers of intercon-
nected artificial neurons. This is roughly modeled after biological brains. An artificial neural
network is able to approximate non-linear functions. The working principle of these neural
layers will be further elaborated below.

Artificial Neuron

A Deep Neural Network is built up using artificial neurons, which receive a real valued input
and give a real valued output which is often a non-linear transformation of the input. These
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neurons are interconnected and consist of multiple layers.

l l l -1 l
B e | T I
-1
w. w. W a b
T | R I (2.10)
! T A | =t !
Wio Wjs willa bj

As seen in Equation 2.10, the operation of a single layer in the neural network is a linear
matrix operation, in the form of W3x+b. To be able to approximate any non-linear function, an
activation function is used (unless this activation function itself is linear). which is further
elaborated below. The activation function is the non-linear transformation over the input
signal. a}™! And a! are the inputs and outputs of the artificial neuron in layers [ and [ — 1

respectively, f is the activation function, w}l._k are the weights, where j and k are the number

of outputs and inputs of the artificial neuron respectively and bjl- are the biases.

Activation Functions

The activation function is essential for the approximation of non-linear systems. Any non-
linear non-complex differentiable function could be an activation function. The most popular
activation functions are the sigmoid, hyperbolic tangent (tanh) and the rectified linear unit
(ReLU), which are shown below.

1
f&)=1= (2.11)
f)= ZI—Z;« (2.12)
f (x) = max (0,x) (2.13)

Generally, ReLU performs better since it does not suffer from the vanishing gradient prob-
lem [20]. The output of the layers are often not ReLU, but softmax for classification, sigmoid
when the outputs need to be bounded between 0 and 1, and Tanh when the output is bounded
between -1 and 1. The function can be discarded when the output is unbounded.

2.2.2. Backpropagation
Backpropagation is the process of calculating the gradients in for each neuron of a neural
network to be able to adjust its weights and biases using gradient descent methods in order
to train the model. Stochastic gradient descent (SGD) updates the parameters in the direction
which minimizes a loss function.

0 -0 —aVyL(0) (2.14)

where L(6) is a differentiable loss function, which is aimed to be minimized.

ADAM [27] is an extension on SGD which combines the advantages of two recently popu-
lar optimization methods: the ability of AdaGrad [14] to deal with sparse gradients, and the
ability of RMSProp [55] to deal with non-stationary objectives. ADAM varies its learning rates
depending on the data distribution from its training data. ADAM is a popular optimizer [44]
and accessible in Machine Learning libraries such as Tensorflow.

2.2.3. Network Architectures

Within Deep Neural networks, there are broadly three main types of architectures, namely
the Feed-Forward Neural Network, the Convolutional Neural Network and the Recurrent neural
network, which will be further elaborated below.

Feed-Forward Neural Networks

The Feed-Forward Neural Network (FNN) is the most basic and most common DNN structure.
It is the basis of all neural networks. An FNN consist of more than two layers, which are called
the input layer, hidden layers, and output layer. The input layer receives information, and
the output layer computes the output of the neural network. The hidden layers manipulate
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the data from previous layers (which could be from an input layer or other hidden layers). In
FNNs, the input layer receives a 1-dimensional input for each input node, this information
flows towards the output layers in one direction.
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Figure 2.1: LeNet5 [29], an example of a Convolutional Neural Network. The image is processed by 2 convolutional layers and
2 pooling layers before entering the dense layers, commonly found in regular Feed-Forward Neural Networks

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are often used when handling non-scalar data, such
as images or waveforms. In the input layers and, depending on the architecture, an arbi-
trary number of following layers, the CNN manipulates signals with convolutional operations
which pass through an activation function and pooling layers. Convolutional layers apply a
convolution to the input signal. These convolutional layers are trained to detect features from
the data it is trained on. Pooling layers reduce the dimensionality of the signal. This mod-
ified signal then proceeds towards the following layers. A popular example is max pooling,
which returns the max values of the pooling sections. Another example is average pooling,
which outputs the mean value of the pooling sections. When the signals pass through the
convolutional layers and the pooling layers, until the data is reduced to a set of features, it
often passes through a regular FNN. The LeNet5 architecture [29] is given as an example for
this, shown in Figure 2.1.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) can work with sequential data, thanks to their ability to
use the internal state to process sequential inputs. This is often used in text or speech recog-
nition or in writing, where an order of occurrence is of importance to predict the next values.
A naive implementation of RNNs often experiences the problem of vanishing and exploding
gradient, making it harder to train such networks. Since the layers and sequential steps
of RNNs relate to each other through multiplication, it is very probable that the gradients
will explode or vanish, due to backpropagation. The Long Short Term Memory [24] (LSTM)
structure gives a solution to this problem.

LSTMs maintain a more constant error while backpropagating through time than naive im-
plementations of RNNs. The gate structure of the common LSTM cells consist of an input
gate, a forget gate and an output gate. This cell remembers” information over a given time
interval and the three gates regulate the flow of information into and out of the cell. These
gates are all trained individually, based on sequential data. This LSTM is connected to more
LSTMs to create an LSTM network. Due to its efficiency, LSTMs, or close variants of it, are
the standard for most neural networks working on sequential data.
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2.3. Deep Reinforcement Learning

In Deep Reinforcement Learning (DRL), conventional Reinforcement Learning is combined with
function approximators using Deep Neural Networks. It has gained lots of interest in the last
couple of years, thanks to its performance on different tasks such as Atari Games [36], and
high dimensional continuous control problems [34].

2.3.1. Sparse Versus Dense Rewards

As discussed in Section 2.1, the training of an RL agent is based on rewards. The agent needs
to experience rewards during exploration often enough to be able to train successfully. For
environments with sparse rewards, obtaining rewards during exploration becomes less likely
when environments become more complex. When unequal values of rewards are obtained
with very low probability during exploration, there is a risk that the RL algorithm is not able
to train a successful policy. This is when there have not been enough experiences for the
agent to learn from the rewards, i.e. the rewards were all equal in value. Dense rewards,
however, do not suffer from this problem. When designing a reward function that outputs
dense rewards, often these rewards are based on metrics that indicate the quality of states
and actions based on a given objective. For our quadcopter environment, we could design
a reward function that penalizes differences between the state of the quadcopter and its
specified goal, e.g. the distance between the quadcopter and the goal. Here the reward would
suggest that moving away from the goal is always negative, but our findings in Chapter 6
suggest that this is not the case for every state. These rewards directly map the quality
of states and actions every simulation timestep. For every simulation timestep, there is
information available, and this presence of unequal rewards allows for easier training of a
policy. A large problem that occurs when dealing with dense rewards, is that a sub-optimal
policy is trained. Dense rewards are often carefully designed to aid the learning process
towards a desired policy. A policy that performs optimally is favored over a non-optimal
policy based on a dense reward function. By implementing a dense reward function, we limit
the capabilities of the RL algorithm to find an optimal policy. In this study we use a sparse
reward, to avoid sub-optimality of the trained policy due to bias in the policy that might occur
due to a dense reward function. How we solve the problems of sparse reward functions will
be discussed in Chapter 4.

2.3.2. Deep Q-Learning
Q-learning is an off-policy algorithm for estimating Q-values. Q-values are learned iteratively
using the Q-value update

Q (st ar) « Q(span) +a (rt +vy mfo (st+1,a) — Q (s¢, at)) (2.15)

where Q (s;, a;) is the Q-value at state s; with action a;, a is the learning rate, y is the discount
factor, and n; is the reward at time t.

In Deep Q-learning [36] the Q-values are approximated using deep neural networks. The
Q-values are parameterized with parameters 6 and denoted by Q(s,a|f0). The network is
trained by minimizing the following loss function at every iteration;

2

L) = E(spapreses)~um || e Y mélx Q (se41,a]0") —Q(s¢, a¢[0) - (2.16)

target

6 are the parameters of the Q-network and 6’ are the target Q-network parameters. 6’ are
not updated at every iteration unlike 6, but they are either updated slowly towards 6 [34] or
0' are copied from 6 periodically [36].

The loss function is similar to supervised learning, in which we often minimize the squared
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error loss. Here the error between the target from (2.16) and the Q-function is minimized
using the squared error loss.

Networks are unable to be trained on temporally correlated data due to overfitting to this
data, which will not generalize well to the entire system. A stable version of Deep Q-learning
has been accomplished in [36]. Essential for this stability is the use of experience replay.
Experience replay is the sampling of data, which is stored in a so called replay buffer, for
training. In a replay buffer the agents’ experiences (s¢, a¢, 13, S¢4+1) at each time step are stored.
This data is sampled in a random manner, this random sampling of data breaks temporal
correlation between the data.

The use of DQN is impractical for tasks with continuous actions spaces. DQN relies on a
finding the action that maximizes the action-value function. This would require an iterative
optimization process at every step, which is too computationally expensive. Deep Determin-
istic Policy Gradient provides a solution for agents with continuous actions.

2.3.3. Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is an AC method which allows for control in
continuous space and action spaces [34]. It is an off-policy algorithm which makes use of
deterministic policies. Determinisitc policies will always return the same action per state,
whereas stochastic policies will sample an action according to a ditribution over actions per
state. AC networks contain two networks (in the case of deep learning), namely, one policy
network (actor) and one value network (critic).

The critic loss function looks as follows:
L(B) = Est~pﬁ,at~ﬁ,rt~5 [(yt - Q(st' atlg))z] (217)

where
Ve =1 +¥Q (Ser1, T(Se4119")160") (2.18)

where y is the discount factor determining the agent’s horizon, 8 and ¢ are the parameters
of the Q-network and the policy network 7(s;) respectively and 8’ and ¢’ are the network
parameters used to compute the target. The target networks are slowly updated with t as
described in Algorithm 2. The policy is updated by using the deterministic policy gradient
theorem [52] given by

Vol = E5t~p5 [VaQ(S'alg)|s=st,a=n(st)v¢n(sl¢)|s=st] (2.19)

Recurrent Deterministic Policy Gradient

Recurrent Deterministic Policy Gradient (RDPG) [23] is a variation on DDPG, which allows
the agent to train on recurrent data, i.e. sequences of input data. RDPG trains a recurrent
action-value function Q (s, a;,n:) where 1, = n(h;) is the value function’s internal state. It
trains a recurrent policy n(s;, {;) where {; = {(h;) is the internal state of the policy. To be
able to train on recurrent data, recurrent neural networks should be applied. A feed-forward
network fails tasks involved in real-world robotic tasks, whereas a recurrent neural network
can use its past observations to analyze the dynamics of the world and adjust its behavior
accordingly. The internal states 1, and {; are handled within the RNN structures. The internal
states for the policy is essential to derive the underlying dynamics of the system'. RNNs are
further elaborated in Chapter 3.2.

"It is unclear from the literature where the inclusion of recurrent data in the value function network is more beneficial than not
having it in the value network. In future research it might be interesting to investigate the benefits or consequences when
discarding it for dynamics randomization.
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Algorithm 2 DDPG

Initialize critic network @y, and actor network 4 with random parameters 6, ¢
Initialize target networks 8’ « 0,¢' « ¢
Initialize empty replay buffer R
fort =1to T do
Select action with exploration noise a; ~ 7y (s;) + €,
€ ~ NV (0,0) and observe reward r; and new state s;,
Store transition tuple (s¢, ag, 1, S¢41) IN R

Sample mini-batch of N transitions (s;, a;, 73, 5;41) from R
a & Ty (Si+1)

Y <1 +yQq (Si+1,)

minimize using SGD L = N~ X(y — Q, (s, a;))?

Update ¢ by the deterministic policy gradient:

Vo) = N7 X VaQo (S @i)la;=ry (s Voo (Si)

Update target networks:

0«16+ (1—-1)0'

¢ =1+ (1-1)¢

end for

2.3.4. Twin Delayed Deep Deterministic Policy Gradient

Twin Delayed Deep Deterministic policy gradient [19] (TD3) is an improvement upon DDPG.
This variant on the DDPG algorithm is more sample efficient, increases stability and overall
performance.

The three components introduced upon DDPG are first; the Clipped Double Q-learning, in-
spired by Double DQN [S57]. This method allows for the underestimation of the actions in
the Q-function. This may still be suboptimal, but it is preferred over the overestimation of
the actions since the overestimation may develop into a more significant bias over many up-
dates. Besides, an inaccurate value estimate may lead to poor policy updates. Suboptimal
actions might be highly rated by the suboptimal critic, reinforcing the suboptimal action in
the next policy update, which in turn will become suboptimal. The value of underestimated
actions will not be explicitly propagated through the policy update, which allows it to yield
to an optimal policy. This method also incentives safer policy updates with stable learning
targets, due to a preference of states with low-variance value estimates.

The second improvement is that policy updates occur after the error in the critic network
is minimized, by delaying the policy updates until the value error is as small as possible. The
use of a value estimate with low variance should result in higher quality policy updates. Due
to this more efficient approach, the performance improves while using fewer policy updates.

Lastly, the introduction of a regularization strategy for deep value learning, called target
policy smoothing. This method should reduce overfitting towards narrow peaks in the value
estimate. By smoothing out the Q-function over similar actions, by sampling actions from
the target policy with clipped Gaussian noise, the aforementioned sharp peaks in the value
estimates are reduced. This will generalize the policy, making the policy more robust.

2.3.5. Other Algorithms
This section describes; Proximal Policy Optimization (PPO) and Soft Actor Critic (SAC). These
are two state-of-the-art algorithms for RL, with stochastic policies.

Proximal Policy Optimization

Proximal Policy Optimization (PPO) is an on-policy policy gradient algorithm using stochastic
policies [S1]. It uses a trust region for its policy update steps. This means that the pol-
icy updates during training are not too large, which would otherwise result in a significant
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Algorithm 3 RDPG

Initialize weights for actor and critic 8 and ¢.
Initialize weights for target networks 8" and ¢'.
for episodes = 1, M do
fort=0,T—1do
Compute memories {; and 1,
Arp1 < Mo (Se+1, Ser1)
ay < o (e, Ce)
Ve < 1+ VQ¢(Se41, Qrv1, Mer1)
Agy <« y: — Q¢(5t: ag M)
end for

Update actor and critic network using BPTT

1 0Q¢p (St,at.Mt)
Vo =7 Lrldde—

_1 90Q¢ (st,aeMe) 04y
Vo =7 Xr Aqe da_ 06
update actor and critic with Adam

Update target networks
0«10+ (1-1)0’
¢ 1o+ (1-1)¢

end for

Algorithm 4 TD3

Initialize critic networks Qg,, Qg,, and actor network my with random parameters 6, 6,, ¢
Initialize target networks 0] « 6,60, « 6,,¢" « ¢
Initialize replay buffer R
fort=1toT do
Select action with exploration noise a; ~ 74 (s;) + €,
€ ~ NV (0,0) and observe reward r; and new state s;,
Store transition tuple (s¢, as, 11, S¢41) IN R

Sample mini-batch of N transitions (s;, a;,7;, 5;41) from R
G « Ty (Siy1) + €, € ~ clip(V(0,6),—c,c)
y e+ yminj_q, er’ (rpr (Se41), @)
minimize using SGD L = N~ £(y — Qg, (i, :))?
if t mod d then
Update ¢ by the deterministic policy gradient:
Vo) = N1 X V4Q0 (S, @)l ay=ny (si) Vo T (51
Update target networks:
0; «16; + (1 —1)6;
¢ 1o+ (1-1)¢'
end if
end for

performance loss. PPO aims to maximize an objective function using minibatch stochastic

gradient descent. The objective function uses a probability ratio r, = %, which is the
o tl-t

probability of taking the given action under the current policy 7 to the probability of taking
that same action under the old policy m,;;. Clipping discourages big changes to the new
policy. This can be necessary since a large increase in policy update is only beneficial for
special conditions. These changes in the policy are often beneficial for the policy in general.
The size of the policy update is limited by €. If both 7, and A are positive or negative?, the
policy update gets restricted by €. The advantage function A(s, a;) = Q(s;, a;) —V(s;) indicates
that the quality of an action in a particular state is better or worse than the quality of being

2|f A is positive the action taken was beneficial, if A is negative, the action was taken was undesirable
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in that state.

ISHP = E, [min (MA clip (M 1—-61+ 6) A)] (2.20)

To1a(AclSt) ' T[old(atlst)’

The PPO objective is augmented with two other objectives when trained on neural networks.
The first one,

1) = (vo(s0) = 1)’ (2.21)

is the squared error loss of the regular and the target network of the value function. The
second one,
S[mgl(se) (2.22)

is an entropy bonus, which ensures that the agent will explore in its environment. The
combined objective for the actor is

LELIPAVES (9) = E, [LEMP (0) + cS[mg](se)] (2.23)
where c is a hyperparameter that regulates the importance of the entropy bonus.

Soft Actor Critic

Soft Actor Critic [21] (SAC) is a sample efficient, off-policy AC algorithm that incorporates
an entropy measure of the policy into the reward to encourage exploration. It makes use of
entropy maximization, which provides an improvement in exploration and is robust in the
presence of model and estimation errors [62]. The algorithm learns three functions namely;
the policy 7y, the soft Q-value function Q,, and a soft state value function V;, and it maximizes

T
J8) = > Eisuapy-pe, e + aT (o Clse)]
t=1

which augments the objective with the expected entropy of the policy over p,(s;). The tem-
perature parameter a determines the relative importance of the entropy term against the
reward.

2.4. summary

The first section formulated the RL framework and continued to apply this information es-
pecially on Actor Critic (AC) methods. The general notion of RL is to train a policy that seeks
to maximize cumulative discounted reward called discounted return. These rewards are ex-
perienced by an agent in simulation. The agent takes actions in an environment which is
formulated as a Markov Decision Process (MDP). The quality of states or actions is determined
by value functions and action-value functions respectively. AC methods train two functions,
namely a policy function known as the actor, and an (action) value function known as the
critic. The critic is used to inform the actor on its performance and update its policy in favor of
the information from the critic. These AC methods are well applicable to continuous control
tasks.

The second section described what deep neural networks are and their workings. Deep neu-
ral networks are capable of approximating highly non-linear functions with minimal human
intervention. Based on network structures, the deep neural network is able to adapt to mul-
tidimensional and/or recurrent data. The extreme generalizability of these deep learning
methods makes it an excellent solution to our complex problem.

The last section applied deep neural networks as function approximators for RL, resulting
in Deep Reinforcement Learning (DRL). DRL becomes compelling with increased system com-
plexity. Generally, we seek to find an optimal policy in RL. Sparse rewards are favored over
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dense rewards concerning the optimality of the policy, however, the more complex an RL ob-
jective becomes, the harder training becomes due to a lack of rewards obtained. We described
different AC based DRL algorithms. We showed a family of off-policy DRL algorithms, namely
DDPG, RDPG and TD3 with deterministic policies, which have been successful in solving
various complex tasks. Furthermore, we have shown two other successful algorithms with
stochastic policies, namely PPO and SAC.






Transfer From Simulation To Real World

RL-control has benefits over traditional control methods. RL controllers are useful when the
objective of an agent is known, but it is unclear how this objective should be achieved. RL
is applicable on a wide variety of tasks. It often finds solutions for given objectives, pro-
vided that the reward function is designed properly. Problems exist which are hard to design
with traditional control engineering techniques but solvable through RL techniques, such as
systems for manipulating objects using a humaniform robot hand [3]. RL-control, however,
suffers from the often mentioned reality gap [26, 28], where an agent trained in simulation
does not generalize well to the real-world environment. The transfer from simulation to real-
world application is often referred to as Sim-to-Real in literature. There are examples of robots
training on physical systems [33] which eliminates this reality gap, however, this method is
not desirable. An agent trained in simulation is cheaper and less time consuming since we
can exploit the capabilities of the computer to quickly generate simulation data on which the
policy can be trained.

Several methods have been proposed which overcame this reality gap. One example is a
method where the reality gap is solved by learning an additional inverse dynamics model [12].
Such methods, however, do not generalize well to changing dynamics (e.g. wear on robot
joints) and assume there is data available from a physical system to train on.

RL-control on robots where the transfer from simulation to the real world was successful
has been accomplished [3, 4, 40, 54]. This has been made possible mainly by two additions
to the conventional RL training algorithms. These additions are; randomization, and the use
of RNNs. How randomization and the implementation of RNNs for the sim-to-real transfer
work, and why they work, will be explained in this chapter.

3.1. Randomization

Randomization of the simulation physics and domain is useful when a deployed policy should
generalize to the dynamics of the real world [40, 45]. Due to discrepancies in the simulation
dynamics and real-world dynamics, RL policies trained in simulation often fail to operate
successfully in the real world. This occurs since the behavior of the agent in simulation
tends to overfit to the simulation dynamics when the agent is naively trained in a single
environment [5]. An example can be given from [40], where a robot manipulator could not
account for the friction of a puck on a table when only trained in simulation. This policy did
not work well in the real world scenario and thus was not able to push the puck over the
table successfully. However, the same robot trained with dynamics randomization was able
to push this puck. Training with different values for the friction between the puck and table,
among with other dynamical parameters such as masses and damping coefficients, resulted
in a policy that behaved desirably on the real robot arm.

19
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In randomization, the environment and the dynamics are changed slightly during training
episodes randomly. The agent needs to train a policy that works on a variety of conditions.
The core idea of this principle is that the agent perceives the real environment, as a new
randomized (simulated) environment. Since the agent is trained to adapt to randomization
in the environment, it should also be able to adapt to the real environment.

3.1.1. Dynamics Randomization

In Dynamics Randomization, certain parameters of the model are changed randomly during
simulation [40, 54]. These could be parameters such as; mass, friction, moments of inertia,
observation noise, simulation timestep length, and the gravity constant. These randomly
chosen parameters, i.e. the dynamics parameters u, change the dynamics of the simulated
model.

The dynamics parameters are known during training, but we do not have an exact knowl-
edge of these parameters from the real world. For Actor Critic methods, the policy network
(actor) is used as the controller when employed in the real world, i.e. the value function
network (critic) is only used during training and simulation. Since during training and sim-
ulation all parameters are known, we can supply the value function network with this infor-
mation. The authors of [40] refer to as an omniscient critic. This is to reduce the variance of
the policy gradients. It allows the value function to provide more meaningful feedback to the
policy as well. In Figure B.1 it is visible that our actor network does not include information
about the dynamics parameters u, while our critic network does.

Domain Randomization

Domain Randomization strongly resembles Dynamics Randomization, because it aims to
generalize the policy to work in real-world applications. Domain Randomization, however,
focuses on randomizing the domain rather than the dynamics, e.g. Domain Randomization
randomizes the colors, textures and so on, when using computer-generated images as in-
puts [45, 56]. Our model does not rely on any image based input, so we do not use the
technique of Domain Randomization.

3.1.2. Side Effects of Randomization

RL controllers trained with randomization techniques allow for robust control of systems
where models are not accurate. While these techniques allow for stable control of systems
with tolerable model errors, this also means that optimality is lost since these controllers
need to cater for a variety of system dynamics.

3.2. Closed Loop Control using Recurrent Neural Networks

RNNs can effectively solve the problems for Partially Observable Markov Decision Process
(POMDPs) in deep reinforcement learning [22]. POMDPS are MDPs where the agent can-
not access the state directly. Problems introduced by POMDPs were solved by maintaining
probability distributions over possible states based on observations in the environments and
making decisions by combing information about these probability distributions and the ob-
servations [53]. They have proven to be essential when a simulation trained policy is deployed
on a physical system. RNNs are able to interpret temporal sequences of data, which means
that RNNs are capable of memorization. This allows the network to generalize the dynamics
(similarly to system identification) on memorized data, and adapt the policy accordingly. This
is essential when training networks with dynamics randomization.

3.3. Summary

This chapter examined the possibilities of transferring the policy from simulation to reality
successfully without training on the real system. This is accomplished by randomizing fea-
tures in simulation. The system is trained such that it can adapt to these discrepancies
between features in simulation. Eventually, the policy should be robust to changes in the
dynamics, hence work in the real world.



Improving upon Regular Exploration

In RL, the reward function is used to generate rewards. Reward functions are engineered in
a manner such that it describes how an agent should behave. There are multiple strategies
for how to engineer such reward functions. These different strategies often yield different
outcomes for the trained model. We could train a model using dense reward functions,
by giving feedback on the performance from every visited state during exploration. Shaped
reward functions (a type of dense reward functions) limit the applicability of RL in the real
world. Shaped reward functions are not applicable in situations where we do not know what
admissible behavior may look like. [2] Sparse rewards are favored over dense rewards, due to
the risk that the policy adopts less optimal behaviors due to bias in the reward function. [2]
however, Training an agent with sparse rewards tends to be harder to solve than training
on dense rewards. This is because the agent might never reach the goal position by random
exploration, and thus would never receive reward to train on. Ideally, we train the agent on
sparse rewards only. Without modifications to the RL algorithm, this might not be possible
since the agent never explored the goal objective. This chapter will look into techniques to
overcome the problems of exploration using traditional sparse rewards in complex tasks.

4.1. Hindsight Experience Replay

Hindsight Experience Replay [2] (HER) partially solves the problem of insufficient exploration
possibilities in sparse reward function settings. In HER policies are trained on multi-goal
problems', which follows the Universal Value Function Approximators [48] (UVFA) approach.
This means that the policies and value functions trained take a goal g € G as input alongside
a state s € S.

Consider an episode with a state sequence s,.., s and a goal g # s4,..,5r, and consider a
reward function

_ |1 ifg=s
r(s.9) = {0, otherwise
where 7, is the reward of reaching the goal. In regular exploration, the state sequence sj, .., S¢

would, most probably, not receive any reward, and thus would not be able to train on the
reward signal properly. HER samples the state sequence s;,.., Sy, and samples a selection of
states? from this state sequence as a virtual goal g’. This is what we refer to when we talk
about the resampling of goals. When goals are resampled, the rewards of arriving in goal
g' need to be recalculated, and a policy and value function update can be performed with
this new information about g'. For the working principle of HER in pseudo-code format, see
Algorithm 5. This method however only is able to train using an off-policy algorithm, since

"The objective to solve does not necessarily have to be a multi-goal problem, however, to apply HER techniques it should be
modeled as one.

2The selection of states depends on the goal sampling strategy, in [2] the final state st is used as virtual goal sample. This,
however, is not mandatory.
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we sample from a policy with another goal state.

HER allows the creation of new training data where the agent reaches goals independently
of the exploration strategy. This eliminates the problem of never exploring the goal states.
However, depending on what the desired goal conditions are, HER still might not be able to
solve this sparse reward problem. When tasks become more complex, the chances of arriving
at these goal conditions becomes smaller. An example is given where a possible shortcoming
of HER is demonstrated below.

The Shortcomings of HER; an example

A case where HER should have no problem with resampling goals is when, a quadcopter, for
example, is only required to reach a position in 2D space independent of other states. An
example that would be more difficult to achieve with HER is when a quadcopter should reach
a point in space with zero velocity, but the velocity is not part of the reward function. If during
exploration, there is no state when this agent has zero velocity, there is no opportunity to
resample goals. This is because these goals can only be resampled where the goal condition of
zero velocity is met. In short, when a goal condition is unlikely to be met during exploration,
there is little opportunity for the resampling of goals. We defined our reward function such
that it is able to sample from many states, which is shown in Chapter 6.1.3.

Algorithm 5 Hindsight Experience Replay [2]

Initialize A (the off-policy RL algorithm) {A is given}
Initialize replay buffer R
for episode= 1 to M do
Sample a goal g and an initial state s, {Sampling strategy is given}
fort=0toT —1do
Sample an action a; using the policy from A:
a; < mp(selg)
Execute the action a; and observe a new state s;,4
end for
fort=0toT —1do
1 = r(sg ag, g) {Reward function is given}
Store the transition (s;|g, as, 7, St+119) In R
Sample a set of additional goals for replay G = S(Currenepisode)
forg' € G do
n =r(sp,ang")
Store the transition (s;|g’, a¢, 1¥, s¢+119') IN R
end for
end for
fort=1to N do
Sample minibatch B from R
Perform one step of optimization using A and minibatch B
end for
end for

4.2. Learning from Demonstrations using Behavior Cloning

The training of an RL agent can be augmented with demonstration data. Using demonstra-
tions in RL is an active research area [47, 58, 61]. A method that combines RL and demon-
strations successfully on complicated multi-step, long-horizon tasks with generalization to
varying goals has been published in [38]. This method makes use of four key concepts. The
most notable of these concepts is the imitation loss with Q-filter [38].

4.2.1. Demonstration Buffer
Besides a replay buffer R, a second replay buffer R, is maintained in which demonstration
data is stored in the same format as in R. During training, from both R and R, a minibatch
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of transitions are drawn for the update of the actor and critic. This idea has been introduced
in [58].

4.2.2. Behavior Cloning Loss

The behavior cloning loss L,. can be used as an extra loss function in the RL framework
with demonstrations [38]. This loss aims at minimizing the error between the demonstrator
action and the action from the policy in a state presented by the demonstrator. The behavior
cloning loss

Np
Lsc = ) llm () - all (4.1)
i=1

is a standard loss in imitation learning, which also could be used as an auxiliary loss for
RL to significantly improve learning. Where Lg. is the behavioural cloning loss, n(s;) is the
policy in demonstration state s;, a; is the demonstration action.

The gradient applied to the actor parameters 6 is:

MVe, ] — AV, Lpc, (4.2)

where Vg_J is the standard policy gradient, which is maximized, while the behavioral cloning
loss Lp¢ is minimized. 4; and A, are hyperparameters which influence the amount that the
gradients of | and Lg. influence the policy update.

Q-filter

A problem with behavior cloning in RL is that it might be possible that these demonstrations
are sub-optimal. This is solved through a Q-filter. Since the Q-value is an indicator of per-
formance, it can be used to determine whether the demonstration action q; is better than the
action taken by the actor n(s;). Only if the demonstration action is better than the action
from the policy, it is accounted for in the behavior cloning loss:

Np

Loc = ) I (50) = aill* Lg(syap>otsintsny (4.3)
i=1
where Q(s;, a;) is the action value of the demonstration action a; in demonstration state s; and
Q(s;, m(s;)) is the action value of policy action n(s;) in demonstration state s;. The behavioral
cloning loss is only taken into account for the demonstrations action that yield a higher action
value than the policy action does.

4.2.3. Resets to demonstration states

Some training episodes are started from demonstration episodes using states and goals from
Rp. Restarts from within demonstrations expose the agent to higher reward states during
training. This is beneficial in problems with sparse rewards in long-horizon tasks.

4.3. Summary

This chapter introduced two methods to aid the agent in exploration. The first method is
called Hindsight Experience Replay. This method requires the training objective to be based
on multiple goals. Hindsight Experience Replay resamples visited states during a rollout
as alternative goal states. Since receiving rewards in sparse reward tasks with regular ex-
ploration might be insufficient, Hindsight Experience Replay allows the agent to experience
these rewards, by reformulating the goal objective after the trajectory rollout has been per-
formed. This reduces the chance of not finding a solution due to the negative effects of sparse
rewards drastically.

To aid exploration, demonstrations can be used as well. In many cases, demonstrations
are available or can be generated with relative ease. Demonstration data can be used to
give the agent a head start and to obtain a reasonable policy relatively quickly. From these
demonstration data, goals can be resampled using Hindsight Experience Replay. Hindsight
Experience Replay can resample goals beneficial to our policy.






Algorithm Implementations

In this chapter, we will introduce the algorithms that were implemented for the training of
the controller and benchmark using the openAl LunarLander’ [11]. In Section 5.1 we will
discuss our own implementation of the off-policy TD3 [19] algorithm. In Section 2.3.5, we
will give a description of our on-policy PPO algorithm [51] implementation.

5.1. Algorithm

Our TD3 [19] algorithm includes Hindsight Experience Replay [2] and exploration through
demonstrations [38], and it seeks to overcome the reality gap using dynamics randomization
and recurrent neural networks [40]. In the following sections, we will discuss why these
methods are chosen for this task. The configuration of our Actor Critic networks can be
found in Appendix B.1.

5.1.1. Twin Delayed Deep Deterministic Policy Gradient

A detailed description of the TD3 algorithm is given in Chapter 2.3.4. The use of TD3 is
essential in our case and it is preferred to regular DDPG. The TD3 algorithm is able to learn
more robust policies than DDPG, since TD3 compensates for the deficiencies in the Q-value
approximation that DDPG can suffer from.

5.1.2. Sim-to-Real
To develop a controller to be employed in a real-world task, dynamics randomization [40]
and LSTMs are used. This combination allows the system to generalize to a range of possible
dynamics in the system. Since the controller generalizes over dynamics, the controller should
theoretically be able to overcome the problems arising from the mismatch between simulation
and real-world dynamics. The critic is modeled as an omniscient critic [40]. This means that
the critic receives all available information from simulation, while the actor only receives
information normally available in reality during training. In dynamics randomization, we
have access to the dynamics parameters u. In reality, these parameters might differ from
the simulator dynamics. During training, the dynamics parameters u are randomly selected
for each rollout. In the case of an action-value function, the new value function is modeled
Q(st as, 1), where p are the dynamics parameters that contain information about the dynamics
present.

The LSTM units are used to infer the dynamics of the system from past observations [40].

5.1.3. Hindsight Experience Replay
In our simulation setup, we use Hindsight Experience Replay to be able to generalize to
different goal positions and orientations. HER allows us to sample a state of the systems

"LunarLander is a simulation of a flying mechanism, aimed to land on a moon-like surface. We can perform tests with a custom
reward function in this scenario, which we can copy to our quadcopter environment. Due to its flying dynamics, this readily
available environment is a good comparison with our quadcopter environment.

25
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as being in a feasible goal state. This significantly increases the chance of finding any goal
states during training, since we can sample goal states from states of the system.

Probability of Reaching Goal State
In our objective, the goal state has a relatively high dimensionality. The goal state is de-
scribed in Chapter 6.1.3.

With truly random exploration alone, these goals are unlikely to be reached frequently enough
during exploration to be able to train the system on these goals, due to its high goal dimen-
sionality. If we would use dense rewards (e.g. a reward function which is a function of
distance to the goal and the difference in angle with respect to the desired angle), we could
incentivize the agent to explore towards the goal. This, however, could lead to a biased policy,
which we try to avoid. HER allows for the sampling of goals based on visited states during
exploration, which can guarantee that the agent experiences goal states for training.

Generally, we desire that during the landing procedure of a quadcopter the objective is that
speed p, and rotational speed w, are approximately 0, since we define landing needs to occur
at minimal velocity.

However, the frequency that this objective occurs during exploration is too low, and this
would not allow for sufficient opportunities to resample goals for HER. To solve this we include
the speed p, and rotational speed w, into our goal g. This allows for sampling generalized
goals where p; and w,; # 0. Although this means that we increase our goal state g with
additional goal states that are fixed when deployed on a real system (i.e. py and wy = 0 in the
goal state g), we are able to resample generalized goals where p; and wy # 0 which allows us
to resample goals frequently. The reward function for our quadcopter environment is defined
in Chapter 6.1.3.

5.2. Learning from Demonstrations

Since quadcopters are controlled stably, either human or computer-controlled, we can ex-
ploit this stability for learning from demonstrations. Learning from demonstrations can be
done from human demonstrations, but since we can use conventional controllers in simu-
lation, we generate off-policy exploratory training data using these controllers in simulation.
We do not focus on optimizing our non-RL-controller and imitating its behavior. The demon-
stration data is used for learning a stable policy of our quadcopter, especially in the early
stages of training. This stable policy protects the agent of exploring towards undesirable (i.e.
unstable) states. This method increases learning speed in RL, and the RL trained policies
can outperform the demonstrator policy, as shown in [38].

This method is different from [61], where the goal is to mimic a conventional MPC controller,
with the benefits of having a policy network that can generalize its policy with its on-board
sensor data, while trained on the full-state MPC controller using supervised learning.

5.3. Algorithm Implementation

For the design of the RL training algorithm, a sample efficient off-policy training algorithm
has been implemented, together with measures to overcome insufficient exploration and re-
ducing errors arising in sim-to-real by randomization in the simulator dynamics. Since we
are using recurrent neural networks, dynamics randomization, and HER, we need to ac-
count for this in the algorithm and neural network structure. How and why this is done will
be shown below.

Firstly, we need to take historic states into account in the actor and critic networks. The
actor-network is as follows,

a; = gy (s, hr(si, @), (5.1)
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where q; is the action as calculated by the policy network my with inputs s; at time i and
hr(s;,a;) is a function of the historic states of s; and a; respectively, with T > 0 historical
sequential samples. hr(s;, ;) returns a vector of length T — 1 sequential historical samples.
The function is as follows

hr(si, a;) = [(Si—1, @i—1) , (Si=2,@i=2) , e , (Si—741, Bi=741)] (5.2)

where the function extracts the states for the recurrent neural network from a buffer. For
the TD3 implementation these buffers are R and Rj,.

The critic network is as follows,
Qo(si, i, hy(si, ay)), (5-3)

where s; and a; are the state and the action at time i and h;(s;, a;) are the historic states of s;
and q; respectively, with T > 0 historical sequential samples.

Secondly, we need to include the dynamics parameters u into the critic network. The critic
network is as follows

QG (Silll' ai)l (54)

where s; and a; are the state and the action at time i, and u € M are the dynamics param-
eters. These dynamics parameters are given only to the critic since information about the
dynamics of the environment is only available in simulation. The actor-network eventually
will be employed in a non-simulated environment, and therefore it will not have access to
these dynamics.

Lastly, we need to implement a generalized policy [48]

g (5il9) (5.5)

where the goal g € G is provided along with state s;. In simulation, we will sample a random
goal at the start of the episodes which does not change during the course of the episode. Dur-
ing training, we will sample goals from states the agent has encountered during exploration,
following the future, episode and final sampling strategies [2] which are further elaborated in
Chapter 6.2.1.

We need to include the dynamics parameters g into the critic network as well. The critic
network is defined as follows

QG(Sil{gl.u}' ai)' (56)

where s; and a; are the state and the action at time i, and g € G is the goal.

When combining these components for recurrent neural networks, dynamics randomization,
and HER, we get for the actor and critic networks

g (silg, hr(silg, a) (5.7)
and
Qo(siltg, 1}, ai, hr (sil{g, 13, @), (5.8)
respectively.
5.3.1. Training

During training, we maintain six neural networks and two replay buffers. Two critic networks
6, and 0,, two target networks 0; and 6, for the critic, one policy network ¢, and one target
network ¢’ for the policy. We maintain a replay buffer R for regular training data, and a
demonstration replay buffer R, for demonstration data. Before sampling from the policy, we
obtain demonstration data. We train our network episodically. At the start of the episode,
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the initial state generally starts from a random state. But if possible, the initial state is
one of the demonstration states, periodically. During the rollout with the original policy and
the demonstration rollouts, goal states are sampled using HER. Rollouts are generated by
sampling from the policy with parameter space noise [41] (see Appendix B.2), and samples
are stored in R. Each episode ends when the maximum sampling steps are exceeded, or when
the system is in a termination condition. Data from both R and R, are sampled randomly for
training the critic, and policy (with policy delay) using the TD3 method. Demonstration data
from Rj is also used for imitation learning loss with Q-mask. For an in-depth explanation of
the mechanics of the TD3 algorithm, please refer to Algorithm 4. For the hyperparameters
used during training please refer to Appendix A.1.

5.4. PPO

For the mechanics of the Proximal Policy Optimization method, please refer to Chapter 2.3.5.
The desirability of a state-action pair is expressed in the advantage A(s, a), which we calculate
using the Generalized Advantage Estimation (GAE) [50]. The generalized advantage estimator
for 0 < 1 < 1 makes a compromise between bias and variance in the estimation of A(s,a). This
is a similar approach as TD(4).

Since we compare PPO to our TD3 algorithm, we neglected dynamics randomization in PPO
for increased computation time. PPO has been successful with dynamics randomization [3].

5.4.1. Training

We maintain two neural networks (see Appendix B.1), namely one policy network and one
value network. They have similar structures, but we do not use the current action a;, since
for PPO the value function V(s) is used, and for TD3 the action-value function Q(s, a) is used.
We train our network episodically. At the start of the episode, the initial state generally
starts from a random state. But if possible, the initial state is one of the demonstration
states, periodically. Rollouts are generated by sampling from the stochastic policy. Each
episode ends when the maximum sampling steps are exceeded, or when the system is in a
termination condition. Minibatches from the batch of rollouts are used to update both the
policy and value networks. Our hyperparameters can be found in Appendix A.2.



Simulation Setup and Results

This chapter introduces our simulation setup, in which the goal-oriented sparse reward func-
tion is defined. We define our goal-oriented quadcopter environment, and how the actions
from the policy influence our environment. This chapter also includes the results of our
environments. The LunarLander [11] environment is used to test the efficiency of HER and
Learning from Demonstrations'. Lastly, we show the results of our quadcopter on our algo-
rithm and compare it to our environment on PPO.

6.1. Simulation Setup

In this section, we will discuss how we validated the appropriate reward function structure
for our quadcopter problem. We use a popular benchmark in RL, which has a resembles
our RL problem to a degree? and we modify its reward function such that it resembles our
quadcopter objective.

6.1.1. Reward Function

Our reward functions for both environments are similar in nature, that is, both use exclu-
sively sparse reward functions. For both environments, we aim to reach a specified goal. This
goal is reached when the agent reaches any given coordinates and orientation at a minimal
velocity.

Generally we divide the reward function up in "sub”-reward functions;

1 if |kg—k|<6k
Rsun (91) = {0 otherwise * (&)
where the total reward is defined by
N
R(s,9) = 1_[ Reup (kg, k) . (6.2)
k=xy,..

Here k indicates the measure of the desired goal states k,. For example, if we would specify
a goal for an arbitrary agent to reach a position in x, y and z , our goal would consist of three
desired goal states g = [xg,yg,zg] where k = [x,y,z]. The tolerance for each measure of k is
defined by €.

"The inclusion of such a benchmark was chosen to confirm whether or not our implementations of the RL-algorithm worked.

2Among popular benchmarks for RL, the LunarLander benchmark resembles ours the best. While both environments are de-
scribed similar in their states s, they do differ significantly with regards to the actions a. However, we suspected that if our
RL-algorithm worked on the benchmark, it probably should work on our quadcopter environment.

29
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Figure 6.1: This is the LunarLander environment [11], with modified goal positions. The agent controls the spaceship (the polygon
in purple). Normally, the goal is specified as landing between the flags on the ground. We position a goal randomly above the
ground. The colored dots represent randomly generated goals.

6.1.2. LunarLander Environment

For our modified version of the LunarLander environment®, shown in Figure 6.1, we aim to
approach a specified goal position p,; = [xg,yg] in the global coordinate frame, goal velocity
Dg = [J'Cg, yg] in the global coordinate frame, goal orientation 6, in the global coordinate frame,
and a goal angular velocity w, in the local coordinate frame*. We specify these criteria into
our goal state since we need to be able to generalize towards all possible states when sampling
goals with HER. If we would eliminate any of these states from the goal, we limit ourselves in
what goals we can sample. For example, if we would eliminate p4, the goal velocity would be
fixed and thus we would only be able to sample a goal when the velocity is within the toler-
ance as described by Equation 6.1. This limits the amount of possible resampled goals. This
holds for our quadcopter environment as well, which is described below. The LunarLander
environment is controlled with 2 actions; the thrusts on the sides for balance, and a thrust
on the bottom of the lander for height control. The thrusts for balancing the device cannot
occur on both sides simultaneously.

L 4

Figure 6.2: Our custom quadcopter environment. The upper object is the agent. The other object is the landing position in the
desired landing orientation. The green rod indicates the desired z-axis of our quadcopter for landing.

30riginally, the LunarLander environment has a fixed goal position,
we deviated from this fixed goal.
4goal measures k are [x,¥,%, 7,6, w]
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6.1.3. Quadcopter Environment

For our quadcopter environment (Figure 6.2), we aim to approach a specified goal position
pg = [xg,yg,zg] in the global coordinate frame, goal velocity p, = [xg,yg,z'g] in the global coor-
dinate frame, goal orientation vector z; = (244, 2y 4,2, 4] in the global coordinate frame, and a
goal angular velocity w, = [ég, d>g, }'/g] in the local coordinate frame®. The goal state has these
many criteria for the same reasons as described in the previous section.

The actions of our policy control the error signal é, from (1.14) in only global y and z po-
sition, since we can specify a global reference frame such that the direction of the landing
vector lies in the y,z-plane of this global reference frame. This transforms our problem into
a 2D type situation, however, we do not restrict the drone to fly in the x direction. We do,
however, keep the error between the desired x position (x = 0) and the x position of the quad-
copter minimal.

Our new error signal e, is as follows:
ep = [x, a0, a4],

here x is the x position in the global reference frame of the drone, ay and a, are the actions
of the policy. We modified our error signal e, (1.15), where we assume that 74,; = 0, thus our
new error signal is e, = 7. Our RL algorithm should be able to adapt its policy to overcome
possible negative effects of this assumption. By not including e, for our policy actions, we
simplify the agent, and thus simplify training.

We limit our agent to enter a region below the landing position de-
fined by a sphere with a radius of R = 0.5m. This is an artificial
boundary where in reality the obstacle to land on would be present.
An illustration of this is given in Figure 6.3. If the agent enters
this area or flies 20 meters away from its starting position, then the
simulation will terminate and no reward will be given. Doing this
allows us to use HER, since HER can not sample goals when the dy-
namics of the system are dependent on this goal [2]. If we consider
a successful landing when there is contact with a surface under

safe landing conditions, the contact dynamics would not allow us
to sample goals from the trajectory where these criteria have been
met. This is not beneficial. Firstly because there is an infinitesimal
chance that these landing criteria are satisfied during random ex-
ploration. Secondly, it limits us in how much of the state space can
be used for the resampling of goals.

6.2. Results

In this section, we discuss the results of our algorithm on the Lu-
narLander benchmark, and our quadcopter environment. The Lu-
narLander environment is used to evaluate our modified TD3 algo-
rithm. Both HER and Learning from Demonstrations are examined
in this environment since training on this environment should be

Figure 6.3: Anillustration of how
contact is restricted during sim-
ulation. The red sphere repre-
sents a forbidden area the quad-
copter is not allowed to enter
in simulation, and the simulation
will be terminated if it does. The
camera (the landing platform)
is programmed to have contact
dynamics with the quadcopter.
This simplifies our environment
while maintaining restrictions for
flying dangerously near an ob-
ject.

less expensive due to a smaller state space than the 3D quadcopter environment.

6.2.1. HER and Learning from Demonstrations

We conducted experiments for different modes of the sampling of goals for HER. The sam-
pling strategies are, in accordance with [2]; future — replay with k random states which come
from the same episode as the transition being replayed and were observed after it, episode —
replay with k random states coming from the same episode as the transition being replayed
and end - replay with 1 state which comes from the end of the episode. In [2], experiments

Sgoal measures k are [x,¥,2,%,9, 2,2y, 2y, 25,0, ¢, ]
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have shown that the number of replays per transition k should preferably be 4 or higher, but
not higher than 8. We adopted k = 4 in our experiments. In Figure 6.4 the performance of
these techniques is plotted for these sampling strategies.

HER sampling strategies

episode
end
future
0.8 1
2
o 0.6 1
o
w
7]
o]
g 0.4
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wn
0.2 1
0.0
T T T T T
0 10 20 30 40 50

Policy Evaluation

Figure 6.4: Evaluation of HER strategies on the LunarLander environment. For every strategy, we trained a neural network 5
times each with 51,200 Q-function updates. The results are averaged across 5 random seeds and the shaded areas represent
one standard deviation. The goal orientation is held at 0 rad during evaluation.

The episode strategy performs best on average, the future strategy performs second best,
and the end strategy performs worst. The future sampling strategy was found to be the
overall best performing sampling method by [2]. Our findings do not match with [2]. Since
the LunarLander environment simulates contact dynamics, these dynamics do influence the
performance of these sampling strategies. The end strategy would most probably sample a
goal that is in a crash condition (unsafe landing of the LunarLander) since crashes occur
regularly when the policy is ill-defined. The crash terminates the simulation and hence will
be the last state, which the end sampling strategy uses as the resampled goal. The future
sampling strategy performs worse on the LunarLander benchmark than the episode sam-
pling strategy. We suspect that this is due to the bias of sampling the goals based on future
states. These future states have a higher chance of including unfavorable states when con-
tact occurs, which results in similar goals as sampled by the end sampling strategy.

It should be noted that the future sampling strategy does not always fail. But HER does
not discriminate on the quality of the states it samples as its goal, and thus resamples goals
from policy rollouts that result in states which are not favorable to resample using HER.

We chose to use the future sampling strategy. Our environment is designed such that con-
tact dynamics do not occur. Furthermore, our agent is self-stabilizing due to the PD control
loop within our environment. This is not the case for the LunarLander environment. The PD
controlled system and the lack of contact dynamics reduce the risk of sampling non-ideal
states as goal states. We also have access to valuable demonstration data. This data will
most likely contain state-action pairs with low risk of a catastrophic outcome.

We investigated what influence demonstrations had on exploration efficiency, and we com-
pared it to the performance of HER. It is visible from Figure 6.5 that training the LunarLander
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in a sparse reward setting is unfeasible purely on random exploration alone. Training the
sparse reward environment with HER alone takes a relatively large amount of optimizations
compared to demonstrations alone. Demonstrations alone can help to overcome this problem
of sparse rewards more efficiently that HER does. This, however, does not mean that HER
should not be implemented, since HER helps with generalizing towards different goals. The
demonstrations are useful since it ensures that during training there always is data available
from successful stable episodes. HER, on the other hand, can generate more training data
from these successful rollouts, by sampling additional goals from the demonstration data.
This is similar to curriculum learning [10, 15], where the agent and the desired goal states
are initialized in such a way that the probability of reaching the desired state is more prob-
able than with random initialization alone.

HER and demonstration performance on LunarLander
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Figure 6.5: Evaluation of Demonstrations, HER (episode strategy), and the TD3 algorithm without any additions. For every
strategy, we trained a neural network 5 times, each with 25,600 Q-function updates. The results are averaged across 5 random
seeds and the shaded areas represent one standard deviation. The goal orientation is held at 0 rad during evaluation.

The demonstration replay buffer has increased benefits since this buffer does not get replaced
with new data. A regular replay buffer, on the other hand, does renew its data and deletes
old data. This has the disadvantage that potentially valuable data is lost, and less valuable
data is added to the buffer. In [16], data from successful rollouts are kept in a replay buffer
similarly to our demonstration data. This ensures that valuable data is not removed, and
learning can occur from this data. When demonstration data are not available, the methods
from [16] and [10] are good alternatives. Quadcopters traditionally are already controlled by
humans, so collecting demonstration data is not a limitation in our case.

When both HER and Learning from Demonstrations are absent, no successful policy can be
found. The absence of an incentive for exploration makes our LunarLander problem unsolv-
able.

6.2.2. Results on Quadcopter Environment

The results show that the agent is generally able to reach the goal under a small landing angle.
For angles larger than grad, the success-rate goes down dramatically. For the landing action
on inclined surfaces, we see that the policy generally yields in a swinging motion near the
goal position to achieve the landing under an angle. The policy exploits the dynamics of the
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Quadcopter Performance
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Figure 6.6: Evaluation of our performance for our quadcopter environment with dynamics randomization. The policy is evaluated
with different goal orientations. We trained a neural network 10 times each with 51,200 Q-function updates. The results are
averaged across 10 random seeds and the shaded areas represent one standard deviation.

PD controlled quadcopter. Here it uses the fact that the quadcopter tilts when it changes
direction, and the amount it tilts is dependent on the angle of landing. Figure 6.7 shows
that the trained policy results in a slow motion towards the goal combined with a swinging
motion. This swinging motion results in the quadcopter pivoting to the angle it should land
in, while this also allows for a near-zero velocity at the points where it reverses direction.
Figure 6.6 shows the performance of policies trained with dynamics randomization, where
the mass m and mass moment of inertia J for all axes are 90% of these original values. This
indicates that the dynamics randomization does not fail. However, due to limited computing
capabilities, we were not able to train the system on more dynamics parameters.

In Appendix C more figures are shown of our quadcopter performance. These figures show
similar results as described above. A collection of trajectories of our policy evaluations for
our quadcopter objective is plotted. These plots in Figure ?? show similar swinging behavior
for the policies as described above.

Results on PPO

Our PPO algorithm is a combination of RL baselines [13] and SpinningUp OpenAl [1], which
is adapted to be able to handle with LSTM based neural networks. Our results show that
PPO is not able to find a successful policy with our complex reward function. During training
the advantages A(s, a) become zero for every state-action pair. Rewards are extremely sparse,
so there is not enough information available to train the policy and value function properly.
Since PPO is an on-policy method, our implementations of HER and Learning from Demon-
strations are not applicable to PPO.

These results were to be expected, similar to our results on the LunarLander. It is essential to
aid the regular exploration in DRL methods when working with complex systems with sparse
rewards.
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Policy Evaluation
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Figure 6.7: Policy of our quadcopter environment with dynamics randomization. The arrows and their length indicate the orien-
tation and the magnitude of the orientation of our quadcopter. The agent starts at position (0, 0) in under an angle of 6 = 0 rad.
This policy clearly shows a swinging motion to their goals, while arriving under an angle. The goal position z and y are respec-
tively +1, —2 and the landing is defined between 0 rad and ig rad






Conclusion

7.1. Conclusion

Deep Reinforcement Learning (DRL) has great potential to control complex robotic systems.
It is already able to achieve superior performance in games, and performance on robotic sys-
tems has progressed in the recent past. We investigated if we could land a quadcopter on
inclined surfaces with Deep Reinforcement Learning.

From our literature study, we found that to achieve a non-biased policy, the reward function
should be a sparse binary reward. Finding sparse rewards in our environment, however, is
unfeasible with regular exploration. To aid the regular exploration, we adopted Hindsight
Experience Replay (HER), and training from stable demonstration data. Demonstration data
are off-policy data and HER creates off-policy data as well. Therefore we are restricted to use
off-policy algorithms. Twin Delayed Deep Deterministic Policy Gradient (TD3) is a state-of-
the-art algorithm, which compensates for the overestimation of the Q-values, and exploitation
of Q-value errors, regularly found in regular Deep Deterministic Policy Gradient (DDPG).

The sampling of goals using HER allowed the agent to explore successfully towards goals
which the agent otherwise would have an infinitesimal chance of reaching. Learning from
demonstrations allowed us to decrease the number of iterations before a stable policy was
found. It also tackled the problem of forgetting in the policy network, since it stored valuable
data about stability during the entire training time in a demonstration buffer. The regular
replay buffer was not sufficient for our policy network to maintain a stable policy during the
entirety of training, showing behavior of forgetting.

Dynamics randomization is used to overcome the reality gap where the RL policy is not able
to adapt to real-world dynamics, since the dynamics in simulation are imperfect. This also
means that we adopted an LSTM based network structure for our DRL method.

We found that naively implementing our complex system with sparse rewards on RL al-
gorithms, is unfeasible if the RL algorithm does not take measures to counter insufficient
exploration. Our method aimed to maximize the number of times rewards were present, and
we think that off-policy methods have an advantage over on-policy methods with regards
to sparse rewards in complex environments. Our algorithm is relatively simple since our
method does not need complicated reward functions which are hard to optimize, are prone
to imperfect proxies, and have a chance to add a bias in the policy.

The policy of our quadcopter environment generally does not succeed to meet our expec-
tations with regards to consistency, and performance in landing under larger angles. We
created a policy that utilized the dynamics of a quadcopter to achieve a task which, to our
knowledge, was not tackled before. Controllers for quadcopters generally are designed to
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operate around its marginally stable hovering point, without purposely deviating from this
position. We wanted to achieve a maneuver with a quadcopter that does not follow its tradi-
tional operation. A controller trained with our DRL method is promising since we can utilize
our current knowledge on controlling quadcopters and can design a controller that can reach
objectives significantly different from the objectives of the demonstrations it is trained on.
Our method, in theory, also allows the training of a quadcopter controller with a different
objective, with relative ease. Since we have a sparse reward function, we would only have to
assign a set of new goal requirements to our reward function, and an optional modification
to the simulator.

Summary

In conclusion, this research has shown that reinforcement learning has the capability to train
policies for unconventional control tasks. Our research showed that hindsight experience
replay and learning from demonstrations allowed us to train policies for complex tasks in
a complex environment with sparse rewards. The resampling of goals of HER allowed us to
reach goals that were beyond the scope of the demonstration policy. This method is promising
due to its capabilities to generalize towards arbitrary goals. This allows the human to design
a controller for robotic systems without needing a deeper understanding of the dynamics of
these robotic systems.

7.2. Discussion and Future Work

For consistent performance, our model-free, off-policy RL method with demonstrations and
HER might not be sufficient. However, there is a chance that the performance will increase if
we would continue training our policy. Figure 6.6 indicates that the policy is not converged,
due to the rising performance, without stagnating at 51,200 Q-function updates. Since DDPG
methods are sensitive to hyper-parameter tuning, it is also possible that performance will in-
crease with different hyperparameters.

Model-based methods might have an advantage for applying RL policies on flying robotic
systems [59], however, this does mean we can only train a policy when the model of our
system is accurate. This is often not the case. Guided Policy Search (GPS) [31, 32] is a state-
of-the-art machine learning method that has been successfully applied in robotic tasks and
is a mixture of both model-based and model-free RL methods. GPS is an extremely sample
efficient algorithm, which learns an optimal distribution over optimized trajectories, and uses
these trajectories to learn a policy for neural networks through supervised learning. However,
our model-free methods with dynamics randomization should be able to adapt to differing
real-life dynamics [3, 40]. GPS, on the other hand, has not been shown to work nor not to
work when the dynamics of the system are significantly altered. Therefore it is interesting to
investigate GPS as an alternative for our method, as well as further investigating our current
approach.

Another approach would be to adapt the method used in [25]. This article introduces a
model-free and on-policy RL algorithm with deterministic policies implemented on a quad-
copter. For our problem, we could extend this method with dynamics randomization. It
is mentioned that their quadcopter showed significantly different behavior in the real world
compared to simulation. While the behavior in the real world was deemed more stable com-
pared to the simulation, which in many cases is positive, in our case we want to ensure that
the policy can handle these discrepancies in the real world. Dynamics randomization would
be an option to handle this issue. Furthermore, we would have to tackle the problem of a low
probability of retrieving reward in our complex environment. If we would explore our envi-
ronment with an on-policy method, there is an infinitesimal chance that the agent observes
any positive rewards. We could make use of curriculum learning [10], this increases the
probability of observing positive rewards. To increase the probability of sufficient exploration
for on-policy methods on quadcopters, we could also utilize exploration rewards [8]. These
exploration rewards are rewards based on dense reward functions, and these rewards are
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slowly decayed during training. The last portion of training a policy is trained with purely
sparse rewards. Training with an exploration reward, a useful policy is trained to be able
to explore successfully in sparse reward settings. This is similar to our demonstration data,
where we exploit a sub-optimal policy for the training of a sparse reward setting. To use
demonstration data with on-policy methods, a reward function can be designed such that it
encourages to match a reference trajectory based on some demonstration data [39]. Combin-
ing exploration rewards and the latter, we could create a similar RL approach for on-policy
methods compared to our current off-policy approach. However, Hindsight Experience Re-
play is not as trivial to mimic in on-policy methods.

HER sampling strategies are imperfect. We have seen that depending on the environment,
different sampling strategies work best. Further research could be done to choose sampling
strategies dynamically during training, based on the quality of the policy rollouts. Measures
like the Q-function Q(s,a) could be used to inform a custom sampling strategy. The state
action pairs with higher Q-values than others will have a higher chance of being sampled.
This is probably why the future strategy in [2] worked so well. Many state-action pairs in the
neighborhood of the goal will have higher Q-values than ones far away from this goal. At the
beginning of training, the Q-values are ill-defined. Slowly the Q-values are better defined,
and the policy is trained to approach these high-value states. In [2] the future sampling
strategy samples goals from higher valued states more often. This simulates the effect as we
proposed before. Our LunarLander system on the other hand, has due to its dynamics, less
valuable states near the end of the trajectory rollouts than it would have at the beginning
of the rollout. An appropriate name of this sampling strategy could be prioritized sampling,
since the inclusion of information about the value of state transitions for informed sampling
has already been done in [49].
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This shows our hyperparameters used.

Hyperparameters

Hyper-Parameter

LunarLanderContinuous-v2 Quadcopter

Critic Learning Rate
Actor Learning Rate
Actor Delay
Discount Factor
Optimizer

Target Update Rate
Buffer Size

Batch Size

Demo Batch Size
Reward Scaling
Recurrent Steps
Exploration Noise

1073
1073
2

0.99
ADAM
5-1073
10°
256
128

1

8

0.1

1073
1073
2

0.99
ADAM
5.1073
106
256
128

1

8

0.2

Table A.1: Hyper Parameters of our TD3
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Hyper-Parameter

Steps Per Epoch 4000

Epochs 200
Clip Ratio € 0.2
Optimizer ADAM

Critic Learning Rate 1073
Actor Learning Rate 3 -107*
GAE 4 0.95
Microbatch Size 250

Table A.2: Hyper Parameters of our PPO



Neural Networks

B.1. Configuration

This neural network is used for all actor-critic applications for this research [40]. The input
for the actor and critic networks contains G the goal requirements, current state s, and previ-
ous action a;_;. The critic also needs information about current state a; and has information
available about the dynamics pu, since we utilize the critic only in simulation.

LEGEND

Input Critic

Input Actor & Critic

Dense Layer
LSTM
Perturbed Layer
OQutput Layer
Layer Normalization
r
2
=
5
£ 9
. .

Figure B.1: Our Neural network configurations. Every layer hidden layer has 128 nodes, with ReLU activation functions (except
the LSTM unit). The output layer for the critic-network is unbounded, and the output layer for the actor-network is bounded
between —1 and 1 using the TanH activation function.

49



50 B. Neural Networks

B.2. Parameter Space Exploration
We use a policy network wheres noise is added to a part of the parameter space, for ex-
ploration [17, 41, 46]. This is different from the conventional exploration noise added to the
action of the policy. The scaling of the parameter noise gy, is adjusted according to the method
of [41]:
{aak ifd(mr, @) <6
Ok+1 =

iak otherwise. (8.1)

Here d is a distance measure between original policy m and perturbed policy pi. The
threshold § is used to determine whether to increase or decrease the perturbations scale gy
by multiplying or dividing by the scaling factor «a for the to be updated perturbed network.
For our TD3 algorithm, we calculate d (r, ) as follows [41]:

N

At = |5 Y B[ - w07, ®2)

i=1

where N is the dimensionality of the actions, the expectation is estimated over a batch of
samples from the replay buffers. The threshold § is chosen as o, which results in a normally
distributed noise on the action space with standard deviation o.
Due to this normalizing across activations within a layer, the same perturbation scale can
be used across all layers, even though different layers may exhibit different sensitivities to
noise.

Since layers may exhibit different sensitivities to noise perturbations, layer normaliza-
tion [6] ensures that the same perturbation scale can be used across all perturbed layers [41].



Supplementary Results

Quadcopter Performance
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Figure C.1: Evaluation of our performance for our quadcopter environment without dynamics randomization. The policy is
evaluated with different goal orientations. We trained a neural network 10 times each with 51,200 Q-function updates. The
results are averaged across 10 random seeds and the shaded areas represent one standard deviation.
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C. Supplementary Results
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Figure C.2: 4 Policies of our quadcopter environment with dynamics randomization. The arrows and their length indicate the
orientation and the magnitude of the orientation of our quadcopter. The agent starts at position (0,0) in under an angle of
6 = orad. The policies clearly show a swinging motion to their goals, while arriving under an angle. The goal position z and y
are respectively +1, —2 and the landing is defined between 0 rad and ig rad



