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Abstract

We derive approximations (in time) for impulse response curves not based on the Gaussian distribution (like
the well-known Edgeworth expansions), but based on other suitable distribution functions. In general, we
derive the full expansion for such an approximation based on an approximative function, the derivatives and
the cumulants of this approximative function and on the cumulants of the impulse response curve itself, see
formula (39). Suitable distribution functions exhibit a skewed profile which offers better opportunities for
approximations of typical impulse response curves than approximations based on the symmetrical Gaussian
distribution. As an example of such a suitable approximative distribution function we study more in detail
the Generalized Moving Gaussian distribution
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A common feature in convection-diffusion problems is that the Laplace transform of an impulse response
curve can be described by a single exponential as a(s) exp(xb(s)). We characterize the first four cumulants
in terms of the Taylor coefficients of the functions a(s) and b(s). Moreover, it is shown that the temporal
cumulants are linear in the spatial variable. This material is applied to several examples and it is shown that
the proposed approximative Generalized Moving Gaussian distributions for impulse responses in the field of
convection-diffusion type cases perform in general better than the expansions based on the pure Gaussian
distribution. Based on this type of approximation other properties based on the original impulse response
curve can be found along analytical ways.

1. Introduction

Impulse response curves turn up at many places in the field of (sub)surface hydrology, e.g. as break
through curves (BTC) during salt injections, reactive transport with through sorption and sequential first-
order reactions, transport of viruses through the subsoil, or responses due to the management of surface
water levels. Also, for hydrogeological time series analysis the measured signal can be considered as a
convolution sum of impulse responses due to single events. If one can approximate such curves by means
of an analytical expression other properties (e.g. integrals, derivatives) of these signals can be derived in a
more formalised way. This approximation is normally based on the matching of the first temporal moments
or cumulants. In a number of papers (e.g. Sánchez-Vila and Carrera [11]) the striking resemblance of many
impulse responses is observed and explained. Fitting parameters of particular conceptual models is tricky
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since totally different conceptual models can yield almost equal impulse responses as characterized by the
first temporal moments or cumulants.

In this paper we elucidate some properties of impulse response functions. In many cases the system
which describes the impulse response function can be described by a (large) number of independent random
variables (see, e.g., Maas [8]). Under very general conditions the Central Limit Theorem (CLT) can then
be applied, which tells us that the impulse response function can be approximated in the limit (for time
approaching infinity) by a Gaussian distribution. However, for short or earlier times the impulse response
function is skewed and the approximation based on the CLT is not very accurate. There are other approx-
imations (Gram-Charlier and Edgeworth) using the first temporal cumulants which are based on the same
Gaussian distribution, but also on higher-order derivatives of this Gaussian distribution. In that way, the
approximations become skewed, which resembles more or less reality. The drawback is that the possibility
arises that for very early or very late times the approximation becomes negative.

To try to improve these approximations we take as first approximation other distribution functions which
are skewed in itself and specify how higher-order approximations can be found using the cumulants along
the same lines as the standard Edgeworth approximation for the Gaussian distribution, see for the general
results equations Eqs. (38), (39) and (40). The use of other approximating functions has been suggested
earlier by Wallace [22]. Another approach has been given by Govindaraju and Das [4], Chapter 12. To apply
this theory, the applicant has only to find the cumulants of the impulse response curve and by means of the
knowledge of a chosen approximative distribution function (together with derivatives and cumulants) he has
to optimize the parameters in this approximative expression in some automated way. As an example for
these approximative expressions we study more in detail the (Generalized) Moving Gaussian distribution,
see equations Eqs. (42) and (47). In these cases we have just two (α, β) or three (α, β, ν) parameters,
respectively. Recently, other authors have used approximations as the Gamma distribution (von Asmuth
et al. [20]), and the Generalized Moving Gaussian distribution (for example, Bakker et al. [2]), but these
authors do not specify higher-order approximations by means of the derivatives of these approximative
functions.

Quite often, the differential equations which describe convection-diffusion processes, give rise to Laplace
transforms for the impulse response curve in terms of a single exponential (thus as a(s) exp(xb(s)). Here, it
is shown that the temporal cumulants in such cases are linear in the spatial variable x. This property has
been derived earlier in a number of cases for specific examples. In Section 3 we characterize the first four
cumulants in terms of the Taylor coefficients of the functions a(s) and b(s) which define the Laplace transform
of those impulse response functions and use these cumulants thereafter to approximate the corresponding
impulse response functions.

Firstly, we motivate our choice later for the (Generalized) Moving Gaussian distribution in Section 2 and
show an example of this simple exponential form. Next, we collect some material about moments (Section 3)
and give expressions for the moments expressed in terms of the Taylor coefficients of the functions a(s) and
b(s). In Section 4 we introduce the notion of cumulants and in Section 5.1 we specify the Gram-Charlier and
Edgeworth approximations based on the Gaussian distribution and cumulants. In Subsection 5.2 we derive
the theoretical approximation based on suitable distribution functions other than the Gaussian distribution.
We also derive correction terms based on derivatives of these approximative functions. As a specific choice
we introduce the Generalized Moving Gaussian distribution (Section 5.2.2), for which the Moving Gaussian
distribution is a special case (Section 5.2.1). The theory will be illustrated by some examples in Section
6. It is shown that the performance of the approximations based on the Generalized Moving Gaussian
distribution is better than these based on the pure Gaussian.

2. Motivation Moving Gaussian distribution

Impulse response functions are measured in situations where models have set up using the concepts of
diffusion and dispersion. That means that the corresponding partial differential equation is of the second
order with appropriate boundary and initial conditions. To illustrate this, consider the following simple
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one-dimensional problem

∂c

∂t
= D

∂2c

∂x2
− u ∂c

∂x
, t > 0, −∞ < x <∞,

c =
G0

nA
δ(t), t = 0, −∞ < x <∞,

c = 0, t = 0, x > 0.

(1)

where δ(x) [L−1] is the Dirac-delta function, c [ML−3] the concentration, D [L2T−1] the diffusion coefficient,
u [LT−1] the velocity, G0 [M] the amount of released material, n [L3L−3] the porosity or volumetric moisture
content and A [L2] the cross-sectional area represent. A common method to solve this equation is to apply
the Laplace transform technique (c(x, s) =

∫∞
0
c(x, t) exp(−st)dt). Then Eq. (1) is transformed into

sc = D
∂2c

∂x2
− u ∂c

∂x
+
G0

nA
δ(x), −∞ < x <∞, (2)

with the usual requirements about the finiteness of the solution at x = −∞ and x = ∞. The solution of
Eq. (2) reads

c(x, s) = (3)

G0

nA

1√
u2 + 4Ds

exp

(
x

(
u∓
√
u2 + 4Ds
2D

))
,

with the −sign for x ≥ 0, and the +sign for x < 0. The solution c(x, t) is found as G0
nA times the Gaussian

distribution along the real line in the variable x−ut√
Dt

c(x, t) =
G0

nA

1
2
√
πDt

exp

(
−
(
x− ut
2
√
Dt

)2
)
. (4)

The introduction of the Moving Gaussian distribution equation in Subsection 5.2, Eq. (42) is motivated
by the exact solution for this example. We remark that in many other cases (see, e.g., van Genuchten and
Alves [16]) the Laplace transform of c(x, t) has the form a(s) exp(xb(s)), where b(s) = −

√
p+ qs, for some

constants p, q, as here above.

3. Moments

The usual approach to study measured breakthrough curves c(x, t) is to calculate the temporal moments.
If one assumes that∫ ∞

0

c(x, t)dt = M, (5)

independent of x, then C(x, t) = c(x, t)/M is really a distribution function and the temporal moments of
these curves are defined by

nk(x) =
∫ ∞

0

tkC(x, t)dt, k = 0, 1, · · · ,∞, (6)

while the central moments are defined as

µk(x) =
∫ ∞

0

(t− n1)kC(x, t)dt, k = 0, 1, · · · ,∞. (7)
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Note that, n0(x) = µ0(x) = 1, and µ1(x) = 0.
The general relationship between the central moments and the moments is given by (see, e.g., Stuart

and Ord [15], Eq. (3.7))

µk(x) =
∑k

j=0
(−1)j

(
k

j

)
nk−j(x)n1(x)j . (8)

Equation (8) implies that the following holds for the second (variance), third and fourth central moments:

µ2(x) = σ2
t (x) = n2(x)− n1(x)2, (9)

µ3(x) = gt(x) = n3(x)− 3n2(x)n1(x) + 2n1(x)3,
µ4(x) = n4(x)− 4n3(x)n1(x)

+ 6n2(x)n1(x)2 − 3n1(x)4.

If one knows the explicit expression of C(x, t) then a useful technique to calculate the moments is to
compute the derivatives of the Laplace transform C(x, s) of C(x, t)

C(x, s) =
∫ ∞

0

C(x, t) exp(−st)dt, (10)

as

nk(x) = (−1)k
∂kC(x, s)
∂sk

∣∣∣∣
s=0

, k = 0, 1, · · · ,∞. (11)

Formally, this means that

C(x, s) =
∑∞

k=0
nk(x)

(−s)k

k!
. (12)

Next, we suppose that the general form of the function C(x, s) has the form

C(x, s) = a(s) exp(xb(s)), (13)

as is a common form for convection-diffusion equations, and we expand the functions a(s) and b(s) in their
power series around s = 0, namely (by the assumption that C(x, t) is a distribution function, see Eq. (5),
the term a0 = 1, and b0 = 0)

a(s) = 1 +
∑5
i=1 ais

i +O(s6),
b(s) =

∑5
i=1 bis

i +O(s6), s→ 0.
(14)

Now, it is possible to calculate the moments nk(x) for all k in terms of ai and bi. Even for k = 3 this
calculation is already a tedious task. By the relations Eq. (8) one will also find expressions for the central
moments. For k = 3, 4 the calculations have been carried over using the Formula Manipulation Package of
Maple R©. Here we present the results in terms of ai and bi.

n1(x) = −b1x− a1,

σ2
t (x) = 2b2x+ 2a2 − a2

1,

gt(x) = −6b3x− 6a3 + 6a2a1 − 2a3
1, (15)

µ4(x) = 12b22x
2 +

(
24b4 + 24b2a2 − 12b2a2

1

)
x+

24a4 − 24a3a1 + 12a2a
2
1 − 3a4

1,

µ4(x)− 3σ4
t (x) = 24b4x+ 24a4 − 24a3a1+

24a2a
2
1 − 6a4

1 − 12a2
2.
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It turns out that for the first four moments the coefficients in the Taylor expansion Eq. (14) up to the
fourth order suffice (a4 and b4). It is much easier to apply Eq. (15) to find the moments using the Taylor
expansion Eq. (14) than to apply Eq. (11) directly. We have specified also µ4(x) − 3σ4

t (x), which is the
fourth cumulant described in Section 4 below (see Eq. (20)).

4. Cumulants

Another useful tool to characterize the distribution is by means of the theoretically attractive cumulants
κr(x), which are usually defined implicitly as (see Stuart and Ord [15], Eq. (3.31))

Ĉ(x, p) =
∫ ∞
−∞

exp(ipt)C(x, t)dt (16)

= exp
(∑∞

r=1
κr(x)

(ip)r

r!

)
,

with i =
√
−1 and where Ĉ(x, p) represents the characteristic function of C(x, t). For distributions C(x, t)

with C(x, t) = 0, t < 0, this is equivalent with the definition (see also Eq. (12))

exp
(∑∞

r=1
κr(x)

(−s)r

r!

)
= (17)∑∞

r=0
nr(x)

(−s)r

r!
= C(x, s).

This means that∑∞

r=1
κr(x)

(−s)r

r!
= log

(
C(x, s)

)
, (18)

and the cumulants can be found as for r = 1, · · · ,∞,

κr(x) = (−1)r
∂r log

(
C(x, s)

)
∂sr

∣∣∣∣∣
s=0

. (19)

It depends whether the cumulants are evaluated for distributions with n1(x) = 0 or not. Stuart and Ord
[15], (Exercise 3.9, p. 113) gives the relation between nr(x) and nr−j(x), κj(x), j = 1, · · · , r, from which
also an expression can be derived for κr(x) in terms of nj(x), j = 1, · · · , r. Another representation for κr(x)
in terms of nj(x) is given by Blinnikov and Moessner [3], ((32) and (B3)).

The first cumulants are given by

κ1(x) = n1(x),

κ2(x) = σ2
t (x) = n2(x)− n1(x)2, (20)

κ3(x) = gt(x) = n3(x)− 3n2(x)n1(x) + 2n1(x)3,

κ4(x) = µ4(x)− 3σ4
t (x) =

n4(x)− 4n3(x)n1(x)− 3n2(x)2

+ 12n2(x)n1(x)2 − 6n1(x)4.

See Eq. (15) for the expression for µ4(x) − 3σ4
t (x) in Eq. (20). We remark that the first three cumulants

are equal to the central moments and that κ4(x) differs from µ4(x) by the term −3σ4
t (x). Some common

characteristics of distribution functions may be expressed in moments and cumulants (Abramowitz and
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Stegun [1], (26.1.15-18))

skewness; (also) coefficient of skewness :
γ1(x) = κ3(x)/κ3/2

2 (x) = gt(x)/σ3
t (x),

coefficient of skewness (alternative) :
β1(x) = γ2

1(x) = g2
t (x)/σ6

t (x),

excess :
γ2(x) = κ4(x)/σ4

t (x) = µ4(x)/σ4
t (x)− 3,

kurtosis; (also) coefficient of kurtosis :
β2(x) = µ4(x)/σ4

t (x) = κ4(x)/σ4
t (x) + 3.

(21)

From the very definition of the cumulants or from Eq. (18) it can be seen that all cumulants are linear
in the independent variable x for cases with C(x, s) = a(s) exp(xb(s)). A priori, the behaviour of the
central moments w.r.t. x is not obvious, but by the relations in Eq. (15) it is clear that e.g. the skewness
κ3(x) = gt(x) is always linear in x. This has been found earlier in the literature for quite a number of
conceptual models (see Schmid [13], Wörman et al. [23], Sánchez-Vila and Carrera [11]). See also Veling
[19].

5. Representation of the distribution functions by moments and cumulants

5.1. Gaussian distribution
With the aid of the moments or the cumulants, the distribution function can be represented either as a

so-called Gram-Charlier or an Edgeworth series based on the Gaussian distribution

g(t) =
1√
2π

exp(−t2/2), −∞ < t <∞, (22)

and, in this section we summarize these representations. We have to remark that in these theoretical
approximations it is assumed that the variable t ranges from −∞ < t < ∞. A consequence is that for the
Gaussian distribution g(t) all cumulants λn = 0, for n ≥ 3, using Eq. (16), since ĝ(p) = exp(−p2/2). Under
quite general conditions, a distribution function f(x, t) can be represented as a Gram-Charlier series

f(x, t) =
1√
2π

∑∞

j=0
cj(x)Hej(t) exp(−t2/2), (23)

where the functions Hej(t) are the Hermite polynomials, defined by for j = 0, 1, 2, · · ·

Hej(t) = (−1)j exp(t2/2)
(
d

dt

)j
exp(−t2/2). (24)

The very first polynomials are

He0(t) = 1,
He1(t) = t,
He2(t) = t2 − 1,
He3(t) = t3 − 3t,
He4(t) = t4 − 6t2 + 3,
He5(t) = t5 − 10t3 + 15t,
He6(t) = t6 − 15t4 + 45t2 − 15.

(25)
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The coefficients cj(x) are given by

cj(x) =
1
j!

∫ ∞
−∞

f(x, τ)Hej(τ)dτ. (26)

Under the assumptions n0(x) = µ0(x) = 1 (i.e., normalization of the function), which implies that for
t′ = (t− n1(x))/

√
σ2
t (x): n1(x) = µ1(x) = 0 and n2(x) = σ2

t′(x) = 1, the coefficients cj(x) can be expressed
in terms of the cumulants as

c0(x) = 1,
c1(x) = 0,
c2(x) = 0,
c3(x) = 1

6κ3(x),
c4(x) = 1

24κ4(x),
c5(x) = 1

120κ5(x),
c6(x) = 1

720

(
κ6(x) + 10κ2

3(x)
)
,

(27)

(see Eq. (20) and Stuart and Ord [15], Eq. (3.37) for κ5(x) and κ6(x), with κ1(x) = 0, κ2(x) = 1). These
formulas all together result in the following approximation for the distribution function f(x, t)

f(x, t) =
1√

2πσ2
t (x)

exp
(
−T 2/2

)
(28){

1 +
1
6
κ3(x)He3(T ) +

1
24
κ4(x)He4(T )

+
1

120
κ5(x)He5(T )

+
1

720
(
κ6(x) + 10κ2

3(x)
)
He6(T ) + · · ·

}
,

with T = (t− n1(x))/
√
σ2
t (x).

Another approach, the so-called Edgeworth expansion for the same function is written in the concise
form (see Stuart and Ord [15], Eq. (6.40))

f(x, t) =
1√

2πσ2
t (x)
× (29)

exp
(
−
∑∞

j=3
κjD

j
T

)
exp

(
−T 2/2

)∣∣∣
T=

(t−n1(x))√
σ2
t (x)

,

where DT is the differential operator w.r.t. T . If we assume that the stochastic variable T =
(
∑n
i (Ti − ns)) /(

√
nσs) is the sum of n independent stochastic variables Ti, all with the same mean ns,

variance σs and cumulants κs,j , j ≥ 3, so n1(x) = nns, σt =
√
nσs then the cumulants for T become

κj = nκs,j/ (
√
nσs)

j = κs,j/
(
n(j/2)−1σjs

)
. If one formally expands the exponential in Eq. (29) in powers of

1/
√
n one finds (using Eq. (24))
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f(x, t) =
1√

2πσ2
t (x)

exp
(
−T 2/2

)
×{

1 +
1
6
κ3(x)He3(T )

+
(

1
24
κ4(x)He4(T ) +

1
72
κ2

3(x)He6(T )
)

(30)

+
(

1
120

κ5(x)He5(T ) +
1

144
κ3(x)κ4(x)He7(T )

+
1

1296
κ3

3(x)He9(T )
)}

+ O
(

1
n2

)∣∣∣∣
T=

(t−n1(x))√
σ2
t (x)

,

where the terms between brackets () are of the same order in n, so, explicitly, κ4(x) is of the same order in
n as κ2

3(x). Compare Eq. (30) with Abramowitz and Stegun [1], (26.2.47) & Comment under (26.2.48). In
fact, Eqs. (23) and (29) represent the same function and so, the difference between Eqs. (28) and (30) is
just the order of the terms (see Stuart and Ord [15], §§ 6.15 - 6.20). In practice, moments and cumulants
above the fourth order are difficult to calculate, so neglecting κ5(x), κ6(x), · · · , and also powers of κ4(x)
beyond order 1, κ3(x) beyond order 2 in Eq. (30), one sees that the difference between the Gram-Charlier
and the Edgeworth expansion (Eqs. (28) and (30)), both with just three terms, is the extra addition in the
third term in (Eq. 30): 1

72κ
2
3(x)He6(T ). The grouping of the terms in Eq. (30) is better because it is an

asymptotic series. A drawback of both expansions is that for some parameter values they become negative,
which is annoying for most applications. For a discussion about the sign of these expansions we refer to
Maas [8], (Chapter 2.5).

5.2. Basic approximation functions
In the remainder of this paper we show that it is possible to approximate a given distribution function

not only by the Gaussian distribution as given above but also by some other distribution function. We shall
apply the technique as presented in the readable account of Blinnikov & Moessner (Blinnikov and Moessner
[3], (41)) for one specific distribution. We shall give an account in terms of the Laplace transform, although
it is more common to use the Fourier transform. In the sequel we denote the dependence on x in the various
functions explicitly, but we remark that all approximations are for fixed x, so this variable x has to be
interpreted as a parameter.

Assume the distribution function p(x, t) of a random variable T with n1(x) = κ1(x) 6= 0, variance
σ2
t (x) = κ2(x) and cumulants κn(x), n ≥ 3. The Laplace transform is p̄(x, s), and we assume that for the

basic approximation Z(x, t) for the random variable T ∗ with cumulants λn(x), n ≥ 1, the parameters have
been chosen such that λ1(x) = κ1(x) = n1(x), λ2(x) = κ2(x) = σ2

t (x), and that the Laplace transform of Z
is Z̄(x, s). For this case, the distribution functions for the random variables T/σt and T ∗/σt are respectively
q(x, t) = σtp(x, σtt) and Zˆ(x, t) = σtZ(x, σtt). The Laplace transforms of these distribution functions are
respectively q̄(x, s) = p̄(x, s/σt) and Zˆ(x, s) = Z̄(x, s/σt). Then by Eq. (17)

p̄(x, s/σt) = (31)

exp

( ∞∑
r=3

(κr(x)− λr(x))
(−s)r

σrt r!

)
Z̄(x, s/σt) =

exp

( ∞∑
r=1

σ−2
t (κr+2(x)− λr+2(x))

(−s)r+2

σrt (r + 2)!

)
×

Z̄(x, s/σt).
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We shall expand the exponential into a power series in w = 1/σt. Therefore we shall make use of the
following formula of Francesco Faà di Bruno (published in 1855) for the n-th derivative of a composite
function f ◦ g(w) = f(g(w)), see, e.g., Lukacs [7] and Blinnikov and Moessner [3], (30):

dn

dwn
f(g(w)) = (32)

n!
∑
{K}n,r

f (r)(y)|y=g(w)

n∏
m=1

1
km!

(
1
m!
g(m)(w)

)km
,

Here we define {K}n,r and {K}n as follows

{K}n,r the set {k1, k2, · · · , kn} of all
non-negative integers satisfying
k1 + 2k2 + · · ·+ nkn = n &
k1 + k2 + · · ·+ kn = r,
{K}n as {K}n,r without
the restriction w.r.t. r.

In the case here, we take f = exp and g(w) =
∑∞
r=1 σ

−2
t (κr+2(x)− λr+2(x)) (−s)r+2

(r+2)! w
r in Eq. (32) and we

find

p̄(x, s/σt) = (33)

exp

( ∞∑
r=1

σ−2
t (κr+2(x)− λr+2(x))

(−s)r+2

(r + 2)!

)
×

Z̄(x, s/σt) =

(
1 +

∞∑
n=1

Pn(s)σ−nt

)
Z̄(x, s/σt),

where the polynom Pn(s) is defined as

Pn(s) = (34)

1
n!

dn

dwn
f(g(w))|w=0 =

∑
{K}n

n∏
m=1

1
km!
×

(
σ−2
t (κm+2(x)− λm+2(x))

(−s)m+2

(m+ 2)!

)km
,

The polynom Pn(s) can be rewritten as

Pn(s) =
∑
{K}n,r

(−s)n+2r
n∏

m=1

1
km!
× (35)

(
σ−2
t (κm+2(x)− λm+2(x))

(m+ 2)!

)km
,
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Explicitly,

P1(s) =
{
σ−2
t (κ3(x)− λ3(x))

} (−s)3

6
,

P2(s) =
{
σ−2
t (κ4(x)− λ4(x))

} (−s)4

24

+
{
σ−2
t (κ3(x)− λ3(x))

}2 (−s)6

72
,

P3(s) =
{
σ−2
t (κ5(x)− λ5(x))

} (−s)5

120
(36)

+
{
σ−4
t (κ3(x)− λ3(x)) ×

(κ4(x)− λ4(x))} (−s)7

144
+

+
{
σ−2
t (κ3(x)− λ3(x))

}3 (−s)9

1296
.

Next, we make use of the property of the Laplace transform that the function

snf̄(s)− sn−1f(0)− sn−2f (1)(0)− · · · − f (n−1)(0)

is the transform of f (n)(t).

So, to proceed we have to require that for our approximative functions Z(x, t), it holds that Z(j)(x, 0) = 0,
j = 0, · · · . That means that we can not allow the so-called Pearson III type approximation

Z(t) =
1

γΓ(p)

(
t

γ

)p−1

exp
(
−
(
t

γ

))
,

0 ≤ t <∞, γ > 0, p > 0,

where n1 = λ1 = pγ, σ2 = λ2 = pγ2, (37)
and λn(x) = pγnΓ(n), n ≥ 1,

and Z̄(s) = (1 + γs)−p ,

since the n-th derivative of Z(t) becomes unbounded at t = 0 for n > p− 1.
So, for a distribution function p(x, t) with n1(x) = κ1(x) 6= 0, variance σ2(x) = κ2(x) and cumulants

κn(x), n ≥ 3, the generalized form of such Edgeworth type asymptotic expansion is (by applying the
inverse Laplace transform, i.e. Z̄(s/c) is the transform of cZ(ct) and (s/c)nZ̄(s/c) is the transform of
cZ(n)(ct) = Zˆ(n)(t)/cn)

q(x, t) = Zˆ(x, t)+ (38)
∞∑
n=1

∑
{K}n,r

(−1)n+2r

σn+2r
t

dn+2r

dtn+2r
Zˆ(x, t)×

n∏
m=1

1
km!

(
κm+2(x)− λm+2(x)

(m+ 2)!

)km
,

And so, in terms of p(x, t) (since p(x, t) = q(x, t/σt)/σt and Z(x, t) = Zˆ(x, t/σt)/σt)

p(x, t) = Z(x, t)+ (39)
∞∑
n=1

∑
{K}n,r

(−1)n+2r d
n+2r

dtn+2r
Z(x, t)×

n∏
m=1

1
km!

(
κm+2(x)− λm+2(x)

(m+ 2)!

)km
,
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Writing out for the first terms gives

p(x, t) = Z(x, t) (40)

− 1
6

(κ3(x)− λ3(x))
d3

dt3
Z(x, t)

+
1
24

(κ4(x)− λ4(x))
d4

dt4
Z(x, t)

+
1
72

(κ3(x)− λ3(x))2
d6

dt6
Z(x, t) + · · · .

An application of the formulas Eqs. (38) and (39) is the Edgeworth asymptotic expansion Eq. (30) from
Section 5.1, which uses the Gaussian distribution Zˆ(t) = 1√

2π
exp(−t2/2). The stochastic variable T is

now scaled as T ∗ = (t − n1(x))/σt(x) with λ1 = n1(x), λ2 = σ2
t (x), λn = 0, n ≥ 3, and the corresponding

function Z(x, t) becomes

Z(x, t) =
1√

2πσ2
t (x)

exp
(
− (t− n1(x))2

2σ2
t (x)

)
=

1√
2πσ2

t (x)
exp

(
−T ∗2/2

)
, (41)

with T ∗ = (t− n1(x))/σt(x),

and the derivatives of Z(x, t) give the product of the Hermite polynomials Hej(T ∗) with Z(x, t). Moreover,
Eq. (39) holds for −∞ < t <∞.

In the sequel we shall make some other specific choices for the function Z(t).

5.2.1. Moving Gaussian distribution
In view of the analytical solution of the standard model Eq. (1) it seems appropriate to use a function

Z(t) which itself encompasses the essential mathematical behaviour. Therefore, we take for Z(t) the function

Z(t) =
√
α

π
t−1/2 exp

(
−
(√

αt−
√
β/t
)2
)
,

0 < t <∞, α > 0, β > 0. (42)

For the choice α = u2/(4D) and β = x2/(4D) we find Eq. (4), after we have normalized Eq. (4) by dividing
by n0 = M = G0/(nAu). We call this distribution the "Moving Gaussian distribution" by the fact that it
is a Gaussian distribution which travels to the right as function of the place variable x. In fact Eq. (42) is
a generalization of the Pearson Type III distribution Eq. (37) for α = 1/γ, β = 0 in Eq. (42), but by the
restriction p = 1/2 in Eq. (37), and with n1 6= 0. The mean n1 and variance σ2 become

n1 =

√
β

α
+

1
2α
, σ2 =

1
2

√
β

α3
+

1
2α2

, (43)

but we refrain to translate Eq. (42) such that n1 = 0. The Laplace transform of Eq. (42) is

Z̄(s) =
√

α

α+ s
exp

(
2
(√

αβ −
√
β(α+ s)

))
. (44)
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Relation (44) can be derived using that (see Oberhettinger and Badii [10], Part I, (5.34) and Abramowitz
and Stegun [1], (10.2.17), respectively):∫ ∞

0

tp−1 exp (−at− b/t) dt = (45)

2
(
b

a

)p/2
Kp

(
2
√
ab
)
,

a, b > 0, and K1/2(z) =
√

π

2z
exp(−z).

Next, Eq. (45) is applied with p = 1/2 to derive Eq. (44). The cumulants of this distribution are

λn =
1
2
α−nΓ(n)− 2α1/2−nβ1/2

(
−1

2

)
n

, (46)

where (a)n is defined as (a)0 = 1, (a)n = a(a + 1)(a + 2) · · · (a + n − 1), n ≥ 1. See Appendix A for more
information w.r.t. the Moving Gaussian distribution.

5.2.2. Generalized Moving Gaussian distribution
Next we introduce a generalized form of Eq. (46) in the sense that we do not fix the exponent of the

factor t. So, we study

Z(t) =
1
M0

tν exp
(
−
(√

αt−
√
β/t
)2
)
, (47)

0 < t <∞, α > 0, β > 0, −∞ < ν <∞.

Here, M0 is the normalization constant. Using Eq. (45) we find

M0 = 2
(
β

α

)(ν+1)/2

exp
(

2
√
αβ
)
Kν+1

(
2
√
αβ
)
. (48)

The Laplace transform of Eq. (47) is

Z̄(s) = 2
(

β

α+ s

)(ν+1)/2

× (49)

exp
(

2
√
αβ
)
Kν+1

(
2
√

(α+ s)β
)
/M0 =(

α

α+ s

)(ν+1)/2
Kν+1

(
2
√

(α+ s)β
)

Kν+1

(
2
√
αβ
)

 .

The cumulants are more complicated to calculate. Here, we specify the results for the first two (again using
the Formula Manipulation Package of Maple R©)

λ1 = n1 = (50)

ν + 1
α

+
√
αβ

α

(
Kν

(
2
√
αβ
)

Kν+1

(
2
√
αβ
)) ,

λ2 = σ2
t = (51)

ν + 1 + αβ

α2
− ν
√
αβ

α2

(
Kν

(
2
√
αβ
)

Kν+1

(
2
√
αβ
))

− β

α

(
Kν

(
2
√
αβ
)

Kν+1

(
2
√
αβ
))2

,
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We remark that these results for ν = −1/2 reduce to what has been found in Eq. (43) for n = 1, 2. See
Appendix B for more information w.r.t. the Generalized Moving Gaussian distribution.

6. Examples

In this section, we apply our general resuls to several boundary value problems.

6.1. Example 1
We modify the first example in the sense that we consider the convection-diffusion equation in a quarter-

plane (x, t) = R+ × R+:

∂c

∂t
= D

∂2c

∂x2
− u ∂c

∂x
, t > 0, x > 0,

c− D

u

∂c

∂x
=

G0

nuA
δ(t), t ≥ 0, x = 0,

c = 0, t = 0, x > 0.

(52)

The boundary condition at x = 0 represents a so-called sudden injection in flux, see Kreft and Zuber [6].
The Laplace transform is

c(x, s) =
G0

nuA

2u
u+
√
u2 + 4Ds

×

exp

(
x

(
u−
√
u2 + 4Ds
2D

))
,

and the corresponding analytical solution, see Kreft and Zuber [6] and Veling [18]:

c(x, t) =
G0

nuA

[
u√
πDt

exp

(
−
(
x− ut
2
√
Dt

)2
)

−1
2
u2

D
exp

(ux
D

)
erfc

(
x+ ut

2
√
Dt

)]
.

The normalized solution reads

C(x, t) =
u√
πDt

exp

(
−
(
x− ut
2
√
Dt

)2
)

(53)

− 1
2
u2

D
exp

(ux
D

)
erfc

(
x+ ut

2
√
Dt

)
.

Here, this analytical solution equals a Moving Gaussian distribution except for the second term. The
corresponding coefficients ai and bi, i = 1, 2, 3, 4, (see Eq. (14)) are found as:

a1 = −D
u2
, a2 = 2

D2

u4
,

a3 = −5
D3

u6
, a4 = 14

D4

u8
,

b1 = − 1
u
, b2 =

D

u3
,

b3 = −2
D2

u5
, b4 = 5

D3

u7
.

(54)
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The corresponding moments are now (based on Eq. (15)):

κ1(x) = n1(x) =
x

u
+
D

u2
,

κ2(x) = σ2
t (x) = 2

Dx

u3
+ 3

D2

u4
,

κ3(x) = gt(x) = 12
D2x

u5
+ 20

D3

u6
,

µ4(x) = 12
D2x2

u6
+ 156

D3x

u7
+ 237

D4

u8
,

κ4(x) = µ4(x)− 3σ4
t (x) = 120

D3x

u7
+ 210

D4

u8
.

(55)

We compare the different approximations for the analytical solution C(x, t) for the following parameter
values

D = 0.01 m2d−1, u = 0.1 md−1, x = 1.4 m,
such that xu/D = 14 [–],

which implies that the first cumulants are κ1 = n1 = 15 d, κ2 = σ2
t = 31 d2, κ3 = gt = 188 d3, κ4 =

1890 d4. In Fig. E.1 the exact solution is compared with the Gaussian distribution, with the Gram-
Charlier approximation Eq. (28) with one and two terms and with the Edgeworth approximation. Only the
Edgeworth approximation gives a reasonable good fit.

In Fig. E.2 the exact solution is compared with the first approximation Eq. (42) of the Moving Gaussian
distribution Z(x, t) and second approximation, i.e. the first two terms in Eq. (40), where we have taken
for the values for the parameters α and β the expressions stemming from the first term in Eq. (53):
α = u2/(4D) = 0.25 d−1, β = x2/(4D) = 49 d, ν = −0.5. That means that we approximate Eq. (53)
just by deleting the second term. The neglection of the second term is Eq. (53) is clearly visible: the
approximation is not that good.

In Fig. E.3 the exact solution is compared with the first approximation Eq. (42) of the Moving Gaussian
distribution Z(x, t) and second approximation, i.e. with the first two terms in Eq. (40) but now with
optimized values for α and β, by equating the expressions for n1 of the exact solution Eq. (55) to the n1 of
the Moving Gaussian distribution Eq. (43), and the same with the corresponding σ2

t values. It follows

α =
n1 +

√
n2

1 + 4σ2
t

4σ2
t

, (56)

β =
n3

1 − 5n1σ
2
t +

(
σ2
t + n2

1

)√
n2

1 + 4σ2
t

4σ2
t

.

The values for the parameters are α = 0.2716 d−1, β = 47.0361 d, ν = −0.5. This approximation is already
quite good as can also be read off from the differences between the cumulants κi and λi.

In Fig. E.4 the exact solution is compared with the first approximation Eq. (47) of the Generalized
Moving Gaussian distribution Z(x, t) and the third approximation based on the third and fourth cumulants
and the third, fourth and sixth derivatives (see Eq. (36) for P2(s)). Here, we have optimized for α, β and
ν. The values found are α = 0.2564 d−1, β = 50.8088 d, ν = −1.0116. It is difficult to see any difference
between the exact solution and the approximations. These values correspond very well with the κi values.

See Table D.1 for the parameters values and cumulants for the different approximations.

6.2. Example 2
We treat a somewhat more complicated problem, namely the mathematical model for the description of

released material into a river with dead zones (see Nordin and Troutman [9], Schmid [13] and Veling [19]).
Other applications for this model can be mentioned such as two-species reactive transport equations coupled
through sorption and sequential first-order reactions (van Kooten [17]) and transport of viruses through the
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subsoil (Sim and Chrysikopoulos [14], Schijven et al. [12]). This model with a different interpretation for the
variables and parameters might be applicable in general where one has to deal with one partial differential
equation linearly coupled with one ordinary differential equation, which is the case for a broad range of
applications in science. For −∞ < x <∞,

∂c

∂t
= D

∂2c

∂x2
− u ∂c

∂x
− ε

ρ
(c− cs), t > 0,

∂cs
∂t

=
1
ρ

(c− cs), t > 0,

c =
G0

nA
δ(x), t = 0,

cs = 0, t = 0,

(57)

where ε [-] is the ratio of the dead zone area to the main stream flow cross section, and ρ [T] is the exchange
parameter related to the dead zone residence time. The normalized Laplace transforms C(x, s), Cs(x, s) are
for −∞ < x <∞

C(x, s) =
u√

u2 + 4D
(
s+

εs

1 + sρ

)×

exp

(
x

(
u∓

√
u2 + 4D

(
s+

εs

1 + sρ

))
/(2D)

)
,

Cs(x, s) =
1

1 + sρ
C(x, s), (58)

with the −sign for x ≥ 0, the +sign for x < 0. The coefficients ai, bi, i = 1, 2, 3, 4 for C(x, s) and the
moments and cumulants are given in Appendix C.

It is known that the function C(x, t) is given by (see e.g. Hill and Aifantis [5], Walker [21] and van
Kooten [17])

C(x, t) = w(x, t) exp
(
−εt
ρ

)
×∫ t

0

w(x, τ) exp
(
−ετ + (t− τ)

ρ

)√
ετ

ρ2(t− τ)
×

I1

(
2

√
ετ(t− τ)

ρ2

)
dτ, (59)

where w(x, t) is given by the normalized function Eq. (4) (G0/(nAM) = u):

w(x, t) =
u

2
√
πDt

exp

(
−
(
x− ut
2
√
Dt

)2
)
, (60)

and I1 is the modified Bessel function of the first kind. We compare the different approximations for the
analytical solution C(x, t) for the following parameter values

D = 8.64 m2d−1, u = 86.4 md−1, ε = 0.1 [-],
ρ = 1/43.2 = 0.02315 d.
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For x = 66 m, the cumulants are κ1 = n1 = 8.4282E−01 d, κ2 = σ2
t = 5.6998E−03 d2, κ3 = gt = 2.8999E−04

d3, κ4 = 2.6066E−05 d4.
First, we compare in Fig. E.5 the exact solution and the approximations based on the Gaussian distri-

bution itself and the Gram-Charlier approximation (28) with one and two additional terms, and with the
Edgeworth approximation (30), with three terms. We see that this Edgeworth approximation gives the best
fit.

If we now try to approximate the functions C(x, t) by the first two terms in Eq. (40) based on Eq. (42),
we have to solve α and β from Eq. (43). See Eq. (56) for the result. In Fig. E.6 we show the results of the
numerical evaluation of the first two terms in Eq. (40) in which n1, σ2

t and κ3 = gt are given by Eqs. (C.9),
(C.10) and (C.11), respectively, and with α and β given by Eq. (56) and λ3 by the values for α and β (see
Eq. (46) for n = 3). For x = 66 these values become ν = −1/2, α = 74.5231 d−1, β = 52.0982 d. See Fig.
E.6 for this approximation based on Eq. (42), i.e. the first approximation and the first two terms in Eq.
(40), i.e. the second approximation.

It is also possible to fit the parameter ν using the knowledge κ3. So, we try to fit the parameters ν, α,
and β using the knowledge of κ1, κ2 and κ3. It turns out that it is not possible to fit the three parameters
ν, α and β such that all differences κ1 − λ1, κ2 − λ2 and κ3 − λ3 become reasonable small. We find the
values ν = −12.2303, α = 67.6214 d−1, β = 57.0428 d, and these values imply λ3 = 1.1896E−04 d3, which
is less than half the value for κ3 (2.8999E−04 d3). In Fig. E.7 the exact solution is compared with Eq.
(47) and in the third approximation based on Eq. (38) with the first two terms in the sum (using P2(s)
from Eq. (36) with the fourth cumulants and the fourth derivative (see below) but neglecting the term with
(κ3−λ3)2 ' 2.92E−08 d6 and so the sixth derivative). We included the contribution of P1(s) with the third
derivative, due to the poor fit for κ3 with λ3. The factor for the fourth derivative becomes (κ4 − λ4)/24.
Now, κ4 is given by Eq. (C.13) and λ4 together with the fourth derivative of Z(t) has been specified in
Appendix B.

It turns out that in this problem it is difficult to find an appropriate value for ν. If one compares the
two figures one observes that reasonable fits are possible for different values for ν. If one fixes ν = −1/2,
it is also possible to include the correction based on the fourth cumulant. That has been done in Fig. E.8.
The corresponding fourth cumulant of the approximation is λ4 = 3.8851E−06 d4 (to be compared with
κ4 = 2.6066E−05 d4). In Fig. E.8 one can easily see the improvement by taking into account the term
based on the fourth cumulant and the fourth and sixth derivatives.

In Fig. E.9 we show the difference between the exact solution and four different approximations (Gram-
Charlier, Edgeworth, Moving Gaussian (ν = −1/2) and Generalized Moving Gaussian distribution (ν =
−12.2303)), with all terms shown before. We see that the Moving Gaussian distributions approximations
are performing almost the same and are comparable to the Edgeworth approximation.

In Fig. E.10 we show the difference between the two Moving Gaussian distribution approximations based
on ν = −1/2 and ν = −12.2303, which is very small, and the differences between the exact solution and
each of the two Moving Gaussian distribution approximations, which is each of the order of 2E−02. The
results for ν = −1/2 and ν = −12.2303 hardly differ.

In Fig. E.11 we show in detail the performance of two approximations which performed the best: the
Edgeworth approximation and the Generalized Moving Gaussian approximation based on the third and
fourth cumulants (and so on the sixth derivative). It is difficult to say which approximation is the best.

See Table D.2 for the parameters values and cumulants for the different approximations.

6.3. Example 3
We use measurements from the field (pers. comm. M. Westhoff) where it was the purpose to determine

the discharge of a stream. By throwing instantly an amount of salt (100 gr) into a stream, one can measure
the concentration using the electric conductivity (EC) given in micro Siemens/cm at distances downstream
(10 m to 20 m) as a function of the time. The discharge of the stream was around 0.001 m3s−1. The
measured values are corrected for the background EC. In essence, one measures an impulse response curve.
The measurements have been normalized by dividing through the 0-order moment M0, Eq. (5), calculated
numerically. Subsequently, the first four cumulants have been found numerically. Based on these values in
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Fig. E.12 the Edgeworth approximation Eq. (30) with three terms has been compared with the Moving
Gaussian distribution, with ν = −1/2, α = 0.7502 d−1, and β = 2.3454 d, based on Eq. (56), and with the
Generalized Moving Gaussian distribution with optimized ν = −3.1657, α = 0.3402 d−1, and β = 5.5578
d. For the Generalized Moving Gaussian distribution we have fitted the parameters ν, α, and β using the
knowledge of κ1 = n1, κ2 = σ2

t and κ3 = gt. We see that in this case the Edgeworth approximation is
performing about the same as the Generalized Moving Gaussian distribution for values of t in the interval
(1, 4), but for higher values of t it shows wiggles, while the Generalized Moving Gaussian distribution does
not.

See Table D.3 for the parameters values and cumulants for the different approximations.

7. Conclusions

We presented an approach to approximate a given impulse response curve using his cumulants by a dis-
tribution function (named Generalized Moving Gaussian distribution) which represents better the behaviour
for shorter times than the usual Gaussian distribution.

We have shown through a number of experiments that the proposed approximative Generalized Moving
Gaussian distribution for convection-diffusion type impulse responses performs similarly or better when
compared to the expansions based on the pure Gaussian distribution.

For a given impulse response curve it might be worthwile to determine numerically the normalization
M0 and the first three central moments or cumulants, n1(x), σ2

t (x), and gt(x). Using these quantities one
can try to find the parameters α, β and ν of the Generalized Moving Gaussian distribution. To go beyond
the third cumulant is in practical cases not possible due to the inaccuracies of the measurements.
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Appendix A. Moving Gaussian distribution

The Moving Gaussian distribution is defined as

Z(t) =
1
M0

t−1/2 exp
(
−
(√

αt−
√
β/t
)2
)
, (A.1)

0 < t <∞, α > 0, β > 0,

M0 =
√
π

α
. (A.2)

The cumulants are

λn =
1
2
α−nΓ(n)− 2α1/2−nβ1/2

(
−1

2

)
n

. (A.3)

λ1 = n1 =
1

2α
+

√
β

α
. (A.4)

λ2 = σ2
t =

1
2α2

+
1

2α

√
β

α
. (A.5)

λ3 =
1
α3

+
3

4α2

√
β

α
. (A.6)

λ4 =
3
α4

+
15

8α3

√
β

α
.

The following derivatives have been found using the Formula Manipulation Package of Maple R©.

d3

dt3
Z(t) = Z(t)× (A.7)(

8α3t6 + 12α2t5 − 24α2βt4 + 18αt4

− 72αβt3 + 15t3 + 24αβ2t2 − 90βt2

+60β2t− 8β3
)
/(8t6).
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d4

dt4
Z(t) = Z(t)× (A.8)(

16α4t8 + 32α3t7 − 64α3βt6 + 72α2t6

− 288α2βt5 + 120αt5 + 96α2β2t4

− 720αβt4 + 105t4 + 480αβ2t3 − 840βt3

−64αβ3t2 + 840β2t2 − 224β3t+ 16β4
)
/(16t8).

d6

dt6
Z(t) = Z(t)× (A.9)(

64α6t12 + 192α5t11 − 384α5βt10

+ 720α4t10 − 2880α4βt9 + 2400α3t9

+ 960α4β2t8 − 14400α3βt8 + 6300α2t8

+ 9600α3β2t7 − 50400α2βt7 + 11340αt7

− 1280α3β3t6 + 50400α2β2t6 − 113400αβt6

+ 10395t6 − 13440α2β3t5 + 151200αβ2t5

− 124740βt5 + 960α2β4t4 − 60480αβ3t4

+ 207900β2t4 + 8640αβ4t3 − 110880β3t3

−384αβ5t2 + 23760β4t2 − 2112β5t+ 64β6
)
/

(64t12).

Appendix B. Generalized Moving Gaussian distribution

The Generalized Moving Gaussian distribution is defined as

Z(t) =
1
M0

tν exp
(
−
(√

αt−
√
β/t
)2
)
, (B.1)

0 < t <∞, α > 0, β > 0, −∞ < ν <∞,

M0 = 2
(
β

α

)(ν+1)/2

exp
(

2
√
αβ
)
Kν+1

(
2
√
αβ
)
. (B.2)

The following cumulants and derivatives have been found using the Formula Manipulation Package of
Maple R©.

λ1 = n1 = (B.3)

ν + 1
α

+
√
αβ

α

(
Kν

(
2
√
αβ
)

Kν+1

(
2
√
αβ
)) .

λ2 = σ2
t =

αβ + ν + 1
α2

(B.4)

− ν
√
αβ

α2

(
Kν

(
2
√
αβ
)

Kν+1

(
2
√
αβ
))

− β

α

(
Kν

(
2
√
αβ
)

Kν+1

(
2
√
αβ
))2

.
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λ3 =
2(ν + 1)− αβ(ν − 1)

α3
(B.5)

− (2αβ − ν(ν − 1))
√
αβ

α3

(
Kν

(
2
√
αβ
)

Kν+1

(
2
√
αβ
))

+
3νβ
α2

(
Kν

(
2
√
αβ
)

Kν+1

(
2
√
αβ
))2

+
2β
√
αβ

α2

(
Kν

(
2
√
αβ
)

Kν+1

(
2
√
αβ
))3

.

λ4 =
−2α2β2 + αβ(ν − 1)(ν − 2) + 6(1 + ν)

α4
(B.6)

+
(2αβ(4ν − 1)− ν(ν − 1)(ν − 2))

√
αβ

α4
×(

Kν

(
2
√
αβ
)

Kν+1

(
2
√
αβ
))

+
(8αβ − ν(7ν − 4))β

α3

(
Kν

(
2
√
αβ
)

Kν+1

(
2
√
αβ
))2

− 12νβ
√
αβ

α3

(
Kν

(
2
√
αβ
)

Kν+1

(
2
√
αβ
))3

− 6β2

α2

(
Kν

(
2
√
αβ
)

Kν+1

(
2
√
αβ
))4

.

d3

dt3
Z(t) = Z(t)× (B.7)

−
(
α3t6 − 3να2t5 − 3α2βt4 + 3ν(ν − 1)αt4

+ 6(ν − 1)αβt3 − ν(ν − 1)(ν − 2)t3

+ 3αβ2t2 − 3(ν − 1)(ν − 2)βt2

−3(ν − 2)β2t− β3
)
/t6.

d4

dt4
Z(t) = Z(t)× (B.8)(

α4t8 − 4α3νt7 − 4α3βt6 + 6α2ν(ν − 1)t6

+ 12α2(ν − 1)βt5 − 4αν(ν − 1)(ν − 2)t5

− 12αβ(ν − 1)(ν − 2)t4 + ν(ν − 1)(ν − 2)(ν − 3)t4

− 12αβ2(ν − 2)t3 + 4β(ν − 1)(ν − 2)(ν − 3)t3

− 4αβ3t2 + 6β2(ν − 2)(ν − 3)t2

+4β3(ν − 3)t+ β4
)
/t8.
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d6

dt6
Z(t) = Z(t)× (B.9)(

α6t12 − 6α5νt11 − 6α5βt10 + 15α4ν(ν − 1)t10

+ 30α4β(ν − 1)t9 − 20α3ν(ν − 1)(ν − 2)t9

+ 15α4β2t8 − 60α3β(ν − 1)(ν − 2)t8

+ 15α2ν(ν − 1)(ν − 2)(ν − 3)t8

− 60α3β2(ν − 2)t7 + 60α2β(ν − 1)(ν − 2)(ν − 3)t7

− 6αν(ν − 1)(ν − 2)(ν − 3)(ν − 4)t7

− 20α3β3t6 + 90α2β2(ν − 2)(ν − 3)t6

− 30αβ(ν − 1)(ν − 2)(ν − 3)(ν − 4)t6

+ ν(ν − 1)(ν − 2)(ν − 3)(ν − 4)(ν − 5)t6

+ 60α2β3(ν − 3)t5 − 60αβ2(ν − 2)(ν − 3)(ν − 4)t5

+ 6β(ν − 1)(ν − 2)(ν − 3)(ν − 4)(ν − 5)t5

+ 15α2β4t4 − 60αβ3(ν − 3)(ν − 4)t4

+ 15β2(ν − 2)(ν − 3)(ν − 4)(ν − 5)t4

− 30αβ4(ν − 4)t3 + 20β3(ν − 3)(ν − 4)(ν − 5)t3

− 6αβ5t2 + 15β4(ν − 4)(ν − 5)t2

+6β5(ν − 5)t+ β6
)
/t12.

We remark that all these results for ν = −1/2 reduce to what has been found for the Moving Gaussian
distribution.

Appendix C. Coefficients ai, bi and Cumulants for Example 6.2

The coefficients ai, bi, i = 1, 2, 3, 4 for C(x, s) (see Eqs. (13), (14), and (58)) are

a1 = −2D (1 + ε)
u2

, (C.1)

a2 =
2Dερ
u2

+
6D2(1 + ε)2

u4
, (C.2)

a3 = −2Dερ2

u2
− 12D2ε(1 + ε)ρ

u4
(C.3)

− 20D3(1 + ε)3

u6
,

a4 =
2Dερ3

u2
+

6D2ε(2 + 3ε)ρ2

u4
(C.4)

+
60D3ε(1 + ε)2ρ

u6
+

70D4(1 + ε)4

u8
,

b1 = −1 + ε

u
, (C.5)

b2 =
ερ

u
+
D(1 + ε)2

u3
, (C.6)
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b3 = −ερ
2

u
− 2Dε(1 + ε)ρ

u3
(C.7)

−2D2(1 + ε)3

u5
,

b4 =
ερ3

u
+
Dε(2 + 3ε)ρ2

u3
(C.8)

+
6D2ε(1 + ε)2ρ

u5
+

5D3(1 + ε)4

u7
,

and the moments and cumulants are (based on Eq. (15)):

n1(x) =
(1 + ε)x

u
+ 2

D(1 + ε)
u2

, (C.9)

σ2
t (x) = 4

Dερ

u2
+ 8

D2(1 + ε)2

u4
(C.10)

+ 2
(
ερ

u
+
D(1 + ε)2

u3

)
x

gt(x) = 12
Dερ2

u2
+ 48

D2ε(1 + ε)ρ
u4

(C.11)

+ 64
D3(1 + ε)3

u6

+
(

6
ερ2

u
+ 12

Dερ(1 + ε)
u3

+ 12
D2(1 + ε)3

u5

)
x,

µ4(x) = 48
Dερ3

u2
+ 48

D2ε(4 + 7ε)ρ2

u4
(C.12)

+ 960
D3ε(1 + ε)2ρ

u6
+ 960

D4(1 + ε)4

u8

+

(
24
ερ3

u
+ 24

Dε(2 + 5ε)ρ2

u3

+288
D2ε(1 + ε)2ρ

u5
+ 216

D3(1 + ε)4

u7

)
x

+ 12
(
ερ

u
+
D(1 + ε)2

u3

)2

x2,

κ4(x) = µ4(x)− 3σ4
t (x) = (C.13)

48
Dερ3

u2
+ 96

D2ε(2 + 3ε)ρ2

u4

+ 768
D3ε(1 + ε)2ρ

u6
+ 768

D4(1 + ε)4

u8

+
(

24
ερ3

u
+ 24

Dε(2 + 3ε)ρ2

u3

+144
D2ε(1 + ε)2ρ

u5
+ 120

D3(1 + ε)4

u7

)
x.
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Appendix D. Tables

Table D.1: Values for Example 6.1

ν α [d−1] β [d] κ1 [d] κ2 [d2] κ3 [d3] κ4 [d4]
Exact 15 31 188 1890

λ1 [d] λ2 [d2] λ3 [d3] λ4 [d4]
Fig. E.2 −0.5 0.25 49 16 36 232 2448
Fig. E.3 −0.5 0.2716 47.0361 15.0000 31.0000 183.6664 1782.29
Fig. E.4 −1.0116 0.2564 50.8088 15.0000 31.0000 188.0000 1883.95

Table D.2: Values for Example 6.2

ν α [d−1] β [d] κ1 [d] κ2 [d2] κ3 [d3] κ4 [d4]
Exact 8.4282E−01 5.6998E−03 2.8999E−04 2.6066E−05

λ1 [d] λ2 [d2] λ3 [d3] λ4 [d4]
Fig. E.6 −0.5 74.5231 52.0982 8.4282E−01 5.6998E−03 1.1533E−04
Fig. E.7 −12.2303 67.6214 57.0428 8.4282E−01 5.6998E−03 1.1896E−04 4.1856E−06
Fig. E.8 −0.5 74.5231 52.0982 8.4282E−01 5.6998E−03 1.1533E−04 3.8851E−06

Table D.3: Values for Example 6.3

ν α [d−1] β [d] κ1 [d] κ2 [d2] κ3 [d3] κ4 [d4]
Exact 2.4346 2.0668 6.3502 31.4236

λ1 [d] λ2 [d2] λ3 [d3] λ4 [d4]
Moving Gaussian −0.5 0.7502 2.3454 2.4346 2.0668 4.7246 17.3231
Gen. Mov. Gaussian −3.1657 0.3402 5.5578 2.4346 2.0669 6.3501 35.2669
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Appendix E. Figures
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Comparison exact with Gaussian, Gram­Charlier and Edgeworth Approximation

 = exact
 = Gauss
 = Gram­Charlier with He3
 = Gram­Charlier with He3, He 4
 = Edgeworth with He3, He 4, He 6

Figure E.1: Example 6.1. Exact solution C(x, t), Eq. (53), for x = 1.4 m with parameters D = 0.01 m2d−1, u = 0.1 md−1,
compared with the Gaussian distribution, with the Gram-Charlier approximation Eq. (28) with one and two terms and with
the Edgeworth approximation Eq. (30).
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Approximation normed exact with Moving Gaussian Approximation
with α  = u2/(4*D)  = 0.25, β  = x2/(4*D)  = 49, ν  = ­0.5

 = exact
 = 1st approx.
 = 2nd approx. with 3rd cum.

Figure E.2: Example 6.1. Exact solution C(x, t), Eq. (53), for x = 1.4 m with parameters D = 0.01 m2d−1, u = 0.1 md−1,
compared with the first approximation Eq. (42) of the Moving Gaussian distribution Z(x, t) and second approximation, i.e.
first two terms in Eq. (40). The values for the parameters are α = u2/(4D) = 0.25 d−1, β = x2/(4D) = 49 d, ν = −1/2.
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Approximation normed exact with Moving Gaussian Approximation
with ν  = ­0.5 and optimized α  = 0.27163, β  = 47.0361

 = exact
 = 1st approx.
 = 2nd approx. with 3rd cum.

Figure E.3: Example 6.1. Exact solution C(x, t), Eq. (53), for x = 1.4 m with parameters D = 0.01 m2d−1, u = 0.1 md−1,
compared with the first approximation Eq. (42) of the Moving Gaussian distribution Z(x, t) and second approximation, i.e. the
first two terms in Eq. (40) with optimized values for α and β. The values for the parameters are α = 0.2716 d−1, β = 47.0361
d, ν = −1/2.
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Approximation normed exact with Generalized Moving Gaussian Approximation
with optimized α  = 0.25639, β = 50.8088, ν  = ­1.0116

 = exact
 = 1st approx.
 = 2nd approx. with 3rd cum.
 = 3nd approx. with 3rd and 4th cum.
 = 3nd approx. with 3rd, 4th cum. and 6th der.

Figure E.4: Example 6.1. Exact solution C(x, t), Eq. (53), for x = 1.4 m with parameters D = 0.01 m2d−1, u = 0.1
md−1, compared with the first approximation Eq. (47) of the Generalized Moving Gaussian distribution Z(x, t) and the third
approximation based on the third and fourth cumulants and the third, fourth and sixth derivatives (see Eq. (36) for P2(s)). There
is hardly to see any difference between the exact solution and the approximations. The values for the parameters are α = 0.2564
d−1, β = 50.8088 d, ν = −1.0112.
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Comparison exact with Gaussian, Gram­Charlier and Edgeworth Approximation

 = exact
 = Gauss
 = Gram­Charlier with He 3
 = Gram­Charlier with He 3, He 4
 = Edgeworth with He 3, He 4, He 6

Figure E.5: Example 6.2. Exact solution C(x, t), Eq. (59), for x = 66 m with parameters D = 8.64 m2d−1, u = 86.4 md−1,
ε = 0.1, ρ = 0.02315 d, compared with the Gaussian distribution, with the Gram-Charlier approximation Eq. (28) with one
and two terms and with the Edgeworth approximation Eq. (30), with three terms.
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 = exact
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 = 2nd approx. with 3rd cum.

Figure E.6: Example 6.2. Exact solution C(x, t), Eq. (59), for x = 66 m with parameters D = 8.64 m2d−1, u = 86.4 md−1,
ε = 0.1, ρ = 0.02315 d, compared with the first approximation Eq. (42) of the Moving Gaussian distribution Z(x, t) and second
approximation, i.e. first two terms in Eq. (40).
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 = exact
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Figure E.7: Example 6.2. Exact solution C(x, t), Eq. (59), for x = 66 m with parameters D = 8.64 m2d−1, u = 86.4 md−1,
ε = 0.1, ρ = 0.02315 d, compared with the first approximation Eq. (47) of the Generalized Moving Gaussian distribution
Z(x, t), the second approximation based on the third cumulant, the third approximation based on the fourth cumulant and
fourth derivative, and the fourth approximation based on the fourth cumulant and fourth derivative and the third cumulant
and the sixth derivative (see Eq. (36) for P1(s) and P2(s)). The third cumulants with corresponding derivatives have been
taken into account because of the moderate fit for the κ3 with λ3 (see text).
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Figure E.8: Example 6.2. Exact solution C(x, t), Eq. (59), for x = 66 m with parameters D = 8.64 m2d−1, u = 86.4 md−1,
ε = 0.1, ρ = 0.02315 d, compared with the second approximation, i.e. first two terms in Eq. (40) and the third approximation
Eq. (40), based on the fourth cumulant and fourth derivative without and with the term with the sixth derivative.
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Figure E.9: Example 6.2. Absolute difference between the exact solution and four different approximations (Gram-Charlier,
Edgeworth, Moving Gaussian (ν = −1/2) and Generalized Moving Gaussian distribution (ν = −12.2303)), with all terms
shown before.
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Figure E.10: Example 6.2. Three curves: 1. Difference between the Moving Gaussian (ν = −1/2) and the Generalized
Moving Gaussian distribution (ν = −12.2303) based on all terms up to the fourth cumulant. 2. Difference between the exact
solution and the approximation based on the Moving Gaussian distribution. 3. Difference between the exact solution and the
approximation based on the Generalized Moving Gaussian distribution.
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Figure E.11: Example 6.2. Comparison between the Edgeworth approximation and the Generalized Moving Gaussian approx-
imation. Shown is the absolute difference between the approximation and the exact solution.
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Figure E.12: Example 6.3. Comparison between the Edgeworth approximation and the (Generalized) Moving Gaussian ap-
proximations for the salt experiment.
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