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An Analytical Model for
Nonlinear-Elastic Compliant
Mechanisms With Tension–
Compression Asymmetry
While nonlinear-elastic materials demonstrate potential in enhancing the performance of
compliant mechanisms, their behavior still needs to be captured in a generalized mechan-
ical model. To inform new designs and functionality of compliant mechanisms, a better
understanding of nonlinear-elastic materials is necessary and, in particular, their mechan-
ical properties that often differ in tension and compression. In the current work, a beam-
based analytical model incorporating nonlinear-elastic material behavior is defined for a
folding compliant mechanism geometry. Exact equations are derived capturing the nonlin-
ear curvature profile and shift in the neutral axis due to the material asymmetry. The deflec-
tion and curvature profile are compared with finite element analysis along with stress
distribution across the beam thickness. The analytical model is shown to be a good approx-
imation of the behavior of nonlinear-elastic materials with tension–compression asymmetry
under the assumptions of the von Kármán strain theory. Through a segmentation approach,
the geometries of a semicircular arc and folding compliant mechanism design are defined.
The deflection of the folding compliant mechanism due to an applied tip load is then eval-
uated against finite element analysis and experimental results. The generalized methods
presented highlight the utility of the model for designing and predicting the behavior of
other compliant mechanism geometries and different nonlinear-elastic materials.
[DOI: 10.1115/1.4065025]
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1 Introduction
Compliant mechanisms (CMs) are highly flexible and monolithic

structures that have applications in shape morphing, origami engi-
neering, and energy storage. Nonlinear-elastic materials and shape
memory alloys (SMAs) such as functionally graded Nitinol
(NiTi) can improve the energy storage properties of CMs [1], but
the behavior of such materials in CMs has not been well studied.
As a disruptive technology, additive manufacturing (AM) has
enabled the fabrication of lightweight, functional, and complex
structures. Due to the design freedom that AM provides, research
interest has grown in additively manufactured CMs.
Prior research has mostly focused on the performance of CMs

driven by their design rather than by their mechanical properties.
Early work was almost exclusively limited to CMs with material
and geometric linearity [2–6]. Some researchers then expanded
their models to account for large deformations through geometric

nonlinearity in the design of CMs with rigid sections connected
by small-length flexural pivots [7], with large-displacement revo-
lute or translational flexible joints [8], with semicircular beam
hinges [9], and for different loading and boundary conditions
such as combined end loads [10] as well as for cantilever, pinned-
pinned, and fixed-guided CMs [11]. Geometric nonlinearity has
also been introduced in the topology optimization and synthesis
of CMs for large-displacement path-generation [12], self and
mutual contact in the form of contact-aided compliant mechanisms
[13], and multi-port and multi-material CMs with linear-elastic
mechanical properties [14]. The problem of accounting for material
nonlinearity has not been widely considered in the literature due to
the modeling complexity. The main contribution of this paper is the
consideration of both geometric and asymmetric material nonlinear-
ity in CMs that can be approximated as elastic beams or combina-
tions of beam segments. Geometric nonlinearity is a result of large
deformations that cause the relationship between force and displa-
cement to become nonlinear. Asymmetry is defined as the
nonlinear-elastic material having unequal mechanical properties in
tension and compression.
Finite element analysis (FEA) and topology optimization are

common methods for designing and modeling CMs. For example,
FEA was used to simulate variable stiffness in a parallel-guided
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CM with pneumatic-actuated layer jamming [15], and topology
optimization was used to design sports headgear liners with bioin-
spired compliant mechanism lattices [16]. Topology optimization
was also used to obtain designs for CMs undergoing large deforma-
tions using a neo-Hookean or hyperelastic material model [17–19].
In some cases, material nonlinearity is implemented mainly to avoid
local instabilities while solving the large-deformation optimization
problem [18] as opposed to deliberately modeling a CM made with
a nonlinear-elastic material.
Mechanical models using exact or semi-analytical solutions have

been explored to overcome the computational cost of FEA-based
methods. Howell and Midha developed a kinematic model to
parameterize the deflection of flexible beams using the pseudo-rigid
body model (PRBM), which accounts for large deformations but is
limited to linear elasticity [20]. PRBMs have been applied to circu-
lar beams and bistable CMs under small deformations [21,22], and
extended to large deformations using segmented models [23] or
chained pseudo-rigid body models for curved beams [24].
Another type of analytical model is the beam-based model.

Various techniques have been used to model flexible beams and
CMs accounting for large deformations or geometric nonlinearity,
such as nonlinear shooting and Adomian decomposition [25],
chained beam-constraint-models [26], assumed mode methods
[27], analog equation methods [28], and closed-form solutions
[29–31]. More recent studies have also incorporated nonlinear-
elastic materials such as that developed by Eshghinejad and Elahinia
[32] for a superelastic NiTi beam undergoing small deformations,
based on Auricchio’s material model [33]. Our research group has
extended this model to include large deformations [34] adapting an
integral approach for initially straight and curved beams [35,36].
In this model, the tensile and compressive stresses in the beam
were assumed to be symmetric. Yet, for additively manufactured
CMs, the behavior of parts with anisotropic and asymmetricmechan-
ical properties requires further investigation. Analytical models
based on the superelastic NiTi beam model [32] were developed to
include tension–compression asymmetry for superelastic cantilever
beams with Timoshenko beam theory [37,38]. However, a general-
ized analytical model is still needed to handle various nonlinear-
elastic materials and complex CM geometries. This work aims to
incorporate the asymmetry of nonlinear-elastic materials into a CM
model subject to large deformations, which is introduced next.

2 Methods
To consider CMs made from nonlinear-elastic materials, such as

those used in AM, the addition of material nonlinearity is presented
first. The focus of this section is to highlight the modeling of
tension–compression asymmetry using a multilinear material
model. This approach is ultimately applied to a folding CM
design that was presented in previous work by our research
group, where it was modeled as a compliant joint that could be
used in large-scale foldable shipping containers [39]. The geometry
of the folding CM is approximated using a chain of connected can-
tilever beams or segments.

2.1 Modeling Tension–Compression Asymmetry. For most
nonlinear-elastic materials, the strain is assumed to vary linearly
with the stress up to a critical point. Beyond this point, the material
experiences changes in its response where the strain is no longer
directly proportional to the stress even at infinitesimal strains
[40,41]. This nonlinear-elastic behavior is captured through the
development of a multilinear material model that is defined by
several linear sections. The linear sections are represented by piece-
wise stress–strain equations that capture the change in the material
response at a critical strain. The material model includes tension–
compression asymmetry, i.e., the stress–strain behavior is not sym-
metric across the centroidal axis (CA) of a given geometry.
The material model is divided into k linear sections; in this case,

three sections each in tension and compression. This approach is

adapted from Ref. [32] where the superelastic behavior of NiTi
was defined by three piecewise equations. The nonlinear-elastic
material is defined as follows: (1) a linear-elastic region, (2) a
nonlinear-elastic region, and (3) a strain-hardening region. We
approximate the nonlinear-elastic behavior with a corresponding
multilinear model as shown in Fig. 1. The piecewise linear equa-
tions are given in Eq. (1), where the subscript “(t, c)” is replaced
by either “t” for tension or “c” for compression. The subscript
“*” represents a critical value of the strain or stress at which the
elastic modulus changes, as indicated in Fig. 1. It is noted that
only stress–strain equations for loading of the model are derived,
and unloading is not considered.

σ(t,c)k =

E(t,c)
1 ε if |ε| < |ε(t,c)∗1 |

E(t,c)
2 ε −

σ(t,c)
∗

1

E(t,c)
1

( )
+ σ(t,c)

∗
1 if |ε(t,c)1 | < |ε| < |ε(t,c)∗2 |

E(t,c)
3 (ε − ε(t,c)res ) |ε| > |ε(t,c)∗2 |

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

for k = 1, . . . , 3

where E(t,c)
2 =

σ(t,c)
∗

2 − σ(t,c)
∗

1

σ(t,c)
∗

2 /E(t,c)
3 + ε(t,c)res − σ(t,c)

∗
1 /E(t,c)

1

ε(t,c)
∗

1 =
σ(t,c)

∗
1

E(t,c)
1

and ε(t,c)
∗

2 =
σ(t,c)

∗
2

E(t,c)
3

+ ε(t,c)res (1)

The constitutive equation for the strain (ε) in Ref. [32] stems from
the Euler–Bernoulli hypothesis, which enforces small strains, small
rotations, and small deflections. The assumptions of the Euler–Ber-
noulli theory are relaxed in the current work to include moderately
large rotations and large deflections through the von Kármán strain
formulation [42–44]. The normality condition is also relaxed to
include the shear strain, according to Timoshenko beam theory
[42]. It is noted that the von Kármán strains are still assumed to
be small. However, it is not well documented in the literature
what the threshold for small strain should be quantitatively, since
the magnitude of the strain depends on the material and the geom-
etry. Small strain and moderately large rotations, in this work,
instead refer to assumptions made on the order of magnitude of
the strain to remove the higher order terms defined in finite strain
theory. For the von Kármán theory, the strain is assumed to be of
order O(ε) and the rotations are of O(ε1/2) [45]. Large deformations
result from a nonlinear relationship between force and deflection
which is introduced in the definition of curvature.
The von Kármán strain includes a membrane component of the

strain (εm), allowing for axial stretching. The axial strain is deter-
mined by relating the axial force caused by the applied loads, as in
Ref. [31], to the integral of the axial stress. The bending component
of the strain (εb) is instead proportional to the curvature (κ). The cur-
vature is found by relating the moment caused by the applied loads,
as described in Refs. [31,34], to the integral of the normal stress.
Equation (2) gives the expression of the total strain, where the
bending strain is substituted into Eq. (1). Given a beam, for
example, the y position along the beam’s thickness is denoted as y∗
and y∗o is the neutral axis shift. Equation (3) is the shear strain as
defined in Ref. [31]. The axial and transverse deflections of a point
along the centroidal axis of the beam are u and v, respectively.

ε = εm + εb

where εm =
du

dx
+
1
2

dv

dx

( )2

and εb = κ(y∗ − y∗o) (2)

γs =
dv

dx
− sin θ (3)
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In Fig. 1(b), the first linear section represents the initial linear-
elastic response of the material up to critical stresses (σt

∗
1 , σ

c∗
1 ) and

elastic moduli (Et
1, E

c
1). The second section approximates the tran-

sition of the material response from linear-elastic to nonlinear-
elastic by a change in the elastic moduli (Et

2, E
c
2) up to critical

stresses (σt
∗
2 , σ

c∗
2 ). Finally, the transition from nonlinear-elastic

behavior to strain hardening in which the stress continues to rise
with increasing strain is represented by another change in the
elastic moduli (Et

3, E
c
3) and the maximum residual strains are repre-

sented by εtres and ε
c
res. Beyond this section, the stress is extrapolated

for a given strain using the final values of the elastic moduli.
To incorporate material nonlinearity into a CM, the beam-based

model is presented. The geometry of a CM is approximated by a
chain of connected cantilever beams, which are referred to as seg-
ments. One segment is represented by either an initially straight
or initially curved cantilever beam, as shown in Fig. 2, with non-
follower axial and transverse loads (Fx, Fy) as well as a moment
at the tip (Mo). The undeformed length of the initially straight
beam is given by L and is deformed to its final position with pro-
jected length (l) and transverse tip deflection (m). In the case of
the initially curved beam, it has an initial curvature of κo with a

projected length of lo and transverse tip deflection of mo. Each
segment has a uniform cross section with a thickness of 2b and a
depth of a. The arc length (s) of the segment spans from 0 to the
undeformed length (L).
The cantilever beam is discretized into five regions as shown in

Fig. 3, for an initially straight beam. The parameter y∗o tracks the
shift in the neutral axis across the beam thickness (2b), while
y(t,c)

∗
1 and y(t,c)

∗
2 are the critical points where the slope changes.

The critical points across the beam thickness are determined
using Eqs. (4) and (5).

y(t,c)
∗

1 = y∗o +
σ(t,c)

∗
1

E(t,c)
1 κ

(4)

y(t,c)
∗

2 = y∗o +
(σ(t,c)

∗
2 /E(t,c)

3 ) + ε(t,c)res

κ
(5)

The order in which the stress profile changes, either on the tensile
or compressive side of the beam, is determined by the magnitudes

Fig. 1 Example of a nonlinear-elastic material with asymmetric tensile and compressive
mechanical properties (a) and its corresponding multilinear approximation defined by k=3
linear sections (b)

Fig. 2 Undeformed and deformed geometries of an initially straight cantilever beam (a) and
an initially curved cantilever beam (b) subject to combined tip loading
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of the critical stresses in tension relative to those in compression.
The asymmetric stress profile also causes the neutral axis to shift
in order to maintain a state of equilibrium. For example, the
neutral axis shifts with respect to the centroidal axis (CA) toward
the direction of the highest stress. As shown in Fig. 3, the neutral
axis shifts upward when the tensile stresses are higher and down-
ward when the compressive stresses are higher.
To determine the internal force and the moment due to bending in

each region, the stress (σ(t,c)k ) is integrated across the beam thickness
(2b). The bending strain (εb) in Eq. (2) is substituted into the expres-
sions of the stress to introduce the curvature (κ). For example, Eq. (6)
defines the internal force and moment in the fifth region of the beam
(F5, M5). The force and moment are calculated in any region of the
beam by deriving the corresponding integral equations described
available in the Supplemental Materials on the ASME Digital
Collection. The axial and shear forces (N5, V5) are defined similarly
using the membrane and shear strains in Eq. (7), where ks is the shear
factor, ν is Poisson’s ratio, and G(t,c)

k are the shear moduli.

F5 = a

[∫b
yt
∗
2

σt3dy
∗ +

∫yt∗2
yt
∗
1

σt2dy
∗ +

∫yt∗1
y∗o

σt1dy
∗ +

∫y∗o
yc

∗
1

σc1dy
∗

+
∫yc∗1
yc

∗
2

σc2dy
∗ +

∫yc∗2
−b
σc3dy

∗
]

M5 =
a

b
yt
∗
2
y∗σt3dy

∗ +

yt∗2
yt
∗
1
y∗σt2dy

∗ +

yt∗1
y∗o
y∗σt1dy

∗
[

+

y∗o
yc

∗
1
y∗σc1dy

∗ +

yc∗1
yc

∗
2
y∗σc2dy

∗ +

yc∗2
−b y

∗σc3dy
∗
] (6)

N5 =
a


b
yt2
Et
3εmdy

∗ +

yt2
yt1
Et
2εmdy

∗ +

yt1
y∗o
Et
1εmdy

∗
[

+

y∗o
yc1
Ec
1εmdy

∗ +

yc1
yc2
Ec
2εmdy

∗ +

yc2
−bE

c
3εmdy

∗
]

V5 =
aks


b
yt2
Gt

3γsdy
∗ +


yt2
yt1
Gt

2γsdy
∗ +


yt1
y∗o
Gt

1γsdy
∗

[
+

y∗o
yc1
Gc

1γsdy
∗ +


yc1
yc2
Gc

2γsdy
∗ +


yc2
−bG

c
3γsdy

∗
]

where

ks =
10(1 + ν)
12 + 11ν

and G(t,c)
k =

E(t,c)
k

2(1 + ν)
for k = 1, . . . , 3 (7)

The integration was performed symbolically in MATLAB to derive
expressions of the curvature in each region of the beam. The general
expression of the curvature is derived by multiplying the moment
equilibrium equation by κ2 to obtain the cubic polynomial equation
in Eq. (8), and solving for κ. The internal moment in the beam is
represented by Mint while the external moment caused by a set of
applied loads to the beam tip is MBC. The coefficients
(AM, BM, CM, DM) are extracted from the symbolic expression of
the curvature for each region of the beam and are available in the
Supplemental Materials.

Mint(κ)
2 = AM(κ)

3 + BM(κ)
2 + CM(κ) + DM =M2

BC(κ)
2

where

κ =

����������������������������������������������������������������������������
DM

2AM
+
(BM −MBC)3

27A3
M

−
CM(BM −MBC)

6A2
M

( )2

+
CM

3AM
−
(BM −MBC)2

9A2
M

( )3
√

−
(BM −MBC)3

27A3
M

−
DM

2AM
+
CM(BM −MBC)

6A2
M

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

1/3

−

CM

3AM
−
(BM −MBC)2

9A2
M����������������������������������������������������������������������������

DM

2AM
+
(BM −MBC)3

27A3
M

−
CM(BM −MBC)

6A2
M

( )2

+
CM

3AM
−
(BM −MBC)2

9A2
M

( )3
√

−
(BM −MBC)3

27A3
M

−
DM

2AM
+
CM (BM −MBC)

6A2
M

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

1/3 −
BM −MBC

3AM

(8)

The critical curvatures between each region are determined using
Eqs. (9) and (10). For an initially curved beam, the initial curvature
(κo) is added to the curvature expression in Eq. (8) and to the
expressions of the critical curvatures.

κ(t,c)1 =
σ(t,c)

∗
1

E(t,c)
1 (±b − y∗o)

(9)

κ(t,c)2 =
(σ(t,c)

∗
2 /E(t,c)

3 ) + ε(t,c)res

(±b − y∗o)
(10)

Since the analytical model incorporates a nonlinear-elastic mate-
rial model with unequal tensile and compressive mechanical prop-
erties, the beam undergoes bending that is not symmetric. In other
words, the neutral axis does not coincide with the centroidal axis of
the beam (y∗o ≠ 0). The shift in the position of the neutral axis (y∗o)
for an asymmetric material is instead found from setting the internal
force to zero. The computation of the integral equations was
also done symbolically, and the solution was rearranged to solve

for y∗o. In Eq. (11), the internal force equation (Fint = 0) is multiplied
by y∗2o such that the neutral axis can be solved for from the quadratic
expression. Similar to the curvature equation, explicit expressions
for the coefficients (AF, BF, CF, DF) are available in the
Supplemental Materials on the ASME Digital Collection.

Fint(y
∗
o)

2 = BF(y
∗
o)

2 + CF(y
∗
o) + DF = 0

where

y∗o = −
CF +

��������������
C2
F − 4BFDF

√
2BF

(11)

With the presented analytical solutions, characterization of the
asymmetric material nonlinearity is illustrated along a nonlinear-
elastic cantilever beam. By extension, if the beam represents one
segment of a CM design, material nonlinearity can be captured
throughout the more complex geometry. The following section
describes how the curvature is used in calculating the deflection
of a single CM segment.
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2.2 Beam-BasedModel for Large Deformations. The curva-
ture (κ) is central to defining the deflection since the curvature along
the segment is not constant for combined loading conditions. It is
necessary to account for not only pure bending due to an applied
moment but also bending due to axial and transverse loads. The cur-
vature is defined in Eq. (12).

κ =
dθ

ds
=

d2y/dx2

[1 + (dy/dx)2]
3/2 (12)

Per this equation, the curvature is defined as the rate of change of
the slope (θ) with respect to the arc length. The value of the curva-
ture is found from solving the equilibrium equation (Eq. (8)). By
adapting an integral approach for cantilever beams undergoing
large deformations, the slope is derived by taking the integral of
the curvature. Given the geometric relationships illustrated in
Fig. 4, for a differential element, it is found that sin (θ) is equal to
the integral of the curvature [35]. By rearranging this relationship,
the slope is expressed as Eq. (13), which is integrated from 0 to
L. This distance is represented by the arc length (s), which is
equal to L at the tip of the deformed beam, i.e., s(l) = L.

θ = sin−1
∫
κds

( )
(13)

Each beam segment is discretized into Np − 1 differential ele-
ments. This allows for the definition of the slope for the ith
element in Eq. (14). This equation assumes that for a large value
of Np, or a large number of discretization points, the curvature
(κi−1) is a constant value within each differential element.

θi = θi−1 + sin−1 [κi−1(si − si−1)] (14)

The x and y positions of each differential element, due to bending,
are also related to the integral of the curvature. The expression of the
curvature is decomposed as described in Refs. [7,11] for large
deflection analysis. The axial and transverse displacements (u, v)
are calculated separately from the displacements due to bending.
The axial and shear force expressions in Eq. (7) are rearranged to
solve for u and v, where N and V are shown to be a function of
the tip loads (Fx, Fy) and the slope in Fig. 4. In the discretized
form, the final x and y positions are Eqs. (15) and (16):

xi = xi−1 +
1

κi−1
[sin (θi) − sin (θi−1)] + (ui − ui−1) cos (θi − θi−1)

+ (vi − vi−1) sin (θi − θi−1) (15)

yi = yi−1 +
1

κi−1
[cos (θi−1) − cos (θi)] + (ui − ui−1) sin (θi − θi−1)

− (vi − vi−1) cos (θi − θi−1) (16)

This formulation is for a segment modeled as an initially straight
cantilever beam. For an initially curved beam, a constant curvature
of κo = 1/Ro is prescribed, where Ro is the initial radius of curva-
ture. Following the same derivation in Eq. (14) and Eqs. (15) and
(16), the initial slope (θo) and the initial x and y position of the ini-
tially curved beam are found by substituting κi−1 with the initial cur-
vature (κo). In this case, the initial curvature is known but the final
curvature (κ) in the deformed configuration still needs to be solved.
Once the curvature and deflection of a single segment are deter-
mined, the same procedure is used to approximate the behavior of
a chain of beams or segments that make up two geometries: (1) a
semicircular arc and (2) a folding CM.

2.2.1 Segmented Model for a Semicircular Arc. An analytical
model using a segmented PRBM, where a semicircular arc was rep-
resented by a connection of rigid links and torsional springs, was
shown to accurately predict the tip deflection of the arc compared
to FEA [23]. Another approach was introduced where the arc was
segmented into a chain of cantilever beams [34], which is explored
further in this work. A semicircular arc with radius to the centroidal
axis (Rc) and cross section (a × 2b) is deformed by a combination of
applied loads (Fx, Fy) and a moment (Mo) at its tip. The arc has a
projected length l and transverse tip deflection m in its deformed
position as shown in Fig. 5. To model the deflection, the arc is seg-
mented into a chain of connected cantilever beams that can be either
initially straight or initially curved. The model allows for connec-
tions of solely initially straight beams, solely initially curved
beams, as well as a mixture of both types. The details of the segmen-
tation approach are clarified and available in the Supplemental

Fig. 4 Discretization of segment into Np points from i=1 to
Np−1 elements

Fig. 5 Undeformed and deformed geometry of a semicircular
arc subject to combined tip loading

Fig. 3 Example of the discretized cantilever beam divided into
five regions, for a generic nonlinear-elastic material, with the
stress profile at specific critical curvatures and the shift in the
neutral axis (y∗o) from the CA
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Materials on the ASME Digital Collection. This approach is used to
inform a similar segmented model for the folding CM design.

2.2.2 Segmented Model for a Folding Compliant Mechanism.
While the folding CM and semicircular arc are similar in design,
the boundary conditions for the folding CM differ. The CM geom-
etry is presented in Fig. 6 and consists of a semicircular arc with
small flexures on each end connected to two identical frames. The
model is subject to a transverse load (Fy) at the tip of the CM.
The boundary conditions for the folding CM design are based on
the experimental setup in Ref. [23], the details of which are
described in full. The folding CM geometry is also approximated
using segmentation, such that the segmented model begins at the
leftmost flexure. While the changes in the out-of-plane thickness
(a) in the CM are neglected, given that the frames are considered
rigid relative to the rest of the geometry, the model does account
for the changes in the in-plane thickness (2b) and the length (Ls).
These two parameters are estimated by discretizing each region of
the CM into a chain of cantilever beams. The neutral axis of each
beam aligns with the white dotted lines shown in Fig. 6. A new
segment is defined following a change in direction, thickness, or
length of each beam. The resulting segmented model is illustrated
in Fig. 7.
This section concludes the methods for incorporating geometric

nonlinearity into the analytical model. The analytical model is eval-
uated against FEA for two nonlinear-elastic materials: (1) superelas-
tic NiTi and (2) hyperelastic thermoplastic polyurethane (TPU).

2.3 Case Studies. Multilinear models are defined for supere-
lastic NiTi and hyperelastic TPU, accounting for unequal mechan-
ical properties in tension and compression. The behavior of
superelastic NiTi with symmetric mechanical properties, for
example, was characterized in three distinct regions along the can-
tilever beam [34]. However, for the asymmetric material model, five
regions are needed to account for the five changes in the stress
profile along the beam as shown in Fig. 3. This approach is also
used in the derivation of the multilinear material model of TPU,
accounting for the difference in mechanical properties.

2.3.1 Superelastic Nitinol (NiTi). SMAs, such as NiTi, have
the unique properties of superelasticity (SE) and the shape
memory effect (SME). Through a stress-induced phase transforma-
tion, SMAs can recover large amounts of elastic deformation. The
SME, instead, is observed through a temperature-induced phase
transformation in which a deformed SMA is heated and returns to
its original state prior to being deformed. This case study looks
only at SE of NiTi, under the assumption of constant temperature.
The multilinear model for NiTi uses the same mechanical prop-

erties in tension, such as the critical stresses (σt
∗
1,2) and elastic

moduli (Et
k), as in Ref. [23], for the segmented PRBM approach.

However, the original model is changed in the current work to
include asymmetry by adjusting the mechanical properties in com-
pression (σc

∗
1,2 and Ec

k). The elastic moduli in each linear section are
given in Table 1, where the elastic modulus of the second linear
section is calculated using Eq. (1). Figure 8 illustrates the multi-
linear material model for NiTi and the values of the stresses at
each critical point. The critical points represent the locations
where the stress profile changes, reflecting the nonlinear-elastic
response of the material.

2.3.2 Thermoplastic Polyurethane. Rubber-like filaments used
in polymer AM, such as thermoplastics, are elastomeric materials
that exhibit hyperelasticity. Parts made from these filaments can

Fig. 6 Undeformed geometry of a folding CM subject to a trans-
verse tip load, where the leftmost frame of the CM is fixed, and
the CM deforms along a virtual neutral axis

Fig. 7 Approximation of a folding CM subject to a transverse tip
load using a segmented beam-based model

Table 1 Mechanical properties for the NiTi material model

Elastic moduli Tension (GPa) Compression (GPa)

E1 69.2 50.0
E2 72.9 82.7
E3 71.4 72.7

Fig. 8 Multilinear material model for NiTi with three linear sec-
tions and its corresponding critical stress values
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achieve large changes in their shape while maintaining a constant
volume, which is known as near-incompressibility. An example of
such a filament is TPU. Due to its availability commercially with dif-
ferent values of shore hardness, TPU has been shown to be a versatile
material. It has application in flexible systems such as soft robotics, as
well as in systems in the medical and automotive industries that
require hard, durable rubbers [46]. Since TPU has a more pronounced
tension–compression asymmetry compared to the asymmetric NiTi
material model presented, the following explores the approximation
of TPU using the same multilinear model approach.
Published uniaxial test data for TPU with 95A shore hardness

[47] were used for the material model. To derive the multilinear
model, the data are discretized using three linear sections in
tension and compression. First, the data are separated into the
tensile and compressive data points, and each are fitted separately
with a 15th order polynomial. The polynomial degree was studied
at different values to achieve the best fit to the raw data and the
highest R2 value greater than 0.9. The R2 value using a degree of
15 is 0.977 for the tensile data and 0.996 for the compressive
data, which gives the best fit. Beyond a degree of 15, there is rela-
tively minimal improvement in the R2 error. The derivative of the
polynomial equations is taken with respect to the strain to arrive
at the slope of the curves, which is the change in elastic modulus.
The approach developed in Ref. [23] is used to determine the loca-
tion of the critical points and is summarized here.
When the percent difference in the change in the elastic modulus

exceeds a target percentage of 50%, this marks the location of a crit-
ical point. Each section in tension and compression is approximated
with three linear sections, resulting in four critical points total. A
critical point is selected along the black dashed line, which is
drawn along the relatively straight regions of the polynomial
curve fit. The critical points are chosen such that the R2 value of
the multilinear model with respect to the uniaxial data is greater
than 0.9. With the points shown in Fig. 9, the R2 value is 0.992.
Using these four critical points, the elastic moduli in each linear

section can be defined as in Table 2. In Fig. 10, the multilinear mate-
rial model for TPU and the values of the stresses at each critical
point are shown. The material models for NiTi and TPU presented
are used in the following case studies comparing the analytical
model with FEA and an experimental study, only for TPU.

2.3.3 Assumptions. The assumptions made for the analytical
model are summarized as follows:

• Large deflections (geometric nonlinearity), but small strains
and moderately large rotations using von Kármán strain
theory.

• In-plane bending and stretching (only σxx ≠ 0), but no
out-of-plane behavior.

• The Poisson’s ratio is zero (ν = 0), i.e., no Poisson’s effect.
• The CM is made from a nonlinear-elastic material (material

nonlinearity).
• The neutral axis of the geometry does not coincide with the

centroidal axis (asymmetric tension and compression).
• Hysteresis, creep, stress relaxation, and other time-dependent

effects are not considered.

2.3.4 Finite Element Analysis. To validate the analytical
models, COMSOL MULTIPHYSICS is used to run 2D FEA simulations
of a (1) cantilever beam made from NiTi, (2) a semicircular arc
made from TPU, and (3) the folding CM design made from TPU.
The structural/solid mechanics module calculates the stresses,

Fig. 9 Determination of the critical points of the multilinear model at the location of nonline-
arity in the curve of the elastic modulus versus the strain in tension (a) and in compression (b)

Table 2 Mechanical properties for the TPU material model

Elastic moduli Tension (MPa) Compression (MPa)

E1 23.6 53.6
E2 4.55 495.9
E3 15.3 2090.6

Fig. 10 Multilinear material model for TPU with three linear sec-
tions and its corresponding critical stress values extracted from
the original uniaxial data
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strains, and displacements of the geometry. Using this module, both
a nonlinear-elastic material model and geometric nonlinearity are
included. For NiTi, the multilinear material model data in Fig. 8
are imported into COMSOL as an interpolation function. For TPU,
both the uniaxial data and its corresponding multilinear model in
Fig. 10 are studied and the results for each are compared.
An extremely fine mapped mesh is used for the cantilever beam

model with geometry listed in Table 3, with a minimum element
size of 4 × 10−6 m and a maximum size of 2 × 10−3 m. The semicir-
cular arc model with geometry listed in Table 4 has an extra fine free
triangular mesh, with a minimum element size of 4.5 × 10−6 m and a
maximum of 1.2 × 10−3 m. The same mesh type is used for the
folding CM. All FEA simulations are evaluated across an auxiliary
sweep. The applied loads (Fx, Fy, Mo) are ramped from zero up to
their maximum values after Niter = 500 iterations. In accordance
with the analytical model, the Poisson’s ratio (ν) is set to zero in
the simulations such that a direct comparison can be made.
The results reported for the cantilever beam and semicircular arc

cases are the deflection and curvature profiles in the deformed state,
as well as the stress distribution along the fixed end. For the folding
CM, the position of the final deformed shape is extracted along with

the deflection of the three tracked points (A, B, C) to compare
against the experimental study. The accuracy of the analytical
model is validated against FEA and experimental results in Sec. 3.

3 Results and Discussion
3.1 Cantilever Beam With NiTi. The cantilever beam shown

is subject to a transverse load (Fy,max) at its tip. The geometry of the
beam and the loading condition is given in Table 3. The number of
discretization points, Np, is set to 5000 points. The deflection profile
of the beam is plotted at five different iterations in Fig. 11(a), which
represents the load steps up to the final value of Fy,max. The ability
of the analytical model to capture the force-deflection behavior of
the beam is emphasized by its good agreement with the FEA
model. The calculated mean-squared error (MSE) between the
deflection curves of the two models is 1.83 × 10−8 m2.
Figure 11(b) shows the curvature profile along the beam for the

analytical and FEA models, which reflects the nonlinear behavior
of the material upon reaching a critical curvature: κc1 = 1.85m−1,
κt1 = 2.87m−1, κ2c = 6.36m−1, and κt2 = 10.40m−1. The deflection
and curvature profiles are normalized by the undeformed length
of the beam (L). The stress profile along the beam thickness (y∗)
at the fixed end is also plotted in Fig. 11(c) and compared with
the Second Piola-Kirchhoff stress in FEA. The differences in the
neutral axis position are also shown.
For NiTi and the current geometry, the model goes up to a

maximum force of −33 kN. This corresponds to a maximum
strain of 9.4% at the top fixed end of the beam. Beyond this
strain, the practicality of the analytical model is limited due to non-
convergence. NiTi is reported to exhibit up to 10% recoverable
strain [48], which is on par with the maximum strain found for
this example.
The accuracy of the analytical model is also demonstrated for a

combined load case, where the same cantilever beam is subject to
both an axial and transverse load (Fx, Fy). To illustrate the effect
of including tension–compression asymmetry, Fig. 12 compares
the beam deflection, curvature, and stress distribution using sym-
metric (S) and asymmetric (A) material models for NiTi. For the
symmetric model, the compressive moduli and critical stresses are
set equal to those in tension, i.e., Ec

k = Et
k and σc

∗
1,2 = −σt∗1,2.

Table 3 Geometry and loading applied to NiTi beam

Parameter Value

L 200 mm
a 50 mm
b 5 mm
Fy,max −33 kN

Table 4 Geometry and loading of the TPU arc

Parameter Value

Rc 17 mm
a 4 mm
b 2 mm
Fy,max −2 N

Fig. 11 Deflection profile of the NiTi analytical model subject to a transverse force of −33 kN
showing the deflection history up to Niter=500 (a), curvature profile along the beam in its
deformed position (b), and stress distribution and neutral axis position (c)
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Even though the results of the symmetric model are close in
shape to that of the FEA model, the symmetric model overpredicts
the deflection and curvature profiles of the beam. The agreement of
the model with FEA is thus improved with the addition of tension–
compression asymmetry, as the MSE between the deflection curves
decreases from 7.99 × 10−6 m2 to 2.23 × 10−9 m2. To explore the
impact of a more pronounced asymmetry on the model accuracy,
the force-deflection behavior of the segmented arc and folding
CM design made from TPU is presented next.

3.2 Semicircular Arc With Thermoplastic Polyurethane.
The semicircular arc is segmented into n = 20 identical segments,
with the simplest case being represented by initially straight canti-
lever beams. A segmented model consisting of initially curved
beams or a heterogeneous combination can be selected to obtain
similar results as those shown. Previous work has determined that
the accuracy of the segmented model approach improves as the
number of segments is increased [23]. Larger values of n > 20
have not shown notable differences in the results for the current
model.
The undeformed geometry of the segmented arc is illustrated in

Fig. 13 and is normalized by the undeformed diameter of the arc
(Dc). The arc is subject to a transverse tip load (Fy,max) and is
defined by the parameters given in Table 4. The applied force of
−2 N corresponds to a maximum strain of 12.4% in magnitude.
As a result, the model is applicable for strains within the range cor-
responding to critical stresses σc

∗
1 and σt

∗
1 in Fig. 10 for this

geometry.
The deflection of the arc is evaluated against the uniaxial data and

its multilinear approximation in FEA. At a certain level of deforma-
tion, the analytical model begins to deviate from the FEA model
using the uniaxial data (MSE= 3.61 × 10−6 m2) but agrees well
with the multilinear model as expected (MSE= 2.98 × 10−7 m2) in
Fig. 14(a). This finding is assumed to be a result of the selection
of the critical points in the multilinear approximation. The curvature
profile of the analytical model, and numerically meaningful results
from the FEA model, are shown and normalized by the initial cur-
vature (κo) in Fig. 14(b). The stress distribution at the fixed end of
the arc, in Fig. 14(c), also illustrates that the second Piola-Kirchhoff

stress distribution across the neutral axis is not as asymmetric for the
uniaxial data as it is for the multilinear case. This is assumed to be
the reason for the differences seen in the deflection profiles between
the two.
Between the critical stresses (σc

∗
1 and σt

∗
1 ), in Fig. 10, the curves

of the TPU material model are approximated by one linear
section each for tension and compression. If the location of the crit-
ical points is adjusted, or if the number of critical points in this
region is increased, more of the nonlinearities in the material
model could be captured and the agreement between the three
curves could be improved. Additionally, the piecewise equations
for the stress and strain (Eq. (13)) would also need to be derived
for k > 3 linear sections.

Fig. 12 Deflection of the NiTi beam for an axial force of−15 kN and transverse force of−10 kN
(a), curvature profile (b), and stress distribution at the fixed end compared with FEA for the
asymmetric A and symmetric S material models (c)

Fig. 13 Undeformed geometry of the segmented semicircular
arc for n=20 segments
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3.3 Folding Compliant Mechanism With Thermoplastic
Polyurethane. Finally, the segmented arc model is extended to
the folding CM design by attaching the small flexures and the right-
most frame to the ends of the arc in Fig. 15. The model is normal-
ized by the total horizontal distance between the fixed end and the
free end (Ltot = 65mm). Again, the arc is segmented into n = 20
segments and has the same geometric parameters given in
Table 4. The folding CM is segmented into 28 total segments and
the out-of-plane thickness (a) remains constant and the same as
the semicircular arc.

A transverse force (Fy,max) of −0.5 N is applied to P28 instead of
P20 in the semicircular arc model. The maximum strain attained is
50.5%. The final value of the weight used in the experimental study
was 200 g or a magnitude of 1.96 N. However, due to the definition
of the analytical model, only results up to a magnitude of 0.5 N can
be obtained. This limitation is assumed to be due to the small strain
assumption. For the previous NiTi beam and TPU arc examples,
where the maximum strains were reported as 9.4% and 12.4%,
respectively, it is possible that the strains are small relative to the
geometries and nonlinear-elastic models studied. As mentioned
for NiTi, 10% strain is considered a suitable threshold on the
amount of recoverable strain. Since 9.4% strain is within this
limit, the strain could be considered small. The material model
for TPU reaches almost 400% strain in Fig. 11, which when com-
pared to the 12.4% and 50.5% strain achieved by the arc and
folding CM models could also indicate that the analytical model
is more appropriate for small strains.
The deflection profile of the folding CM is then compared

between the analytical model and FEA using the uniaxial data for
TPU. The number of load steps remains Niter = 500 for both
models. While the two deflection curves agree toward the fixed
end of the folding CM in Fig. 16, there is less overlap toward the
location of the force.
The culmination of this work is to predict the behavior of an addi-

tively manufactured folding CM made from a nonlinear-elastic
material. Given that the folding CM is an extension of the semicir-
cular arc, and the arc is an extension of the cantilever beam through
segmentation, validation of the folding CM experimentally would
also validate the behavior of the primitive geometries. TPU filament
was selected because it is more accessible and less costly than addi-
tively manufactured NiTi. Thus, an experimental study was per-
formed to measure the deflection of three TPU specimens, which
were averaged and plotted with +/− two standard deviation
bands. As illustrated in Fig. 17, the experimental and FEA deflec-
tion curves of the two tracked points (A, B, C) up to a final force
of 1.96 N demonstrate good agreement along the path of point C.
All the points lie with the standard deviation band despite some
slight differences in where the points fall along the path.

Fig. 14 Deflection profile of the TPU analytical model subject to a transverse force of−2 N (a),
curvature profile along the arc in its deformed position (b), and stress distribution and neutral
axis position at the fixed end of the arc compared with FEA using the uniaxial and multilinear
models (c)

Fig. 15 Undeformed geometry of the segmented folding CM for
n=25 total segments, where the semicircular arc is segmented
into n=20 segments
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Alternatively, the path of point B shows a greater deviation outside
of the standard deviation band with an increasing applied force.
These trends are also seen when the deflection of the analytical
model is evaluated against the experiment.
For the analytical model, the initial positions of points B and C

are determined from the original computer-aided design model of
the folding CM design. Coordinate transformation was used to cal-
culate the position of points B and C relative to the nearest segment
tip position as it deforms. In this example, point B is calculated with
respect to P27 and point C to P25 in Fig. 15. Since point A is
assumed to be fixed, its position is set to the origin in the

experimental study or (0, 0). The points are then adjusted to
match the orientation used in the experiment, accounting for the
contact gap and initial deformation of the CM due to gravity. Yet,
the model deviates from the experimental results along the path
of point B similar to the FEA model. This observation is possibly
explained by a small shift in the location of the applied force in
the experiment. As seen in Fig. 18, the folding CM was designed
with a hook attachment to suspend the weights at its tip. As the
weight increases, the original location of the hanging weight
shifts inside of the hook attachment. It is possible that the paths
of the FEA and analytical models move away from the experimental
solution because of this shift. The slight change in the applied force
location could create an additional moment that impacts the deflec-
tion path. Since the moment arm from the force to point B is larger
than that to point C, the deviation from the experimental results
along the path of point B is more noticeable.
Additional possible sources of error include human error in cap-

turing the images of the folding CM, local deformations of the CM,
and time-dependent properties such as creep and stress relaxation
that would cause permanent deformation during loading and
unloading. In terms of comparing the analytical and FEA models
to the experiment, the assumption of a zero Poisson’s ratio also
may not be suitable for the true behavior of the material, since
TPU has a Poisson’s ratio that can be as high as 0.48–0.5 [49,50].
However, this assumption does allow for the creation of a fast ana-
lytical model for 1D problems. The analytical model is shown to
reasonably predict the behavior of an additively manufactured
CM made from TPU within the range of forces applied. The
versatility of the developed model for nonlinear-elastic materials
is reflected in the good agreement in the results for both a material
with less pronounced tension–compression asymmetry (NiTi) and
one with more pronounced asymmetry (TPU), even with the
additional complexity of large deformations and nonuniform
geometries.

4 Conclusions
To understand the behavior of CMs with nonlinear-elastic mate-

rials, an analytical model including tension–compression asymme-
try is considered. The main contributions of this work include: (1)
constitutive equations for unifying geometric and material nonline-
arity in a cantilever beam, (2) a segmentation approach for a semi-
circular arc and folding CM, (3) a generalized multilinear model for
nonlinear-elastic materials with asymmetric mechanical properties
applied to NiTi and TPU, and (4) experimental and FEA-based

Fig. 16 Deflection profile of the TPU analytical model of the
folding CM, subject to a transverse force of −0.5 N, illustrating
the differences in the predicted deflection compared to FEA

Fig. 17 Deflection path of points A, B, and C for the experiment,
FEA, and analytical model, with shading indicating +/− two stan-
dard deviation bands (±2σ). The FEA and experimental data go
up to a force of −1.96 N while the analytical data go up to −0.5 N.

Fig. 18 Illustration of the original location of the applied force at
the tip of the folding CM and its shift caused by the increase in
weight
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validation of the analytical model for an additively manufactured
folding CM from TPU.
The limit on convergence of the model indicates a maximum

achievable strain that still needs to be studied further. The limitation
is assumed to be due to the definition of the strain, using the von
Kármán strain theory, which does not include the higher order
strain terms of the finite strain theory. The value of the maximum
strain prior to nonconvergence also depends on the geometry and
possibly the material. Thus, a correlation between the strain and
the bending stiffness, or flexural rigidity (EI), of the model also
needs to be determined to quantify the limit on the strain using
this approach.
Continued research in the area of CM models aims to explore the

fabrication of shape morphing structures. Designs such as the
folding CM could be incorporated as compliant joints in origami-
based mechanisms. Another iteration of the analytical model,
accounting for the self-contact mechanism of the folding CM,
would serve to tap into the energy absorption and stress-relief prop-
erties of cellular contact-aided compliant mechanisms. The
response of the contact mechanism could theoretically be repre-
sented by a nonlinear translational spring in future work.
Lastly, with the ability to model nonlinear-elastic materials with

tension–compression asymmetry, experimental data for other mate-
rials used in AM could also be used to validate the accuracy of the
analytical model. These studies can then be expanded to not only
predict the nonlinear behavior of different additively manufactured
CM geometries but also tailor their geometry and functionality
through design optimization.
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Nomenclature
a = out-of-plane thickness of cross section
b = in-plane half thickness of cross section
i = index of beam element tip position
j = index of segment tip position
k = linear section of the multilinear material model
n = number of segments
s = arc length
F = internal force due to bending along beam
L = undeformed length of the cantilever beam
M = internal moment due to bending along beam
N = internal force due to axial stretching along beam
V = internal force due to shear along beam
Ls = length of segment
Mo = applied tip moment
Niter = number of iterations for the analytical model
Np = number of discretization points for beam elements
Pj = global tip position of segments
Rc = radius of arc with respect to centroidal axis
Ro = initial radius of curvature
y∗ = position along beam thickness in y

y∗o = shift of neutral axis from centroidal axis of beam
E(t,c)
k = elastic modulus for linear section k
Meq

j = equivalent applied moment for the segmented
model

l, lo = projected length of beam, initially straight or curved
m, mo = tip deflection of beam, initially straight or curved
u, v = axial and transverse deflections along centroidal

axis
x, y = local coordinates of displacement

y(t,c)∗1 , y(t,c)∗2 = critical y∗ transition points
Fx, Fy = applied non-follower tip loads
X, Y = global coordinates of displacement

α = sector angle of arc
βj = subtended angle of arc

ε, εb, εm = strain with bending and membrane components
ε(t,c)1 , ε(t,c)2 = critical strains in tension and compression

ε(t,c)res = residual strains in tension and compression
ζj = initial angle of rotation for segment
θ = slope or angle of deflection along beam

κ, κo = curvature due to bending and initial curvature
κ(t,c)1 , κ(t,c)2 = critical curvatures

σ(t,c)k = uniaxial stress for linear section k
σ(t,c)∗1 , σ(t,c)∗2 = critical stresses in tension and compression

ψ = central angle of arc
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