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Maximizing Systolic Array Efficiency to Accelerate
the PairHMM Forward Algorithm

Johan Peltenburg, Shanshan Ren, Zaid Al-Ars, Computer Engineering Laboratory, TU Delft
E-mail: {j.w.peltenburg, s.ren, z.al-ars}@tudelft.nl

Abstract—In the analysis of next-generation DNA sequencing
data, Hidden Markov Models (HMMs) are used to perform
variant calling between DNA sequences and a reference genome.
The PairHMM model is solved by the Forward Algorithm, for
which the performance and power efficiency can be increased
tremendously using systolic arrays (SAs) in FPGAs. We model
the performance characteristics of such SAs, and propose a novel
architecture that allows the computational units to continuously
perform useful work on the input data. The implementation
achieves up to 90% of the theoretical throughput for a real
dataset. The implementation of the proposed architecture achieves
more than 2.5x throughput over the state-of-the-art on a similar
contemporary platform.

Keywords—High-Throughput Sequencing, GATK, Haplotype-
Caller, PairHMM, Systolic Array, FPGA

I. INTRODUCTION

Next-generation DNA sequencing methods allow cost-
effective sampling of DNA [1]. This data is used e.g. to
understand and treat human diseases. The analysis of the huge
amounts of data resulting from such samples is still a com-
putational challenge today. Hidden Markov Models (HMM)
are used during analysis to find pairwise alignments of DNA
sequences. More specifically PairHMMs [2] can be used to
calculate the probability that two sequences are related, which
is called the overall alignment probability. In this work, we
consider the alignment probability of a read to a haplotype.

Because of the computational complexity and the data
volume, PairHMM calculations in genome analysis pipelines
(such as Genome Analysis ToolKit or GATK [3]) take a
long time to complete on conventional machines. However,
the PairHMM Forward Algorithm, which is also used in the
software implementation of the GATK HaplotypeCaller, is
an algorithm exhibiting a long datapath. Such algorithms are
often good candidates for FPGA implementation. An FPGA
accelerator is often able to achieve a high throughput and
high power-efficiency. In other research, it has been shown that
FPGAs can be suitable candidates to implement the algorithm
using Systolic Arrays (SAs). However, a drawback of some
architectures is that the computational resources are sometimes
under-utilized due to control issues or data padding.

In this work, we attempt to optimize SA utilization, allow-
ing for near continuous processing on all the computational
elements of the SA. Our future aim is to implement many
small but efficient SAs instead of implementing one large but
inefficient SA. Our contributions are as follows:

• We provide a model to calculate the utilization of an SA.
• We analyze architectural alternatives allowing continuous

processing of the PairHMM Forward Algorithm.

• We implement one such architecture that is more than
2.5x faster than the state-of-the-art FPGA implementation
and 10x faster than a state-of-the-art CPU.

II. BACKGROUND

A. PairHMM Forward Algorithm

Algorithm 1 PairHMM Forward Algorithm used in the GATK
HaplotypeCaller
M ← I ← D ← 0X+1,Y +1

D0,0...Y ← Cinit

for i← 1, X do
for j ← 1, Y do

Mi,j ← αi,j · (βi ·Mi−1,j−1 + γi · Ii−1,j−1 +
γi ·Di−1,j−1)

Ii,j ← δi ·Mi−1,j + εi · Ii−1,j

Di,j ← ηi ·Mi,j−1 + ζi ·Di,j−1

return
∑Y

j=0MX,j + IX,j

The PairHMM Forward Algorithm as implemented in the
HaplotypeCaller is seen in Algorithm 1. M , I and D are the
matrices for match, insertion and deletion probabilities. αi,j

is the emission probability: for each position in the read i
it can have two different values, depending on the bases of
the read and haplotype at position i and j. β, γ, δ, ε, η and
ζ are transmission probabilities that only depend on the read
position i. In the software implementation, all probabilities are
floating-point values. We define X and Y as the length of the
read and haplotype, respectively.

When updating some cell (i, j) of the matrices M , I and D,
a dependency exists on the values of cells (i− 1, j − 1), (i−
1, j) and (i, j− 1). Thus, only matrix cells laying on the anti-
diagonals of the matrix can be updated in parallel. Therefore,
Algorithm 1 is commonly implemented in hardware using a
one-dimensional systolic array (SA) consisting of a number
of processing elements (PEs). Each PE implements the inner
loop in the algorithm, updating one cell in each of the matrices
M , I , and D. During every update cycle, the SA updates the
cells on the anti-diagonal of the matrices (sometimes called
a ‘wavefront’). A simplified diagram of such an SA can be
seen in Fig. 1a. As the anti-diagonal grows, the amount of
exploitable parallelism grows as well.

When the length of the haplotype (or read) is larger than
the number of elements in the SA, the SA can compute the
matrices by making multiple vertical (or horizontal) passes
through the matrix, processing only a subset of columns (or
rows) and wrapping back to the top (or side) of the matrix
after completion of a pass. This can be seen in Fig. 1b. The
values in the last column (or row) in the pass are often stored
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(a) One pass detail (b) Multiple passes and
potential overhead

Fig. 1: An example of how an SA can solve a PairHMM using
the Forward Algorithm (Algorithm 1).

in a FIFO buffer. Whenever a pass is shorter than the amount
of PEs in the SA, padded data is inserted (Fig. 1b case A).

B. Related work
Earlier research discussed using SAs to solve similar HMM-

based algorithms in the field of computational biology [4] [5].
These proposed SA designs introduce overhead when model
parameters must be reconfigured between subsequent passes or
workloads. Subsequent research such as [6] and [7] show more
advanced SA designs, deploying double buffering of model
parameters of alternating passes and workloads, allowing for
near continuous processing.

More recent work implements the same PairHMM Forward
Algorithm as this work in FPGA on the Convey Computer
platform, showing higher throughput than single threads of
the host processor [8]. However, the architecture introduces
overhead when switching between passes, as parameters are
shifted into the PEs. In [9], which we consider as the current
state-of-the-art FPGA implementation, PEs are partially inter-
nally pipelined, achieving a high throughput. This design uses
the CAPI interface of the IBM POWER8 platform, which we
will also use in this work.

In this paper, we introduce a new architecture that is able
to continuously perform useful calculations in the PEs of
the SA. Once the first input data pair is loaded, our design
wastes virtually no cycles due to memory latency or parameter
reconfiguration. Thus, the design is able to achieve extremely
close to the maximum theoretical performance of a fixed-size
SA.

III. PERFORMANCE MODEL

We define the length of the read and the haplotype as X
and Y . The total amount of cell updates required to process the
Forward Algorithm is X×Y . A useful measure of performance
for the Forward Algorithm is the throughput in number of cell
updates per second (CUP/s). In this paper, we will only count
effective cell updates, which are cell updates that contribute to
the final result (i.e. not on padded data).

The throughput of an SA design is affected by the average
utilization of the PEs. We observe that while processing the
Forward Algorithm with an SA, under-utilization of the PEs
may be introduced in several cases (also shown in Fig. 1b):
(A) When data is padded if a pass is not as wide as the SA.
(B) If the PEs in the SA may only work on one pass at a

time, under-utilization of the PEs occurs at the start of a
pass.

(C) Same as B, but at the bottom of a pass.
(D) When switching between passes, to update the model (α,

β, etc.) in the PEs.
(E) When the height of the matrix is shorter than the number

of PEs, and more than one pass is required, the read must
be padded. Otherwise, the feedback FIFO will not contain
any data yet for the first PE to work on in the next pass.
(Not shown in Fig. 1b).

We consider an SA of fixed size, thus the overhead introduced
in case A and E is inevitable. However, we aim to eliminate
the other causes of overhead.

A. Fixed-size systolic array performance
Consider the processing of the Forward Algorithm in an SA

where; W is the width of the matrix, H is the height of the
matrix and E is the number of PEs in the SA. Also, assume
one cell update per clock cycle. In the ideal case, if we would
process a large amount of pairs (thereby ignoring initial and
final latency), that are of similar size, and if the input data
is available at any time at the inputs of the PEs, the average
utilization of the whole SA for one pair is given by:

Avg. utilization =
WH

EdWE e ·max(E,H)
(1)

Eq. 1 takes the number of cells in the original matrices and
divides this by the number of cells in the padded matrices.
This gives the ratio of effective cell updates verses all cell
updates (including padding). In the case of such a workload,
we may obtain the average number of effective cell updates
Uavg per clock cycle by multiplying the average utilization by
the number of PEs in the SA:

Uavg(W,H,E) =
WH

dWE e ·max(E,H)
(2)

Thus, cells padded to the bottom of the matrix (in each pass,
only when H < E) and cells padded to the right of the matrix
in the final pass are also taken into account.

If the height of the matrix is equal or larger than the number
of PEs (i.e. H ≥ E) and the width of the matrix is an integer
multiple of the number of PEs (i.e., W = nE, n ∈ Z>0), all
PEs perform useful work in every pass. In this case, maximum
throughput is achieved (U = E). This also shows an SA of
length E = 1 is always maximally efficient (i.e. an SA of this
size needs no padding, since passes are of width 1).

Modern FPGAs contain enough computational fabric to
implement a large number of PEs. However, the number of SAs
cannot be as high, since it quickly becomes bounded by the
available memory and interconnect. For example, the FPGA
used for this work offers enough resources to implement 112
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(a) Architecture HS: haplotype data is streamed in
horizontally, read data is streamed in vertically.

(b) Architecture RS: read data is streamed in horizon-
tally, haplotype data is streamed in vertically

Fig. 2: Two SA architectures.

PEs, but the FPGA lacks resources to implement 112 SAs
in parallel, requiring 112 controllers, input buffers, feedback
FIFOs and other items in the data and control paths. A more
feasible combination would be to have, e.g. 7 SAs of 16 PEs
each. This work focuses on implementing an architecture for a
single SA, that achieves as close to the maximum performance
of Eq. 2 as possible.

IV. ALTERNATIVE ARCHITECTURES

A. Alternative architectures

To achieve the maximum performance, the matrix can be
mapped onto the SA in two ways. In one, (HS in Fig. 2a), the
data that depends on the haplotype position (haplotype bases)
is streamed-in at the head of the SA. The data that depends on
the read position (probabilities and read bases) is fed vertically
into the PEs. In this approach, the matrix is mapped to have the
read on the horizontal axis, and the haplotype on the vertical
axis of the matrices. The other approach (RS, Fig. 2b) has
horizontal and vertical data streams swapped.

All data that is fed horizontally can be streamed from input
FIFOs into the head of the SA. When reuse of this data is
required in a new pass, the feedback FIFO will provide this
data and intermediate values that were streamed out of the SA
after processing the last column of the previous pass. All data
that is fed vertically can be distributed to the respective PEs
using a bus connected to registers (or RAM).

Although architectures similar to HS are often used (with
the exception of [6]), we argue the use of RS. The reason to
select RS is related to the sizes of the read and haplotype, X
and Y . The haplotype is at least as long as the read, but often
much longer. Consider again Eq. 2. When the ratio between
fully utilized passes and underutilized passes is high (i.e. when
Y is large) the efficiency is also high, since a relatively larger
number of passes will have full SA utilization.

Internally, the PEs are pipelined, such that the critical path in
the circuit is reduced, allowing higher clock frequencies for the

Fig. 3: Example of processing a pair for which the read length
X = 6, the haplotype length Y = 6 and the number of PEs
E = 4.

whole SA. The throughput of the SA is directly proportional
to its clock frequency.

B. Maximizing utilization
To achieve maximum utilization, overhead from the cases

B, D and C described in Section III must be prevented. This
can be done by observing that, during one cell update cycle,
the vertical data of at most one PE needs to be updated, i.e.
at most one PE in the SA will enter a new pass in each cell
update cycle. Therefore, a bus connected to the vertical data
registers needs to transfer the vertical data of only one PE per
cycle.

In this way, any data that is still in the SA from a previous
pass or pair does not have to be completely streamed out,
allowing cell updates between passes and pairs to take place
within the SA (solving case B and C). Furthermore, when the
vertical data bus is able to transfer all required data in one
cycle, overhead caused by updating model parameters in the
PEs can be avoided (solving case D)

An example of continuous processing on the RS architecture
is given for the following case: The number of PEs, E = 4, the
length of the read X = 6, the length of the haplotype: Y = 6,
the read is ’GTACAT’ and the haplotype is ’ACTGTC’.

As shown in Fig. 3, on each anti-diagonal, the state of the
complete SA is depicted during one cell update cycle, and
superimposed over the matrix cells of a pass. For each cell
update cycle, the vertical data of at most one PE must be
updated. Similarly, the output of at most one PE holds data
contributing to the final result. Therefore, the M and I output
of each PE are logically OR-ed with each other and sent to
an accumulator. This implements the last line of the procedure
in Algorithm 1. By setting the haplotype and read base to a
value called “Padding” (denoted by ‘P’ in the figure), the PEs
output will be invalidated.
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Fig. 4: Effect of sorting on the efficiency of the SA, with E=16.

C. Control mechanism

Since PEs are internally pipelined (Section IV-A), to allow
multiple PairHMMs to run in each of the pipeline slots, one
could use BRAM and allocate a specific region for each of
the N pairs that is active in an N stage pipeline. However,
such a control mechanism is complex, since it must track all
SA control signals, as well as RAM addresses, for each of
the N pipeline slots independently. At the side of the memory
interface, it must keep track of N pointers, data counters, and
other control information.

The control mechanism can be extremely simplified by
allowing the smallest unit of processing to be batches of N
pairs. By implementing FIFOs for the input data, the host can
prepare a batch of N pairs to be processed, ordering the batch
in memory in such a way that the accelerator itself does not
have to deal with ordering at all. The accelerator keeps track
of control signals of only one batch instead of keeping track
of all control signals for each of the N pairs.

Although simplifying control complexity, batches have a
minor drawback in terms of performance; if the pairs contained
in the batch are of completely different sizes, smaller pairs
require a lot of padding, in turn decreasing SA efficiency.

Consider the processing of N pairs in a batch, where the
n-th pair has read length Xn and haplotype length Yn. The
total amount of work required in cell updates Ureq to process
the batch is given by:

Ureq =

N−1∑
n=0

XnYn (3)

When the amount of work done on a batch Ubatch is deter-
mined by the largest read and haplotype, it can be calculated
(containing overhead due to padding) using Eq. 2 as follows:

Ubatch = N · Uavg(max
n

Yn,max
n

Xn, E) (4)

Dividing Eq. 3 by Eq. 4 gives the efficiency per batch.
When the read and haplotype lengths are different, the SA

has low efficiency due to abundant padding. A large portion of
this drawback can be mitigated by sorting the pairs by number
of passes required, then sorting each list of pairs with the
same number of passes by read size. After sorting, the batches
are created by the host and sent to the accelerator. When the
workload is very large, sorting makes it likely that haplotypes
and reads inside a batch share a similar number of passes and
read size.

Fig. 5: Synthetic benchmark. PEs: E = 16. Workload size: 214.
Step size: 4. Read size: X . Theoretical maximum throughput:
2667 MCUP/s. Max. measured: 2661 MCUP/s.

To reduce the sorting time, we sort only small subsets of
the workload. For the whole genome sequencing dataset we
used for this work (see Section VI), we split the workload
into 1832 subsets of 214 pairs and sort them. In Fig. 4, we
compare it to the SA utilization when using unsorted subsets
and the ideal utilization given by Eq. 2, in the case where we
would not use batches, but are able to start working on pairs in
independent pipeline slots. We find that using sorted batches
almost achieves ideal performance.

V. IMPLEMENTATION

We implemented architecture RS using an AlphaData ADM-
PCIE-7V3 FPGA accelerator card, for which a POWER8 CPU
on an IBM Power System S824L (8247-42L) serves as a host.
This system offers the Coherent Accelerator Processor Inter-
face (CAPI) to the accelerator through IBMs Power Service
Layer (PSL) interface. The memory interface at the host side
is therefore similar to [9]. To abstract away the PSL interface,
we use the CAPI Streaming Framework from [10].

The SA consists of E Pipelined Processing Elements
(PPEs). Each PPE implements the inner loop of Algorithm 1 as
a 16-stage pipeline. The maximum number of PPEs we could
fit (using Vivado 2016.2) was 112. This bound is determined
by the number of DSP blocks. The DSP blocks are used by the
floating-point units in the PPEs. The FPGA allows 3600 DSP
blocks to be used, but the PSL is distributed as a pre-routed
design and prevents the use of a quarter of the DSP blocks. In
this work, we implement the SA using E = 16 and E = 32.

VI. EXPERIMENTAL RESULTS

To measure the performance for different sizes, we generate
workloads of increasing read (X) and haplotype (Y ) size,
where Y ≥ X , in steps of 4. Each workload contains 214

pairs. The performance for each workload is shown in Fig. 5.
Our SA runs at 166.7 MHz, thus the maximum theoretical
throughput is E · f in cell updates per second (CUP/s).

Padding in the horizontal direction (when X < E), dete-
riorates the throughput, as the utilization of the SA is very
low. When there is no padding in the horizontal direction, the
throughput quickly grows towards the maximum theoretical
throughput. Also, the effect of having haplotype sizes of
integer multiples of the number of PEs is clearly visible.
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TABLE I: FPGA post-routing power estimate and area

Part LUTs Registers RAM36 DSP Power(W)
Available: 7VX690 433200 866400 1470 3600
16 PEs + interfaces 119937 140397 473 378 11.212
16 PEs, this work only 47346 60525 181 354 2.721
32 PEs + interfaces 163450 189085 473 730 13.213
32 PEs, this work only 90862 109213 181 706 4.585

Fig. 6: SA throughput using a real dataset with E = 16 and
E = 32. Subsets size 214

In this case, the performance nears the maximum theoretical
throughput. The highest throughput measured was 99.76% of
the maximum. The last bit of overhead is introduced by the
memory latency at initialization and termination.

For a realistic benchmark, we use the same dataset as
the work presented in [9] (whole human genome dataset G
15512.HCCI954.1 mapped to chromosome 10). The dataset
contains over 30 million pairs. We split and sort the dataset in
subsets of 214 pairs. The results for sizes E = 16 and E = 32,
the maximum theoretical throughput for each SA, the reported
throughput of [9] and [8] and the reported maximum for the
POWER8 host CPU are shown in Fig. 6. For E = 32, we
achieve a throughput of 84% of the maximum performance;
for E = 16, this is 93%. The lower throughput for E = 32 is
caused by the large number of reads in the dataset of which the
size is smaller than E, resulting in much variation. However,
for the SA with E = 16, we observe that the utilization is
higher, since padding occurs less. Although for E = 32, the
SA is twice as long as for E = 16, the run-time is only
1.8x lower. Furthermore, with the same amount of processing
elements, our architecture shows an average improvement
of throughput of 2.5x over the state-of-the-art. With half
the processing elements, our implementation achieves a 1.4x
higher throughput.

In Table I the area statistics of the SA design with 16 and
32 PEs are shown after placing and routing. We show the
logic available in the device, the logic utilization of our system
(including interfaces) and for our design only. Moreover, the
power estimation of Xilinx Vivado is included. From Table I
and Fig. 6, we estimate the power efficiency to be 339 · 106
CUP/J.

VII. CONCLUSION

We analyzed the efficiency of systolic arrays that imple-
ment the PairHMM Forward Algorithm to find the overall
alignment probability of a read to a haplotype. This paper
shows architectures which can implement fixed-size SAs in
such a way that the overhead is minimal. We implemented
one of the architectures, where the data corresponding to
the read position is streamed through the systolic array. This
implementation achieves 99.76% of the theoretical maximum
performance for a synthetic dataset, and around 90% for a
real dataset, depending on the size of the systolic array and
the read-haplotype pairs. A systolic array with 32 processing
elements is able to calculate the overall alignment probabilities
of a whole genome dataset mapped to chromosome 10 in under
60 seconds, while only using approximately one third of the
FPGAs DSP resources.

In future work, we aim to implement several small SAs in
parallel, such that each SA may achieve a high utilization,
increasing the overall throughput.
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