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1
Introduction

For a very long period of time, computing could meet the increasing demands of different applica-
tions due to the continued downscaling of transistors, which allowed data to be processed at a higher
frequency. In the early 2000s, predictions about the physical limits and rising costs of continued down-
scaling prompted researchers to adopt alternative techniques to sustain performance improvements
beyond frequency scaling. Among these, the most prevalent technique was the extraction and utiliza-
tion of parallelism, which successfully extended performance scaling for more than a decade but has
since begun to stagnate. Today, experts agree that specialized complementary hardware is crucial for
further advancements. Computing-in-memory (CIM) accelerators are gaining traction as an innovative
solution to the problems conventional computing is facing. While most CIM research is directed towards
device, circuit, and architectural level challenges, it is also important to consider the challenges at the
programming level. In this chapter, we first discuss the motivation behind CIM accelerators and why
developing a programming model for them is essential. Next, we provide an overview of the challenges
associated with developing a dedicated programming model for this emerging technology. Finally, we
will outline the research direction of this thesis.

1.1. Motivation
Advances in computing have long been driven by the increasing demands of modern applications.
The question that computer engineers must continually answer is how to innovate, optimize and scale
technology in an effort to achieve greater performance while reducing energy consumption, area re-
quirements and economic cost all at the same time. This exponential wave of innovation is not fueled
by entirely new concepts, but from the continued refinement of Von Neumann computers that have
been pushed forward with each generation of computers. Advancements such as transistor scaling,
the memory hierarchy and later the integration of parallelism have helped mask the bottleneck that is
the frequent and slow transfer of data and instructions between the processor and memory. As these
approaches have begun to hit their physical and practical limits, researchers have considered diverging
from the Von Neumann model.

A novel computing paradigm called Computing in Memory (CIM) performs computations directly in
memory, drastically reducing data movement and resulting in lower power consumption and higher per-
formance. Hence, CIM accelerators have becomewidely adopted in various data-intensive applications
to complement Von Neumann architectures. CIM introduces a shift in how we perform computation in
hardware and significant research is being aimed to improve the technology at the device, circuit and
architectural levels.

In order to make CIM available and utilize it effectively we need to devote research on CIM at the
programming level as well. After all, we have built most of our existing software tools and our general
understanding of computing around the Von Neumann model and as we move away from it, we must
question if a new programming model is necessary. If this is the case, we risk designing a coprocessor
whose theoretical benefits remain unrealized in practice, as an inadequate programming model could
render interaction with the hardware cumbersome, inefficient, or overly restrictive. Hence, in this thesis,
we lay the groundwork for the design of future CIM programming models.

1



2 1. Introduction

In the following sections, we will first provide a detailed overview of the evolution of Von Neumann
computers from the inception of the Von Neumann model to current predictions about its future. Specif-
ically, we will mention its limitations and the techniques developed to extend and adapt conventional
computers in response to the growing demands of modern applications. Subsequently, we will also
introduce the concept of CIM, highlighting its potential benefits to conventional computers as well as
the programming challenges it currently presents.

1.1.1. Von Neumann architecture
Ever since its inception in 1945 [2], the Von Neumann model has defined digital computers. Most
importantly, it specifies that a computer architecture that consists of three components, shown in Fig-
ure 1.1a: a central processing unit (CPU) for performing computations, a memory unit for storing both
program instructions/data, and input/output ports for communicating with external devices. The CPU
itself is composed of an arithmetic logic unit (ALU), which performs arithmetic and logic operations, and
a control unit, which coordinates the execution of instructions. During execution, instructions and data
are transferred from memory or an input device into the CPU, and once the results are computed, they
are written back to memory or an output device. As a result, two primary types of operations can occur
during execution: data movement and computation.

In Figure 1.1a, we illustrate the main bottleneck of the Von Neumann model, which is the communi-
cation between the processor and memory, commonly referred to as the ”memory wall”. The memory
wall arises from the growing performance gap between the processor and memory, as shown in Fig-
ure 1.1b. This gap exists because processor frequencies have improved at a much faster rate than
memory latency and bandwidth, causing processors to spend an increasing proportion of time waiting
for data or instructions from memory.

To help programmers reason about sequential computers, the Von Neumann model was abstracted
into the Random Access Machine (RAM) computation model [3, p.44], which idealizes execution by
assuming an unbounded memory with uniform access time. In this model, a single instruction is fetched
and executed at constant intervals. The RAM model’s behavior is so deeply ingrained in programming
that it is often regarded as the default framework for reasoning about computation.

(a) (b)

Figure 1.1: (a) The Von Neumann model, its components and the memory wall visualized. (b) The growing Processor-Memory
Performance gap that is the cause behind the memory wall[4].

The concept of the memory hierarchy, first proposed in 1946 [5] and illustrated in Figure 1.2a,
augmented the Von Neumannmodel bymitigating the growing performance gap between the processor
andmemory. As wemove from the bottom to the top of the hierarchy, each level trades storage capacity
for faster access times by employing more expensive memory technologies. During execution, the
hierarchy enables caching mechanisms that exploit temporal and spatial locality. Specifically, if certain
data or instructions are frequently accessed, or if nearby accesses are predicted to occur soon, they
are promoted to higher (faster) levels of the hierarchy, allowing the CPU to retrieve them more quickly.
Nevertheless, caching did not become a prevalent research topic until the 1960s [6].

The memory hierarchy diverges from the RAM model, which assumes a coherent memory where
all accesses take the same amount of time. With the hierarchy, this is no longer true. However, the
reason the hierarchy managed to embed itself into conventional architectures was the overall system
performance gain and the seamless integration into the computer system, where cache management
policies run automatically in the background without programmer intervention.
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(a) (b)

Figure 1.2: (a) The memory hierarchy bridges the gap between the processor and memory, improving data access latency and
overall system performance [7, p.3]. (b) Abstract illustration of the attainable performance versus the arithmetic intensity of the

processed data. The peak performance for low arithmetic intensity applications is capped by bandwidth limitations [8].

In recent years, applications such as machine learning, graph processing and network monitoring
have become popular. These ”data-intensive” applications have low arithmetic intensity meaning that
they process a large number of data-points with only a few operations that must be computed per
data-point. The memory hierarchy is inefficient for such applications as it does not fully eliminate the
consequences of the memory wall. As application data demands keep rising, the data capacity required
exceeds the capacity of the higher levels of the memory hierarchy, resulting in frequent costly access
to secondary storage. In addition, as shown in Figure 1.2b, another factor that prevents data-intensive
applications from reaching their theoretical maximum performance is memory bandwidth that limits
data transfer speeds. Consequently, data-intensive applications, will continue to deteriorate in terms
of performance and power efficiency as their major bottleneck remains unaddressed and are at risk
of becoming practically unsuitable for Von Neumann architectures. In conclusion, the separation of
processing and data storage, remains a significant bottleneck despite the use of the memory hierarchy.

1.1.2. Conventional computing timeline

(a) (b)

Figure 1.3: (a) Microprocessor trends by P. Hofstee [9]. (b) Evolution of processors over the past 50 years, showing the
variation across transistor count, single thread performance, frequency, power and core count, collected by K.Rupp [10].

In Figure 1.3a, P. Hofstee illustrates several partially overlapping periods during which conventional
computers evolved to meet the growing demands of applications, despite the constraints imposed by
both the Von Neumann model and CMOS technology. Similarly, Figure 1.4 presents a comparable
timeline of computing eras, highlighting their respective enablers, constraints, and the evolution of pro-
gramming models. These transitions are further supported by the data in Figure 1.3b, which reflect the
same historical inflection points. This section summarizes the factors that led to each period, culminat-
ing in a present where CIM may be the future of computing.
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Figure 1.4: Depiction of the various computing eras. ©AMD 2014.

Single-thread era:
Since the 1960s [11], single-threaded computers have met growing application demands largely thanks
to transistor downscaling, later formalized by two foundational principles. First, according to Moore’s
refined law [12], due to transistor downscaling, each biannual chip generation, featured an increased
number of active transistors on a chip, enabling higher performance for the same price. Secondly, in
accordance with Dennard’s (Voltage) Scaling [13], as transistors shrink and are switched at a higher
frequency, the power required for the same area remains constant. Together these two principles were
the driving force of innovation in the single threaded era.

Concurrently, other research, though less prominent, proved vital for later eras. Research into
parallelism began in the 1950s [14, p. 2], leading to supercomputers in the 1960s–1970s, and to
the development of multiprocessors and vector processors by the 1980s. Parallelism appeared in
many forms and granularities, prompting several classification efforts [15, 16]. Ultimately, two main
types of parallelism emerged: data-level, applying the same operation to multiple data elements, and
task-level, executing different tasks concurrently. These were leveraged through various techniques,
including instruction-level parallelism (ILP), which executes independent instructions simultaneously
within a CPU core using pipelining, superscalar, and out-of-order execution.

To abstract parallel and distributed systems for programmers, the Parallel RAM (PRAM) [17] com-
puter model extends the conventional RAM computer model of a computer with a single processing
unit. PRAM introduces multiple processing units that can all access a shared global memory in unit
time. However, PRAM proved to be an unrealistic model for practical systems for the following two
reasons [3, p. 46]. First, it disregards contention issues that arise when multiple processing units ac-
cess the same memory location simultaneously. Second, the assumption of unit-time access does not
hold when the number of processing units increases, making the PRAM model unsuitable for modeling
large-scale parallel and distributed systems.

In an attempt to address the above PRAM limitations, the Candidate Type Architecture (CTA) model
[18], shown in Figure 1.5, was developed. The CTA model comprises multiple sequential processors
connected through an interconnection network, with one processor acting as a controller responsible
for initiating computations. Each processor has its own local memory, accessible in unit time, whereas
accessing another processor’s memory incurs a latency at least an order of magnitude higher. What
makes the CTA model particularly general is that it does not impose any specific assumptions on the
interconnection topology or the communication mechanism between processors in the system.

Figure 1.5: The CTA parallel computer model illustrated.
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Beyond advances in parallelism, other hardware innovations of the era gave rise to the coprocessors
that define modern computing. The concept of the memristor, later key to CIM, was proposed in the
1970s [19]. During the 1970s–1980s, dataflow architectures [20] gained attention, expressing programs
as directed acyclic graphs where data moves between instructions. Among these were systolic arrays,
in which data streams through a regular network of processing elements that rhythmically exchange
partial results. Finally, in 1999, NVIDIA’s GeForce 256 was introduced as the first chip marketed as a
GPU, a major milestone for real-time graphics acceleration [21].

Programming during this era focused on sequential logic, evolving to improve productivity. Low-level
assembly offered fine-grained control but was cumbersome, leading to higher-level languages like C
that improved portability. Subsequent languages introduced richer abstractions to manage complex-
ity, while advances in compiler design preserved performance. Functional languages also emerged,
though researchers were divided on whether their limited advantages justified introducing a new class
of programming languages [22]. Furthermore, the 1990s laid the groundwork for parallel programming,
a far more complex task requiring explicit management of communication and synchronization among
concurrent tasks. The Message Passing Interface (MPI) [23] became the standard for distributed sys-
tems, while for shared-memory machines, Pthreads [24] offered fine-grained synchronization control
and OpenMP [25] introduced a higher-level, directive-based model.

Around 2005-2007, Dennard’s Scaling was violated as the miniaturization of transistors approached
its physical constraints, resulting in stagnating processor frequencies due to excessively high power
density. Further transistor reduction resulted in increased leakage current or lower switching speed (i.e
frequency). Most notably, the increased leakage current also results in hotter chips that have reached
the air cooling limit. This phenomenon is known as the ”power wall” or the ”clock frequency wall” as
both frequency and power metrics hit a plateau as shown in Figure 1.3b and thus marking the end of
the single-thread era.

Parallelism era:
By the mid-2000s, as frequency scaling reached its limits, hardware designers turned to parallelism,
most notably symmetric multicore processor (SMP) scaling, to sustain performance growth. SMPs inte-
grate multiple identical processors on a single chip, all sharing a main memory. This enabled significant
performance gains through concurrent execution via ILP and thread-level parallelism. Still driven by
Moore’s Law, SMP scaling was achieved by adding more cores per chip as transistors continued to
shrink, with transistor density at the time expected to double approximately every two years [26].

In addition, much hardware research from the single-thread era resurfaced in an effort to leverage
greater parallelism. ILP techniques such as superscalar and out-of-order execution reemerged as key
methods for enabling processors to execute multiple instructions in parallel. With the release of CUDA
in 2007 [27], general-purpose computing on GPUs (GPGPU) became standardized and broadly acces-
sible, marking the point whenGPUs evolved from graphics accelerators into versatile data-parallel com-
puting devices. Both CPUs and GPUs incorporated features inspired by vector processors, including
wide data paths and vectorized execution, to increase data-level parallelism. Furthermore, importantly
for CIM acceleration, the memristor was physically implemented as a component in 2008 [28]. In paral-
lel, dataflow engines (DFEs) such as those developed by Maxeler Technologies [29] demonstrated the
practicality of dataflow-style execution for accelerating highly parallel or irregular workloads. Finally,
in 2015, Google’s tensor processing units (TPUs) reintroduced systolic array principles to efficiently
accelerate machine learning computations [30].

A recurring pattern among emerging technologies is that limited programmability often hinders their
adoption, despite potential performance advantages. For instance, although systolic arrays were exten-
sively studied since the 1980s, programming required knowledge of too many low-level implementation
details [31], it was not until 2015 that Google’s TPU popularized their principles by providing accessible
programming interfaces through TensorFlow [32] and later PyTorch [33]. Similarly, NVIDIA’s NV1 [34],
a predecessor to the GeForce 256, failed due to poor software compatibility and programming com-
plexity. NVIDIA learned from this experience and later introduced CUDA to ensure programmability
and broader adoption of GPU computing.

Programming languages also revisited earlier ideas to better express parallelism, focusing primarily
on shared-memory systems that aligned with SMP scaling. Pthreads provided a low-level execution
model, but over time, higher-level abstractions such as OpenMP, and Intel’s Threading Building Blocks
(TBBs) [35], which represented computation as task graphs, became more favorable for their ease of



6 1. Introduction

use. Functional programming also regained interest for its parallel-friendly semantics, while compilers
increasingly automated parallelism extraction, hardware mapping, and load balancing across cores.

Concurrently, numerous software frameworks were developed that laid the foundation for program-
ming in the hybrid era, with one of the most notable being OpenCL [36, p. 399] in 2009. Originally
motivated by the need for an open, GPGPU programming alternative to CUDA, OpenCL has since be-
come an industry standard for heterogeneous computing. Subsequent work, such as OpenACC [37],
sought to improve upon OpenCL by making parallelism specifications implicit through compiler direc-
tives rather than explicit kernel definitions. Legion [38], on the other hand, adopts a different approach
in which the algorithm is separated from the scheduling specification, making optimization and porting
easier. Despite their differences, all these frameworks share the common goal of providing scalable,
high-level abstractions that enable general purpose hosts to distribute parallel tasks efficiently across
multiple connected coprocessors.

Moving closer to the present, two key challenges have hindered further performance scaling through
parallelism. First, the “ILP wall” illustrates that as systems approach the theoretical limits of an al-
gorithm’s inherent parallelism, the cost, area, and power required to extract additional ILP increase
sharply, resulting in diminishing returns. Second, the “Dark Silicon” phenomenon [39], driven by the
end of Dennard’s scaling, arises because although transistor dimensions have continued to shrink,
power constraints prevent all transistors from being active simultaneously. As a result, up to 50% of
transistors remain inactive at any given time. Consequently, the growth in the number of usable logical
cores has stagnated, as shown in Figure 1.3b.

Hybrid era:
Figure 1.3b shows that presently transistors are still downscaling and that single-thread performance is
still increasing. While the latter is attributed due to innovations in compilers, the former is expected to
end once the ”Physics wall” [40] is reached. Thus, to leverage more performance we are transitioning to
heterogeneous computing, where systems leveragemultiple, specialized coprocessors to handle differ-
ent types of workloads more efficiently. Examples include offloading massively data-parallel programs
to GPGPUs, deep pipelines to DFEs, machine learning workloads to TPUs and adaptive applications
to reconfigurable computers based on field programmable gate arrays (FPGAs).

One of the challenges we now face is the emergence of the ”AI memory wall” [41]. The rapid
adoption of AI technologies has driven an exponential increase in computational demand, met largely
by advances in GPUs and TPUs. However, as shown in Figure 1.6, while peak FLOPS have scaled
aggressively, memory bandwidth has lagged behind significantly. This growing imbalance threatens to
make future AI workloads increasingly unsustainable, as the memory bottleneck becomes the dominant
limiter of performance. Hence, we have come full circle—returning to the memory wall. To address this,
researchers are now investigating CIM accelerators, a class of coprocessors designed specifically to
alleviate the memory bandwidth crisis by performing computation directly where the data is stored.

Figure 1.6: The scaling of the bandwidth of different generations of interconnections and memory, as well as the Peak FLOPS.
As can be seen, the bandwidth is increasing very slowly [41, Fig. 1]
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1.1.3. CIM accelerators
Computing-in-memory (CIM) accelerators [7] are a class of promising emerging coprocessors. The
idea is to augment conventional computers with a unit that can perform memory storage and computa-
tion in place. This can be achieved by a combination of operations that are performed either directly in
the CIM unit’s memory array or in the array’s digital periphery. The most popular accelerated operation
is by far vector-matrix multiplications (VMMs) which can be executed in one shot, but others include
boolean operations and key-value store operations directly in the memory array, eliminating the need
to transfer data to and from the CPU. Consequently, CIM is especially beneficial for data-intensive,
memory-bound, highly parallel workloads where the cost of moving data dominates both performance
and energy consumption. These workloads, which include convolutional neural network (CNN) infer-
ence, regular expression matching, partial differential equation (PDE) solvers, and integer sorting, are
collectively referred to as CIM applications. As these workloads continue to grow in size and complex-
ity, CIM offers a scalable path forward by addressing the fundamental limitations of memory bandwidth
and energy efficiency that conventional Von Neumann architectures struggle to overcome.

CIM accelerator research is still in its infancy, while numerous application specific designs with
varying levels of complexity have been proposed. Ongoing research [7] is focused on improving hard-
ware such as minimizing device non-idealities, designing both, primitive and complex operations at
the circuit level, and defining effective architectural models. CIM’s departure from the Von Neumann
model, while its defining strength, also constitutes its greatest challenge in software. Specifically, the
Von Neumann architecture, shown in Figure 1.7a, maintains a clear separation between computation,
memory, and control, which simplifies program reasoning but also implicitly leads to the memory wall.
In contrast, CIM is a hierarchy of micro-units that each contain computation, memory and dedicated
control functions. The alleviation of the memory wall comes at the cost of increased complexity, as
illustrated in Figure 1.7b. This Venn diagram depicts the now overlapping concerns—memory arrays
that also perform computation and localized control placed near the memory to manage operations.

(a) (b)

Figure 1.7: (a) The Von Neumann model compared to (b) CIM macro expressed using Von Neumann model’s components

As CIM accelerators are typically a hierarchy of interconnected CIM components that collectively
perform the computation independent of the specific interconnect and organizations across design
instances, an analogy is frequently drawn between CIM and conventional distributed systems. They
both require careful handling of concurrency, data distribution, and inter-component communication,
making their programming challenging [42, p. 3]. As illustrated in Figure 1.8, the CTA model can be
effectively adapted to multi-CIM-macro systems, capturing non-trivial interactions between modules by
realistically representing macro-to-macro latency costs.

Figure 1.8: CIM visualized using the CTA, with a general purpose host controller and multiple interconnected CIM macros.
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In programming, there are two major contrasting paradigms. Imperative, or conventional, program-
ming specifies how to perform a task step by step, whereas declarative programming specifies what
should be done, leaving the details of execution to the compiler or runtime. Backus [43] argued that
conventional programming languages mirror the architectural limitations of the von Neumann model,
as they force programs to represent computation as sequential updates to a shared memory state re-
sulting in a bloated language with limited expressiveness. In contrast, in the context of CIM, most prior
work suggests that, given the high complexity and variability across implementations, a purely declara-
tive, API-based approach is desirable to abstract away hardware details. However, such an approach
also limits expressiveness, as programmers are constrained by rigid APIs and have little control over
optimization decisions. A well-designed CIM programming model should therefore strike a balance by
empowering programmers to guide optimizations through high-level functional abstractions while rely-
ing on compilers to manage the low-level, implementation-specific details that are often too complex to
handle manually.

As a result, a CIM programming model is seen as essential not only because it abstracts hardware
complexity, but also because it facilitates efficient performance optimizations. For CIM accelerators
to become practically useful coprocessors to conventional architectures, applications must be care-
fully mapped to exploit their unique strengths. Without the right abstractions and scheduling control,
programmers risk under-utilizing the hardware and losing the efficiency benefits that make CIM attrac-
tive in the first place. In addition, we should avoid repeating the trajectory of other technologies with
great potential but poor programmability, with systolic arrays described in Section 1.1.2 as the most
prominent example. Despite the initial interest driven by their potential performance benefits for regu-
lar computations, their programming complexity kept them from mainstream use for nearly forty years.
Only recently they have been rediscovered, with the TPUs and the tensor math-based frameworks that
popularized them. Instead, we should take inspiration from GPGPUs and the introduction of CUDA,
which abstracted away hardware complexity and provided a unified programming model that made
GPU computing broadly accessible to developers beyond only computer graphics specialists. There-
fore, an ideal programming model for CIM should provide intuitive, general abstractions that apply
across a wide range of application domains, enabling application developers to write programs without
requiring low-level hardware knowledge.

1.2. CIM programming model challenges
Although hardware remains the primary roadblock to widespread CIM adoption, in this work we choose
to look ahead by exploring the software foundations that will shape future CIM-based systems. Thus, we
focus on the programming models that will provide abstractions to help manage the hardware complex-
ity, enabling developers to express computations in an intuitive way while striking a balance between
performance, portability, expressiveness and ease of use. Nevertheless, looking this far ahead, while
interesting, brings forth its own set of challenges:

• Fewprogrammable accelerators: Currently, CIM accelerators aremost commonly fixed-function
ASICs because their architectures are designed around accelerating a very specific workload. To
use such a device, one simply provides values, after which the desired outputs are produced.
Some of these devices also allow the user to specify certain configuration parameters. Hence,
there is no need for programming because the device is inflexible, limited to executing the specific
functions it was designed for. Programmable CIM accelerators do exist, but they have received
comparatively less research attention, as the increased flexibility comes at the expense of in-
creased complexity and often a decrease in performance. This limited focus in research means
there is less prior work to build upon and potentially many issues that remain undiscovered.

• Multiplemicroarchitectures exist: A variety of microarchitectural designs exist that are application-
specific, meaning each accelerator specializes in a limited set of applications. Consequently, CIM
accelerators can differ significantly in the underlying technology used for computation, the hierar-
chy of components employed, and the granularity available for programmers to interact with the
device. Currently, for programmers to utilize one of these accelerators, extensive knowledge of
its design is necessary to achieve optimal performance, akin to the detailed understanding re-
quired for assembly programming in conventional computers. Uniting all of these vastly different
implementations under a single programming model may prove to be impossible.
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• Variations across applications: Several CIM applications operate in diverse scientific domains.
According to M. Z. Zahedi [7, p. 33], for a programming model to generalize across such varied
use cases, it must support varying data types and sizes, different operations and access patterns.
In addition depending on the hardware such a programming model would need to support differ-
ent accuracy reductions, diverse communication patterns between micro and macro units, and
flexible ways of communication and synchronization with the host.

• Exploiting Parallelism: In order for CIM to be useful it must be utilized effectively to exploit as
much parallelism as possible from applications to maximize performance. Leveraging parallelism
effectively is notoriously difficult, even in conventional computing systems, and becomes even
more challenging in the context of CIM. This is because CIM accelerators have a lot of degrees of
freedom when it comes to parallelism as both micro and macro units in the accelerator’s structure
are able to exploit both data and task level parallelism. Thus, programs should be written in a
manner that makes parallelism both easy to express and extract.

• Shortcomings of Prior Work: It is important to note that relevant work to CIM programming does
exists [44, 45, 46, 47]. However, all of these examples exhibit at least one of the three shortcom-
ings. First, most are too low-level, device-specific and hence lack portability: programs written
for one accelerator cannot be reused on another, forcing programmers to repeatedly rewrite ap-
plications when switching to a new architecture. Second, several are application-specific falling
short in expressiveness: they may support a narrow class of applications, such as neural net-
works, while neglecting others with different characteristics, such as search operations. Third,
these tools are purely declarative. As a result, developers have little to no control over critical
aspects such as parallelization strategies, data movement, or memory hierarchy utilization. All
optimization decisions are deferred to the compiler, which may struggle to make optimal choices.

1.3. Research topics
The previous sections have outlined how computing has progressed toward CIM and why develop-
ing a dedicated programming model is important. We then discussed the numerous challenges that
programming models must eventually face. We define an ideal programming model as the one that
addresses all of the challenges outlined in Section 1.2 and, as a result, is capable of unifying both
diverse CIM applications and different hardware implementations. At the same time, it should deliver
high performance with low overhead on any underlying hardware while providing an intuitive and ex-
pressive programming experience. However, CIM devices, circuits, and architectures are still in their
infancy, making it too early to validate a unified programming model across hardware platforms. Such
validation would require access to multiple programmable accelerators, which are currently scarce,
whether simulated or otherwise. In addition, developing a compiler for these accelerators would be
necessary, however this is not feasible within the time limitations of this thesis.

Therefore, in this work, we focus on proposing opportunities and identifying limitations for future CIM
programming models. We achieve this goal by analyzing existing CIM software and popular program-
ming models to derive a set of essential meta-abstractions that an ideal programming model should
integrate—either by incorporating effective ideas from related CIM frameworks, filling gaps where cur-
rent approaches fall short, or aligning with programming models from more mature domains to ensure
long-term success and sustainability. To consolidate these suggestions into a coherent foundation, we
design a general purpose programming model, which we define as one that unifies a broad range of
CIM applications under a common set of abstractions. We then validate this design by expressing a
variety of workloads from different domains using the proposed abstractions. In addition, based on our
findings, we suggest how future CIM hardware research should be directed to align more closely with
the needs of software development. It is important to note, however, that while our models provide
guidelines for hardware design and program-to-hardware mapping, neither can be fully verified due to
the current immaturity of the underlying technology.

In short, this thesis aims to uncover the answer to the following research question:
Research Question (RQ): Is it possible to design a programming model for CIM accelerators that
offers abstractions capable of expressing applications from diverse domains that can benefit from CIM
acceleration?
In the following, we divide the above research question into two subquestions. Then, we elaborate
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on how we aim to answer each of them. These subquestions will also serve as reference points when
presenting and discussing the results in later sections.

Subquestion 1 (SQ1): What essential meta-abstractions should CIM program-
ming models possess?
Programming abstractions are always grounded in underlying concepts they aim to express or promote
to programmers. In this work, we ask which concepts CIM programming models should implement
through their abstractions. Although different abstractions may realize the same concept in various
ways, identifying the essential meta-abstractions can serve as a blueprint for designing or adopting
new abstractions for CIM. This allows developers to evaluate an abstraction by asking: what capability
does this abstraction provide?

To answer this question, we first require some prerequisite understanding of CIM accelerators. This
includes identifying the commonalities and challenges that arise across different architectures, as well
as determining which aspects are relevant and useful to programmers and which should be abstracted
away. Subsequently, we analyze both CIM-specific and conventional programming models to exam-
ine which meta-abstractions existing work prioritizes. This subquestion is addressed by compiling a
comprehensive list of desirable meta-abstractions for CIM programming models in Section 3.3.

Subquestion 2 (SQ2): Do there exist abstractions that facilitate applications
from different domains in a CIM programming model?
Once we determine what meta-abstractions should be expressed in SQ1, the next goal is to identify
effective abstractions that convey this meaning. Our methodology is as follows: first, as prerequisite
knowledge, we examine three CIM applications that benefit from CIM acceleration and their corre-
sponding implementations. Subsequently, we construct a programming model capable of expressing
CIM applications from different domains, using the results from SQ1. Finally, we evaluate the model’s
expressiveness by implementing these applications within it.

1.4. Thesis contributions
This thesis presents four main contributions. First, in Section 3.3, to answer SQ1, we define a set
of desirable meta-abstractions for CIM programming models: implicit scheduling, hardware general-
ization, optimization, and explicit expression of parallelism. These meta-abstractions were identified
by examining abstractions used in both CIM-oriented systems and other computing domains, such as
heterogeneous, distributed, and dataflow systems. We also discuss which specific abstractions could
instantiate each meta-abstraction within a new CIM programming model.

Second, in Section 4.1, we present a possible solution by proposing a concrete programming model
for CIM inspired by Halide [48]. This model is realized through the selected meta-abstractions (as de-
fined in the first contribution) and is implemented using a set of general abstractions which we thor-
oughly explain. To briefly summarize, these abstractions are: a deferred execution model, a general
platformmodel, separation of algorithm from scheduling, shared variable types and declarative schedul-
ing directives. We later provide concrete syntax and semantics for these elements to form a usable
Domain-Specific Language (DSL). This work thereby demonstrates how the abstract recommendations
can be materialized into a practical design.

Third, in Section 4.2, we evaluate the expressiveness of the proposed CIM programming model
across diverse application spaces to answer SQ2. Specifically, we implement three practical applica-
tions: integer sorting, a Database workload; network-monitoring pattern matching, a security applica-
tion; and convolutional neural network inference, a machine learning application.

Lastly, in Chapter 5, we provide insights into the development process of this thesis to guide future
research. This discussion covers various pathways for extending the proposed programming model
or exploring alternative approaches not yet fully investigated. Furthermore, we outline key pitfalls en-
countered during development to caution and inform subsequent work. This comprehensive analysis
serves to lay the foundation for future programming models for CIM.

1.5. Thesis structure
This thesis is structured as follows.
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Chapter 2 elaborates on the concepts of CIM accelerators and programming models. First, it sum-
marizes the fundamental concepts of CIM accelerators in a hierarchical bottom-up manner. Second, it
presents three concrete CIM application implementations developed for the verification step of our pro-
gramming model. Finally, the chapter concludes with an in-depth discussion of programming models
and related research which we analyze in later chapters.

Chapter 3 presents an analysis of existing abstractions, both conventional and CIM-specific, with
the goal of identifying essential meta-abstractions that can guide the development of future CIM pro-
grammingmodels. Based on the identified meta-abstractions, it proposes a set of concrete abstractions
that can be used to realize them within a programming model.

Chapter 4 provides the detailed specifications of the proposed CIM programming model based on
the results of Chapter 3. Subsequently, the model is utilized to reproduce the three CIM applications
discussed in the Chapter 2.

Chapter 5 discusses the challenges encountered throughout the course of this project and outline
potential directions for future work. We also reflect on lessons learned during the development of our
proposed programming model and how these insights can inform subsequent research.

Chapter 6 concludes the thesis and reflects on the contribution.



2
Background

This chapter provides background information on both Computing-in-Memory (CIM) accelerators and
programming models that influenced our proposed CIM programming model. First, Section 2.1, sum-
marizes fundamental concepts underlying CIM accelerators across multiple abstraction layers. Sec-
ond, Section 2.2, presents three practical CIM application implementations for the verification step of
our proposed programming model. Finally, Section 2.3 offers an in-depth discussion on programming
models and related research which we analyze in later chapters.

2.1. Fundamentals of CIM accelerators
In this section, we discuss fundamental concepts of CIM accelerators. We begin with a brief overview of
the hardware across different abstraction levels, following a bottom-up approach. These levels include
memory cell technology, circuit design and system architecture. The goal is to provide readers with the
necessary intuition for understanding the inner workings of CIM accelerators and to understand certain
design decisions behind our proposed programming model.

2.1.1. Memory cell technology
There are many types of memory cells that can be used to implement CIM. However, to limit the scope
of this work, we focus on the memristive technology family, as its properties have been most widely
leveraged for vector-matrix multiplication (VMM), the predominant accelerated operation in the domain.
The memristor [19], illustrated in Figure 2.1, is an abstract electronic component that encompasses
all memristive memory cells. Various technologies—such as ReRAM, PCM, MRAM and FeFET [7,
p.17]—can be used to construct a memristor, but at a high level it functions as an analog memory
element that stores data by altering its conductance. While a memristor is theoretically capable of
higher than binary resolutions, physical constraints such as noise and state degradation limit most
practical implementation to two states: the high resistive state (HRS) and the low resistive state (LRS).

We show a comparison of the characteristics of each emerging memristive cell type andmainstream
memory type in Table 2.1. All emerging memristive technologies are non-volatile, meaning they retain
their internal state even after power is removed. Furthermore, their feature sizes are comparable to
DRAM and FLASH memory. In terms of performance, they have high latency similar to DRAM and
FLASH. However, their most significant limitations is that they require up to several orders of magnitude
more reprogramming energy per bit than SRAM and DRAM, while offering several orders of magnitude
lower endurance than both. The former undermines the very energy efficiency benefits that CIM is
intended to provide, while the latter causes memristive devices to gradually degrade with repeated
overwrites. As noted by Zahedi [7, p.19], these two limitations are the primary reasons why memristive
devices are used only in applications that require infrequent reprogramming and are thus unsuitable
for implementing cache or main memory structures.

From this analysis, we draw several conclusions relevant to the design of our CIM programming
model. First, to account for the high reprogramming energy and limited endurance of memristive de-
vices, we made the decision to incorporate immutability constraints into the programming model. By
explicitly discouraging frequent memory rewrites, the programming model not only aids in extending

12
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device longevity but also discourages programmers from structuring energy inefficient applications.
Second, given that memristive technologies are not integrated into main memory or cache hierarchies,
we treat CIM units as specialized coprocessors. This motivates a heterogeneous programming model
where accelerators are explicitly managed alongside the host processor.

Figure 2.1: The electronic symbol for the memristor.

Mainstream Emerging
Device SRAM DRAM FLASH RRAM PCM STT-MRAM FeFET
Write latency ∼1ns ∼10ns 0.1–1ms ∼10ns ∼10ns >5ns ∼10ns
Read latency ∼1ns ∼3ns ∼10ns ∼10ns ∼10ns >5ns ∼10ns
Non-Volatile No No Yes Yes Yes Yes Yes
Write energy (per bit) ∼1fJ ∼10fJ ∼100pJ ∼1pJ ∼10pJ ∼1pJ ∼ 0.1pJ
Density (𝐹2) 120−150 10−30 10−30 10−30 10−30 10−30 10−30
Endurance 1016 1016 104−105 > 107 > 1012 1015 > 105

Table 2.1: Comparison of mainstream and emerging memory technologies [40]. 𝐹 denotes the feature size of the technology.

2.1.2. CIM circuit primitives
A memristor on its own functions as a storage element, but it can also be used to implement in-place
computations. By in-place computations, we mean operations that require little to no data movement
compared to conventional computers. Depending on the type of in-place operation and its implemen-
tation, computation is performed either directly within the memory array or in close proximity using
peripheral circuitry.

A CIM primitive is one of the three types of scalable 2D memristor array structures that Reis et
al. [1] have classified, shown in Figure 2.2. Each of the CIM primitives is capable of performing a
different set of operations. In addition, depending on the target application and the required precision,
the dimensions of the memory arrays might differ. We briefly discuss each CIM primitive below:

(a) CIM-Xbar for VMM. (b) CIM-ALU for boolean logic. (c) CIM CAM structure.

Figure 2.2: CIM primitives [1] illustrated by Khan et al. [49].

• CIM Crossbar (CIM-Xbar): The most popular CIM primitive is the crossbar, as it can perform
VMM in constant time and has been widely used in machine learning. In this structure, memristors
are placed at the intersections of bitlines (BLs) and wordlines (WLs), with the matrix elements
encoded as conductance values and the input vector applied as voltages along the wordlines. By
Kirchhoff’s laws, the resulting currents are produced at the ends of the bitlines, where they are
sensed to obtain the output. Figure 2.2a shows an example calculation for a single BL.
While most CIM-Xbar implementations physically perform VMM, some instead apply the input
vector along the bitlines to realize matrix–vector multiplication (MVM) using the same crossbar
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structure [50]. For a programming model, this design choice does not matter, as VMM and MVM
can be converted into one another through matrix transposition, a transformation that can be
handled by the compiler. We make this distinction explicit because in our examples we concep-
tualize operations as MVMs for clarity but illustrate them as VMMs on hardware, since this is the
dominant form used in the field.

• CIM arithmetic and boolean logic unit (CIM-ALU): Same structure as the CIM-Xbar but used
differently. Specifically, operands are stored in different WLs while each BL is a bit position. This
allows multiple WLs to activate simultaneously and act as a vector processor, applying either
arithmetic or boolean operations at each operand in parallel. Many operations are possible that
all have varying access patterns, requirements and implementations. On its own, this is the least-
used primitive, as depending on the implementation it can require many memory cell rewrites,
leading to higher energy consumption and reduced device lifetime. Due to its structural similarity
to the CIM-Xbar, several implementations combine features of both [51].

• CIM Content Addressable Memory (CIM-CAM): Differs the most out of all CIM primitives as
memristor cells are used to create more complicated CAM cells. Subsequently, look up tables
are distributed and encoded across multiple memory arrays. Performs key-value store operations
which include massively parallel matching, comparison and distance computations.

Ideally, our programming model should support all three CIM primitives and their respective applica-
tions. That is why we originally aimed to implement applications for each CIM primitive to evaluate the
expressiveness of our proposed programming model. However, as discussed in more detail in Sec-
tion 5.2, implementing a CIM-ALU application proved challenging, as we found no CIM accelerators
that support it in practice for implementing real applications.

Most accelerators are homogeneous, meaning they implement only a single type of CIM primitive
with uniform specifications. A few exceptions exist, such as architectures that combine the functionality
of both CIM-ALU and CIM-Xbar structures [51], leveraging their structural similarity. Regardless, this
implies that a potential compiler must be aware of the specific primitive operations supported by the
target accelerator and raise an error when unsupported operations are used.

2.1.3. Memory array peripheral
A complete CIM processing unit or CIM macro is composed of a CIM primitive memory array accompa-
nied by peripheral circuitry. In Figure 2.3 Zahedi [7] provides an abstract view of a CIMmacro containing
a CIM-Xbar. The CIM macro is composed of four circuits that can be pipelined: input processing, the
CIM-Xbar, sensing, and output processing. Input processing receives data from an external source and
performs the necessary pre-processing—such as buffering and digital-to-analog conversion (DAC)—
before feeding the signals into the CIM-Xbar. The CIM-Xbar array then performs the computation. Next,
a sensing circuit captures the CIM-Xbar’s outputs and performs analog-to-digital conversion (ADC). Fi-
nally, output processing applies any required post-processing to the CIM-Xbar’s results. To facilitate
synchronization across these pipeline stages, a controller is employed to execute instructions and co-
ordinate their operation.

In an effort to generalize and conceptualize Figure 2.3 for all CIM primitives from a programming
perspective, we created the illustrations shown in Figure 2.4. Figure 2.4a presents the abstract view of
a CIM macro from Section 1.1.3, which we then refine and expand into a more detailed representation
in Figure 2.4b. In this model, the CIM macro contains a CIM primitive that serves both as memory and
as a compute unit. Additionally, it includes two dedicated compute units—one for pre-processing and
one for post-processing. Buffers are placed at the inputs and outputs to support pipelining, and we
distinguish between local control, specific to each CIM macro, and global control, which coordinates
the entire CIM accelerator. This is a very crude view of a CIM macro as not all instances have every
component listed such as the buffers but it offers a clearer view of the CIM macro to programmers.

The periphery of a CIM primitive introduces significant complexity in both design and programming,
as it varies depending on the target application. Post-processing, for example, may range from simple
adders [52] to full-fledged functional units [45, 46] attached to each CIM primitive. Consequently, the
set of complex operations a CIM primitive can execute with the aid of its periphery is not fixed, requiring
compilers to verify whether a given operation is supported.
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Another challenge related to the periphery is balancing the circuit stages to form an efficient pipeline
[7, Sec 6.3]. Different operationsmay require varying durations in each pipeline stage, depending on the
setup and post-processing involved. Even the same operation may exhibit different pipeline latencies
depending on its scale, primarily due to the analog nature of the memristor and the use of DAC and
ADC converters. For example, for the CIM-Xbar, multiple bitlines often share a single ADC, as providing
one per wordline is too costly and impractical. As a result, bitlines sharing an ADC must be sensed
sequentially. Although such details are low-level, programmers or compiler developers aiming to fully
exploit the accelerator’s performance must account for these variations during development.

Ultimately, for the our proposed programming model we decided that manipulating the innerwork-
ings of a CIM macro is too low-level. We aimed for a higher level programming model that values
expressiveness over fine-grain control. However, it could potentially be expanded to add finer-grained
control of the CIM macro with future work as discussed in Section 5.3.

Figure 2.3: Illustration of the periphery of a CIM macro by M. Z. Zahedi [7, p. 25] comprising of four parts: 1) input processing,
2) a CIM-Xbar, 3) sensing, 4) output processing

(a) (b)

Figure 2.4: (a)Abstract view of a CIM macro. (b) More detailed illustration of a CIM macro from the programmers perspective.

2.1.4. System architecture
One of the key architectural decisions in CIM systems is the choice of hardware organization. As
shown in Figure 2.5, Sun et al. [53] identify four envisioned models: pipelined, homogeneous, hetero-
geneous, and distributed. Pipelined designs (Figure 2.5a) enable cascaded primitive operations across
memory arrays with minimal periphery, forming deep computation pipelines. Homogeneous designs
(Figure 2.5b) treat identical arrays as cores that share peripheral circuitry, allowing more complex op-
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erations through coordination. Heterogeneous designs (Figure 2.5c) incorporate additional processing
units to support operations that are inefficient or impractical in CIM. Finally, distributed designs (Fig-
ure 2.5d) divide computation across multiple CIM units that communicate, similar to distributed com-
puting systems. This classification is not exhaustive, as many existing architectures are hybrids that
combine elements from multiple models. While a CIM accelerator typically implies a heterogeneous
organization at the system level, its internal organization can follow any of the models described above.

(a) (b)

(c) (d)

Figure 2.5: Several CIM organizations illustrated by Sun et al. [53], each inspired by a conventional architectural paradigm: (a)
Pipelined, (b) Homogeneous, (c) Heterogeneous, (d) Distributed.

An ideal programming model should be able to unify different hardware organizations. However,
this generalization makes abstraction design more challenging, as the abstractions must be broad
enough to target all supported organizations. At the same time, the programming model must ex-
press performance-critical behavior that depends on the specific organization. This can be addressed
by exposing organization-specific directives for optimization, or by hiding the complexity behind the
compiler—though the latter may come at the cost of reduced performance. In addition, the cost of
operations—particularly data movement—can vary significantly across organizations, requiring either
explicit scheduling mechanisms or a sophisticated scheduler to manage execution efficiently.

Another key challenge for CIM programming models is the lack of Instruction Set Architectures
(ISAs). According to Drebes et al. [47], most accelerators adopt an API rather than an ISA because
of the high cost of developing and maintaining an ISA, as well as the reduction in memory array den-
sity caused by the inclusion of hardware decoders. Without an ISA, there is no fixed instruction set
for the programming model to target. As a result, more responsibility shifts to the compiler and the
programming model, since programs must be lowered to hardware-specific APIs. This increases the
complexity of the mapping process, as discussed in Section 5.5, since supporting a new architecture
requires modifying or extending the compiler.

2.2. CIM applications
CIM is especially beneficial for data-intensive, memory-bound, highly parallel workloads as explained
in Section 1.1.3. In this section we present three application implementations, shown in Table 2.2. Our
goal is to use these examples when verifying the expressiveness of our programming model. We do
this by recreating each application as if we had access to a programmable accelerator compatible with
its implementation.

2.2.1. Integer sorting
We selected integer sorting because it represents a comparatively simple and well-understood work-
load. In this section, we examine sorting in CIM as defined by Liu et al. [54] through their MemSort
accelerator. MemSort is a non-programmable accelerator that demonstrates how CIM can be exploited
to implement both counting sort and merge sort with linear time complexity. For the purposes of this
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Application Domain Reference Paper CIM primitive
Integer Sorting Databases Memsort [54] CIM-CAM
Pattern Matching Security CAMASIM [55] CIM-CAM
Convolutional Neural Network Inference Machine Learning ISAAC [52], CIM Explorer [56] CIM-Xbar/ALU

Table 2.2: List of all CIM application analyzed in this section. For each application we note the paper that describes the
implementation, and the CIM primitive it uses.

work, however, we focus only on counting sort, as a single implementation is sufficient to highlight the
relevant concepts without overemphasizing sorting itself.

MemSort’s memory arrays, that are based on the CIM-CAM primitive are shown in Figure 2.6a.
They function as comparison units of size 64x64 bits capable of intra-array sorting. Each row stores
a 64-bit integer, while each column corresponds to a bit position. Each element in the memory array
is sequentially fed to the input buffer where a parallel comparisons between all stored words and the
input buffer is triggered. The comparison results indicate which elements are strictly smaller than the
input word, and these results are forwarded to a popcount post-processing circuit that sums the values.
The resulting count specifies the index at which the input word should be placed in the sorted array.
Finally, a copy of the input is placed at a sorted array buffer as shown in Figure 2.6b. This process is
repeated for all words stored in the memory array. In addition, memory arrays are able to communicate
with each other using an I/O Buffer.

(a) (b)

(c) (d)

Figure 2.6: (a) Memsort comparison CIM macro, (b) Memsort intra-array example, (c) Memsort hierarchy, (d) Inter-array sorting
example using four memory arrays [54].

Due to the limited size of memory arrays, an array–bank–chip hierarchy is introduced, as shown in
Figure 2.6c. Eachmemory array has a dedicated popcount unit, while an adder is shared between every
two arrays. Inter-array sorting is implemented across multiple arrays in a manner similar to intra-array
sorting as shown in Figure 2.6d. First, a single word is broadcast to the input buffers of all memory
arrays. Each array then computes its local popcount result, after which the results are aggregated
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through adders until a single value remains, representing the index of the input element in the sorted
array. We note that since the accelerator is non-programmable, processing proceeds in lockstep.

This implementation of sorting is highly compatible with CIM. Notably, during a single sort operation
the memory array cells are never overwritten, thereby preserving the endurance of the device. In
terms of performance, each number is compared with all other numbers in parallel, yielding constant-
time comparison. The aggregation across memory arrays for 𝐾 adders which are strictly less than the
number of elements occurs in 𝑂(log2 𝐾) time. Repeating this process for all elements to be sorted
results in an overall time complexity of 𝑂(𝑛 log2 𝐾) ≈ 𝑂(𝑛).

There are some limitations to this approach. Specifically, to perform massively parallel sorting, the
MemSort accelerator must have sufficient capacity to store all numbers within the rows of its memory
arrays. Liu et al. [54] indicate that the architecture can sort up to 230 integers, based on their experi-
mental results. However, they do not specify the exact number of arrays, banks, or chips in the system,
nor do they discuss what occurs when the dataset exceeds this capacity. If such a limit is reached, the
sorting must be performed in multiple passes.

2.2.2. Pattern matching
Apart from VMM, the second most common operation accelerated in CIM is matching, also known
as look-up operations. Look-ups in CIM are typically implemented using the CIM-CAM primitive and
have a wide range of application domains. In essence, any application that can be reduced to a table
look-up can be accelerated with CIM. According to Graves et al. [57], such applications include finite
state machines, such as regular expression matching for detecting malicious patterns in network secu-
rity; tree-based models, such as random forests for classification and regression; and reconfigurable
computing for the implementation of arbitrary logic functions.

An abstract example of a pattern-matching memory array is shown in Figure 2.7a. In this design,
the memory cells are ternary, storing one of three values: 1, 0, or 𝑋 (don’t care). However, memory
cells can be binary or use a higher radix. Once the application to be offloaded is reduced to a lookup
table, it can be mapped onto this accelerator by storing a single table entry in each wordline. Data
can then be streamed into the input buffer, which performs a parallel match against all entries in the
lookup table. A match is detected when current flows from one end of a wordline to the other. Finally,
a multiple-match resolver is used in post-processing to return the location of the matching entry.

(a) (b)

(c) (d)

Figure 2.7: (a) Abstract pattern-matching memory array encoding a lookup table in memory cells and performing parallel
matching with the input buffer [57, Fig. 1] (b) CAMASim’s hierarchical four-layer structure, bank-mat-array-subarray [55, Fig. 2],
(c) Horizontal and Vertical Partitioning illustrated [55, Fig. 3a], (d) Different types of matching and their horizontal and vertical

merging schemes [55, Fig. 3b].
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We now examine an architecture devised by Li et al. [55] as part of their CAMASim simulation
framework. Although CAMASim is primarily a design exploration tool for CAM-based accelerators, it
also defines a general hierarchical structure shown in Figure 2.7b. This hierarchy supports parallel
matching and merging across multiple memory arrays, enabling the manipulation of datasets too large
for a single array. Inter-array matching relies on two partitioning schemes—horizontal and vertical—
both illustrated in Figure 2.7c. The choice of scheme depends on the application, which may require
one of three match types, shown in Figure 2.7d: exact match, where every cell in a row matches the
input buffer; best match, where the best approximate matching row to the input buffer is selected; and
threshold match, where rows are compared against a specified threshold. Each match type requires
different merging operations depending on the partitioning scheme, which in turn may necessitate dis-
tinct post-processing circuitry at each hierarchical level.

Overall, search operations are highly suitable for CIM acceleration, as all rows across the accelera-
tor hierarchy can be searched in constant time while minimizing energy usage and cell reprogramming.
However, current implementations still face significant challenges. According to Li et al. [55], the mo-
tivation behind CAMASim is the lack of an optimal general architecture for pattern matching, which
necessitated a design exploration tool. Moreover, new merge schemes are still being defined, and no
existing accelerator design can fully address both horizontal and vertical merging for best-match and
threshold-match operations.

2.2.3. Convolutional Neural Network inference
Machine learning is themost common domain where CIM is applied, owing to its ability to performVMMs
in constant time using the CIM-Xbar CIM primitive. A prominent CIM application is the inference phase
of convolutional neural networks (CNNs), exemplified by accelerators such as ISAAC [52]. We present
CNN inference so late because, despite its popularity, it is a substantially more complex application
comprising several distinct operations.

Figure 2.8 shows an abstract network architecture diagram for a CNN that performs image classi-
fication. CNNs primarily consist of multiple convolutional layers that perform convolution and pooling
for feature extraction, followed by fully connected layers that perform linear operations for classifica-
tion. Figure 2.9 shows that to optimize the CNN, additional operations can be added after the primary
layer operations, such as batch normalization to improve training speed and stability, and an activation
function to introduce non-linearity and enable the network to learn more intricate patterns.

Figure 2.8: Abstract network architecture diagram for a CNN that performs image classification [58] ©NVIDIA.

A particularly suitable subclass of CNNs for CIM is the binarized CNN, or Binary Neural Network
(BNN), shown in Figure 2.9. Binarizing a network improves performance and efficiency at the cost
of some accuracy by representing both weights and activations in convolutional and linear operations
using the sign function (Eq (2.1)). These operations therefore reduce to binary-precision VMMs that
map naturally onto binary CIM-Xbars, avoiding the complexity of higher-precision memory cells. An
example implementation for CIM is CIM-Explorer [56], a toolkit for BNN and Ternary Neural Network
(TNN) design-space exploration on CIM-Xbars. The techniques discussed in this section apply to both
full-precision CNNs and their binarized variants.
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Figure 2.9: Structure of a Binarized CNN as proposed by Courbariaux et al. [59] illustrated by de Bruin [60]. *First and or last
layer is not binarized; sometimes the weights are binarized but the input is not.

Mapping CNNs onto CIM hardware is challenging, and even BNNs require careful handling of signed
binary values in crossbar cells, as noted by Zaheti [7, p. 44]. A programming model abstracts away
such low-level concerns and focuses on expressing the high-level algorithm. Using CIM-Explorer’s
compilation stack in Figure 2.10 as a reference point, we treat the programming model as a frontend
component that reduces applications to matrix–vector multiplication (MVM) operations and exposes
compute modes through the functional interface to guide mapping. The mapper then uses these MVM
operations and compute modes to reshape the data and map the resulting structures onto the physical
crossbars. Thus, because this manuscript focuses on programming models, our examples remain at
a high level, and the mapping process lies outside the scope of this work. However, we briefly discuss
mapping in Section 5.5.

sign(𝑥) = {+1, if 𝑥 ≥ 0
−1, if 𝑥 < 0 (2.1)

Figure 2.10: The interfaces of the CIM-Explorer toolkit that separates compilation and mapping.[56, Fig. 3]

CNN operations include convolution, linear operations, pooling, batch normalization, and activation.
To analyze how these operations are realized in a CIM accelerator, we take a closer look at ISAAC [52].
Following ISAAC’s design choices, we present examples that also use max pooling and the sigmoid
activation function. In addition, ISAAC omits batch normalization, noting that it is difficult to adapt to
crossbars and not strictly necessary. For completeness, we also describe how the binarized variants
of these operations differ from their full-precision counterparts.

The most complex operation is convolution as it requires significant rearranging. Pelke et al. [56]
show how its variant conv2d_nhwc expressed using Eq (2.2) can be decomposed into parallel MVMs
on CIM-Xbars using loop transformations. A simplified example is shown in Figure 2.11a. The operation
takes an input feature map (IFM), a set of filters, and a stride. The IFM has four dimensions—input
width (𝑖𝑤), input height (𝑖ℎ), input channels (𝑖𝑐), and batch size. For simplicity, we assume a batch size
and strides (𝑠ℎ, 𝑠𝑤) of one. The filter or kernel (𝐾) tensor also has four dimensions: kernel width (𝑘𝑤),
kernel height (𝑘ℎ), kernel channels (𝑘𝑐, equal to 𝑖𝑐), and output channels (𝑜𝑐). Assuming a stride of
one then the filter slides over the IFM (on the colored squares indicating sliding-window positions) to
produce the output feature map (OFM) shown.

OFM(ℎ, 𝑤, 𝑜𝑐) =
𝑘ℎ−1

∑
𝑖=0

𝑘𝑤−1

∑
𝑗=0

𝑖𝑐−1

∑
𝑐=0

𝐾(𝑖, 𝑗, 𝑐, 𝑜𝑐) IFM(𝑠ℎℎ + 𝑖, 𝑠𝑤𝑤 + 𝑗, 𝑐) (2.2)

To execute this convolution on CIM-Xbars, the IFM and filters are reshaped using the img2col
technique into the matrix-matrix multiplication (MMM) shown in Figure 2.11b. The filters are converted
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into a matrix by merging all dimensions except 𝑜𝑐, while the IFM’s sliding windows are flattened into
column vectors and merged with the 𝑖𝑐 dimension. As shown in Figure 2.11b, the MMM produces the
OFM of Figure 2.11a but with flattened output width (𝑜𝑤) and height (𝑜ℎ) dimensions.

The MMM shown in Figure 2.11b can be scheduled on the hardware in several different ways, a flex-
ibility that the programming model is intended to hint at. Figure 2.11c illustrates a schedule where the
entire filter tensor is encoded on a single CIM-Xbar and each IFM column vector is applied as the input
sequentially. However, such a large CIM-Xbar may not exist in practice. In that case, the filter tensor
could be distributed across multiple smaller CIM-Xbars, as shown in Figure 2.11d, requiring the accu-
mulation of partial results (purple and pink) to obtain the final OFM elements. Many other schedules
are possible, such as exploiting parallelism to execute all IFM column vectors simultaneously.

(a) (b)

(c) (d)

Figure 2.11: (a) Binary conv2d_nhwc example with a single-batch IFM and a stride of one. Colored squares on IFM indicate
sliding-window positions. (b) img2col transformation of Figure 2.11a, resulting in an MMM where filters form the first matrix

and the IFM is reshaped into column vectors (c) Illustration of executing the yellow column vector from Figure 2.11b on a single
crossbar. (d) Illustration of the VMM from Figure 2.11c distributed across multiple crossbars, requiring accumulation of the

purple and pink partial results using addition.

An example fully connected layer is shown in Figure 2.12a. It can be described by Eq (2.3), where
𝑥𝑖 are the inputs neurons, 𝑊𝑖𝑗 are the weights, 𝑏𝑖 are the biases and each output 𝑦𝑗 is produced by a
separate linear operation. This can be then reshaped into the MVM shown in Figure 2.12b and mapped
on a large enough CIM-Xbar shown in Figure 2.12c. Of course, if no CIM-Xbar is large enough to hold
the entire matrix, the computation can be split across multiple smaller CIM-Xbars, with post-processing
used to aggregate the partial results.

𝑦𝑖 =
𝑛

∑
𝑗=1
𝑊𝑖𝑗𝑥𝑗 + 𝑏𝑖 (2.3)

Both convolution and linear operations reduce to MVMs. Binarization just replaces the multiply
and accumulate operations done within a CIM-Xbar with XOR and popcount. This leads to a subtle
definitional distinction: Zahedi [7] classifies a CIM-Xbar performing XOR instead of MAC as a binarized
implementation of a CIM-Xbar, whereas Reis et al. [1] definitions are closer to a CIM-ALU. Since both
interpretations are valid, we treat CNN inference as an application that can be executed on either a
CIM-Xbar or a CIM-ALU in Table 2.2.

Looking at ISAAC’s architecture in Figure 2.13, we observe a hierarchy of CIM-Xbars along with
specialized units for max pooling and the sigmoid activation function. Max pooling performs a reduction
using the max operation on the outputs of the CIM-Xbars, and the result is then passed to the sigmoid
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(a) (b) (c)

Figure 2.12: (a) Example fully connected layer that performs multiple linear operations in parallel. It consist of three input
neurons (xi), four output neurons (yj) and weights (wij). (b) Conversion of Figure 2.12a into a MVM. (c) Conversion of

Figure 2.12b into a VMM and placed on a CIM-Xbar with arbitrary precision cells.

unit. In our example recreation of this application for the proposed CIM programming model, we treat
both units as black boxes, as their internal workings are irrelevant.

Figure 2.13: ISAAC architecture hierarchy[52, Fig. 2]

2.3. Overview of programming models
Before proposing a new programming model, we first clarify what a programming model is and examine
examples from domainsmoremature thanCIM. Hence, Section 2.3.1 defines the fundamental concepts
underlying programming models, including their definition, core components, and design trade-offs.
Subsequently, Sections 2.3.2 to 2.3.6 survey both programming models and related research, which
we later analyze to provide insights relevant to CIM programming models.

2.3.1. Fundamental concepts
In the literature, the term ’programming model’ is often used without a precise or universally accepted
definition. To remove ambiguity we provide our own set of definitions in Figure 2.14 based on Balaji’s
[36, p.404] decomposition of OpenCL. Later, we use this definition to construct our own CIM program-
ming model in Chapter 4.

A programming model is essential because it provides a framework for understanding and imple-
menting software on computer hardware. Without such a model, programmers face two alternatives.
They can either program a system directly through its instruction set architecture (ISA) or rely on a
compiler that abstracts the underlying machine logic entirely through high-level function calls. The
first approach demands extensive knowledge of computer architecture and produces large, complex,
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Definition: A programming model is a collection of high-level abstractions built on top of a pro-
grammable computer model, designed to expose specific computational or architectural properties to
the programmer.
• Purpose: It enables intuitive development of software by summarizing essential functionality to
the programmer, without requiring the same depth of knowledge as the hardware designer.

• Implementation: A programming model is often realized through the addition of syntax, domain-
specific semantics, and programming paradigms that govern the structure of written programs,
forming what is commonly referred to as a DSL.

Subdefinition: A computer model is an abstraction over a computing system that defines both its
underlying structure and its behavior. It consist of the following interconnected components:
• Platform model: Abstracts away the underlying hardware details and variations across different
implementations, presenting a unified and consistent architecture.

• Executionmodel: Defines how instructions are scheduled and executed on a computer’s hardware,
enabling programmers to predict a program’s behavior by mentally simulating its execution.

• Memory model: Describes the different memory regions within the system and the dataflow of
execution such as the inter-thread interaction within memory and sharing of variables.

• Runtime system: Dynamically implements the rules defined by the memory and execution models
during program execution.

Figure 2.14: Our programming model definition, adapted from Balaji’s [36, p. 404] decomposition of OpenCL.

and hardware-specific programs that, when written correctly, can achieve optimal performance on the
target system. The second approach requires no awareness of hardware details and, by leveraging
higher levels of abstraction, yields shorter and simpler code that can be more easily ported across
different platforms. However, designing such a compiler—particularly one that works across diverse
architectures—is highly complex and often comes at the cost of reduced performance. In this sense,
both approaches involve trade-offs, while a programming model seeks to strike a balance between
them, offering a practical middle ground.

Even so, the design of a programming model inevitably involves a series of choices guided by the
goals and priorities of its creator. As Balaji notes [36, Preface], an ideal programming model embod-
ies four key qualities: (1) productivity, (2) portability, (3) performance, and (4) expressiveness.
In theory, this means that it should be (1) easy to use and allow developers to work efficiently; (2) flex-
ible enough to operate across diverse platforms; (3) capable of delivering performance and resource
utilization comparable to hand-optimized code; and (4) expressive enough to represent a wide range of
algorithms in a natural way. In reality, however, these qualities often conflict with one another, making
the design of a programming model a matter of carefully balancing competing priorities.

For our CIM programming model, certain constraints apply. Specifically, we cannot evaluate per-
formance and portability, as this would require access to multiple programmable accelerators which
are currently scarce, whether simulated or physical. Even if that were not the case, time limitations
imposed on this work prevented the development of the necessary compilers for each architecture to
perform benchmarking, as well as a runtime system to complete the programming model’s definition.

2.3.2. Parallel computers
Next, we turn to the study of parallel computers for two main reasons. First, CIM accelerators inherently
exploit parallelism to achieve higher performance and can therefore be regarded as parallel comput-
ers. Second, the evolution of parallel computers underwent a similarly convoluted period to what CIM
accelerators face today, characterized by multiple competing designs and implementations, along with
the central question of whether a single computer model could unify them all. By studying parallel
computer models, our goal is to draw insights and make informed predictions about the future of CIM
computing and programming.

Parallelism has been a longstanding topic of debate in computers because it enables significant
performance gains over sequential computers. At the same time, it raised the fundamental question
of how to effectively implement parallelism. Multiple efforts were made to classify different parallel
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computer implementations in an effort to unify them under a common vocabulary. In our context, a
clear classification of parallel computers is useful for determining which programming models align
most closely with the forms of parallelism exhibited in CIM architectures.

M.J. Flynn’s original taxonomy [61] standardized the classification of computers into four categories
based on the number of instruction and data streams shown in Figure 2.15. As a result, most students
today are familiar with two of these categories and their abbreviations: Single-Instruction-Multiple-Data
(SIMD) and Multiple-Instruction-Multiple-Data (MIMD). However, this classification has been updated
multiple times over the years. First, in 1972, M.J Flynn [15] refined the taxonomy further by introducing
subcategories within SIMD, based on how multiple processing units (PUs) are utilized. These include
the Array, Pipelined, and Associative processors, which are discussed in more detail below.
Then in 1988s, E.E. Johnson [62] further categorized MIMD processors into four categories based on
their memory structure and their communication mechanism also shown in Figure 2.15. Later in the
1990s, R. Duncan [63] offered modifications to Flynn’s taxonomy to include more complex cases shown
in Figure 2.16.

Figure 2.15: Illustration of M.J. Flynn’s taxonomy [61]. The MIMD subcategories were added later by E.E. Johnson [62].

Figure 2.16: Wikipedia illustration of R. Duncan’s modifications to M.J. Flynn’s taxonomy [64].

Below we provide a short description of each kind of processor subcategory:

M.J. Flynn’s SIMD proposal 1972 [15]:
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– Array processor: Each independent PU has its own local memory, but all are controlled
by a single central control unit;

– Pipelined processor: All PUs share access to a central memory, but are also spe-
cialized for a particular function so they receive a fragment of the incoming data. Data is
streamed at a constant rate into each PU that processes them into pipeline stages and write
results back to the memory;

– Associative processor: Each PU independently decides, based on its local data,
whether to execute or skip an operation.

E.E. Johnson’s MIMD additions 1988 [62]

– Shared Memory (GMSV): PUs have access to a global memory and communication is
achieved using the shared variable memory reference mechanism. Having shared vari-
ables is advantageous for expressing parallelism but disadvantages include requiring cache
coherency protocols and memory contention as all PUs share the same interconnection to
the global memory;

– Message Passing (DMMP): The system’s memory is distributed across processors and
communication is achieved by passing messages between them. A disadvantage is that
programmers must deal with data distribution;

– Hybrid (DMSV): Distributed memory architecture that uses the shared variable program-
ming model. Requires synchronization mechanisms similar to GMSV but avoids the memory
contention bottleneck;

– GMMP: Global memory architecture that uses the message passing memory reference mech-
anism. Employ isolated virtual address spaces.

R. Duncan’s suggested modifications 1990 [63]

– Pipelined vector processor: Like a pipelined processor but using vector units, ap-
plying one operation to many data points per stage;

– MIMD/SIMD hybrids: MIMD machines that can, to some extent, be programmed in the
same manner as SIMD machines;

– Systolic arrays: Pipelined multiprocessor variant where data flows synchronously from
memory to a regularly shaped processor network. Processors communicate by sending
partial results to each other. Requires a global clock and explicit delays between processors;

– Wavefront array: Systolic arrays combined with asynchronous dataflow;
– Dataflow machine: Executes Data-Flow Graphs (DFGs) to exploit task-level parallelism.
Each node fires when all inputs are available, consumes them, and produces outputs for
subsequent nodes [20, p. 6];

– Reduction machine: Demand-driven dataflow machines. A node requests data from its
environemnt. Once the environment responds with data it is then processed by the node
and output values are produced [20, p. 6].

Looking at Figures 2.15 and 2.16, our initial goal was to categorize CIM devices within a single
parallel-computer class and, from there, identify themost appropriate programmingmodel for that class.
However, upon closer examination, it became evident that CIM computers cannot be confined to a
single category. Different implementations exhibit characteristics that overlap with multiple paradigms,
including pipelined vector processors, systolic arrays, and dataflow machines. Even GPUs cannot
be precisely classified within this taxonomy: while warps operate as SIMD units executing the same
instruction, they also share associative processor–like behavior, as their computations can vary slightly
based on local data. Moreover, modern GPUs increasingly incorporate MIMD capabilities [65].

Although CIM cannot be placed neatly within a single parallel-computer category, this observation
directed our attention toward a more general computational model. As noted in Section 1.1.2, the paral-
lel RAM (PRAM) model is unsuitable due to contention and unrealistic unit-time memory assumptions.
Instead, we adopt the Candidate Type Architecture (CTA) model, which comprises multiple sequential
processors with fast local memory and slower remote-memory access, without imposing constraints
on the interconnection topology.
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As discussed in Section 1.1.3, the CTAmodel aligns well with CIM architectures: each CTA process-
ing element corresponds naturally to a CIM macro performing computation within its own local memory,
while communication between macros mirrors the CTA interconnection network. The CTA’s clear dis-
tinction between local and remote access, together with its flexibility regarding network organization,
makes it an appropriate abstraction for a wide range of CIM accelerator designs. Thus, using the CTA
model as a blueprint, we developed the platform model for our programming model in Section 4.1.2.

2.3.3. OpenCL
OpenCL is an industry standard framework for programming heterogeneous systems [36]. It is con-
sidered in this work because a CIM accelerator can function as a coprocessor connected to a general-
purpose host, thereby forming a heterogeneous system. This section summarizes the platform, mem-
ory, execution, and programming models defined by OpenCL.

The platform and memory models of OpenCL are illustrated in Figure 2.17a and Figure 2.17b re-
spectively. A host system is connected to one or more devices, each composed of a two-tier hierarchy
of compute units that containmultiple processing elements. In addition, OpenCL defines several distinct
memory regions: host memory, device memory, local memory, and private memory. Device memory
is further divided into global and constant memory. The global memory is accessible for both read and
write operations by the host and all processing elements, while the constant memory is allocated by
the host but is read-only and accessible only to the device. Finally, local memory is shared among
processing elements within the same compute unit, and private memory is exclusive to each individual
processing element.

(a) (b)

Figure 2.17: (a) Illustrations of OpenCL’s platform model [36, Figure 16.1] (b) Illustration of OpenCL’s memory model [36,
Figure 16.3]

.

OpenCL’s execution model enables the exploitation of both data-level and task-level parallelism.
Programs define functions, called kernels, which are written by the programmer and offloaded from
the host to an OpenCL device for execution. Kernels exploit data-level parallelism through the N-
dimensional (ND) range abstraction. For each kernel launch, an ND index space of fixed dimensions
is defined, and each processing element executes the kernel on a distinct spatial coordinate within
this space—referred to as a work-item. Work-items are grouped into work-groups, which logically
execute concurrently. To optimize performance, programmers must ensure that work-items are evenly
distributed across processing elements and compute units. Otherwise, the runtime scheduler may fail
to fully exploit the device’s available parallelism, leaving some processing elements idle and reducing
overall throughput.

Task-level parallelism in OpenCL is achieved through the command queue abstraction that repre-
sents a schedule. Before execution, kernels are enqueued into a command queue associated with a
specific device. Programmers can either use event objects to form dependencies between kernels in
the same command queue, enabling pipelined execution, or create multiple command queues that exe-
cute concurrently, allowing overlap of computation and communication to further improve performance.
ND ranges and command queues make up OpenCL’s programming model.
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2.3.4. Halide
Halide [48] is an embedded domain-specific language (DSL) in C++, intended for image and tensor
processing. We chose to investigate Halide as the CIM-Explorer [56] toolkit analyzed in Section 3.1
extends the Tensor Virtual Machine (TVM) compiler [66] that adopts ideas from Halide. While CIM-
Explorer is specifically designed for Neural Networks we aimed to evaluate if Halide’s ideas can be
adopted for other CIM applications.

Halide is fundamentally a framework for defining high-performance image processing pipelines on
multicore processors. It achieves this by cleanly separating the algorithm specification of a program
from its scheduling decisions. This separation allows programmers to express what computation should
be performed independently of how it is executed. Scheduling functions can then be applied to tailor
execution to a specific device, optimizing for a particular type of parallelism, improving temporal and
spatial locality through cache-aware scheduling, and managing redundancy where recomputation is
more efficient than memory access.

We illustrate Halide’s notation using the example shown in Listing 2.1. Halide primarily relies on
two key abstractions: Funcs and Vars. A Func is a functor that represents a function defined over
an image or multidimensional data domain. Multiple Funcs can be chained together to form image-
processing pipelines, where each Func represents an intermediate stage in the computation. The
pipeline is constructed by defining one Func (in this case, bh) in terms of another (bv), forming an
acyclic dataflow graph internally. A Var is a symbolic variable that, by itself, has no inherent meaning
but is used in conjunction with Funcs to define indexing or iteration dimensions. In the example, both x
and y are used to specify that the blurring operation should be applied horizontally (left and right) and
vertically (top and bottom), respectively.

As mentioned, a program in Halide conceptually consists of two parts: the algorithm and the sched-
ule. While it is common in introductory examples to specify the entire algorithm first and then apply
scheduling, this is only a convention used to illustrate the separation. Halide does not require the
algorithm to be fully defined before scheduling begins, since scheduling directives can be applied at
any point after a Func is defined. However, in our motivational examples in Chapter 4 we keep this
convention in order to clearly illustrate the separation between algorithm and schedule.

When the algorithm part finishes defining all Funcs, no computation is executed yet, because Halide
uses lazy evaluation to construct the computation graph. Actual execution begins only when the re-
alize function is called, at which point Halide generates the corresponding nested C++ loops that
implement the described algorithm, which is a form of meta-programming. The schedule allows the
programmer to influence these generated implicit loops through declarative loop transformation direc-
tives applied to Vars, often parameterized by integers.

Common directives include tile, vectorize, parallel, and compute_at, as illustrated in Fig-
ure 2.18. Specifically, vectorize executes iterations of a given variable using SIMD instructions of
a specified width; parallel marks a loop for multithreading; compute_at specifies the loop level
at which a function is recomputed, controlling locality and the trade-off between recomputation and
storage; and tile restructures nested loops into smaller blocks to improve data locality.

2.3.5. Legion
Legion [38] is a data-centric parallel programming system designed for high-performance execution on
heterogeneous and distributed architectures, which aligns well with the target platform of CIM acceler-
ators. Legion is particularly interesting because it allows programmers to explicitly define applications
based on program data properties, such as dependencies and locality, enabling the automatic extrac-
tion of both task-level and data-level parallelism.

Legion is built on three core principles that define how programs should be structured to achieve
optimal performance on its targeted systems. Each principle is embodied by a corresponding abstrac-
tion. First, logical regions allow program data properties to be explicitly declared through high-level
abstractions. Second, a hierarchical task tree operates on these logical regions implicitly expressing
parallelism and data movement. Third, the mapping interface ensures that a program remains indepen-
dent of the specific details of how it is mapped onto the underlying hardware. The following paragraphs
describe each abstraction in detail.

Logical regions can be viewed as an extension of the ND-range abstraction introduced in Sec-
tion 2.3.3. Specifically, they represent N-dimensional data structures that can be shared among dif-
ferent processes, allowing programmers to explicitly characterize an application’s data. These char-
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1 Func in = ...
2 Func bh, bv;
3 Var x, y, xi, yi;
4 // The algorithm
5 bh(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))

/3;
6 bv(x, y) = (bh(x, y-1) + bh(x, y) + bh(x, y+1))

/3;
7 // The schedule
8 bv.tile(x, y, xi, yi, 256, 32)
9 .vectorize(xi, 8).parallel(y);
10 bh.compute_at(bv, x)
11 .vectorize(x, 8);
12 bv.realize({imgDimX, imgDimY});

Listing 2.1: Halide code for a blur application with two pipeline stages, one
blurring horizontally and one vertically Figure 2.18: Corresponding scheduling

directives visualized.

Figure 2.19: Halide blur application and its schedule[48, Fig. 1c].

acterizations include specifying dependencies between variables, assigning read-only or write-only
privileges to a processing accessing a variable, and ensuring coherence among concurrent accesses.
As an example, consider the DAXPY operation shown in Eq (2.4), where 𝑥, 𝑦, and 𝑧 are vectors and
𝑎 is a scalar. This operation can be represented using the logical regions illustrated in Figure 2.20a.
For each variable in the equation, a field space is created, and for each data point, an index is gen-
erated to form an index space. In this case, dependencies exist only among entries within the same
row, whereas the process computing 𝑧 requires only read privileges for 𝑥 and 𝑦. By leveraging this
information, Legion extracts optimal parallelism while preserving the algorithm’s correctness.

The task tree abstraction is a dataflow graph that captures the dependencies between logical re-
gions forming independent tasks. Legion uses a deferred execution model to asynchronously analyze,
optimize and execute tasks with all the available parallelism and dataflow coordination implicitly ex-
tracted. For the DAXPY example shown in Figure 2.20a, the resulting task tree is shown Figure 2.20b.
It shows four groups of tasks: one that initializes the 𝑥 and 𝑦 field spaces, one that performs the com-
putation, one that validates the result, and one that deallocates the memory used for the field spaces.

The idea behind the mapping interface is to separate the algorithm from its scheduling on the ma-
chine, as the mapping should be independent of the program’s correctness. Hence, programs are ex-
pressed in terms of logical regions, which are later mapped to physical regions. The mapping interface
is an abstraction that programmers must implement for their application on a particular architecture.
This separation facilitates easier porting and performance tuning. For example, the mapping can spec-
ify where each vector in Eq (2.4) is stored or how the tasks, shown in Figure 2.20b, are distributed
across the available processors.

z = 𝑎x+ y (2.4)

2.3.6. Apache Spark
We now turn to distributed computing systems, particularly cluster computing, because of their struc-
tural similarities to CIM architectures, including multiple interconnected processing and memory units
as well as challenges in concurrency, data distribution, and inter-element communication. Our aim is to
examine the programmingmodel of Apache Spark [68], a widely used distributed computing framework,
and to evaluate its potential applicability to CIM programming.

We begin by first defining a cluster’s platform model as explained by Lin et al [3, p.39]. A cluster is a
specific type of distributed computing system composed of homogeneous nodes, each consisting of a
small number of processors, interconnected through a high-speed local network. Nodes have access
to their local memory and inter-node communication is carried out via message passing. In addition, a
single node is referred to as the driver as it assumes the responsibility of interfacing with the user and
initiating program execution.
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(a) (b)

Figure 2.20: (a) Illustration of logical regions for DAXPY example. (b) The task tree for the DAXPY example [67].

Apache Spark is a multi-language analytics engine designed for large-scale data processing on
multi-node systems. It provides a functional programming interface that promotes fault tolerance, scal-
ability, and implicit parallelism. This is achieved through Spark’s programming model, whose core
abstraction is the Resilient Distributed Dataset (RDD). An RDD is a read-only collection of objects that
is partitioned and distributed across multiple nodes, enabling parallel computation. Specifically, the
driver program sends RDD partitions, along with the transformations to be applied, to worker nodes.
Each node then applies these transformations to its partition and returns the results to the driver.

In the event of a fault that prevents a result from reaching the driver, Spark relies on two key prop-
erties of RDDs to ensure fault recovery. First, RDDs are immutable, meaning that every transformation
creates a new RDD. This allows intermediate datasets to be reused to resume computation from the
last successful stage. Second, each RDD maintains a lineage, a record of the transformations applied
to the original dataset. Using this lineage information, Spark can reconstruct lost partitions by replaying
the transformations on the source data. Additionally, users can modify scheduling using function calls
such as the preferred location for each partition within the memory hierarchy of the destination nodes,
improving data locality and performance.

In addition, Spark provides two types of shared variables. First, broadcast variables allow the user
to define large read-only data objects that are sent to each worker only once, thereby reducing com-
munication overhead. Second, accumulators support associative operations that can be updated by
the workers but read only by the driver, making them useful for tasks such as implementing counters.

Apache Spark focuses heavily on resilience, a concern that does not arise at the programming
level of CIM and therefore makes Spark largely incompatible with CIM. However, the idea of introduc-
ing immutability in our proposed programming model not for resilience but for energy efficiency, as
discussed in Section 2.1.1, was inspired by Spark. In addition, the idea of using shared variable types
with different communication patterns inspired the memory objects discussed in Section 4.1.3.

2.3.7. Dataflow programming languages
We examine dataflow computers and languages because several CIM compilers and frameworks dis-
cussed in Chapter 3 adopt a dataflow execution model. Moreover, Milojicic et al. [42] note that many
applications that benefit from CIM naturally align with dataflow programming principles. Understanding
dataflow computing helps determine whether new CIM programming models should adopt a dataflow
execution model or incorporate other abstractions from the dataflow domain.

The core idea behind dataflow computers is that programs are represented as directed graphs
where execution is driven by data availability rather than a sequential instruction order. These Dataflow
Graphs (DFGs) explicitly capture how data is produced, consumed, and transformed through depen-
dencies between operations. Execution occurs by mapping operations (nodes) onto hardware re-
sources, where each node consumes input data and produces outputs that trigger subsequent com-
putations. Each value flowing between nodes is represented as a token, while the communication
channels between nodes are referred to as arcs. Figure 2.21 illustrates a simple dataflow graph for
computing Z. In this graph, circles represent operators, X and Y denote input sources, and rectangles
correspond to constants. The execution of a DFG depends on the underlying execution model.
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There are two commonly discussed execution models for dataflow systems. In the data-driven
execution model, used in multiscale dataflow computing [29], a node fires (performs its operation)
only when an instance of each required input has arrived at its input arcs. Once triggered, the node
consumes the input tokens, processes them, and produces output tokens that may enable downstream
nodes. Alternatively, languages such as Lucid [69] employ a demand-driven execution model, where
computation is initiated by the need for a specific result rather than by operand availability. In this model,
execution conceptually flows backward: it begins when a node requests data from its environment
through its input arcs, prompting upstream nodes to request and compute the data they require. When
the requested data is produced, it then flows to downstream nodes, which process it and generate their
outputs. Applying either execution model to Figure 2.21b would yield the same result. According to
Wadge [70], the tradeoff is that demand driven dataflow is more general in terms of expressiveness but
it has a higher overhead in keeping track of requests.

(a) (b)

Figure 2.21: (a) Simple program. (b) Equivalent dataflow graph, where circles represent operators (nodes), X, Y, and Z denote
inputs and outputs, and rectangles represent constants.

Dataflow computing can offer significant advantages over conventional control-flow computing. Tra-
ditional machines impose a strict ordering of program instructions, making parallelism implicit and often
difficult to extract. As a result, compilers must expend considerable effort to uncover parallelism and
schedule it while preserving program correctness. In contrast, dataflow computing enforces ordering
constraints only through true data dependencies between values, which are explicitly represented in a
DFG. This makes parallelism explicit and enables fine-grained exploitation of concurrency.

According to Ragan et al. [20, p. 10], dataflow languages are not exclusive to dataflow computers
and can be regarded as a subclass of functional programming languages. They share several core
characteristics with functional languages: they avoid side effects, ensuring that operations do not al-
ter external state and depend solely on their inputs; they exhibit locality of effect, meaning that each
operation influences only the data it directly processes; they enforce single assignment of variables,
maintaining immutability and simplifying dependency tracking; and they lack history sensitivity in pro-
cedures, such that function invocations are stateless and do not retain information across calls. These
properties also necessitate non-traditional approaches to iteration, often relying on recursion or spe-
cialized iteration constructs rather than mutable loop variables. The key distinction from conventional
functional programming is that scheduling in dataflow languages is determined by data dependencies
in the generated DFG.

Dataflow programming can provide CIM programmingmodels with valuable abstractions that extend
beyond dataflow graphs and execution models. One of the most prominent is the stream abstraction,
which represents a (possibly infinite) sequence of data tokens of the same type. Streams are immutable
and align well with the principle of avoiding global state. In Figure 2.21b, X, Y, and Z are all examples of
data streams. As illustrated in Figure 2.22a, a stream evolves over time as new tokens arrive. Streams
can also be processed in windows, allowing multiple values to be consumed at once, and may use a
stride to determine how computations progress across iterations. Delays can be introduced to enable
computations between values from different points in a stream. Additionally, streams may contain
absent (⊥) values, representing the lack of data output from a node at a particular time step.

An additional abstraction is the separation of computation and coordination. DFGs are highly flex-
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ible, as they can express varying levels of granularity. Nodes may represent fine-grained operations,
such as the arithmetic in Figure 2.21b, or coarse-grained tasks, such as entire functions in Figure 2.22b.
Consequently, many existing frameworks and programming models—such as Legion [38], TVM [66],
and MaxCompiler [29]—employ dataflow semantics as a coordination language between tasks. The
benefit of the separation is that tasks can be defined and subsequently scheduled independently. At the
same time as tasks are purely declarative, different hardware dependent optimizations can be easily
applied

(a) (b)

Figure 2.22: (a) A stream of integers starting from the left and ending to the right over two consecutive time instances. The
sliding window and the stride are both of size three. (b) Dataflow graph, that shows the coordination between three functions.
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Analysis of existing programming

models
This chapter presents an analysis of existing abstractions, both conventional and CIM-specific, with the
goal of identifying essential meta-abstractions that can inform the development of CIM programming
models. By examining established work—such as programming models, compilers, and frameworks—
and analyzing how they use different abstractions to balance productivity, portability, performance, and
expressiveness, we derive a set of desirable meta-abstractions to guide the design of our proposed
model. We divide this work into three parts. First, in Section 3.1, we analyze CIM-specific compilers
and frameworks. Second, in Section 3.2, we examine relevant work from domains beyond CIM. Finally,
Section 3.3 concludes with a list of meta-abstractions and possible corresponding abstractions.

3.1. CIM compilers and frameworks
It is important to learn from prior work on the programming of CIM accelerators to identify which existing
ideas can be adopted or adapted in our own contributions. To this end, we have analyzed several com-
pilers and frameworks as summarized in Table 3.1. The table includes four fields: (1) the application
domain, indicating whether the tool is restricted to a specific class of applications or supports a specific
type of CIM primitive, (2) whether the tool adopts a programming model or is purely API-based, (3)
the programming frontend used, and (4) whether the programmer can influence CIM-specific aspects
such as resource management. Table 3.1’s first row, presents the ideal case for CIM compilers and
frameworks. They should be:

• Domain-agnostic, enabling the expression of a wide range of applications without being re-
stricted to a specific set of operations;

• Based on a programming model rather than a fully declarative (API-based) approach, al-
lowing both computational and scheduling decisions to be influenced by the programmer;

• Enable programmer control over CIM-specific aspects such as resource management.

We summarize our observations from Table 3.1. First, almost all of the relevant works target ma-
chine learning (ML) or deep neural networks (DNN), as matrix-vector multiplication (MVM) is the dom-
inant operation in these domains and is well suited for CIM acceleration. Efforts that aim to be more
general restrict themselves to two CIM primitives—the CIM-XBar and the CIM-ALU—which share a
similar structure. Of the surveyed tools, only C4CAM is truly domain-agnostic, as it can compile to all
CIM primitive types. Second, the API-driven nature of ML and the complexity of CIM accelerators (see
Section 2.1) mean that most tools rely on existing frontends and compilers, avoiding the need for a
dedicated programming model altogether. Third, there is no stable programming frontend used across
tools with some as low level as C, high level as Pytorch or even higher in the form of a graph using the
Open Neural Network Exchange (ONNX) [75] format. Finally, almost none of the tools expose CIM-
specific features to the programmer as they treat mapping and scheduling decisions as too complex to
be managed manually. We now go into greater detail on each tool in the following paragraphs.

32
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Name (1) Application domain (2) PM or API (3) Frontend (4) CIM-specific features
Ideal case domain-agnostic PM – yes
OCC[71] MVM API (CIM dialect) Teckyl no
CINM[44] limited CAM support API (CIM dialect) Pytorch/Linalg/Tosa no
C4CAM[72] domain-agnostic API (CIM dialect) TorchScript (Pytorch IR) no
Polyhedral[73] DNN (MVM) API C compile arguments
TC-CIM[47] DNN (MVM) API Tensor Comprehensions (Pytorch) no
TDO-CIM[74] MVM API C++ no
CIM-MLC[45] DNN (MVM) API ONNX architecture parameters
Co-design[46] ML API ONNX no
CIM-Explorer[56] BNN/TNN PM (Halide based) Larq strategies per operation
IMDP[51] no CAM support PM TensorFlow no
PUMA[50] ML PM & API C++/ONNX no

Table 3.1: Comparison of CIM compilers and frameworks. The attributes compared are: (1) Any restrictions on application
domain, (2) if a programming model (PM) is used or if it is purely API-based, (3) the frontend the user interfaces with (4)

whether the user has any control over CIM-specific aspects such as resource management.

OCC [71], CINM [44], and C4CAM [72] form a series of end-to-end compilers for CIM that leverage
multilayer abstractions through MLIR [76]. OCC was originally developed for MVMs, later extended in
CINM to support Computing-Near-Memory (CNM) and the CIM-ALU primitive, and finally enhanced in
C4CAM to include the CIM-CAM primitive. All of themmake use of the CIM dialect, whose operations—
shown in Figure 3.1—include buffer manipulation, matrix multiplication, and synchronization. All three
compilers call the CIM dialect a programming model, though this is inaccurate by our definition in
Section 2.3.1. The CIM dialect is employed by compilers to interface with accelerators and perform
hardware-specific optimizations. Since the dialect is never directly exposed to the programmer, we
do not consider it to constitute a programming model. In addition, C4CAM introduces a hierarchical
hardware abstraction that generalizes CIM-CAM accelerators as shown in Figure 3.2.

Figure 3.1: The CIM dialect operations illustrated by OCC[71, Table 1]

Polyhedral [73] is a source-to-source compilation framework for neural networks on CIM systems
that is capable of auto-detecting supported operations in programs written in C to be offloaded for
acceleration. It accepts compilation arguments that allow the user to specify hardware constraints.
These include the number of processing elements and the dimensions of the supportedMVM operands.

Both TC-CIM [47] and TDO-CIM [74] are end-to-end compilation flows based on LoopTactics [77]
that automatically identify operations in sequential code suitable for acceleration. These operations
include MVM and other variants. Both frameworks assume an accelerator consisting of a single CIM-
Xbar. As no programming model is used in any of these works they are of little use to us.

CIM-MLC [45] is a multi-level Neural Network compilation framework designed to be universal
across CIM architectures. It accepts neural networks in the ONNX format, applies optimizations, and
generates an instruction set architecture (ISA) targeting one of three hardware abstraction layers, de-
pending on the granularity supported by the underlying device. This hierarchy is similar to the one
shown in Figure 3.2. However, it is used to abstract CIM accelerators that employ the CIM-Xbar prim-
itive. It consists of three tiers, named from top to bottom: chip–core–crossbar.

Co-design [46] is a software stack for CIM-Xbar accelerators. It is API based as different Neural
Network formats can be reduced to the ISA devised in the paper. All of these formats are high level
and abstract away the entirety of the hardware. It also employs a hierarchical hardware abstraction,
similar to CIM-MLC, but with the hierarchy renamed to tile–core–crossbar.
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Figure 3.2: Illustration of C4CAM’s three-tier hierarchical hardware abstraction [72, Fig. 2], with similar abstractions found in
Co-design[46], PUMA[50] and CIM-MLC[45]. The names of each tier might be different across implementations such as

Co-design and PUMA that use tile-core-crossbar.

CIM-Explorer [56] is a toolkit for exploring binary and ternary neural networks on CIM-Xbars. It ex-
tends the TVM [66] compiler, which was itself inspired by Halide’s [48] programming model discussed
in Section 2.3.4. Consequently, CIM-Explorer’s compiler adopts the principle of deferred execution
where instructions are not executed immediately but slowly build an internal representation that is im-
plicitly scheduled. In addition, it separates computation from scheduling, allowing programmers to use
scheduling strategies that preserve the logical equivalence of programs while enabling optimizations.

In-Memory Data Parallel Processor (IMDP) [51] proposes a hierarchical architecture for CIM and
provides a parallel programming framework that combine concepts from dataflow and vector proces-
sors. This is achieved by reusing TensorFlow’s programming model, where kernels are used to con-
struct operations that receive and produce multidimensional (ND) data allowing programmers to man-
age data-level parallelism. Dataflow is then controlled by assembling pipelines of these operations to
control task-level parallelism. The resulting Data Flow Graphs (DFGs) are optimized and offloaded for
execution. Interestingly, irregular memory structures are restricted by disallowing subscript notation,
a choice that simplifies compilation at the cost of expressiveness. However, the framework does not
support the CIM-CAM primitive, and its paper provides no references to code examples.

PUMA [50] is a CIM-Xbar architecture with its own compiler that translates high-level code into the
PUMA ISA. PUMA is a spatial architecture, similar to dataflow engines, in which each processing unit
executes a different set of operations, forming a pipeline. Consequently, a dataflow programmingmodel
is adopted, where programmers explicitly construct DFGs using nodes, vector inputs and streams. Al-
ternatively, a neural network in ONNX format can be provided in place of using their programming
interface. While conceptually similar to IMDP, PUMA is designed to optimize MVM operations for ma-
chine learning, whereas IMDP targets more general-purpose vector operations.

In conclusion, only CIM-Explorer, IMDP, and PUMA implement programming models. Additionally,
several frameworks introduce useful hierarchical hardware abstractions. In Table 3.2, we summarize
all identified abstractions along with the underlying meta-abstractions they expose to programmers.
Broadly, these abstractions fall into one of four conceptual categories: those that explicitly express
task or data parallelism, making parallelism easier to detect and exploit; those that enable implicit
scheduling by allowing programmers to guide execution without specifying exact ordering; those that
support optimization by giving programmers control over how computations are tuned to hardware; and
those that promote portability by generalizing across different hardware.

Framework Abstractions Underlying meta-abstraction

IMDP[51]
Dataflow execution model Implicit scheduling
Kernels form DFG Explicitly express task parallelism
Kernels can operate on ND data Explicitly express data parallelism

PUMA[50]
Dataflow execution model Implicit scheduling
Nodes and streams form DFG Explicitly express task parallelism
Vector inputs to nodes Explicitly express data parallelism

CIM-Explorer[56]
Deferred execution model Implicit scheduling
Declarative scheduling directives Optimization
Separation of algorithm from scheduling Hardware generalization

CIM-MLC[45], Co-design[46], C4CAM[72] Hierarchical hardware abstraction Hardware generalization

Table 3.2: Abstractions from existing CIM frameworks and the underlying meta-abstraction they expose to programmers.
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3.2. Conventional frameworks and abstractions
In Section 2.3, several frameworks were presented from domains other than CIM. In this section, we
analyze each of them to extract insights relevant to CIM programming models. In particular, we focus
on the abstractions these tools employ and the underlying properties they expose to the programmer.

In Table 3.3, we list the abstractions employed by each framework and the corresponding meta-
abstraction they expose to the programmer. Similar to Table 3.2 all abstractions fall into one of four
categories: expressing data/task parallelism, implicit scheduling, optimization and hardware general-
ization. For the rest of the section we discuss each framework’s abstractions individually considering
if each framework could be reused in a CIM context.

Framework Domain Abstractions Underlying meta-abstraction
- Parallel computing [3] CTA model Hardware generalization

OpenCL[36] Heterogeneous computing
Platform model Hardware generalization
ND ranges Explicitly express data parallelism
Command queues Explicitly express task parallelism

Halide[48] Image processing
Deferred execution model Implicit scheduling
Declarative scheduling directives Optimization
Separation of algorithm from scheduling Hardware generalization

Apache Spark[68] Distributed computing Deferred execution model Implicit scheduling
Shared variable types Optimization

Legion[38] High performance computing

Deferred execution model (Task tree) Implicit scheduling
Logical regions Explicitly express data/task parallelism
Separation of algorithm from scheduling Hardware generalization
Mapping interface Optimization

Table 3.3: Useful abstractions from non-CIM frameworks and the underlying meta-abstraction they expose to programmers.

Parallel computers, discussed in Section 2.3.2, and in particular their taxonomies proposed by
Flynn and Duncan (Figures 2.15 and 2.16), had us considering to categorize CIM devices within a single
class of parallel computers and, from there, identify the most appropriate programming model for that
class. However, upon closer examination, it became evident that CIM accelerators cannot be confined
to a single category. Different implementations exhibit characteristics that overlap multiple paradigms,
including pipelined vector processors, systolic arrays, and dataflow machines. Even GPUs cannot be
precisely classified within these taxonomies: while warps operate as SIMD units executing the same
instruction, they also display associative processor-like behavior, as their computations can vary slightly
based on local data. Furthermore, modern GPUs increasingly incorporate MIMD capabilities [65].

The CTA model could be used in a CIM programming model as a hardware abstraction. In this
context, each processing element in the CTA can be mapped to a CIM macro. The strength of this
approach lies in the flexibility of the CTA model with respect to network topology and communication
mechanisms, making it well-suited to capture the complexity found in CIM. Moreover, the distinction be-
tween local and remote memory access latencies aligns closely with the physical characteristics of CIM
macros, which operate on local data but incur higher latency when accessing data from other arrays.
However, this view overlooks the hierarchical structure present in general CIM hardware abstraction
layers, as illustrated in Figure 3.2 and reflected in OpenCL’s platform model.

OpenCL, presented in Section 2.3.3, is the only framework in Table 3.3 that uses eager execution.
In contrast, recent work is shifting toward deferred execution, making an OpenCL-style extension for
CIM possible but not ideal for future-proofing. Still, OpenCL’s parallelism abstractions could be reused
in a deferred CIM model, and its hierarchical platform model—similar to the hardware abstraction in
CIM frameworks (Figure 3.2)—could also be leveraged.

Halide, covered in Section 2.3.4, has already inspired the CIM domain, with the CIM-Explorer frame-
work discussed in Section 3.1. Its abstractions—such as the separation of algorithm and scheduling—
support the development of more effective compilers. Additionally, its declarative scheduling primitives
could offer programmers a degree of control over the mapping process onto CIM macros. Following
CIM-Explorer’s approach, the best path forward is to extend the TVM [66] compiler, which—unlike
Halide—is not limited to image processing and provides a more general foundation for CIM support.

Legion, described in Section 2.3.5, would be a great fit for CIM. Legion shares several similari-
ties with Halide, including the separation of algorithm and scheduling, deferred execution, and implicit
parallelism. In addition, Legion is extensible, capable of supporting different coprocessors by filling in
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some predefined interfaces. While this is possible, it introduces unnecessary complexity as program-
mers who only aim to target CIM would be required to adopt Legion, a more general framework whose
broad design may prevent it from fully exposing CIM-specific abstractions to the programmer.

Apache Spark’s programming model, explored in Section 2.3.6, is incompatible with CIM, as it pri-
oritizes resilience through its primary abstraction RDDs. In CIM, resilience does not need to be imple-
mented in software, since faults are typically handled at the hardware level. However, Spark’s shared
variables could still be leveraged to introduce data types with predefined communication patterns that
reduce data transfer overhead. This helps compilers produce more efficient implementations.

3.3. Essentials for CIM programming models
In this section, we address SQ1, introduced in Section 1.3, by identifying the meta-abstractions that
the abstractions of a CIM programming model should implement. These meta-abstractions, along
with several abstractions that embody them from Sections 3.1 and 3.2, are shown in Table 3.4 and
are organized according to the four key qualities of programming models outlined in Section 2.3.1:
productivity, portability, performance, and expressiveness.

Programming Model Qualities Feature Abstractions

Productivity Implicit scheduling Dataflow execution model
Deferred execution model

Portability Hardware generalization Platform model
Seperation of algorithm and scheduling

Performance Optimization Declerative scheduling directives
Mapping Interface, Shared variable types

Expressiveness Explicitly express parallelism
ND ranges, Command queues
Forming DFG using dataflow constructs
Logical regions

Table 3.4: Essential meta-abstractions of CIM programming models, categorized by programming model quality. For each
feature, we identify the abstractions that can be used to realize it, based on the analysis in Sections 3.1 and 3.2.

Productivity in programming models refers to enabling programmers to efficiently develop CIM ap-
plications. The key question, then, is what aspects programmers should not need to manage directly,
and should instead be handled automatically. From Sections 3.1 and 3.2, we observe that most exist-
ing programming models employ implicit scheduling, allowing programmers to specify what should be
done, but not how it is executed. However, most CIM frameworks adopt a declarative or API-driven ap-
proach. This is largely due to the inherent complexity of CIM accelerators, which motivates delegating
much of the scheduling responsibility to the compiler. Consequently, future CIM programming models
should preserve implicit scheduling by adopting deferred or dataflow execution models.

Both deferred and dataflow execution models offer useful properties for CIM. Deferred execution
employs lazy evaluation to construct a computation graph that can be optimized and later mapped to
hardware. In contrast, dataflow execution is driven by data availability and aligns more closely with
the runtime behavior of CIM hardware, explicitly expressing concepts such as pipelines and streams.
Their primary difference lies in how they implement implicit scheduling. Deferred execution performs
scheduling at compile time, whereas dataflow execution does so at runtime, providing greater flexibility
to handle dynamic workloads. The choice between the two depends on the applications the program-
ming model aims to support. A practical middle ground is to combine both approaches, using deferred
execution to build the computation graph and dataflow semantics to execute it, as in Section 4.1.1.

Portability in programming models refers to the ability of programs to execute across different
hardware platforms without requiring programmers to rewrite applications. Achieving portability re-
quires abstractions that enable hardware generalization. As observed in Sections 3.1 and 3.2, this can
be achieved by separating the algorithm from its scheduling or by adopting a platform model.

Separating the algorithm from scheduling divides the program into two parts. The first specifies
the computation to be performed and can be reused across different hardware implementations. The
second part defines or hints at scheduling decisions for the compiler to optimize execution on a specific
architecture. Even with implicit scheduling, guiding the compiler can be highly valuable for optimization.



3.3. Essentials for CIM programming models 37

A CIM platform model should be sufficiently general to accommodate the complexity of diverse
CIM implementations while highlighting the commonalities among them. As discussed in Section 2.1,
different implementations may vary in their circuits, organizations, interconnections, and supported
operations. Ultimately, the key commonality across all designs is the CIM primitive’s 2D structure.
Furthermore, as outlined in Section 3.1, several hierarchical hardware abstractions—such as the one
illustrated in Figure 3.3—have been proposed in the literature to generalize across accelerators tar-
geting specific domains, such as neural networks [45] or pattern matching [72]. We argue that this
abstraction is sufficiently expressive to represent CIM accelerators regardless of their application do-
main. Although the terminology used for each tier may vary across the literature, we adopt the following
naming scheme for each tier: CIM chip–CIM core–CIM macro. Inspired by the CTA model, aspects
such as interconnection type, organization, peripheral circuitry, and the number of processing units are
left intentionally ambiguous to maximize generality.

Figure 3.3: The four tier chip-core-macro-primitive hierarchical architecture that is popular for current homogeneous CIM
devices. The names of each tier differs across the literature. Examples that use it include [45, 54, 55, 51, 46]

Performance in programmingmodels refers to the ability to use high-level abstractions while achiev-
ing efficiency comparable to hand-optimized low-level code. Optimization encompasses not only per-
formance but also the ability to balance additional metrics such as energy consumption and resource
utilization. Based on our analysis, this can be achieved either through declarative scheduling primi-
tives, as in Halide and CIM-Explorer, or through a more imperative approach, such as Legion’s map-
ping interface—an object-oriented interface that designers implement to optimize performance. It is
important to note that both approaches rely on the separation of algorithm and scheduling abstraction.

Shared variable types can also be used for optimization. Specifically, at the device level of CIM, as
discussed in Section 2.1.1, current memristor implementations exhibit limited endurance and require
high reprogramming energy. Tomake CIM a viable solution, frequent reprogramming operations should
therefore be minimized. We believe that this critical issue should be addressed at the programming
level. Different shared variable types could be associated with the memory technology on which they
are stored. In cases wherememristive memory is used, immutability constraints—similar to those found
in functional programming, could prevent programmers from unintentionally writing energy-inefficient
applications, albeit at the expense of reduced expressiveness. We implement such a feature in our
proposed programming model in the form of different memory objects introduced in Section 4.1.3.

Expressiveness in programming models refers to the ability to implement a wide range of applica-
tions effectively. A CIM programmingmodel should therefore provide programmers with the appropriate
abstractions to use as tools to express a plethora of applications. Explicitly specifying parallelism helps
expressiveness because it expands what computations a programmer can represent directly within the
programming model. In addition, it makes it easier for the compiler to extract parallelism from pro-
grams. Various forms of abstractions can be used to achieve this such as ND-ranges and Command
queues that split the responsibility of data and task parallelism respectively. Other options include us-
ing dataflow constructs such as nodes, streams and pipelines that operate on multidimensional data.
In Section 4.1.5, we introduce a CIM data-parallel abstraction inspired by Halide’s tiling.

In conclusion, we recommend that CIM programming models implement abstractions that realize
the following four meta-abstractions: implicit scheduling, hardware generalization, optimization, and ex-
plicit parallelism. For each feature, we have identified existing abstractions that can be adapted for use
in CIM. Nevertheless, new abstractions specifically designed for CIM accelerators may offer improved
suitability. To demonstrate the effectiveness of these concepts, we propose our own programming
model in Chapter 4 that includes both reused and novel abstractions.



4
Proposed programming model

This chapter presents our main contribution a general purpose programming model for CIM acceler-
ators. Initially, building on our definition of a programming model we define the underlying computer
model and the programming abstractions we have chosen. Subsequently, we demonstrate the expres-
siveness of our programming model by implementing three CIM applications, providing both code and
motivational examples to illustrate them.

4.1. Programming model specification
In Chapter 3 we propose that CIM programming models need to contain abstractions that enable the
following meta-abstractions: implicit scheduling, hardware generalization, optimization and explicit ex-
pression of parallelism. Table 4.1 shows the list abstractions we have chosen to implement these
meta-abstractions. The following sections go into the details of each abstraction in order from top to
bottom. At each section we will incrementally build a DSL using our programming model introducing
the syntax and semantics along the way.

Programming Model Qualities Related meta-abstraction Abstractions
Productivity Implicit scheduling Deferred execution model

Portability Hardware generalization Platform model
Separation of algorithm and scheduling

Performance Optimization Shared variable types (Memory model)
Declarative scheduling directives

Expressiveness Explicitly express parallelism Tiling
Forming DFG using kernels

Table 4.1: Essential meta-abstractions of CIM programming models, categorized by programming model qualities. For each
meta-abstraction, the corresponding abstractions used to realize it in our programming model are listed.

4.1.1. Deferred execution model
The execution model defines how instructions are scheduled and processed on the platform. For
simplicity, and because it suffices to understand the execution model, we assume a platform consisting
of a general-purpose host connected to a CIM accelerator. We employ a deferred execution model,
meaning that operations are not executed immediately but are instead recorded in an acyclic dataflow
graph (ADG) which is scheduled at compile time. This graph represents a multi-stage pipeline executed
with dataflow semantics, as shown in Figure 4.1a. Each node in the ADG corresponds to a logical CIM
macro that applies a specific set of operations to an incoming data stream and produces an output
stream. The host constructs this ADG incrementally during program definition. Once the graph is fully
defined, it is optimized and offloaded to the CIM accelerator for execution through a dedicated function
call, realize(), which triggers its evaluation on the device.

38
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(a) (b) (c)

Figure 4.1: (a) A two-stage pipeline defined as an ADG. Each node represents a logical CIM macro that processes a stream of
data. Nodes within a pipeline stage perform the same operation on different data points. (b) Logical CIM primitive components

illustrating input/output vectors and a weight matrix. (c) Physical CIM primitive (CIM-Xbar of binary memristive cells) [49].

Before proceeding, it is important to distinguish between logical and physical CIM primitives or CIM
macros as illustrated in Figure 4.1b and Figure 4.1c, respectively. Logical units represent abstract
computational units expressed in a program, describing how data and operations are conceptually or-
ganized within the system. Physical units, on the other hand, correspond to the actual hardware arrays
composed of memristive cells that perform the computations. The programming model focuses on the
logical level and not how the computation will be mapped to hardware. Hence, we ignore mapping
details such as converting between memory cell precisions and different memory array dimensions.
We discuss mapping in more detail in Section 5.5.

Our execution model adopts a kernel-parallelism design pattern similar to OpenCL, as discussed
in Section 2.3.3. A kernel is a programmer-defined function representing a single pipeline stage in the
ADG, and one kernel instance executes on each logical CIM macro in that stage. As shown in ADGs
like Figure 4.1a, data parallelism arises by grouping CIM macros within the same stage, where each
performs the same operation on different data elements. In contrast, task-level parallelism appears
across pipeline stages as data flows from one CIM macro to the next.

Similar to OpenCL, to maximize performance, kernels must be mapped efficiently onto physical CIM
macros. Each kernel should exploit the full height and width of the CIM primitive it is assigned to in
order to maximize parallelism per processing unit. In addition, data should be distributed evenly across
processing units to avoid load imbalance. The ADG itself consists of logical CIM macros that execute
concurrently, provided sufficient resources are available. If resources are limited, one or more nodes
must execute sequentially, which degrades performance.

4.1.2. Platform model
The platform model is essential because CIM accelerators can differ at every level of design, from the
circuit primitives to the overall system organization. Although our goal, as mentioned in Section 1.4, is
not to develop a programming model that unifies all these diverse architectures, we must still represent
the underlying machine through an abstraction that captures its key characteristics while remaining
flexible enough to accommodate variations. Hence, machines that adhere to this platform model are
considered compatible with our programming model. Moreover, the platform model not only hides the
complexity specific to each accelerator but also highlights their shared features for the programmer.

Our platform model, shown in Figure 4.2, consists of a general-purpose host and a single CIM
device that extends the homogeneous hierarchical hardware abstraction introduced in Section 3.3.
Each CIM macro contains a single CIM primitive, but we make no assumptions about its dimensions or
supported operations. At every level of the hierarchy, the model includes a memory region or buffer and
a conventional post-processing functional unit (FU), similar to CIM-MLC’s hardware abstraction [45].
Following the CTA model in Section 2.3.2, we also avoid assuming any specific interconnect topology,
as such details are complex, low-level, and best left to hardware designers rather than programmers.

The design choices behind the platform model were made to maximize applicability across a variety
of implementations. The ambiguity of the exact specs of the CIM macro and post processing circuits al-
low the coexistence of implementations with different supported operations. Furthermore, the hierarchy
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Figure 4.2: Our platform model consisting of a homogeneous hierarchical CIM accelerator and a general-purpose host.

and lack of interconnection specification are flexible enough to accommodate different organizations
beyond just a heterogeneous system. Specifically, by assuming that each tier in the hierarchy contains
a single element, we can represent single CIMmacro accelerators [74] . Similarly, by assuming a single
CIM chip and CIM core, we can express a dataflow architecture between CIM macros. Furthermore,
the hierarchical structure can represent a distributed system, where the groupings reflect the relative
proximity among CIM macros. Similar to the CTA, Figure 4.2 does not assume a memory reference
mechanism such as shared memory or message passing.

4.1.3. Memory model
The memory model defines the system’s disjoint memory regions and the corresponding dataflow of
execution. As illustrated in Figure 4.2, we distinguish between two types of memory: the memristive
memory that constitutes the CIM primitives, and the conventional memory present at each level of the
hierarchy. As discussed in Section 2.1.1, reprogramming memristive cells is costly in terms of both
energy consumption and cell endurance. Consequently, conventional memory is employed to store
intermediate results that are frequently overwritten. Depending on the application, this conventional
memory may serve as input/output buffers within the CIM macro, or as scratchpad memory.

The hierarchy, shown in Figure 4.2, highlights the different communication latencies that exist be-
tween processing units. Two CIM macros inside the same CIM core can exchange data faster than
CIM macros in different CIM cores, and the same idea holds when comparing communication within
a CIM chip versus across CIM chips. Therefore, programmers should try to make the most of spatial
locality at each level of the hierarchy to reduce communication overhead.

Within the memory model, two types of memory objects are defined: Tensors and Streams. These
abstractions represent distinct ways of organizing data. Tensors represent multi-dimensional data lay-
outs, while Streams describe the data movement between different processing stages.

A Tensor, illustrated in Figure 4.3a, is an ordered, immutable, multidimensional array that contains
elements of a single data type, with all values fully computed and available. A Tensor is considered
ordered because its elements and dimensions follow a defined sequence that determines how data
is laid out and accessed in memory. Tensors are intended to be distributed across the various CIM
macros of the accelerator and stored within the weights of the corresponding CIM primitive.

A Stream, shown in Figure 4.3b, is a handle to an ordered, 1D sequence of elements of a single
data type. The data in a Stream may not be immediately available and can be of unbounded length.
Unlike Tensors, Streams are designed to feed preloaded CIM macros by continuously transferring data
through their input vectors as illustrated in Figure 4.3c. Streams also feature a sliding window, enabling
the processing of multiple elements in batches. The default stride for the window is one element.

Figure 4.3c illustrates an abstract example of the system’s dataflow. First, Tensors are mapped onto
CIM primitives. For simplicity, we only show two CIM primitives; however, the actual number depends
on the size of the x,y,z dimensions. Data elements are then streamed from the input stream and
broadcast to all CIM primitives. Once the results are computed (shown in purple), they are merged
into a new output stream. This provides an abstract representation of this type of computation, where
the exact configuration of the Tensor, the window size of the Stream, and the reduction depend on the
specific operation being performed.
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(a) (b) (c)

Figure 4.3: (a) A 3D Tensor with dimensions x, y and z organized in this order. (b) Illustration of a Stream flowing from right to
left with a sliding window and stride of three elements. (c) Illustration of an input stream feeding two preloaded logical CIM

primitive units, with intermediate results merged to create an output stream.

4.1.4. Separation of algorithm and scheduling abstractions
The separation of algorithm and scheduling, as shown in Chapter 3, is a prevalent feature of many pro-
gramming models, both CIM and non-CIM. We therefore considered it a mandatory design aspect. The
key question then becomes how to realize this separation. In our model, this is achieved through three
abstractions: dimension-agnostic kernels, symbolic variables, and declarative scheduling directives.

We propose dimension-agnostic kernels as a novel abstraction that extends the kernel design pat-
tern by decoupling the algorithm from scheduling, as illustrated in Listing 4.1. Similar to Halide [48],
the Func output type represents intermediate results. Its interpretation is either a Tensor or Stream
depending on the type of the function parameter it is passed to. Tensors use angle brackets (<>) to
specify the type of their internal elements and the sizes of their dimensions, while Streams use them to
specify the element type and the size of the sliding window and the stride. All sizes are expressed us-
ing the symbolic variable type that provides generality. Moreover, Streams enable implicit parallelism
throughout the kernel’s execution for each chunk of data derived by applying the sliding window to the
stream, whereas tensors persist across iterations. This design choice encourages writing programs
that avoid modifying the CIM primitive.

An immediate question is what operations are available within a kernel. In our platform model
definition, we make no assumptions about the supported operations in order to remain as general
as possible. Consequently, we assume that the underlying accelerator can perform any basic micro
operation that can be implemented on CIM, such as MVM or search operations. In our examples,
in Section 4.2 we assume that all CIM operations are contained in the cimOps object, and that all
peripheral operations are contained in the aluOps object that are assessable inside all kernels. We
discuss what operations should be available within a kernel in Section 5.3.

Symbolic variables in kernels express relationships between input and output dimensions that hold
independently of their concrete values. In Listing 4.1, the output’s size (N) matches the outer dimen-
sion of weights, while its inner dimension corresponds to the sliding-window size (M) of s0. More
complicated relationships can also be formed such as using operators to an output dimension that is
the product of two input dimensions. The combination of symbolic variables and dimension-agnostic
kernels lay the groundwork for the data-parallel tiling abstraction in Section 4.1.5.

Similar to Halide, our schedule directives are declarative loop transformations that take symbolic
variables and integers as arguments. We adopt this approach to allow programmers to influence
scheduling for optimization purposes. In our model, scheduling directives are expressed as method
calls applied to kernel invocations. The complete list of scheduling primitives used in this paper is
provided in Appendix A following Halide’s notation.

1 Func<int64,N> Kernel(Tensor<bit, N, M> weights, Stream<bit, M, stride> s0) {
2 return cimOps.mvm(weights,s0);
3 }

Listing 4.1: Example kernel definition accepting a 2D tensor and a stream of sliding window size M that perfroms MVM.
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4.1.5. Expressing Data-Parallelism using the tiling abstraction
Data parallelism can be defined as performing a set of operations on multiple data points in parallel.
To efficiently exploit data-parallelism in CIM, compilers must easily derive data mapping from source
code. The abstractions listed in this section aim to make data parallelism more explicit.

To express data-level parallelism we were inspired by the tile scheduling primitives used by
Halide’s programming model, as explained in Section 2.3.4. Pelke et al. [56] have already adopted
tiling for programming both Binary and Ternary Neural Networks in CIM. Our contribution is to gener-
alize this idea for programming other applications outside the machine learning domain and to extend
tiling to represent both data parallelism, distribution and reduction.

In Figure 4.4, we provide a conceptual example of how tiling can be applied in CIM. We assume that
our input is a 1D Tensor of data shown in Figure 4.4a. Our goal is to distribute this Tensor efficiently
across the accelerator’s CIM macros, as weights. By using tiling, we can change the dimensionality of
the input data while preserving order, assigning the new dimensions to useful concepts using Halide’s
symbolic variable type to represent iteration. For example, in Figure 4.4b, we introduce the dimX
symbolic variable that we bind to the width of the CIM primitive. Then the input data is rearranged into
a 2D Tensor that can be directly mapped to a CIM macro with a sufficient height. However, depending
on the architecture, such a large CIMmacro may not be available. In that case, as shown in Figure 4.4c,
the data can be split into a 3D structure, where each 2D slice is distributed to a different CIM macro. Yet
again, the system may not have a sufficient number of CIM macros to execute all operations in parallel.
In Figure 4.4d, we introduce another dimension representing time. This example demonstrates how
Halide’s tiling naturally synergizes with the 2D structure that CIM primitives of all CIM accelerators have
in common allowing programmers to influence scheduling.

(a) (b)

(c) (d)

Figure 4.4: (a) 1D Tensor before tiling. (b) 2D Tensor that can be mapped to a sufficiently large CIM macro. (c) 3D Tensor that
can be mapped to multiple 3x3 CIM macros. (d) 4D Tensor that allows multiple weights to be applied to many 3x3 CIM macros

over time.

An abstract tiling example is shown in Listing 4.2. Initially, we define a set of scalar values on the
host: the data width, number of input data elements and a stride. Next, we declare the required Tensors
and Streams on the host. In the angle brackets (<>), both specify an element type, but Tensors define
their structure through dimensions, whereas Streams additionally specify a sliding-window size and a
stride. We then offload the Tensors to the accelerator. Note the use of symbolic variable instances
x and y, which are bound to the dimensions of the weights_on_acc tensor. Afterward, we invoke
the kernel defined in Listing 4.1. Finally, we use the symbolic variables as arguments to scheduling
primitives that guide the program’s mapping.

In Listing 4.2, we use the tile and bind scheduling primitives. First, tile is used to split the
weights_on_acc matrix—whose dimensions are bound to y and x—into the internal dimensions yi
and xi. These have sizes M_HEIGHT and M_WIDTH, respectively, which—together with CORES and
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MACROS—are compile-time constants defining the dimensions of the CIM primitives and the number of
CIM macros and CIM cores in the platform defined in Section 4.1.2. Then, we use bind to assign each
dimension to a tier in the hierarchical platform model. The resulting schedule interpretation is shown
in Listing 4.3 where parallel for loops are introduced to represent parallelism across CIM core and CIM
macro units. At the same time, at each call, a matrix of data is fed into the function call based on the
dimensions of the macro. For brevity we omitted the indexing of the result type. The nested loop is
repeated sequentially for each sliding_window in the s0 stream.

tile and bind are just two possible scheduling primitives from Table A.1. Dimensions can be
assigned to other concepts as well, explored more in Section 4.2. The result is an abstraction that
is capable of expressing much more than just data parallelism. For example, the sequential and
reorder directives can be used to define sequential iteration in the case of insufficient resources,
something that OpenCL’s ND-ranges cannot do.

1 int64 n_elem, data_width, stride = 10_000, 32, 32;
2 Tensor<bit, n_elem, data_width> weights_on_host = get_weights();
3 Stream<bit, data_width, stride> s0 = get_stream();
4 Func weights_on_acc = weights_on_host;
5 Func result = Kernel(weights_on_acc(y,x), s0);
6 .tile(y, x, yi, xi, M_HEIGHT, M_WIDTH)
7 .bind(y, CORES)
8 .bind(x, MACROS)
9 .bind(yi, M_HEIGHT)
10 .bind(xi, M_WIDTH);

Listing 4.2: Abstract example of a call to the kernel defined in Listing 4.1. The symbolic variables highlighted in red are bound
to the dimensions of the weights_on_acc functor.

1 for sliding_window in s0:
2 parallel(cores) for i_y in y:
3 parallel(macros) for i_x in x:
4 result[...] = Kernel1(weights_on_acc(
5 i_y*macro_ydim:macro_ydim+i_y*macro_ydim,
6 i_x*macro_xdim:macro_xdim+i_x*macro_xdim
7 ),
8 sliding_window
9 );

Listing 4.3: Interpretation of the scheduling directives applied on Kernel in Listing 4.2. To sumarize, tiling is used to introduce
a nested for loop. Each for loop is assigned a resource core, macro to be parallelized.

4.1.6. Expressing Task-Parallelism using kernel defined DFG
Task parallelism refers to executing multiple distinct tasks in parallel, each operating on the same
data point in a pipeline fashion to collectively produce a final result. In programming, this is typically
represented by deriving an ADG from the source code, which is subsequently mapped to hardware.
The abstractions introduced in this section are intended to facilitate the extraction of task-parallelism.

Initially, we turned to Halide’s programming model, which implements the pipeline design pattern
[78, p.103] for constructing image processing pipelines. This dataflow coordination is made explicit
using asynchronous programming to construct an ADG using functors (Func) that are produced from
kernel invocations. Dependencies are constructed by passing the resulting functors as input arguments
to subsequent kernels. However, by default, these pipelines execute sequentially, with stages inter-
leaved to maximize locality. Although Halide provides the asynch directive to enable asynchronous
pipeline execution, it is rarely used due to the difficulty of achieving effective load balancing. However,
through our implementation of data parallelism in Listing 4.2, we provide users with greater control over
load balancing, thereby addressing this issue.

In contrast to Halide, in our programming model a single kernel corresponds to a single stage
in a data-flow pipeline. Consequently, all pipeline stages can execute in parallel, provided sufficient
resources are available. Similar to Halide, the parameters passed into a kernel serve as pipeline
inputs, while output functors can be consumed by other kernels, explicitly defining data dependencies
within the program.
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An example of a pipeline consisting of a single linear chain of stages—referred to as a linear
pipeline—is shown in Listing 4.4 and illustrated in Figure 4.5a. The example program defines four
pipeline stages, each with a single Tensor argument. The first stage additionally receives a Stream as
input, while the remaining stages consume the output functor of the preceding stage. For this example,
we assume that the second parameter of all kernels is a stream, so all functors are treated as streams.

We employ asynchronous execution semantics so that no computation is offloaded to the accel-
erator until the realize function is invoked. The realize function is a blocking call that accepts a
handle to a CIM device (in case multiple devices are connected to the host). Execution resumes only
after stage4 has been computed and offloaded back to the host.

1 /// ...
2 /// Define tensors and streams before this point
3 /// Define Pipeline
4 Func stage1 = Kernel1(tensor1, stream1);
5 Func stage2 = Kernel2(tensor2, stage1);
6 Func stage3 = Kernel3(tensor3, stage2);
7 Func stage4 = Kernel4(tensor4, stage3);
8 /// Execute pipeline (blocks)
9 Tensor<...> host_location = stage4.realize(device1);

Listing 4.4: Example of a four stage pipeline constructed asynchronously. All pipeline stages are preloaded with tensors then
streams are fed into the resulting pipeline, forming explicit dependencies between stages. The resulting ADG is only executed

once realize is called.

(a) (b)

Figure 4.5: Example pipelines illustrations from [78, p.106]. (a) Linear pipeline: sequential chain of stages. (b) Nonlinear
pipeline: data may be split to form parallel stages that perform the same operation. Introduces data parallelism for load

balancing.

Resource allocation for each pipeline stage is handled by introducing data parallelism: symbolic
variables can be used on pipeline input tensors as explained in Section 4.1.5, to distribute the workload
across multiple CIM macro units, enabling fine-grained control over the resources assigned to each
stage. This allows us to construct nonlinear pipelines, as illustrated in Figure 4.5.

4.2. Implemented applications
Now that we have a basic understanding of our programming system, we evaluate it by expressing the
CIM applications introduced in Section 2.2. For each CIM application, we provide the code snippet that
describes the computation along with the kernels it relies on. We assume access to a programmable
accelerator that conforms to the computer model defined in Sections 4.1.1 to 4.1.3 and consists of a
single chip with two cores, each containing two macros. In addition, we assume that the accelerator
provides the CIM primitives required to support the operations used in each CIM application.

4.2.1. Integer Sorting
We implement an example of integer sorting assuming the existence of a programmable accelerator
with an architecture similar to MemSort, as described in Section 2.2.1. The example considers a prob-
lem size of eight integers—chosen for illustration purposes, though it can be easily extended to larger
datasets. Since the accelerator consists of four CIM macros, and each CIM macro can store up to two
integers, all eight integers fit on the accelerator at once.

The program designed for the accelerator can be represented as a three-stage pipeline, shown in
Figure 4.6, which processes one integer at a time to determine its exact position in the sorted array.
In the first stage, the input integer—71 in this example—is compared against all other integers in the
unsorted stream, producing a binary array where a one indicates that the input is less than the cor-
responding element. This includes the CIM macro that contains the integer as it needs to placed at
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its input buffer. In the second stage, a popcount operation determines the index position, and in the
third stage, the element is placed at the calculated position. Figure 4.7 illustrates the same process as
Figure 4.6 but on a simplified illustration of the assumed hardware.

Figure 4.6: Dataflow graph for the sorting application, consisting of three stages: comparing the input integer (71) with all
others, computing its index via popcount, and placing it in its sorted position.

Figure 4.7: Illustration of a single iteration of sorting on an accelerator with one chip containing two cores, each with two
macros. Arrow colors match Figure 4.6. The input integer (71) is broadcast (blue) from Macro1 to all other macros, then a

reduction (orange) determines it belongs at index 5.

The code example for the sorting application is shown in Listing 4.5. It begins by defining a one-
dimensional Tensor of unsorted integers on the host. Subsequently, by placing it on the right-hand side
(RHS) of a functor assignment, the unsorted integers are offloaded from the host to the accelerator.
From this functor, we then define a handle to a stream. As a result, the unsorted integers are first
stored on the CIM primitive units and later streamed through the pipeline once it is constructed. Next,
we define the pipeline stages. The CompareLe kernel, shown in Listing 4.6 performs element-wise
comparisons between a single element—referred to as the streamed integer—and the entire tensor
of unsorted integers, returning a functor of the same length whose entries are binary values indicating
whether the streamed integer is less than or equal to each CIM array entry. The resulting functor is then
passed as a tensor to the PopCount kernel, where it is aggregated into a single value representing an
index. Finally, the streamed element is inserted into the sorted array.

We now focus on the scheduling portion of Listing 4.5. Using the split directive, we change the
dimensionality of the unsorted tensor from that in Figure 4.8a to that in Figure 4.8b. Next, with the bind
directive, we explicitly specify how the unsorted integers are laid out on the accelerator to produce the
result shown in Figure 4.7. As a consequence, the interpretation of the schedule transitions from the
sequential version in Listing 4.7 to the parallel version in Listing 4.8, where comparisons are parallelized
both within CIM macros and across CIM macros and CIM cores.
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Apart from split and bind, we use two additional scheduling directives. With reduction_order,
we specify that the summation occurring in the PopCount kernel must take place first within CIM
macros and then across CIM macros and then CIM cores. In addition, we indicate that the sorted list
must be stored in L2 memory using malloc_at.

By calling realize the program blocks until the execution on the accelerator finishes. While we
have specified that the allocation size of the resulting array this value can also be derived from the
kernel signatures used in the computation and their input parameters at compile time. This allows the
compiler to verify memory correctness and avoid unnecessary over-allocation.

1 /// Definitions of data stored on host
2 int64 n_elem = 8;
3 Tensor<int64, n_elem> unsorted_on_host = read_file();
4

5 /// Algorithm defines pipeline
6 Func unsorted_on_acc = unsorted_on_host(x);
7 Stream<int64, 1, 1> unsorted_stream = unsorted_on_acc;
8 Func comparisons = CompareLe(unsorted_on_acc, unsorted_stream);
9 Func index = PopCount(comparisons);
10 Func sorted[index] = unsorted_stream;
11

12 /// Schedule
13 unsorted_on_acc
14 .split(x, i_cores, i_macros, i_m_height, _, _, M_HEIGHT)
15 .bind(i_cores, CORES)
16 .bind(i_macros, MACROS)
17 .bind(i_m_height, M_HEIGHT)
18 index
19 .reduction_order(i_m_height, i_macros, i_cores)
20 sorted
21 .malloc_at(L2)
22

23 /// Execute. Blocks until completion
24 Tensor<int64, n_elem> result = sorted.realize()

Listing 4.5: Example of sorting implemented using our programming model. The symbolic variable x is red to highlight that it is
bound to the dimensions of the unsorted_on_host tensor. All other symbolic variables begin with the letter i to avoid

confusion with constants, which are written in uppercase and may have similar names.

1 Func<int64,N> CompareLe(Tensor<int64, N> unsorted, Stream<int64, 1, 1> s0)
2 {
3 return cimOps.compare(unsorted, s0, LE);
4 }
5 Func<int64,1> PopCount(Tensor<int64, N> comparisons)
6 {
7 return aluOps.reduce_sum(comparisons);
8 }

Listing 4.6: Kernel definitions used in the sorting example in Listing 4.5.

1 for element in unsorted_stream:
2 for i_x in x:
3 comparisons[...] = CompareLe(unsorted_on_acc(x),element);

Listing 4.7: Interpretation of calling CompareLe in Listing 4.5 without scheduling applied. For each stream element (unsorted
integer), comparisons with the unsorted integers stored in the CIM macros occur sequentially. Indexing is omitted for simplicity.

1 for element in unsorted_stream:
2 parallel(CORES) for i_cores in CORES:
3 parallel(MACROS) for i_macros in MACROS:
4 parallel(M_HEIGHT) for i_m_height in M_HEIGHT:
5 comparisons[...] = CompareLe(unsorted_on_acc(...),element);

Listing 4.8: Interpretation of calling CompareLe in Listing 4.5 with the bind and split scheduling directives. For each stream
element (unsorted integer), comparisons with the unsorted integers stored in the CIM macros occur in parallel across CIM

cores, across CIM macros, and within each CIM macro. Indexing is omitted for simplicity.
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(a) (b)

Figure 4.8: Dimensionality of the unsorted_on_acc tensor in Listing 4.5 (a) Without applying the split scheduling directive
(b) With the split scheduling directive where the dimension order from innermost to outermost is M_HEIGHT, MACROS, CORES.

4.2.2. Pattern matching
In Section 2.2.2 we detail different types of possible match types. An example, of an exact match
application is monitoring a network data stream to identify malicious patterns encoded in a lookup table
(LUT). Once such a pattern is detected, we want to print the stream offset and the address of the
matching case. Furthermore, in case of multiple matches we want to print the pattern with the lowest
address on the host. In contrast with other application, the LUT is encoded in ternary values (trits).

The two-stage pipeline for this application is illustrated in Figure 4.9. In the first stage, a single bit
is streamed into a shift register, which is then compared against the entire LUT. This comparison may
produce multiple partial matches. For the notation of partial matches, we use the format M𝑥,r𝑦, where
𝑥 denotes the CIM macro number and 𝑦 the row number within that CIM macro. Partial matches must
then be gathered and resolved into a single LUT index in the second pipeline stage. Simultaneously,
a per-bit counter is maintained in the first stage to track the current offset in the stream. Offset and
match information are forwarded to the second stage only if at least one partial match is detected. The
program should terminate after the second stage has produced its output.

Figure 4.10a shows the LUT used in our motivational example. It consists of four rows, with each
row representing an entry in the LUT, colored distinctly. As discussed in Section 2.2.2, a key challenge
in pattern matching applications is deciding how to distribute the data across the available memory
arrays. Assuming we have only CIM-CAM units that can each store two rows of eight bits, there are
two possible scheduling strategies. Figure 4.10b proposes a row-wise placement of LUT segments,
while Figure 4.10c changes the order to a column-wise order. Each approach has different trade-offs,
which we discuss below but both are expressible within our programming model.

Figure 4.9: Dataflow graph for the pattern matching application. Blue lines represent data broadcast to the pipeline, while
orange lines indicate reduction operations.

(a) (b) (c)

Figure 4.10: Different ways to split the 4×16-bit LUT among CIM macros of size 2×8-bit. (a) shows the original LUT with
color-coded entries, (b) illustrates a row-wise distribution of segments, and (c) presents a column-wise distribution.

Assuming we choose the row-wise distribution shown in Figure 4.10b, the resulting execution is
illustrated in Figure 4.11a. From this execution, we observe that the input data is broadcast to each
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CIM core, and each CIM macro within a CIM core processes half of the input data. CIM macros within
the sameCIM core store an entire LUT entry and each CIMmacro returns the addresses wherematches
are detected. Then these results are reduced using an AND (&) operation to determine which LUT row,
if any, constitutes a complete match. Finally, a minimum operation is performed at the chip level to
resolve cases where multiple matches occur.

On the other hand, the column-wise distribution shown in Figure 4.10c results in the scheduling
illustrated in Figure 4.11b. In this case, each CIM core receives only half of the shift register reducing
the input size required per CIM core. However, it makes the reduction phase more complex. Since indi-
vidual LUT entries are distributed across multiple CIM cores, their partial results must first be gathered
(++) at the chip level before the true matching indices can be determined. Hence, the column-wise
case involves more post-processing data movement at the chip level however it could be favorable
when CIM cores lack local post-processing units, either to reduce area cost or simplify the design.

Determining which of the two distributions is better depends on the underlying hardware. Regard-
less, our goal is to provide sufficient expressiveness in the programming model. This ensures that
design space exploration is straightforward and that different schedules are easily expressible.

(a)

(b)

Figure 4.11: Different schedules of the pattern matching application. LUT entries in the CIM macros are from Figure 4.10, and
the blue and orange lines are from Figure 4.9. Partial addressing uses Mxry (x = CIM macro, y = row). (a) Row-wise schedule,

(b) Column-wise schedule.
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Listing 4.9 shows the patternmatching program’s code. The program begins by defining the required
scalars, tensors, and streams on the host. This includes a 2D Tensor representing the LUT and the
data_stream of bits that we monitor using a sliding window of length equal to the pattern_size. By
default, all streams advance their sliding window with a step size of a single data element hence we omit
the stride. Next, we offload the lut_on_host tensor to the accelerator. The algorithm is expressed as
a two-stage pipeline, illustrated in Figure 4.9. In the first stage, CompareExact compares a window
of the network stream against the entire LUT to identify matches and returns a tuple. The first tuple
element contains the complete set of matching LUT addresses, organized as a 1D structure, while the
second element represents the corresponding stream offsets. Both values are passed to the second
stage, MultMatchResolver, which performs aggregation using a minimum operation.

Looking at the scheduling, we use the tile and bind directives to split the LUT both horizontally
and vertically and distribute it across the accelerator’s CIM macros. The resulting change in dimen-
sionality is shown in Figure 4.12. Specifically, the original two dimensions are expanded into four to
match the structure of the CIM macros. This transformation is also reflected in the interpretation of
CompareExact, which in Listing 4.11 is a sequential operation comparing each entry to the stream’s
window size, whereas in Listing 4.12 it expresses parallel pattern matching across CIM macros, CIM
cores, and within each CIM macro.

In addition, by using the commented-out reorder directive, we can switch from the row-wise sched-
ule shown in Figure 4.11a to the column-wise schedule shown in Figure 4.11b. This demonstrates that
we can switch between different schedules without modifying the core computation. Thus, program-
mers can potentially explore alternative mappings with minimal effort.

The kernel definitions used in Listing 4.9 are shown in Listing 4.10. The CompareExact function
performs a search operation between the lut and s0, returning a list of matches of size M. We do this
because, in reality, the number of matches cannot be determined exactly and is only guaranteed to be
less than or equal to the number of LUT entries (M). By specifying the maximum output size explicitly,
the programming model can allocate sufficient space during compilation while still allowing the number
of matches to vary at runtime. The function also uses the offset operation, which returns an integer
indicating the current position in the stream. Both values are returned as elements of a tuple, where
each element is annotated using the (type, length) notation. The MatchResolver function then
receives these matches, which may also be zero—in which case the kernel does not execute—and
returns both the offset and the final resolved match as tuple elements.

Similar to the previous examples, once realize is called on tuple execution begins. The function
will block until a single complete match is found. The tuple can then be unfolded into the LUT index
and an offset, representing the resolved match.

1 /// Definitions of data stored on host
2 int64 n_patterns, pattern_size = 4, 8;
3 Tensor<trit, n_patterns, pattern_size> lut_on_host = read_file();
4 Stream<bit, pattern_size> data_stream = get_data_stream();
5

6 /// Algorithm
7 Func lut_on_acc = lut_on_host(lut_height, lut_width);
8 Func (matches, offset) = CompareExact(lut_on_acc, data_stream);
9 Func tuple = MatchResolver(matches, offset);
10

11 /// Schedule
12 lut_on_acc
13 // .reorder(lut_width, lut_height) // Uncomment for column order
14 .tile(lut_height, lut_width, i_lut_height, i_lut_width, M_HEIGHT, M_WIDTH)
15 .bind(lut_height, CORES)
16 .bind(lut_width, MACROS)
17 .bind(i_lut_height, M_HEIGHT)
18 .bind(i_lut_width, M_WIDTH)
19

20 /// Execute (blocks)
21 Tensor<int64, 2> (index, offset) = tuple.realize()

Listing 4.9: Example of network monitoring application that utilizes pattern matching implemented using our programming
model. The symbolic variables lut_height and lut_width are highlighted in red to show that they are bound to the

dimensions of the lut_on_host.
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1 Func<(int64,M),(int64,1)> CompareExact(Tensor<trit, M, N> lut, Stream<bit,N> s0)
2 {
3 return (cimOps.search(lut, s0, EXACT), s0.offset());
4 }
5

6 Func<int64,2> MatchResolver(Tensor<int64, N> matches, Tensor<int64, 1> offset)
7 {
8 return (aluOps.min(matches), offset);
9 }

Listing 4.10: Kernel definitions used in the pattern matching example in Listing 4.9.

1 for bit in data_stream:
2 sliding_window = (sliding_window << 1) | bit;
3 for lut_entry in lut_height:
4 comparisons[...] = CompareExact(lut_on_acc(...), sliding_window);

Listing 4.11: Interpretation of calling CompareExact in Listing 4.9 without any scheduling applied. Each data_stream bit is
shifted into the sliding window, and comparisons against each pattern stored in the accelerator’s CIM macros occur

sequentially. Indexing is omitted for simplicity.

1 for bit in data_stream:
2 sliding_window = (sliding_window << 1) | bit;
3 parallel(CORES) for lut_height in CORES:
4 parallel(MACROS) for lut_width in MACROS:
5 parallel(M_HEIGHT) for i_lut_height in M_HEIGHT:
6 comparisons[...] = CompareExact(lut_on_acc(...), sliding_window);

Listing 4.12: Interpretation of calling CompareExact in Listing 4.9 with the bind and tile scheduling directives. Each
data_stream bit is shifted into the sliding window and pattern comparisons occur in parallel across CIM cores, across CIM

macros, and within each CIM macro. Indexing is omitted for simplicity.

(a) (b)

Figure 4.12: Dimensionality of the lut_on_host tensor in Listing 4.9 (a) Without applying the tile and bind scheduling
directives (b) With the tile and bind scheduling directives where the dimension order from innermost to outermost is

M_WIDTH, M_HEIGHT, MACROS, CORES.

4.2.3. Convolutional Neural Network Inference
We now turn to the implementation of convolutional neural network (CNN) inference. We implemented
a minimal binary CNN (BNN) that includes at least one instance of each operation discussed in Sec-
tion 2.2.3: convolution, max-pooling, sigmoid activation (𝜎), and a fully connected stage consisting of a
single dense layer. The resulting network is shown in Figure 4.13. We assume an architecture similar
to ISAAC [52], but one that is programmable and consistent with our computer model.

The first operation we implement is convolution, specifically Conv2D. Unlike the other operations
presented so far, convolution requires the use of img2col, a data-layout transformation that converts
the convolution into a series of MVMs that can be efficiently mapped to CIM-Xbars. To illustrate this,
we revisit the transformation from Section 2.2.3, shown again in Figure 4.14, this time highlighting all
new symbolic variables used by the kernel that implements img2col in Listing 4.13.
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Figure 4.13: Structure of the CNN implemented in this section, containing a single convolution layer, max-pooling layer,
sigmoid (𝜎) activation layer, and a single linear layer in its fully connected network.

Listing 4.13 receives two tensors as input: the original set of filters and the input feature map (IFM),
with dimensions shown in Figure 4.14a. The kernel then transforms each tensor and returns the filters
and IFM as shown in Figure 4.14b. Each tensor is transformed by applying scheduling directives to it.

The transformation for the filters involves fusing the 𝑘𝑤, 𝑘ℎ, and 𝑖𝑐 dimensions into a single
dimension using the fuse scheduling directive. We bind this new dimension to the 𝑓𝑘 symbolic variable
and use it in the return type for the transformed filters. The ifm transformation is more involved:
we first apply tile to introduce two new nested dimensions in 𝑖ℎ and 𝑖𝑤, called 𝑖ℎ_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 and
𝑖𝑤_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙, with lengths equal to 𝑘ℎ and 𝑘𝑤, respectively. Next, we use the reorder scheduling
directive to change the nesting order of 𝑖𝑐. Finally, we apply fuse to the remaining dimensions and
bind them to the symbolic variables 𝑓𝑘 and 𝑜𝑤ℎ. In this case, we can reuse 𝑓𝑘, since 𝑖ℎ_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 and
𝑖𝑤_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 have lengths equivalent to 𝑘ℎ and 𝑘𝑤, making the product 𝑖ℎ_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙×𝑖𝑤_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙×𝑖𝑐
equal to 𝑘ℎ × 𝑘𝑤 × 𝑖𝑐.

We note that binding 𝑓𝑘 and 𝑜𝑤ℎwas entirely optional and done for readability. By using the wildcard
operator in the fuse directive, the new dimensions could have been left unnamed, as explained in
Appendix A. In the return type, the missing dimensions could then be expressed as products of the
symbolic variables involved in the fusion: for 𝑓𝑘, this would be 𝑘𝑤 × 𝑘ℎ × 𝑖𝑐, and for 𝑜𝑤ℎ, it would be
𝑖ℎ×𝑖𝑤. Another important distinction is that 𝑖ℎ and 𝑖𝑤 in the return type have different dimensions than
their counterparts in the input, since the tile directive modifies their sizes.

(a) (b)

Figure 4.14: Example from Section 2.2.3 used to explain Listing 4.13 (a) Binary conv2d_nhwc example with a single-batch
IFM and a stride of one. Colored squares on IFM indicate sliding-window positions. (b) img2col transformation of

Figure 2.11a, resulting in a series of MVMs where filters form the first matrix and the IFM is reshaped into column vectors. We
highlight with red the symbolic variables that are bound in Listing 4.13.

1 Func<(bit, oc, fk), (bit, fk, owh)> Img2col(
2 Tensor<bit, oc, ic, kh, kw> filters, Tensor<bit, ic, ih, iw> ifm) {
3 return (
4 filters
5 .fuse(ic, kh, kw, fk),
6 ifm
7 .tile(ih, iw, ih_internal, iw_internal, kh, kw)
8 .reorder(iw_internal, ih_internal, ic, iw, ih)
9 .fuse(ih_internal, iw_internal, ic, fk)
10 .fuse(ih, iw, owh)
11 );
12 }

Listing 4.13: Kernel used to implement the img2col data-layout transformation, converting from Figure 4.14a to Figure 4.14b. It
receives the original IFM and filters, performs the transformation, and returns a tuple of the transformed IFM and filters.
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Once img2col is performed, the resulting MVMs can be mapped to CIM-Xbars. Figure 4.15a shows
an example in which the entire kernel is mapped onto a full CIM-Xbar, and the yellow column vector
from Figure 4.14b is applied to produce the first two elements of the output feature map (OFM). In
this example, we assume 2×2 memory arrays. As explained in Section 2.2.3, this large MVM can be
decomposed into multiple smaller MVMs, after which the partial results are aggregated through addi-
tion. Similar to pattern matching, Figure 4.15b and Figure 4.15c illustrate the two possible schedules:
a row-wise distribution, shown in Figure 4.16a, and a column-wise distribution, shown in Figure 4.16b.

(a) (b) (c)

Figure 4.15: (a) Illustration of executing the yellow column vector from Figure 4.14b on a single CIM-Xbar, (b) distributed in a
row-wise fashion to 2x2 CIM-Xbars and (c) presents a column-wise distribution.

(a)

(b)

Figure 4.16: Two different schedules for the Conv2D operation on the assumed hardware. (a) illustrates the row-wise
distribution from Figure 4.15b, in which each output channel is mapped to a single core, and (b) shows the column-wise

distribution from Figure 4.15c, where output channels are distributed across cores.
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In Figure 4.16a, the row-wise distribution computes each output channel (depicted in a different
color) within a single core, reducing the post-processing communication required to aggregate the re-
sults. In contrast, the column-wise distribution in Figure 4.16b computes color channels across multiple
cores, increasing communication overhead. Therefore, delaying the final addition to the chip level does
not appear to offer any immediate benefit.

We explain the remaining operations along with Listing 4.14, which shows the full program for CNN
inference. First, we define the required scalars and tensors on the host. For the scalars, we follow
the naming convention from Figure 4.14. Next, we apply the Img2col kernel introduced earlier in this
section, followed by the convolution operation, binding the dimensions of the filters_on_acc tensor
to 𝑓𝑘 and 𝑠_𝑜𝑐 (the 𝑠 means symbolic, to distinguish it from the integer 𝑜𝑐) for tiling. Finally, we chain
the remaining operations, including max pooling, sigmoid activation, and the fully connected layer.

The kernels used in this example are listed in Listing 4.15. Conv performs MVM, where the parame-
ters include a 2Dmatrix of size𝑀×𝑁 and a stream of vectors of length 𝑁. The stride is also 𝑁 to ensure
that a new vector is consumed for each MVM. Subsequently, MaxPool reduces the dimensionality of
the OFM for each output channel, as illustrated in Figure 4.17a, followed by Sigmoid, which applies
the sigmoid activation element-wise to its inputs. Finally, FClayer performs another MVM, as shown
in Figure 4.17c, producing the final output of the neural network.

An important note regarding MaxPool is that the entire Tensor must be available before execution
can begin. Although the reduction could, in principle, be performed incrementally, doing so would
require the programming model to express mutable state. Since Tensors are, by definition, immutable,
this is not supported. We leave this to future work.

With regard to the sigmoid function, the output must be binarized before it can be fed to the dense
layer. We assume that this binarization is handled as part of the sigmoid unit’s functionality and requires
no programmer intervention.

Looking at the schedule, it is similar to the pattern-matching approach described in the previous
section. We perform tiling to achieve the distribution shown in Figure 4.15b and Figure 4.16a. Since we
assume that our accelerator consists of only four CIM macros, the scheduling cannot be fully pipelined
when multiple IFM batches are present, as this would require a minimum of five CIM macros: four for
the convolution and one for the dense layer.

1 /// Definitions of data stored on host
2 int64 ih, iw, ic, kh, kw, oc, fc_weights = 3, 3, 2, 2, 2, 2, 2;
3 Tensor<bit, oc, ic, kh, kw> filters_on_host = read_filters();
4 Tensor<bit, ic, ih, iw> ifm_on_host = read_ifm();
5 Tensor<bit, fc_weights> fc_layer = read_fc();
6

7 /// Algorithm
8 Func (filters_on_acc, ifm_stream) = Img2col(filters_on_host, ifm_on_host);
9 Func ofm = Conv(filters_on_acc(s_oc,fk), ifm_stream);
10 Func max_pool_result = MaxPool(ofm);
11 Func sigmoid_result = Sigmoid(max_pool_result)
12 Func fc_result = FClayer(fc_layer, sigmoid_result);
13

14 /// Schedule
15 filters_on_acc
16 .tile(fk, s_oc, fk_internal, s_oc_internal, M_HEIGHT, M_WIDTH)
17 .bind(fk, CORES)
18 .bind(s_oc, MACROS)
19 .bind(fk_internal, M_HEIGHT)
20 .bind(s_oc_internal, M_WIDTH)
21

22 /// Execute (blocks)
23 Tensor<bit, 1 > result = fcOutput.realize()

Listing 4.14: Example of BNN inference implemented using our programming model.

1 Func<int64,M> Conv(Tensor<bit, M, N> tensor, Stream<bit,N, N> stream)
2 {
3 return cimOps.mvm(tensor, stream);
4 }
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5

6 Func<int64,M> MaxPool(Tensor<bit, M, N> ofm)
7 {
8 return aluOps.max(ofm);
9 }
10

11 Func<int64,M> Sigmoid(Tensor<bit, M> tensor)
12 {
13 return aluOps.sigmoid(tensor);
14 }
15

16 Func<int64,M> FClayer(Tensor<bit, M, N> kernel, Stream<bit,N, N> stream)
17 {
18 return cimOps.mvm(kernel, stream);
19 }

Listing 4.15: Kernel used in the BNN application shown in Listing 4.14.

(a) (b) (c)

Figure 4.17: Illustration of the kernels from Listing 4.15. Using the result from Figure 4.14b the (a) max-pooling operation
reduces its dimensionality, (b) then applies the sigmoid activation function that produces as many inputs as it receives and (c)

shows the final MVM in the dense layer producing the final result 𝑧.



5
Discussions

In this chapter, we discuss the challenges encountered throughout the course of this project and outline
potential directions for future work. We also reflect on lessons learned during the development of our
proposed programming model and how these insights can inform subsequent research. To provide
clarity and focus, the chapter is divided into independent sections, each addressing a specific aspect
of the work and suggesting possible avenues for improvement or further exploration.

5.1. Comparison with existing work
As discussed in Section 3.1, the ideal CIM compiler or framework—summarized in Table 5.1—should,
first, be domain-agnostic, able to express a wide range of CIM applications without being tied to any
specific CIM primitive. Second, it should be built on a programming model rather than a purely declar-
ative API, enabling programmers to guide both computation and scheduling. Third, it should expose
explicit control over CIM-specific aspects such as resource management.

In Chapter 4, we introduced a CIM programming model and realized it as a DSL. We implemented
three CIM applications—integer sorting, network pattern matching, and CNN inference—which, de-
spite coming from different domains, all rely on the CIM-CAM or CIM-Xbar CIM primitives. Thus, while
our DSL demonstrates cross-domain expressiveness, the absence of CIM-ALU workloads means it
is not yet fully domain-agnostic. Nevertheless, our DSL is based on a programming model that pro-
vides explicit scheduling control and exposes CIM-specific features, such as immutable Tensors to
minimize analog weight overwrites and tiling to exploit the 2D structure of CIM primitives. Using declar-
ative scheduling primitives, optimizations are also possible—for example, the bind directive lets the
programmer explicitly map kernels to hardware resources to control parallelism.

In contrast, most existing work focuses on machine learning, deep neural networks (DNNs), or
other matrix–vector multiplication (MVM) workloads that rely exclusively on the CIM-Xbar. Notable
exceptions include IMDP [51], CINM [44], and C4CAM [72]. IMDP supports both CIM-Xbar and CIM-
ALU operations but not CIM-CAM, and because it extends TensorFlow [32]—a framework not designed
for CIM—it hides CIM-specific details behind a high-level interface. However, we ultimately lack insight
into IMDP’s practical expressiveness, as no code examples are available. Both CINM and C4CAM
support all three CIM primitives however both of them are rigid API-based compilation flows that lower
high-level descriptions down to CIM operations. Hence, programmers have no control over scheduling
or optimization and are limited to the operations the compiler designers predicted in advance requiring
extending the compiler to add further support.

Our research concludes that CIM programming models should integrate: explicit expression of
parallelism, implicit scheduling, hardware generalization, and optimization. While our proposed pro-
gramming model represents one possible solution for realizing these meta-abstraction, there is no
single best solution.Through additional design exploration, alternative abstractions can be developed
to achieve the same or different meta-abstractions, each presenting its own trade-offs between perfor-
mance, portability, productivity and expressiveness.

55
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Name (1) Application domain (2) PM or API (3) Frontend (4) CIM-specific features
Ideal case domain-agnostic PM – yes
Ours no CIM-ALU support PM – yes
OCC[71] MVM API (CIM dialect) Teckyl no
CINM[44] limited CAM support API (CIM dialect) Pytorch/Linalg/Tosa no
C4CAM[72] domain-agnostic API (CIM dialect) TorchScript (Pytorch IR) no
Polyhedral[73] DNN (MVM) API C compile arguments
TC-CIM[47] DNN (MVM) API Tensor Comprehensions (Pytorch) no
TDO-CIM[74] MVM API C++ no
CIM-MLC[45] DNN (MVM) API ONNX architecture parameters
Co-design[46] ML API ONNX no
CIM-Explorer[56] BNN/TNN PM (Halide based) Larq strategies per operation
IMDP[51] no CAM support PM TensorFlow no
PUMA[50] ML PM & API C++/ONNX no

Table 5.1: Comparison of CIM compilers and frameworks from Table 3.1 enhanced with our contribution highlighted in yellow.
The attributes compared are: (1) Any restrictions on application domain, (2) if a programming model (PM) is used or if it is

purely API-based, (3) the frontend the user interfaces with (4) whether the user has any control over CIM-specific aspects such
as resource management.

5.2. ALU CIM primitive recommended applications
In Section 2.1.2, we mentioned that there are three types of CIM primitives. However, we have only
presented applications that utilize CIM-Xbars for MVM or CIM-CAM for parallel search operations. To
demonstrate the flexibility of our programming model, originally we planned to implement an application
for each primitive. However, we excluded the ALU primitive, as we could not find an accelerator that
implements a practical application that uses it.

CIM arithmetic and logic operations occur by first storing the required operands inside the memory
array at some specific layout topology. Then computation occurs either inside the memory array itself
or during the reading step. In the former case, each operation overwrites memristor cells, reducing
their endurance and increasing energy costs. In the latter case, computations are performed during
sensing, and—as with other CIM primitives—results are produced at each bit line. Due to the efficiently
of the latter approach it is regarded as the ALU primitive.

In our search for accelerators that implement practical applications that use the ALU primitive, we
identified the following research. Scouting Logic [79], proposes graph processing and database query
applications that have not been explored further. IMDP [51] as mentioned in Section 3.1 is a general-
purpose accelerator that provides arithmetic operations and is benchmarked on PARSEC and Rodinia
but does not provide code examples. Pinatubo [80] is benchmarked on two practical graph processing
and database applications however it uses Computing-Near-Memory (CNM) not CIM as it operates on
main memory. Consequently, we could not find any CIM accelerator that employs the ALU primitive in
a practical application to replicate.

We briefly considered implementing one of Pinatubo’s bitmap-based applications[81, 82] using our
programming model, but doing so would require assuming the existence of a CIM accelerator capable
of supporting such workloads, along with additional assumptions about the peripheral circuitry and
dataflow organization. While this is possible, it would introduce unnecessary complexity and extend
beyond the scope of this work. Future work could further explore this idea but it is possible that our
proposed model is incompatible with such applications. In that case we would recommend to look into
Pinatubo’s programming model and see how it can be merged with our current work.

5.3. Defining primitive operations within kernels
One of the challenges we faced was that different accelerators, operating across various application
domains, support distinct sets of operations. To design a programming model compatible with all of
them, we assume the underlying accelerator supports all possible operations typically associated with
CIM such as MVM and parallel search operations. In practice, no such universal accelerator exists, so
if our programming model were deployed on real hardware, it would raise an error whenever an unsup-
ported operation was invoked. We do not attempt to compile a comprehensive list of operations, as this
would require examining how the same operation is implemented across many different architectures
to capture variations in data types, sizes, and communication patterns. Such an analysis is beyond the
scope of this work and is left for future research.
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Furthermore, as CIM-MLC [45] points out, different accelerators offer different levels of control gran-
ularity to the programmer. This raised the question of how fine-grained our proposed operations should
be. We decided to adopt high-level instructions that could later be translated into low-level ones by the
compiler. What we envision, however, is a model where both high- and low-level instructions can co-
exist. Specifically, within kernels, programmers should be able to use one of multiple operation sets
depending on their needs. These operations could resemble those shown in Figure 5.1, where CIM-
MLC’s compiler generates instruction for one three hardware layers. However, this might conflict with
the dimension-agnostic kernels defined in Section 4.1.4.

(a)

(b) (c)

Figure 5.1: Generated code examples for Convolution-Relu of CIM-MLC’s compiler [45, Fig. 16]. At each level read and write
operations operate at a different granularity where: (a) Core interface operates across cores, (b) Crossbar interface operates

across crossbars, (c) Row interface operates within a single crossbar.

5.4. Extending towards heterogeneous CIM platforms
Throughout this manuscript, all CIM accelerators are described as highly specialized ASICs that com-
bine a single type of CIM primitive with a dedicated post-processing circuit. As a result, all implemen-
tations discussed are homogeneous in terms of their CIM macros. An interesting direction for future
exploration is the introduction of heterogeneity within a single accelerator. This would enable different
operations or memory array dimensions to coexist across specialized CIM macros. Using our pro-
posed programming model, and by leveraging the declarative scheduling abstraction, new scheduling
directives could be introduced to specify which kernels should be offloaded to each type of CIM macro
available in the system.

The immediate question, however, is at which hardware layer of the platform model heterogene-
ity should be introduced. This could be achieved by incorporating heterogeneous CIM macros, CIM
cores, or even CIM chips within a single accelerator. The optimal choice depends heavily on the target
applications. While integrating all these variants into a single chip would be prohibitively complex, a
more practical approach would be to design multiple coprocessors that are internally homogeneous
but heterogeneous across devices. Our programming model could potentially support all of these con-
figurations, laying the groundwork for effectively programming such heterogeneous CIM systems.

5.5. Challenges with mapping tools
Mapping is the process of translating abstract computations, as expressed in our programming model,
into concrete hardware operations. Initially, we planned to evaluate our proposed CIM programming
model, with mapping by testing how programs written in it can be transformed into efficient and correct
executions. This would be achieved by a combination of compilers, simulators or manual translations
for one or more different architectures. However, this approach proved to be quite challenging.

Originally, the plan was for this validation to be carried out through another thesis project, in which
mapping would have been the core topic and focus. However, that project did not materialize. The
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next idea was to use an analytical model to perform the comparisons. An analytical model is a mathe-
matical representation of how a computation behaves, allowing us to estimate metrics such as latency,
energy consumption, and total execution time on a given machine. Such a model is being developed
in conjunction with this thesis, but it has not yet been completed. In addition, we considered develop-
ing a simulator to perform similar comparisons. A simulator is also under development, but it too was
not finished at the time of writing. Our next approach was to explore existing simulators to determine
whether they could be applied to this work. However, each simulator accepts a different input format,
meaning that our implemented applications would need to be converted accordingly to enable compar-
ison. This would effectively require developing a separate compiler for each application, which is not
feasible within the time constraints of this project. Therefore, the final plan was to manually lower our
programming model into these target instructions.

Table 5.2 lists how each relevant CIM framework or compiler from Section 3.1 conducted its eval-
uation and which benchmarks were used. We attempted to replicate their experimental setups but
encountered several challenges. The most commonly used evaluation platform was the Gem5 simula-
tor [83], typically employed for simulating conventional computer systems but extended in each work to
support CIM accelerators. However, OCC [71], CINM [44], and C4CAM [72] provide no means of repro-
ducing their environments beyond brief textual descriptions in their papers. Learning Gem5 in depth
and re-creating their customized configurations would have been too time-consuming. TC-CIM [47]
and TDO-CIM [74] also rely on Gem5 but only simulate single CIM macro accelerators, which are in-
sufficient for testing our applications that require multiple macros. Co-design [46] and IMDP [51] each
employed their own simulators, but the former is confidential while the latter does not specify where
its simulator can be obtained. Next, CIM-MLC [45], PUMA [50], and CIM-Explorer [56] use high-level,
declarative frontends, making it necessary to interface with their intermediate representations and mod-
ify their compilers—an equally time-consuming process. Polyhedral [73], on the other hand, does not
use a simulator at all but relies on an analytical model.

Name Frontend Benchmarked workloads Evaluation Medium Challenges
OCC[71] Teckyl 𝜇-kernels, MLP, LSTM, CNN Gem5 sim Difficult to replicate
CINM[44] several DSLs Same as OCC Gem5 sim same
C4CAM[72] TorchScript 3 CAM-based applications* Gem5 sim, extended CAMASIM[55] same
Polyhedral[73] C 𝜇-kernels, MLP, CNN ISAAC analytical model, FPSA tools no simulator
TC-CIM[47] TensorCompr 𝜇-kernels, CNN Gem5 sim single crossbar
TDO-CIM[74] C++ 𝜇-kernels Gem5 sim single crossbar

CIM-MLC[45] ONNX CNN Own functional sim,
latency, power: other sims Needed to use IR

Co-design[46] ONNX MLP, CNN Own sim Confidential
CIM-Explorer[56] Larq BNN, TNN Own sim Needed to use IR
IMDP[51] Tensorflow PARSEC and Rodina benchmark suites Own sim No links to sim
PUMA[50] C++/ ONNX MLP, LSTM, CNN Own sim Needed to use IR

Table 5.2: Comparison of CIM compilers and frameworks. Extends Table 3.1 to include the benchmark workloads and the
evaluation medium of each tool. We also include a column that references challenges with using each tool for validation.
𝜇-kernels are small workloads such as simple MVMs, convolutions and variants. *K-Nearest-Neighbor, Hyperdimensional

Computing, DNA read mapping.

Ultimately, we abandoned validation through mapping due to the time constraints imposed on this
project. While we leave this task for future work, we recommend that future efforts integrate program-
ming model and mapping research in parallel. This approach ensures that abstractions are not only
expressive but also efficiently realizable on target hardware, enabling quantitative performance evalu-
ations and meaningful comparisons between different approaches.

5.6. Compiler-assisted concerns
A programming model represents a middle ground between offloading all work to the compiler and as-
signing full responsibility to the programmer. In practice, this exists on a spectrum, raising the question
of which tasks should be handled by the compiler and which should remain under the programmer’s
control. In this section we discuss which concepts we believe should be offloaded to the compiler for
our programming model.

A key feature of our programming model is the use of declarative scheduling directives to influ-
ence program execution. One example is the bind directive, which parallelizes an iteration bound to
a symbolic variable. The programmer can specify how this parallelism should be applied, while the
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compiler alone would typically generate a strictly sequential schedule. For clarity, the schedules we
demonstrate are interpreted sequentially, as sequential schedules are easier to understand. Some
might argue that the compiler could also handle this task. In programming models that separate algo-
rithm from scheduling, such as Legion [38] and Halide [48], the solution is to provide a default schedule
based on heuristics. Similarly, a compiler that realizes our programming model could potentially inte-
grate this feature, reducing the need for manually specifying certain directives and decreasing overall
code size. However, this comes at the trade-off of increased compiler complexity.

Additionally, the tile and split scheduling directives form the foundation of our data-parallelism
abstraction, as explained in Section 4.1.5. Their purpose is to divide larger computations into smaller,
more manageable chunks that can be parallelized. For example, a kernel performing matrix–vector
multiplication can be split among multiple workers. This split can occur along two dimensions: horizon-
tally and vertically. As a result, aggregation may be required along one or both dimensions, depending
on the operation. In our realized DSL, we assume the compiler is capable of determining the appropri-
ate type of aggregation for each operation. In the case of an MVM, a horizontal split produces partial
results that must be combined using addition, while a vertical split only requires gathering the results.

Regarding scheduling directives, we provide a comprehensive list of those used in our program-
ming model in Appendix A. These directives are based on the scheduling primitives provided by Halide
[48]. However, Halide offers many more directives, each implemented as a separate function. Some
have been adapted to a CIM context, such as the tile and split directives. Others could be added,
which we have not implemented, such as compute_at and store_at, allowing control over where
and when partial results are stored. New directives could also be devised that do not exist in Halide.
In this way, scheduling directives balance programmer control with automation, enabling complex opti-
mizations and hardware-specific mappings to be applied transparently while keeping code concise and
maintainable. Research of this scope is left for future work.



6
Conclusions

Computing in Memory (CIM) departs from the traditional Von Neumann architecture and its inherent
bottleneck. Consequently, programming models rooted in the Von Neumann paradigm, which implic-
itly encode this bottleneck, are ill-suited for achieving an effective balance of portability, performance,
productivity, and expressiveness in CIM. In this work, we analyzed programming models, frameworks,
and compilers from both CIM and non-CIM domains and identified four essential meta-abstractions for
a successful CIM programming model: explicit expression of parallelism, implicit scheduling, hardware
generalization, and optimization. We then realized these meta-abstractions in our proposed program-
ming model, which is based on Halide, an image-processing programming model, and implemented it
as a domain-specific language (DSL).

To evaluate the expressiveness of the resulting DSL, we implemented three workloads that benefit
from CIM acceleration: integer sorting, pattern matching for network monitoring, and convolutional neu-
ral network inference. This demonstrates that our DSL can express applications from diverse domains,
though it is currently limited to supporting two of the three CIM memory array structures: CIM cross-
bars for matrix–vector multiplication (MVM) and CIM content-addressable memory (CAM) for search
operations such as table lookups.

In contrast, most prior work avoids using a programming model altogether, favoring an API-based
approach that offers little control over scheduling and limited expressiveness. Many of these ap-
proaches consider CIM accelerators too complex, often relying on fully automated compiler-based
solutions to manage data. Our programming model, however, introduces high-level abstractions that
give programmers control over scheduling, allowing developers to define programs in terms of both
data-level and task-level parallelism while abstracting unnecessary low-level hardware complexity.

There are two primary avenues for future research. First and most importantly, future work should
build on our study by validating the mapping of applications implemented using our DSL on simulators,
analytical models, or actual accelerator implementations. This could be achieved by implementing
a compiler or by manually lowering the examples to serve as inputs for existing compilers. Once
such validation is complete, the results should be compared to relevant prior work, with a quantitative
assessment of performance, generated code size, and expressiveness.

Second, research could focus on extending or modifying the proposed model or DSL. For example,
an application could be implemented that utilizes the missing CIM memory array structure, the CIM-
ALU, which we were unable to validate, demonstrating that the programming model can support all
CIM primitives. Additionally, new abstractions could be introduced to implement the recommended
meta-abstractions in alternative ways, each offering its own trade-offs.

Overall, the results of this thesis demonstrate that it is possible to design a high-level programming
model for CIM capable of expressing applications from diverse domains that benefit from CIM accel-
eration. While our approach departs from the common practice of fully hiding the complexity of CIM
accelerators behind opaque abstractions, we show that functional abstractions can be developed that
expose key hardware features to programmers, enabling them to write expressive and hardware-aware
code. This work lays the foundation for future exploration of CIM programming models that balance
abstraction, control, and performance.
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A
Scheduling directives list

Scheduling directive Description
split(oldDim, newDim+, int+) Breaks down a single dimension into two or more nested dimensions each with a

specified integer length.
fuse(oldDim, oldDim+, newDim) Combines two or more nested dimensions into a single new dimension.
tile(y, x, yi, xi, int, int) Breaks two dimensions x, y into twomore where xi, yi are the two internal dimen-

sions of the sizes specified by the two integers x, y. Dimensions from innermost
to outermost are xi, yi, x and y.

bind(Dim, 𝑥) Assign a dimension to a resource to exploit data parallelism. 𝑥 ∈
{CHIPS,CORES,MACROS,M_HEIGHT,M_WIDTH}. where 𝑀 = MACRO

sequential(Dim) The given dimension will be iterated sequentially over time. Useful when there are
insufficient resources to perform the operation in parallel and programmers want
to influence the outcome.

malloc_at(𝑥) Specify a specific part of the accelerator’s memory hierarchy to store intermediate
results produce by a functor. 𝑥 ∈ {L0,L1,L2,HOST}.

reorder(Dim+) Changes the nesting order of symbolic variables bound to iteration dimensions,
letting you control which dimensions are traversed innermost first, specified from
left to right

reduction_order(Dim+) Variant of the reduction scheduling directive. Can only be applied to a kernel
that performs aggregation and returns a functor to a single value. It specifies the
order of nested loops where a reduction is performed.

Table A.1: Description of all scheduling directives used throughout this paper for our programming system. The symbol ’+’ is a quantifier indicating one or
more occurrences. Identifiers are symbolic variables bound to dimensions, while integers are denoted with int. All 𝑥 arguments represent an instance of

an enumeration type selected for the scheduling primitive. Wildcards marked by ’_’ can be used to omit certain lengths for dimensions that can be
calculated by the compiler or symbolic variables that will not be used.
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