Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

An Empirical Evaluation of the User Interface
Energy Consumption of React Native and Flutter

Erik Blokland

Abstract—Energy efficiency is a growing area of concern for
mobile developers, as good battery life is highly desired by
end users of mobile devices. While many developers work to
increase their app’s energy efficiency during development, there
is not much information available about the energy efficiency
of the different app frameworks on the market. As the choice
of a framework must be made before the start of development,
and cannot be easily changed later on, information about these
frameworks is crucial to allow developers to optimize their apps
for efficiency. In this paper, we compare the energy use of the
React Native and Flutter frameworks while performing User
Interface tasks to the native Android API. While we were unable
to draw a conclusion about whether one of these frameworks
is more or less efficient than the baseline app, we were able
to identify certain UI actions that were consistently more or
power-hungry than average, and found that the energy use
tendencies of these actions tended to be consistent between
different frameworks and devices. We also found that measuring
overall energy use between separate test runs was inconsistent,
and further research may be necessary to identify the best method
to isolate the energy use of a single app.

I. INTRODUCTION

Energy efficiency is an area of significant importance to
mobile developers, as their software is run on devices with
limited battery capacity. There are a number of aspects to
the energy efficiency of an app, such as the display, sensor
use, and network use [1]. Research has been done into many
different energy saving approaches, such as optimizing the
efficiency of the display [2], as well as devising methods
to give programmers a better overview of their app’s power
consumption [3].

Nearly all app developers will want to release their app
on at least Android and iOS, as these two mobile operating
systems account for the vast majority of smartphone users. To
this end, cross-platform app frameworks, such as React Native,
Flutter, and others attempt to ease the burden of creating multi-
platform apps by adopting the concept of "Write Once, Run
Anywhere" [4].

However, once the framework of choice is decided upon,
switching to a different framework requires significant effort,
as the framework API and even the programming language
may be different. Therefore, the choice of framework is a
critical one for developers, but at the same time must be made
without prior knowledge of the performance of their particular
(envisioned) app on each framework. Empirical studies of the
qualities of the available frameworks can help developers make
an informed choice on which framework is right for their
needs. Willocx et al. [5] compare the performance of a number
of frameworks in comparison to each other and a "native" app,

using the standard development tools (such as the Android
ADK), for a given platform, considering aspects such as the
CPU load under a certain task, the time taken to load a page,
and the amount of RAM consumed by the app. Angulo and
Ferre [6] compared the user experience of two frameworks
with a baseline "native" app, comparing the overall satisfaction
of the users and which app they preferred to use.

However, in spite of the importance of energy efficiency,
there are no studies comparing the energy use of different
frameworks. As app frameworks are not easily changed after
the development process has begun, this information is critical
to developers seeking to optimize the energy efficiency of their
app. Additionally, there are many different elements combined
to make an app’s UI, and choices made in this area could also
influence the energy consumption of the app.

In this paper, we measure the energy use of React Native,
Flutter, and the Android API when performing UI tasks. We
performed these measurements by creating skeleton apps using
each of the frameworks that implement a selection of Ul
elements, and running a test script using MonkeyRunner [7],
a testing utility allowing programmatic testing of app Uls
through an API supporting all types of gestures. This script
exercises each of these elements in turn over a period of
time. The energy use was measured by leveraging the built-in
Android power monitoring utilities [8], which allowed us to
measure the battery charge level at different points of the test
script.

We found that there was a clear difference in energy
usage between different types of Ul action. Furthermore, these
differences were consistent between devices and framework,
implying that some UI actions inherently cost more energy
than others. One of the most consistently energy-expensive
actions was scrolling a list, with both text and image con-
tents consuming consistently more energy than average. As
scrolling views often form the basis of an app, optimizations
to these elements could have a noticeable impact on the energy
consumption of real-world apps.

We were unable to determine whether or not a particular
framework is more or less efficient than others, as the aver-
age energy consumption was inconsistent between different
devices and different test runs on the same device. We believe
that the inconsistency could be caused by background tasks
being run on the device, but were unable to conclusively
determine the cause.

II. BACKGROUND

There are a number of Android app frameworks available
for use, and these frameworks use a variety of techniques
to display the user interface of an app. We chose the two
frameworks considered in this study in part due to the differ-
ences in how each displays Ul elements. Additionally, each
framework and the baseline app use a different programming
language, which could lead to further differences in the energy
consumption. We have summarized the differences between
the app frameworks in the subsections below.

A. Android API

The Android API [9] uses a collection of elements combined
by a developer into Activities, which form the basis of an app.
Each screen of an app can be defined by an Activity, but can
also be created by combining independent fragments [10] into
an activity, and these fragments can allow an app to change
its UI without transitioning between Activities. Android apps
using the Android ADK are written in Java or Kotlin, and
executed by the Android Runtime (ART) [11] on all Android
versions 5 or higher. ART has been shown by Chen and Zong
to be significantly more energy efficient than the older Dalvik
Java Virtual Machine used in older versions of Android [12],
and all tests of the baseline app will be performed on devices
using this version of the JVM.

B. React Native

React Native has been shown to perform equal or better to
a native Android app in terms of response time, with near-
equal results in memory usage and framerate consistency,
but with higher CPU usage [13]. To render the UI, React
Native uses "native bridges" to convert Ul elements written
in JSX to those exposed by the Android API [14]. Unlike the
Android API, React Native uses JavaScript for the app logic
and user interface, using the JavaScriptCore JS engine, using
JIT compilation on our Android test devices [15]. Georgiou,
et al. found that JavaScript has a more favorable Energy Delay
Product when compared to Java [16].

C. Flutter

Flutter uses the Dart programming language, and application
code is Ahead-Of-Time compiled and built into an APK [17]
using the Android NDK. In contrast to React Native, Flutter
does not use the Ul elements built into Android, but instead
renders the Ul independently of the underlying system in a
single view [18]. This core difference could affect the energy
efficiency of the app, as inefficiencies in the Android API
could be avoided by the independent rendering, or vice versa.

III. METHODOLOGY

The goal of this paper is to measure the energy consump-
tion of the React Native and Flutter app frameworks while
performing UI tasks and compare them to the native Android
API. To this end, we propose the following research questions:

+ RQI1: How much energy do different types of Ul actions

consume?

e RQ2: Is there a difference between the frameworks in

terms of energy consumption?

We tested the energy consumption of the different frame-
works by implementing a similar app in each framework. We
then performed automated testing on each app to exercise the
UI elements, and measured the energy consumption of the
phone with Android’s built-in battery statistic services.

A. Experimental App

1) Feature Selection: In devising the testing app, we needed
to decide on a set of UI elements to include. We chose to only
include elements that are provided by all of the frameworks in
order to simplify the app and make a fair comparison between
the app frameworks being tested. We also chose to include
(physics-based) animations and different transitions between
screens. To determine which elements we would include,
we analyzed a selection of commonly used Android apps,
and determined which basic Ul elements (such as transitions,
animations, and lists) were present.

2) Tested Features: We have chosen to test the following
features:

o Text Lists

o Image Lists

o Modal Dialogs

o Buttons

o Linear Animations

« Physics-Based Animations

o Navigation Drawer

o Spinner Dialogs

3) Architecture: As the goal of this project was to measure
the energy use of the GUI alone, we designed the app to
have as little internal logic as possible. To this end, text and
images displayed are contained in the app itself, to minimize
dependency on loading from external sources. The app consists
of different activities reached via the navigation drawer of a
start page. Figures 1, 2, and 3 show the home page of each
of these apps.

B. Testing Process

We used an automated testing process to exercise the Ul
elements to ensure that the results would be reliable between
runs. The test consists of a set of discrete sections, each section
testing a specific part of the UI (e.g. Scrolling with images,
physics-based animations, etc.). By separating the tests into
sections, we can compare the energy consumption per-activity,
and combine the partial results into an overall view of the
frameworks’ energy consumption.

The tests will be run using Monkeyrunner [7], over a
wireless ADB connection on a non-congested SGHz WiFi
network, where the devices are placed in close proximity to
the wireless access point. We chose to use Monkeyrunner
as it supports scripted touch events at a specific point on
the screen, allowing us to write a single test script that
works on each app without any modifications. Each app’s
Ul is positioned in exactly the same location to support
this method. The test script will periodically record the

751 & @

= Baseline

SEND 0

Figure 1. Baseline App Home Page

754 & 4 753 & @
< Baseline < SecondScreen
1 Item 1 1

Iltem 1

2 Item 2
o)

Figure 4. Baseline App Text Scrolling Page

10:07 & @ 10:08 & @

ImageScreen

< ImageScrolling <

Figure 7. Baseline App Image Scrolling Page Figure 8. React Native App Image Scrolling Page

10:08 & @ 10:08 & @

& Baseline <

Figure 10. Baseline App Animation Page

battery’s charge level by first scheduling an update using
the command service call batteryproperties 4,
and then poll the battery statistics using the command
dumpsys battery. This method allows us to retrieve the
battery charge level at a resolution of about one second on our
two Android 9 devices. However, we were unable to achieve
this level of accuracy on the Android 8 device (Motorola G5
Plus), which lead to the measurements of individual sections
being less precise, as displayed in Figures 23, 24, and 25 in
Appendix B. This effect is caused by the shorter run-time of
individual sections when compared to that of the whole test.

Figure 2. React Native App Home Page

Figure 5. React Native App Text Scrolling Page

AnimationScreen <

Figure 11. React Native App Animation Page

A\ | & d

Flutter App

B GO TO SECOND 1

Open route

Figure 3. Flutter App Home Page

A\ |

-

< Text Scrolling

Item: 0
Item: 1
Iltem: 2

Figure 6. Flutter App Text Scrolling Page
w40 J 1008 & @

< Image Scrolling

Figure 9. Flutter App Image Scrolling Page

10:08 & @

Animations

Figure 12. Flutter App Animation Page

Due to battery constraints, it was not feasible to lengthen the
run-time of individual sections as the run-time of the overall
test would exceed the battery life of some devices.

C. Energy Consumption Data Collection

Di Nucci, et al. have shown that software monitoring of
power consumption on Android is feasible, with a small
variation from hardware monitoring [3]. We will use Android’s
built in battery monitoring service, which provides us with
the battery charge level in pAh [8]. Although the recorded
power consumption includes energy used by all components
of the device, we will be able to compare power between

apps on the same hardware, as we expect the power draw
from hardware not being studied (such as the display itself)
to remain consistent between different frameworks.

1) Testing Protocol: Each device used is first factory re-
set, to prevent user-installed apps from affecting the power
consumption in an unpredictable way. Each phone is running
the latest (at the time of testing) official Android OS version
available from their respective manufacturers, as listed below.
During the test, unnecessary services such as Bluetooth and
GPS were disabled to limit outside influence on energy con-
sumption, screen brightness was manually set to 50%, and
background processes were disabled in the developer options.
The current battery charge level is measured at the beginning
of each run of the test. As the Android energy monitoring
utilities can only be run while on battery power, we chose to
use wireless ADB in spite of its potential confounding effects.
We made this choice as some of the available testing devices
cannot be ‘rooted’ to provide system level access, which is a
requirement to disable charging while using ADB over USB.
We expect the power usage of the WiFi module to be consistent
between runs on a single device, and do not intend to directly
compare results between different devices.

The test script is run 20 times per app, per device. These
runs occur sequentially, without any pause in between runs.
The first 10 runs of the script are intended as a warm-up’
to allow run-time optimizations to occur without influencing
the measurements, and are therefore not included in the final
results.

2) Testing Devices: We tested with a small selection of
devices to verify differences measured between apps across
different Android versions and device hardware. By testing
with multiple devices, we reduce the chance that the outcome
of our study will be influenced by the particular hardware of
a single device.

We used the following phones in our study:

Device OS Version

Nokia 7 plus Android 9, April 2019 security
patch

Google Pixel XL Android 9, May 2019 security
patch

Motorola G5 Plus Android 8, February 2019 security
patch

D. Data Analysis

For each run, the energy consumption is found by compar-
ing the charge level in pAh of the battery at the beginning
and end of the test. The 10 runs are then averaged together,
and compared to the other two apps by way of a Wilcoxon T
test. The individual sections are analyzed by comparing their
average energy usage relative to the overall average for that
app-device combination. This delta can then be compared to
other apps on that device, using a Wilcoxon T test, and to
other devices.

IV. RESULTS

A. RQI: Is there a difference between the frameworks in terms
of energy consumption?

To answer this research question, we recorded the charge
level (in pAh) of the device battery at the beginning and end
of each run of the test, as well as a timestamp allowing us to
precisely measure the amount of charge that was consumed
by the device to execute a run.

Each device tested resulted in a different outcome for the
efficiency ranking of the different apps, and in most cases,
except for the tests run on the Motorola device, these results
were statistically significant at «=0.05 using a Wilcoxon test.
However, as each device tested resulted in a different outcome
for each app, we are unable to draw significant conclusions
as to whether or not a particular framework performs better
or worse than another framework or the baseline. While
there may be differences between the apps, these differences
appear to be largely outweighed by outside factors, potentially
background tasks running on the device during testing or
variable hardware consumption (such as the wireless module).

The individual results per device are reported in the follow-
ing sections:

1) Google Pixel XL: As shown in Figure 13, we found that
the baseline app ran far more efficiently on the Pixel device
than either of the frameworks, using only 64% of the energy of
the next lowest app, Flutter. This difference would be clearly
noticeable to the user, and, if caused by the app itself, would
give the baseline Android API a clear energy consumption
advantage. However, we did not record similar performance
on other test devices, where the different apps had a more
similar overall result, indicating potential outside interference
in the results.

2) Nokia 7 Plus: In contrast to the Pixel XL, the results
obtained from the Nokia 7 Plus show that the React Native
app used the least energy, and the Baseline app used the most.
However, these results are much closer than those from the
Pixel, with the most power-hungry app only consuming an
average of approximately 13% more energy than the least
power-hungry.

3) Motorola G5 Plus: The results obtained from the Mo-
torola G5 Plus are the most consistent out of the three devices
tested with respect to the difference between frameworks, with
the most efficient framework (Flutter) using only approxi-
mately an average of 8% more energy during the test than
the least efficient (React Native).

4 N
RQ1 summary: Due to variations between different

runs of our test, we were unable to definitively answer
RQI1. Each app placed in each position on one of
the three devices, and all of these differences were
statistically significant. These results could indicate that
device hardware plays a greater role than software for
energy use, but could also indicate an unaccounted for
source of interference.

Pixel XL Energy Use

Motorola G5 Plus Energy Use

Nokia 7 Plus Energy Use

o
_ [o . JRE—
: - = :
o '
S : .
- - 2
Eal
= = g =
< ° < S < 9 |
=) o =) =) <
= I d = -
R O 2 g g |
Q — o g S o !
o o) o o _ —_
o] o) o I ! '
2 %] [} n —_ |
5 o 5 S —_ 5
a S a . a 0
@
)) — & = — —
[I g - —_— < |
8 4
s ° = —
S o | _
— o
[Te]
. o 8 o
—_— @ . o
T T T T T T T T T
Baseline React Native Flutter Baseline React Native Flutter Baseline React Native Flutter
App App App

Figure 13. Energy use on a Pixel XL

B. RQ2: How much energy do different types of Ul actions
consume?

To answer this research question, we separated the test into
seven distinct sections, and collected time and battery charge
level data for each section. This approach allows us to compare
the energy usage of different app sections relative to the
overall use of the app, and compare these relative differences
to the other apps and devices. Due to the lower accuracy of
measurements on the Motorola G5 Plus, its data has not been
included in this section.

Google Pixel XL

20

=

<

2

@ 10 o I

g

[}

]

c

2 0 —

IS

S

‘@ I

(=

& -10

£ App Framework

o = Baseline
_50 B React Native

B Flutter

Run
Spinner
Drawer
Text
Images
Animations
Modal
Button

Figure 16. Relative energy use of app sections on a Pixel XL

We found that there were evident trends regarding the power
usage of different parts of the app. In the React Native and
baseline apps, the action of opening and closing the navigation

Figure 14. Energy use on a Motorola G5 Plus

Figure 15. Energy use on a Nokia 7 Plus

drawer was, in all but one test run, the most demanding section
of the test, and in eight out of the nine tested phone/app
combinations, more power-hungry than the overall average.
Image scrolling also consumed more energy than average in
eight out of nine cases, and recorded the highest out of all
sections on two of those cases. Figures 17, 19, 18, 20, 21, and
22, in Appendix B, show these trends on the two phones, a
Google Pixel XL and Nokia 7 Plus, where these trends could
be reliably identified.

Notably, while text scrolling was typically above the average
in all apps, it was the highest consuming section of the
Flutter app on both the Pixel XL and Nokia test devices, by a
considerable margin. This result may be related to noticeable
scrolling "stutter" observed while manually testing the app that
did not occur in either of the other apps, indicating a potential
issue with the framework’s underlying implementation. This
result can be observed in Figure 16, which shows the relative
results of each section of each app collected from the Pixel
test device.

The most consistently energy efficient test section was the
button test, which performed more energy efficiently than
average in seven of the nine tests, five of which were sig-
nificant at an a=0.05 level using a Wilcoxon T test. The data
collected from the Motorola device was too noisy to provide a
meaningful measurement in this regard, and contributed both
of the two instances of above average energy use. Additionally,
the modal dialog, animation, and spinner menu sections also
used consistently less energy than average, in eight, seven, and
eight out of the nine test combinations, respectively. However,
in only two cases, or three for the animation section, were
these results significant, indicating that these sections may not
have as strong of an effect on the energy use of the app as the
more energy-heavy sections, as well as the consistently lower
button section.

Additionally, we compared the different apps to each other

by measuring the difference in energy use of each section
from the overall test average. By comparing the results in this
manner, we noticed two clear trends. Firstly, the text scrolling
sections of the Flutter app had a larger delta than the other
two apps in all cases, while the image scrolling sections of
the Flutter app had a lower delta. Secondly, the button section
of the React Native app had a smaller delta than the other
two apps in all cases. Furthermore, there were no instances in
which a section of an app used consistently more energy than
the overall average while using less energy than average in
a different framework. We therefore conclude that the energy
use of a UI element, relative to the overall energy use of its
app, is not dependent on the Ul framework used.

4 N
RQ2 summary: We identified clear trends regarding

the energy use of specific app sections relative to the
overall mean, with the navigation drawer, text scrolling,
and image scrolling consistently using more energy
than average. The button section consistently used less
energy than average, as did the animations, modal
dialogs, and spinner, though with less significance than
the button section. Furthermore, these trends generally
remained consistent between different devices and app
frameworks, suggesting that some UI elements inher-
ently consume more energy than others.

V. DISCUSSION AND RELATED WORK
A. Energy Use of Ul Elements

Our results show that there is a link between the type of
UI element being exercised and the energy use of the device.
Some of the high energy use sections, such as the navigation
drawer, are only occasionally used during user interaction with
a real app, so optimizations made here may not greatly affect
the overall power consumption of an app. Other sections, such
as text and image scrolling, are more frequently used, and
in many cases form the basis of the app UL Considering
that these sections were consistently over-average in terms
of energy usage in our tests, app developers could benefit in
the future from optimizations made to these elements, or by
choosing a framework that implements these elements in a
more efficient manner than another.

B. Measurement Interference

During our initial trials, we noticed that some apps used
far more energy than others on a particular device, but not
on other devices. When running additional trials to confirm
the results, the outcome was much more similar to that of
the other apps. We concluded that an outside factor was
influencing our results, and attempted to mitigate this with a
’warm-up’ round of tests, but we were unable to fully remove
this influence. During testing, we disabled Bluetooth, GPS,
adaptive brightness, and disabled background processes in the
Android developer options. While WiFi is a potential source
of the observed interference, we do not believe it to be the
cause, as all tests were performed in a similar environment,

connected at short range to a non-congested network. Notably,
measurements taken from the same test run were generally
consistent, even within the 20-run tests over a three hour time
span. We hypothesize that the interference comes from either
background tasks running on the device that may have begun
during the charge cycle between trials, or from inconsistent
scheduling choices made by the device, such as whether to
run the app on the ’big’ or ’little’ cores of the CPU. Some
studies, such as that done by DiNucci et al, [3], collect more
information about the system state and resource utilization, and
model the power usage of an app based off of that information.
In contrast, our study solely considers the battery charge level
reported by the system. When comparing results between
multiple apps, it may also be useful to reduce the time between
these trials, as our observations were that individual trials in
a set of runs produced relatively consistent results. In future
studies, it may be useful to interleave trials, such that instead
of testing a single app before charging the phone, a portion
of each app’s total trials are run between each charging cycle.
However, this method does not address the underlying cause
of the interference, and may not produce consistent results
between cycles.

C. Related Work

There have been a number of studies over the energy con-
sumption of mobile devices and apps, as well as comparisons
between native apps and app frameworks. Some studies com-
paring mobile frameworks focus on user interaction compared
to native apps [6], while others focus on performance aspects
or a mixture of both [19][13]. There are a number of studies on
how users value battery life [20][21], showing the importance
of energy efficiency in apps. Many studies have been done over
energy efficiency of mobile apps, including the following:

Li et al. [1] analyzed the power usage of a number of pub-
licly available Android apps, identifying the amount of energy
consumed by different types of apps, the energy consumed by
different smartphone components, and what parts of an app
consume the most energy. They also identified the granularity
of measurement needed to accurately measure method and API
calls made by an app.

Chen and Zong [12] developed an energy profiler to measure
the energy consumption of android apps, and tested the impact
of programming language choice, using C, C++, and Java, on
energy efficiency. They also evaluated the differences between
the ART and Dalvik virtual machines, and measured the
impact of different implementation choices.

Ma et al. [19] compare multiple web apps to native apps in
multiple aspects, including energy consumption. They found
that the energy use of web apps was often close to that of
native apps if the web cache was enabled, and that they were
sometimes more efficient at certain tasks than the native coun-
terparts. However, this was often attributable to differences in
the operation of the app, such as the communication protocol
or background tasks performed by the native app, rather than
a fundamental difference between web and native apps.

Linares-Vasquez et al. [2] investigated the energy consump-
tion of app Uls in terms of the display hardware. They created
a tool, GEMMA, that leverages the property of Organic Light
Emitting Diode displays where the power consumption of
the display is coupled to the colors displayed; some colors
consume less power than others, with a pixel displaying true
black consuming no power. They found that, for this type of
display, significant energy use reduction can be achieved while
keeping the end user experience acceptable.

Hansson and Vidhall [13] studied the React Native frame-
work in-depth, touching on both performance and user expe-
rience. Although they did not study the energy efficiency of
the framework, they did collect data on the CPU utilization
while performing various tasks, and higher CPU usage often
indicates higher energy consumption. They found that while
React Native typically had equal or very close performance to
that of the Android and iOS native apps, it generally utilized
the CPU more than the comparable native app. This could
indicate that React Native will use more energy than a native
app to perform the same function, but unfortunately we were
unable to answer this question due to the aforementioned
shortcomings in our testing methodology.

DiNucci et al. [3] created a tool that analyzes the energy
use of Android apps at the method level, allowing developers
to identify areas of high energy consumption, without the need
for special hardware instrumentation. Their work showed that
their software estimation tool, using the information provided
by Android’s built-in power monitoring utilities, provides an
accurate estimation of energy consumption when compared
to hardware instrumentation. As the authors showed that
Android’s utilities provide adequately accurate estimations, we
chose to use them in our study, to reduce the complexity
caused by hardware instrumentation. However, we did not
analyze the same system information, instead relying solely
on the battery charge information provided by the Android
battery service.

VI. THREATS TO VALIDITY
A. Internal Validity

1) Measuring Technique: When measuring the charge level
of a device during testing, the scheduleUpdate function of
the batteryproperties android service [22] was called
prior to reading the battery level. On the two Android 9
devices, this method yielded a battery level that was accurate
to about a second, providing a reasonably accurate measure of
the true battery level. However, on the Android 8 device, the
battery charge level did not update immediately after calling
scheduleUpdate, meaning that the error present in the
individual section measurements is much higher than that of
the other two devices.

However, this error is much smaller in the overall measure-
ment of the app’s energy use, as the longer running time of the
full test overshadowed the update time of the battery charge
level in comparison to the individual section measurements.
As stated in our results, we did not take the results from
the Android 8 (Motorola) testing device into account when

answering research questions relating to individual sections of
the app, so we do not expect this to influence our results.

2) Unexpected Outliers: We initially used a shorter ex-
perimental setup in which the test script was run only 10
times per app, without "warm-up" runs prior to the 10 runs of
interest. When analyzing our results, we noticed that some sets
of runs had an abnormally high energy use compared to the
other runs on the same device, higher than would be expected
to be attributable to the difference between app frameworks.
Upon re-running the tests for that device/app combination, the
outcome was more in line with that of the other two apps on
that device. To reduce the chances of this effect occurring, we
added 10 "warm-up" runs to our testing method. These runs
were intended to reduce the variation that could potentially
occur from background tasks that were running prior to the
test (as many phones required charging between tests) and
run-time optimizations.

B. External Validity

1) Generalization to other devices: In this study, we do
not attempt to normalize the energy consumption of different
devices to remove the influence of hardware and software
variations. However, the differences we found between Ul
elements were consistent between the two devices we were
able to gather sufficient data from. We expect these differences
to remain consistent if tested on other devices.

Both the baseline and React Native apps rely on the built-
in Android API UI elements to render their Ul. As the
implementation of these elements is not necessarily consistent
between Android versions, we cannot say with certainty that
our results will be applicable to older versions of Android.

2) Generalization to Other Apps: In each of the apps used
in this paper, standard UI elements from the frameworks’ APIs
were used. Therefore, we expect our results to be valid for
real-world apps. However, the energy consumption of the Ul
of an app is only a component of an app’s overall energy
consumption, and the additional functions that a typical app
would include, such as internet access, may overshadow the
energy consumption of the Ul and could lead to different
results than found by our study.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the power use of React Native,
Flutter, and the Android API when rendering UI elements. We
focused on three primary research questions: Whether there is
a difference between the three apps in terms of overall energy
consumption (RQ1), how much energy do different types of Ul
actions consume (RQ2), and if there is a difference between Ul
action energy consumption, whether it is consistent between
different types of UI action. (RQ3) To test these questions,
we constructed three apps, using the native Android app as
our baseline, and wrote a testing script using monkeyrunner
[7] to exercise each of the studied UI actions individually.
We found that there is a difference in energy consumption
between different Ul actions, with some actions, such as
opening and closing the navigation drawer, using consistently

more energy than other actions, such as opening and closing
a modal dialog. Our findings here lead us to conclude for
RQ?2 that there is indeed a difference in energy consumption
between UI actions. Furthermore, these results were, for the
most part, consistent between app frameworks (with limited
exceptions as mentioned in our conclusions), answering RQ3.
For RQI, we were unable to reach any conclusions over
differences in energy consumption between the frameworks, as
each device resulted in different test outcomes, often with very
wide margins between different apps. Furthermore, re-testing
an app would often result an entirely different outcome. From
these results, we concluded that our testing methodology did
not do enough to reduce the impact of outside influence on
the energy consumption results. However, most results were
consistent during a test run, indicating that charging the phone
between testing different apps could be a source of interference
(for example, by activating background tasks). A possible
solution to this problem would be to interleave apps instead
of only testing one app per charge cycle, by programmatically
switching apps at pre-defined points in the test.

Future work could examine more aspects of app frameworks
than only the UI rendering. As each framework tested in
this paper uses a different native programming language, and
interacts with the underlying Android API differently, energy
efficiency differences could exist in all aspects of an app.
Investigation into the cause of the measurement inconsistency
noticed in our results could also provide useful information
for accurately measuring and comparing the energy use of
different apps, or different versions of an app.

REFERENCES

[1] D.Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study of the en-
ergy consumption of android applications,” in 2014 IEEE International
Conference on Software Maintenance and Evolution, pp. 121-130, IEEE,
2014.

[2] M. Linares-Vasquez, G. Bavota, C. E. B. Cardenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Optimizing energy consumption of
guis in android apps: a multi-objective approach,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
pp. 143-154, ACM, 2015.

[3] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. De Lucia, “Petra: A software-based tool for estimating the energy

[11] https://source.android.com/devices/tech/dalvik.

profile of android applications,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), IEEE, May
2017.

[4] M. Q. Huynh, P. Ghimire, and D. Truong, “Hybrid app approach: could
it mark the end of native app domination?,” Issues in Informing Science
and Information Technology, vol. 14, pp. 049-065, 2017.

[51 M. Willocx, J. Vossaert, and V. Naessens, “Comparing performance
parameters of mobile app development strategies,” in Proceedings of the
International Workshop on Mobile Software Engineering and Systems -
MOBILESoft '16, ACM Press, 2016.

[6] E. Angulo and X. Ferre, “A case study on cross-platform development
frameworks for mobile applications and ux,” in Proceedings of the XV
International Conference on Human Computer Interaction, p. 27, ACM,
2014.

[71 “Monkeyrunner.”
monkeyrunner/.

[8] https://developer.android.com/studio/command-line/dumpsys.html.

[9] https://developer.android.com/reference.

[10] https://developer.android.com/guide/components/fragments.

[12] X. Chen and Z. Zong, “Android app energy efficiency: The impact of
language, runtime, compiler, and implementation,” in 2016 IEEE In-
ternational Conferences on Big Data and Cloud Computing (BDCloud),
Social Computing and Networking (SocialCom), Sustainable Computing
and Communications (SustainCom) (BDCloud-Social Com-SustainCom),
IEEE, Oct 2016.

N. Hansson and T. Vidhall, “Effects on performance and usability for
cross-platform application development using react native,” Master’s
thesis, Linkoping University, Human-Centered systems, 2016.

T. Majchrzak and T.-M. Grgnli, “Comprehensive analysis of innovative
cross-platform app development frameworks,” in Proceedings of the 50th
Hawaii International Conference on System Sciences, 2017.
https://facebook.github.io/react-native/docs/javascript-environment.

S. Georgiou, M. Kechagia, P. Louridas, and D. Spinellis, “What are your
programming language’s energy-delay implications?,” in Proceedings
of the 15th International Conference on Mining Software Repositories,
MSR 18, (New York, NY, USA), pp. 303-313, ACM, 2018.
https://flutter.dev/docs/resources/faq.

https://developer.android.com/studio/test/

[13]

[14]

[15]
[16]

[17]
(18]
[19] Y. Ma, X. Liu, Y. Liu, Y. Liu, and G. Huang, “A tale of two fashions: An
empirical study on the performance of native apps and web apps on an-
droid,” IEEE Transactions on Mobile Computing, vol. 17, p. 990-1003,
May 2018.

M. V. Heikkinen, J. K. Nurminen, T. Smura, and H. Hiammdinen,
“Energy efficiency of mobile handsets: Measuring user attitudes and
behavior,” Telematics and Informatics, vol. 29, p. 387-399, Nov 2012.
S. Hosio, D. Ferreira, J. Goncalves, N. van Berkel, C. Luo, M. Ahmed,
H. Flores, and V. Kostakos, “Monetary assessment of battery life on
smartphones,” in Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems - CHI 16, ACM Press, 2016.

[22] https://android.googlesource.com/platform/frameworks/base/+/refs/tags/
android- vts-9.0_r9/core/java/android/os/IBatteryPropertiesRegistrar.aidl.

[20]

[21]

https://medium.com/@kelvinma/exploring-android-ui-frameworks- f4b87{f81326).

APPENDIX A
EXPERIMENTATION RESOURCES

1) Testing Script: The Python script used with MonkeyRunner to perform the tests in this paper has been made available
at http://doi.org/10.5281/zenodo.3260257.

The testing script consists of two Python files, one of which contains the test logic itself, and another definitions file that
contains the methods used to interact with individual parts of the app. This system is necessary to handle potential differences
in the UI layout between different devices; only the definitions file must be changed in order to run the test on a different
device. (Alternatively, a new definitions file can be created, and the import in the main testing script changed).

To run the test script, a suitable Java runtime environment must be installed (in this paper, Java 8 was used). Navigate to
the Android SDK tools directory, and launch the script using the instructions found in the readme.txt file included with
the testing scripts.

2) Apps: Each of the apps used in this paper have been included in the above release. To compile an app, import the
project into Android Studio if applicable (Flutter, Baseline) and then proceed with the standard compilation procedure for the
framework. The framework (aside from the baseline app) and an appropriate Android SDK must be installed. More detailed
instructions can be found in the readme files included with each of the three apps.

APPENDIX B
ADDITIONAL GRAPHS

Google Pixel XL React Native Google Pixel XL Flutter

Google Pixel XL Baseline

160 —

110

T T T
o (=] o
< (2] N

- - -
(s/ywn) melp J1amod abelany
F-- i
: (T3

o HT -
o Tm_u*
s
-]}

L TH
1

T T T T

& g g 3
(s/uwn) meip Jamod obelany

b-[]}-10
HT H
o H[J1
&u 00
HOOTH
o H
HTH
HJ
I T T T T
s 8 8 8 ®

(s/ywn) melp Jamod abelany

uopng
[epoN
suonewiuy
sabew|
el
Jamelq
Jauuids

uny

uonng
[eponN
suopewIuy
sabew|
walL
lameiq
Jauuids

uny

uopng
[epon
suonewiuy
sabew|
el
lamelq
Jauuids

uny

Figure 19. Energy use of the Flutter app

Figure 18. Energy use of the React Native app

Figure 17. Energy use of the Baseline app

Nokia 7 Plus Flutter

Nokia 7 Plus React Native

Nokia 7 Plus Baseline

T T T
o (=] o
< (2] N
— b —

150 —

(s/ywn) melp Jamod abelany

110 —

T

150 —
140
120

110 —

T

T

T

(s/yvn) meip _Smun_ abelany
R
e i
b] e
s I I Y
L]
==
LT}
b--{ -4
s g 3 3 3

(s/ywn) melp Jamod abelany

uonng
[epoN
suonewIuy
sabew|
el
lameiq
Jauuds

uny

uonng
[epoN
suonewiuy
sabew|
walL
Jameiq
Jauuds

uny

uonng
[epON
suonewIuy
sabew|
el
Jamelq
Jsuuids

uny

Figure 22. Energy use of the Flutter app

Energy use of the React Native app

Figure 21.

Figure 20. Energy use of the Baseline app

Motorola G5 Plus Flutter

Motorola G5 Plus React Native

Motorola G5 Plus Baseline

T

o
T

T

100 —

T
(=3
n
—

(s/yyn) meip 1amod abelany

50 —

T

T

T

o
T

T

T T T
o o o
N o @
— -

(s/yvn) melp 1amod abesany

60 —

T T

T

T

120

T T T T T
o o o o o
~ S = =] ~
— -

(s/yyn) meip 1amod abelany

T
=]
©

uonng
[eponN
suonewiuy
sabew|
RCIN
Jamelq
Jauuids

uny

uonng
[epoON
suonewuy
sabew|
wal
Jameig
Jauulds

uny

uonng
[epoN
suonewiuy
sabew|
RCIN
Jomeig
Jauuids

uny

Energy use of the Flutter app

Figure 25.

Figure 24. Energy use of the React Native app

Figure 23. Energy use of the Baseline app

Minimum
Lower Quartile
Median

Upper Quartile
Maximum

Minimum
Lower Quartile
Median

Upper Quartile
Maximum

Minimum
Lower Quartile
Median

Upper Quartile
Maximum

Minimum
Lower Quartile
Median

Upper Quartile
Maximum

Run

86.01
87.03
87.51
88.62
89.81

Run

149.74
150.31
156.57
157.72
168.48

Run

133.19
135.02
135.72
136.76
138.89

Run

139.09
143.14
146.20
148.23
155.27

Spinner
79.65
81.65
84.19
87.17
89.35

Spinner
139.87
141.50
145.50
150.96
152.00

Spinner
132.52
139.24
142.02
145.91
155.83

Spinner
133.89
135.89
144.67
150.37
158.89

Drawer
97.27
100.01
100.52
104.29
105.43

APPENDIX C
DATA TABLES

Text Scrolling
88.55
90.31
93.50
101.52
104.38
Table 1

Image Scrolling
96.18

96.18

99.04

100.00

101.76

PIXEL BASELINE (AH/S)

Drawer
168.97
175.56
179.73
182.90
189.96

Text Scrolling
155.87
161.47
165.95
173.51
187.05
Table II

Image Scrolling
155.76
164.92
170.56
175.54
176.57

PIXEL REACT NATIVE (1AH/S)

Drawer
127.91
136.64
141.80
146.44
149.46

Text Scrolling
151.90
154.43
156.51
164.66
165.92
Table III

Image Scrolling
138.94
140.48
143.37
147.03
151.10

PIXEL FLUTTER ((AH/S)

Drawer
143.57
149.51
154.22
155.32
159.56

Text Scrolling
130.74
138.50
143.19
157.46
164.37
Table IV

Image Scrolling
136.85
141.39
149.97
156.92
176.28

NOKIA BASELINE ((tAH/S)

Animations
83.66
84.84
86.18
86.81
88.30

Animations
142.70
148.84
154.27
157.81
160.25

Animations
119.60
123.73
127.40
129.98
130.98

Animations
127.99
136.26
139.70
144.74
150.82

Modals
63.98
65.96
69.73
71.78
73.21

Modals
129.73
140.74
145.82
153.01
154.08

Modals
110.55
113.73
116.54
119.02
126.22

Modals
127.14
139.81
146.15
152.04
161.57

Button
80.11
83.26
84.26
85.89
89.33

Button
123.31
128.54
131.61
136.77
142.93

Button
113.86
120.98
124.17
126.15
133.39

Button
127.80
135.24
145.35
150.01
153.91

Minimum
Lower Quartile
Median

Upper Quartile
Maximum

Minimum
Lower Quartile
Median

Upper Quartile
Maximum

Minimum
Lower Quartile
Median

Upper Quartile
Maximum

Minimum
Lower Quartile
Median

Upper Quartile
Maximum

Minimum
Lower Quartile
Median

Upper Quartile
Maximum

Run

128.35
128.35
129.81
130.48
133.54

Run

133.36
133.85
135.40
138.02
140.64

Run

94.18
94.99
95.33
95.92
96.74

Run
95.36
95.90
97.35
98.07
100.44

Run

84.23
86.26
87.39
88.94
90.10

Text Scrolling
129.36
131.53
133.31
139.15
144.57
Table V

Image Scrolling
119.16
131.65
140.44
145.06
150.42

NOKIA REACT NATIVE (1tAH/S)

Text Scrolling
128.79
141.68
145.43
152.18
156.09
Table VI

Image Scrolling
126.28
132.10
141.56
147.06
154.79

NOKIA FLUTTER (AH/S)

Text Scrolling
55.51
56.93
84.71
111.66
113.70
Table VII

Image Scrolling
60.18

86.54

105.18

119.80

125.25

MOTOROLA BASELINE (4AH/S)

Text Scrolling
62.47
63.13
84.17
123.95
131.29
Table VIII

Image Scrolling
79.81

105.21

121.47

127.28

133.32

MOTOROLA REACT NATIVE (AH/S)

Text Scrolling
53.63
57.33
109.92
11291
114.77
Table IX

Image Scrolling
53.17

57.74

108.06

111.83

116.21

MOTOROLA FLUTTER (uAH/S)

Baseline React Native
86.01 149.74
87.03 150.31
87.51 156.57
88.62 157.72
89.81 168.48
Table X

PIXEL OVERALL (#AH/S)

Spinner Drawer
114.57 136.23
117.91 143.10
129.96 147.56
132.73 150.26
135.37 156.53
Spinner Drawer
129.57 123.69
132.12 128.93
135.04 141.32
138.18 150.08
143.87 153.39
Spinner Drawer
89.39 102.22
90.30 102.22
91.72 103.26
93.03 103.96
94.04 105.22
Spinner Drawer
90.58 86.55
91.98 96.90
94.06 103.41
95.84 106.05
96.21 110.99
Spinner Drawer
84.17 86.90
85.30 87.76
86.00 90.48
87.07 92.03
87.07 92.49
Minimum
Lower Quartile
Median
Upper Quartile
Maximum
Minimum

Lower Quartile
Median

Upper Quartile
Maximum

Baseline React Native
139.09 128.35
143.14 128.35
146.20 129.81
148.23 130.48
155.27 133.54

Table XI

NOKIA OVERALL ((AH/S)

Flutter
133.19
135.02
135.72
136.76
138.89

Flutter
133.36
133.85
135.40
138.02
140.64

Animations
115.24
118.70
123.65
130.01
136.28

Animations
124.54
127.79
133.79
137.31
146.60

Animations
75.64
89.72
104.23
119.07
119.73

Animations
75.49
77.08
93.16
100.35
117.99

Animations
75.37
75.82
80.22
105.66
105.88

Modals
112.36
120.81
127.89
129.06
136.06

Modals
123.75
125.90
136.86
139.96
142.69

Modals
53.79
55.77
82.85
108.27
114.86

Modals
59.43
78.91
118.28
123.06
127.00

Modals
46.81
51.41
100.53
103.14
103.86

Button
108.83
111.76
115.85
119.58
122.34

Button
111.14
119.45
131.29
135.72
136.85

Button
77.42
95.39
98.00
114.86
116.94

Button
78.88
80.44
89.99
106.04
119.69

Button
66.30
67.78
97.31
102.24
102.39

Pixel Baseline
Pixel React
Pixel Flutter
Nokia Baseline
Nokia React
Nokia Flutter
Moto Baseline
Moto React
Moto Flutter

Pixel Baseline
Pixel React
Pixel Flutter
Nokia Baseline
Nokia React
Nokia Flutter
Moto Baseline
Moto React
Moto Flutter

Spinner

1.85E-02
1.50E-03
6.84E-03
6.31E-01
9.71E-01
7.96E-01
4.87E-04
6.84E-03
1.65E-01

Run
87.72
156.02
136.10
145.97
128.99
136.04
95.12
97.70
90.50

Baseline React Native Flutter
Minimum 94.18 95.36 84.23
Lower Quartile 94.99 95.90 86.26
Median 95.33 97.35 87.39
Upper Quartile 95.92 98.07 88.94
Maximum 96.74 100.44 90.10
Table XII
MOTOROLA OVERALL (#AH/S)
Drawer Text Scrolling Image Scrolling Animations Modals Button
1.08E-05 7.58E-05 1.47E-02 4.33E-02 1.08E-05 1.15E-02
1.08E-05 2.09E-03 7.25E-04 6.31E-01 8.93E-03 1.08E-05
6.30E-02 1.08E-05 2.06E-04 1.08E-05 1.08E-05 4.33E-05
6.84E-03 6.31E-01 2.18E-01 6.30E-02 1.00E+00 7.39E-01
2.17E-05 6.84E-03 2.88E-02 8.92E-02 1.65E-01 1.08E-05
5.79E-01 2.32E-02 4.81E-01 3.53E-01 9.12E-01 2.88E-02
1.50E-03 1.43E-01 9.71E-01 4.81E-01 1.43E-01 8.92E-02
1.05E-01 3.93E-01 2.32E-02 5.29E-01 1.65E-01 6.84E-01
1.43E-01 7.96E-01 7.96E-01 3.53E-01 3.53E-01 7.39E-01
Table XIII
WILCOXON P-VALUES
Spinner Drawer Text Scrolling Image Scrolling Animations Modals Button
84.28 102.11 95.26 96.63 86.20 68.98 84.40
146.12 179.67 168.23 170.54 157.89 148.94 132.36
142.66 141.19 158.13 144.05 126.66 116.17 123.90
144.28 152.89 146.25 152.62 140.00 145.62 143.22
126.30 145.81 134.93 138.03 124.26 125.36 115.61
135.71 139.50 144.01 140.29 133.85 133.92 127.73
90.85 100.38 84.62 99.33 100.40 82.52 100.72
95.16 99.05 91.76 111.34 91.14 104.98 9491
89.34 85.52 89.81 89.33 96.44 85.72 96.03
Table XIV

SECTION AND RUN MEANS FOR EACH APP/DEVICE COMBINATION (pAH/S)

