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We present a novel approach to understand geometric-
incompatibility-induced rigidity in under-constrained materials,
including sub-isostatic 2D spring networks and 2D and 3D vertex
models for dense biological tissues. We show that in all these
models a geometric criterion, represented by a minimal length
¯̀min, determines the onset of prestresses and rigidity. This allows
us to predict not only the correct scalings for the elastic material
properties, but also the precise magnitudes for bulk modulus and
shear modulus discontinuities at the rigidity transition as well as
the magnitude of the Poynting effect. We also predict from first
principles that the ratio of the excess shear modulus to the shear
stress should be inversely proportional to the critical strain with a
prefactor of three, and propose that this factor of three is a general
hallmark of geometrically induced rigidity in under-constrained
materials and could be used to distinguish this effect from nonlinear
mechanics of single components in experiments. Lastly, our results
may lay important foundations for ways to estimate ¯̀min from
measurements of local geometric structure, and thus help develop
methods to characterize large-scale mechanical properties from
imaging data.
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A material’s rigidity is intimately related to its geometry.1

In materials that crystallize, rigidity occurs when the2

constituent parts organize on a lattice. In contrast, granular3

systems can rigidify while remaining disordered, and argu-4

ments developed by Maxwell (1) accurately predict that the5

material rigidifies at an isostatic point where the number of6

constraints on particle motion equal the number of degrees of7

freedom.8

Further work by Calladine (2) highlighted the important9

role of states of self stress, demonstrating that an index theo-10

rem relates rigidity to the total number of constraints, degrees11

of freedom, and self stresses. Recent work has extended these12

ideas in both ordered and disordered systems to design materi-13

als with geometries that permit topologically protected floppy14

modes (3–5).15

A third way to create rigidity is through geometric incom-16

patibility, which we illustrate by a guitar string. Before it is17

tightened, the floppy string is under-constrained, with fewer18

constraints than degrees of freedom, and there are many ways19

to deform the string at no energetic cost. As the distance20

between the two ends is increased above the rest length of21

the string, this geometric incompatibility together with the22

accompanying creation of a self-stress rigidifies the system23

(3, 6). Any deformation will be associated with an energetic24

cost, leading to finite vibrational frequencies. This same mech-25

anism has been proposed to be important for the elasticity of26

rubbers and gels (6) as well as biological cells (7).27

In particular, it has been shown to rigidify under- 28

constrained, disordered fiber networks under applied strain, 29

with applications in biopolymer networks (8–22). Just as with 30

the guitar string, rigidity arises when the size and shape of 31

the box introduce external constraints that are incompatible 32

with the local segments of the network attaining their desired 33

rest lengths. For example, when applying external shear, fiber 34

networks strongly rigidify at some critical shear strain γ∗
35

(9, 14, 16, 18–20, 22, 23), although it remains controversial 36

whether the onset of rigidity is continuous (14, 15, 20, 24) or 37

discontinuous (18) in the limit without fiber bending rigidity. 38

Similarly, fiber networks can also be rigidified by isotropic 39

dilation (10), and the interaction between isotropic and shear 40

elasticity in these systems is characterized an anomalous neg- 41

ative Poynting effect (19, 21, 25–27), i.e. the development 42

of a tensile normal stress in response to externally applied 43

simple shear. However, it has as yet remained unclear how 44

all of these observations and their critical scaling behavior 45

(9, 16, 18, 20, 28) are quantitatively connected to the under- 46

lying geometric structure of the network. Moreover, while 47

previous works have remarked that several features of stiffen- 48

ing in fiber networks are surprisingly independent of model 49

details (13), it has remained elusive whether there are generic 50

underlying mechanisms. 51

Rigidity transitions have also been identified in dense bio- 52

logical tissues (29–33). In particular, vertex or Voronoi models 53

that describe tissues as a tessellation of space into polygons 54

or polyhedra exhibit rigidity transitions (34–49), which share 55
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Table 1. Models discussed in this article. For the spring networks, the values indicated apply to a system size of 2N/z = 1024 nodes, and
for all cellular models values apply to a system size of N = 512 cells. For each model, we indicate the respective dimension d of the “length
springs” and the spatial dimension D, as well as the numbers of degrees of freedom (dof) as well as constraints (i.e. length + area springs).
The provided values for transition point `∗0 and geometric coefficients a`, aa, and b are average values extracted from simulations exploring
the rigid regime near the transition point. For the cellular models, they are indicated together with their standard deviations across different
random realizations. For the 2D spring networks, the indicated numbers and their uncertainty corresponds to the respective fit of the average
values with fixed exponent of ∆z. Differences to earlier publications (37, 44, 46) result from differences in sampling due to a different energy
minimization protocol used here (Supplemental Information, section IV).

Model “Area” Dimension Number of Transition Coefficients
rigidity d D dof constraints point `∗

0 a` aa b

2D spring network – 1 2 4N/z N
(1.506 ± 0.004)

−(0.378 ± 0.009)∆z (1.33 ± 0.06)/∆z1/2 – (0.7 ± 0.1)/∆z

2D vertex model kA = 0 1 2 4N N 3.87 ± 0.01 0.30 ± 0.01 – 0.48 ± 0.02
2D vertex model kA > 0 1 2 4N 2N 3.92 ± 0.01 1.7 ± 0.4 3.3 ± 0.7 0.6 ± 0.2
2D Voronoi model kA = 0 1 2 2N N 3.82 ± 0.01 0.64 ± 0.03 – 0.68 ± 0.03
3D Voronoi model kV = 0 2 3 3N N 5.375 ± 0.003 0.25 ± 0.01 – 0.61 ± 0.02
3D Voronoi model kV > 0 2 3 3N 2N 5.406 ± 0.004 2.0 ± 0.1 6.6 ± 0.4 1.1 ± 0.1

similarities with both particle-based models, where the transi-56

tion is driven by changes to connectivity (48), and fiber (or57

spring) networks, which can be rigidified by strain. Therefore,58

an open question is how both connectivity and strain can59

interact to rigidify materials (22).60

Very recently, some of us showed that the 3D Voronoi61

model exhibits a rigidity transition driven by geometric in-62

compatibility (46), similar to fiber networks. This has also63

been demonstrated for the 2D vertex model, using a contin-64

uum elasticity approach based on a local reference metric (42).65

For the case of the 3D Voronoi model, we found that there66

was a special relationship between properties of the network67

geometry and the location of the rigidity transition, largely68

independent of the realization of the disorder (46).69

Here, we show that such a relationship between rigid-70

ity and geometric structure is generic to a broad class of71

under-constrained materials, including spring networks and72

vertex/Voronoi models in different dimensions (Table 1, Fig-73

ure 1). We first demonstrate that all these models display the74

same generic behavior in response to isotropic dilation. Under-75

standing key geometric structural properties of these systems76

allows us to predict the precise values of a discontinuity in77

the bulk modulus at the transition point. We then extend our78

approach to include shear deformations, which allows us to79

analytically predict a discontinuity in the shear modulus at the80

onset of rigidity. Moreover, we can make precise quantitative81

predictions of the values of critical shear strain γ∗, scaling82

behavior of the shear modulus beyond γ∗, Poynting effect, and83

several related critical exponents. In each case, we numerically84

demonstrate the validity of our approach for the case of spring85

networks.86

We also compare our predictions to previously published87

experimental data, and highlight some new predictions, in-88

cluding a prefactor of three that we expect to find generically89

in a scaling collapse of the shear modulus, shear stress, and90

critical strain.91

We achieve these results by connecting macroscopic me-92

chanical network properties to underlying geometric properties.93

In the case of the guitar string, the string first becomes taut94

when the distance between the two ends attains a critical95

value `∗
0 equal to the intrinsic length of the string, so that96

the boundary conditions for the string are geometrically in-97

compatible with the intrinsic geometry of the string. As the98

string is stretched, one can predict its pitch (or equivalently 99

the effective elastic modulus) by quantifying the actual length 100

of the string ` relative to its intrinsic length. While this is 101

straightforward in the one-dimensional geometry of a string, 102

we are interested in understanding whether a similar geometric 103

principle, based on the average length of a spring ¯̀ governs 104

the behavior near the onset of rigidity in disordered networks 105

in 2D and 3D. 106

Here, we formulate a geometric compatibility criterion in 107

terms of the constrained minimization of the average spring 108

length ¯̀min in a disordered network. Just as for the guitar 109

string, this length ¯̀min attains a critical value `∗
0 at the onset 110

of rigidity. As the system is strained beyond the rigidity 111

transition, we demonstrate analytically and numerically that 112

the geometry constrains ¯̀min to vary in a simple way with two 113

observables: fluctuations of spring lengths σl, and shear strain 114

γ. Because ¯̀min is minimized over the whole network, it is a 115

collective geometric property of the network. 116

Just as with the guitar string, the description of the geome- 117

try given by ¯̀min then allows us to calculate many features of 118

the elastic response, including the bulk and shear moduli. This 119

in turn provides a general basis to analytically understand the 120

strain-stiffening responses of under-constrained materials to 121

both isotropic and anisotropic deformation within a common 122

framework. Even though ¯̀min describes collective geometric 123

effects, our work may also provide an important foundation 124

to understand macroscopic mechanical properties from local 125

geometric structure. 126

Models 127

Here we focus on four classes of models, which include 2D 128

sub-isostatic random spring networks without bending rigidity 129

(9, 50–54) and three models for biological tissues: the 2D 130

vertex model (34, 37), the 2D Voronoi model (38, 44), and the 131

3D Voronoi model (46) (Table 1). 132

2D spring networks consist of nodes that are connected 133

by in total N springs, where the average number of springs 134

connected to a node is the coordination number z. We create 135

networks with a defined value for z by translating jammed 136

configurations of bidisperse disks into spring networks and 137

then randomly pruning springs until the desired coordination 138

number z is reached (9, 27). We use harmonic springs, such 139
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Fig. 1. Comparison of the rigidity transition across the different models: (a,b) 2D spring network (coordination numbers z = 3.2, 3.4, 3.6, 3.8, 3.99), (c,d) 2D Voronoi
model (with kA = 0) and 2D vertex model (with kA = 0 in panel c and kA = 0, 0.1, 1, 10 in panel d), (e,f) 3D Voronoi model (with kV = 0 in panel e and
kV = 0, 1, 10, 100 in panel f). In all models, the transition is discontinuous in the bulk modulus (panels a,c,e) and continuous in the shear modulus (panels b,d,f). (b inset) For
2D spring networks, the value of the transition point `∗

0 (quantified using the bisection protocol detailed in section IVB of the Supplemental Information) increases with the
coordination number z. This relation is approximately linear in the vicinity of the isostatic point zc ≡ 4. Blue dots are simulation data and the red line shows a linear fit with
`∗

0 = (1.506± 0.004)− (0.378± 0.009)∆z with ∆z = zc − z. Close to the transition point in panels c,e, data points are scattered between zero and a maximal value.
This scattering is due to insufficient energy minimization in these cases. In panels b, d, and f, shaded regions indicate the standard error of the mean.

that the total mechanical energy of the system is:140

es2D =
∑
i

(li − l0i)2. [1]141

Here, the sum is over all springs i with length li and rest142

length l0i, which are generally different for different springs.143

For convenience, we re-express Eq. (1) in terms of a mean144

spring rest length `0 = [(
∑

i
l20i)/N ]1/2, which we use as a145

control parameter acting as a common scaling factor for all146

spring rest lengths. This allows us to rewrite the energy as:147

es2D =
∑
i

wi(`i − `0)2 [2]148

with rescaled spring lengths `i = `0li/l0i and weights wi =149

(l0i/`0)2, such that
∑

i
wi = N (for details, see Supplemen-150

tal Information, section IA). In simple constraint counting151

arguments, each spring is treated as one constraint, and here152

we are interested in sub-isostatic (i.e under-constrained, also153

called hypostatic) networks with z < zc ≡ 4.154

The tissue models describe biological tissues as polygonal155

(2D) or polyhedral (3D) tilings of space. For the Voronoi156

models, these tilings are Voronoi tessellations and the degrees157

of freedom are the Voronoi centers of the cells. In contrast, in158

the 2D vertex model, the degrees of freedom are the positions159

of the vertices (i.e. the polygon corners). Forces between the160

cells are described by an effective energy functional. For the161

2D models, the (dimensionless) energy functional is:162

ec2D =
∑
i

[
(pi − p0)2 + kA(ai − 1)2

]
. [3]163

Here, the sum is over all N cells i with perimeter pi and area164

ai. There are two parameters in this model: the preferred165

perimeter p0 and the relative area elasticity kA. For the 3D 166

Voronoi model, the energy is defined analogously: 167

ec3D =
∑
i

[
(si − s0)2 + kV (vi − 1)2

]
. [4] 168

The sum is again over all N cells i of the configuration, with 169

cell surface area si and volume vi, and the two parameters of 170

the model are preferred surface area s0 and relative volume 171

elasticity kV . 172

All four of these models are under-constrained based on 173

simple constraint counting, as is apparent from the respective 174

numbers of degrees of freedom and constraints listed in Table 1. 175

We stress that Calladine’s constraint counting derivation (2, 3) 176

also applies to many-particle, non-central-force interactions. 177

Throughout this article, we will often discuss all four mod- 178

els at once. Thus, when generally talking about “elements”, 179

we refer to springs in the spring networks and cells in the tissue 180

models. Similarly, when talking about “lengths `” (of dimen- 181

sion d), we refer to spring lengths ` in the spring networks, cell 182

perimeters p in the 2D tissue models, and cell surface areas s 183

in the 3D tissue model (Table 1). Finally, when talking about 184

“areas a” (of dimension D), we refer to cell areas a in the 2D 185

tissue models as well as cell volumes v in the 3D tissue model. 186

Here we study the behavior of local energy minima of all four 187

models under periodic boundary conditions with fixed dimen- 188

sionless system size N , i.e. the model is non-dimensionalized 189

such that the average area per element is one (41, 44, 46). Un- 190

der these conditions, a rigidity transition exists in all models 191

even without area rigidity. In particular, for the 2D vertex 192

and 3D Voronoi models, we discuss the special case kA = 0 193

separately (Table 1). Moreover, the athermal 2D Voronoi 194

model does not exhibit a rigidity transition for kA > 0 (44), 195

and thus we will only discuss the case kA = 0 for this model. 196
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Results197

A. Rigidity is created by geometric incompatibility corre-198

sponding to a minimal length criterion. We start by comparing199

the rigidity transitions in the four different models using Fig-200

ure 1, where we plot both the differential bulk modulus B and201

the differential shear modulus G versus the preferred length202

`0. In this first part, we use for all models the preferred203

length `0 as a control parameter. Note that because `0 is204

non-dimensionalized using the number density of elements,205

changing `0 corresponds to applying isotropic strain (i.e. a206

change in volume with no accompanying change in shape).207

Later, we will additionally include the shear strain γ as a208

control parameter.209

In all models, we find a rigid regime (B,G > 0) for preferred210

lengths below the transition point `∗
0, and a floppy regime211

(B = G = 0) above it, with the transition being discontinuous212

in the bulk modulus and continuous in the shear modulus.213

For the spring networks, we find that the transition point214

`∗
0 depends on the coordination number, where close to the215

isostatic point zc ≡ 4, it scales linearly with the distance216

∆z = zc − z to isostaticity (Figure 1b inset), as previously217

similarly discussed in (10). Something similar has also been218

reported for a 2D vertex model (48).219

For the cellular models, we find that the transition point220

for the case without area rigidity, kA = 0, is generally smaller221

than in the case with area rigidity, kA > 0 (Figure 1d,f,222

Table 1). Moreover, our 2D vertex model transition point for223

kA > 0 is somewhat higher than reported before (37). Here224

we used a different vertex model implementation than in (37)225

(Supplemental Information, section IVC), and the location226

of the transition in vertex models depends somewhat on the227

energy minimization protocol (44), a feature that is shared228

with other models for disordered materials (55). Also, in229

Figure 1d,f the averaged shear modulus always becomes zero230

at a higher value than the respective average transition point231

listed in Table 1. This is due to the distribution of transition232

points having a finite width (see also finite width of `0 regions233

with both zero and nonzero bulk moduli in panels c and e).234

We find that in all these models, the mechanism creating235

the transition is the same: rigidity is created by geometric236

incompatibility, which is indicated by the existence of pre-237

stresses. We have already shown this for the 3D Voronoi238

model (46) and the 2D Voronoi model with kA = 0 (44), while239

others have shown this for the ordered 2D vertex model (42).240

Furthermore, our data confirms that this is the case for the241

2D spring networks and the kA = 0 cases of both (disordered)242

2D vertex and 3D Voronoi models (Supplemental Information,243

section IIA).244

We find something similar for the disordered 2D vertex245

model for kA > 0. Although there are special cases where246

prestresses appear also in the floppy regime (Supplemental247

Information, section IIA), to simplify our discussion here, we248

only consider configurations without such typically localized249

prestresses.250

We observe that in all of these models, a geometric criterion,251

which we describe in terms of a minimal average length ¯̀min,252

determines the onset of prestresses. For example, we can253

exactly transform the spring network energy Eq. (2) into254

(Supplemental Information, section IA):255

es2D = N
[
(¯̀− `0)2 + σ2

`

]
. [5]256

Here, ¯̀ = (
∑

i
wi`i)/N and σ2

` = (
∑

i
wi(`i − ¯̀)2)/N are 257

weighted average and standard deviation of the rescaled spring 258

lengths. This means that ¯̀ and σ` are average and standard 259

deviation of the actual spring lengths li, each measured rela- 260

tive to its actual rest length l0i. In particular, the standard 261

deviation σ` vanishes whenever all springs i have the same 262

value of the fraction li/l0i, even though the absolute lengths 263

li may differ among the springs. Moreover, importantly, the 264

mean rest length `0 enters the definitions of ¯̀and σ`, but only 265

via the ratios l0i/`0, which characterize the relative spring 266

length distribution. Hence, the “rescaled” geometric informa- 267

tion contained in both ¯̀ and σ` is a combination of the actual 268

spring lengths and the relative rest length distribution, but is 269

independent of the absolute mean rest length `0. 270

According to Eq. (5), energy minimization corresponds to 271

a simultaneous minimization with respect to |¯̀− `0| and σ`: 272

In the floppy regime we find numerically that both quantities 273

can vanish simultaneously and thus, all lengths attain their 274

rest lengths, `i = `0 (Supplemental Information, section IIA). 275

In contrast in the rigid regime, |¯̀− `0| and σ` cannot both 276

simultaneously vanish, creating tensions 2(`i − `0), which are 277

sufficient to rigidify the network. The transition point `∗
0 278

corresponds to the smallest possible preferred spring length 279

`0 for which the system can still be floppy. In other words, 280

it corresponds to a local minimum in the average rescaled 281

spring length `∗
0 = min ¯̀ of the network under the constraint 282

of no fluctuations of the rescaled lengths, σ` = 0. Because this 283

minimization is with respect to all node positions and includes 284

all springs, it defines the distribution of transition points `∗
0 285

as a collective property of the rescaled geometry of 2D spring 286

networks. 287

For the cellular models with kA > 0, we analogously find 288

that the transition point is given by the minimal cell perimeter 289

¯̀ (surface in 3D) under the constraint of no cell perimeter and 290

area fluctuations σ` = σa = 0, which now additionally appear 291

in the energy Eq. (5) (46). Again, this is a geometric criterion, 292

which also explains why the transition point `∗
0 is independent 293

of kA for kA > 0 (Figure 1d,f). Moreover, we can understand 294

why the transition point is smaller for kA = 0: in this case 295

the energy does not constrain the area fluctuations, and the 296

transition point is given by the minimal perimeter under the 297

weaker constraint of having no perimeter fluctuations. Thus, 298

the transition point will generally be smaller for the kA = 0 299

case than for the kA > 0 case. 300

B. The minimal length scales linearly with fluctuations. We 301

next study the scaling of the minimal length in the rigid vicin- 302

ity of the transition. In the rigid regime, the system must 303

compromise between minimizing |¯̀− `0| and σ` (and possibly 304

σa in cellular models). To understand how, we must account 305

for geometric constraints, which we express in terms of how 306

the minimal length ¯̀min = min ¯̀ depends on the fluctuations: 307

¯̀min = ¯̀min(σ`, σa). In the rigid regime the observed average 308

length is always greater than the preferred length, ¯̀> `0, and 309

so the average length instead takes on its locally minimal pos- 310

sible value ¯̀= ¯̀min(σ`, σa). Therefore, knowing the functional 311

form of ¯̀min(σ`, σa) will allow us to predict how the system 312

energy e (and thus also the bulk and shear moduli) depend on 313

the control parameter `0 (Supplemental Information, section 314

IC-E). 315

In section IB of the supplement, we show analytically that 316

in the absence of prestresses in the floppy regime, the minimal 317
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Fig. 2. Verification of the geometric linearity near the transition point. The difference between average length and transition point, `∗
0 − ¯̀, scales linearly with the standard

deviations of lengths σ` and areas σa. (a) 2D spring network, (b) 2D Voronoi and vertex models, (c) 3D Voronoi model. The values of z, kA, and kV are respectively as in
Figure 1. (a inset) For the 2D spring networks, the coefficient a` in Eq. (6) scales with the distance to isostaticity approximately as a` ∼ ∆z−1/2. In all panels, deviations
from linearity exist for large `∗

0 − ¯̀because Eq. (6) and Eq. (7) describe the behavior close to the transition point, and deviations for small `∗
0 − ¯̀are due the finite cutoff on

the shear modulus used to obtain the transition point value `∗
0 (Supplemental Information, section IV).

Fig. 3. Predicted and observed behavior of the bulk modulus discontinuity ∆B for (a) 2D spring networks for different values of the coordination number z, (b) the 2D vertex
model for different values of the area rigidity kA and (c) the 3D Voronoi model for different values of the volume rigidity kV . Blue dots indicate simulations and the red curves
indicate predictions without fit parameters based on Eq. (9). In panel a, the black dashed curve is computed using values for transition point `∗

0 and geometric scaling
coefficient a` directly measured for each value of z, while for the red line we used the scaling relations from Table 1.

length ¯̀min depends linearly on the standard deviations σ`318

and σa. This is directly related to the state of self-stress319

that is created at the onset of geometric incompatibility at320

`0 = `∗
0 ≡ ¯̀min(0, 0) (3).321

To check this prediction, we numerically simulate these322

models, and observe indeed a linear scaling of the ¯̀min(σ`)323

functions close to the transition point (Figure 2). In particular,324

for 2D spring networks and the kA = 0 cases of the cellular325

models, we find:326

¯̀min(σ`) = `∗
0 − a`σ` [6]327

with scaling coefficient a`. We list its value in Table 1 for the328

different models. Interestingly, we find that the coefficient a`329

is largely independent of the random realization of the system,330

in particular for cellular models with kA = 0.331

For 2D spring networks, a` depends on the coordination332

number z and approximately scales as a` ∼ ∆z−1/2 (Figure 2a333

inset). This scaling behavior of a` can be rationalized using a334

scaling argument based on the density of states (Supplemental335

Information, section IF).336

For cellular models where area plays a role, Eq. (6) is337

extended (Figure 2b,c):338

¯̀min(σ`, σa) = `∗
0 − a`σ` − aaσa. [7]339

Again the coefficients a` and aa are listed in Table 1 for 2D340

vertex and 3D Voronoi models. The coefficients a` differ341

significantly between the kA > 0 and kA = 0 cases of the342

same model, which makes sense because Eq. (6) and Eq. (7)343

are linear expansions of the function ¯̀min(σ`, σa) at different 344

points (σ`, σa). 345

C. Prediction of the bulk modulus discontinuity. Knowing the 346

behavior of the minimal length function ¯̀min(σ`, σa) in the 347

rigid phase near the transition point provides us with an 348

explicit expression for the energy in terms of the control pa- 349

rameter `0 (Supplemental Information, section IC): 350

e(`0) = N

Z
(`∗

0 − `0)2 [8] 351

with Z = 1+a2
`+a2

a/kA, where for models without an area term 352

the a2
a/kA term is dropped. Because changes in `0 correspond 353

to changes in system size, we can predict the exact value of 354

the bulk modulus discontinuity, ∆B, at the transition in all 355

models (Figure 1a-c, Supplemental Information, section IE): 356

∆B = 2d2(`∗
0)2

D2Z
. [9] 357

This equation is for a model with d-dimensional “lengths” em- 358

bedded in a D-dimensional space (see Table 1). For the special 359

case of a hexagonal lattice in the 2D vertex model, this result 360

is consistent with Ref. (56). More generally, for disordered 361

networks the geometric coefficients a` and aa appear in the 362

denominator, because they describe non-affinities that occur 363

in response to global isotropic deformations (Supplemental 364

Information, section IE). A comparison of the predicted ∆B 365

to simulation results is shown in Figure 3. 366
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Fig. 4. Nonlinear elastic behavior of sub-isostatic spring networks under shear. (a) Schematic phase diagram illustrating the parabolic boundary between rigid (shaded) and
floppy (unshaded) regime depending on preferred spring length `0 and shear strain γ. (b) Schematic showing the dependence of the shear modulus G on the shear strain
γ for different values of `0 (cf. panel a). Note that for `0 > `∗

0 (red curve), Eq. (12) predicts a discontinuity ∆G∗ in the shear modulus at the onset of rigidity. (c) We
numerically find a quadratic dependence between `0 − `∗

0 and the critical shear γ∗ where the network rigidifies for given `0 > `∗
0 . This is consistent with our Taylor expansion

in Eq. (10), and the quadratic regime extends to shear strains of up to γ ∼ 0.1. Deviations for very small `0 − `∗
0 are attributed to the finite shear modulus cutoff of 10−10

used to probe the phase boundary (Supplemental Information, section IVB). (c inset) The prefactor b associated with the quadratic relation in panel c scales approximately as
b ∼ 1/∆z. (d) Scaling of the shear modulus beyond the shear modulus discontinuity, (G−∆G∗)/∆G∗ over (γ − γ∗)/γ∗ with `0 − `∗

0 = 10−4. The dashed black line
indicates the prediction from Eq. (12) without fit parameters. (d inset) Scaling of the shear modulus discontinuity ∆G∗ with `0 − `∗

0 . (e,f) Scaling of the shear modulus with γ
and `∗

0 − `0, respectively. In all panels the coordination number is z = 3.2.

D. Nonlinear elastic behavior under shear. As shown before367

(8–10, 12, 14–16, 18–21), under-constrained systems can also368

be rigidified by applying finite shear strain. We now incorpo-369

rate shear strain γ into our formalism and test our predictions370

on the 2D spring networks. However, we expect our findings371

to equally apply to the cell-based models (Supplemental Infor-372

mation, section IC,D). We also numerically verified that our373

analytical predictions also apply to 2D fiber networks without374

bending rigidity (Supplemental Information, section IIC).375

To extend our approach, we take into account that the376

minimal-length function ¯̀min(σ`) can in principle also depend377

on the shear strain γ. We thus Taylor expand in γ:378

¯̀min(σ`, γ) = `∗
0 − a`σ` + bγ2, [10]379

where the linear term in γ is dropped due to symmetry when380

expanding about an isotropic state (in practice, for our finite-381

sized systems we drop the linear term in γ by defining the γ = 0382

point using shear stabilization, Supplemental Information,383

sections ID and IV). While at the moment we have no formal384

proof that `min is analytic, and the ultimate justification for385

Eq. (10) comes from a numerical check (see next paragraph),386

we hypothesize that for most systems `min will be analytic in387

γ, up to randomly scattered points γ where singularities in388

the form of plastic rearrangements occur.389

For a fixed value of γ, the interface between solid and rigid390

regime is again given by ¯̀min(σ` = 0, γ), and the corresponding391

phase diagram in terms of both control parameters γ and `0392

is illustrated in Figure 4a. Indeed, we also numerically find393

a quadratic scaling for the transition line, `0 − `∗
0 = b(γ∗)2,394

extending up to shear strains of γ ∼ 0.1 (Figure 4c, see also395

Supplemental Information, section IIB). We find that for spring 396

networks the coefficient b depends on ∆z approximately as 397

b ∼ ∆z−1 (Figure 4c inset), which can be understood from 398

properties of the density of states (Supplemental Information, 399

section IF). To optimize precision, values of b have been ex- 400

tracted from the relation G = 4b(¯̀−`0) in this plot (see below, 401

cf. Figure 4f). 402

Knowing the functional form of ¯̀min(σ`, γ) close to the 403

transition line allows us to explicitly express the energy in the 404

rigid regime in terms of both control parameters (Supplemental 405

Information, section IC): 406

e(`0, γ) = N

1 + a2
`

(
`∗

0 − `0 + bγ2
)2

. [11] 407

This allows us to explicitly compute the shear modulus G = 408

(d2e/dγ2)/N . We obtain for both floppy and rigid regime: 409

G(`0, γ) = Θ
(
`∗

0 − `0 + bγ2
) 4b

1 + a2
`

(
`∗

0 − `0 + 3bγ2
)
, [12] 410

where Θ is the Heaviside function. We now discuss several 411

consequences of this expression for the shear modulus (Fig- 412

ure 4b). 413

When shearing the system starting in the floppy regime 414

(i.e. for `0 > `∗
0), Eq. (12) predicts a discontinuous change 415

in the shear modulus of ∆G∗ = 8b(`0 − `∗
0)/(1 + a2

`) at the 416

onset of rigidity at γ∗ = [(`0 − `∗
0)/b]1/2. We verify the linear 417

scaling ∆G∗ ∼ (`0−`∗
0) in Figure 4d inset, and the value of the 418

scaling coefficient in the Supplemental Information, section 419

IIB. Moreover, Eq. (12) also correctly predicts the behavior 420

beyond γ∗, as shown in Figure 4d. 421
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Fig. 5. The excess shear modulus G−∆G∗ scales linearly with the shear stress σ̃
in 2D spring networks. We find a collapse when rescaling G−∆G∗ by the critical
shear strain γ∗. The black dashed line corresponds to the prefactor of 3, as predicted
by Eq. (13). (inset) The excess shear modulus G−∆G∗ scales linearly with the
isotropic stress−p, and we obtain a collapse when rescaling the latter by b/`∗

0 . The
black dashed line is the prediction according to Eq. (13).

Eq. (12) also correctly predicts the shear modulus behavior422

for `0 ≤ `∗
0. For `0 = `∗

0, the shear modulus scales quadrati-423

cally with γ (Figure 4e), while for γ = 0, the shear modulus424

scales linearly with (`∗
0 − `0) > 0 (Figure 4f, see Supplemental425

Information, section ID, for the cellular models), as reported426

before for many of the cellular models (37, 46, 56). In both427

cases, we verified that the respective coefficients coincide with428

their expected values based on the values of a` and b.429

In particular for γ = 0, because (`∗
0 − `0) = (1 + a2

`)(¯̀− `0),430

we obtain the simple relation G = 4b(¯̀− `0), which explains431

the collapse in the shear modulus scaling for different kV in432

the 3D Voronoi model that some of us reported earlier (46).433

We also obtain explicit expressions for both shear stress
σ̃ = (de/dγ)/N and isotropic stress, i.e. negative pressure −p
(Supplemental Information, sections ID,E). For the latter, we
find a negative Poynting effect with coefficient χ ≡ p/γ2 =
−2db`∗

0/D(1 + a2
`) at `0 = `∗

0. Moreover, we find the following
relations for the shear modulus:

G = ∆G∗ + 3
γ
σ̃ G = ∆G∗ − 6Db

d`∗
0
p. [13]

Indeed, we observe a collapse of our simulation data for the434

2D spring networks in both cases (Figure 5 & inset), where435

we use that close to the onset of rigidity, γ ' γ∗.436

Discussion437

In this article, we propose a unifying perspective on under-438

constrained materials that are stiffened by geometric incompat-439

ibility. This is relevant for a broad class of materials (6), and440

has more recently been discussed in the context of biopolymer441

gels (8, 12–14, 21) and biological tissues (31, 37, 42, 46). Just442

as with a guitar string, we are able to predict many features443

of the mechanical response of these systems by quantifying444

geometric incompatibility – we develop a generic geometric445

rule ¯̀min for how generalized springs in a disordered network446

deviate from their rest length. Using this minimal average447

length function ¯̀min, we then derive the macroscopic elastic448

properties of a very broad class of under-constrained, prestress-449

rigidified materials from first principles. We numerically verify450

our findings using models for biopolymer networks (9, 14) and 451

biological tissues (34, 38, 46). 452

Our work is relevant for experimentalists and may explain 453

the reproducibility of a number of generic mechanical features 454

found in particular for biopolymer networks (12, 17, 21, 25). 455

While we neglect here a fiber bending rigidity that is included 456

in many biopolymer network models (12–15, 21), future work 457

that includes such a term will further refine our theoretical 458

results and the following comparison to experiments (see be- 459

low). For shear deformations with `0 sufficiently close to `∗
0 460

and close to the onset of rigidity γ ' γ∗, we predict a linear 461

scaling of the differential shear modulus G with the shear 462

stress σ̃, where (G−∆G∗)/σ̃ ∼ 1/γ∗, which has been reported 463

before for biopolymer networks (12, 13, 21). However, here 464

we additionally predict from first principles that the value of 465

the prefactor is exactly 3, a factor consistent with previous 466

experimental results (12, 21). Moreover, our work strongly 467

suggests that the relation (G − ∆G∗)/σ̃ = 3/γ is a general 468

hallmark of prestress-induced rigidity in under-constrained 469

materials. We thus propose it as a general experimental cri- 470

terion to test whether an observed strain-stiffening behavior 471

can be understood in terms of geometrically induced rigidity. 472

If applicable to biopolymer gels, this could help to discern 473

whether strain-stiffening of a gel is due to the nonlinear me- 474

chanics of single filaments or is dominated by prestresses, a 475

long-standing question in the field (8, 57). 476

We can also apply these predictions to typical rheometer 477

geometries (Supplemental Information, section IG). We predict 478

that an atypical tensile normal stress σzz develops under 479

simple shear, which corresponds to a negative Poynting effect, 480

that σzz scales linearly with shear stress and shear modulus: 481

σzz ∼ σ̃ ∼ (G−∆G∗) (Eq. (13) and Supplemental Information, 482

section IG). This is precisely what has been found for many 483

biopolymer gels like collagen, fibrin, or matrigel (12, 21, 25, 26). 484

However, in contrast to Ref. (21), our work suggests that the 485

scaling factor between σzz and (G−∆G∗) should be largely 486

independent of γ∗. While these effects can also be explained by 487

nonlinearities (25, 57–59), and have already been discussed in 488

the context of prestress-induced rigidity (13, 19, 21), we show 489

here that they represent a very generic feature of prestress- 490

induced rigidity in under-constrained materials. 491

Our work also highlights the importance of isotropic defor- 492

mations when studying prestress-induced rigidity, as demon- 493

strated experimentally in Ref. (17). While previous work 494

(8, 9, 12, 14, 15, 18, 20, 21) focused almost (10) entirely on 495

shear deformations, we additionally study the effect of isotropic 496

deformations represented by the control parameter `0. First, 497

due to the bulk modulus discontinuity, our work predicts 498

zero normal stress under compression and linearly increasing 499

normal stress under expansion, consistent with experimental 500

findings on biopolymer networks (17) (assuming the uniaxial 501

response is dominated by the isotropic part of the stress tensor, 502

see Supplemental Information, section IG). Second, we also 503

correctly predict that the critical shear strain γ∗ increases 504

upon compression, which corresponds to an increase in `0 (17) 505

(cf. Figure 4a). While we also predict an increase of the shear 506

modulus G under extension, which was observed as well (17), 507

additional effects arising from the superposition of pure shear 508

and simple shear very likely play an important role in this 509

case. While we consider this outside the scope of this article, 510

it will be straight-forward to extend our work by this aspect. 511
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In summary, we have developed a new approach to un-512

derstand how many under-constrained disordered materials513

rigidify in a manner similar to a guitar string. While it is clear514

that the one-dimensional string becomes rigid precisely when515

it is stretched past its rest length, we show that in two- and516

three-dimensional models, rigidity is governed by a geometrical517

minimal length function ¯̀min with generic features (e.g. linear518

scaling with intrinsic fluctuations, quadratic scaling with shear519

strain). This insight allows us to make accurate predictions520

for many of the scaling functions and prefactors that describe521

the linear response of these materials. In addition, by per-522

forming numerical measurements of the geometry in the rigid523

phase to extract the coefficients of the ¯̀min function, we can524

even predict the precise magnitudes of several macroscopic525

mechanical properties.526

In addition, these predictions help unify or clarify several527

scaling collapses that have been identified previously in the528

literature. For 2D spring networks derived from jammed pack-529

ings, we studied the dependence of our geometric coefficients530

on the coordination number z, and find that approximately,531

a` ∼ ∆z−1/2 and b ∼ ∆z−1. Combined with our finding that532

the value of `0 right after initialization depends linearly on z,533

such that (`0−`∗
0) ∼ ∆z (Figure S5a inset in the Supplemental534

Information), we obtain that the critical shear strain γ∗ scales535

as γ∗ ∼ ∆zβ with β = 1. Similarly, we find for the associated536

shear modulus discontinuity ∆G∗ ∼ ∆zθ with θ = 1. While537

both exponents are consistent with earlier findings by Wyart538

et al. (9), our approach highlights the importance of the initial539

value of `0 for the elastic properties under shear. In other540

work, bond-diluted regular networks yielded different expo-541

nents β and θ (16), which is not surprising because the scaling542

exponents of a` and b with ∆z are likely dependent on the543

way the network is generated. More generally, while we ob-544

served that the values of `∗
0, a`, aa, and b depended somewhat545

on the protocol of system preparation and energy minimiza-546

tion, they were relatively reproducible among different random547

realizations of a given protocol (55).548

Moreover, we analytically predict and numerically confirm549

the existence and precise value of a shear modulus discontinu-550

ity ∆G∗ with respect to shear deformation, whose existence551

for fiber networks without bending rigidity has been contro-552

versially discussed more recently (14, 15, 18, 20, 24). We also553

predict a generic scaling of the shear modulus beyond this554

discontinuity: (G −∆G∗) ∼ (γ − γ∗)f with f = 1. Smaller555

values for f that have been reported before for different kinds556

of spring and fiber networks (14, 15, 18, 20) are likely due557

to higher order terms in ¯̀min. Given the very generic nature558

of our approach, we expect to find a value of f = 1 in these559

systems as well, if probed sufficiently close to `0 = `∗
0.560

One major obstacle in determining elastic properties of561

disordered materials is the appearance of non-affinities, which562

can lead to a break-down of approaches like effective medium563

theory close to the transition (10). In our case, effects by564

non-affinities are by construction fully included in the geo-565

metric coefficients a`, aa, and b. However, while measures566

for non-affinity have been discussed before (9, 15, 20, 28, 60),567

these are usually quite distinct from our coefficients a`, aa,568

and b. For example for spring networks, such earlier defini-569

tions typically include spring rotations, while our coefficients570

represent changes in spring length only. Hence, while earlier571

definitions reflect much of the actual motion of the microscopic572

elements, our coefficients only retain the part directly relevant 573

for the system energy and thus the mechanics. In other words, 574

the coefficients a`, aa, and b (and `∗
0) can be regarded as a 575

minimal set of parameters required to characterize the elastic 576

system properties close to the transition. 577

There are a number of possible future extensions of this 578

work. First, we have focused here on transitions created by a 579

minimal length, where the system is floppy for large `0 and 580

rigid for small `0. However, there is in principle also the 581

possibility of a transition created by e.g. a maximal length, 582

which is for example the case in classical sphere jamming. 583

Although we have occasionally seen something like this in 584

our spring networks close to isostaticity, we generally expect 585

this to be less typical in under-constrained systems due to 586

buckling. 587

Second, while we studied here the vicinity of one local 588

minimum of ¯̀min depending e.g. on γ, it would be interesting 589

to study the behavior of the system beyond that, by including 590

higher order terms in ¯̀min, and by also explicitly taking plastic 591

events into account (61). In the case of biological tissues, 592

plastic events typically correspond to so-called T1 transitions 593

(62), which in our approach would correspond to changing to 594

a different ¯̀min “branch”. 595

Third, it will be important to study what determines the 596

exact values of the geometric coefficients a`, aa, and b, how 597

they depend on the network statistics, and why they are 598

relatively reproducible. For the cellular models with area 599

term, preliminary results suggest that the ratio of both “a” 600

coefficients can be estimated by aa/a` ≈ d`∗
0/D, because the 601

self-stress that appears at the onset of rigidity seems to be 602

dominated by a force balance between cell perimeter tension 603

and pressure within each cell. 604

Fourth, because we separated geometry from energetics, 605

it is in principle possible to generalize our work to other 606

interaction potentials, e.g. the correct expression for semi- 607

flexible filaments (57, 59), and to include the effect of active 608

stresses (54, 63–65). Note that our work directly generalizes 609

to any analytic interaction potential with a local minimum 610

at a finite length. Although in this more general case Eq. (5) 611

would include higher order cumulants of `i, these higher order 612

terms will be irrelevant in the floppy regime and we expect 613

them to be negligible in the rigid vicinity of the transition, 614

where we make most of our predictions. 615

Fifth, this work may also provide foundations to system- 616

atically connect macroscopic mechanical material properties 617

to the underlying local geometric structure. For example for 618

biopolymer networks, properties of the local geometric struc- 619

ture can be extracted using light scattering, scanning electron 620

microscopy, or confocal reflectance microscopy (21, 66, 67). 621

In particular, our simulations indicate that in models with- 622

out area term the ¯̀min function does not change much when 623

increasing system size by nearly an order of magnitude (Sup- 624

plemental Information, section IID), which suggests that local 625

geometry may indeed be sufficient to characterize the large- 626

scale mechanical properties of such systems. Remaining future 627

challenges here include the development of an easy way to 628

compute our geometric coefficients from simple properties 629

characterizing local geometric structure without the need to 630

simulate, and to find ways to detect possible residual stresses 631

that may have been built into the gel during polymerization. 632

Finally, our approach can likely be extended to also include 633
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isostatic and over-constrained materials. For example, it is634

generally assumed that the mechanics of biopolymer networks635

is dominated by a stretching rigidity of fibers that form a sub-636

isostatic network, but that an additional fiber bending rigidity637

turns the network into an over-constrained system (12–15, 21,638

22). The predictions we make here focus on the stretching-639

dominated limit where fiber bending rigidity can be neglected,640

which is attained by a weak fiber bending modulus and/or in641

the more rigid parts of the phase space. A generalization of642

our formalism towards over-constrained systems will allow us643

to extend our predictions beyond this regime and thus refine644

our comparison to experimental data.645

Materials and Methods646

Numerical implementation of the models. The 2D spring networks647

were initialized as packing-derived, randomly cut networks (9, 27).648

To improve the precision as compared to the cellular models, we649

created our own implementation of the Polak-Ribière version of650

the conjugate gradient minimization method (68), where for the651

line searches we use a self-developed Newton method based only652

on energy derivatives. All states were minimized until the average653

force per degree of freedom was less than 10−12. For the `0 sweep654

in Figure 1a,b and to find the (γ, `0) = (0, `∗0) point, we used shear655

stabilization. Details are given in section IVB of the Supplemental656

Information.657

For the 2D vertex model simulations, we always started from658

Voronoi tessellations of random point patterns, generated using659

the Computational Geometry Algorithms Library (CGAL, https:660

//www.cgal.org/), and we used the BFGS2 implementation of the GNU661

Scientific Library (GSL, https://gnu.org/software/gsl/) to minimize the662

energy. We enforced 3-way vertices and the length cutoff for T1663

transitions was set to 10−5, and there is a maximum possible number664

of T1 transitions on a single cell-cell interface of 104. All 2D vertex665

model configurations studied were shear stabilized.666

For the 2D Voronoi model simulations, we started from random667

point patterns and minimized the system energy using the BFGS2668

routine of the GSL, each time using CGAL to compute the Voronoi669

tessellations. Due to limitations of CGAL, configurations were not670

shear stabilized.671

For the 3D Voronoi model simulations, we used the shear-672

stabilized, energy-minimized states generated in Ref. (46) using673

the BFGS2 multidimensional minimization routine of the GSL.674

Details on the different simulation protocols (`0 sweeps and675

bisection to obtain the transition point) are discussed in detail in676

section IV of the Supplemental Information.677
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I. THE MINIMUM LENGTH FUNCTION `min

CONTROLS THE MATERIAL BEHAVIOR

A. System energy in terms of average and
standard deviation of the rescaled spring lengths

Here we derive Eqs. (2) and (5) in the main text, start-
ing from Eq. (1), which we restate here:

es2D =
∑
i

(li − l0i)2. (S1)

To derive Eq. (2), we first introduce the mean rescaled
spring rest length `0, together with the rescaled spring
lengths `i and the weights wi:

`0 =

[
1

N

∑
i

l20i

]1/2
(S2)

`i = `0
li
l0i

(S3)

wi =

[
l0i
`0

]2
. (S4)

In this subsection, all sums are over all springs i in the
network. The rescaled spring length `i is the actual
spring length measured relative to its rest lengths and
rescaled by `0. Combining Eqs. (S1), (S3), and (S4), we
obtain Eq. (2) in the main text:

es2D =
∑
i

wi(`i − `0)2. (S5)

We now need to show that Eq. (S5) is the same as
Eq. (5) in the main text, which reads:

es2D = N
[
(¯̀− `0)2 + σ2

`

]
(S6)

with the following definitions for the (weighted) average
and standard deviation of the rescaled spring lengths `i:

¯̀=
1

N

∑
i

wi`i (S7)

σ` =

[
1

N

∑
i

wi(`i − ¯̀)2

]1/2
. (S8)

To this end, we first use Eqs. (S4) and (S2) to obtain:∑
i

wi = N . (S9)

This relation is then used to transform σ2
` by expanding

the square inside of the sum:

σ2
` =

1

N

∑
i

wi`
2
i − 2¯̀ 1

N

∑
i

wi`i + ¯̀2, (S10)

and with Eq. (S7):

σ2
` =

1

N

∑
i

wi`
2
i − ¯̀2. (S11)
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Adding (¯̀− `0)2 on both sides yields

(¯̀− `0)2 + σ2
` =

1

N

∑
i

wi`
2
i − 2¯̀̀

0 + `20, (S12)

and using again Eq. (S7):

(¯̀− `0)2 + σ2
` =

1

N

∑
i

wi(`i − `0)2. (S13)

Hence, Eqs. (2) and (5) in the main text are equivalent.

B. The coefficients a` and aa are properties of a
self-stress

Here we show that the coefficients a` and aa are closely
related to the self-stress t that is created at the onset of
geometric incompatibility, at `0 = `∗0 [1]. To this end, we
start here by focusing on the case without area term, and
where all weights are wi = 1 (cf. Eq. (2) in main text). At
the end, we explain how to include both heterogeneous
weights and area terms. Also, we assume for simplicity
that close to the transition point there is only a single
self-stress, which is the self-stress created by the onset of
geometric incompatibility. However, while some models
can only exhibit at most a single self-stress (Section III),
we have convinced ourselves that our derivation can also
be generalized to the case where several self-stresses are
present at `∗0. Finally, we assume here that there are no
prestresses in the floppy regime, which implies that all
lengths attain their preferred value right at the transi-
tion point. At the end of this section, we briefly discuss
exceptions to this assumption. For clarity, we set γ = 0
throughout this section.

A self-stress t is defined by

t ·C = 0, (S14)

where C is the compatibility matrix with components
Cin = ∂`i/∂rn, with i = 1, . . . , N running over all gen-
eralized springs with lengths `i, and n running over all
degrees of freedom rn.

We show here that the creation of a self-stress t at the
transition implies a linear scaling of the minimal average
length ¯̀with σ`. Moreover, it even implies such a scaling
for each individual spring length `i. To show this, we first
note that – up to a prefactor – any vector t can always
be written as:

t = e+ a`mt, (S15)

where e = (1, . . . , 1) and mt is some vector normalized
such that m2

t = N that is perpendicular to e: e ·mt = 0.
Thus, the coefficient a` represents here the ratio between
standard deviation and average of the components ti.

Given the existence of this self-stress, we are interested
in the minimal possible average length ¯̀ for fixed σ`.

FIG. S1. Schematic illustrating the relation between the mini-
mal length ¯̀

min hyper-surface (blue surface) and the self-stress
t (thick blue arrow) that is created at the onset of geomet-
ric incompatibility. Here, we show a 3D representation of
the N -dimensional hyperspace containing all rescaled spring
lengths ` = (`1, . . . , `N ). The space is rotated such that the
axis pointing up corresponds to the average spring length, i.e.
it is parallel to the vector e = (1, . . . , 1) (black arrow). The
horizontal plane in the image represents the remaining N − 1
dimensions in the ` space. The blue ¯̀

min surface separates a
geometrically possible region above it from a region of geo-
metrically impossible spring length combinations ` below it.
Setting the spring rest lengths to the latter combinations will
thus lead to geometric incompatibility and thus potentially
rigidify the network. Close to the transition point (green
sphere), the ¯̀

min surface is perpendicular to the self-stress
t (blue arrow), as expressed by Eq. (S18). The black sphere
marks the point where all spring lengths are zero, and at the
transition point (green sphere), all springs attain the same
length ` = `∗0e. The distance from the line connecting both
black and green points corresponds to the standard deviation
of the spring lengths σ` (with a prefactor of

√
N). Hence,

to obtain the minimal average length ¯̀
min for given σ`, we

need to cut the mantle of a cylinder with radius
√
Nσ` (red

cylinder) with the ¯̀
min surface. As we show via Eq. (S19),

the resulting ellipse has its lowest point where m` ↑↑ mt.
This figure corresponds to the case without area term. Also,
this discussion relates to a local environment of one transition
point. We expect that large displacements of the degrees of
freedom r will affect this diagram by changing the direction
of mt (and by slightly altering the values of `∗0 and a`).

Similar to t, we express the vector ` containing all spring
lengths as:

` = ¯̀e+ σ`m`, (S16)

where againm` is a vector perpendicular to e normalized
such that m2

` = N . Right at the transition point `0 = `∗0,
all lengths attain their preferred value ` = `∗0e. As we
slightly decrease the control parameter `0 by δ`0, and
thus move into the rigid regime, the degrees of freedom
will change by δr. To first order in δ`0 this creates a
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change in ` by

δ` = C · δr, (S17)

where δ` = (¯̀− `∗0)e+σ`m`. To minimize ¯̀ for fixed σ`,
we need to take into account that δ` can not attain any
vector in its N -dimensional vector space. In particular,
the existence of the self-stress t implies that δ` has to be
perpendicular to t (using Eqs. (S14) and (S17)):

t · δ` = 0. (S18)

This equation is essentially a linearized version of the ge-
ometric compatibility condition ¯̀≥ ¯̀

min(σ`). Note that
Eq. (S18) is the only constraint when minimizing ¯̀, be-
sides fixing σ`, because t is the only self-stress. Inserting
Eq. (S15) and δ` into Eq. (S18) yields:

¯̀= `∗0 − a`σ`(mt ·m`/N). (S19)

The minimal ¯̀ is obtained for m` = mt, where the scalar
product mt ·m` attains its maximal possible value N .
Thus:

¯̀
min(σ`) = `∗0 − a`σ`. (S20)

Insertion into Eq. (S16) yields:

`(σ`) = (`∗0 − a`σ`)e+ σ`mt. (S21)

Hence, also each individual spring length depends lin-
early on σ`.

This proof is schematically illustrated by Fig. S1,
where the N -dimensional space of spring lengths ` is rep-
resented by a 3D figure. As for Eq. (S18), the ¯̀

min surface
(blue surface) is locally perpendicular to the self-stress t
(blue arrow). In order to find the minimal possible ¯̀ for
given standard deviation σ`, we first cut the ¯̀

min surface
with the locus where the standard deviation σ` has a de-
fined constant value, which is a cylinder mantle (red).
The cut is an ellipse, and as we show through Eq. (S19),
its lowest point is where m` ↑↑ mt. Because the radius
of the cylinder is proportional to σ`, and because the
blue ¯̀

min surface is locally linear, we obtain that indeed
`∗0 − ¯̀

min(σ`) ∼ σ`.
To take heterogeneities in the weights wi into account,

one can completely follow the above line of argument,
where only the formal definition of the scalar product
in the N -dimensional “constraint space” needs to be
changed. In particular, the scalar product between two
N -dimensional vectors p and q needs to be defined as:

p · q =
∑
i

wipiqi. (S22)

Consequentially, also averages and standard deviations
change, e.g. t̄ = e · t/N = [

∑
i witi]/N and σ2

t = (t −
t̄e)2/N = [

∑
i wi(ti − t̄)2]/N .

For the cellular models with area term, the line of ar-
gument is similar, but with the following changes: First,
vectors in the “constraint space” like the self-stress t now

contain 2N components (where N is the number of cells):
N of these components represent cell “lengths” and the
other N components represent cell “areas”. Second, be-
cause the overall area is constant, there is a second self-
stress where the length components are zero and the area
components are one: (0, . . . , 0, 1, . . . , 1). However, the
important self-stress is still t, which is now written as
t = e + a`m

`
t + aam

a
t , where e = (1, . . . , 1, 0, . . . , 0),

the vector m`
t has only non-zero length entries, and

the vector ma
t has only non-zero area entries. Conse-

quentially, minimization of ¯̀ for fixed σ` and σa yields:
¯̀
min(σ`, σa) = `∗0 − a`σ` − aaσa.

Here we have assumed that at at the transition point
`0 = `∗0, all spring lengths attain their preferred value
`i = `∗0. In Section II A we numerically show that this
is the case is nearly all of our models. However, it is in
principle possible that this is not the case, but only if
there are prestresses in the floppy regime, which we oc-
casionally observed for the 2D vertex model with kA > 0
(Fig. S4) and the 3D Voronoi model with kV > 0 [2].
While we consider these exceptions outside the scope of
the current paper, the above derivation can easily be gen-
eralized to obtain a formula for ¯̀

min that includes these
cases.

C. Geometric properties and energy

Here we show how for all studied models, the function
¯̀
min(σ`, σa, γ) controls the behavior of the system in the

rigid regime. In particular, knowing the functional form
of ¯̀

min(σ`, σa, γ) lets us write explicit expressions for ¯̀,
σ`, σa, and the total system energy e in terms of the
control parameters kA, `0, and γ.

1. Without shear strain

For all models, the dimensionless system energy e can
be expressed in terms of ¯̀, σ`, and σa:

e = N
[
(¯̀− `0)2 + σ2

` + kAσ
2
a

]
. (S23)

Because in the rigid regime, the average length attains
the minimally possible length given σ` and σa, the energy
minimum fulfills the following two equations:

0 =
∂e
(

¯̀= ¯̀
min(σ`, σa), σ`, σa

)
∂σ`

(S24)

0 =
∂e
(

¯̀= ¯̀
min(σ`, σa), σ`, σa

)
∂σa

. (S25)

Insertion of Eq. (S23) yields:

σ` = −∂
¯̀
min

∂σ`
(¯̀− `0) (S26)

σa = − 1

kA

∂ ¯̀
min

∂σa
(¯̀− `0). (S27)
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If we knew the relation ¯̀
min(σ`, σa), we could just insert it

together with ¯̀= ¯̀
min into Eqs. (S26) and (S27) in order

to obtain explicit expressions for ¯̀, σ`, and σa depending
on the control parameters `0 and kA.

For example, close to the transition point we find that
¯̀
min(σ`, σa) depends linearly on σ` and σa:

¯̀
min(σ`, σa) = `∗0 − a`σ` − aaσa. (S28)

This is a consequence of the self-stress that is created
at the onset of rigidity (see Section I B). Insertion into
Eqs. (S26) and (S27) yields:

σ` = a`(¯̀− `0) (S29)

σa =
aa
kA

(¯̀− `0). (S30)

Further, using again Eq. (S28), we obtain:

¯̀= `0 +
1

Z
(`∗0 − `0) (S31)

σ` =
a`
Z

(`∗0 − `0) (S32)

σa =
aa
kAZ

(`∗0 − `0) (S33)

with

Z = 1 + a2` +

{
0 for kA = 0, and
a2a
kA

for kA > 0.
(S34)

Finally, inserting Eqs. (S31)–(S33) into Eq. (S23), we
obtain an explicit expression of e in terms of the control
parameters `0 and kA:

e =
N

Z
(`∗0 − `0)2, (S35)

where Z depends on kA according to Eq. (S34).

2. Including shear strain

The minimal length function generally depends also on
the shear strain γ. Note that in our formalism there are
no requirements on the precise definition of γ, which can
in particular describe any of both pure shear or simple
shear deformation. Please refer to Section IV for the
precise definition of γ used in each of the studied models.

We assume that ¯̀
min(σ`, σa, γ) is analytic in γ, and

close to the transition, we can thus write up to first order
in σ` and σa and up to second order in γ:

¯̀
min(σ`, σa, γ) = `∗0 − a`σ` − aaσa + bγ2. (S36)

Note that there is some freedom in choosing the point
γ = 0, which allows us to discard the linear term ∼ γ
in Eq. (S36). This point is automatically reached by
searching for the point `0 = `∗0 and γ = 0 using a shear-
stabilized minimization protocol for simulations [3], or

in experiments by starting from a stress-free state with
minimal `0 (Section I D). Moreover, generally there are
of course also terms ∼ σ`/aγ and ∼ σ`/aγ2. These terms
allow to predict higher-order corrections to the energy
and its derivatives. However, for this study we focus just
on the highest-order terms as listed in Eq. (S36).

Following the same arguments as in the previous sub-
section, we ultimately obtain for the system energy:

e =
N

Z

(
`∗0 − `0 + bγ2

)2
, (S37)

where Z is again given by Eq. (S34). In the following Sec-
tions I D and I E below we compute several derivatives of
this expression to obtain the mechanical material prop-
erties.

D. Shear stress and shear modulus

Using the expression Eq. (S37), we obtain the following
expression for the shear stress σ̃ = (de/dγ)/N in the rigid
regime, with N being the dimensionless system area:

σ̃ =
4bγ

Z

(
`∗0 − `0 + bγ2

)
. (S38)

Note that a term ∼ γ in `min (Eq. (S36)) would lead to an
additional constant term in the numerator of Eq. (S38).
Thus, the shear stress for `0 < `∗0 would be nonzero at
γ = 0.

From Eq. (S38), we obtain the differential shear mod-
ulus G = dσ̃/dγ in the rigid regime:

G =
4b

Z

(
`∗0 − `0 + 3bγ2

)
. (S39)

Combining this with Eq. (S38), we obtain:

G = ∆G∗ +
3σ̃

γ
, (S40)

where ∆G∗ is:

∆G∗ =
8b

Z
(`0 − `∗0). (S41)

This is the shear modulus discontinuity in G, which ap-
pears at the onset of rigidity γ = γ∗.

For γ = 0 and `0 < `∗0, Eq. (S39) implies that the
shear modulus G scales linearly with the distance `∗0− `0
to the transition point. This is confirmed by our model
simulations for the 2D spring networks in Fig. 4f in the
main text, and for the cellular models in Fig. S2, in part
confirming earlier findings [2, 4, 5]. Fig. S2 also shows a
collapse of the different kA > 0 curves of a given model
when rescaling the shear modulus with Z, indicating that
b indeed describes the underlying geometry and is thus
independent of kA. However, note that like the coeffi-
cients a`, also the coefficient b may differ between the
kA = 0 and kA > 0 versions of a model (see in particular
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FIG. S2. For γ = 0 and `0 < `∗0, the shear modulus G scales
linearly with the distance `∗0 − `0 to the transition point (cf.
Eq. (S39)). (a) 2D Voronoi and 2D vertex model, (b) 3D
Voronoi model. Rescaling the shear modulus by Z defined in
Eq. (S34) largely collapses the data for all kA > 0 values of a
given model.

Fig. S2b). The reason is that they represent Taylor ex-
pansions of the function ¯̀

min(σ`, σa, γ) at different points
(σ`, σa, γ). For kA > 0, the coefficient b characterizes the
behavior at (σ`, σa, γ) = (0, 0, 0), while for kA = 0 at
(σ`, σa, γ) = (0, σa > 0, 0). The numerical values of b are
noted in Table I in the main text.

E. Isotropic stress and bulk modulus

In order to derive the isotropic part of the stress and
the bulk modulus from the energy expression Eq. (S37),
we make use of the fact that `0 is non-dimensionalized
by the number density of elements, and thus indirectly
depends on the system size.

To make sure we are not missing any term, we start
from the “dimensionful” energy of the system, which
reads:

E =
∑
i

[
KL(Li − L0)2 +KA(Ai −A0)2

]
. (S42)

Here, KL and KA are length and area rigidities, Li and
Ai are length and area of element i, and L0 and A0 are

their respective preferred values. Thus, the total area
of the system is AT =

∑
iAi and the average area per

element is Ā = AT /N . To obtain the dimensionless ex-
pressions e for the energies of our models (Eqs. (1)–(4)
in the main text), we have set A0 = Ā and then non-
dimensionalized with respect to the length scale Ā1/D

and the energy scale KLĀ
2d/D [2, 6, 7]. Hence, the di-

mensionful total energy E of the system can be written
as the sum:

E = EA0 +KLĀ
2d/De, (S43)

where EA0
= NKA(Ā−A0)2 is a mean-field contribution

by the area elasticity, and e is the non-dimensional energy
given by Eq. (S37).

The isotropic part of the stress is defined as the
negative (dimensionful) pressure −P = dE/dAT =
(dE/dĀ)/N . Insertion of Eq. (S43) yields:

−P = 2KA(Ā−A0) +
KLĀ

2d/D

N

[
2d

DĀ
e+

de

dĀ

]
. (S44)

We obtain for the dimensionless pressure p =
Ā1−2d/DP/KL:

− p = 2kA(1− a0) +
1

N

[
2d

D
e+ Ā

de

dĀ

]
(S45)

with a0 = A0/Ā.
While in the floppy regime the dimensionless energy

e is zero, in the rigid regime e is given by Eq. (S37)
in terms of shear strain γ and the dimensionless control
parameters kA = KAĀ

2−2d/D/KL and `0 = L0/Ā
d/D.

The derivatives of kA and `0 with respect to Ā are:

dkA
dĀ

=
2(D − d)kA

DĀ

d`0
dĀ

= − d`0
DĀ

. (S46)

Hence, we ultimately obtain for the pressure p to first
order in `∗0 − `0 + bγ2 and for bγ2 � `∗0:

− p = 2kA(1− a0) +
2d`∗0
DZ

(`∗0 − `0 + bγ2). (S47)

Comparison with the shear modulus G, Eq. (S39), for
kA = 0 or a0 = 1 yields the second relation in Eq. (13)
in the main text.

From Eq. (S47) directly follows that the Poynting co-
efficient χ = p/γ2 close to `0 = `∗0 is for kA = 0 or a0 = 1:

χ = −2db`∗0
DZ

. (S48)

For 2D spring networks, this prediction is tested in
Fig. S5b & inset.

The bulk modulus is defined by −AT (dP/dAT ) =
−Ā(dP/dĀ), and thus the dimensionless bulk modulus
is

B = − Ā
2−2d/D

KL

dP

dĀ
. (S49)
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Insertion of the pressure P , Eq. (S44), yields in the floppy
regime:

B = 2kA, (S50)

and in the rigid regime:

B = 2kA +
1

N

[
2d(2d−D)

D2
e+

4d

D
Ā

de

dĀ
+ Ā2 d2e

dĀ2

]
.

(S51)
To absolute order in `∗0− `0 + bγ2 and for γ = 0, only the
last term in the square brackets survives when inserting
Eq. (S37):

B = 2kA +
2d2(`∗0)2

D2Z
. (S52)

This is the bulk modulus when approaching the transi-
tion from the rigid regime. To extend this expression
for γ 6= 0 and into the rigid regime `∗0 − `0 + bγ2 > 0,
higher order terms in ¯̀

min need to be taken into account.
Note that Eq. (S52) can also be derived by projecting
the affine isotropic deformation mode onto the self-stress
t that is created at the onset of geometric incompatibility
(Section I B) [1].

The prefactor Z in Eq. (S52), and thus ultimately the
coefficients a` and aa (Eq. (S34)), represent the effect of
non-affinities during isotropic deformations. To see this,
consider a system at the transition point, where all di-
mensionless areas are ai = 1 and all dimensionless lengths
are `i = `∗0. An affine isotropic deformation starting from
this configuration means that all dimensionless ai and `i
stay the same, because we non-dimensionalize with the
average area Ā. With Eq. (S23) follows that the energy
for affine transformations away from the transition point
towards the solid regime would then be e = N(`∗0 − `0)2.
The difference to Eq. (S37) is just the prefactor Z−1,
which thus indeed accounts for the non-affinities.

F. Scaling exponents for 2D spring networks

Here we rationalize for the 2D spring networks the ob-
served approximate scaling exponents in the coefficients
a` ∼ ∆z1/2 (Fig. 2a inset in the main text) and b ∼ ∆z
(Fig. 4c inset in the main text).

To understand the scaling of the coefficient a`, we start
with the extended Hessian Hλ of the system, which we
define as the second energy derivative with respect to
both, all internal degrees of freedom rn and a global lin-
ear scaling factor λ. We denote the eigen frequencies of
this extended Hessian by (ωmλ )2 and the λ component of
the corresponding eigen vectors by Λmλ . Then, the bulk
modulus B = (d2E/dλ2)/D2N can be expressed using
the well-known formula [2, 8, 9]:[

d2E

dλ2

]−1
=
∑
m

(Λmλ )2

(ωmλ )2
. (S53)

We use this formula in the rigid regime approaching the
transition. In this case, there are many low-frequency
modes, which correspond to the zero modes in the floppy
regime. However, as evidenced by the bulk modulus
discontinuity, these modes have vanishing λ component
[1, 2]: Λmλ = 0. Thus, we can treat the quantities on the
right-hand side of Eq. (S53) as those of the unstressed
Hessian, ignoring any zero modes in the sum [2]. In-
sertion of Eq. (S52) and transforming the sum into an
integral yields:

1 + a2` ∼
∫ ∞
0+

Dλ(ω)Λ2
λ(ω)

ω2
dω. (S54)

Here Dλ(ω) is the density of states, and we used that
`∗0 is to dominant order independent of ∆z (Table I and
Fig. 1b inset in main text). It has been shown that for
the “non-extended” Hessian H, the density of states D
shows a plateau starting at ω∗ ∼ ∆z [10, 11]. Assuming
that Λλ does not depend strongly on ω and that Dλ ' D,
we obtain

1 + a2` ∼
1

∆z
. (S55)

For ∆z � 1 follows indeed that a` ∼ ∆z1/2. Deviations
that we observe in our 2D system for small ∆z (Fig. 2a
inset in the main text) may be related to logarithmic
corrections [11].

We use a related argument to understand the scaling
of the coefficient b. Now we use the Hessian Hγ extended
by the shear strain γ. Analogously to above, we denote
the eigen frequencies of this extended Hessian by (ωmγ )2

and the γ component of the corresponding eigen vectors
by Λmγ . We use the analogous formula to Eq. (S53) for
the shear modulus [2, 8, 9]:

1

NG
=
∑
m

(Λmγ )2

(ωmγ )2
. (S56)

Using Eqs. (S39) and (S47) with γ = 0, this equation can
be transformed into

1

b(−p)
∼
∫ ∞
0+

Dγ(ω)Λ2
γ(ω)

ω2
dω. (S57)

Here, −p is the isotropic stress acting on the boundaries
of the system. The major difference to the isotropic case,
Eq. (S54), is that the shear modulus vanishes when ap-
proaching the point `0 = `∗0 and γ = 0 from the rigid
side. This means that right at the transition, there are
zero modes of Dγ with non-vanishing overlap Λmγ 6= 0.
As a consequence, in the rigid vicinity of the transition
where −p is small, the integral Eq. (S57) is dominated
by these modes, which are raised to energies ∼ (−p) [2].
Indeed, some of us recently showed that for small −p, the
product DγΛ2

γ collapses for different ∆z and −p as [12]:

Dγ(ω)Λ2
γ(ω) dω = ∆zfγ(x) dx (S58)
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FIG. S3. Rigidity is created by geometric incompatibility. This is shown here by 2D histograms with respect to the largest
prestress in a given configuration (directly indicating geometric incompatibility, x axis) and its shear modulus (y axis), for (a)
2D spring networks, here with z = 3.2, (b) the 2D vertex model with kA = 0 and (c) the 3D Voronoi model with kV = 0.
Earlier publications have shown this for the 2D Voronoi model with kA = 0 [7] and the 3D Voronoi model with kV > 0 [2].

with x = ω/
√
−p and fγ being independent of ∆z and

p. This makes sense, because at the transition there are
∼ ∆z zero modes, which are all raised to energies ∼ (−p).
Insertion of Eq. (S58) into Eq. (S57) yields:

1

b(−p)
∼ ∆z

−p
, (S59)

and thus b ∼ 1/∆z. More details on the shear modulus
scaling in the spring networks can be found in Ref. [12].

G. Application to rheometer geometry

To facilitate the comparison of our results to experi-
ments, we briefly discuss here how our results apply to
a rheometer geometry with circumferential axis x, radial
axis y, and rotation axis z, and the shear strain γ corre-
sponds to the simple shear strain. Rheometers typically
measure shear stress σ̃ = σxz and normal stress σzz.

In the following, we show for that several experimen-
tal protocols, and in the vicinity of the (γ, `0) = (0, `∗0)
point, the normal stress σzz should be dominated by the
isotropic part of the stress tensor, −p, given by Eq. (S47).
To this end, we will assume no lateral (i.e. radial) defor-
mation of the network in the rheometer, which we expect
to be valid whenever the sample is glued to the rheometer
plates and its height is small as compared to its radius.

First, we expect the normal stress σzz to be domi-
nated by the isotropic stress, σzz ' −p, upon applica-
tion of simple shear starting from a stress-free state. To
show this, we use the Lodge-Meissner relation [13], which
states that the normal stress difference is:

σxx − σzz = σ̃γ. (S60)

Note that while this relation likely holds generally for
isotropic, purely elastic materials, we consider a proof of
this to be outside the scope of this article. Combined
with Eqs. (S38) and (S47), we find:

σxx − σzz = −2Dbγ2

d`∗0
p. (S61)

Hence, for γ � 1 we obtain that the normal stress dif-
ference is much smaller than the isotropic stress −p, and
thus σzz ' −p.

We expect the same also for uniaxial compression or
expansion of the sample along the z axis [14]. This is be-
cause in the absence of lateral deformation, both isotropic
strain and pure shear strain along the z axis will have the
same magnitude ε. When expanding the sample start-
ing from `0 = `∗0, the discontinuity in the bulk modulus
will lead to lowest order in ε to a linear increase in the
isotropic stress −p ∼ ε. However, because of the linear
increase of the shear modulus with (`∗0−`0) ∼ ε, the nor-
mal stress difference will increase only as ∼ ε2. Hence,
we find also for small uniaxial deformations: σzz ' −p.

II. NUMERICAL RESULTS

A. Rigidity is created by geometric incompatibility

Here we discuss numerical evidence showing that ge-
ometric incompatibility is both necessary and sufficient
to create rigidity in the models studied. We have shown
this before for the kV > 0 case of the 3D Voronoi model
[2] and for the kA = 0 case for the 2D Voronoi model
[7]. For the 2D spring networks, the 2D vertex model
with kA = 0, and the 3D Voronoi model with kV = 0, we
demonstrate this in Fig. S3.

In Fig. S3, we sorted all energy-minimized configura-
tions into two-dimensional histograms with respect to the
shear modulus G and the maximal prestress 2|`i − `0| in
the configuration. The dashed magenta lines indicate
cutoff values below which we regard shear modulus and
maximal prestress as numerically zero (obtained as de-
scribed in [2]). The fact that the upper-left and lower-
right quadrants in all three plots are essentially devoid
of configurations means that geometric incompatibility is
necessary and sufficient, respectively, to create rigidity in
these models.

For the 2D vertex model with kA > 0 we find ex-
ceptions to this, similar to the 3D Voronoi model with
kV > 0 [2]. Note that all results presented here are
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FIG. S4. In the 2D vertex model with kA > 0, rigidity is cre-
ated by the onset of geometric incompatibility, but there are
also localized prestresses. (a) Geometric incompatibility is
necessary for rigidity, and in many cases also sufficient. How-
ever, there were several energy-minimized configurations with
finite prestresses, but vanishing shear modulus. (b) Two such
configurations, with p0 = 3.939 and p0 = 3.939, respectively.
The color of each cell i indicates pi − p0, where gray corre-
sponds to a value of zero and bright red to a value of 0.05.
kA = 1 in both panels. Shown here are only configurations
without quadrilaterals (see Section IV).

based on configurations without quadrilaterals and tri-
angles (see Section IV). Like for the other models, also
for the 2D vertex model with kA > 0 geometric incom-
patibility (i.e. the existence of prestresses) is necessary
to create rigidity (i.e. a finite shear modulus). This is
suggested by the essential absence of configurations in
the upper-left quadrant in Fig. S4a. However, the exis-
tence of prestresses is not always sufficient to rigidify the
system, as can be seen by the configurations in the lower-
right quadrant of this plot. Examples for such configura-
tions are shown in Fig. S4b, where the color indicates the
value of pi − p0 of each cell, with gray indicating a value
of zero and red indicating a positive value. The cells with
finite perimeter tension are localized to one region and
do not percolate the system. Note that when probing the
scaling of `min and of mechanical properties, we excluded
networks with such localized prestresses (i.e. in Fig. 2b
in the main text, Fig. S2a, and Fig. S7d-f).

B. 2D spring networks

Here we report additional numerical results on the 2D
spring networks. First, we found occasional jumps when
probing the dependence of the critical shear strain γ∗ on
`0 > `∗0 (see Fig. S5a for z = 3.7). We observed that
these jumps occur more frequently for higher coordina-
tion number z, i.e. for systems closer to isostaticity. We
interpret these jumps as plastic events where the sys-
tem switches into the basin of a different minimum of
`min(0, γ). In particular, we numerically looked for the
critical strain γ∗ by increasing γ in steps of size ∆γ un-
til the system rigidified (see Section IV). Notably, upon
decreasing ∆γ, we obtained less jumps in γ∗, consistent
with a decreased probability of switching basins when
taking smaller steps. Throughout this article, we focus
on the purely elastic behavior of the system in the vicin-
ity of one local minimum of ¯̀

min(σ` = 0, γ), and exclude
these cases from our analysis.

Second, in the past, randomly-cut packing-derived
spring networks have been studied without varying the
parameter `0, where instead the value `init0 right after
initialization of the spring network was used, e.g. in
Ref. [15]. In order to compare to the scaling relations
with respect to ∆z found in the past, we numerically
studied the scaling of `init0 − `∗0 and find that it scales
as (`init0 − `∗0) ∼ ∆z. Together with our other findings,
we recapitulate indeed several of the scaling exponents
observed in Ref. [15] (see discussion section in the main
text).

Third, we also observe a negative Poynting effect,
which is reflected in the development of a tensile isotropic
stress −p upon shear. For `0 = `∗0, the isotropic stress
scales quadratically with the shear strain γ, which is
shown in Fig. S5b for z = 3.2. Moreover, we can predict
the corresponding coefficient χ = p/γ2 using Eq. (S48)
by extracting the coefficient b for each network from the
scaling of the critical shear γ∗ with `0 > `∗0 (Fig. S5b
inset).

Fourth, the existence of the function `min allows the
prediction not only of the Poynting coefficient χ, but
also of the coefficient describing the linear shear mod-
ulus scaling for `0 < `∗0 (Fig. S5c, cf. Fig. 4f) and of the
shear modulus discontinuity (Fig. S5c inset, cf. Fig. 4d
inset).

C. 2D fiber networks without bending rigidity

We also simulated a fiber network model without bend-
ing rigidity. To this end, we divided each spring of our 2D
spring networks into M “subsprings” (Fig. S6a). These
subspring networks are still under-constrained, and the
limit M → ∞ corresponds to fiber networks without
bending rigidity. We find that such subspring networks
also follow the predictions that we make in the main
text (Fig. S6b-e, cf. Fig. 4 in the main text). Moreover,
we also find numerically that these results are quantita-
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FIG. S5. Additional numerical results for the scaling in 2D spring networks. (a) Dependence of the critical shear γ∗ on
`0 − `∗0 for z = 3.7 (cf. Fig. 4c in the main text). We interpret the jumps in γ∗ as a switch of the system into the basin of a
different minimum of `min(0, γ). (a inset) The value of `0 right after creation of the spring network, `init0 , behaves such that
we numerically observe the scaling relation (`init0 − `∗0) ∼ ∆z. (b) Atypical negative Poynting effect: Quadratic scaling of the
tensile isotropic stress −p with the shear strain γ for `0 = `∗0 and z = 3.2. (b inset) Prediction of the prefactor in panel b
based on the scaling of the critical shear γ∗ with `0 − `∗0 for `0 > `∗0. The black dashed line represents the prediction according
to Eq. (S48). (c) Prediction of the prefactor in the linear shear modulus scaling for `0 < `∗0 with γ = 0 based on the scaling
of the critical shear γ∗ with `0 − `∗0 for `0 > `∗0. The black dashed line represents the prediction according to the relation
G = 4b(¯̀− `0). (c inset) Prediction of the shear modulus discontinuity ∆G∗ for `0 > `∗0 based on the scaling of the critical
shear γ∗ with `0 − `∗0. The black dashed line represents the prediction according to Eq. (S41). In panel c and the insets to
panels b and c, each symbol represents one probed spring network. In the insets to panels b and c, Z was extracted from the
geometric scaling of the respective networks for `0 < `∗0, using Eq. (S29).

FIG. S6. Our analytical predictions also match fiber network simulations without bending rigidity. (a) To simulate fiber
networks, we divide each spring of our original spring networks into M subsprings. We numerically observe (b) a quadratic
scaling between critical strain γ∗ and `∗0−`0 (cf. Fig. 4c in the main text), (c) a linear scaling of the shear modulus discontinuity
with `∗0−`0 (cf. Fig. 4d inset in the main text), (d) the predicted scaling of the relative excess shear modulus beyond the critical
strain γ∗ (cf. Fig. 4d in the main text), and (e) a linear scaling of the shear modulus with the mean rest length for γ = 0 (cf.
Fig. 4f in the main text). (f) Simulations with different values for M > 1 lead to quantitatively the same predictions, here
shown for the plot in panel e for one of the original spring networks. In panels b-e, we set M = 4. In panels b-f, we have used
for the original spring network a system size of 128 nodes and a connectivity of z = 3.2.

tively independent of the number M as long as M > 1
(Fig. S6f). This makes sense, because subspring chains
under tension will straighten out and thus have the same
effect as the original spring, independent of M . Con-
versely, when replacing springs under compression by a
subspring chain, this chain will buckle resulting in a net-
work that behaves as if that subspring chain was not

there, independent of M > 1. As a consequence of this
independence onM > 1, the limitM →∞ is well-defined
and corresponds to the behavior of the subspring network
with any M > 1. Hence, fiber networks without bending
rigidity are also faithfully represented by our theory.
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FIG. S7. System-size dependence of the parameters `∗0, a`, and b characterizing the ¯̀
min function. (a-c) 2D spring networks

with z = 3.2, (d-f) 2D vertex model with kA > 0, and (g-i) 3D Voronoi model with kV > 0. For the 2D spring networks, all
quantities vary only little with system size. The same is also true for the other models with kA = 0. However, we observe a
drift in the a and b coefficients for both models with kA > 0.

D. System-size dependence of the geometric
parameters

We also studied the system-size dependence of the pa-
rameters `∗0, a`, aa, and b characterizing the `min func-
tion. We find that for all models with kA = 0, the pa-
rameters do not depend very strongly on system size (e.g.
Fig. S7a-c). At the same time their variances decrease
with system size as ∼ 1/N (Fig. S7 insets).

In contrast, for models with kA > 0, we find a sig-
nificant, possibly logarithmic, drift in the coefficients a`,
both in two and in three dimensions (Fig. S7e,h). At the
same time, the variance in a` appears to cease decreasing
with system size (Fig. S7 insets to e,h). The coefficients
b appear to possibly also show such a drift albeit some-
what weaker (Fig. S7f,i & insets). We do not yet know
where this drift comes from, but we noted that it is much
stronger for the 2D vertex model than for the 3D Voronoi
model (Fig. S7e,h).

III. THERE IS AT MOST ONE SELF-STRESS IN
THE 2D VERTEX MODEL WITH kA = 0

Here we show analytically that for the kA = 0 case of
the 2D vertex model with convex cells, there is at most
one self-stress, and that as a consequence the onset of
prestresses occurs collectively in all cells at once.

For kA = 0, the generalized springs are the N perime-
ters pi and the degrees of freedom are the 2N vertex
positions rq, where q is the vertex index and we assume
that all vertices are shared by three cells. Thus, a self-
stress in this system is an N -dimensional vector ti with:∑

i

ti
∂pi
∂rq

= 0 for all vertices q. (S62)

For a given vertex q, the partial derivative in the sum is
only non-vanishing for the three abutting cells (denoted
here by i, j, k) such that Eq. (S62) reads for this vertex
q:

ti
∂pi
∂rq

+ tj
∂pj
∂rq

+ tk
∂pk
∂rq

= 0. (S63)
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FIG. S8. Definitions of angles for the proof that there is at
most one self-stress in the 2D vertex model for kA = 0 (see
Section III).

This corresponds to force balance at vertex q with the
perimeter tensions ti, tj , tk.

With the angles θqi , θ
q
j , θ

q
k between the cell-cell inter-

faces (Fig. S8), we obtain for the norm of the perimeter
derivatives |∂pi/∂rq| = 2 cos (θqi /2), and the direction of
∂pi/∂rq is along the angle bisector of θqi (cf. Fig. S8).
If all angles 0 < θqi < π, then insertion into the force
balance equation Eq. (S63) yields

ti
tan (θqi /2)

=
tj

tan (θqj/2)
=

tk
tan (θqk/2)

. (S64)

Any solution to Eq. (S62) has to fulfill Eq. (S64) for each
vertex simultaneously. Thus, in the case where the condi-
tions Eq. (S64) around different vertices are incompatible
with each other, there are no nonzero solutions for the ti.
In this case there is no self-stress and thus no prestress,
i.e. the system is in the floppy regime. If conversely the
conditions Eq. (S64) are compatible with each other for
all vertices, a nonzero solution for the ti exists. How-
ever, up to a common factor of proportionality, there is
only a single solution, because the factors between the ti
for different cells i are uniquely defined by the relations
Eq. (S64). Hence, there is at most only one state of self-
stress in this model, and the onset of prestresses occurs
in all cells at once.

IV. NUMERICAL ENERGY MINIMIZATION

A. Definitions for shear strain γ

For all cellular models, we used as definition for the
shear strain γ the simple shear strain (i.e. in the affine
case a change in γ corresponds to the displacement δx =
yδγ of any point (x, y)). For the 2D spring networks, the
shear strain γ denotes pure shear strain defined such that
when starting from a quadratic box, the final box aspect
ratio is exp (γ). Note that we expect our results to be
independent of whether γ denotes simple or pure shear.

B. 2D spring networks

We initialized the spring networks as packing-derived,
randomly cut networks as described in the models section
in the main text [9, 15]. To improve the precision as com-
pared to the cellular models, we created our own imple-
mentation of the Polak-Ribière version of the conjugate
gradient minimization method [16], where for the line
searches we use a self-developed Newton method based
only on energy derivatives. All states were minimized
until the average force per degree of freedom was less
than 10−12. For the `0 sweeps (Fig. 1a,b in the main
text and Fig. S3a), to prevent switching to a different
inherent state, starting from the initial `0 value we first
decreased `0 in steps of 0.01, each time minimizing the
energy. These energy minimizations were shear stabilized
with respect to the pure shear degree of freedom (i.e. γ
was allowed to vary during energy minimization) [3]. Af-
terwards, starting again from the initial configuration,
we iteratively increased `0 by steps of 0.01.

For the simulations exploring the vicinity of the
(γ, `0) = (0, `∗0) point (used for the values in Table I,
Figs. 2a, 3a, and 4 in the main text, and Fig. S5), we
always first looked for the (γ, `0) = (0, `∗0) point using
a bisection protocol with pure-shear-stabilized minimiza-
tions (see also Section I D). We therefore started with the
right (floppy) bracket at the initial `0 value and the left
(rigid) bracket at `0 = 1.1, and then executed 25 bisec-
tion steps. A configuration was declared rigid whenever
the isotropic stress exerted on the boundaries exceeded a
value of 10−10.

We explored the rigid vicinity of the transition point
`0 < `∗0 (used for Figs. 2a, 3a, and 4c inset,f in the main
text, and Fig. S5c) starting from (γ, `0) = (0, `∗0) by ex-
ponentially increasing `∗0−`0 starting from a small initial
value, and then each time minimizing the energy without
shear stabilization to ensure γ = 0 for these simulations.
Similarly, we created the γ sweeps for `0 = `∗0 (used for
Fig. 4e in the main text, and Fig. S5b) by exponentially
increasing γ starting from (γ, `0) = (0, `∗0) and minimiz-
ing without shear stabilization.

We explored the boundary between solid and floppy
regime (used for Fig. 4c,d inset in the main text, and
Fig. S5c) by exponentially increasing `0−`∗0 starting from
(γ, `0) = (0, `∗0) without shear stabilization. To reduce
the switching to different basins, we chopped large `0
steps up into smaller steps of 0.01 to include intermittent
minimizations. Then, for a given `0, we increased γ in
steps of size 0.001, each time minimizing without shear
stabilization. As soon as a rigid state was encountered
(isotropic stress on the boundaries exceeds 10−10), we
started a bisection starting from the last rigid and the last
floppy states encountered as initial brackets. Using 20
bisection steps, we identified γ∗. Once γ∗ was identified,
we each time scanned 5 different γ values up to 5% above
and below γ∗ to help us verify that there was indeed a
discontinuity in the shear modulus. For Fig. 4d in the
main text, we explored the rigid vicinity of the transition
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more thoroughly using dedicated simulations, where we
exponentially increased γ−γ∗ once γ∗ for `0− `∗0 = 10−4

was identified.

C. 2D vertex model

We always started from Voronoi tessellations of ran-
dom point patterns, generated using the Computational
Geometry Algorithms Library (CGAL, [17]), and we used
the BFGS2 implementation of the GNU Scientific Library
(GSL, [18]) to minimize the energy. We enforced 3-way
vertices and the length cutoff for T1 transitions was set
to 10−5, and there is a maximum possible number of
T1 transitions on a single cell-cell interface of 104. For
the p0 sweeps, we directly minimized the random initial
states (used for Figs. 1c,d in the main text, and Figs. S3b,
S4a,b). To reduce the number of networks with pre-
stresses in the floppy regime (cf. Fig. S4b), we removed
quadrilaterals from the energy-minimized configurations
by repeatedly inducing T1 transitions and minimizing
the energy until no quadrilaterals were left. Finally, we
discarded simulations that had a total force norm larger
than 10−5, a shear modulus smaller than −10−5, or a
cell-cell interface with length smaller than the T1 cutoff.
To explore the solid vicinity of the transition point (used
for the values in Table I, Figs. 2b & inset, 3b in the main
text, and Fig. S2a), we proceeded using bisection simi-
lar to Ref. [2]. First however, we made sure to exclude
quadrilaterals from these states. To this end, we first
minimized with p0 = 3.99. Then, we repeatedly induced
T1 transitions to remove any quadrilaterals followed by
another energy minimization until no quadrilaterals were
left. This state at p0 = 3.99 was then the right bracket
for the bisection and the left bracket was set to 3.8. Then,
we proceeded with the bisection as in Ref. [2] with 18 bi-
section steps and a shear modulus cutoff of 10−8. We ex-
cluded configurations were the topology (more precisely,
the number of neighbors of all cells) changed between
the last rigid and floppy states of the bisection, or dur-
ing the exploration of the solid vicinity of the transition
point. All 2D vertex model configurations studied were
shear-stabilized with respect to the simple shear degree

of freedom.

D. 2D Voronoi model

We started from random point patterns and minimized
the system energy using the BFGS2 routine of the GSL,
and we used CGAL to compute the Voronoi tessellations.
We discarded simulations that had a total force norm
larger than 3×10−5. For the p0 sweeps, we directly min-
imized the random initial states (used for Figs. 1c,d in
the main text). To explore the solid vicinity of the tran-
sition point (used for Table I, Fig. 2b inset in the main
text, and Fig. S2a), we proceeded as in Ref. [2] where we
started from the initial p0 bracket [3.7, 3.9] and used 20
bisection steps. The cutoff to declare a configuration as
rigid was at a shear modulus of 10−6. To ensure config-
urations were properly minimized for the exploration of
the solid vicinity, we repeated up to 10 minimizations un-
til the force per degree of freedom was smaller than 10−8.
We excluded configurations were the topology (the neigh-
bor number of all cells) changed between the last rigid
and floppy states of the bisection, or during the explo-
ration of the solid vicinity of the transition point. Due
to limitations of the CGAL library, configurations were
not shear stabilized.

E. 3D Voronoi model

We used the shear-stabilized energy-minimized states
generated in Ref. [2] using the BFGS2 multidimensional
minimization routine of the GSL, both regarding the s0
sweeps (used for Figs. 1e,f in the main text, and Figs. S3c)
as well as the simulations exploring the solid vicinity of
the transition point (used for Table I, Figs. 2c & in-
set, 3c in the main text, and Fig. S2c). To explore the
solid vicinity of the transition point for kV = 0, we used
slightly different numerical parameters. In particular, the
initial bracket for the bisection was [5.34, 5.40], and we
performed 13 bisection steps, where a state was consid-
ered rigid whenever it had a shear modulus greater than
10−6.
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