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Abstract

This thesis project worked towards extending the interactive capabilities of the RoboTutor Nao, by enabling
it to answers natural language questions about topics such as computers, robots and the Nao itself. The
main questions we focused on were 1) what a system for answering questions in Dutch and intended for
elementary school age children should look like, 2) how the interaction with users should be structured for a
smooth interaction and 3) what type of experimental studies and metrics are best for evaluating the quality
of the QA system and assess its impact on users.

We chose an existing English-language QA system and adapted it to work with Dutch content. An interac-
tion manager was developed for handling the interaction between the system and users. Finally, the system
was configured so that it could be interacted with via the Nao robot.

The system was then evaluated via two experimental studies. First a quantitative evaluation without users
was carried out, evaluating the performance of the system using a collection of test questions. Secondly, a
field study with users was done. We took the robot to a day care center where children could ask it questions
and assessed the effects of these interactive Q&A sessions.

Results from the quantitative evaluation highlighted slow answering times as the main shortcoming, while
recall (~70%) and precision (~50%) scores were more competitive. The field study showed that even though
the occasional repetitiveness and lack of speed were picked up on by users, this did little to curb their enthusi-
asm. Interaction was smooth, users were interested in many topics the system supported and they continued
interacting with it despite the occasional mishap. Overall, the results indicate that, with some speedup, the
delivered QA system would be a suitable choice for answering questions about the mentioned topics.
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1
Introduction

Apple’s Siri, Amazon’s Alexa, Microsoft’s Cortana: these are relatively new software systems the majority of
computer literate people have at least heard about and maybe even used. Besides these more famous in-
stances there is a large number of similar but less well-known tools, ranging from chatbots (like the social
network bot Tay) to customer facing systems (providing interactive dialogue and customer service features
on webshops).

What do these systems share with each other and what lies behind their increasing appeal? An important
aspect is that they can all be interacted with using human language, without having to learn the ‘language of
the machine’ itself. This enlarges the target audience so as to include less tech-savvy users as well. Another
reason is that they are systems that perform functions traditionally requiring humans and that are, in princi-
ple, available on demand.

Besides the aforementioned commercial applications, there are many academic initiatives in this area as
well. One academic institution that also has several ongoing projects aimed at aiding people in different
tasks using intelligent systems is the Interactive Intelligence department[1] of the EEMCS faculty at the Delft
University of Technology.

Among these is the RoboTutor project with the goal of providing an education assistant in the form of
the Nao robot, to aid teachers in classrooms in Dutch elementary schools. An important future milestone
is advancing the robot’s capabilities to such a degree that it can interact with its audiences by asking them
questions and answering their questions, while making use of additional techniques like speech recognition
and hand-raising detection to facilitate this interaction. The purpose of this project is to meet one of these
sub-goals: adding question answering capabilities to the Nao.

1.1. Question answering
Question answering systems represent one of the newer steps in the continuing line of software systems that
enable users to effectively search for information. Among the earlier examples were relational databases
(enabling users to store and searching for data in a structured way) and expert systems (for inferring new
facts from known data and supporting decisions).

There is an important distinction between QA systems and the former, more ‘traditional’, software systems
where interaction takes place using machine language. In contrast to databases, for example, where users are
required to learn the system’s language, the type of systems focused on in this project are ones that take
the opposite approach and try to understand the users’ language. As mentioned, this has the advantage of
potentially appealing to a broader audience, as people unfamiliar with technical systems can also make use
of these systems.

In the next three subsections we will first discuss QA systems in general, next the parameters that together
define a specific QA system, and finally the type of QA system we are looking to create as part of this project.

1.1.1. QA systems
Despite individual differences in design and implementation, natural language question answering systems
share a number of important characteristics:

2



1.1. Question answering 3

• Natural language interaction: users interact with the system using human language. This necessitates
the use of natural language processing (NLP) tools: software that can analyze natural language input.
Examples of such analysis include breaking up a sentence into words, identifying its subject and main
verb, and determining which parts of a sentence depend on which other parts.

• Exact answers: the system aims to return an answer that fits the expected type of answer. This can be
pieces of data like names, numbers or locations. This is in contrast to, for example, web search engines,
where a list of documents possibly containing the answer are returned instead of the actual answer
itself.

• Sources: the system has access to sources it can search through in the process of answering a question.
This can take the form of an offline data repository, but searching for information online is an option
as well.

Figure 1.1 shows what a generic question answering pipeline looks like. The main tasks are analyzing the
question, retrieving information that could be helpful for formulating an answer, analyzing the data that has
been retrieved and creating candidate answers from them, evaluating the quality of these candidates, and
finally generating a response from the analyzed candidates and presenting it to the user.

Figure 1.1: Generic question answering pipeline

1.1.2. QA system parameters
A specific QA system, in turn, is defined by a number of parameters. The most important of these are the
following:

• Language: in which languages can users ask questions and get answers? This has a significant impact
on the system as natural language processing tools are typically tailored for one language and for that
language only. This means that, in the absence of NLP tools for another language, extending a QA
system with support for that language is no trivial task.

• Domain: questions about which topics can the system answer? Is there only one subject it is expected
to know well, or should it be capable of handling a wide array of subjects?

• Question types: can we only ask it about definitions of terms, can it also find bits of data like dates of
birth and country capitals, or can we even expect it to come up with reasons behind events or detect
relationships between different pieces of information?

• Data sources: is the data contained in the sources simply free text (unstructured data), or does it have
an explicit structure and is it maybe closer to a database (structured data)?

1.1.3. QA in this project
Building on the previous subsections, we now use the parameters previously introduced to define the QA
system we are aiming at as part of this project:

• Language: as the intended audience consists of Dutch elementary school children, the QA system
should be able to process Dutch questions and return Dutch answers.
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• Domain: the current focus of the RoboTutor project’s educational efforts is on robotics, so we can iden-
tify this as the first subject to focus on. In addition, previous experiments in similar settings have shown
that the audience is very interested in details about the Nao robot itself - this is therefore another im-
portant domain.

• Question types: questions about capabilities of the robot (whether it can do this or that), and questions
about factoids (like the largest robot ever, or the Nao’s weight). To a lesser degree, definitions.

• Data sources: Both unstructured and structured sources can be beneficial for the purposes of this
project. Wikipedia because lot of information available about robotics. Structured data sources for
data that can be easily modeled that way.

1.2. Project plan
Based on the previous discussion, we are now in a better position to visualize this project’s main aspects and
tasks. Figure 1.2 is a graphical illustration of the project:

Figure 1.2: Project overview
sources: http://samooborona-stena.ru/wp-content/uploads/2017/06/994_5.jpg

https://wp.hum.uu.nl/wp-content/uploads/sites/113/2016/09/robot-colored.png

The fundamental task is shown on the bottom right: the implementation of a QA system for Dutch and
about robotics. NLP tools are needed to have it working for Dutch, appropriate data sources must be acces-
sible for answering questions about robotics, and the pipeline of the QA system needs to be adapted to and
optimized for the specific requirements of the project.

Going up, the QA system needs to be integrated into the Nao’s existing software architecture. Modules for,
among others, carrying out a presentation and converting textual input to verbal output already exist: the QA
system ultimately needs to become another module in this platform.

Finally, there is the human-computer interaction aspect of the project. The QA system, integrated into
the Nao software architecture, will be used within the context of an elementary school classroom.

The following tasks need to be carried to achieve the project goals:

1.3. Research topics and questions
The research questions to be focused on in this project can be derived from the preceding discussion. The
questions are formulated below, categorized into the five research topics part of this project.

1.3.1. Question answering
Context: Figure 2.1 showed what a QA system might look like architecturally. From an implementation point
of view, the mentioned pipeline of five components from Question Analysis to Response Generation can be
singled out: during execution this will be the subsystem responsible for the bulk of the processing.

http://samooborona-stena.ru/wp-content/uploads/2017/06/994_5.jpg
https://wp.hum.uu.nl/wp-content/uploads/sites/113/2016/09/robot-colored.png
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Table 1.1: Project tasks and deliverables

Milestone Tasks Deliverables
1 Review existing research and work Literature review report
2 Define context, use cases, requirements Product specification document
3 Investigate QA systems Report on trade-offs between alternatives

and a choice for a QA system
4 Set up sources Configured sources ready for use by the QA system
5 Set up NLP pipeline Capability of processing Dutch questions and answers
6 Integrate QA system into Nao platform QA system running via the Nao robot
7 Evaluate system Report on the evaluation and achieved results

Any two question answering systems will differ regarding the way their pipelines have been implemented.
It is therefore likely that, for the system we choose, this will have been done in not quite the way we would
consider fitting the requirements of this project.
RQ 1 What adaptations need to be made to the question answering pipeline of the chosen system?
Approach Investigate workings of existing pipeline in chosen system. Design alternative adaptations where
relevant, experimentally test their performance and implement the best one.

1.3.2. Sources
Context: The QA system will be put before the target audiences with a certain type of usage and purpose in
mind. This is to serve as a source of information for questions about robots, computers and the Nao itself.
This leads to certain requirements for the knowledge sources to be used: these must be of a type fit to store
data relevant to these topics.

Also, since the robot will be answering questions in real time, a proper indexing and preprocessing of
these sources is crucial to keep down answering times.
RQ 2 Which sources and source types contain information that supplement the topics the Nao is presenting
about and fit the interest of the audience?
Approach: Investigate relevant data sources than can be mined and processed to provide ready input for the
QA system. Provide documentation on how to extend the knowledge base with new data of the same type.
Finally, analyze whether and how the knowledge base can be extended with other types of answer sources.

1.3.3. Natural language processing
Context: Natural language processing comes in at the two ends of the question answering pipeline: ques-
tion analysis and answer analysis. There currently are no readily available open-source QA systems that can
work with Dutch questions. This means that the chosen English QA system needs to be adapted by adding
functionality for analyzing Dutch questions.

As the intended audience of the system speaks Dutch, Dutch question analysis modules should be used.
Because of the time frame associated with this project, the focus will be on simpler types of factoid questions:
ones asking for names, dates, locations, verification (yes/no), and lists. More complex questions about, for
example, causality and relationships, are best left for future work building on this project.
RQ 3 Which Dutch natural language processing libraries are fitting tools for processing the natural language
content the system will work with?
Approach: Investigate existing Dutch natural language processing libraries. Assess their suitability for pro-
cessing the desired question types and the natural language information about the robotics domain it will be
configured to use. Provide configuration and usage details.

1.3.4. Interaction design
Context: Implementing the QA system does not yet mean that all is ready for answering questions from
users. What is needed is a mechanism that ‘wraps around’ the system and structures the interaction with
the audience.

A number of aspects need to be considered for this. What are good ways of interacting with users during a
Q&A session? Should we adopt a strictly turn-based approach, with one user asking one question which the
system then tries to answer? How should the system handle questions it cannot find an answer for, or only
answers with very low scores?
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RQ 4 What type of robot-audience interaction allows the robot to hold a clear, structured and informative Q&A
session?
Approach: Research usage of robots in education and robotic QA; design interaction according to findings.
Implement interaction manager to handle a QA session, striving for maximum autonomy and minimal hu-
man intervention.

1.3.5. Evaluation
Context: The performance and impact of the QA system can be measured in various ways. On the one hand
we have the technical metrics, like the quality of answers and answering speed. These will be assessed using
a quantitative evaluation, carried out internally using a set of questions.

On the other hand there is the perception of the robot by the users during a QA session, which leads to
considerations such as how the answers are presented and how the system behaves when no satisfactory an-
swers could be found. This is best evaluated via a field study: taking the QA system, running on the Nao robot,
to users and having them interact with it there.
RQ 5 Which evaluation metrics best serve to assess the effectiveness and efficiency of the QA system, given its
domain and type of usage?
RQ 6 What type of experimental setting and which measurements allow us to evaluate the effect on the audi-
ence of having the RoboTutor hold a Q&A session after a presentation?
Approach: Investigate literature on evaluating QA systems and the various measurements and scoring func-
tions that are available. Also analyze how actual QA systems that participated in QA challenges were evalu-
ated. Finally, review literature about robots used in education.

1.4. Thesis overview
The next chapter in this part includes a review of literature relevant to this project and takes a look at previous
work in the areas of QA, NLP and educational robots. Chapter 3 looks at the specific considerations related to
the project and the different technological alternatives available.

In part two we start looking at the research and development work done in the project. This part focuses
on the selected question answering system and the work done to adapt it to the requirements of the RoboTu-
tor project. We will discuss the design and workings of the selected QA system and explain the work done to
adapt its NLP modules and data sources. The interaction manager for the system is laid out here as well. Part
three follows up on the previous one and aims to make the matter discussed in part two more concrete. Here
we will briefly go into the details of the QA system, zoom in on the pipeline and execution flow, and follow a
question from start to finish to better explain all steps taken.

With the implementation finished, in part four we turn towards the evaluations carried out of the QA
system. This part discusses the experimental setups used to test the system will be detailed and the results
of these studies presented. Both the internal, quantitative evaluation and the field study are discussed here.
Finally, in part five, an analysis and discussion of the results will be presented. We will then close off with our
concluding remarks.



2
Literature review

This chapter reviews existing work in the fields of question answering, natural language processing and the
use of robots for educational purposes. During this review we will be guided by the main considerations
introduced in the previous chapter: that we are aiming at a Dutch QA system about robotics and the Nao,
that is embodied by a robot, and used by elementary school age children.

Section 2.1 provides an overview of the field of question answering, discusses the state-of-the-art in this
field and identifies important aspects of QA. Section 2.2 makes this more concrete by looking at the tasks a
typical QA system carries out and what its architecture looks like. Various performance metrics for evaluating
QA systems and their respective advantages and disadvantages are discussed in section 2.3, where we try to
identify which metrics are appropriate in our case. Current issues and challenges in this field, and which of
these we should keep in mind for this project, are discussed in section 2.4. Section 2.5 continues with a tour
of existing QA systems and describes prominent initiatives in this area, in what contexts they were used and
how they performed. This section is the basis from which, later on, we will decide which QA system to adopt
as part of this project.

Because natural language QA systems by definition need to handle natural language content, natural lan-
guage processing (NLP) is a crucial part of question answering. In section 2.7 we investigate important NLP
techniques and libraries, and look at which of these could be useful for us. Finally, robots used for the pur-
poses of question answering and education are investigated in section 2.8: besides previous studies, we dis-
cuss specific opportunities and challenges in this area.

2.1. Question answering
Hirschman and Gaizauskas[2] provide a characterization of natural language question answering systems
(emphasis mine):

“systems that allow a user to ask a question in everyday language and receive
an answer quickly and succinctly, with sufficient context to validate the answer”

The two highlighted parts of this formulation can be used to illustrate the differences with two related
types of systems: traditional database management systems (DBMSs) and web search engines.

Firstly, the everyday language requirement distinguishes it from DBMSs. DBMSs usually do meet the an-
swer requirement: data collection formats and query language syntaxes often enforce adherence to specific
data types (like text and number), which means that the type of the returned result will fit what was asked for
in the query. However, queries must be formulated using the DBMS’ own language, which is in contrast to
QA systems. An important feature of natural language QA systems is therefore their ability to understand the
language of users, instead of the users having to learn the system’s language.

Secondly, the answer requirement distinguishes it from typical web search engines. Even though these
engines can be interacted with using natural language and return relevant responses, the level of granularity
is usually the document or paragraph containing the answer. This is again in contrast to QA systems: if we

7
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ask a QA system about someone’s name we want to get the actual name, not a list (however promising) of
documents that might contain the name.

In short, with DBMSs we can get specific bits of information of a certain type but we have to use their
language, while with web search engines we can use natural language but have to make do with less precise
responses. Natural language question answering systems aim to combine the best of both types of systems.

The importance of natural language question answering is closely related to these two characteristics. As
noted by Kolomiyets and Moens[3], available information is growing at very high rates and the information
need of users can’t be met by information retrieval (IR) techniques or databases alone. Natural language ques-
tion answering facilitates this by 1) supporting natural language so that non-technical users can also navigate
the vast amounts of information and 2) finding relevant pieces of data with precision and presenting them at
the desired level of granularity.

We now turn to specific QA system considerations, which influence the design of a particular QA system.
The most important of these are which question types it supports, questions in which domains it can answer,
and which types of sources it can consult. The following subsections will discuss these considerations one by
one.

2.1.1. Question types
The first consideration to note is the types of questions the system is designed to answer. A number of ques-
tion types are discussed by Kolomiyets and Moens[3] which we present below. For each type, an example
question is included for clarity.

• Definition
The definition of a term or concept.
What is a computer?, What does hacking mean?

• Factoid
Asking for bits of data like a location, name, amount or year.
When did World War I start?, Where was Bill Gates born?,
Who founded IBM?, How much does a Boeing 747-400 cost?

• Confirmation
These questions are in a sense the opposite of factoid questions. Instead of asking for a piece of infor-
mation it is now ‘suggested’ or ‘claimed’, and the QA system is used to check whether it is true or false.
Is Mark Zuckerberg the founder of Facebook?

• List
These ask for a list of things like entities, concepts and facts.
“How many Dutch newspapers have more than 100 000 readers?", “Which are the 5 largest countries?".

• Procedural
These state a result or state and ask for the steps needed to get there.
Which steps are needed to compile and execute a Java program?

• Descriptive
Stating an entity or concept and asking the system to describe it and mention some of its important
attributes. What are some characteristics of a smartphone?

• Opinion
This is different from other categories in that answers don’t necessarily need to conform to objective
reality. An answer to an opinion question is correct if it fits the knowledge and insights available to the
robot - if it is indeed what the system should ‘think’ given the data it has access to.
What do you think about pair programming?

• Relationship
These inquire into possible relations between multiple entities or phenomena.
What is the correlation between age and marital status worldwide?

• Causal
This category includes questions that ask about reasons and causes.
What are the reasons behind the increase in popularity of social media?
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This listing is ordered here roughly in ascending order on difficulty: from the simple task of returning the
definition of a given term, to the more complex tasks of identifying relationships between two or more speci-
fied inputs or searching for the reasons behind a given decision or event.

The first group of three types (definition, factoid and confirmation) are about retrieving a piece of infor-
mation that is out there. Compared to the next types, this is a relatively easy task: if the question can be
properly understood by the system and if the sources contain the answer, then in principle the answer will
always be found.
The second group of three (list, procedural and descriptive) is a step further. What is needed is not only the
capacity to find data, but finding pieces of data that are relevant but potentially distributed, and presenting
them together coherently. Of course this applies only if the list asked for isn’t specified explicitly as a single
entity in the data source, in which case it would basically be a large factoid.
The final group (opinion, relationship and causal) is yet another step further. Here even piecing together
related bits of distributed information does not suffice: the system needs to make inferences from them and
use the gained insights to formulate its response.

The first two types of questions, definitions and factoids, are to a certain extent already supported by web
search engines. Search queries like “What is an atom?” and “When did the First World War start?” return
references to web pages containing the correct answers in different engines like Google, Bing, Yahoo and
DuckDuckGo. Some, like Google and Yahoo, go even further and return the actual definition or factoid - in
the case of Yahoo, by making use of the extensive question collections of Yahoo Answers.

What are the implications of this analysis for this project? The third group of question types is the hardest
and no readily available systems exist for answering them. Supporting the second group is certainly possible,
but would require a significant amount of implementation work. It is also out of the project’s scope, as it is
meant to have a human-computer interaction aspect besides the more technical question answering aspect.
The question types supported in this project are therefore the three in the first group. This is further sup-
ported by school surveys carried out by and anecdotal evidence collected by researchers in the RoboTutor
project, from which we learned that the most frequently asked question types are factoid and confirmation -
especially about the capabilities of the robot itself.

2.1.2. Lexical answer types
One goal of the natural language processing applied to a question is to determine what type of an answer is
expected. This is known as the lexical answer type (LAT). Ferrucci et.al[4], in their report on the development
of the DeepQA architecture, define a LAT as the word that “. . . indicates the type of the answer, independent
of assigning semantics to that word". A LAT can be explicit in the question or it may be necessary to infer
it. For example, the LAT in “Which country has the highest GDP?" is explicit (country), but the one in “How
many mountain ranges exist?" is implicit (amount) and needs to be deduced from the keywords how many.

Depending on the specific requirements on the QA system, its domains and supported question types,
many LATs can be defined. The LASSO[5] question answering system, for example, features 26 question sub-
classes distinguished by their different expected answer types. The corresponding LATs include, among oth-
ers, person, number, location, definition and reason.

Many of these can be useful within our project. To a certain extent, the variety of factoid questions that
can be answered is influenced by how many LATs we distinguish and how well these can be identified. Some
LATs are not needed; reason is one of them as we will not support causal questions.

2.1.3. Domains
Natural language question answering systems are traditionally divided into restricted domain question an-
swering (RDQA) systems and open domain question answering (ODQA) systems. The supported domains
influence the diversity and size of the sources the system needs to use.

RDQA systems developed with a certain task in mind. An early RDQA system was LUNAR[6], which en-
abled users to ask questions about rocks collected on the Apollo mission. Naturally the QA system was tai-
lored specifically for this domain and the knowledge sources coming with it.

In their analysis of RDQA systems, Diekerma et.al.[7] note that, in contrast to earlier systems that encoded
domain knowledge in sources, modern ones work with custom data extraction rules for domain specific col-
lections. In this way the systems are made more flexible and supporting additional sources becomes easier.



2.2. QA architectures 10

RDQA often makes use of handcrafted sources, because the target audience can be assumed to be already
familiar with the domain and therefore has specific information needs. ODQA, on the other hand, can make
use of large bodies of data that have not been specifically tailored; it is reasonable to assume that users are
not experts in a large number of domains simultaneously.

Deciding on the domains to be supported therefore involves a trade-off between depth and breadth. As men-
tioned, RDQA is expected to demonstrate more insight and deeper knowledge about its one domain, thereby
’justifying’ or compensating for its narrow focus. On the other hand, an ODQA system is expected to be able
to give decent answers across a broad range of topics. Although high accuracy is of course always desirable,
some loss is to be expected and acceptable given its much larger scope compared to RDQA systems.

A challenge that arises, however, is achieving a sharp translation of the question into a search query. Yang
et.al.[8] highlight this problem of formulating a query that is flexible enough to match relevant data and si-
multaneously sufficiently restricted to avoid irrelevant passages. While this problem arises in RDQA systems
too, it is more pronounced in ODQA. Because many domains are supported, query keywords can match pas-
sages in documents from multiple topics while only one of these can be relevant to the question.

The RoboTutor project currently is mainly focused on robotics and the Nao itself. This means that our QA
system will combine characteristics of both RDQA and ODQA. For questions about robots and computers it
will have to be more ODQA than RDQA: it is not quite open domain, but it will have access to data from a
sufficient number of domain not to be considered RDQA.

On the other hand, it will be more RDQA when it comes to questions about the Nao robot. Need to model
information about attributes and capabilities of the Nao explicitly and, indeed, handcraft that part of the
sources which is dealing with this.

2.2. QA architectures
Natural language question answering involves a number of important and recurring subtasks, which enables
us to imagine a generic QA system architecture with components we can expect to be see in different QA
systems in some shape or form. Hirschman and Gaizauskas[2] present such an architecture for an end-to-
end QA pipeline. They use the visualization shown in figure 2.1 (coloring mine) to illustrate such a pipeline.

Figure 2.1: Generic question answering system architecture
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2.2.1. Pipeline
The five orange components represent the main question answering pipeline.

• Question analysis Aimed at, among others, identifying the semantic type of expected entity (name,
date, location, etc.) and identifying constraints (key words, required relationships).

• Candidate document selection This phase is responsible for the information retrieval part of the pipeline.
The retrieval is based on the information and clues acquired in the question analysis phase. The output
of this stage is a list of entries in the sources considered promising for further analysis.

• Candidate document analysis Further processing of the output of previous stage; this is not needed
if document preprocessing was done. The goal is to transform the intermediate results into a suitable
format for matching with the question.

• Answer extraction Here, question representations are matched with representations of documents
considered likely to contain answers. Candidate answers are then produced from the retrieved doc-
uments and ranked by relevance.

• Response generation Once a list of one or more answers has been determined, a response needs to be
given to the user. This can be done in different ways. A first consideration is whether to return only
the top answer or the top x answers. Another issue is whether a justification for each answer should be
included (e.g., document used for answer).

2.2.2. Sources
The three blue components are related to the sources the system can access.

• Document collection The collection of data the system is set to search through as part of the process
of answering a question. This can include both structured and unstructured sources.

• Document collection preprocessing The preprocessing done in this stage enables the QA system to ac-
cess and process documents more effectively during the candidate document selection phase. Practical
usage considerations dictate the offline preprocessing of the corpus if this corpus has a significant size.
Often, conventional document indexing engines like Apache Solr are used for this purpose.

• Preprocessed documents An ideally more machine-friendly representation of the data originally con-
tained in the document collection. Having the documents already processed saves time, as the system
won’t have to do this while answering a question.

2.2.3. User interaction
The two green components represent the system’s model of its users and what the interaction between itself
and the system should look like.

• User model What knowledge does the system have about its intended audience, and how should it
make use of this information?

• Dialogue context What is the setting in which the question answering session is held, and according to
what kind of protocol?

2.3. Evaluation of QA systems
There are two important ways of assessing a given QA system: we can distinguish between criteria that focus
more on the system as a whole and its effects on users, and more technical metrics that quantitatively evaluate
the performance of the QA system. This corresponds to the two experimental studies we want to carry out in
this project: a ‘qualitative test’ in the classroom to witness the system in action in front of a live audience, and
a ‘quantitative test’ for a quantitative analysis of its effectiveness and efficiency based on the answers given
to a test set of questions.

2.3.1. Qualitative evaluation
The following evaluation criteria, identified by Burger et al.[9], serve as a useful starting point:

• Timeliness How quickly does the system return to the user?

• Accuracy Is the answer correct?
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• Usability Is the system useful for users within the intended contexts?
• Completeness Is relevant information combined if it is distributed across multiple sources?
• Relevance Does the answer make sense within the context it is operating in?

In this project, the intended usage setting involves elementary school children who regard the Nao robot
more as a conversational partner than as a natural language interface to a database with information about
robotics. This places usability and timeliness at the top of the most important metrics: shortcomings in
these areas will damage the smooth and natural interaction experience the most. Next up are relevance and
accuracy: the returned answers don’t need to be perfect all the time, but they should at least be relevant to the
question and have decent scores on accuracy. Finally, completeness seems to be the least significant factor -
the audience is unlikely to criticize the system for failing to include every relevant piece of information that
is available in its answer.

2.3.2. Quantitative evaluation
Two of the most frequently used metrics in tasks related to information retrieval, classification and pattern
recognition are precision and recall. If A is the number of known answers, C the number of correct, distinct
answers returned by the system and N the total number of answers returned by the system, then precision
= C /N and recall = C /A. In words, precision indicates which proportion of the retrieved answers were cor-
rect, and recall indicates which proportion of correct answers were retrieved.

More sophisticated measures exist besides these basic ones. Kolomiyets and Moens discuss a number of
them:

• Mean reciprocal rank (MRR) looks at how high the system ranked the first correct answer in its list of
outputted answers, averaged over a number of questions. One of its shortcomings, however, is that it
can’t evaluate questions without answers in the used knowledge sources. Another one is that it does
not consider recall, as ‘unretrieved correct answers’ are not a part of the measure.

• Confidence score is a variant on the MRR score: whereas MRR looks at the rank of the first correct an-
swer, the confidence score looks at how many of the first x answers are correct. This score is calculated
n times (with n the number of answers) and then averaged.

• F-score is a measure defined as a function of the precision and recall scores as introduced above. Preci-
sion and recall can be given equal weight in the estimation, or varied by tuning the F-score’s parameter.
This is used when the specific usage requirements of the system imply a preference for high precision
at the cost of recall, or vice versa.

• Weighted score is more of a meta-technique than a scoring formula in itself. It is an answer to the prob-
lem of evaluating the system’s performance on different types of questions: presumably, we would get
misleading results if the same performance measures were used for, for example, both factoid and list
questions. Weighted score allows a more nuanced calculation by providing weights that can be attached
to the separate scores.

As noted before, we consider relevance and accuracy as more important criteria than completeness. This
means that we should emphasize precision over recall. While the returned information should in itself be
accurate, it is less of a problem if there are other, also relevant, bits of data in the sources that are left behind.
The F-score can be used to implement this emphasis, by tuning its parameter to emphasize precision over
recall.

Between MRR and confidence score, the former is more fitting. Not only do we intend to show only one
answer (the top one), but multiple answers are also unlikely to turn up for the type of questions the system
will support. This implies that values for the confidence score would almost always be identical to MRR scores
because there is only one correct answer.

Incidentally, another implication is that recall will be either 0 or 1, with no scores in between. This ia again
because there is only one correct answer, and the system will either have found it or not.

At this point we can also distinguish between the ‘development’ mode with full list of candidate answers
with confidence scores, and ‘deployment’ mode with only top answer without confidence score. In the latter
case precision takes on a different meaning, as it can be either 0 or 1.

No such distinction applies for confirmation questions, as in both settings only one answer is outputted
for this type of question (yes or no). For the same reason, for confirmation questions MRR is the same as
precision.
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2.4. Issues and challenges in QA
Natural language question answering is a relatively recent field and therefore has a number of important open
issues. Burger et.al.[9] identify some of these challenges which will be discussed next.

2.4.1. Context
Context indicates the setting in which the system operates and the audience it interacts with. In case of
ambiguous information or multiple promising candidates, knowledge about the system’s operational setting
can be used to help decide on a fitting course of action. A simple example is a mention of the word table: is
this to be interpreted in a ‘furniture’ context or a ’database’ context?

This consideration is not an issue within this project. Even though there is a specific context to be op-
erated in (in classrooms, about robotics), this context is known in advance and fixed, and can therefore be
represented explicitly within and built into the QA system.

2.4.2. User interaction
The best performing question answering system is useless if users cannot understand how they are supposed
to use it and what to make of its responses. Dialogue models can help in this regard by defining protocols
to guide the interaction. Another technique is user profiling: getting to learn the preferences and interests
of the users, and possibly having the system come up with its own suggestions. Finally, repair and fallback
strategies can be important for the graceful handling of errors and questions that cannot be answered with a
high degree of confidence.

In contrast to the previous consideration, this is a very important issue, probably more so than the raw quality
and accuracy of the answers given to questions. An embodied system that interacts with users smoothly and
handles mishaps gracefully will be perceived as more pleasant than one which gives the occasional perfect
answer but is more difficult to handle and interact with.

2.4.3. Reasoning and inference
From an information retrieval point of view, we can make a rough distinction between two types of QA sys-
tems.

The first type only looks up and returns pieces of information it considers relevant. The information
retrieval component of such a system can therefore be considered similar to a traditional database manage-
ment system, only now with a natural language interface instead of the database’s own query language.

The second type can, in addition to locating relevant data, also identify relationships between them and
infer new facts from them. For example, if it finds two separate entries “organization O was founded in 2000”
and “Bob founded O at age 20”, such a system could then deduce that “Bob’s date of birth = 1980”.

It would clearly be useful to have this second type of functionality in the QA system selected for our project.
Especially because the system will be single domain: basic information can be assumed to be already known
by the audience, and actual insight and relationships between data that the system could identify would be
valuable.

But the technical challenges associated with it are too significant for the scope of this project. To get
the inferential aspect of a QA system that does not yet have it up to speed is possible, but would detract too
much from the human-computer interaction aspect of the project and transform it into a mostly technical
and analytical one. It therefore is not a part of the project.

2.5. QA systems
In this section we provide brief descriptions of existing QA systems. First we will discuss closed source systems
and then continue with a number of open source alternatives.

2.5.1. English systems
2.5.1.1. Closed source

• IBM Watson
Probably the most famous question answering system of all time, Watson[4] is best known for its victory
in the quiz show Jeopardy! in 2011. It emerged out of efforts by IBM to adapt certain existing systems
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(PIQUANT, OpenEphyra) for the Jeopardy! challenge. A major overhaul was carried out when it became
clear that the results fell short of what was needed to be successful in the challenge.

As a result, the DeepQA architecture was created, which is a massively parallel probabilistic evidence-
based architecture. OAQA, a QA project discussed below, is an effort that spawned from this project.

With the Jeopardy! challenge behind, research and development efforts[10] for extending the Watson
system and the underlying DeepQA architecture to fields other than Jeopardy! are being undertaken.
These include business applications, enterprise search and especially medicine, where it can fulfill the
role of a clinical decision support system.

• IBM Watson Developer Cloud
The IBM Watson Developer Cloud contains a number of services that can together serve as parts of a QA
pipeline. The most important ones are the Natural Language Classifier[11] and Retrieve and Rank[12]
services. These services require a paid Bluemix account to run.

The Natural Language Classifier can determine the sub-topic that a given question most likely belongs
to. The Retrieve and Rank service takes a query as input and (1) finds the documents it considers to be
relevant (retrieve) and (2) sorts them based on their estimated relevance(rank).

2.5.1.2. Open source
• YodaQA

YodaQA[13] is an open-source QA system implemented in Java that is based on the Apache UIMA
framework. It is accessible via a GitHub repository[14]. It is an end-to-end pipeline: the different com-
ponents that make up the system (question analysis, information retrieval, answer generation, etc.) are
already linked together to form a system where questions can be entered and answers can be retrieved.

The system searches in an indexed collection of documents taken from a Wikipedia dump (∼40GB).
However, it is designed in a way that allows it to make use of structured answer sources as well.

YodaQA’s language processing components make use of Apache OpenNLP. This framework doesn’t sup-
port very many languages, but Dutch NLP components are among the provided ones.

There have been two attempts to use the system in challenges[15][16]. These papers detail how the
original system was adapted for the specific needs of the challenges, and presents recall and accuracy
measurements.

• OAQA
OAQA[17] is a project that consists of a number of separate frameworks. In contrast to YodaQA, it is not
an end-to-end pipeline: the various OAQA components need to be set up in a particular end-to-end
configuration by the user. It is also based on Apache UIMA like YodaQA. The basic QA functionality re-
sides in the BaseQA repository, which contains basic I/O, data processing and evaluation components.

OAQA has also been used in practice[18]. An OAQA configuration implemented at Carnegie Mellon
University was applied to the BioASQ 2015 challenge. This challenge is the same as one of the YodaQA
applications mentioned above.

OAQA comes out on top in this challenge and has the best score for five of the six main performance
criteria. This picture is somewhat skewed though, as compared to the YodaQA application it had more
developers, used a more thorough approach, spent months on development and ran hundreds of ex-
periments. On the other hand, the YodaQA application knew beforehand of a lack of resources and
seems to have focused on just getting an initial, baseline result.

• OpenEphyra
OpenEphyra[19] does information retrieval by querying web search engines (Google, Bing, Yahoo). Its
language specific components can be replaced by ones other than English. On the other hand, by
default it does not support local knowledge sources. It is also not being maintained and developed
actively, as its source was last updated more than two years ago.

• OpenQA
OpenQA[20] is a more recently introduced system. It supports searching by using web search engines,
databases and unstructured sources. The system can keep track of user context by storing location,
statistics and previous queries. Regarding maintenance it is the same as OpenEphyra, its source having
been updated two years ago as well.
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• Tequesta
Tequesta[21] is the University of Amsterdam’s Textual Question Answering System for answering En-
glish questions. The TreeTagger[22] part-of-speech tagger was used for the analysis of questions. Vari-
ous syntactic and semantic characteristics of questions were identified using partial parsing, and rules
for specific constructs of interest (names, companies, organizations, etc.) were crafted manually.

2.5.2. Dutch systems
There have not been many publicized initiatives to build question answering systems that can answer Dutch
questions. Two of them, both academic, are discussed below.

• Quartz-d
A prominent Dutch QA initiative was Quartz-d[23][24], also developed at the University of Amsterdam.
The system is based on the idea of combining different approaches at the same time. In effect, there
are five subsystems that all try to answer a given question in their own way.

One of these subsystems is the aforementioned Tequesta system, to which the English translation of the
Dutch question is submitted. Another is a Dutch version of Tequesta, adapted by replacing language
components specific to English by Dutch ones.

It achieved MRR scores between 0.335 and 0.428 when evaluated on the CLEF 2003 test collection.

• Joost
Joost[25] is a question answering system that works with both structured data (database of relational
information) and unstructured data (text snippets). Its question answering pipeline works by extract-
ing keywords from question, retrieving relevant data, and ranking candidates using generated clues. It
makes use of the Alpino parser for parsing questions and has been tested on various CLEF test collec-
tions.

Both Quartz-d and Joost participated in international QA challenges about a decade ago. Both systems have
since been decommissioned and neither is available for use anymore.

2.6. Sources
Another important question is which sources the system will be made to use. A significant decision to be
taken, even before deciding on the sources to use, is the type of sources to be used. A fundamental distinction
can be made here between structured and unstructured sources.

2.6.1. Structured data
Structured data is data characterized by its organization and by being relatively easy to process and search
through by software. Unstructured data is the opposite: entries within an unstructured data source can all
look different, lack a common structure and come without any identifications or labels explaining what we
are looking at.

Yao and van Durme[26] discuss two challenges with using structured sources for question answering. The
first is converting the natural language question into a structured query that can be submitted to the source,
which has to conform to the internal structure of the source. The second is matching data from sources with
the given natural language question. A certain degree of insight into the used source is required, because a
relation or expression used in the question might be represented and formulated differently in the source.

Burger et al.[9] discuss a number of structured sources. Examples of these include relational databases,
expert system knowledge bases and ontologies. Unstructured sources can be written text (essays, articles,
news items), speech, pictures, audio and video. A prominent example is DBpedia[27], which we will now
discuss in more detail.

2.6.1.1. DBpedia
DBpedia is a project for extracting structured data from Wikipedia and presenting this in a format that allows
users to query it in a way similar to querying a database (hence the ‘DB’ in ‘DBpedia’). Its English version
contains more than 4.5 million entries of which more than 90% (persons, places, organizations) have their
place as resources in a consistent ontology. Since the extraction from Wikipedia is automated, the growth of
the DBpedia knowledge base follows that of Wikipedia. The data model it uses is RDF.
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RDF
RDF (Resource Description Framework) is the format in which graph data models like DBpedia are formu-
lated. Data is expressed in RDF as subject-predicate-object triples. RDF supports the definition of names-
paces, which serve to group related concepts together.

An example ontology is shown below. One way of organizing this ontology would be to put the concepts
on each line in different namespaces, ending up with a Car brand namespace, a Color namespace, and so on.

• Subject
Car brand: Opel, Toyota, Nissan, . . .
Fruit: apple, orange, banana, . . . ...

• Predicate
Measurement: mass, height, volume, . . .
Relation: parent of, cousin of, sibling of, . . .

• Object
Color: red, green, blue, . . .
Measurement: 100 grams, 20 cm, 1000 kg, . . .

Statements can be made by combining elements from these categories. To indicate the mass of a banana,
for example, one could use the triple (banana - mass - 100 grams).

2.6.2. Unstructured data
Unstructured data sources exist in larger numbers and are more readily available. There exist many types
of unstructured sources: papers, articles, essays, and collections and web sites that contain them. The lack
of structure means that less effort is required to create such sources. This is in contrast to structured data
sources, where the very structure of the source implies that some work has gone into packaging the data in
an ordered way.

Because the available amount of unstructured data is increasing continuously, and thanks to tools for struc-
turing and extracting insights from this data, the amount of structured sources is growing too. A major ad-
vantage of being able to use a structured source for QA is that, as mentioned above, the data can be queried
and processed in a more machine-friendly way.

2.6.3. Structured vs. unstructured sources
Both types of sources are useful for our project. Unstructured sources are useful because they include lots of
existing information; in our case, this would allow us to directly include Wikipedia articles and papers about
robotics. Structured sources are useful for data that has an obvious internal structure and organization: this
organization will then enable the system to process it more easily. An example could be the attributes of the
Nao, which could be easily formulated in a table form.

Some data are better fit for one format than for the other, as not everything can be expressed in RDF triples
with the same ease. This format is best for data that can be modeled with clear entities, relations and at-
tributes; on the other hand, information in which such structure is more difficult to identify can be put into
natural language articles. Consider the following two examples:

1: The robot was introduced in 2015, has a 2 GHz processor and costs $5000.
2: Because of the consistently decreasing profits from A’s sales, the company’s focus gradually shifted towards
its successor, B.

The first sentence can be expressed simply in three RDF triples (for introduction date, processor and price).
Doing this for the second sentence requires more effort. Within the knowledge base, a number of objects
and relations would first need to be specified within the ontology: at the very least, company, product, profit
objects and company-product, predecessor-successor and cause-effect relations. Next, within the QA system,
some sort of a ‘reasoner’ needs to be in place that can, given all the triples that together express the informa-
tion in this sentence, work its way back to the whole picture, understand the expressed information, and use
it to answer questions.
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As can be seen from the first sentence, data that can be modeled in an object-oriented way is a particularly
good fit for placement in structured sources. The field,value pairs of such objects can easily be modeled in
such sources.

2.7. Natural language processing
Given that natural language interaction is such a crucial aspect of question answering and that, in this project,
the language (Dutch) is one for which relatively few tools exist, a significant amount of research and imple-
mentation efforts in the area of natural language processing is likely to be necessary.

Natural language processing is relevant for question answering mainly for two tasks: analyzing a given
question and analyzing candidate answers. In the first case, the system needs to understand what the ques-
tion is about and what type of answer it is expected to provide. In the second case, sentences within candidate
passages need to be analyzed to be able to assess their relevance and determine their suitability as answers.

The next subsections describe some of the important NLP tasks, which are parsing, named entity recogni-
tion and the use of word nets.

2.7.1. Parsing
Covington[28] identifies two different types of natural language parsing: constituency parsing and depen-
dency parsing. Analysis using the former technique involves breaking sentences into successively smaller
subunits, while the latter works by identifying links (dependencies) between individual words.

The parsing process serves to annotate a given natural language input with various NLP features. Some im-
portant ones are the following:

• Part-of-speech: In a 1957 paper, Brown[29] uses the term ‘class of formal equivalents’ to define part-
of-speech (POS). A part of speech is a word category like noun, verb and adjective.

Consider the incomplete sentence “I . . . like this." as an illustration. We see that there are many formally
equivalent words that can fit in the empty space. ‘Really’, ‘definitely’, ‘absolutely’ are some examples,
and they are all words that would be assigned the part-of-speech tag adverb.

• Sub-phrases: token groups representing semantic subunits of phrases. The subject of a sentence, for
example, might be composed of multiple words which together represent a sub-phrase.

• Lexical categories: semantic function served by sub-phrases. Important ones are subject, main verb
and object. Note that, in contrast to POS tags, lexical categories can be attached to multiple tokens.

• Dependencies: specifications of relations between sub-phrases. Example use cases are determining
which sub-phrase is the object of a given verb, or which adverbs are associated with which verbs in a
sentence.

The first three features can be identified using constituency parsing, but dependencies can only be iden-
tified using dependency parsing. Parsers are trained using training corpuses (‘treebanks’), containing sen-
tences annotated with NLP features like the ones mentioned above. The training results in a parser model,
which can then be applied on new input.

Which features do we need for this project? We will discuss them one by one and see in which situations
they become necessary.

POS tags can be quite sufficient to handle simple questions about structured data. For example, a question
with only one noun and only one verb can be used to look for an RDF triple, using the noun as the subject
and the verb as the predicate. The object of the matching triple can then be used as the answer.
Example:
Question: “Wat kost de Nao?"
Query: (N ao −kost−?)
Matching triple: (N ao −kost −$1000)
Answer: $1000

Next, consider a more complex case with multiple noun phrases. Without lexical categories, we cannot de-
termine which of these is the subject. Moreover, if these can consist of multiple words, we need to be able to
identify sub-phrases as well.
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Example:
Sentence: “De Nao heeft een microfoon."
In this case we need sub-phrases and lexical categories to recognize that “de Nao", and not “een microfoon",
is the subject of the sentence.

Finally, we could encounter sentences that contain multiple sub-phrases serving a similar role. In this case
we need dependency annotations to resolve the ambiguity.
Example:
Question: “Wat kost de Nao?"
Sentence: “Pepper kost $2000 en de Nao kost $1000."
In this case, just looking for the first sub-phrase matching the given predicate (“kost") would give the wrong
answer. We need dependency annotations to see that it is the second “kost" token that is linked to the ques-
tion subject (“de Nao"), and then use the dependency relation between the “kost” and “$1000" tokens to
arrive at the correct answer.

All of these features are needed for the QA system to be used in this project. None of the examples repre-
sents a rare or extreme case; on the contrary, they are sentence types we can definitely expect to encounter.

There are a number of parsers for English; these include the Apache OpenNLP parser and the Stanford parser.
They are both sophisticated tools, but none of them supports Dutch. For Dutch, there is the Alpino depen-
dency parser. It is useful because it can identify a variety of dependency relations.

2.7.2. Named entity recognition
The concept of ‘named entities’ was first formulated twenty years ago for the Sixth Message Understanding
Conference, as reported on by Grishman and Sundheim [30]. The task of named entity recognition and classi-
fication (NERC), as conceived then, was considered an important information extraction task and had as its
goal the identification of 1) names of people, organizations and geographic locations and 2) numeric expres-
sions like dates, times and money within a given text.

Nadeau and Sekine[31] present an overview of research carried out up to 2006 within this field. As they
note, NERC systems have since transitioned from relying on rule-based algorithms to making use of machine
learning techniques. While the bulk of the work has been for English, a number of other languages have also
been well-studied: the CONLL-2002 and CONLL-2003 conferences stimulated efforts for German, Spanish
and Dutch.

Named entities can be an important source of clues when answering a question, as they can often be
used as effective filters when searching for relevant information. It is a reasonable strategy, for example, to
direct searches towards entities called x if x is a named entity occurring as the subject or object of a question.
The availability of Dutch NERC tools can therefore be put to good use within this project. An example is the
Apache OpenNLP Dutch named entity recognizer.

2.7.3. Word nets
George A. Miller’s paper Dictionaries of the Mind[32] from 1986 is among the first introductions of word nets,
called semantic fields by him. It is formulated as a solution for the problem of digitally organizing lexical in-
formation. The starting point is the assumption that words can be grouped together in a semantic field based
on a shared semantic concept.

The most prominent example in this area is the English WordNet[33], the ideas behind which are outlined
by Fellbaum[34]. This lexical database is in fact the brainchild of the aforementioned George A. Miller.

Word nets are data structures consisting of synonym sets and the relations between them. Their use can
provide a QA system with an additional degree of flexibility when analyzing sentences, as this allows it to also
consider synonyms of the words within these sentences.

To illustrate this with an example, suppose that a user inquires about the “height of x”. Without word
nets, the sources would need to contain the required information in the exact given formulation (using the
word ‘height’) for the system to consider it relevant to the question. With word nets, more formulations can
become relevant: besides “the height of x is . . . ”, “x is . . . tall” and “x is . . . high” will now also be considered
because of the high similarity scores between tall and high on the one hand and height on the other.
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For Dutch, there is the Open Dutch WordNet[36]. It is derived from the Cornetto database, the Princeton
WordNet and a number of other external resources. It is available on GitHub[37], together with a Python
module for using the word net.

2.8. Robots in education
The QA system implemented for this project will be an embodied system: it will be integrated into and tested
using a Nao robot. To familiarize ourselves with this type of usage, we will in this section look into previous
studies that have experimented with using robots in similar ways.

There is an increase in the usage of robots for educational purposes. Chang et.al.[38], in their review of
studies with educational robots, explain this development using three factors:

• Unique learning experience: in contrast to a teacher from flesh and blood, a robot represents a package
of advanced technology and allows an interactive session with direct feedback.

• Cost: while earlier robots were costly and not intended for widespread use, advances in technology
have reduced costs and made robots affordable to a wider range of people and institutions.

• Plug-and-play feel: to allow a wider public to make use of robots, their interfaces have to be as acces-
sible as possible. Improvements in this regard have made robots easier to configure and use, as a result
of which they are not restricted anymore to tech-savvy users.

Attributes of robots that can facilitate teaching and improve the educational experience:

• Repeatability: robots can consistently present the same content in the same way for different groups
of students, avoiding subtle changes caused by varying circumstances.

• Digitization: robots can be integrated into existing large bodies of digital data. Users then have the
opportunity to interact with an agent that can access and handle much larger quantities of data than
would be possible for a human.

• Body movement: the interaction can be enhanced with the use of non-verbal communication by the
robot.

• Interaction: enables back-and-forth between student and teacher.
• Anthropomorphism: on the one hand a humanoid robot sufficiently resembles a human tends to be

treated like a real person by children. On the other hand the children are still aware that it is not a real
person, so there is no fear of being ridiculed by it or disappointing it.

Within education, robots have been used mostly as learning materials and learning companions and less
as tutors or teaching assistants. Regarding robots serving as tutors, it is emphasized that their key purpose
can be considered to be assisting instructors in presenting teaching material.

Chang et.al.[38] carried out a study with robots in this latter category and studied the impact of having a
robot assist teachers in classrooms during language teaching. This was done in five different modes and one
of these was a question-and-answer mode, in which the robot randomly chose a student and asked him or
her a question. They found that this benefited low-achieving students in particular, because of the reduced
anxiety of disappointing the teacher or getting mocked. This is closely related to the anthropomorphism
factor mentioned above.

Among the important suggestions received from the teachers involved in the studies were to make the
robot come across less cold and more engaging, by varying its voice and expressing emotion. We cannot vary
the voice of the Nao much, but we can make it come across as more engaged using body language.

A study carried out by Fagin and Merkle[39] has an interesting result: introductory computer science stu-
dents making use of robots were less encouraged to continue study in this field than other students taking the
course in a more traditional way. Although the setting and purpose was different than in our case, in that it
was a part of a year-long teaching program, we can still benefit from this negative result. The authors believe
the main reason to be the time and effort required to get the robots up and running and solve problems - if
this then is not compensated by any benefits gained from using these robots, interest will naturally fade.

The lesson to be learned for our project is therefore to shield users as much as possible from low-level,
implementation and execution related ideas and to provide an effective and smooth experience. Interacting
with robots should not become associated with having to solve complex problems just to be able to get to use
it.
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2.9. Conclusion
Natural language question answering is a field of increasing relevance due to the increased information need
of users. Important subtasks in QA include analyzing questions and candidate answers, searching for and
filtering information, and returning fitting response to users.

There exist a variety of QA systems, from open to close source and from academic to commercial initia-
tives. Contemporary challenges within QA are about better understanding and interacting with the audience
and within the intended context, and demonstrating insight into retrieved information and handling it in
‘smarter’ ways.

Question answering depends heavily on NLP techniques for gaining insight into natural language con-
tent. These include parsing to identify sentence structures and the use of word nets to gain flexibility when
matching questions with data from sources. Promising tools for our project are the Alpino parser, the Open
Dutch WordNet, and Apache OpenNLP components for Dutch.

Finally, we should be mindful of the unique advantages the use of a robot in an educational setting can
provide. This mainly involves being able to integrate a QA system coming with a large volume of digital data,
and sharing this with users in interactive sessions. It is important to shield users from the low-level details as
much as possible; this is just as, if not more, important than the purely technical performance of the robot
and the QA system running on it.



3
Technology choices

This chapter considers the advantages and disadvantages of the different technologies available for use within
this project. We first look at the available QA systems, assess how well they fit our requirements and explain
why we settle on an open-source English-language system. Next, we concentrate on the specific problem
of handling Dutch content. The main decision to be taken here is whether to translate content back and
forth between Dutch and English, or to use tools for the specific purpose of processing and analyzing Dutch.
Finally, we turn to the human-computer interaction aspect. After all, there needs to be some sort of a wrapper
around the QA system that handles and structures the interaction between it and users. What tools and
techniques can we use for this purpose?

3.1. QA system
We will decide on the QA system to use in two steps. First, we need to determine whether to use a Dutch or
English system. Next, we decide on the actual system to be used in the chosen language.

We reviewed the prominent initiatives in the area of Dutch question answering in chapter 2. As men-
tioned there, no public, readily available Dutch QA system could be found. Since the two largest initiatives,
Quartz-d and Joost, have already been decommissioned and cannot be used anymore, we have to take the
route of adopting an existing English QA system and adapting it to our purposes.

Next, we assess the suitability of the introduced English QA systems.
OpenEphyra
OpenEphyra only supports web search and no local sources. Significant implementation efforts would be
needed to extend it with functionality to interact with and query custom, local data sources.
OpenQA
OpenQA is a relatively recently created system and in the research phase. It is mainly geared towards making
use of structured data sources.
OAQA
The advantages of OAQA are its modular approach (many repositories with various components) and the
good results it has achieved in international question answering challenges.

On the other hand, there is no comprehensive tutorial and questions in the project repository about how
to set up a basic configuration are unanswered. Within the scope of this project, we can therefore consider
OAQA too complex to get up to speed with based on the level of available support.
YodaQA
YodaQA is inspired by Watson and the DeepQA architecture behind it. It has interfaces for searching through
both structured and unstructured data sources. A framework for the parsing of natural language content is
present as well.

It can be extended to languages other than English: a team consisting of three YodaQA developers created
a basic fork in Czech in a one-day hackathon. The project repository contains resources both on supporting
different languages as well as on making use of different knowledge sources.
IBM Watson
This is the most complete product and the one with the most man-hours devoted to it. Choosing it would
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allow us to ‘assume’ a working QA system, and build on top of it and focus solely on interaction design and
the human-computer interaction aspect of the project.

Conclusion
Table 3.1 presents the insights gained from the preceding analyis. We can discard OpenEphyra because it
does not work with local sources or structured data. OpenQA has the opposite issue, as there is no framework
in place that can make use of unstructured data in the process of answering a question. Components pro-
vided by OAQA are very comprehensive, but they are complex and not easily accessible for outsiders.

The IBM Watson system is the only commercial option in this list and the one that has actually been used
in practice by clients. The first issue with it, however, is that it runs as a cloud service. This means that there
will always be additional network overhead for communication with a third-party server. Secondly, there is
the obvious closed-source disadvantage of being unable to modify any parts of the system. Thirdly, the data
that can be entered for it is only free text, meaning that we can only make it work with unstructured data. The
last and most important problem is the absence of support for Dutch: extending it to Dutch is being worked
on, but will not be available within the duration of this thesis project.

The remaining option is YodaQA. It works with local sources and has interfaces to handle both unstructured
and structured data sources. Additionally, there already exists a resource[40] within the YodaQA repository
with information about how to go about adding support for a language other than English. For all these
reasons, YodaQA is the system we choose for this project.

Table 3.1: Comparison of QA systems

QA system Local sources Structured data Unstructured data Accessibility
OpenEphyra - - + +
OpenQA + + - +
OAQA + + + -
YodaQA + + + +
Watson + - + +

3.2. Processing Dutch
After deciding to use an originally English QA system for Dutch question answering, the next question arises:
do we use translation, or do we employ Dutch NLP tools?

Using translation would look as follows. On receiving a Dutch question, it is translated to English and passed
on to the system. When, at the end of the pipeline, we acquire English candidate answers, these are translated
to Dutch and used to formulate the response to the user. The main reason for doing this is to avoid having to
put into place a Dutch NLP pipeline, as we would simply use the existing English NLP pipeline of the chosen
QA system.

Translating English questions and answers from and to Dutch means limiting ourselves at the start regarding
the maximum level of question complexity we will be able to handle. For the purpose of question answering,
it is important to understand the question sentence as a whole and not just what each of its words mean indi-
vidually - it is precisely the former insight that is lost more easily in translation. Moreover, since not only the
question but also the answers have to be translated, such loss of information will potentially occur at both
ends of the question answering pipeline.

Finally, there is the additional computational load on the system associated with these translation opera-
tions. Note that using an English system and taking the translation route does not free us from having to use
NLP tools, since the English content still needs to be parsed and analyzed. Translating only adds more work
on top of the natural language processing that needs to take place anyway.

The use of Dutch natural language processing tools is therefore the better and more appropriate approach. It
requires more work initially to get working, but will lay the basis for further improvements later on and pay
its dividends in this way.
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3.3. Interaction manager
For the interaction managing component there are various options. The first is the Dialog service[41] from
the IBM Watson Developer Cloud. This is, for our purposes, a relatively restrictive option: it mainly supports a
rule-based interaction script, that is created by training it using conversation/question-answer specifications
in XML format.

Another option is the dialog component that is being developed as part of the PAL project. However, this
component is still under development and not ready for use.

Finally, a custom application can be developed that runs separately from the QA system, communicates
with it and serves as the wrapper around it. Given the lack of viable alternatives, this is the approach to be
recommended.

3.4. Conclusion
The QA system we choose for this project is YodaQA. As Dutch QA systems are not available and closed source
options lack support for Dutch, YodaQA is one of the best suitable open source systems for this project.

For handling Dutch content we will use Dutch NLP tools. Translation is a suboptimal approach: it pre-
vents gaining good insights into complex questions and means an unnecessary computational load on the
system. Using Dutch NLP tools requires more work initially but will pay off further down the road.

Finally, we will design and implement a small application to serve as the interaction manager around the
QA system. This system will structure the interaction between users and the QA system.



Part II

Research and development
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4
YodaQA

The next chapters in this part will look at implementation details and discuss the concrete steps taken to
create a Dutch version of YodaQA. Before going into these low level details, this chapter will first describe
the system on a conceptual level. Section 4.1 gives a component level overview of YodaQA and section 4.2
describes the main technologies it uses.

At the end of this chapter we will be in a better position to answer our first research question:
RQ 1: What adaptations need to be made to the question answering pipeline of the chosen system?
From our analysis it will become clear what parts and components would need to be added, changed or
removed to make the system capable of handling Dutch content.

4.1. System architecture
YodaQA[13] is a question answering system inspired by the Watson[4] system and its architecture. Its fun-
damental characteristic is the gradual accumulation of question and answer features along the question an-
swering pipeline.

The main processing tasks are divided across distinct stages within the pipeline. As YodaQA is an end-
to-end pipeline, the different stages are integrated to form a complete question answering system. This is
in contrast to certain other open-source systems that include standalone components for parts of the QA
pipeline, but don’t represent an end-to-end pipeline that can receive a question and return an answer.

The main components of the YodaQA question answering pipeline, shown in figure 4.1, are described
below.

1. Question Analysis: annotates questions using NLP tools to extract linguistic features (like subject) and
identifies important question answering features (like lexical answer type [LAT]).

2. Answer Production: carries out searches in the configured data sources, based on the clues acquired
during the previous step. Retrieved entries are further narrowed down by passage extraction, during
which only the parts of the entries that are considered relevant to the question are kept.

3. Answer Analysis: extracts pieces of information from the ‘strongest’ candidate passages that best fit the
expected answer types. If, for example, the question analysis phase has detected that a country name is
being asked for, answer analysis will look for bits of information that meet this requirement.

4. Answer Merging: removes duplicate answers (which can arise because of the different data sources
being used) and consolidates the collection of candidates into a single final list.

5. Answer Scoring: evaluates the quality of candidate answers using machine learned classifiers and adds
a calculated confidence score to each candidate.

From a theoretical perspective, we can see that the YodaQA components closely match the components of a
generic question answering system suggested in [2]. To recap, those were Question Analysis, Document Col-
lection Processing, Candidate Document Analysis, Answer Extraction and Response Generation.
The first stage, Question Analysis, is matched exactly in YodaQA: a separate stage that deals with identifying
the type of the question and extracting clues from it.
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Figure 4.1: YodaQA architecture
source: Baudiš[13]

The work of the second stage, Document Collection Processing, is done separately before any querying takes
place. This is because of the large sizes associated with the data sources, and indeed the authors also suggest
this as a potentially better option for large document collections.
Next, the paper presents the Candidate Document Analysis stage as a stage with the purpose of further analyz-
ing candidate documents, in case the preprocessing results of the second stage are insufficient for question
answering purposes. In YodaQA the Passage Analysis module, which is a part of the AnswerProduction stage,
is responsible for this task.
Finally, the Answer Extraction and Response Generation stages correspond more or less exactly to YodaQA’s
Answer Analysis and Answer Writer stages.
While all this does not say anything definitive about the quality of the system, we can nevertheless conclude
that attention has been paid during design and development to the main subtasks involved in building a
natural language question answering system.

4.2. Technologies
The basis of YodaQA can be regarded as a big data infrastructure, as it involves various modules for the pro-
cessing of large volumes of data in consecutive stages. As such, the efficient integration of the different tech-
nologies has a prominent role in the design and implementation of the system. Below is a list of the most
important technologies used by YodaQA, described in further detail in subsections 4.2.1 to 4.2.7:

• Apache UIMA[42]

• Apache Solr[43]

• Apache Jena[44]

• Apache Fuseki[45]

• Apache OpenNLP[46]

• Stanford NLP[47]

• DKPro[48]

4.2.1. Apache UIMA
Apache UIMA is a framework for unstructured information management applications, characterised by the
need to process large amounts of unstructured data. It is the framework YodaQA is built on and represents
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the backbone of the system.
The advantage its use provides is that applications developed using this framework can be set up as modular
components, with the details of the exchange of data between them handled by UIMA. Different components
can be defined for the different analytical tasks to be carried out on the incoming data. These can be used to
build up a pipeline, with the individual components serving to transform, process, annotate, analyze and/or
synthesize the original data and the data generated within the pipeline.

Below is an overview of important UIMA concepts that will resurface regularly in the coming chapters:
Analysis engine
Analysis engines (AEs) are modules that analyze artifacts (documents, audio, video, etc.) and infer infor-
mation from them. Analysis engines that contain a single annotator are called primitive AEs and ones with
multiple annotators are aggregate AEs.
Annotator
Analysis engines are made up of annotators. They contain the custom logic for the specific analytical tasks
the application needs to carry out. The analysis results they produce are available for use by succeeding an-
notators.
CAS, JCas
From an information flow point of view, the Common Analysis Structure (CAS) has a central place in UIMA.
These are data structures that serve as the containers used to store objects, properties and values. The com-
munication between UIMA components takes place through CASes.
The CAS is merely an interface specification and so is not tied to a particular implementation. As YodaQA
is written in Java, it would be easiest to interact with CASes in this language. This is done via JCas: the Java
interface for CAS bundled with the UIMA SDK that facilitates programmatic handling of CASes within Java
applications.
Sofa (subject of analysis)
A CAS can contain multiple subjects of analysis, which represent different views on the artifact being analyzed.
In case of a news article, for example, there could be different views for its syntactic structure, for information
about the authors, and for other, potentially related, articles.

Figure 4.2 provides a visualization of this: the pipeline represents different analysis engines, and on top
are the different views within a CAS.

Figure 4.2: UIMA Analysis engines and sofas

source: https://uima.apache.org/d/uimaj-2.4.0/images/overview-and-setup/conceptual_overview_files/image014.png

FeatureStructure, Feature
Annotators produce results within CASes in the form of FeatureStructures: data structures with a type and a
set of (attribute, value) pairs. An example is a Person feature structure containing a name feature with value
Bob. A feature structure therefore serves a purpose analogous to a Java class, and features can be thought of
as similar to fields within a class.
Type system
A type system includes the types living within a given CAS. UIMA comes with a number of built-in types and
provides the option to extend this collection with user-defined ones. Continuing the Java class analogy, a type

https://uima.apache.org/d/uimaj-2.4.0/images/overview-and-setup/conceptual_overview_files/image014.png
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system can be considered a collection of classes that together model a certain part of the conceptual space
associated with the task at hand.
jCasGen
Tool that ‘autogenerates’ Java types based on type system descriptions specified in XML. This makes them
directly usable by UIMA within CASes. The reason why the developer doesn’t specify the types directly in Java
is that jCasGen injects low level logic into the types to make them usable within UIMA. In other words, the
XML specification represents an abstraction layer shielding developers from such ‘boilerplate code’.

4.2.2. Apache Solr
Apache Solr is a search server providing data storage and querying capabilities. It exposes a REST API that
can be used to query data within Solr instances using web requests.

Solr supports advanced text searching functionality and works well with large volumes of data. This makes
it a fitting choice for a question answering system, where the ability to access and efficiently search within a
comprehensive knowledge base is crucial.

4.2.3. Apache Jena
Apache Jena is a Java framework for semantic web and linked data applications. It is geared towards RDF
data and contains a number of subprojects for storing, querying and processing such data. Jena comes with
a number of APIs: for representing RDF data, for querying using the SPARQL language, and for Apache Jena
Fuseki, a SPARQL server.

Jena is used within YodaQA for interacting with structured knowledge bases. Because an increasing num-
ber of such bases are becoming available for different domains, and because they are more ‘machine-friendly’
in contrast to unstructured sources, effectively handling them can potentially be very beneficial to the per-
formance of a QA system.

4.2.4. Apache Jena Fuseki
Apache Jena Fuseki is part of the Apache Jena project. Fuseki is a server with a purpose comparable to Solr:
whereas Solr stores documents that can be queried using the Lucene query syntax, Fuseki stores RDF triples
that can be queried using SPARQL, also using web requests.

4.2.5. Apache OpenNLP
OpenNLP is a library containing NLP tools for various purposes, like named entity recognition, segmentation,
tokenization and part-of-speech tagging. YodaQA uses it chiefly for the first two purposes.

4.2.6. Stanford NLP
Similar to Apache OpenNLP, Stanford NLP is another library providing various NLP tools. From YodaQA’s
perspective, the Stanford parser is the most important one among these: it is the tool used to parse all text in
the system’s default (English) version.

4.2.7. DKPro
DKPro is a framework for the integration of the various NLP libraries used by YodaQA so that they can all be
interfaced with in a similar way within the codebase. The question of integration arises due to the structure
of YodaQA. Because it is based on UIMA, all different annotator modules need to conform to the interface re-
quirements imposed by UIMA. DKPro meets this challenge via components that make various existing NLP
tools (parsers, lemmatizers, tokenizers, etc.) usable within a UIMA application like YodaQA - mainly by pro-
viding Java wrappers for them.

4.3. Conclusion
This chapter provided an overview of YodaQA and the main technologies it depends on. As can be seen in the
list of technologies at the start of section 4.2, six of the seven most important libraries and frameworks are
related to natural language processing and information retrieval; while being a very fitting choice, UIMA isn’t
designed specifically for either of these purposes.

This is no surprise for a question answering system: we need to handle natural language in the form
of both questions and candidate answers, and we need comprehensive data sources for finding candidate
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answers in the first place. It follows that, during the process of adapting the question answering pipeline
to its new language and domain, the focus will mainly be on these two areas. The next two chapters will
therefore detail the work done to adapt the information retrieval and natural language processing stages of
YodaQA.

Chapter 5 discusses the replacement of the English sources in place with ones containing Dutch content.
The adaptation of the natural language processing pipeline is then discussed in chapter 6.



5
Sources

This chapter describes the technical steps that were required to set up Dutch data sources for YodaQA. A
useful feature of YodaQA is its ability to work with and combine information from multiple data sources. The
default technologies used are Apache Solr for unstructured data and Apache Jena Fuseki for structured data.

The research question this chapter bears on is the second:
RQ 2: Which sources and source types contain information that supplement the topics the Nao is presenting
about and fit the interest of the audience?

Any installation and configuration steps are discussed only briefly here. Refer to appendix B for links to
the full instructions.

5.1. Structured and unstructured sources
Within Solr and Fuseki, Wikipedia and DBpedia are the two main sources of information used. Wikipedia
contains articles expressed in natural language (‘free text’). DBpedia contains data in machine-readable for-
mat, expressed in the form of RDF triples (subject-predicate-object).

The sources that can used within YodaQA are currently limited to these two sources: Solr and Fuseki. Be-
cause the answer production stage (as shown in figure 4.1) comes with interfaces only for these, substituting
different technologies cannot be done readily. This requires extending YodaQA with custom interfaces for the
new technologies and is not a part of this project. On the other hand we are not limited to Wikipedia and
DBpedia; in Solr we can place any data that can be modeled with a title and text attribute and in Fuseki any
data that can be modeled using RDF.

As discussed in 2.6.3, within this project we can make good use of both types of sources. In DBpedia we
can store data that can be modeled as an object or concept with well-defined attributes, such as the Nao
robot and its characteristics. In Wikipedia we can store articles about the topics we are supporting (robots,
computers and technology in general) that cannot be easily transformed into a structured format.

5.2. Data locality
When choosing between online and offline datasets, a tradeoff needs to be made between being up-to-date
and speed. On the one hand, if the system is set to go online to search for answers, the most up-to-date
information can (in principle) be found, but at the cost of network overhead. On the other hand, using local
copies allows for faster lookup, disk latency generally still being smaller than network latency. Since real time
operation is a crucial part of this project, having the data sources offline is the selected approach.

Of course in this case update mechanisms need to be in place, to allow maintainers to periodically update
the local data with new information as it becomes available. Sections 5.3 and 5.4 describe the setup and
maintenance of the unstructured and structured data sources, respectively.

5.3. Unstructured data
For unstructured data, entries containing free text (called ‘documents’) are hosted by a Solr instance. For the
English version of the system, a Solr instance containing an English Wikipedia dump on the original author’s
machine is used.
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Using Wikipedia is not strictly required: any data that can be expressed as an entry with id, title and text
attributes (news articles, encyclopedia entries, essays, etc.) can be inserted into Solr via its user interface and
then made use of by YodaQA. The reliance on Wikipedia by YodaQA as the default unstructured data source is
primarily because the aim of the system is answering factoid questions, and Wikipedia is a rich source in this
respect.

5.3.1. Setup and maintenance
The following steps were taken to set up a Solr core containing Dutch Wikipedia articles:

1. Retrieval: downloading a Wikipedia data dump.

2. Preprocessing: transforming the articles for importing. The Solr interface provides functionality to
import entries from XML files. For the Wikipedia dump, a custom extraction tool was used, which
transformed the dump into a single XML file ready for importing.

3. Importing: inserting the individual documents specified in the data file into a Solr instance. Two
modes are offered by Solr for imports: full-import simply imports everything in the file and creates a
new collection index, while delta-import only imports entries present in the file but not in the Solr core
and updates the existing index.

4. Filtering: filtering out articles not related to the desired domain. Solr provides querying functionality
within its interface: filtering can be done by specifying text which should (or should not) be in the doc-
ument titles and bodies.
For this project, all documents within the Dutch Wikipedia dump that did not contain one of the fol-
lowing keywords were filtered out (both partial and exact matches sufficed):
robot, computer, kunstmatige intelligentie, nao, aldebaran, sensor, actuator, programmeren.
This resulted in a dataset of about 6600 documents.

5. Customization: extending the collection with custom articles, by filling in the title and text attributes
of the new documents.

Maintenance
Individual documents can be added to the database via the command line or using the Solr graphical user
interface. For bulk inserts, the individual documents should be combined into an XML file, after which this
file can be imported from within the Solr interface as described above. For new document collections the
full-import mode can be used; otherwise, delta-import is more efficient. For all documents, whether entered
individually or in bulk, title and text attributes should be specified, and optionally an id.

5.4. Structured data
For structured data, a Jena database containing RDF triples is used. This database is hosted by a Fuseki server,
which can serve RDF data over HTTP in response to query requests. By default, an instance containing an
English DBpedia[49] dump on the original author’s machine is used. The use of DBpedia is a logical choice
after settling for Wikipedia as the unstructured source, as DBpedia tracks it and extracts data from it.

5.4.1. Structured data in YodaQA
Searching within structured data in YodaQA is a two-step process.
First, based on the subject and other important clues identified in the question, a primary query is executed
to determine whether any of these tokens match the labels of any resources in the Jena database. This step is
carried out by a separate component called the label lookup service[50].
If this step returns a positive result, all attributes associated with the matching resource(s) are retrieved. With
the use of Wordnet[34], these attributes are then scored based on their similarity to one or more of the iden-
tified clues in the question.

5.4.2. Setup and maintenance
The following steps were taken to set up an RDF database containing Dutch DBpedia entries:

1. Retrieval: downloading a Dutch DBpedia dump.

2. Importing: creating a Jena database and importing the dumps into it.
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3. Customization: extending the database by creating a Nao resource and modeling Nao attributes (like
name, weight, etc.) as RDF triples.

4. Indexing: creating a list of the labels (a label index) of all resources in the database (including the new
one for the Nao), to be used by the label lookup service.

Maintenance
The YodaQA DBpedia interface looks specifically for DBpedia resources. Resources and properties live within
thehttp://nl.dbpedia.org/resource/ andhttp://nl.dbpedia.org/property/namespaces, so these
namespaces are also the ones in which new resources and properties should be placed.

The sample query below creates a Nao resource if it doesn’t exist and updates it with the given label and
naam attributes. The prefixes indicate the namespaces to be used within the query.

PREFIX nldbr : <http : / / nl . dbpedia . org / resource/>
PREFIX nldbp : <http : / / nl . dbpedia . org / property/>
PREFIX rdfs : <http : / /www.w3. org /2000/01/ rdf−schema#>

INSERT DATA
{

nldbr : Nao rdfs : l a be l "Nao ( robot ) " .
nldbr : Nao nldbp :naam "Robin" .

}

When adding/deleting resources, attention should be paid to also add/delete the name of the resource
in the label index, to allow it to find this new resource/not look for it anymore. When updating existing
resources, no changes need to be made to this file (unless of course it is the name of the resource that is being
updated).

5.5. Conclusion
In this chapter we took a closer look at the sources used by YodaQA. We saw identified a need to be able to
use both unstructured and structured sources. The system currently works with unstructured data in a Solr
instance and structured data in a Fuseki instance.

The Solr instance originally containing English Wikipedia dump was replaced with a Dutch Wikipedia
dump. A similar process was carried out for Fuseki by importing a Dutch DBpedia dump.

http://nl.dbpedia.org/resource/
http://nl.dbpedia.org/property/


6
Natural language processing

This chapter describes the technical steps that were required to adapt the question and answer analysis
pipelines to work with Dutch input. The research question that corresponds to this chapter is:
RQ 3: Which Dutch natural language processing libraries are fitting tools for processing the natural language
content the system will work with?

The two main NLP libraries used by YodaQA are the Stanford parser and the Apache OpenNLP parser. The
former has a more prominent role in the system and is the default tool for processing questions. Another im-
portant resource is the English WordNet, used to estimate the similarity between two words. Within YodaQA
this is an important source, used to assess the relevance of DBpedia properties to concepts identified in a
question.

Unfortunately for our purposes, neither library supports parsing Dutch by default and there also were
no Dutch parsing models available for either parser. The English WordNet also, of course, only supported
English. This meant that these components had to be replaced with others that do support Dutch.

Section 6.1 describes this process for the Dutch word net. The remaining sections explain this for parsing.
Section 6.2 discusses the initial setup with TreeTagger, section 6.3 the more advanced setup using the Alpino
parser and section 6.4 the technical details involved in running this parser.

6.1. Open Dutch Wordnet
As mentioned in the section about structured data, the English version of YodaQA makes use of Wordnet for
word similarity calculation. This is used to have more flexibility when matching questions to candidate an-
swers: if similar words can also count (instead of requiring exact matches) when evaluating the relevance of
candidate answers, the likelihood of identifying suitable answers increases.

Two libraries were used to get this working for Dutch. The first is the Open Dutch Wordnet[51], contain-
ing word nets (synonym sets and relations between them) for Dutch. The second is the WordnetTools[52]
library which, given a word net, can calculate the similarity between a pair of words. These come into action
when DBpedia properties are found for a concept identified in the question: for each property, its similarity
to each token in the question is calculated. High scoring properties are then taken along as strong candidate
answers.

6.2. TreeTagger
As a first step towards analysing Dutch sentences, a part-of-speech (POS) tagger called TreeTagger[22] was in-
tegrated into the question analysis pipeline. This is a tool that can identify the lexical categories (noun, verb,
adjective, . . . ) to which words in a sentence belong.

There were a couple of reasons for starting in this way. First off, it helped in getting familiar with the code-
base, its structure and how to go about refactoring and extending it. Additionally, it has already been used
successfully in projects with a similar focus[21].

The listing below shows the POS annotations for “Wat is een robot?" (“What is a robot?"). The left column
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contains the tokens, the middle one contains the POS tags assigned to them by the tagger, and the right one
contains the lemmas. The tags shown here are question pronoun, present tense singular verb, determiner/ar-
ticle, singular noun and punctuation mark.

Wat pronquest wat
i s verbpressg z i j n
een det__art een
robot nounsg robot
? $ . ?

This approach already led to decent results when the answers were present in structured data. Since the data
was structured, it was possible to get away with a relatively shallow understanding of the question, without
identifying sub-phrases and dependencies.

Technical details Before the tagger output can be used within the QA system, a mapper needs to be in
place which can transform the POS annotations into Java types. The library used by YodaQA for integrating
the various NLP components, DKPro, already provided a wrapper for the tagger. However, this didn’t work
out-of-the-box, because the input format passed to the tagger didn’t match what was expected by TreeTagger
and so had to be refactored.

6.3. Dependency parsing
The shortcomings of the ‘part-of-speech only’ approach became apparent when processing questions for
which the answers were present as natural language text. Since in this case the data and corresponding prop-
erties aren’t explicitly modeled, questions need to be analyzed deeper.

To understand this better, consider the Nao resource in the structured data source. All attributes of this
resource will have been formulated explicitly in the form of RDF triples. In the unstructured data source, on
the other hand, this data will be present within natural language sentences, which can vary greatly in their
structure. Whereas we know to look at the object elements for candidate answers in RDF triples, in free text we
first have to understand how a given sentence is constructed and where exactly the answers might be located.

This is the point at which the use of a parser that can identify structure and dependencies becomes rele-
vant. Besides identifying concepts like nouns and verbs, it becomes useful to identify (among others) subjects
and expected answer types (name, location, number, ...), so that we can detect possible answers more easily.

6.3.1. Alpino parser
For this purpose, the Alpino dependency parser[53] was integrated into the question analysis component of
the system. This tool runs as a server process and by creating a client within YodaQA, question sentences can
be passed off to it to receive responses containing the parsing output. The parser returns a parse tree in XML
format, which the client can then process recursively to create annotations about tokens, sub-phrases and
dependencies.
To make the parser output usable within the QA system, UIMA[42] type systems had to be created within
YodaQA for the Alpino lexical category, dependency and part-of-speech annotations.

The listing below shows the XML parsing output for “Wat is een robot?". Nodes can cover multiple tokens
(as indicated by the begin and end tags). Nodes can have many more attributes (id, case, tense, etc.), which
have been left out here for brevity. Lexical categories are indicated with the cat attribute, dependency types
with rel and POS tags with pos.

Listing 6.1: Parse tree

<?xml version=" 1.0 " encoding="UTF−8"?>
<alpino_ds version=" 1.5 ">

<node begin="0" cat="top" end="5" r e l ="top">
<node begin="0" cat="whq" end="4" r e l ="−−">

<node begin="0" end="1" l c a t ="np" lemma="wat" pos="pron" r e l ="whd" word="Wat"
/>

<node begin="0" cat=" sv1 " end="4" r e l ="body">
<node begin="0" end="1" index="1" r e l ="predc"/>
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<node begin="1" end="2" l c a t =" sv1 " lemma=" z i j n " pos=" verb " r e l ="hd" root="
ben" word=" i s "/>

<node begin="2" cat="np" end="4" r e l ="su">
<node begin="2" end="3" l c a t ="detp" lemma="een" pos=" det " r e l =" det " root="

een" word="een"/>
<node begin="3" end="4" l c a t ="np" lemma=" robot " num=" sg " pos="noun" r e l ="

hd" word=" robot "/>
</node>

</node>
</node>
<node begin="4" end="5" l c a t ="punct" lemma=" ? " pos="punct" pt=" l e t " r e l ="−−"

root=" ? " word=" ? "/>
</node>
<sentence sentid=" 1 2 7 . 0 . 0 . 1 ">Wat i s een robot ? </ sentence>

</alpino_ds >

Dependency relations for the same question, as identified by the Alpino dependency triples hook, are shown
below. The left column contains the head words of the dependency relation, the middle column specifies the
relations, and the right column contains the dependent words. The final line, for example, indicates that the
“een" token acts as a “determiner" for the “robot" token.

Listing 6.2: Dependency triples

top/top | top/hd | wat / [ 0 , 1 ]
wat / [ 0 , 1 ] |whd/body | ben / [ 1 , 2 ]
ben / [ 1 , 2 ] | hd/predc | wat / [ 0 , 1 ]
ben / [ 1 , 2 ] | hd/su | robot / [ 3 , 4 ]
robot / [ 3 , 4 ] | hd/ det | een / [ 2 , 3 ]

Figure 6.1: Alpino parse tree for “Wat is een robot?".

6.4. Alpino integration
6.4.1. Running Alpino
The Alpino parser can be run in two ways: as a system process and as a server. The system process processes
all inputs sequentially, regardless of whether they were passed one by one or in bulk. Consequently, this
approach provides no scaling benefits when multiple sentences need to be parsed.

The Alpino server, on the other hand, does have parallel processing capabilities and can parse multiple
inputs simultaneously by creating separate ‘workers’ for each input. The server can also be deployed on
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a machine other than the one on which the QA system is running. These considerations are why running
Alpino as a server is the approach taken in this project.

6.4.2. Extracting dependencies
While the Alpino parse tree (see listing 6.1) implicitly indicates the dependency triples within the sentence
it has parsed, it is less complete than the output received from the triples hook. As listing 6.2 shows, the
output from this hook explicitly indicates which token has what relation to which other token, together with
their indices.

We would not want to have to submit two requests to Alpino per sentence, one for the parse tree and one
for the dependency triples. Fortunately, the Alpino library comes with an XQuery script that can process the
parse tree and extract these triples from it. With small modifications (to include the index of the tokens in the
output), the script was refactored into giving the same output as the one received from the triples hook.

The last step was to be able to carry out this extraction within the QA system itself, from a parse tree while
answering a question. For this, the Saxon XSLT and XQuery Processor[54] was used. This library provides
functionality to load XQuery scripts and apply queries specified in them to XML documents.

The way this is used in YodaQA is as follows: the Saxon query evaluator is built up once during program
initialization (to avoid having to repeatedly load the same query file from disk), using the mentioned XQuery
file bundled with Alpino. Then, within the pipeline, on receiving the parse tree for a sentence, the evaluator
is applied to the tree and the results are used to generate dependency annotations.

6.5. Conclusion
Adapting the natural language processing pipeline of YodaQA to work with Dutch content required the use of
new software tools. Two tasks presented themselves: integrating a Dutch word net and integrating a Dutch
parser.

For the first task we configured the Open Dutch WordNet. It was integrated into YodaQA using the Word-
NetTools library. This library allows programmatic access to the word net and can be used to determine word
pair similarity during the process of answering a question.

For the second task we first used the TreeTagger POS tagger as an initial setup. We soon reached the
limit of this tool as only a limited number of question types can be handled if only POS annotations are
used. Therefore, we turned to the Alpino dependency parser and configured it for YodaQA. We use Alpino by
running it as a server and communicate with it using web requests via a client within the YodaQA. Finally,
we use the Saxon XSLT library to extract dependencies from Alpino parse trees and acquire our dependency
relations in this way.



7
Answer matching

After searching for relevant data on the basis of the analysis carried out on a question, the QA system gets
to the task of matching the question representation with representations of candidate answers. This has the
purpose of determining which parts of which candidates are most relevant for the given question. This chap-
ter explains how we do this in this project, for data from both structured and unstructured sources.

This chapter, like chapter 4 about YodaQA, is related to our first research question:
RQ 1: What adaptations need to be made to the question answering pipeline of the chosen system?
Here we will investigate what changes to the answer matching logic were needed to make it work for Dutch
candidate answers.

7.1. Structured data
Compared to matching answers from Wikipedia, matching ones from DBpedia takes place via a simpler way.
The question representation includes annotations like subject, main verb and object. These are used to re-
trieve relevant DBpedia resources. Finally, their (pr oper t y, value) pairs are assessed based on how similar
the property entry in these pairs is to one of these tokens. The similarity score is calculated using the Open
Dutch WordNet.

Example:
Question: Wat is de prijs van de Nao?
Retrieved resource: N ao
Highest scoring (pr oper t y, value) entry: (pr i j s,AC5000)
Answer: $5000

7.2. Unstructured data
Matching candidate answer representations coming from unstructured sources is more challenging, because
of the lack of structure and annotations in these representations.

There are two important strategies that can be used to match candidate answer sentences with questions.
The first is to take the question predicate, follow it in the candidate answer sentence, and use its object as
an answer. The second approach works in the other direction: we start by looking for certain grammatical
structures in the candidate answer sentence and assess their relevance to the question.

We explain both approaches using an example:
Question: “Wie maakte y?"
Sentences: “x maakte y" and “x ontwikkelde y"

7.2.1. Approach 1: Following the predicate
The first approach starts with the predicate in the question; in this case, this is the verb phrase “maakte"
linked to the subject (“x"). As this predicate does occur in the first sentence we ‘follow’ it along to its object,
leading us to identify y as a candidate answer.
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The predicate does not occur in the second sentence and this approach therefore does not consider it
further.

7.2.2. Approach 2: Searching for structures
The second approach uses the expected answer type as a starting point. As will be detailed below, we deter-
mine that the question expects a person/name and that the grammatical structure to look for is a predicate
complement (predc).

Next, we use this insight to look for structures of type predc in the given sentences. The “y" sub-phrases in
both sentences fit this requirement, so we mark both as candidate answers. Finally, to assess their relevance,
we determine the similarity of the question predicate to both predicates in the sentences (“maakte" and “on-
twikkelde"). The first one obviously gets the highest score. The second also receives a significant score (more
than half of the maximum); as it should, since both sentences come down roughly to the same.

We use both approaches when matching question and candidate answer representations. The first approach
allows us to cut the search short if we find an explicit formulation in the sources that closely matches the
question formulation. The advantage of the second approach is its added flexibility. It enables us to also
consider formulations that are not identical but similar to the question, as long as it contains a grammatical
structure that fits the expected answer type constraint inferred from the question.

Table 7.1 gives an overview of which grammatical structures to look for for each type of expected answer.
The subsections afterwards explain these using examples.

Table 7.1: Expected answer types and corresponding grammatical structures

Expected answer type Target grammatical structure(s)
Location locative or directional complement (ld)
Date/time measure phrase complement (me)

modifier (mod)
Person/name predicative complement (predc)
Amount direct object (obj1)
Default predicative complement (predc)

prepositional complement (pc)
direct object (obj1)
secondary or indirect object (obj2)

7.2.2.1. Location
Question: “Waar is Microsoft gevestigd?"
Expected answer type: “Waar" → location.

Candidate passage: “Microsoft is gevestigd in de Verenigde Staten."
Matching answer: The highlighted sub-phrase matches because it is of type ld.

7.2.2.2. Date/time
Question: “Wanneer is Bill Gates geboren?"
Expected answer type: “Wanneer" → date/time.

Candidate passage: “Bill Gates is geboren op 28 oktober 1955."
Matching answer: The highlighted sub-phrase matches because it is of type mod.

7.2.2.3. Person/name
Question: “Wie is Steve Jobs?"
Expected answer type: “Wie" → person/name.

Candidate passage: “Steve Jobs is de medeoprichter en topman van Apple."
Matching answer: The highlighted sub-phrase matches because it is of type predc.
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7.2.2.4. Amount
Question: “Hoeveel verdien je?"
Expected answer type: “Hoeveel" → amount.

Candidate passage: “Ik verdien 1000 euro per maand."
Matching answer: The highlighted sub-phrase matches because it is of type obj1.

7.2.2.5. Other/default
The structures in this category are used when the expected answer types is not one of the four mentioned. Of
all the remaining Alpino types, these four are the ones that can serve as the object of a verb in a sentence.

Question: “Wat is een computer?"
Candidate passage: “Een computer is een apparaat waarmee gegevens volgens formele procedures (algo-
ritmen) kunnen worden verwerkt."
Matching answer: The highlighted sub-phrase matches because it is of type predc.

Question: “Waarvoor wordt een computer in het onderwijs gebruikt?"
Candidate passage: “In het onderwijs wordt de computer gebruikt voor het opzoeken van informatie."
Matching answer: The highlighted sub-phrase matches because it is of type pc.

7.3. Conclusion
In this chapter we discussed the third significant change to the YodaQA pipeline: that of adapting the answer
matching logic. Doing this for structured data was not a big change but rather of configuring the Dutch word
net and rewriting queries accordingly. For unstructured content, however, more changes were needed.

A matching algorithm was implemented that combines two approaches: following the question predicate
in the candidate answer, and looking for a semantic structure fitting the expected answer type of the ques-
tion. This was done by inferring the question type from keywords in the question and making use of Alpino
annotations to look for matching structures in the candidates.
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Interaction manager

All chapters up to now in this part about implementation have been about the question answering system
itself. Just as important, however, is the part of the system facing users. This chapter describes the interaction
manager: a wrapper around the QA system that handles the inputs from and outputs to the audience.

The research question relevant to this chapter is:
RQ 4: What type of robot-audience interaction allows the robot to hold a clear, structured and informative Q&A
session?
Our main goals are to develop a manager that provides a smooth experience, shields users from low-level
details and presents the QA system and the Nao robot as a conversational partner.

The standard input mechanism of the system is the command line: a bare-bones prompt where a question
can be typed. This is fine for internal usage, but lacking for the average user that might not even have used a
command line before.

The interaction manager has a number of features for enhancing the user experience. One is the usage of
a pool of ‘prompts’ that it uses for asking for a question. Another one is a pool of negative responses (in case
no answer could be found or only ones with low scores).

The manager also repeats questions verbally to the user after passing them to the QA module. This serves
both to give the user a confirmation that the question was received properly, and to fill up a part of the an-
swering time. If the answering process for a question takes a long time, we also fill the time with various
progress updates. Finally, all verbal output of the robot is accompanied by various gestures and movements.

8.1. Algorithm
Listing 8.1 describes the interaction management algorithm.

Listing 8.1: Interaction manager

P = c o l l e c t i o n of prompts
U = c o l l e c t i o n of progress updates
R = c o l l e c t i o n of negative responses

Introduce session
Ask for the name of the user and greet him/her with own name

While e x i t command i s not received :
Ask for question

Output randomly selected entry from P
Submit question to QA module
Repeat question verbal ly
While QA module i s busy :

P e r i o d i c a l l y output randomly selected entry from U
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Return response
I f no answer or low scoring answer , output randomly selected entry
from R

P contains prompts like Is there something you’d like to ask? and Do you have another question?.
U has updates like Let me see . . . and I have to think about that..
The negative responses in R are along the lines of I don’t know that. and I couldn’t find an answer to that
question..

After the introduction, a loop is entered in which a question is received, submitted to the QA system, and
the answer to it passed on to the user. If the system is still busy after some time, a progress update is given.
If the returned answer is not certain enough or there is no answer at all, it indicates that no answer could be
found.

8.2. Implementation
We created a separate Java application for the interaction manager which implements the aforementioned
algorithm. This application communicates with YodaQA over sockets. For this work, a new mode was added
to YodaQA that works with sockets; this involves starting up a server within YodaQA and listening for connec-
tions. The client within the interaction management application can then connect to this server and submit
questions to it in this way.

As mentioned somewhere in literature review, we want to provide a smooth experience and shield users
from low-level details. For this reason, we wanted to avoid having the children enter their questions into
the command line and a rudimentary graphical user interface was added to the program. Questions can be
entered into this interface and answers returned by the QA system are displayed here as well.

A special START command was included in the application that, if entered, makes the manager introduce
a new session by asking for the user’s name. In this way, the program does not have to be restarted to switch
to a new user.

Figure 8.1 shows some screenshots from the interaction manager. (a) is the screen in which users can
enter their name, (b) shows a question being entered, and (c) shows the answer being displayed.

(a)

(b) (c)

Figure 8.1: The interaction manager graphical interface
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8.3. Conclusion
The interaction manager for the question answering system should be such as to make the system comes
across as a conversational partner and provide a smooth experience. For this purpose we implemented an
interaction management algorithm that passes questions and answers to and from the QA system. Besides
this, it has features like introducing itself to users, asking for questions and giving progress updates. To fur-
ther enhance the user experience a graphical interface was added to the manager in which questions can be
entered and answers displayed.
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9
Question answering pipeline

In the last few chapters we covered a number of topics like the QA pipeline, the natural language processing
modules, and the usage of the configured data sources. The two chapters of this part serve to make this all
more concrete. This chapter describes the question answering pipeline in more detail. The next one will
illustrate its workings by traveling along this pipeline, starting with a question and ending with the system’s
response.

As discussed in 4.2.1 about Apache UIMA, the YodaQA pipeline is composed of analysis engines. Data within
this pipeline is represented in the form of Common Analysis Structure (CAS) objects. Each engine annotates
the CASes it receives from its predecessor and might also create new CASes itself.

The YodaQA pipeline has five main stages: analyzing the question, searching for information, analyzing
retrieved data, consolidating everything into a single collection, and scoring it. Each of these stages is de-
scribed in detail in the next sections. For each stage we describe what input it takes, the annotations it carries
out and the output of the stage. For clarity, generic terms have been used here instead of the low-level YodaQA
names and terminology. From the second stage on, inputs are not stated as these are equal to the outputs of
the previous stage.

9.1. Question analysis
This engine contains annotators processing the question. This engine contains annotators that process the
input question. The goal is to identify important tokens and sub-phrases and determine what type of answer
we are looking for. Annotations and clues generated in this stage will be needed later on, especially once we
start trying to match candidate answers.

Stage input: a question sentence
Tasks:

• Parsing: parse the question sentence using the Alpino dependency parser. The output of the parser
contains a parse tree, lexical categories, dependency annotations, sub-phrases and part-of-speech tags.
This output forms the basis for all subsequent tasks in this stage, as every coming task makes use of
some part of the Alpino output.

• Focus identification: identify the focus of the sentence. This can roughly be defined as that part of the
question that can be replaced with the answer.

Example:
Question: “What is the mass of the Nao?"
Focus: “the mass", because this is the part of the sentence that can be replaced with the answer.

The focus annotation serves to locate answers in relevant candidate answer sentences. In the example
below we note that the question focus does occur in the candidate and follow the associated predicate
(“is") to arrive at the answer.

Candidate answer sentence: “The mass of the Nao is 4.3kg."
Answer: 4.3kg
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• Subject generation: identify the sub-phrase serving the role of subject in the sentence, which can be
inferred directly from the Alpino subject annotation. Subject annotations are used for querying the
sources, based on the assumption that if some token of the question sentence has an entry dedicated
to it within the sources, it is probably the subject.

• Main verb selection: determine the main verb of the question to focus on. This is deduced by identifying
the verb that depends on the subject of the sentence.

• LAT generation: determine the lexical answer type (number, name, location, etc.) expected by the ques-
tion. This is the semantic type to which candidate answers must conform to be considered relevant.
This comes in handy during the later answer analysis and scoring stages, where it is used to assess how
well a candidate answer fits what is expected by the question.

• Verb-initial sentence detection: check whether the question starts with a verb. This is to determine
whether the question is a confirmation (yes/no) question; if it is, the execution flow will change slightly,
as will be explained in the next sections and illustrated in the next chapter.

As an aside, this step can also be used to detect imperative sentences. Since we don’t do anything with
such input, though, it is irrelevant for our purposes.

Stage output: a Question CAS with values for all mentioned annotations.

9.2. Information retrieval
This stage is responsible for searching for data within the configured sources, based on the clues generated
during question analysis. It consists of three parts: for DBpedia, Solr and Freebase. We do not use the one for
Freebase as Freebase is an English-language source only.

9.2.1. DBpedia
Tasks:
A search query is formulated based on the clues generated during question analysis. This is basically a dis-
junction of all significant tokens and sub-phrases identified during this phase. A ‘fuzzy’ lookup is used to
compensate for small spelling errors like incorrect case or punctuation mark usage.

The retrieved DBpedia resources are then filtered to keep only those that match at least one clue.

9.2.2. Wikipedia
Tasks:
This engine carries out full-text searches through Solr and looks for potentially relevant passages within Solr
documents.

Retrieved passages are first parsed by Alpino, in the same way as in the question analysis stage. Then the
degree of matching between the passage text and question clues is determined. Afterwards, noun phrases
and named entities within the passage are extracted, again similar to question analysis.

Stage output: DBpedia resources and passages from Wikipedia articles.

9.3. Answer analysis
The tasks in the information retrieval stage typically result in the creation of a number of CASes, one for
each candidate answer. It is the task of the annotators within the Answer analysis stage to annotate these
candidates with NLP and QA features.

This is analogous to the tasks carried out in the question analysis stage. The purpose is to annotate the
candidate answers to a sufficient degree to enable the upcoming Answer scoring stage to evaluate them. At
the end of this stage we will have annotations for the question on one hand and for the candidate answers on
the other hand, which will allow us to see how well they match each other.

Tasks:
Determine the overlap between the candidate answer and the clues identified in the question analysis phase.
The remaining tasks are similar to the question analysis stage and involve identifying the focus of candidate
answer sentences and generating LAT annotations for them.
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Stage output: candidate answers together with annotations.

9.4. Answer merging
This engine acts as a ‘sink’ for all answers that have been found. On detecting that all candidate answers have
passed through the Answer analysis stage, it consolidates them into a single list and removes any duplicates.
The reason why duplicates can arise is because searches are carried out in different data sources and these
might contain the same piece of information.

Tasks:
Merge candidates into one collection.

Stage output: a single list containing all unique candidate answers and their annotations.

9.5. Answer scoring
This stage evaluates the quality of the answers. The original (English) version did this by applying two classi-
fiers. The first is a model-free rule-based classifier and the second is a trained decision forest classifier.

For the Dutch version only the first one was kept. Its rules were adapted by building on the existing
algorithm, so as to consider DBpedia similarity scores and matching Wikipedia sentences in a way that better
fits the requirements of this project.

This approach led to good results, so no effort was dedicated to training a decision forest or another ma-
chine learning classifier. However, investigating the effects of using this type of classifier can definitely be
considered for future improvements.

Tasks:
Score all candidates.

Stage output: candidate answers annotated with confidence scores, ordered in descending order on these
scores.



10
From question to answer

This chapter is a follow-up to the previous one where we outlined the structure of the pipeline. In this chapter
we will fill in the pipeline by following the path of a question from start to finish. We will see this pipeline in
action by feeding it a question and looking at the actions and output this input triggers throughout all stages.

For each of the five stages of the pipeline the main tasks it carries out and its output will be described. We
will do this twice: once for a factoid question and once for a confirmation question.

10.1. Factoid question

Question: “Wat is een computer?"

10.1.1. Question analysis
• The sentence is submitted to the Alpino parser, which determines that “een computer" is the subject

and that it depends on the verb “is".
• “computer" is identified as the focus and “is" as the selective verb.
• “computer" and “een computer" are given subject annotations, as they are the narrowest and widest

sub-phrases serving the function of subject in the sentence.
• “computer" is also annotated as an LAT (lexical answer type); the more a candidate answer is similar to

its type, the more relevant it will be considered.
• Clues are created for “computer" (because it is a LAT, a subject and the focus) and for “een computer"

(because it too is a subject). Normally a clue is also created based on the selective verb but not in this
particular case, as common verbs like “to be" and “to have" are excluded because of their relatively
small added value.

Stage output: the aforementioned NLP and QA features.

10.1.2. Information retrieval
Unstructured data

• The generated clues (“computer" and “een computer") are used to formulate a query and submit it to
Solr. In this case the query takes the form of ‘computer’ OR ‘een computer’.

• The result contains documents with titles like: “Computer", “Accumulator (computer)", “Personal com-
puter" and “Schijfloze computer".

• Sentences in each article are ordered by how well they match clues, and the first couple of best scoring
ones are kept.

Structured data

• A lookup within DBpedia using the search term “Computer" is carried out, which returns three re-
sources (Computer, Simputer and CompuServe) with decreasing relevance scores.

• Only resources exactly matching a clue are kept, which in this case only leaves Computer.
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Stage output: Best matching sentences from Wikipedia articles related to computers, and the DBpedia
Computer resource. For this specific question, one of the sentences to keep an eye on is “Een computer is
een apparaat waarmee gegevens volgens formele procedures (algoritmen) kunnen worden verwerkt.", as it
will be a prominent candidate further on.

10.1.3. Answer analysis
Unstructured data

• Every candidate answer sentence is submitted to the Alpino parser, similar to the question analysis
stage.

– For each sentence, promising sub-phrases are looked for by checking whether their semantic
function matches the expected answer type and whether they are related to the subject or other
clues identified in the question.

¦ A prominent candidate answer identified in this way is part of the sentence mentioned in the
previous subsection: “een apparaat waarmee gegevens volgens formele procedures (algorit-
men) kunnen worden verwerkt". This is because it fits together with the question (“Wat is een
computer?", “Een computer is een . . . ") and because the subject (“computer") occurs in the
sentence.

• For each candidate answer analysis results are included - examples of these are which clues it matched,
whether it refers to the question subject, etc..

Structured data

• All properties, in the form of (property name, property value) pairs, of the Computer resource
are iterated over but none are selected, since no property name is similar to any of the question clues.

• Similar to candidates from unstructured sources these ones are also annotated, according to criteria
like their WordNet scores.

Stage output: A list of annotated candidate answers.

10.1.4. Answer merging
• The main task of this step is to remove duplicates and produce a single list of candidate answers.

• There are no duplicates in this case because 1) on the ‘structured’ side no DBpedia property was se-
lected and 2) on the ‘unstructured’ side every kept sentence was unique.

Stage output: A list of unique annotated candidate answers.

10.1.5. Answer scoring
• First a simple rule-based scorer is applied to the list, based on features like word net scores and whether

the answer was a named entity identified in the question.

• The answers are then scored using a random decision forest classifier, pre-trained on a question collec-
tion.

Stage output: ordered list of candidate answers with their final confidence scores. For our example, the
highest score is assigned to the candidate mentioned in subsection 10.1.3, as it is part of a sentence containing
the question subject and matches the expected semantic structure.

10.1.6. Response generation
Output answers together with their confidence scores, ordered descendingly on confidence score.
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Stage output: List of answers and their confidence scores. The highest scoring answer is indicated below.

Answer: “een apparaat waarmee gegevens volgens formele procedures (algorit-
men) kunnen worden verwerkt"

10.2. Confirmation question

Question: “Kan de Nao dansen?"

10.2.1. Question analysis
Confirmation questions are detected by looking for Alpino’s sv1 annotation. This stands for verb initial sen-
tence and is the annotation Alpino attaches to confirmation questions and imperative sentences.

In this case, sv1 is present among the annotations and we mark the question as a confirmation question.
Next come two specific checks mandated by the project scope: confirmation questions are only supported if
they are about a capability of the Nao. We therefore first check whether “Nao" is the subject of the question,
and then whether the lemma of the main verb is “can".

Stage output: All output that was also created in the case of the factoid question, plus an annotation indi-
cating that it is a confirmation question.

10.2.2. Information retrieval
Confirmation questions are only supported if they are about a Nao capability., and we store Nao capabilities
in RDF format in a structured source. This means that, in case of a valid confirmation question, we can skip
searches in unstructured sources.

Stage output: No results from unstructured sources, so we continue only with DBpedia resources and prop-
erties. Querying DBpedia takes place in the same way as for factoid questions.

10.2.3. Answer analysis
In contrast to factoid questions, here we try to match with property values instead of property names. Too see
why, consider the following example:

Factoid question: “Wat is de prijs van de Nao?"
Strategy: Look for a property with name prijs, and use its value.

Confirmation question: Kan de Nao dansen?
Strategy: Look for a property with value dansen, and check whether its name is relevant.

With factoid questions we don’t know the target piece of information and need to find it. Here, with con-
firmation questions, we already have that information and need to check whether it’s actually true.

Stage output: There does exist a property with value dansen and its name (“capability"), being a perfect
match with the question verb, is relevant. The output therefore contains this property and has a high score
attached to it.

10.2.4. Answer merging
The tasks in this stage proceed in the same way as for the factoid question.

Stage output: A list of unique annotated candidate answers.



10.2. Confirmation question 50

10.2.5. Answer scoring
The tasks in this stage proceed in the same way as for the factoid question.

Stage output: An ordered list of candidate answers with their final confidence scores

10.2.6. Response generation
We use a cutoff score for formulating the answer. If the highest scoring property has a score higher than 2
we return ’Ja’, and ’Nee’ otherwise. This threshold is chosen based on the range of similarity scores: WordNet
scores are in a range of about [1,3.5], so a score of 2 can be seen as representing a relevance of more than 50%.

Stage output: ’Ja’.

Answer: “Ja"
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11
Quantitative evaluation

In this chapter we present the results of the quantitative evaluation of the QA system. We will be answering
our fifth research question:
RQ 5: Which evaluation metrics best serve to assess the effectiveness and efficiency of the QA system, given its
domain and type of usage?

The aspects we focused on during this evaluation were whether the system can find correct answers, how
high it ranks them and how quickly it returns with responses.

To better position our system in the space of existing QA systems, we compare it to two alternatives: the
original (English) version of YodaQA and Google. We chose the first to assess the impact of the porting effort
to Dutch, and the second because it is the most prominent of available web search engines.

The next sections describe the sources and questions used for the evaluation, which performance measures
we used, and the experimental setup and results. Throughout this chapter YodaQA refers to our system and
YodaQA (English) to the original version.

11.1. Research questions
The experiment is focused on evaluating the performance of the system, looking for any emerging patterns,
and comparing it to alternative systems. We define the following research questions to guide us during the
evaluation, together with the method of data collection to be used for each one:

1. How does the QA system perform in terms of finding correct answers, ranking them highly, and doing this
quickly?
Measurement: running system on test questions and evaluating its performance using various met-
rics.

2. Are there topics or question types the QA system is good at or struggles with?
Measurement: looking for results that deviate, either from other categories of from expectations.

3. How does the performance of the QA system compare to the original (English) version?
Measurement: comparing the collected results for the different systems.

11.2. Sources
The data sources used for the experiment are the following:

• A Solr instance with a Dutch Wikipedia dump containing 6879 documents. This collection originated
from a full Wikipedia dump with almost 2 million documents but was filtered to only keep articles
related to topics like computers, robots and computer science. This was done by using a set of keywords
and removing articles not containing any of these keywords.

• A Fuseki instance with a Dutch DBpedia dump containing 80 million RDF triples. This dataset was
not filtered, because filtering it is not as straightforward as for the Wikipedia articles.
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Using the same approach as for Solr would likely delete many relevant resources, as DBpedia resources
typically contain much less text and sentences than Wikipedia articles. It is therefore less suited to
simple text filtering and the ontology it is a part of would need to be considered as well. Moreover, their
relevance to the topics we are interested in might even be indirect (it might extend some matching
resources but not be it itself), so filtering them is more challenging.

11.3. Questions
The contents of the collection of test questions used for the evaluation was influenced by a number of factors:

School survey: One inspiration was the results of a survey taken at a Dutch secondary school early on in (but
not as part of) this project, where students were asked about the questions they would like to ask the Nao.
The survey showed that the students were primarily interested in attributes and capabilities of the robot.
QA system purpose: Another factor is the goal we had in mind when building the system. The goal was not to
have a QA system that can answer any and all types of questions about any topic. Instead, we developed a sys-
tem that is more technology oriented and knows about robotics, computers and related topics - the sources
the system is configured to use reflect this.

Since we carry out the evaluation to assess how well the system can formulate responses based on the
data it has access to, the test questions should, given these sources, be answerable. This means that (most
of) the questions should be ones for which answers are present in these sources. It is possible to deliberately
include some unanswerable questions to see how the system handles such cases. However, the focus remains
on whether the system can find relevant data, recognize it as such and use it in its response.

The collection that was used contains 136 questions spread over four question categories: definition and fac-
toid questions about general topics, and factoid and confirmation questions about the Nao robot specifically.
This collection is included in appendix F.

11.4. Performance measures
We analyze the system’s performance using four metrics: recall, MRR (mean reciprocal rank), precision and
answering time. For a single question, these have the following meaning:

• Recall: 1 if the correct answer occurs anywhere in the returned list and 0 otherwise. It is important to
note that, for virtually all used questions, there is only one correct answer that can be found; this is the
reason why we only consider two values for this metric.

Its recall score can be seen as the first hurdle for the system: can it locate the correct answer in the first
place?

• MRR: the rank of the correct answer in the list of returned answers.

This represents the second step the system needs to take: is it able to recognize that the candidate is a
fitting answer and rank it highly?

• Precision: 1 if the correct answer was in first place and 0 otherwise. This is especially useful to investi-
gate with the deployment setting in mind, when the system will output only the top answer from its list
of answers.

A high score for this metric means that the system was able to take the third and final step: identify the
candidate as the correct answer and assign it a top ranking.

• Answering time: this is the number of seconds the system took to return with a response after submit-
ting a question.

11.5. Experimental setup
11.5.1. System specifications
The experiment was run on an Asus N551JQ-CN045H laptop computer, with an Intel Core i7-4710HQ (2.5GHz,
6M Cache) processor and 8GB of DDR3 RAM. The operating system of the computer was Ubuntu 16.04 LTS.

11.5.2. YodaQA
For the experiment the output format of the QA system was adapted to also include the time taken for each
question. At the start of the evaluation, first a random question was submitted as part of the startup process.



11.6. Hypotheses 54

We do not evaluate the system’s performance for first questions, because the system needs to load certain
resources on its first run and therefore takes longer. Afterwards we proceeded with the actual evaluation by
inputting the questions one by one, and noting the returned response and time taken.

11.5.3. YodaQA (English)
The same approach as for YodaQA was used for the English version, with the additional step of translating all
questions to English before submitting them.

11.5.4. Google
There are some differences to take into account when comparing YodaQA to Google.

First of all, measuring answering time is not very informative as this is almost always less than a second.
Given the huge storage and computational capacity available to it, together with the indexing/preprocessing
work carried out, this is an area where YodaQA cannot compete against Google.

The second is that we can distinguish between three different types of responses from Google:

1. The answer is present in a separate box on top. This means that the relevant information was found
and recognized as the result best fitting the search query.

2. The answer is present among the returned results. This means that the relevant information was found
but not explicitly recognized as the answer.

3. The answer was not found.

Figure 11.1 illustrates the difference between the first two cases. On the left we see the box containing the
answer; on the right, the answer can be seen at the bottom of the image as part of the third result.

This difference is significant as it touches upon one of the important distinctions between information
retrieval systems and question answering systems. QA systems go further than just returning a relevant pas-
sage and narrow it down to the exact desired bit of data: the answer to the given question. As part of our
experiment, we will therefore also note for what percentage of questions case 1 applied.

(a) (b)

Figure 11.1: Case 1 and case 2

The metrics we introduced above for YodaQA keep the same meaning for the case of Google:

• Recal l = 1 if case 1 or 2; 0 otherwise. As long as the answer is somewhere in the response, it counts.

• MRR = rank of the result containing the answer.

• Pr eci si on = 1 if case 1 or case 2 with the answer included in the top result; 0 otherwise. For the pre-
cision score we do not distinguish between cases 1 and 2; just like for YodaQA, pr eci si on = 1 if the
answer is part of the first result.

11.6. Hypotheses
Before carrying out the evaluation we can formulate certain hypotheses based on the insights we have about
the systems:
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1. Low answering times for confirmation questions about the Nao, because in this case Wikipedia searches
are skipped and only DBpedia is queried.

2. Lower answering times for factoid questions about the Nao than for general questions, because the
occurrence of the Nao token acts as a filter and reduces the amount of content to analyze.

3. For YodaQA, definition questions should have higher MRR and precision scores, because definitions
can often be found explicitly and at the beginning of Wikipedia articles.

4. Better scores than Google for questions about the Nao, because part of our sources have been tailored
specifically for this purpose.

5. Poor performance for YodaQA (English) for questions about the Nao, as this is a very specific topic for
which its sources have not been optimized.

11.7. Results
The scores given in table 11.1 are averages over the given number of questions, as specified in column two. A
precision score of 48%, for example, means that for 48% of the questions the correct answer was put in first
place.

Table 11.1: Averaged scores for YodaQA

Question type #questions Recall MRR Precision Answering time (seconds)
General, definition 50 78% 3.72 46% 17.33
General, factoid 40 70% 3.11 47.50% 18.43
Nao, factoid 22 100% 4.77 59.09% 9.74
Nao, confirmation 24 86.96% 1 86.96% 1.14

Table 11.2: Averaged scores for YodaQA (English)

Question type #questions Recall MRR Precision Answering time (seconds)
General, definition 50 16,00% 13.63 0% 9.07
General, factoid 40 62,50% 2.64 35,00% 8.82
Nao, factoid 22 0% N/A 0% 6.99
Nao, confirmation 24 N/A N/A N/A N/A

Table 11.3: Averaged scores for Google

Question type #questions Recall MRR Precision Answering time (seconds)
General, definition 50 100% 1.30 80% < 1
General, factoid 40 76,92% 1.32 56,41% < 1
Nao, factoid 17 25.29% 3.33 5.88% < 1
Nao, confirmation 24 87.50% 1.48 66.67% < 1

Note: performance for Nao, confirmation questions was not measured for YodaQA (English) because it does
not support this type of questions. Also, because recall was zero for Nao, factoid questions, MRR is undefined
for this category.
Note: answers from Google were evaluated leniently. For example, in response to the question whether the
Nao could dance, the top result (which we counted as an answer) was a video where a Nao could be seen and
the title included ‘dancing’. We did not specifically require explicit formulations of answers.

The first result to note is that, in contrast to hypothesis 3, the average MRR score for definition questions
is not higher than the one for factoid questions. This seems to be caused by a suboptimal ranking of the can-
didate answers, because the recall is significantly higher for definition questions. Answers are found more
often than for factoid questions, but not always ranked very highly.

We can get a better idea of the distribution of MRR and answering time scores by plotting them in histograms.
Figures 11.2 and 11.3 show these histograms for MRR and answering time, respectively.

In figure 11.2 we can see that, for each question type, in the majority of cases the correct answer is ranked
at or close to the top. Figure 11.3 shows that, for ‘general’ questions, the system typically takes between 5-
25 seconds. Questions about the Nao are answered faster, taking around 10 seconds. This is in line with
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hypothesis 2 made above. Finally, confirmation questions are very fast, not taking more than a few seconds.
This also is in agreement with hypothesis 1.

Figure 11.4 visualizes the results presented in the tables above, by showing comparisons between the three
tested systems for all question categories. A separate plot is used for each performance measure. Higher bars
are better for recall and precision and lower bars are better for MRR and answering time.

(a) (b)

(c)

Figure 11.2: Histograms for YodaQA MRR scores

11.8. Conclusion
In this chapter we presented the results of the quantitative evaluation of our QA system. We created a collec-
tion of test questions and used it to evaluate the performance of three systems across various measures.

Returning to our first research question about the performance of the system, we can conclude that in
the majority of cases (at least 69% on average) YodaQA could find the correct answer and, on average, rank
it in the top 4 of its returned answers. As expected, recognizing it as the correct answer represented a bigger
challenge and it could manage this in slightly less than half the time.

But perhaps its most important shortcoming, especially when compared to the tested alternatives, was its
running time. For general questions the average response time was close to 20 seconds; for questions about
the Nao this dropped to almost half of that, but was still 10 seconds.

Our second question was about particular topics or question types that stand out in the results. The Nao,
confirmation stands out positively in this regard with high scores for all metrics. To an important extent this
is caused by this being a quite restricted category, as it included only questions about the Nao and then only
about capabilities of the Nao. Data required to answer it was placed only in DBpedia as well, allowing us to
skip Wikipedia searches for these questions and achieve a speedup in this way.

On the other hand, the General, definition category stands out negatively. Not because the scores are par-
ticularly bad in themselves, but because we would expect them to be higher given that they are easier than
factoid questions. After all, definitions are often present explicitly in Wikipedia articles and are often even the
first sentence of the article. The recall score is decent but suboptimal ranking of the retrieved answer occurs
in a high proportion (32%) of cases.

Comparing our system with the two tested alternatives to answer our final question, we see that it performed
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Figure 11.3: Histograms for YodaQA answering times

(a) (b)

(c) (d)

Figure 11.4: Comparison of all systems across all metrics
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better than both for questions about the Nao. This is because the sources have been customized for this
purpose and is among the main advantages of our system: the sources can be adapted as desired to accom-
modate new information.

The performance of YodaQA (English) was close to YodaQA regarding general, factoid questions. As is to be
expected, neither system can compete with Google regarding to response time due to the large computational
and storage resources available to it.



12
Field study

All chapters from chapter 3 onwards have focused on the technical aspects of the project, where we have
looked at the underlying technology and implementation. The last chapter presented the results of the quan-
titative evaluation, carried out internally. With all of this behind us, it is time to return to the original purpose
of the project and the more ‘human’ side of it all: using the QA system in front of an audience of children,
deployed on the Nao robot. This chapter discusses the field study that was carried out to evaluate the system
in such a setting. It reports on the work carried out to answer our sixth and final research question:
RQ 6: What type of experimental setting and which measurements allow us to evaluate the effect on the audi-
ence of having the RoboTutor hold a Q&A session after a presentation?

Our focus during this evaluation was on the way children approach such a system, what they focus on when
using it, and on the effect the robot has on them when it is interacting with them and answering their ques-
tions. For this purpose, we planned an evaluation at a day care center and allowed children to have Q&A
sessions with the Nao. The next sections describe the experiment and its results in detail.

12.1. Research questions
This evaluation serves to answer our final research question about evaluating the effect of the QA system on
users and its performance in a live session with users.

1. Which question types do users prefer?
Same considerations apply as discussed in previous chapter about the contents of the test collection.
On the one hand the choice of questions will be constrained by the system’s capabilities. As only ques-
tions about the topics it supports will have any chance of success, the choice will be restricted to the
topics and questions the QA system can handle.

Still, the system supports more than one topic and question type and so there is a choice. Users
can choose between the four question types introduced in the previous chapter: general-definition,
general-factoid, nao-factoid and nao-confirmation.
Measurement: logging the questions asked for each category and determining the frequency for each
category.

2. How are the QA system’s response times perceived?
Do the intermediate progress updates given by the robot serve to fill up this time and influence this
perception? Does it matter if the system is noticeably slow or fast?
Measurement: asking about users’ perception in a survey.

3. Are the QA system’s responses understood?
This is related to the age of the participants, which is in the range of 8-13 years. The system can return
perfect answers, but they might be understandable only to users with more knowledge about comput-
ers.
Measurement: asking about users’ perception in a survey.

4. Do users feel that the QA system found fitting answers?
Note that this is different from the question of whether the QA system actually finds fitting answers,
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which was part of the focus of the previous chapter. This question is about the users’ perception of the
system’s accuracy. This might be influenced by factors such as the robot’s way of presenting informa-
tion.
Measurement: asking about users’ perception in a survey.

5. What is the effect on users if the QA system cannot find an answer or gives a wrong answer?
Do users lose interest? Do they care, or do they continue as if nothing happened?
Measurement: observation of users and taking notes by the research leader (the author of this thesis).

6. What effect do details like users’ age/gender/tech exposure have on their perception of the system and the
questions they ask?
Are there any significant differences between measurements related to the previous questions that cor-
relate with differences in user attributes like age and gender?
Measurement: correlating survey answers and observations with the acquired demographic data.

12.2. Measurements
Different techniques were used to collect the data needed to answer our research questions. The three meth-
ods we used were the following:

• Logs: Logging functionality was added to the interaction manager to record the questions asked, the
answers given and the response times.

• Survey: A survey, included in appendix G, was given to participants after finishing their Q&A sessions
with the robot. The intention behind it is to determine users’ perception of the system and its perfor-
mance; it includes questions related to the system’s speed, clarity and accuracy.

• Observation: The research leader was present during the individual Q&A sessions to record data not
captured by other tools, using observation and written notes. This includes body language and any
comments users might have during the session, but also any input by the participants before and after
the Q&A sessions.

12.3. Preparations
Administrative
The experimental setup was first submitted for review to the TU Delft Human Research Ethics Committee.
The application was approved and the study could go ahead. We next contacted three day care centers to in-
troduce the project and ask whether they would be interested to participate in an evaluation. The evaluation
was planned at the first center that replied.

About two weeks prior to the evaluation, the concrete setup to be used was discussed in person at the
location with the manager of the center. We handed the center the informed consent forms to be sent to
the parents of the children wanting to participate. The manager also requested that the session not be pho-
tographed or filmed because of privacy requirements.

Experimental
A sample list of questions was created, intended to be given to the participants before the individual Q&A
sessions. Children could select from these questions and come up with their own if they wanted.

We knew from previous studies involving presentations given at schools that this audience is especially
interested in the robot itself and tends to ask questions about its attributes and capabilities; this is why such
questions are well represented in the sample list of questions to be presented to the participants in the study.

We also created a survey to be handed out to the children after finishing their Q&A session with the robot.
We paid attention to set up these up in such a way as to stimulate children to think and make distinguished
choices, rather than, for example, choose ’agree completely’ all the time. Answers to multiple-choice ques-
tions were shuffled and they were textual rather than on a linear scale.

The setup for Q&A sessions we settled on was individual rather than in groups. This was so as to focus
solely on the effect on the user and his/her approach to it. In this way we could avoid any potential group
effects, disorder or different behavior due to being seen and heard by peers.

Technical
Next, the interaction manager described in chapter 8 was implemented. It was extended with logging func-
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tionality, and given the capability to introduce itself to each user by asking for his/her name. A graphical user
interface was added to it to make it more user-friendly.

12.4. The experiment
Introduction
Nine children were present at the start and would be participating in the whole study. The research leader
kicked off the session by explain the contents of the session. The audience was once again informed that
participation is voluntary and that everyone could withdraw at any point, without having to provide a reason
and without any further consequences.

Nao demonstration
The Nao started with a brief speech, introducing itself and the session. It continued with a short dance; this is
what it is best known for and is always a hit with children. The robot then concluded by explaining the setup
for the Q&A session itself: that it would be inviting the participants one by one and that they could then ask
their chosen questions.

Preparation for Q&A sessions
After the Nao’s demonstration, a list of sample questions was distributed to give the audience an idea about
which question types and topics the system can handle. The questions were drawn from the same four cate-
gories introduced in chapter 11: definition and factoid questions about general topics, and factoid and con-
firmation questions about the Nao.

The children were instructed to select a maximum of ten questions from this list, which they would then
ask the Nao. They were also told that, if they wanted, they could come up with their own questions as well.

During this time the Nao was set up in a separate room for the Q&A session. It was connected to the
laptop on which the QA system was running. This was the same laptop as the one used for the quantitative
evaluation.

Q&A session
The participants were invited one by one to the separate room. Beside the child and the robot, there was also
an employee from the center present for guidance and the research leader for technical assistance.

The Nao first asked for the child’s name, which was used to greet the child and occasionally include it
in some of the upcoming verbal progress updates. After that a loop was entered in which the participant
submitted questions to the QA system by typing them in, and the system then returned with an answer, which
was output both verbally and on the laptop screen.

After a participant was finished with the questions it was given the survey. After filling in this survey, the
participant was finished with his/her part of the evaluation.

12.5. Results
12.5.1. Logs
In total, the participants asked the Nao 70 questions of which 5 were invalid due to typos. Of the remaining
65, 24 were questions that had already been asked by an earlier participant. 32 of the 41 valid and unique
questions were answered correctly, giving a precision score of 78.05%.

The category from which questions were chosen most often was general-definition (as introduced in
chapter 11): 25 of the 70 questions were of this type. This was followed by general-factoid, nao-factoid and
nao-confirmation, respectively.

The lengths of the individual Q&A session were almost all in the range of 4.5-6.5 minutes, with one outlier
of 8 minutes. Answering times ranged between 1-39 seconds. Confirmation questions were all answered in
less than 2 seconds, just as in the quantitative evaluation. The average response time was 11.34 seconds.

Figure 12.1 shows these results graphically: a) shows the distribution of session lengths, in b) we see how
many questions from each category were asked and c is a histogram of answering times.

12.5.2. Survey results
The survey we used is included in appendix G. We collected seven valid filled in surveys. The possible an-
swers to the multiple-choice questions in the survey did actually follow a linear scale, even though this was
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(a) (b)

(c)

Figure 12.1: a) Q&A session lengths, b) questions asked per category and c) distribution of answering
times

deliberately obscured. In the discussion below, ‘1’ means ‘disagree completely’ (for example, ‘No, the Nao
was not fast at all’) and ‘4’ means ‘agree completely’ (for example, ‘Yes, the Nao was very fast’).

Answering speed received an average score of 2.00. It was perceived as decent most of the time. One par-
ticipant chose confirmation questions for more than half of his questions, and this was the only participant
that gave a 1 to the Nao’s speed. Confirmation questions were all answered in a few seconds and this factor is
likely to have motivated this assessment.

Also interesting to note is that the participant whose questions took the longest, accurately assessed the
robot’s speed with a 3. This was the only 3 received for speed.
Answer clarity received an average score of 1.67. Clarity was ranked highly most often and this was the ques-
tion which received the highest number of 1’s. Only once was a 3 given and three times a 1.
Answer quality was ranked least favorably and received an average score of 2.33. It received the highest num-
ber of 3’s out of all three criteria. The times the robot gave a clearly wrong answer or failed to find an answer
clearly did not go unnoticed.There was one outlier worth mentioning, however: 6 of the 7 questions of one
participant were answered correctly, but this didn’t prevent answer quality from being given a 3.

The Nao did not receive a 4 on any criterion by any participant. Perceptions of answer quality and correctness
seemed to vary the most. On the one hand, some participants did assess the system accurately and gave it a
high score if it managed to return proper responses often. On the other hand, some participants agreed with
the statement that ’the Nao had trouble with quite a number of questions’, even if it had managed to answer
the majority of their questions.

Two participants had had previous exposure to technology: they had created games before. Neither of them
asked a single question about a capability of the Nao. However, it is noteworthy that the only participant who
remembered an answer given by the robot during the Q&A session, was one of these two participants with
previous technology experience.
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To summarize: the participants thought that the Nao’s answers were understandable most of the time. They
were a bit more critical about its speed, especially those children who had not asked any confirmation ques-
tions. The correctness and relevance of the answers was assessed worse than the other two criteria.

12.5.3. Observations
What was noticeable during the study was that the answers and their correctness was not cared about very
much. The participants mainly wanted to continue with the next questions and keep the interaction with the
Nao going. Even if some of the answers given by the robot were clearly wrong, this was not perceived as an
issue. This is further supported by the fact that, after the sessions, almost no one could remember an answer
by the robot anymore.

Long answering times were noticed, especially when the (randomly selected) progress updates happened
to be repeated successively. We can mark this as a suggestion for improvement: only choose those progress
updates which haven’t been used yet.

The audience had a definite interest in the capabilities of the Nao. This was clear already at the very be-
ginning of the whole session, even before the introduction by the Nao, from the questions directed at the
research leader. Given this, it is remarkable that this was the question category used the least for the in-
dividual Q&A sessions. Definition and factoid questions related to computers and robots were asked more
frequently than questions about the capabilities, or even attributes, of the Nao.

12.5.4. Correlation with demographic data
If we look for correlations between the results and the demographic data about participants, we see that the
results are quite balanced. There were three female and six male participants, all in the age range of 7-10
years. Both female and male participants asked questions from all categories. Exactly one female and one
participant gave the Nao more than one 1’s. The only result that could be noteworthy is that none of the girls
gave the Nao a 3 on any criterion, in contrast to three boys that did give at least one 3.

12.6. Conclusion
In this chapter we reported on the field study of the QA system, running on the Nao robot, that we carried out
in a day care center together with nine elementary school age Dutch-speaking children. The study consisted
of an introduction given by the Nao, after which the participants could ask it questions they had selected in
individual sessions with the robot.

For the children, the Q&A session were more about the interaction with the robot than about the informa-
tion it was providing. Although they felt they could follow the Nao and perceived it as relatively fast, they did
think (correctly) that it had trouble with certain questions. This did not detract from the overall experience,
but long answering times and the occasional repetitive output were seen as minor stumbling blocks.

Regarding users’ preference for question categories, we see that questions about general topics were more
frequent than questions about the Nao. The participants were interested in all topics the Nao knew about.
Besides the consistent interest of the target audience in the capabilities of the Nao, they also showed interest
in general topics like robots, computers and technology in general by asking many questions from these
categories.

Response times were decent on average and some, especially in case of confirmation questions, were
quite fast. Its speed is one of the most obvious aspects of the Nao’s performance and very easy to assess and
notice.

Answer clarity was rated highest and answer quality the lowest. On occasion, clearly wrong answers were
given and these of course did not go unnoticed. Still, the users were quite forgiving and mistakes did not
detract much and users still wanted to interact with the robot.

Correlation with demographic data did not reveal any special results. In any case, the users were quite
similar to each other in terms of age and previous technology exposure.
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13
Discussion

13.1. Quantitative evaluation
The answering time of our QA system was the highest of all tested systems. The main bottleneck responsible
for this is the wait for responses to the requests sent to Alpino. There is a possibility for improving this in the
future: a planned Alpino enhancement involves adding the possibility to submit all inputs at once instead of
one by one.

Even without this improvement, the QA system and all required tools would benefit from being deployed
on a cloud computing service. It would need one with at least 8, preferably more, gigabytes of RAM. However,
only ‘micro’ instances with about 1-2GB of memory are free of charge; these are of course far below even the
minimum, let alone recommended, requirements for our QA system.

The results show a definite improvement over YodaQA (English) for the topics and question types we tested
our system with, especially in the area of answering definition questions using Wikipedia. This can be seen
primarily in the scores for general, definition questions.

In a sense, this is closely linked to the above point of long answering times. We use Alpino and NLP
techniques to match candidate answers from Wikipedia, and we pay for this in the form of longer answering
times.

YodaQA (English) does come close for general, factoid questions. This is because structured data sources
are a better fit for factoid questions than for definition questions, and the English DBpedia is much more
comprehensive than the Dutch version. YodaQA (English) is therefore able to make good use of the English
DBpedia for answering questions of this type.

There is a 25-35% difference between recall and precision scores. This means that in 25-35% of cases the
system finds the correct answer but fails to give it a top ranking. It is not that big of an issue as the average
MRR score is around 3-4, so correct answers are still ranked fairly highly.

A possible way forward in this area is improving the matching and scoring algorithms. Another is to in-
vestigate training and applying a model-based classifier, like the decision forest used in the English version.

In histograms we see that MRR scores are heavily concentrated on the lower end. Answering times, on the
other hand, show quite some variance, especially for general questions. There is an inverse relationship
present here: if the question is a simpler one about which a lot can be found, the system will take longer
because of this abundance.

The same pattern is not visible for questions about the Nao. When asking questions of this type it is
mostly the same resources that will be retrieved: the ones about the Nao. Since it is the information retrieval
and analysis phases that dominate running time, most questions about the Nao have similar answering times.

It is clear that our system cannot compete with Google when it comes to speed. On the other hand, a crucial
feature of our system is that it returns exact answers instead of relevant passages within documents. This
admittedly is not that difficult an addition to make, but it still counts as an extra feature of our system. After
all, there are a number of relatively easy additions/improvements our system could make use of as well.
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The main advantage of the system we have built and evaluated is that it is a Dutch QA system with customiz-
able data sources. While data used by web search engines is out of our control, we can customize the sources
for our QA system as required. Additionally, the way is clear for extending it with more capabilities: adding
support for list questions, answering confirmation questions for questions other than about Nao capabilities,
using machine learning classifiers detecting question types and scoring candidate answers and much more.

13.2. Field study
The number of questions asked was highest for the category general-definition. This category was followed
by general-factoid, nao-factoid and nao-confirmation, respectively. There might be some influence because
of the way the questions were ordered on the sheet given to the participants, which matched this ordering
exactly. Then again, there was sufficient variation between individual participants: a number of participants
did ask more confirmation questions than other types of questions, for example.

What is interesting to note is that the only participant who both remembered an answer and had previous
non-trivial technology exposure (creating a game), was also the participant who had the longest session and
asked the most questions. It is logical to assume a relation between tech exposure and an interest in and de-
sire to interact with a robot, but the number of participants is still too low for this observation to be significant
statistically.

Answering speed was important to the users and significant differences in speed were in fact noticed. Whereas
on criteria like clarity and quality participants at times tended to give ‘wrong’ assessments, their assessments
of answering speed consistently matched the system’s actual performance. Very fast sessions were given high
scores and slower sessions were evaluated accordingly.

An explanation is that it is the easiest metric of the three to evaluate: it could be that you don’t know
whether the answer is correct or not, that you don’t know whether it could be formulated better, but you will
know whether it took a short or long time.

The interaction with the robot had a higher priority for the users than focusing on the answers it provided
and trying to assess its quality. Most of the time, participants wanted to move on without pause to the next
question, regardless of whether it was a fitting answers or clearly incorrect. This means that it is important
to be aware of this ‘wow-effect’ of the Nao, and see to it that it does not obscure the (lack of) quality of its
answers and detract from its learning function and educational purpose.



14
Conclusion

The aim of this project was to extend the interactive capabilities of the RoboTutor Nao by enabling it to answer
natural language questions in Dutch. To this end, we investigated various QA systems and settled on an open-
source QA system for English: YodaQA.

Our first three research questions were about adapting the question answering pipeline of the chosen
system to work with Dutch content, and the data sources and natural language processing tools required for
this. To this purpose, we first adapted its natural language processing framework by integrating Dutch NLP
modules in place of the English ones, like the Alpino dependency parser and Apache OpenNLP components
for Dutch. We next configured sources for it: Wikipedia as the unstructured source and DBpedia as the struc-
tured source.

Additionally, we gave the system extra flexibility by using the Open Dutch WordNet to determine word
pair similarities. We also implemented mechanisms for matching answers from unstructured sources using
two approaches: by looking for passages semantically fitting in with the question, and by looking for gram-
matical structures relevant for the inferred question type.

With the implementation finished, we turned towards the two evaluations we wanted to carry out to assess its
performance: an internal, quantitative evaluation and a field study. Our fifth research question focused on
the quantitative evaluation and on how to assess the performance of the QA system. We created a set of test
questions, selected a number of performance measures, and used these to evaluate the performance of both
our system and two others for comparison. The measures were selected to provide insights into whether the
system was able to find answers, rank them highly, recognize them as the best answer and do this quickly.

For the questions we evaluated with, correct answers were found in at least two-thirds of the cases, they
were ranked in the top five of returned answers, and they were ranked first in about half of the cases. Answer-
ing time was the area with the most room for improvement: this was about 18 seconds on average for general
questions and 10 for questions about the Nao.

Our fourth and sixth research questions focused on the field study and the interaction manager needed
to structure the interaction with users. We integrated the QA system to run via the Nao. An interaction man-
ager was implemented that interacted with users according to a turn-based protocol and used prompts and
updates for a smoother interactive session.

Next, we contacted and planned an evaluation at a day care center, where nine elementary school age
children would be participating. We then took the Nao to the center and gave the participants the opportunity
to ask the Nao questions in individual Q&A sessions.

About 60% of the questions the children asked were answered correctly. They were interested in all ques-
tion categories the Nao supported and all four categories were well represented in the questions they chose
to ask.

One of the main deliverables of this project is a public, open-source, Dutch QA system capable of using both
unstructured and structured sources for answering natural language questions about various topics, includ-
ing robots, computers and the Nao robot.
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The second deliverable is a framework for running the QA system via the Nao using an interaction man-
ager. This is a tool that runs separately from the system and serves as a wrapper around it, handling the
interaction with users. It uses prompts to ask users for questions, confirms their input, fills the waiting time
with various updates and returns with the output of the QA system.

Finally, we have also reported on our experimental study into the effects of having the Nao robot hold
individual Q&A sessions with elementary school age children. Just like in the quantitative evaluation, slow
answering times did represent a bit of a hindrance. Still, this study showed that this audience is eager about
interacting with the Nao and interested in its attributes and capabilities, as also reflected in the questions
they selected for their Q&A sessions. Just as in the quantitative evaluation, however, slow answering times
did detract somewhat from the overall experience of the participants. Many questions were answered quickly,
but the slow ones did indeed stick out and influence the assessments of the users after the sessions.

Nevertheless, interaction was smooth, users were interested in many topics the system supported and
they continued interacting with it despite the occasional mishap. Overall, the results indicate that, with some
speedup, the delivered QA system would be a suitable choice for answering questions about the mentioned
topics.

14.1. Future work
There is a lot of room for further enhancements to the systems developed as part of this project. Below we
present some ideas that can improve the performance of the QA system, make the interaction manager better
or allow us to gain a better understanding of their effects on users:

• Extending support for confirmation questions to topics other than the Nao and its capabilities.

• Investigating upcoming versions of the Alpino server, which promise a potential performance improve-
ment by allowing bulk submission of all input.

• Investigating machine learning classifiers for answer scoring to see how they compare to the currently
used rule-based scorer and whether they bring an advantage.

• Extending the Dutch word net with custom entries to stimulate higher scoring of word pairs we know
are closely related but which currently receive low scores. This problem currently causes correct an-
swers to be ranked too low, especially in the case of DBpedia properties.

• More powerful and flexible answer matching algorithms. One idea is to also match sentences if the
question subject does not occur explicitly but implicitly in it - for example, the whole paragraph or
article might be about the subject.

• Adding a command processing functionality to the interaction manager. This is to be able to give a
‘demo’ where applicable in response to questions like “Can you do this?" to the Nao, instead of just
responding “Yes" and then doing nothing.

• Enhancing the interaction manager by having it give more relevant progress updates that actually have
a bearing on the progress so far, instead of providing generic update messages.

• Carrying out a field study in a group setting in addition to the individual evaluations we carried out.
In this project we first wanted to focus on the effects of the system on users without any interferences
from others. Now that this is done it would be useful to evaluate it with multiple users simultaneously,
especially because this is the way the system would be used in a role of classroom assistant.



A
Product specification

A.1. Purpose
The aim of the delivered system is to provide a supporting role in education by assisting teachers in present-
ing course contents and other relevant material. The system also enables interaction with audiences after
presentations, where they can ask questions about the discussed material.

A.2. Audience
The primary audience of the system consists of Dutch-speaking children of elementary school age. The size
of the target audience is around 20 and consists of children in the age range of 8-12. One or more teachers
will also be present when using the system.

A.3. Scope
System description: A natural language question answering system embodied in the Nao robot.
Existing systems: The Nao robot has a number of modules, among which are modules for presentation, text-
to-speech and movement. It can currently carry out presentations autonomously by following a predefined
script.
Deliverables: The QA system is the main deliverable, running separately but communicating with the Nao
platform.

The second important deliverable is the interaction manager: a ‘wrapper’ around the QA system that
structures the interaction with it. A very simple example could be a script that requests a question, passes it
to the QA system, returns its answer to the user and request a new one.

A.4. Requirements
A.4.1. Interface

1. Input

Language The language of the questions should be Dutch; questions in other languages will not
be supported.

Format While asking questions to the Nao using speech is a desired feature, it is not yet imple-
mented and outside the scope of this project. Questions will therefore be entered into the system tex-
tually.

Types The types of questions supported by the system are definition, factoid and confirmation
(yes/no) questions. The latter are supported only if they are specifically about capabilities of the Nao
robot.

2. Output

Language The system will return answers retrieved from Dutch sources; these will therefore be
mostly Dutch. However, any terms and passages in other languages within these sources can still be
part of an answer, if they are assessed as relevant by the QA system.
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Format Answers should be given to users using speech. The existing text-to-speech module of the
Nao can be used for this purpose, as Dutch is one of its supported languages.

A.4.2. Sources
1. Language

The QA system will be making use of knowledge sources containing data in Dutch. Sources in other
languages will not be consulted.

2. Types

Natural language Sources of this type are important as they enable as to include free form data
that can be collected from various sources (Wikipedia, news sites, research papers, etc.).

Structured Sources of this type are useful for data that can be modeled more easily in a structured
form.

3. Domain
Data contained within the sources should be about the Nao, robotics and other, closely related topics
like computers, software, hardware and technology.

4. Availability
Since timeliness is important the sources should be available for offline access. In this way, the system
will avoid delays incurred by navigating the web for every question.

5. Update mechanisms
Mechanisms should be in place that enable CRUD (create, read, update and delete) operations on the
sources. This is especially important because the sources are stored offline, and are therefore not by
default up-to-date with the latest available data.

A.4.3. Technical
1. Performance

The system will be operating in real time in front of an audience. Relatively short response times are
therefore crucial for a smooth user experience. If necessary a certain degree of completeness and accu-
racy can be sacrificed, if in return we can make the system significantly faster while maintaining decent
answer quality.

In concrete terms, the aim should be to return with a response in less than 30 seconds.

2. Robustness
Exceptions and crashes must be anticipated in advance: mechanisms should be in place that handle
such situations gracefully and without alerting users to them.

A.4.4. Hardware
1. Connectivity

Because of resource constraints the QA system will not be running on the Nao itself. The robot there-
fore needs to be connected to the system for submitting questions to and retrieving answers from the
system, which will be running on a different machine.

2. Screen
The Nao is connected to a screen on which it can display its answers.
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External resources

• YodaQA repository (https://github.com/brmson/yodaqa)
The original, English version of YodaQA.

• Dutch YodaQA repository in RoboTutor space (https://github.com/RoboTutor/yodaqa)
The Dutch version of YodaQA created as part of this project.

• Wiki with information and installation instructions (https://github.com/RoboTutor/yodaqa/wiki)
Contains information about installing and configuring all components required to run the Dutch Yo-
daQA.

• Interaction manager (https://github.com/S-Ercan/InteractionManager)
The interaction manager developed for the QA system, as described in chapter 8.

• Nao demo (https://github.com/S-Ercan/NaoDemo) The Nao demo project used during the field
study.
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C
Project timeline

This appendix gives an overview of the main tasks carried out during each month of the project. The men-
tioned tasks were not the only tasks in the given month, as there were also meetings and the writing of parts
of this report. Many tasks also extended into the next month, or had to be picked up again at a later point in
the project.

2016 •
February • Start of RoboTutor team meetings

March • Project plan, project proposal
April • Literature review

• Investigation of available technologies
May • Deciding on YodaQA; installing, configuring and testing
June • Setting up Dutch Wikipedia data
July • Integrating TreeTagger

• Refactoring QA logic for Dutch
August • Setting up Dutch DBpedia data

September • Integrating Open Dutch Wordnet
• Colloquium presentation

October • Integrating the Alpino parser (question analysis)
November • Integrating the Alpino parser (answer analysis)
December • Implementing dependency extraction from parse trees

2017 •
January • Further review of relevant literature and previous studies

February • Implementing answer matching for unstructured sources
March • Adding support for confirmation questions

April • Adapting answer scoring and response generation
May • Quantitative evaluation of QA system

• Integrating QA system as Nao module
June • Implementing interaction manager

• Field study
July • Analysis of results, discussion and conclusion

August • Processing feedback and finalizing report
• Thesis defense
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Contributions

D.1. Contributions
D.1.1. An open-source Dutch QA system
The main contribution of this project is the creation of a public, open-source Dutch QA system. As noted in
chapter 2 there have been some earlier initiatives in this area, but they have all been decommissioned and
are not available anymore. No publicly available open-source natural language question answering system
for Dutch could be found while investigating the available options; the work done during this project can
therefore be seen as filling this gap.

Concretely, the following was achieved in the process of porting YodaQA to Dutch:

• Natural language processing

– Integrating the Alpino dependency parser as an NLP tool for generating dependency, lexical cate-
gory and part-of-speech annotations

– Adding support for detecting and processing confirmation questions

• Question-answer matching

– Two parallel approaches for matching questions with candidate answers from unstructured sources,
making use of the expected answer type requirement

• Open Dutch WordNet

– Estimating token similarity while matching tokens from both unstructured and structured sources

• Sources

– Integrating Dutch Wikipedia as an unstructured data source
– Integrating Dutch DBpedia as a structured data sources

D.1.2. Evaluation
The field study featured a unique experimental setting involving hosting a QA session about robotics by the
Nao robot, with elementary school age children in a day care center interacting with the robot.
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Tasks

E.1. Sources
Wikipedia

• Set up Apache Solr server

• Import Dutch Wikipedia dump into Solr server

• Filter out articles not related to QA system domains

• Extend with article about Nao

DBpedia

• Set up Apache Jena database

• Import Dutch DBpedia dump into Jena database

• Set up Apache Fuseki server hosting the Jena database

• Add resource about Nao, fill in with attributes and capabilities

Other

• Set up local DBpedia label lookup service

• Extend with Nao label

• Set up Open Dutch WordNet

E.1.1. Natural language processing
TreeTagger

• Integrate TreeTagger into question analysis phase

• Refactor question analysis logic to work with TreeTagger

Alpino

• Create UIMA type systems for Alpino POS, category and dependency annotations

• Configure Alpino to run as server

• Create client within QA system to communicate with Alpino server

• Integrate Alpino into question analysis and answer analysis stages, making them work with Alpino out-
put

• Integrate Saxon library for extracting dependency relations from Alpino parse trees
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E.1.2. QA logic
• Refactor answer matching logic for data from unstructured sources

• Implement two parallel approaches

– Start with question predicate and follow it in the answer
– Start with grammatical structure implied by expected answer type and assess its relevancy

• Add support for confirmation questions about Nao capabilities

– Detect confirmation questions using Alpino annotation
– Extend pipeline to handle confirmation questions

• Adapt answer scoring algorithm



F
Test questions

Table F.1: General, definition and general, factoid questions

Definition
Wat is een computer? Wie is de ontwikkelaar van PHP?
Wat is een robot? Wie is de oprichter van Microsoft?
Wat is programmeren? Wie is de ontwikkelaar van Windows?
Wat is een database? Wat is de geboortedatum van Bill Gates?
Wat is een besturingssysteem? Wat is de geboortedatum van Steve Jobs?
Wat is een harde schijf? Waar is Microsoft gevestigd?
Wat is werkgeheugen? Waar is Apple gevestigd?
Wat is een sensor? Hoeveel gebruikers heeft Facebook?
Wat is een personal computer? Wie is de eigenaar van Facebook?
Wat is software? Wie bouwde de eerste computer?
Wat is hardware? Hoeveel werknemers heeft IBM?
Wat is een printer? Wie is de eigenaar van Google?
Wat is een scanner? Wanneer is Google opgericht?
Wat is PHP? Wat is de rekencapaciteit van de K Computer?
Wat is RAM? Wanneer werden de eerste supercomputers gebouwd?
Wat is ROM? Wie is de bekendste bouwer van mainframes?
Wat is een CD-rom? Hoe heet een regel van een assemblyprogramma?
Wat is een CPU? Wat is het voordeel van programmeren in assembly?
Wat is een processor? Wie is de ontwikkelaar van Java?
Wat betekent LCD? Wanneer werd de eerste versie van JavaScript ontwikkeld?
Wat is een actuator? Hoe heette de eerste browser?
Wat is een bit? Wat was het eerste spreadsheetprogramma?
Wat is een byte? Wanneer kwam versie 1.0 van Word uit?
Wat is een programmeertaal? Wanneer werd Windows 2.0 gelanceerd?
Wat betekent SQL? Wanneer werd Windows Phone 8 gelanceerd?
Wat is een computervirus? Hoe worden smartphones vaak bediend?
Wat betekent USB? Hoe groot is de virtuele adresruimte van een moderne microprocessor?
Wat is een modem? Wat is het type kernel van Linux?
Wat is een router? Wat is de website van IBM?
Wat betekent LAN? Hoeveel werknemers heeft Twitter?
Wat is een diskette? Wat is de slogan van Twitter?
Wat betekent hacken? Wat is de status van Hyves?
Wat is een tekstverwerker? Wie is de ontwikelaar van Internet Explorer?
Wat is de informatica? Wat is de website van Microsoft Edge?
Wat betekent WAN? Wat is de typesystem van PHP?
Wat is een grafische kaart?
Wat betekent kunstmatige intelligentie?
Wat is een neuraal netwerk?
Wat is een mainframe?
Wat is de Turingtest?
Wat is een chatbot?
Wat is een expertsysteem?
Wat is een zoekalgoritme?
Wat betekent broncode?
Wat is een debugger?
Wat is software engineering?
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Table F.2: Nao, factoid and Nao, confirmation questions

Factoid Confirmation
Wat is het gewicht van de Nao? Kan je op je handen staan?
Hoe zwaar is de robot? Kan je schelden?
Hoeveel kost de robot? Kan je presenteren?
Wat is de prijs van de Nao? Kan je dansen?
Wie heeft de Nao ontwikkeld? Kan je zingen?
Wie is de ontwikkelaar van de Nao? Kan je spreken?
Waar ben je van gemaakt?
Wat is de gebruiksduur van de Nao?
Hoe heet jij?
Hoeveel weeg je?
Wat is jouw naam?
Hoe oud ben jij?
Wat is de CPU van de Nao?
Welk besturingssysteem gebruikt de Nao?
Hoe lang ben je?
Wat is de lengte van de Nao?
Hoe hoog is de Nao?
Wat is de hoogte van de Nao?
Waar woont de Nao?
Wat is de woonplaats van de Nao?
Van welk materiaal ben je gemaakt?
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Survey
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