
SmartRoads 2.0

Final Report

J.L. Buijnsters
D. Hofman
J.G.P. Klein Kranenbarg
C. El Moussaoui
K. Zheng





SmartRoads 2.0
Final Report

by

J.L. Buijnsters
D. Hofman

J.G.P. Klein Kranenbarg
C. el Moussaoui

K. Zheng

Project duration: April 20, 2020 – July 1, 2020
Supervisors: Ir. K. F. Chan Client

Dr.ir. B.H.M. Gerritsen Coach
Dr.ir. H. Wang, TU Delft, BEP Coordinator
Ir. O.W. Visser, TU Delft, BEP Coordinator



Preface
This report is meant to conclude ”TI3806: Bachelorproject” and was carried out by Jan Buijnsters, Daan
Hofman, Jasper Klein Kranenbarg, Chakir el Moussaoui and Kawin Zheng.

Over the last 11 weeks, we have researched and developed a new version for SmartRoads 1.0.
Although the work circumstances were different than usual because of the COVID-19 pandemic, were
we still able to deliver a high-quality product.

We would first like to express our gratitude to Ir. K.F. Chan for providing us with a project and the
proper guidance and support. Secondly, we would also like to thank Dr.ir. B.H.M. Gerritsen for the
continuous support and without whom we would never have been able to deliver the final product.

J.L. Buijnsters
D. Hofman

J.G.P. Klein Kranenbarg
C. El Moussaoui

K. Zheng
Delft, June 2020

ii



Summary
ScenWise is an innovative company that specializes in data science revolving around traffic manage-
ment. ScenWise strives to use the newest and best technologies and practices when it comes to web
applications, data science and traffic management. The reason for this is that they provide tools to anal-
yse and visualise a variety of situations that occur in traffic management. One such tool is SmartRoads
1.0, which allows users to analyse traffic data and situations via a web application.

Unfortunately SmartRoads 1.0 does not perform as desired. Additionally, ScenWise itself has the
problem of not being able to integrate previously made products by student groups into their own exist-
ing products. During the research aimed to resolve these problems another issue arose; the software
development life cycle of ScenWise is very lacking. Research on the SmartRoads 1.0 performance
problem showed that the bottleneck of its performance is due to the front-end.

The outdated SmartRoads 1.0 front-end was thus replaced with a new and better SmartRoads 2.0
front-end. The integration problem and development life cycle problem are both addressed in the Long-
term evolution (LTE) design found in appendix I. This LTE design contains the architecture migration
plan. This plan will transform the current software architecture to a Service-oriented architecture (SOA)
providing a solution for the current integration problems. A result of the first steps of this architecture
migration plan is the Application Programming Interface (API) Gateway, which has been implemented in
the aforementioned SmartRoads 2.0. Next to the migration plan, guidelines for ScenWise to improve
their software development life cycle are elaborated in the LTE design. In this report the identified
problems, their solutions and executions are explained, discussed and evaluated.

iii



Contents

1 Introduction 1

2 Problem Analysis 2
2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Limitations to overcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Research 5
3.1 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4.1 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4.2 database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4.3 Back end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4.4 Front end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5.1 Requirements revised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.6 Success Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Design 13
4.1 Long-term evolution design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Architecture migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Software Development Lifecycle Guidelines . . . . . . . . . . . . . . . . . . . . . 13
4.1.3 Communication protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.4 Adding a new Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 API Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Front end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.2 Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.3 support for mobile browsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4 Parser and Central Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Process 16
5.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1.1 Sprint meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.2 Daily scrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.3 Gitlab workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2 Internal communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.1 Meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.2 Role division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3 External communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3.1 Meetings client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3.2 Meetings coach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Code Quality and Testing 19
6.1 Code quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1.1 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1.2 Code size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1.3 Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1.4 Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1.5 OpenAPI documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1.6 Continuous Integration/Continuous Deployment . . . . . . . . . . . . . . . . . . . 20

iv



Contents v

6.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2.1 Unit tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2.2 Integration tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.3 System testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.3 SIG Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3.1 Initial feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3.2 Second feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Deliverables 26
7.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.1.1 Front-end design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.1.2 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.1.3 DRIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.1.4 Speed Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.1.5 MSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.6 Status messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.7 Measurement points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1.8 Replay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1.9 3D view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Long-term evolution design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 API Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.4 Parser and Central Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.5 Technical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.5.1 React . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.5.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.5.3 Replay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.5.4 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 Product evaluation 34
8.1 Implementation challenges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.1.1 Unique project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.1.2 Mapbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.1.3 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.1.4 API Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.2 Requirements assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2.1 Requirements to increase performance . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2.2 Requirements for new features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.2.3 Requirements for in-house development . . . . . . . . . . . . . . . . . . . . . . . 38
8.2.4 Requirements to increase configurability . . . . . . . . . . . . . . . . . . . . . . . 39

9 Project Evaluation 41
9.1 Workflow evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9.1.1 Inter group challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.2 Client satisfaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.3 Course of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.4 Evaluation of Ethical implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10 Conclusion 43
10.1 Success criteria assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

10.1.1 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
10.1.2 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
10.1.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
10.1.4 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

10.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



vi Contents

11 Recommendations 45
11.1 Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11.2 Long-term evolution design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11.3 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

11.3.1 Moving conversions from the front end to the backend. . . . . . . . . . . . . . . . 45
11.3.2 Separate data in the Analytics.SmartRoads backend . . . . . . . . . . . . . . . . 45
11.3.3 Support iPhones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

11.4 Extra features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11.4.1 New services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11.4.2 User accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11.4.3 Event-driven communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11.4.4 Server-sent events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11.4.5 Kubernetes, Docker Swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 46

Glossary 49

Acronyms 51

A Info Sheet 52

B ProjectForum Description 54

C Evaluation Success Criteria 56

D MoSCoW Requirements 59

E MoSCoW Evaluation 63

F Course of events 67

G Project Plan 68

H Research Report 83

I Long-term Evolution Design 131



1
Introduction

Scenwise B.V.1 is a company with experience in the data science and smart mobility domain. They
work together with partners to develop software for the domain of Traffic management (e.g. automatic
incident detection, response plans, etc.), and Data Science (e.g. traffic monitoring, data fusion, Big
Data, Machine Learning). Their customers include: Rijkswaterstaat, Nationale DatabankWegverkeers-
gegevens (NDW), provinces, large cities, IT system suppliers, event organisers such as Feyenoord,
and recently also the city of Edmonton in Canada.

SmartRoads 1.0 is one of the applications ScenWise has developed in recent years. However,
with the ever-changing technology, it has become relatively slow and outdated. To get the application
back on track with the newest and fastest technology, the idea of a new version, SmartRoads 2.0, was
created. As the team did research, which can be found in appendix H, the discovery was made that
there were also underlying problems within the development of ScenWise that had to be addressed as
well.

In chapter 2 a complete analysis of the specifics regarding these initially found problems are elab-
orated. Chapter 3 discusses the research done to define the exact problems to solve. The design for
solving these problems is laid out in chapter 4. The process of how the team worked on this project
is explained in chapter 5. Chapter 6 discusses the team’s definition of good code quality and testing,
followed by the implementation of the product in chapter 7. An evaluation of the requirements set in
appendix H and the end product is made in chapter 8, followed by an evaluation of the project in chap-
ter 9. Finally, an overall conclusion of this project and the team’s recommendations for the future of
ScenWise are addressed in chapter 10 and 11 respectively.

1https://www.scenwise.com/

1

https://www.scenwise.com/


2
Problem Analysis

To kick-off the project a problem analysis is needed on the initially found problems. This will make it
clear what the current limitations of ScenWise and SmartRoads 1.0 are. These limitations will provide
as indications where the underlying problems may come from, these will need thorough research.

2.1. Problem definition
The performance of SmartRoads 1.0 has been deteriorating. SmartRoads 2.0 was originally intended
as the new version of SmartRoads 1.0. This new version should resolve the currently existing perfor-
mance issues and add more functionalities to support a wider range of customers. ScenWise indicated
that the performance problems from the back end are causing an unusable replay and the disability to
display information about the whole Netherlands. In appendix B the original project description can be
found. Multiple similar web applications are currently being sold by Scenwise, with different features
and functionalities depending on the demands of the customer.

A more detailed insight into the company was achieved based on the initial meeting with the client
and subsequent meetings with both client and one of their developers. Their existing solutions share
the same base functionality, yet all of them have been built from scratch. A reason for this is the
multiple student software projects running with ScenWise. This is an inefficient approach to software
development and indicates a lack of modularity in their software. The lack of modularity is supported
by the fact that their code-base has little to no tests and is not properly documented. This causes
integration problems making integrating parts of the software products delivered by previous student
groups more costly than necessary. Making their code-base modular and thus easily reusable should
be beneficial for ScenWise.

Based on these findings, a proposal was made by the group. This proposed to design and set up
a modular architecture for the whole company in which existing functionalities will easily be reusable.
Such architecture would add significant long term value for ScenWise, compared to adding just another
non-integratable application to the arsenal of ScenWise. After discussing this proposal with ScenWise
they saw the value of finding solutions for these problems. However, delivering the new version of
SmartRoads 1.0, ready for production, would still be priority number one. Additionally, having this done
in a way which solves the more fundamental software problems was a close second priority. This
project is unique in the sense that the group analyzed the initial problems at ScenWise, and instead of
starting to implement features as specified by the client, performed extensive research and proposed
an approach that provided more value to ScenWise as a whole.

To get a better understanding of what fits within the scope of this project, a Strengths Weaknesses
Opportunities and Threats analysis (SWOT-analysis) of Scenwise was made (see table 2.1). Scen-
Wise has two functional back-ends with functionalities applicable to SmartRoads 2.0. They have a
clear view of what features need to be implemented in the near future and lots of possible features
for the future. However, there is room for improvement in the workflow at Scenwise. During the initial
product review, the team found that SmartRoads 1.0 has some unintuitive elements in the front end
design. Their current solution has a large technical debt, caused mostly by the lack of tests, the lack of
documentation and the lack of a modular structure. This makes their applications difficult to maintain.

2



2.1. Problem definition 3

And the earlier mentioned performance issues result in an unusable replay and displaying of informa-
tion for more than a few regions. These weaknesses will be resolved by creating a modular and easily
maintainable structure. This will allow combining functionalities from various other back-ends created
by ScenWise, which will open up new possibilities such as creating new tailored products for custom
clients using the existing codebase. This maintainable approach will also improve the efficiency with
which new and existing developers can work. Solving the performance issues will make SmartRoads
interesting for customers anywhere located in the Netherlands. This could even create a snowball ef-
fect allowing ScenWise to extend to other countries as well. Some of the threats outside of the scope
of the project would be the disability of ScenWise to follow-up on the proposed guidelines regarding
software development lifecycles, like an improved workflow. Another threat would be an unsuccessful
migration to SmartRoads 2.0. And at last, ScenWise has to keep in mind the threat that an enabling
technology used for SmartRoads 2.0 may become unusable, for example, a large pricing change.

Internal

Strengths: Weaknesses:

Lots of functionalities available from the existing
back-ends of SmartRoads 1.0 and Analytics.SmartRoads. Workflow

ScenWise has a clear view of what features they want to
add now and in the future

Code Quality → not modular, no extensive
testing, missing documentations

Periodical manual operations needed in
order to keep the software up to date

SmartRoads 1.0 performance issues:

Replay

Only able to display information about
a small part of the roads of the
Netherlands.

Some unintuitive elements in front-end
design

External

Opportunities: Threats:

Extending to nearby countries, by combining more data
feeds

SmartRoads 2.0 will be just another
Analytics.SmartRoads

Adding functionalities of the other existing application
back-ends with a modular approach

Fundamental enabling technologies become
unusable

Higher efficiency of new and existing developers Stop focus on the more fundamental
problems of ScenWise:

Creating new tailored products for custom clients using
the existing codebase

By unsuccessfully remaining a healthy
Workflow

By unsuccessfully remaining the code
quality, which gradually makes the
code unmanageable

Being available for customers anywhere located in the
Netherlands

Table 2.1: SWOT-analysis



4 2. Problem Analysis

2.2. Limitations to overcome
In the SWOT analysis in figure 2.1 the current weaknesses are depicted. The weaknesses are indica-
tions of what is currently holding ScenWise and SmartRoads 1.0 back. These are the problems this
project intends to fix. The strengths indicate aspects which can be utilized during the project. The
threats indicate possible problems ScenWise may run into after the project has finished. Finding con-
crete solutions for the weaknesses will enable the listed opportunities for ScenWise. But, to find these
solutions, their underlying problems have to be researched thoroughly. This research can be found in
chapter 3.

Based on the current state of the product, it was clear that the new product should overcome the
limitations of the current product by having the following features.

• The new product should have an overall improved performance compared to SmartRoads 1.0.

• The new product should be built in a modular way.

• The new product should be easily scalable.

• The new product should consist of high-quality code and documentation.

• The new product should be developed in an agile workflow.

As these only indicate a direction to follow and are not concrete requirements, it was necessary to
research the root causes for these features to be limited or absent in the current system.



3
Research

To solve the limitations mentioned in chapter 2, it was essential to determine the root causes of the
current problems. From these root causes, concrete requirements can be established that will solve
the limitations encountered. Only a summary of the research is presented in this chapter, for more
detailed and elaborate documentation of the research phase it urged to look at appendix H.

3.1. Research Approach
The main goal of this research was to determine the causes of the current problems and refine the
requirements given by the client based on the found causes. First of all, the different types of require-
ments were defined by priority and category. These priorities would be determined by the MoSCoW
methodology and the categories were determined to be:

• Requirements which aim to increase the performance of SmartRoads

• Requirements which are about adding new features to SmartRoads

• Requirements which aim to ease in-house development

• Requirements which aim to create more configurability to SmartRoads’ users.

Finally, research questions were posed to find the root causes of the performance issues. These
research questions were defined as:

• How can performance be improved?

– Is the performance bottleneck located in the API?
– Is the performance bottleneck located in the database?
– Is the performance bottleneck located in the back end?
– Is the performance bottleneck located in the front end?

• How can maintainability be improved?

– Is the maintainability bottleneck located in the API?
– Is the maintainability bottleneck located in the database?
– Is the maintainability bottleneck located in the back end?
– Is the maintainability bottleneck located in the front end?

• How can scalability be improved?

– Is the scalability bottleneck located in the API?
– Is the scalability bottleneck located in the database?
– Is the scalability bottleneck located in the back end?

5



6 3. Research

– Is the scalability bottleneck located in the front end?

An overview of the complete research approach can be found in fig. 3.1.



3.1. Research Approach 7

Figure 3.1: Overview of the research approach



8 3. Research

3.2. Methodology
To answer the research questions, it was first required to find the proper tools necessary to measure
the metrics related to the sub-questions. Java Mission Control (ref) was used to profile the application
hosting the front end and the built-in profiler tool of Google Chrome (ref) was used for measuring the
client-side. Java Mission Control was used for both components of the back end as well. The API was
measured using Postman(ref). And finally, the database was measured by a combination of pgAdmin
(ref) and pgBadger(ref). Additionally, multiple user stories were written based on howmost users would
utilize the system. These user stories can both be used for the research into the causes of the issues
as well as the comparison between SmartRoads 1.0 and SmartRoads 2.0. Once this data has been
collected, reasoning can be used to determine the causes of the issues. Based on these answers,
possible solutions were proposed to solve the issues. Finally, based on the outcome of the research,
the research questions were answered. After which the original requirements were analyzed again and
refined using the information gathered in the research.

3.3. Results
As mentioned in the introduction of this chapter, there will only be a highlight of the most important
findings in this section, more detailed results can be found in the research report H.

After measuring the API it showed that every API call, except one, was performed in less than
500ms. More interestingly was the maintainability of the API. After analyzing what was behind the API
it became clear that there were no tests nor documentation available for the API.

Then the database was measured, this was done by performing user stories and to determine
the most called queries so they can be measured. These measurements didn’t show anything out of
the ordinary except that some queries were called at high frequency. This led to some queries taking
relatively long when looking at all calls made together. However, when inspecting the database schema
itself, it became clear that the database is all but optimal. All in all, the performance of the database
itself was reasonable, but the maintainability and scalability are incredibly low due to the absence of
documentation and a proper schema.

After the database, the back end was measured. This back end consists of two components, one
of which is responsible for everything except reading and writing of local data. Reading and writing of
local data is done by the other component, which was analyzed first (“measurement repository”). As
can be seen in the research report (appendix H), it shows the performance is drastically worse than
a database as it reads fewer data in more time and that that is also its only task as demonstrated
in the research report (appendix H). This means that this separate back end is not beneficial to the
performance of the application. The other component was responsible for all other actions. Once this
component had been profiled, it became clear that 90% of the calls made during profiling were made
to the ‘TimerThread’. This thread is used for all processes running on a time interval.

Finally, the front end was measured. When performing the user stories while profiling in chrome,
it quickly showed clear bottlenecks. Mainly when replaying and rendering the map large spikes in
resource usage could be seen for relatively small tasks. The time it takes for the replay with only the
status messages and the relative speed around Rotterdam and Amsterdam takes 185.8 seconds to
replay 1 hour.



3.4. Data analysis 9

3.4. Data analysis
Having done the research and obtained results from these measurements does not mean the root
causes of the limitations have been found. The numbers provide the team with the facts about this
system that have to be combined with the technical knowledge of the team to clarify the impact and
consequences of the results. One scientific methodology that is suited for this goal is qualified reason-
ing, where all the information gathered about the architecture, the technologies and the measurements
come together. Only then can conclusions be drawn about the root problems that have caused the
limitations in the current solution.

3.4.1. API
In the overview of the response times of the API calls in the research report H are the API calls that
were measured. From these response times, all calls take less than half a second to complete. This is
very reasonable since the requirement is that all data should be retrieved and rendered in less than 1
minute.

Tests and documentation for the API are nearly non-existent and this is the most notable maintain-
ability concern.

There is nothing remarkable concerning the scalability of the API.

3.4.2. database
The measurements of the database, number of queries, and the amount of time a query takes to
complete are the metrics that have the most influence of the overall performance. From the overview
in the research report H it is clear that there is no single slow query as these are at most a tenth of the
slowest API call, which is also reasonable. Despite the absence of slow queries, some queries consume
more total time, because they are being queried more often. Even then the most often queried queries
have a total duration that is reasonable as can be seen in Research report H. The performance of the
database is on par with other databases of this size since it utilizes PostgreSQL, which is one of the
most popular database systems in the industry [1].

When the database was viewed from a maintainability perspective, the same issues as the API
arose. The naming of the tables is confusing in addition to there not being any documentation.

The workflow around data gathering is where the most significant scalability issues appear. Half of
the tables are empty and need manual actions to become populated. These manual actions are quite
time-consuming since the data formats do not translate nicely to the tables that are used. Not does the
data collection prevent scalability, but the data storage is also sub-optimally designed as can be seen
in fig. 3.2. As the amount of data grows, the amount of duplicated data increases.

To conclude the database research, the database has reasonable performance, lacks maintainabil-
ity, and could not be less scalable.

Figure 3.2: Entity Relationship Diagram (ERD) diagram of the database of SmartRoads 1.0

3.4.3. Back end
The backend op SmartRoads 1.0 consists of two different back ends, one main back end and the
’measurement repository’.

The back end that writes and reads one kind of data locally is called the ’measurement repository’.
It stores the average speed that is measured on each road segment in specific regions. This separate
back end is not beneficial to the performance of the application, but should not prove a bottleneck. When
it is taken into consideration that the code for this system has a small README, no further comments
and no tests, which means that it is not maintainable. The fact that the measurement repository stores
data locally inherently means that this approach is not scalable.

Then there is the main back end where most of the parser for the NDW data is located. This is the
part where the calculations are done and every other part of the application is connected to. The perfor-
mance does not differ much from the performance of the back end of Analytics.SmartRoads since most
of them go to the parser using the TimerThread which is similar to the one in Analytics.SmartRoads,
which has reasonable performance. It adds some light computations, which do not negatively influ-
ence the performance. The performance of the main back end is sufficient. Maintainability wise the



10 3. Research

code is not easily understandable since there are almost no documentation and comments. There are
almost no tests and the code style is very inconsistent. As far as scalability is concerned, the whole
service runs on a single server and increasing performance is done by upgrading this server. This so-
called ’vertical-scaling’ is not a scalable approach as the costs for upgrading a single server increases
drastically and eventually there is a limit.

3.4.4. Front end
The bulk of the time is consumed by scripting followed by idle and then system. Most of the time there
is nothing to do for the system as there is only new data once per minute, so it sits idle. Then once
per minute there is new data and this data needs to be plotted and that is where a scripting spike can
be seen. This includes everything from animations to function calls in AngularJS [2]. Then there is
the ’system’ category, but that is just the ’other’ category. The whole front end is rendered when new
data is coming in. Add the fact that all information is requested from the back end at startup and the
whole road network is certainly updated every time even if it is not visible to the user. Then there is the
fact that whenever the map is zoomed-in, zoomed-out, or panned, the whole front end renders again.
When the performance of these fundamental operations is compared to the industry standard for map
applications, Google Maps [3], it stands out that zooming in or out the response time of the SmartRoads
1.0 UI takes 1.5 seconds. Comparing this with Google Maps, which can zoom continuously without
stuttering. Panning has a delay of 0.5 seconds with stutters where Google achieves completely smooth
panning. These are all things that only make the UI feel unresponsive and are the root cause of the
performance bottlenecks, since the front end should only be scripting a few seconds of each minute
and not almost half the time.

Another big issue in the front-end was the combining of two of the biggest data-sets used in the
application. These two data-sets are the coordinates of all road segments and the measured speed
values. All road segments have an ID and these ID’s match with the ID’s of the measured speed values.
The two arrays have the same size, and In the current implementation, for every road segment, the
entire speed measurement array is traversed, even if the wanted ID is on the first index. This means
that this combining process costs the same amount of time regardless of the order of both arrays,
which is always the worst-case runtime 𝑂(𝑛 ). This can easily be reduced to 𝑂(𝑛) by just accessing
the correct field.

The level of maintainability is the same as the other parts, there are no tests, almost no documen-
tation or comments. This means that the code is hard to understand due to the lack of documentation
and comments. If there would be any desire to change anything at all, a lot of code would likely break
due to the lack of tests. These issues make it inefficient, time-wise, and cost-wise, to maintain this part
of the application.

The front end scores low on scalability as well, as additional features can not be added as compo-
nents.

3.5. Conclusion
In conclusion, the answer to the first research question: ’How can the performance be improved?’, is
that the application performance suffers mainly from the way the front end handles the rendering on the
map and the retrieval of certain data. This contradicts the expectation of the client that the performance
issues were caused by the back end. To improve the performance of the system, the focus should be
to look at a new front end that only renders changed components and this should have the highest
priority. To get a sense of the potential it is needed to look at enabling technologies. [4] comes to mind
and is ideal for this case. Then there were several smaller improvements in the API calls and database
structure.

The second research question is: ’How can the maintainability be improved?’. The maintainability
of all components is very low due to a lack of documentation and tests. Naming is vague for most
components and code style is inconsistent. These issues propagate throughout the entirety of the
application. It seems easy to improve on these points, so why has this not already been done? For
Scenwise it has more value to work on new features than to improve on what already works and since
the company has to remain economically beneficial, this has simply been ignored. This is where this
project can step in, as the team is not torn between meeting financial obligations and making a sound
application, which would be financially more beneficial to the company in the long run.



3.5. Conclusion 11

The last research question is: ’How can scalability be improved?’. There are several big issues with
scalability in some parts of the system. The database should not be filled manually and the measure-
ment repository should not save measurements in a local file system. It is not easy to add features to
the front end. It comes down to making different design choices for populating the database and using
a different framework for the front end. To keep the service scalable in the future it is wise to start with a
horizontally scalable architecture. This way processing power can be dynamically managed according
to the current needs resulting in better performance as well as lower costs.

3.5.1. Requirements revised

Based on the results of this research, the root problems of the current Scenwise approach were iden-
tified and fitting solutions were devised. These problems and their solutions can be found in table 3.1.
During the project, it came to the team’s attention that the client placed much value in certain features
that SmartRoads 1.0 had. It was therefore decided to add a must-have requirement, specifying that
certain features of SmartRoads 1.0, as well as the solutions to the root causes, need to be imple-
mented. The end product should have the structure proposed in fig. 3.3. The main idea behind this
architecture is that all current features will be retained and features of Analytics.SmartRoads will even
be incorporated, but any underperforming feature such as a replay function can easily be replaced by
a new one. The details for the long term vision can be found in appendix I

For all new components that the team is going to build there has to be documentation and tests. A
new front end should be built that requests and handles data more smartly, so as little data as possi-
ble and only what is needed is requested. Then it should adopt a new rendering method so that only
changes will be re-rendered. This new front end should be better scalable by using components that
can easily be reused and extended. The back end will be a combination of SmartRoads 1.0, Analyt-
ics.SmartRoads and optionally brand new back ends for specific features. This architecture does still
have the problems found in the back end, but is a step in the right direction since this enables the
possibility to rebuild features and then replace them until the old back ends are not needed anymore.
A new database will be set up, but used besides the old databases until it is ready to take overall func-
tionality. This new database will not be a local file system and will not require manual data collection
and storage. The database schema will have to be thought through to minimize double data. As there
are no significant performance issues caused by the database, the performance requirements under
the database will be made a standalone requirement. These performance requirements were listed
under database, because these were the suspicions of the developer of Scenwise.

These new insights were used to refine the requirements which can be found in D.

Problems in the current application Proposed solution

Lack of documentation All new code will have documentation

Lack of tests New code will be tested

Data in database is stored double Database will be redesigned

Data collection happens manually Automated data collection into database

Use of local filesystem Centralized database using engine

Front end always re-renders entire app uses a virtual DOM

Front end requests all data at startup Only request data for what can be seen

Table 3.1: Problems of the current and proposed solutions



12 3. Research

Figure 3.3: Overview of the proposed solution

3.6. Success Criteria
After finding out what the exact root causes are that lie at the root of the problems stated by the client,
the requirements were revised to include solutions to these solutions. To determine whether the project
is a success at the end of the project it is necessary to determine concrete success criteria. Based on
the research and comparisons with industry standards a good understanding of the amount of potential
improvement that is realistic in this time frame was developed. The success criteria are determined in
table 10.1.

Category Success criteria

Documentation Front end, gateway, parser and database parts of the system should have a README

Documentation At least 80% of the methods should have descriptive comments

Tests All components should have at least 80% line coverage

Performance Zooming on the map should take at least 80% less time

Performance Replay of 1 hour1should take at least 60% less time

Modularity Back end: gateway in place for all services to connect to

Modularity Front end: components that can be reused

Table 3.2: Success criteria

1with the following layers on: accidents, maintenance, obstructions and relative speed in Rotterdam and Amsterdam



4
Design

In this chapter, the design of the solution is discussed. The solution consists of two parts, The LTE
design Document, see I, and the codebase. This project needed to be complete within the course
of 10 weeks. Because of this limited time, priorities had to be assigned. As stated in chapter 3, the
front-end of SmartRoads 1.0 caused most performance issues.

4.1. Long-term evolution design
The LTE design document in appendix I is created to help solve two of the main problems mentioned
in chapter 2 in the long-term. The first being the software integration problem, the second being the
software development lifecycle problems. This document was written while keeping in mind that some-
one who has never worked with the system can continue working on it as smoothly as possible. This
document is designed because this project should not end up unused like Analytics.SmartRoads, to
ensure this, the following chapters are worked out in the LTE design document.

4.1.1. Architecture migration
To solve the integration problems of ScenWise mentioned in chapter 2, a design was created for a
future software architecture for the company. A SOA approach was chosen. A detailed elaboration
for this architecture can be found in the design decisions in appendix H, multiple architectures were
compared. In chapter 2 of the LTE design the migration steps necessary to go from the current software
architecture to this SOA have been mapped out.

4.1.2. Software Development Lifecycle Guidelines
To ensure that the problems regarding the software development lifecycle, for example, testing and
documentation, mentioned in the chapter 2, will not reappear, clear guidelines have been described in
chapter 3 of the LTE design. Should ScenWise find themselves relapsing on this area somewhere in
the future, then this chapter can be used to establish what guidelines are failing, and can in turn be
solved.

4.1.3. Communication protocols
A design has been created to explain how the communication between services has to be defined. This
is regarding documentation of a service API. But also a detailed design is given for the implementation
of event-driven communication [5].

4.1.4. Adding a new Service
The last chapter of the LTE design document contains the information necessary for a possible way
the company could be using external workforces, like student groups for their software projects. It also
contains a small implementation tutorial on how a service should be added to the API Gateway.

13



14 4. Design

4.2. API Gateway
The API Gateway got its form based on the migration part of the design decisions from the research
report H. It was designed to enable the first steps towards a SOA as described in the LTE design
document found in appendix I. The API Gateway serves as an abstraction layer between the front end
and the various back ends and possible new services. This is the place where front end requests are
sent to, it redirects such a request to the appropriate back end or service. The decision had to be made
to use an open-source project or create the API Gateway from scratch. Starting from scratch seemed
like needing to develop functionalities which could be re-used from an existing project. And thus two
open-source API Gateway projects were compared, namely Kong [6] and Spring Cloud Gateway [7].
As the developers at ScenWise are familiar with the Spring framework, and the members from the team
with Java, and because Spring Cloud Gateway offered all necessary functionalities, the decision was
made to set up the API Gateway with Spring Cloud Gateway. More detailed analysis can be found in
the research report H.

Documentation of the API is made available with OpenAPI [8] specification files. Which are served
via a Swagger UI service. Via this interface custom real-time requests can be made to the gateway in
order to explore its capabilities.

The design decision was made to create integration tests in order to monitor the availability and
correctness of the endpoints of the API Gateway.

4.3. Front end
Compared to SmartRoads 1.0, most changes were made in the front-end. That makes sense, consid-
ering performance issues of SmartRoads 1.0 were almost entirely caused by a poorly designed front
end (see appendix H). The basic elements of the UI design of the front end are inspired by SmartRoads
1.0. However, it contains numerous new feature, like the offset slider. These features and designs are
shown and described in chapter 7.

4.3.1. Framework
To select the framework best suited for the needs of the project, literature research was carried out.
One of the sources reviewed was [9]. The entire research can be found in appendix H. After narrowing
the possible options down to React [4] and Angular [2], it was decided to use React as the front-end
framework. React is a JavaScript library which is primarily used for building fast and responsive user
interfaces. Furthermore, it is component-based [4] which means it allows for modularity within the
framework. Updating any component in the application is fast due to the use of virtual DOM. It is
lightweight and allows for third party libraries to be used.

To create a good-looking and easily customizable application, React bootstrap [10] was used. React
Bootstrap is recommended by the developers of React, and it is the most popular, complete and well-
documented styling library currently available [11].

4.3.2. Map
A core component of the front-end is the Map. Therefore, the choice of map service is important. Due to
the advantages Mapbox [12] has over Google Maps [3] and ESRI ArcGIS [13] in terms of possibilities,
pricing and practicality in developing, it was decided to use Mapbox as the map service. The free trial
itself allows to make up to 200.000 API calls and 50.000 map loads which should be enough for the
current size of ScenWise. It has, like ArcGIS, library support for ReactJS and good documentation.
It also provides good customization. The choice was made to use the standard Mapbox-gl library, in
favour of one of the third party Mapbox libraries made for React. This choice was made because the
team wanted direct control over the Mapbox functions, to ensure optimal performance and not depend
on React.

Deck.gl
Deck.gl [14] is a framework developed by Uber to visualize data on a map, and works in conjunction
with Mapbox. It can make defining layers to render on the map easier, but this can come at the cost
of performance. This framework is used by SmartRoads 1.0. However, it was decided not to use this



4.4. Parser and Central Database 15

Figure 4.1: ERD diagram of the database of SmartRoads 2.0

framework and instead use the MapBox API directly, to ensure the best possible performance.

However, if the client decides to prioritize switching between different map services, Deck.gl may
still be useful. The architecture of the codebase of the front end of SmartRoads 2.0 is made in such a
way that converting to Deck.gl layers requires minimal effort.

4.3.3. support for mobile browsers
Because React and React Bootstrap are used, SmartRoads 2.0 is inherently responsive and displays
properly on mobile devices, such as smartphones. The performance increase is big enough to let the
application run smoothly on a mobile phone. However, currently, the website does not work on an
iPhone. This is not a problem as the client never specified that the site should work on mobile phones.
The team thinks this issue can easily be resolved in the future, in case it is ever needed to use this
application on an iPhone.

4.4. Parser and Central Database
To solve the flawed database structure as described in appendix H, a centralized database solution
can be implemented as a separate service in the SOA. In the current SmartRoads 1.0 system there
are multiple databases which varied in performance which can be seen in chapter 3. To solve the
scalability issues of a local filesystem and the lacking performance it is clear that a database using
a Database Management System (DBMS) such as PostgreSQL[15] would be the solution. However,
this would imply that there would be data and code duplication. Since the data that is used is the
same across all services, the data should be stored in a central location available for all services. If
the goal is to implement a central database, a logical consequence would be that a parser is needed
to retrieve, parse and store the data in this centralized database. Thus a centralized database and an
accompanying parser became part of the design for the new SmartRoads 2.0.

The current database solution contains duplicate data due to tables having near-identical columns.
This is improved by adopting and adapting the database schema that was designed by Analytics.SmartRoads.
The parser that was designed by Analytics.SmartRoads eliminates the need for manual actions. By
parsing every minute and inserting into the centralized database the system is guaranteed to stay up
to date. This also solves the manual insertion of data, as this parser can do it completely automated.

The database is designed according to the schema found in fig. 4.1, which solves the data duplica-
tion problem.



5
Process

5.1. Workflow
For this group project scrum was used as an agile workflow. Scrum was chosen based on previous
positive experiences the team members had with Scrum. More about scrum and agile workflow can be
found in appendix appendix I. The reason for using scrum as an agile workflow was the experience the
team had with this methodology. The team was also content with the previous experiences they had
with scrum. Sprint meetings and daily scrum meetings were held. The Gitlab issue board was used to
keep the team informed and updated on what everyone was working on. Gitlab was also a technology
the team was familiar with. The general working hours of this project were on weekdays from 09:00
until 17:00. Working outside these working hours could be done on own volition.

5.1.1. Sprint meetings
Each sprint duration was one week and started on Monday. At the start of each sprint, a sprint planning
and sprint review were held.

In these meetings, a list of issues for the coming week was created, also known as the backlog.
The issues of the previous week were also evaluated and moved to the coming week if they had not yet
been finished. These issues were kept up in a Google excel sheet [16]. The issues on the sheet were
in turn added and updated on Gitlab issue board. Some of the issues were a bit general, resulting in the
team splitting them up into smaller issues on the Gitlab issue board. This way the issues became more
manageable and a clearer overview of the overall to-do’s was achieved. Each of these issues was
assigned to a member, contained a description explaining its purpose. A checklist was made within the
issue to keep track of the progress made on an issue. The issues were also given labels to determine
its priority, responsibility within the project and the estimated time to complete it.

At the end of the meeting a sprint retrospective was held, where each member stated the positives
and negatives of the previous sprints. This way the team was aware of any personal issues or points
of improvement, allowing the team to improve the overall workflow.

5.1.2. Daily scrum
The daily scrum meetings took place twice a day. One in the morning at 09:00 and one in the afternoon
at around 16:45. In the morning meetings, points of attention, incoming e-mails and the to-do’s for
that day were discussed. In the afternoon meetings, the team members updated each other on their
progress for that day and discussed other points like personal issues and incoming e-mails.

5.1.3. Gitlab workflow
Just as described in section 5.1.1 issues were created on the Gitlab issue board. A branch was made
for each of the issues that were about code changes. The branch and the issue were directly linked with
each other. When a team member felt like an issue was done a request to merge the branch, linked
to the issue, into the develop branch, which, was the name indicates, the branch for the development
stage. Other members would, in turn, review the code changes and give feedback or code changes
if needed. When feedback or code changes were requested, they first needed to be resolved before

16



5.2. Internal communication 17

requesting another review. The Continuous Integration, which is an automated tool to check if the code
quality is up to date, also played an important role in deciding whether a merge request was approved
or not. More information about Continuous Integration can be found in section 6.1.6. If the Continuous
Integration and two or more reviewers approved the request, then the branch was allowed to be merged
into the develop branch.

Each sprint a merge request was made to merge the develop branch into the master branch which
is the deployment branch, that is, it is the version of code that is deployed and live on a server.

5.2. Internal communication
5.2.1. Meetings
As stated in section 5.1, weekly sprint meetings and daily scrummeetings were held with the team. The
weekly sprint meetings and the daily scrum meetings were both held using Discord [17]. A minute was
taken of the daily scrum meetings in a Google docs [18] document and saved in a shared Google Drive
[19] folder. WhatsApp [20] was used to communicate outside of the general project working hours.

5.2.2. Role division
The team roles are defined in table 5.1:

Role Team member Definition

Project-leader Jasper Responsible for meetings, proper discussions and
team ambiance

Lead-communication Kawin Responsible for all communication within the team
and with the client & coach

Scrum master Chakir Responsible for overall scrum process

Lead Testing Daan Responsible for test quality and coverage

Secretary Jan Responsible for the minutes of every meeting

Quality assurance responsible Jasper
Responsible for quality of the product by making
sure that every requirement is properly met without
loss of quality

Front-end responsible Chakir Responsible for the front-end code quality

Back-end responsible Jan Responsible for the back-end code quality

CI & Git responsible Daan Responsible for Continuous Integration and proper
GitHub usage

Table 5.1: Role division

5.3. External communication
5.3.1. Meetings client
The team had a meeting close to every week with the client. These meetings were usually on Thursday
or Friday afternoon. The meetings were held using Skype [21]. Each meeting was, with the approval
of the client, recorded so that the team was able to re-watch parts if needed. A minute was also made
for each meeting and saved in a shared Google Drive [19]. In the beginning, the meetings revolved
around the research phase and the team getting a better understanding of the problems at hand. In
the later stages of the project, the meetings were more on feedback revolving around the creation of
the product, where demos were given and progress was explained.

Some of the members also had separate meetings with the lead developer of the client to have their
code explained to the team. The lead developer was also invited for a hands-on session, to get used to
the code base, the introduced workflow and the good programming practices. This way the knowledge



18 5. Process

is passed on more naturally. The lead developer even worked on implementing a new feature using
SmartRoads 2.0. These meetings were held using Discord.

5.3.2. Meetings coach
The team also had weekly meetings with the TU coach, Bart Gerritsen, using Skype. Each meeting
was also, with the approval of the coach, recorded so that that team was able to re-watch parts if
needed. A minute was made for each of the meetings and saved in the shared Google Drive [19].
These meetings were usually held on Thursday. The coach provided the team with feedback and
useful information regarding the research and the overall process of the project.



6
Code Quality and Testing

This chapter explains how the team ensured proper code quality both during the project and in the
future.

6.1. Code quality
In this section, the different measures taken to ensure good code quality will be discussed.

6.1.1. Documentation
To keep the code clear and maintainable it must be well documented. Documentation is done on 3
levels; class, method/function and line level. Firstly each class should be documented on what it’s
overall function is and what responsibilities it holds. Secondly, all methods except for simple getters
and setters should have a description of the functionality. Should the method contain parameters that
are passed, then each of them is also clearly documented. Lastly, complex lines of code and lines of
importance are also shortly documented to make the code even clearer.

6.1.2. Code size
The size of each class or component is kept at a minimum, namely 150 Lines of Code (LOC). Units like
functions or methods are also kept at a minimal LOC length to ensure understandable and readable
code. The line length also has a maximum of 80 in order to make them more readable. These rules
are taken as general guidelines concerning the code size.

6.1.3. Front-end
To ensure the correct coding conventions are used for the front-end and for React [4] in particular,
ESLint [22] is used to prevent any violations. ESLint runs static code analysis on all front-end code.
Static code analysis is a method of examining code before a program is run. This makes the code
more consistent, understandable, readable. It also helps in avoiding faults in the system, also known
as bugs.

6.1.4. Back-end
In order for the backend code to comply to the coding rules of Java [23], Google Checkstyle [24],
Spotbugs [25] and PMD [26] are used as static code analysis tools. With these tools, the chances of
bugs occurring within the code are drastically reduced.

6.1.5. OpenAPI documentation
For the static-analysis of the OpenAPI [8] documentations files served by Swagger [27], spectral lint
[28] is used. This static code analysis checks if the documentation files conform to the OpenAPI style
guide.

19



20 6. Code Quality and Testing

6.1.6. Continuous Integration/Continuous Deployment

Software development is a continuous flow of code changes. Each single code change has a risk
of introducing bugs or even breaking the code. Detecting this for each change can become quite
cumbersome and time-consuming. That is why Continuous Integration is used for this project. In CI,
each code change is checked on three different aspects: static analysis, tests and builds. If any of
these aspects fail under a code change the CI detects it and warns the developers of failed aspects
and the cause, making it easy for the developers to alter this code change for the better. This allows
for a simple yet effective workflow in software development. In this project, the Gitlab CI [29] was used
to improve the workflow and software development of SmartRoads 2.0.

To automate the deployment of the new code base, Continuous Deployment is used. This stage runs
after amerge request to the development or master branch has beenmade, or when activatedmanually.
The Continuous Deployment uses Docker [30] to easily deploy the system. Docker is explained in detail
in section 7.5.4. An update to the development branch is deployed on a staging environment. A new
version on the master branch should be deployed on the production servers. ScenWise currently does
not use SmartRoads 2.0 in production yet, so this feature is currently not activated. However, all the
necessary code is already created.

6.2. Testing

An important factor of attaining and maintaining high code quality is by testing the written code. Testing
allows for code changes to happen without breaking the system unconsciously, ensuring high code
quality and persistency.

6.2.1. Unit tests

Unit testing assesses the proper behaviour of individual modules/functions of an application in isolation,
without any interaction with dependencies, or other modules/functions. If another module, function or
dependency is needed, it is mocked. Each service the team implemented is unit tested using Continu-
ous Integration & Continuous Deployment (CI/CD) (see section 6.1.6). Meaning all individual functions
should be tested by one or more tests. For example, a function is responsible for the addition of two
numbers, it should be assessed whether this function returns the correct value for 2 given numbers.
May a developer accidentally change the addition character to a multiplication character this will be
caught by a unit test. The benefit of this is that bugs can be found in a very early stage. And for exam-
ple, when updating dependencies it will immediately be clear if functions do not behave as intended.

The team have set a minimal rule of unit test coverage of 80% for each independent service. This
rule is enforced by the CI/CD pipeline, meaning it does not succeed if the minimal coverage is not met.
Note that this is a bare minimum, the team aimed to maximize this coverage.

In the front end, it is tested whether each component renders correctly with snapshot tests using
jest [31]. The team also make a snapshot of the HTML so that unwanted changes in the HTML can
be detected. Additionally, state manipulation and each non-react function is assessed. The Jest [32]
dependency was used as a testing framework, and Enzyme [33] to test React [4] components.

The latest coverage report is shown in fig. 6.1.



6.2. Testing 21

Figure 6.1: Coverage report of the front end

6.2.2. Integration tests
Integration tests are responsible for the testing of independently deployed services. Two types of
integration tests can be specified, namely, the narrow integration tests and the broad integration tests



22 6. Code Quality and Testing

[34]. The narrow integration tests are similar to unit tests, except that they are responsible for asserting
the correct behaviour of interactions of the tested service with external services. This type of integration
tests doesn’t require all services to be deployed. The broad integration tests are run on a system where
all services are live. These test if multiple services work together as expected, instead of only testing
the code responsible for the interactions.

Based on the API specifications broad integration tests were used. As explained these tests are
introduced to make sure that if a service’s endpoint mutates or stops working the developers are aware
of it. This means that ScenWise should find the problem before a customer could. Therefore, each
endpoint is tested. For the integration tests of the API Gateway Postman [35] is used. Postman can
run collections of tests periodically on the deployed services. This gives a clear overview of the health
of the system. These tests are integrated into the CI/CD pipeline.

These integration tests ensure that if something in the service-based system fails, ScenWise can
deal with it before a customer has to deal with errors.

The difference with unit testing is that unit testing assesses the proper behaviour of functions in
individual modules, whereas integration testing asseses if different modules are working properly to-
gether.

6.2.3. System testing

System testing includes testing the fully integrated system. The broad integration testing of the API
Gateway can be seen as system testing the back-end. However, it is also desirable the fully integrated
front-end is tested. This means executing the system, interacting with it and verifying that the behaviour
is as expected. To achieve consistent system testing the CI/CD pipeline (section 6.1.6) automatically
deploys the new version of the system to a staging server when a code change is proposed, where two
developers (the developer that proposed the change is excluded) manually verify that the application
is behaving properly. Until this is done, GitLab prevents the proposed changes from being merged.
This approval rule ensures that at least three people agree with the proposed changes, which in turn
minimizes the chance of a mistake slipping through.

6.3. SIG Feedback

Over the course of the project, it was required to make two submissions to the Software Improvement
Group (SIG). This institution then reviewed the submissions and provided feedback on the maintain-
ability of the system.

6.3.1. Initial feedback

The first submission was made on the 31st of May. This submission accidentally contained some
generated code. Luckily, another submission could be made without the generated code of which the
feedback was received on the 8th of June. For this feedback, 151 files were reviewed resulting in a total
of 43 detected violations and a maintainability score of 4.0 stars. After analyzing these violations and
several discussions on Mattermost [36], it was decided to exclude all files related to the parser. This
was decided because the submission should only contain components made by the team, and pre-
existing components should be excluded. After removing these classes from the review, the feedback
contained 28 reviewed files. Of these 28 files, 10 files contained violations with a total of 15 violations.



6.3. SIG Feedback 23

Figure 6.2: Initial feedback from the SIG.

As can be seen in figure 6.2, most of these violations were either related to the unit size or the amount
of duplication. Also, 3 classes were responsible for 8 of the 15 violations. Based on this feedback, it
was discussed on what is causing each violation and how can these violations be prevented in future
code. Finally, for nearly all violations still present in the code, issues were made and solutions reviewed
to ensure the violations had been solved. The following violations were deemed to be neglectable:

• MSIImages.js, this class contained a repeated function used to import the different MSI images
into the application. The reason why this violation was deemed neglectable was since the ’require’
calls in the class are done before runtime. Whichmeans that every ’require’ call has to be explicitly
mentioned and cannot be made for every entry from a list.

• Map.js, unit size, this class is used to connect all front end components. Therefore, decoupling
this class becomes very complex. Although a lot of the functionality has been divided over other
classes, the class and its functions are still too large according to the criteria set by the SIG.

6.3.2. Second feedback

The second SIG feedback was received on the 22nd of June. This feedback had a maintainability score
of 4.4 stars, which is a clear improvement over the first submission. The second submission included
every component submitted for the first quality deadline except for the parser.



24 6. Code Quality and Testing

Figure 6.3: Second feedback from the SIG relative to the first feedback.

When compared to the first submissionmade, figure 6.3 clearly shows that the overall maintainability
has improved in the second submission. However, figure 6.3 also shows that the system performed
worse on ”Unit size and ”Unit interfacing”. The feedback detected 25 violations in 10 distinct classes in
total which can be seen in figure 6.4.

Figure 6.4: Second feedback from the SIG.

As seen in figure 6.4, all violations detected in the first submission have been resolved except for
the violations deemed neglectable. The first area where the maintainability rating dropped was ”Unit
size”. The violations introduced in the second submission should indeed be refactored into smaller
components. However, due to the amount of time left between these implementations and the second
submission deadline, other issues were prioritized over the refactorisation. The other area with a lower
maintainability rating was the ”Unit interfacing” area. The second submission contains the first and
only violation in this area, which was in a function that generates a new pop-up based on the given
parameters. Since this function is only used to display the given parameters properly, the decision was
made to neglect this violation. The function does not influence the inner workings of the front end and



6.3. SIG Feedback 25

is only used to generate the HTML content to be displayed into a popup object.



7
Deliverables

This chapter gives an overview of the end product that will be delivered to the client. The implemen-
tations as well as the LTE design document are presented. For the implementations, images are dis-
played to give an insight as to how it looks in the application. Technical details about parts of the
implementation process are also elaborated on.

7.1. Features
This section provides the most notable features implemented in SmartRoads 2.0. For each feature, an
image and description are provided to give more of an insight as to what it is and what it does.

7.1.1. Front-end design
The design of SmartRoads 2.0 was made to show all functionalities and features in one quick glance.
The initial design was inspired by SmartRoads 1.0, but several changes have been made along the
way. The colors and theme were chosen to have an ergonomic design. The colouring in the icons and
markers on the map, as can be seen in the subsequent sections, are also chosen to be intuitive. Head-
ers, subtexts and tooltips are also added to provide extra information about each of the components in
the application.

Figure 7.1: Overall design with hovering to show extra information

In figure fig. 7.1 a tooltip can be seen.

26



7.1. Features 27

7.1.2. Layers
Everything that is displayed on the map is done in the form of a Mapbox layer. Each functionality has
its own layer that can be shown or hidden. This is an integrated feature in Mapbox allowing developers
to make their product more interactive. SmartRoads 2.0 contains all main layers which SmartRoads
1.0 supports, as described in the MosCow requirements. Additionally, it also contains two layers An-
alytics.SmartRoads supports. Table 7.1 shows a full overview of the supported layers as well as the
areas they visualize data for and the data source that is used, the data that is used via SmartRoads
1.0 and Analytics.SmartRoads originally come from NDW. All layers can be replayed, as described in
section 7.1.8. The relative speeds in Rotterdam & Amsterdam layer can even be replayed at 512 times
speed. If

Layer Active area Data source
Dynamisch Route-informatiepaneel (DRIP) The Netherlands SmartRoads 1.0 (NDW)
Matrix Signaalgever (MSI) The Netherlands SmartRoads 1.0 (NDW)
Status messages The Netherlands SmartRoads 1.0 (NDW)
Relative speed Rotterdam & Amsterdam SmartRoads 1.0 (NDW)
Intensities (telpunten) Rotterdam & Amsterdam SmartRoads 1.0 (NDW)
Relative speed The Netherlands Analytics.SmartRoads (NDW)
Absolute speed The Netherlands Analytics.SmartRoads (NDW)

Table 7.1: Available layers in SmartRoads 2.0

7.1.3. DRIP
All the DRIP’s of the Netherlands can also be displayed. They are initially displayed as dots, to avoid
clutter when zooming out. A popup will appear when clicking one of the dots. An example can be seen
in fig. 7.2 In the popup, the sign and the information about the sign are displayed. The information
consists of the position and the exact time the DRIP was last changed.

Figure 7.2: DRIP sign



28 7. Deliverables

7.1.4. Speed Map
The speed map is the heart of this application as it gives a good insight into the bottlenecks in traffic.
It provides a clear overview for traffic analysts to base traffic decisions on.

Relative speed
The relative speed of road segments can be displayed on the entire road network of the Netherlands.
The speed, as can be seen in fig. 7.3 is depicted as four different colors which represent the flow of
traffic relative to what it could be. A legend is also displayed which provides information about what
the colors represent, see fig. 7.4. The legend is also provided with a slider that defines the offset the
colored lines have with the road they represent. The client requested this feature halfway through the
project as this would give the product a competitive edge. There was no UI design for this feature yet,
so the team created its own design. The slider gives an intuitive way to interact with the offset feature.

Figure 7.3: Relative speed Figure 7.4: Corresponding legend

Absolute speed
The absolute speed can also be displayed on the entire road network of the Netherlands. The speed,
as can be seen in fig. 7.5 is depicted as four different colors which represent the maximum allowed
speed of vehicles on a road segment. A legend is also displayed which provides information about
what the colors represent, see fig. 7.6. The legend is also provided with a slider that defines the offset
the colored lines have with the road they represent.

Figure 7.5: Absolute speed Figure 7.6: Corresponding legend

SR1 speed
As indicated in the name, SR1 speed represents the speed given by the backend of SmartRoads 1.0.
It defines the speed of certain areas in the Netherlands. This seems insignificant considering it is only



7.1. Features 29

a part of the Netherlands whereas the other speeds provide information about the entire road network,
but it provides extra information about the road segments. Left-clicking a road segment shows, like
the other speed implementations, the speed and free flow of a road segment. Right-clicking a road
segment, however, now opens a popup that displays a graph, see fig. 7.7. This graph shows the
historic data of the road segment concerning speed and free flow, see fig. 7.8. The modal allows for
multiple options such as selecting a certain time frame to be analyzed, see fig. 7.10 and fig. 7.11. The
graphs in the modal can also be exported as can be seen in fig. 7.9. The graph and its options are all
provided by the apex charts [37] library.

Figure 7.7: The intensity graph over a specific road segment

Figure 7.8: Intensity graph with hovering Figure 7.9: Exports for the intensity graph

Figure 7.10: Intensity graph time frame selection Figure 7.11: Intensity graph specific time frame

7.1.5. MSI
The matrix signs shown on the highways of the Netherlands can also be displayed. The way of dis-
playing depends on the zoom-level the user is in. There are three ways of displaying the MSI layer,
depending on the zoom level. When zoomed out the view would be similar to fig. 7.14. A legend is
also displayed to indicate what the colors represent. This way of displaying is chosen to avoid too
much clutter and give a clear overview of the situation with one glance. When looking for more detailed
information about the matrix signs along a highway, the user can opt to zoom in. As the client desired,
a middle zoom level was created to show the signs indicated as distinct colors, instead of the actual



30 7. Deliverables

sign images, see fig. 7.13. The actual matrix signs which are displayed are shown at an even higher
zoom level, as can be seen in fig. 7.12. The option to either show or hide blank matrix signs is also
given, as this distinction is quite important for traffic analysis.

Figure 7.12: MSI zoomed in Figure 7.13: MSI middle zoom

Figure 7.14: MSI zoomed out

7.1.6. Status messages

Situations that cause a hindrance to the natural flow of traffic are grouped into status messages. These
messages can be categorized into three distinct types: accidents, (planned) maintenance and (vehicle)
obstructions. In fig. 7.15 a list of one of these types is seen with detailed information about themessage.
These messages can also be plotted on the map as shown in fig. 7.16. The plotted messages also
provide detailed information about the message to some extent. Clicking on one of the messages listed
pans the map to the corresponding icon, creating a view similar to that of fig. 7.17.

Figure 7.15: Status messages listed Figure 7.16: Status message icons with an information popup



7.1. Features 31

Figure 7.17: Status message icon with the corresponding list item

7.1.7. Measurement points
The measurement points, called ’telpunten’ in the front-end, are displayed as arrows on the map to
show the direction of the road the data is about, as can be seen in fig. 7.18. The measurement point
layer provides an extra toggle to switch between displaying all measurement points or only points that
reached a critical value. By default, only the critical measurement points are displayed to reduce clutter.
When left-clicking such an arrow, a popup appears which shows information about the traffic-intensity
of that road segment. Information about the traffic-capacity, the number of lanes and current traffic-
intensity are displayed. This gives a better understanding of how congested a road segment is. When
right-clicking an arrow, a popup graph is shown displaying the traffic-intensity of a road segment, see
fig. 7.19. These graphs share the same options as mentioned in section 7.1.4.

Figure 7.18: Measurement points Figure 7.19: Measurement points intensity graph

7.1.8. Replay
The replay functionality allows the user to go back to a certain time to acquire information on the state
the traffic was in that specific time period. The user selects a time moment and simply starts playing out
the desired layers on the map. All of the layers can be replayed. All of this can be sped-up up to 512
times the normal time-lapse, allowing the user to get a good understanding of what happens throughout
the day without having to wait too long. The replay can also be paused or completely stopped to reset
to the current time, see fig. 7.21. The moment is chosen using a date and time picker, see fig. 7.20.

Figure 7.20: Selection of replay moment Figure 7.21: Controls when replaying

7.1.9. 3D view
The features can also be viewed in a three-dimensional view. This can give a better view of a certain
situation. An example of MSI and a status message can be viewed in fig. 7.22.



32 7. Deliverables

Figure 7.22: 3D view of MSI and a status message

7.2. Long-term evolution design
Next to the implementations for the application an LTE design document was delivered to the client. The
document itself can be found in appendix I. It depicts a future architecture of the client’s applications
and a software development methodology the client should adhere to. This document was created
to help the client beyond the scope of this project. This means that features that are not yet part of
SmartRoads 2.0 can be added later on using this document.

7.3. API Gateway
As discussed in section 4.2 Spring Cloud Gateway [7] has been used for implementing the API Gate-
way. As the gateway in this stage is only used to connect a small amount of back ends/services.
All configured routes and configurations are set-up in a configuration YAML file. Spring cloud gate-
way uses filters to mutate requests and responses, for the requirements the build-in filters sufficed.
In the case that custom filters are needed these can be added with Java Spring [38]. At the start
of the project a proxy was created to all endpoints of SmartRoads 1.0, these endpoints are con-
figured under http://gatewayhost/sr1/api/{sr1_endpoint}. This enabled the use of all
functionalities provided by SmartRoads 1.0 from the start via the gateway. This proxy is not meant
for production deployment, each used endpoint via this proxy has gotten its endpoint configured via
http://gatewayhost/api/{specific_endpoint}. These are the endpoints meant for produc-
tion use, as these endpoints are documented and tested with integration tests, this is not done for all
endpoints in the proxy as this would have taken a significant time investment for no added functional-
ity to SmartRoads 2.0. It has been made clear to ScenWise’s developers it is intended that all used
endpoints should be documented and tested accordingly.

The documentation of the API Gateway is done via OpenAPI [8] specification files. These files
are served via a swagger-ui [27] service which is accessible via the gateway’s home URL http:
//gatewayhost/. More about the swagger documentation can be found in the LTE design document
appendix I.

The integration tests are set up with Postman [35]. These integration tests check the availability
of the endpoints and if the responses are valid by a given schema. This schema checks if e.g. a
property name has not changed or an undocumented property has been added to the response. Amore
detailed explanation about the integration tests can be found in ?? and in the LTE design document,
see appendix I.

http://gatewayhost/sr1/api/{sr1_endpoint}
http://gatewayhost/api/{specific_endpoint}
http://gatewayhost/
http://gatewayhost/


7.4. Parser and Central Database 33

7.4. Parser and Central Database
The parser and central database were implemented with the SOA in mind. Since the old databases
is still needed for some features to function, implementing the parser and central database as its own
separate service was ideal. The old system of SmartRoads 1.0 can be left intact and operational while
flaws could get resolved. At this point, no new service is making use of the centralized database yet.
Going forward all new features should be built as a separate service and connect via the gateway
to utilize the parser and database. Eventually, all old features will have been rebuild and as the old
database would no longer be needed, it can be detached from the system.

7.5. Technical details
7.5.1. React
React [4] is used to divide the front-end into different components, ensuring modularity. The compo-
nents have a parent-child relation in the form of a tree structure. Arguments are passed through children
by using props. Each of the aforementioned features that do not include the map, which is one of the
components, has its own component. Separate classes are also used to support the components, e.g.
make API requests for a layer.

7.5.2. Graphs
The speed and intensity graphs which provide additional options, such as zooming in on a specific time
frame, was made using the apex charts library [37].

7.5.3. Replay
Since the replay functionality was made from scratch and focused on the specific purpose of replaying
traffic data, several unique features have been added in its inner workings to ensure smooth and highly
configurable replay. First of all, a buffer functionality was implemented. This allows SmartRoads 2.0
to separate the replay data fetching from the replay data rendering. If the replay ”player” plays faster
than the replay ”buffer” can fetch the data, then the player keeps halting a second until the requested
data has been added to the buffer. Secondly, the replay only fetches data from the enabled data
feeds. This enables the player to playback in a speed that is limited by the performance of the worst
performing enabled data feed. For example, replaying with only the ”MSI” feed enabled can still replay
smoothly at over 100 times the normal playback speed. Finally, replay functionality has been designed
to support a new timestamp while replaying. Although the implementation couldn’t be finished due to
time constraints, the buffer does contain placeholders in its code where these functionalities should be
implemented. This would allow the user to quickly traverse a moment back in time or allows the user
to easily skip six hours ahead.

7.5.4. Docker
Docker [30] is used for each component in the system. Docker is a containerization program. Con-
tainers bundle all needed configuration files and dependencies required to run a component. This
information is stored in so-called images. These images are build based on a specific configuration
for each component, which is stored in a Dockerfile. A container ensures that a component can al-
ways run regardless of what software is available on the host machine. This is particularly useful for
automatic deployment on machines with different operating systems. As SmartRoads 2.0 consists of
multiple components, the docker-compose command is used which builds and starts all components
with a single command.



8
Product evaluation

This chapter evaluates the overall product that is delivered to the client.

As can be seen in the previous chapters, SmartRoads 2.0 includes:
• Speed and Freeflow data of the entire dutch road network

• Offset slider for the speed and freeflow data

• Measurement points, with option to only display critical ones

• Live road accidents of the entire dutch road network

• Live road maintenance of the entire dutch road network

• Live road obstructions of the entire dutch road network

• A replay functionality wi

• up to 512 times replay functionality, supporting all layers

• High performance MSI layer

• Speed and freeflow history graph

• Intensity and capacity history graph

• New workflow

• Gateway

• 3D view

• DRIP data across the Netherlands

• Automated data collection from NDW through Parser

• Centralized data storage in PostgreSQL database[15]

• Gateway connecting multiple back ends

• LTE design - Architecture migration

• LTE design - Software Development Lifecycle Guidelines

• LTE design - Communication protocols

• LTE design - Adding a new Service
In order to assess whether these deliverables solve the problems posed by Scenwise in chapter

2, It is necessary to verify which requirements stated in section 3.5.1 have been met. Once these
requirements have been verified, a conclusion will be made based on the MoSCoW label of these
requirements.

34



8.1. Implementation challenges 35

8.1. Implementation challenges
8.1.1. Unique project
As mentioned in section 2.1, the problems tackled by the team during the project deviated from the
initially proposed problem, thanks to the proposal of a different project approach. None of the team
members had any experience with migrating an application making it hard to estimate the required
workload and time needed to resolve the requirements. Although the problem clearly defines that the
deliverable can also contain recommendations on features to add in the future (for example, features
mentioned in the requirements), was it only possible to meet the requirements labeled as ”must have”.
This resulted in a lot of requirements that the team was unable to meet.

8.1.2. Mapbox
As mentioned in appendix H, the downside of React [4] is that it relies on external libraries. One such
library was the Mapbox library [12]. There were three choices: react-mapbox-gl, mapbox-gl and react-
map-gl. The first choice was react-mapbox-gl, as this allowed for mapbox elements, like a marker, to
be used in the form of React elements. As development progressed the drawbacks were starting to
show. The library contained bugs and did not leave much of the customizability Mapbox is supposed to
provide. That is why the team came to the conclusion to use mapbox-gl, as this was the main library of
Mapbox. This change caused a small delay in development as the code used react-mapbox-gl needed
to be converted to mapbox-gl code.

8.1.3. Docker
None of the team members had any experience with Docker [30] yet. Learning and setting up did
require some investment. This was successfully done in a reasonable amount of time. There were
some problems with serving the OpenAPI [8] specification files, as these were split up for better code
quality. A solution for this issue was found within a few hours.

8.1.4. API Gateway
During the creation of the routes to the existing and hosted back ends of SmartRoads 1.0 and Analyt-
ics.SmartRoads some challenges arose. These challenges were subject to the fact that the deployed
versions of the back ends were used.

One of which was Cross-Origin Resource Sharing (CORS) [39], this is an HTTP security protocol,
as some of the routes from SmartRoads 1.0 did not allow all origins. This was fixed by setting the
CORS to all origins within the gateway, this has been communicated to the client as this does bring
some security risks. Setting the CORS in the API Gateway configuration to only the servers which
serve the front ends will resolve these security risks.

Another challenge arose with the Analytics.SmartRoads back end. At the start of the development,
the server which hosted this back end was very light-weight making the performance very low. This
was upgraded to serve the needs of this project. However, as the implemented features grew and
thus the number of requests grew the Analytics.SmartRoads server was causing some issues. These
issues grew to the point where the server would respond with a server error on more than half of the
requests. A quick fix was implemented in the gateway till the server problems will be resolved by Scen-
Wise. This quick-fix will try to make a new request if the server responded with a server-error status
code. It will retry the request a maximum of 7 times, this can be changed in the gateway configura-
tions. This quick-fix resolves almost all server-errors. Noteworthy is that in these times in which the
Analytics.SmartRoads server is under load the front-end of Analytics.SmartRoads is unusable.

8.2. Requirements assessment
In order to determine whether SmartRoads 2.0 can be labelled as a suitable solution to the problems
posed in 2, all requirements posed in D first have to be assessed on whether they are met.

8.2.1. Requirements to increase performance
Must have

SmartRoads 2.0 must be able to retrieve the following datastreams from The NDW
As stated in section 7.1.2, all NDW data feeds corresponding to this requirement as mentioned



36 8. Product evaluation

in appendix D, have been implemented. Thus this requirement has been met.

SmartRoads 2.0 must have at least the following features of SmartRoads 1.0
As mentioned in section section 7.1.2 all features mentioned in (ref to requirement) have been

successfully implemented into SmartRoads 2.0.

The SmartRoads 2.0 GUI must have better performance than SmartRoads 1.0
In order to assess whether this requirement was met, two test cases were written. The first

test case involves the user to enable all live data feeds that are present in both SmartRoads 1.0 and
SmartRoads 2.0 and traversing from Rotterdam to Amsterdam. The second test case involved doing
almost the same as the first test case except that the drip data feed was disabled and that the actions
were performed while replaying at 32 times speedup. Both applications were therefore profiled in
chrome on a virtual machine, which clearly showed the performance of both SmartRoads 1.0 and
SmartRoads 2.0 when performing similar operations.These results are visualized in fig. 8.1 and fig. 8.2.
The responsiveness of the UI can be represented by the amount of time it takes to zoom in or out on
the map, as this is a very basic and common use case. In SmartRoads 1.0 the amount of time it took to
zoom was 1.5 seconds before the UI responded and rerendered. This has been decreased to around
100ms and now is on the same level as [3]. This means an improvement of 93.33% was achieved and
can now compete with the industry standard.

Figure 8.1: Graph overview of table C.3

0The Drip data feed was disabled due to the insufficient performance of the external service that provides us with this data.
0A virtual machine with a 2 core CPU and 4GB of RAM



8.2. Requirements assessment 37

Figure 8.2: Stacked graph overview of table C.3

As seen in fig. 8.1 and fig. 8.2, SmartRoads 2.0 spends less time in every area except for ”Sys-
tem”. However, it appears that this area covers the time spent processing by chrome itself (including
the profiler). After profiling, the console showed the number of samples it was unable to save during
replay. The amounts of missed sampled were a lot higher in the profiling of SmartRoads 1.0, which
would correspond to the browser freezing several times during these profilings. Since these samples
are therefore written less frequently, it makes sense that SmartRoads 2.0 would spend more time writ-
ing sample data (causing the larger amount of time spent on ”System” actions. All in all, this shows
that the interface of SmartRoads 2.0 performs better on every aspect while also displaying more data.

The current replay function is too slow and performance replay1of 1 hour should increase by 60%
The replay of 1 hour takes 52.93 seconds in SmartRoads 2.0 whereas SmartRoads 1.0 takes

185.8 seconds. This can be calculated to be an increase of 71.51%. As the new replay has a buffer
at the start of the replay, the amount of time the buffer needs takes is relatively higher when the replay
replays less time. This means that the longer the period of time that is replayed, the less the buffer
time will be and thus the higher the percentage of improvement.

Database has multiple issues causing the retrieval of the needed traffic information being too slow.
This requirement consisted of two sub-requirements. The first sub-requirement being: ”The data

must be stored more efficiently e.g. smaller tables, more foreign keys and less duplicate information.”
and the second being: ”A lot of data collection and manipulation happens manually and must be au-
tomated.”. For the first requirement, a new database schema was designed. This schema is shown
in fig. 4.1. The second requirement requires SmartRoads 2.0 to automatically collect and manipulate
data which is achieved by using functionalities from SmartRoads.analytics as shown in section 4.4.
Therefore this requirement has been met as well.

This requirement consisted of four sub-requirements. The first requirement was ”The current replay
function is too slow and higher performance is required.”. This requirement has been met as can be
seen in figure 8.2, where ”case 2” refers to a benchmark case focused on measuring the performance
1with the following layers on: accidents, maintenance, obstructions and relative speed in Rotterdam and Amsterdam



38 8. Product evaluation

during replay. This figure clearly shows SmartRoads 2.0 spending less time performing every type of
task related to the system performance. The other sub-requirements …
Should have

SmartRoads 2.0 should have at least the same features as Analytics.SmartRoads
Of the three corresponding sub-requirements mentioned in appendix D, only ”Situational mes-

sages” was implemented. Due to the limited time and this requirement being labeled as a ”should have”
it was decided to neglect the other sub-requirements mentioned.

8.2.2. Requirements for new features
Must have

SmartRoads 2.0 must be able to display free-flow, speed and accidents of the entire road network
of the Netherlands

Whereas SmartRoads 1.0 was only able to display these features for the areas Rotterdam en
Amsterdam, SmartRoads 2.0 is able to display these features for the entire Netherlands. This imple-
mentation is described and shown in section 7.1.1.
Should have

A new design should make the updates of the road-network configuration file easier or even auto-
matic. An improved design should be introduced to reduce manual handling and the chance of errors.

As mentioned earlier in section 8.1.1, is this one of the requirements that wasn’t met. When
prioritizing the ”should have” requirements, the decision was made to exclude this feature. Because
this requirement has minimal influence on the actual functionality of SmartRoads 2.0 and solving this
requirement would only automate a currently manual process. However, during design, this require-
ment was kept in mind. This combined with the overall modular design should make it relatively easy
to implement a solution that satisfies this requirement.

SmartRoads 2.0 should retrieve, process, visualize and store other data feeds, that cover the entire
Netherlands(e.g. Waze), next to the NDW data.

Although SmartRoads 2.0 currently doesn’t ”retrieve, process, visualize and store” any other
data feeds, the back end of SmartRoads 2.0 is designed to become a SOA. This means that any other
feed can be added as a service via the gateway, more information about this can be found in chapter
2 form the LTE design document found in appendix I.

Introduce an addition tab ”Exceptional situations”. On the ”exceptional tab”, only the exceptional
situations which demand attention of the traffic operator will be shown.

This requirement hasn’t been met in SmartRoads 2.0 because of the challenge mentioned in
section 8.1.1. Since this requirement is more of an extension to the main features than a unique feature
on its own, it was decided to prioritize the requirements with a larger impact on the final product.

8.2.3. Requirements for in-house development
Must have

Make a new architecture design from the current architecture of Scenwise to a modular- or service-
based architecture.

This architecture design has been made and has been added as the LTE design as appendix I.
Therefore the requirement has been met.

Make a plan for future modules/services, such that a new student group or a developer from Scen-
wise knows how to integrate with the system.

As seen in I, a software development cycle has been defined for the future development of
SmartRoads 2.0. Therefore the requirement has been met.

SmartRoads 2.0 must have good code quality
This requirement consists of two sub-requirements. The first requirement being ”The code writ-

ten by us needs to have at least 80% test coverage.”. At the time of writing, is the line coverage as
follows for the three distinct components:

• Front end: 92.06%

• Gateway: 100.0%

• Parser: 89.0% (Although the requirement states that only the code written by the development
team needs at least 80% coverage, was the parser included as well, since more tests have been



8.2. Requirements assessment 39

implemented to create more trust in the external service.

Therefore, this sub-requirement has been met. The second sub-requirement was ”The code written by
us needs to be fully and clearly documented.”. This requirement has also been met by making the CI
pipeline check if all documentation is present and by failing the pipeline if documentation is missing.
Since all sub-requirements have been met, is this requirement met as well.

Back end must be built in a modular way, such that new features can be added easily in the future.
The back end of SmartRoads 2.0 is designed to become a SOA. This means that any feature

can be added as a service via the gateway, more information about this can be found in chapter 2
form the LTE design document found in appendix I. A SOA is inherently modular as each service is
decoupled from another.

Front end must become modular, in order to tailor software for distinct customers, without rewriting
existing functionality.

This requirement has been met by making use of React for the front end. React makes use
of components that can be swapped or reused, making the front end a modular application and thus
meeting this requirement.

Could have

As mentioned in 8.1.1, due to the uniqueness of the project, estimating the required time to re-
solve the issues corresponding to the requirements was more difficult than expected. The following
requirements were labeled as ”could have”.

• Implement Route planner as a module/service

• For the following future modules/services a custom integration plan should be created

• Implement the Authentication as a module/service.

Because these requirements were marked as ”could have” is missing resulting features not critical to
the main functionality of SmartRoads 2.0. Also, because the front end was designed modular, is the
implementation of these features aminimal effort. Even though these requirements were not met, is this
not considered to be of impact on whether SmartRoads 2.0 satisfies the requirements to be deemed a
proper solution to the posed problems.

8.2.4. Requirements to increase configurability
Could have

Implement the User profiling as a module/service.
Although the implementation currently does not include an authentication service, is the imple-

mentation a minimal effort for the developers. This is due to the modular implementation of the front
end in react, meaning the developers can use one of the many authentication modules available for
react. All in all, the implementation is a minimal effort in future development but the requirement made
was not met. Since this requirement was labeled as ”could have” has this minimal impact on the overall
functionality of SmartRoads 2.0.



40 8. Product evaluation

Figure 8.3: Graph overview2of table C.1

2drip-date is excluded to preserve the utility of the graph. The complete overview can be found in table C.1



9
Project Evaluation

This chapter will evaluate how the team carried out the project, which obstacles were overcome and
the satisfaction of the client. In addition, the ethical implications of the project will be considered.

9.1. Workflow evaluation
In this section, the workflow of the project will be evaluated. This project was done amid the COVID-
19 pandemic, and even in these exceptional times the project still went very smoothly. This can be
explained by the clear and concise guidelines the team created, as described in chapter 5. The team
needed to work completely autonomously, which means the team is not only responsible for delivering
a final product that lives up to the client’s expectations, but also for deciding on the process of achieving
this. This includes making decisions on workflow and research methodologies. Using knowledge and
experience gained in previous projects, the group chose to adopt the agile workflow SCRUM at the
start of the project (see section 5.1.1). The assigned SCRUM roles can be found in section 5.2.2. The
SCRUM approach combined with the Gitlab issue board turned out to be an excellent choice. With
a minimum of two meetings a day, as described in section 5.2, progress was tracked. This strategy
allowed every group member to actively stay informed of what each group member was doing, and
the overall state of the project. This was especially important considering the group was forced to
work from home due to the COVID-19 crisis. Another benefit of this strategy was that this enabled the
team to assign tasks fairly, balancing the workload evenly across all team members. Overall, the group
functioned efficiently and agrees that the project was successful in terms of the workflow process.

9.1.1. Inter group challenges
Due to the COVID-19 pandemic, the group was not able to meet in person. The challenge was to
keep close contact and keep each other well informed during the project. Using the communication
technologies described in section 5.2, the team was able to overcome this obstacle. Other than this,
there were no challenges or internal conflicts. The team thinks that the absence of any internal conflicts
is caused by the multiple daily meetings as described in section 5.2. Especially the final two points
on the agenda of the daily meeting, namely whether someone wanted to raise an additional point of
attention, and whether anyone wanted to share a personal matter.

9.2. Client satisfaction
The team beliefs that communication is key. How the team communicated with the client is described in
section 5.3.1. These guidelines made sure that every time an impact-full decision needed to be made,
the team contacted the client to inform him and ask his opinion on the matter. In close collaboration
with the client, the product requirements were reevaluated and prioritized again. The team placed
great value in keeping the client up to date and making sure the client always knew what was going
on. Keeping the client in the loop prevented any negative surprises for both parties. The client clearly
expressed that the team exceeded his expectations, even offering all the team members positions at
his company. Furthermore, he explicitly complemented the team’s communication skills.

41



42 9. Project Evaluation

9.3. Course of the project
In this section, the actual course of events during the project will be compared to the original planning
made by the team in the project plan. The original planning can be seen in the project planning, see
appendix G. In appendix F an overview of the actual course of events is shown.

In week one the team focused on understanding the project and what is expected of the team, es-
tablishing the workflow and meeting times, made agreements and solved many practical issues. This
week went according to the planning.

In the next week, the team focused on successfully running SmartRoads 1.0 and Analytics.SmartRoads
locally, and determining how to make the project scientific. This week mostly went according to the
planning. However, the project plan was handed in later than expected. This was done after consulting
the BEP coach, so even though this was a diversion of our initial planning, it did not cause any prob-
lems. The BEP coach let the team know this was fairly normal.

In the following weeks, the research report was handed in later than expected. The team decided
to not just start implementing the features proposed by the client but to take a step back and research
if the BEP assignment given by the client was the best way to help ScenWise as a company. This
caused the research phase to be longer than originally planned. This did not cause any problems be-
cause the team could successfully convince the client that the research stage is an essential part of this
project, even though it would take more time than the client initially expected before the first features
were implemented. Not following the initial planning created in week one turned out to be a very good
decision, because the extra research done caused the team to make the unique shift in approach as
described in section 2.1.

Due to this extended research phase, the team started programming in week 4, which was later
than expected. However, as stated above, this was not a problem because the client was always kept
in the loop. The team could also provide the client with new insights and previously unknown causes of
the problems ScenWise was facing. This new information showed the client the value of the research
phase, and gave the client the trust that the team was putting in enough work in the project.

The final phase of the project was implementing the requirements as specified in section 3.5.1. This
part of the project went according to the planning. The client expressed he was content with the pace
of which new features were added.

Apart from the research phase (and the research report as a consequence), the overall planning
was executed according to plan. The only difference was the moving of a SIG submission deadline by
the BEP coordinators, but these changes did not affect the development considerably.

9.4. Evaluation of Ethical implications
SmartRoads 2.0 only uses publicly available data. The source of this data is NDW. All NDW data is
anonymized. This is ensured by the privacy statement of the NDW [40]. Since all data is anonymized,
it is impossible to track a vehicle (or person).

Subjects that often bring about ethical concerns are prediction, classification or decision-making
mechanisms. However, none of these subjects concern SmartRoads 2.0. SmartRoads 2.0 does cal-
culate freeflow values. The freeflow value is the speed a car can drive at a particular road segment if
there is no traffic congestion. The team does not see any way this data could be harmful in any way.
Because the rest of SmartRoads 2.0 only visualizes data that is already publicly available, this makes
the risk of any negative ethical implications very small.



10
Conclusion

In order to assess whether SmartRoads 2.0 overcomes the limitations SmartRoads 1.0 faces, it is
essential to assess whether SmartRoads 2.0 does provide a solution to the problems posed in 2.2.

10.1. Success criteria assessment
Before a conclusion about the results of the project can be drawn, an assessment has to be made
whether all the success criteria stated in section 3.6 have been satisfied.

10.1.1. Documentation
In section 3.6, two success criteria related to the documentation are stated.

Front end, gateway, parser and database parts of the system should have a README
As can be seen in the Gitlab repository, all the mentioned components have a README included in
their root folder, thus this criteria has been met.

At least 80% of the methods should have descriptive comments
As mentioned in section 8.2.3, the pipeline used during development checks if every method, written
by the team, contains a descriptive documentation comment. Since the pipeline for the latest version
SmartRoads 2.0 has succeeded, is at least 80% of the methods commented. Thus this criteria has
been met.

10.1.2. Tests
All components should have at least 80% line coverage.
As shown in section 8.2.3, has every component at least 80% line coverage, thus this criteria has been
met as well.

10.1.3. Performance
Zooming on the map should take at least 80% less time
As mentioned in section 8.2.1 the responsiveness of the zoom functionality in the front end has in-
creased to the point it is the same as [3]. An improvement of 93.33% was achieved which satisfies the
success criteria. Replay of 1 hour1should take at least 60% less time
As mentioned in section 8.2.1 the performance of the replay has increased with 71.51% which satisfies
the success criteria.

10.1.4. Modularity
Front end: components that can be reused
By making use of React we satisfy this criteria.
Backend: gateway in place for all services to connect to

43



44 10. Conclusion

The designed back end SOA which can be found in the LTE design document in appendix I is inherently
modular. And the implemented gateway is implemented to connect to all the future services.

Category Success criteria Achieved

Documentation
Front end, gateway, parser and database

parts of the system should have a
README

Yes

Documentation At least 80% of the methods should have
descriptive comments Yes

Tests All components should have at least 80%
statement and 80% line coverage Yes

Performance Zooming on the map should take at least
80% less time Yes

Performance Replay of 1 hour2should take at least 60%
less time Yes

Modularity Back end: gateway in place for all services
to connect to Yes

Modularity Front end: components that can be reused Yes

Table 10.1: Success criteria

10.2. Conclusion
All in all, SmartRoads 2.0 is a valid solution for the problems posed in 2. This is based on the evaluations
in chapter 8 and chapter 9 and the assessment of the success criteria in section 10.1. Because all
criteria and all ”must have” requirements are met, all root causes are resolved (based on the research
performed in appendix H) and the verification that the problems have been resolved as well, is done
in chapter 8 and chapter 9. Thus SmartRoads 2.0 is the solution to the limitations and problems of
SmartRoads 1.0.



11
Recommendations

Thanks to the unique take on the project the group proposed during the problem analysis in chapter 2,
they were able to find solutions for not only problems concerning SmartRoads 1.0, but also for the initial
integration problems and software development lifecycle problems ScenWise had. This enables the
group to give a very broad scope of recommendation. This chapter discusses these recommendations
for both the future of the company and the created product.

11.1. Requirements
First and foremost, the requirements stated in section 8.2 that have not been finished should be fo-
cused on in the future. These requirements should be re-evaluated by ScenWise and prioritized as the
situation is subject to change.

11.2. Long-term evolution design
Should ScenWise adhere to the architecture of the LTE design document, then the possibilities become
endless. The mapped out architecture allows for the aforementioned requirements to be implemented
as well as extra features.

11.3. Improvements
11.3.1. Moving conversions from the front end to the backend
The performance of the front end can be optimized further by moving even more functionality to the
backend. To display a layer on the Mapbox map, the data that the layer uses needs to be converted to
the format supported by the Mapbox API. This format is called GeoJSON [41]. In the current version
of SmartRoads 2.0, these conversions are made in the front end. However, these conversions could
also be made in the backend. This would improve the performance of the front end, leading to shorter
loading times and thus making it more responsive.

11.3.2. Separate data in the Analytics.SmartRoads backend
In the current version of the Analytics.SmartRoads backend, the data needed to display the speedmap
(see section 7.1.4) is sent as one big response to the front end. This response contains both the co-
ordinates of all road segments, the calculated flow values, and the measured speed values. The latter
is updated every minute, but the coordinates of the road segments are static. The coordinate dataset
takes up the lion share of the response size.

In the backend of SmartRoads 1.0, both the measurements point layer (see section 7.1.7) and the
SR1 speed layer (see section 7.1.4) datasets have endpoints for requesting the needed coordinates
and measured live data separately. This enables SmartRoads 2.0 to only fetch the coordinates when
the front end is loaded and to update the layer every minute only the measurement need to be fetched
again every minute. This reduces loading time significantly and also provides a significant boost in the

45



46 11. Recommendations

replay performance of said layers.

This same principle can easily be added to the backend of Analytics.SmartRoads, however, this
was out of the scope of this project.

11.3.3. Support iPhones
Currently, SmartRoads 2.0 supports android devices but does not work properly on iPhones. The team
expects this to be simple and easy to fix the platform-specific issue. This was never solved because, at
the time of writing, the client is not interested in supporting mobile devices. However, when the client
realizes that the application can run smoothly on mobile devices, it is recommended to fix this issue.

11.4. Extra features
These sections describe extra features that are out of the scope of this project but could still be valuable
to the company. Some suggestions to possibly valuable features are also made.

11.4.1. New services
The created software architecture provides the option to make use of services. Such services, like the
created parser service, can be added in a modular way. This means a separate feature can be added
through the backend without any complications. These new services add a lot of variety to the product
and make the product easily maintainable, scalable and customizable.

11.4.2. User accounts
ScenWise is ever-expanding and needs to tailor to more and more clients. These clients, however,
can vary a lot which could form a problem. User profiling is a way to counter this problem by giving
each specific client their own set of tools out of the whole application to work with. This allows for
more customization and a broader scope of potential clients. There should also be a login service,
to distinguish the clients and provide security, which can be created using the newly created software
architecture.

11.4.3. Event-driven communication
Event-driven communication is ideal for live-data purposes. It is recommended such a system is in
place for communication between the services. This is explained in more detail in in chapter 4 of the
LTE design document in appendix I.

11.4.4. Server-sent events
With the implementation of event-driven communication between the services in the back end. It would
be of great value to transform the connection between back end and front end to server-sent events.
This will ensure the most recent available data is as fast as possible available to the users. These
events can be expanded to only send the deltas in the data to minimize the amount of data that has to
be transferred.

11.4.5. Kubernetes, Docker Swarm
To utilize the SOA to its full potential a container orchestra software should be implemented. A con-
tainer orchestra enables automatic scaling based on the load the system receives. Also, the automatic
deployment of new versions of services will be provided by this software. This could be a BEP project
on its own.



Bibliography
[1] W. J. Gilmore and R. H. Treat, “Introducing postgresql”, Beginning PHP and PostgreSQL 8: From

Novice to Professional, pp. 573–577, 2006.
[2] AngularJs,Angularjs api, Accessed: 2020-5-5, 2020. [Online]. Available: https://angularjs.

org/.
[3] The google-maps platform, Accessed: 2020-5-8, 2020. [Online]. Available: https://developers.

google.com/maps/documentation.
[4] ReactJS, A javascript library for building user interfaces, Accessed: 2020-5-5, 2020. [Online].

Available: https://reactjs.org/.
[5] M. Richards, Software architecture patterns by mark richards, Feb. 2015. [Online]. Available:

https://www.oreilly.com/library/view/software-architecture-patterns/
9781491971437/.

[6] Kong gateway, Accessed: 2020-5-8. [Online]. Available: https://konghq.com/kong/.
[7] Spring cloud gateway, Accessed: 2020-5-8. [Online]. Available: https://spring.io/projects/

spring-cloud-gateway.
[8] Openapi, Accessed: 2020-6-24. [Online]. Available: https://swagger.io/specification/.
[9] Anonymous, Stack overflow developer survey 2019, Accessed: 2020-5-5, 2019. [Online]. Avail-

able: https://insights.stackoverflow.com/survey/2019#technology.
[10] R. Bootstrap,React bootstrap, Accessed: 2020-5-5, 2020. [Online]. Available: https://react-

bootstrap.github.io/.
[11] React, Adding bootstrap. [Online]. Available: https://create-react-app.dev/docs/

adding-bootstrap/ (visited on 06/17/2020).
[12] Mapbox gl js api, Accessed: 2020-5-8, 2020.
[13] Mapping and analysis: Location intelligence for everyone, Accessed: 2020-5-8, 2020.
[14] Deck.gl, Deck.gl, Accessed: 2020-5-6, 2020. [Online]. Available: https://deck.gl/.
[15] Postgres documentation, Accessed: 2020-4-30. [Online]. Available: https://www.postgresql.

org/docs/.
[16] Google sheets, Accessed: 2020-6-24. [Online]. Available: https://www.google.nl/intl/

nl/sheets/about/.
[17] Discord, Accessed: 2020-6-24. [Online]. Available: https://discord.com.
[18] Google docs, Accessed: 2020-6-24. [Online]. Available: https://www.google.nl/intl/

nl/docs/about/.
[19] Google drive, Accessed: 2020-6-24. [Online]. Available: https://www.google.com/intl/

nl_ALL/drive/.
[20] Whatsapp, Accessed: 2020-6-24. [Online]. Available: https://www.whatsapp.com/.
[21] Skype, Accessed: 2020-6-24. [Online]. Available: https://www.skype.com/.
[22] Eslint, Accessed: 2020-6-24. [Online]. Available: https://eslint.org/.
[23] Java, Accessed: 2020-6-24. [Online]. Available: https://www.java.com/nl/about/

whatis_java.jsp.
[24] Google checkstyle, Accessed: 2020-6-24. [Online]. Available: http://google.github.io/

styleguide/javaguide.html.
[25] Spotbugs, Accessed: 2020-6-24. [Online]. Available: https://spotbugs.github.io/.

47

https://angularjs.org/
https://angularjs.org/
https://developers.google.com/maps/documentation
https://developers.google.com/maps/documentation
https://reactjs.org/
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/
https://konghq.com/kong/
https://spring.io/projects/spring-cloud-gateway
https://spring.io/projects/spring-cloud-gateway
https://swagger.io/specification/
https://insights.stackoverflow.com/survey/2019#technology
https://react-bootstrap.github.io/
https://react-bootstrap.github.io/
https://create-react-app.dev/docs/adding-bootstrap/
https://create-react-app.dev/docs/adding-bootstrap/
https://deck.gl/
https://www.postgresql.org/docs/
https://www.postgresql.org/docs/
https://www.google.nl/intl/nl/sheets/about/
https://www.google.nl/intl/nl/sheets/about/
https://discord.com
https://www.google.nl/intl/nl/docs/about/
https://www.google.nl/intl/nl/docs/about/
https://www.google.com/intl/nl_ALL/drive/
https://www.google.com/intl/nl_ALL/drive/
https://www.whatsapp.com/
https://www.skype.com/
https://eslint.org/
https://www.java.com/nl/about/whatis_java.jsp
https://www.java.com/nl/about/whatis_java.jsp
http://google.github.io/styleguide/javaguide.html
http://google.github.io/styleguide/javaguide.html
https://spotbugs.github.io/


48 Bibliography

[26] Pmd, Accessed: 2020-6-24. [Online]. Available: https://pmd.github.io/.
[27] Swagger, Accessed: 2020-6-24. [Online]. Available: https://swagger.io.
[28] Stoplight, Spectral, Accessed: 2020-6-22, 2020. [Online]. Available: https://stoplight.

io/open-source/spectral/.
[29] Gitlab, Accessed: 2020-6-24. [Online]. Available: https://about.gitlab.com/.
[30] Docker, Docker. [Online]. Available: https://www.docker.com/ (visited on 06/18/2020).
[31] Snapshot testing - jest, Accessed: 2020-5-5, 2020. [Online]. Available: https : / / react -

bootstrap.github.io/.
[32] Jest, Accessed: 2020-5-5, 2020. [Online]. Available: https://jestjs.io/.
[33] Enzyme, Accessed: 2020-5-5, 2020. [Online]. Available: https://jestjs.io/docs/en/

snapshot-testing.
[34] M. Fowler, Integrationtest, martinFowler.com, Jan. 2018. [Online]. Available: https://martinfowler.

com/bliki/IntegrationTest.html (visited on 06/22/2020).
[35] Postman,Postman. [Online]. Available: https://www.postman.com/ (visited on 06/17/2020).
[36] MatterMost,Mattermost, Accessed: 2020-6-21, 2020. [Online]. Available: https://mattermost.

com/product/.
[37] Apex charts documentation, Accessed: 2020-6-23. [Online]. Available: https://apexcharts.

com/docs/options/annotations/#.
[38] Spring framework documentation, Accessed: 2020-4-30. [Online]. Available: https://docs.

spring.io/spring/docs/current/spring-framework-reference/index.html.
[39] MDN, Cross-origin resource sharing, Accessed: 2020-6-24, 2019. [Online]. Available: https:

//developer.mozilla.org/nl/docs/Web/HTTP/CORS.
[40] NDW, Privacyreglement ndw, Accessed: 2020-5-19, 2018. [Online]. Available: http://www.

ndw.nu/downloaddocument/834642063e0ab6c3bc55ffed54e494c4/Privacyreglement%
5C%5C%5C%20NDW.pdf.

[41] Geojson, Accessed: 2020-5-5, 2020. [Online]. Available: https://geojson.org/.
[42] Google,Waze, Accessed: 2020-5-5, 2020. [Online]. Available: https://developers.google.

com/waze.

https://pmd.github.io/
https://swagger.io
https://stoplight.io/open-source/spectral/
https://stoplight.io/open-source/spectral/
https://about.gitlab.com/
https://www.docker.com/
https://react-bootstrap.github.io/
https://react-bootstrap.github.io/
https://jestjs.io/
https://jestjs.io/docs/en/snapshot-testing
https://jestjs.io/docs/en/snapshot-testing
https://martinfowler.com/bliki/IntegrationTest.html
https://martinfowler.com/bliki/IntegrationTest.html
https://www.postman.com/
https://mattermost.com/product/
https://mattermost.com/product/
https://apexcharts.com/docs/options/annotations/#
https://apexcharts.com/docs/options/annotations/#
https://docs.spring.io/spring/docs/current/spring-framework-reference/index.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/index.html
https://developer.mozilla.org/nl/docs/Web/HTTP/CORS
https://developer.mozilla.org/nl/docs/Web/HTTP/CORS
http://www.ndw.nu/downloaddocument/834642063e0ab6c3bc55ffed54e494c4/Privacyreglement%5C%5C%5C%20NDW.pdf
http://www.ndw.nu/downloaddocument/834642063e0ab6c3bc55ffed54e494c4/Privacyreglement%5C%5C%5C%20NDW.pdf
http://www.ndw.nu/downloaddocument/834642063e0ab6c3bc55ffed54e494c4/Privacyreglement%5C%5C%5C%20NDW.pdf
https://geojson.org/
https://developers.google.com/waze
https://developers.google.com/waze


Glossary
agile Software development methodology centered around the idea of iterative development. 16

Analytics.SmartRoads The application developed by a BEP group1 in 2019 to improve on SmartRoads
1.0. vi, 9, 11, 13, 15, 27, 35, 42, 45, 46

back end Relating to or denoting the part of a computer system or application that is not directly ac-
cessed by the user, typically responsible for storing and manipulating data. iv, 2, 9–12, 14, 32,
34, 35, 38, 39, 44, 46, 62, 66

Continuous Deployment Continuous deployment refers to automatically releasing a developer’s changes
from the repository to production, where it is usable by customers. It addresses the problem of
overloading operations teams with manual processes that slow down app delivery. It builds on
the benefits of continuous delivery by automating the next stage in the pipeline.. 20

Continuous Integration Continuous integration is an automation process for developers. Success-
ful CI means new code changes to an app are regularly built, tested, and merged to a shared
repository. It’s a solution to the problem of having too many branches of an app in development
at once that might conflict with each other. . 17, 20

Continuous Integration & Continuous Deployment The CI in CI/CD always refers to continuous
integration, which is an automation process for developers. Successful CI means new code
changes to an app are regularly built, tested, and merged to a shared repository. It’s a solution
to the problem of having too many branches of an app in development at once that might conflict
with each other. Continuous deployment refers to automatically releasing a developer’s changes
from the repository to production, where it is usable by customers. It addresses the problem of
overloading operations teams with manual processes that slow down app delivery. It builds on
the benefits of continuous delivery by automating the next stage in the pipeline.. 20, 51

database A structured set of data held in a computer, especially one that is accessible in various ways.
iv, 9–12, 15, 33, 34, 43, 44

develop branch The branch for the development stage. 16

Discord Software application for video and audio communication. 17

Entity Relationship Diagram Entity Relationship Diagram, also known as ERD, ER Diagram or ER
model, is a type of structural diagram for use in database design. An ERD contains different
symbols and connectors that visualize two important information: The major entities within the
system scope, and the inter-relationships among these entities. . 9, 51

Feyenoord Dutch football club located in Rotterdam. 1

framework An abstraction in which software providing generic functionality can be selectively changed
by additional user-written code. 11, 14

front end Relating to or denoting the part of a computer system or application with which the user
interacts directly. iv, vi, 2, 10–12, 14, 20, 21, 24, 35, 43–46, 58, 60, 62, 64, 66

Gitlab issue board A board containing the issues on the backlog provided by Gitlab [29]. 16, 41
1https://repository.tudelft.nl/islandora/object/uuid%3A1f39c7d1-7cbe-4985-a032-5ea71d5daa49?
collection=education

49

https://repository.tudelft.nl/islandora/object/uuid%3A1f39c7d1-7cbe-4985-a032-5ea71d5daa49?collection=education
https://repository.tudelft.nl/islandora/object/uuid%3A1f39c7d1-7cbe-4985-a032-5ea71d5daa49?collection=education


50 Glossary

Google Drive A shared file storage and synchronization service. 17, 18

master branch The branch for the deployement of the code. 17

merge request Merge requests allow you to visualize and collaborate on the proposed changes to
source code that exist as commits on a given Git branch. A Merge Request (MR) is the basis of
GitLab as a code collaboration and version control platform. It’s exactly as the name implies: a
request to merge one branch into another . 17, 20

PostgreSQL PostgreSQL is a powerful, open source object-relational database system that uses and
extends the SQL language combined with many features that safely store and scale the most
complicated data workloads . 9

repository A central location in which data is stored and managed. 11

Rijkswaterstaat The Dutch Highway Agency. 1

service Software functionality with the purpose of clients being able to reuse it for different purposes..
13, 21, 22

SIG Stands for Software Improvement Group, an institute focused on analysing software maintainabil-
ity. 22, 23, 42

SmartRoads 1.0 An application developed by Scenwise for traffic engineers to monitor the traffic sit-
uation. ii, iii, 2, 4, 8–11, 14, 15, 26, 27, 32, 33, 35–37, 42, 45, 49, 50

SmartRoads 2.0 The developed product of this BEP, a newer version of SmartRoads 1.0. iii, 2, 3, 8,
18, 20, 32, 34–36, 38, 39, 45, 46



Acronyms
API Application Programming Interface. iii–v, 9, 13–15, 22, 32, 33, 35, 57, 67

CI/CD Continuous Integration & Continuous Deployment. 20, 22

CORS Cross-Origin Resource Sharing. 35

DRIP Dynamisch Route-informatiepaneel. 27

ERD Entity Relationship Diagram. 9, 15

LOC Lines of Code. 19

LTE Long-term evolution. iii, 13, 14, 26, 32, 34, 38, 39, 44–46

MSI Matrix Signaalgever. 27

NDW Nationale Databank Wegverkeersgegevens. 1, 9, 27, 34, 35, 42

SOA Service-oriented architecture. iii, 13–15, 33, 38, 39, 44, 46

SWOT-analysis Strengths Weaknesses Opportunities and Threats analysis. 2, 3

51



A
Info Sheet

52



53

Figure A.1: Caption



B
ProjectForum Description

Company Background
Scenwise B.V. is company with a lots of experience in Data Science & smart mobility domain. We work
together with our partners to develop innovative software for the domains:

• traffic management (e.g. automatic incident detection, response plans, etc.)

• data science (e.g. traffic monitoring, data fusion, Big Data, Machine Learning)

Our customers are the Dutch Highway Agency (Rijkswaterstaat), Nationale DatabankWegverkeers-
gegevens (NDW), provinces, large cities, ITS system suppliers, Feyenoord stadium and recently also
the city of Edmonton in Canada.

Project description
Scenwise has developed the SmartRoads platform. SmartRoads is used by our customers for moni-
toring and analyse traffic situations. For example:

• Feyenoord Stadium uses SmartRoads to monitor the traffic during a day with football match;

• Rijkswaterstaat uses SmartRoads for road-tests of Driving Automation.

Scenwise intends to extend the functionalities of SmartRoads to support a wide range of customers.
For this reason, we start a new project to rebuild SmartRoads. The development will include:

1. Flexible web-interface supporting differentmaps layers (e.g. GoogleMaps, ESRI, OpenStreetmaps,
Mapbox, etc.);

2. Big Data back-end incorporating a wide range of Open Data and proprietary data;

3. Real-time data analyse functionalities;

4. High performance replay-function;

5. Interface with Decision Support Applications (e.g. Automatic Accident Warning);

6. Interface with mobile apps to provide traveller advises.

Within this project, a team of students will work together to conduct research, make design deci-
sions, develop the application inclusive testing. The back-end should be a new big data platform using
different data sources. The front-end should be web-based using modern graphical interfaces which
different real-time graphics to provide adequate information to the end-users. This is an innovative
project with a lots of technical challenges.

We are looking for enthusiastic students with skills and interest in database techniques, data pro-
cessing, geographical information systems (GIS), visualization techniques and algorithms who are will-
ing to take the challenge of developing a new platform to meet the upcoming requirements of our
customers.

54



55

Scenwise will provide detailed information for making design decisions and guidance in making
both the technical designs and the graphical interfaces designs. Setting up test scenario’s for software
acceptance is also a part of the project. Since this is a new development, there are enough rooms for
the project team to make design decisions. If the project team is familiar with Java Spring (back-end),
PostgreSQL, Python, React or Angular (front-end), then they may re-use part of the current source
code.



C
Evaluation Success Criteria

56



HTTP
method API Call Response

size Speedmaps time Analytics time Gateway time

POST activate-telpunten 206B 15ms

POST compute-critical-density 205B 16ms

PUT show-monica 177B 19ms

GET drip-all 568.23KB 139ms 143ms

GET status 268.72KB 458ms 465ms

GET freeflow-grt 138.53KB 43ms

GET init-map-data 60.2MB 1217ms 868ms

GET intensity-history 13.06KB 81ms

GET msi 3.19MB 609ms 636ms

GET msi-relations 13.22MB 2630ms

GET parking-availability 13.78KB 16ms

GET car-data 260B 19ms

GET traffic-speed 139.47KB 465ms 462ms

GET traveltime-history 20.55KB 57ms

GET traveltimes 136.15KB 632ms 663ms

GET traveltimes-avg-history 38.79KB 1804ms

POST roads/traject 37.01MB 3.59s 3.7s

POST roads/point 16.79MB 1215ms 1071ms

GET drip-date/date 575.21KB 46s

GET msi?date= 3.41MB 706ms 777ms

GET traveltimes?date= 137.03KB 886ms

GET status?date= 351.51 KB 601ms 752ms

GET traffic-speed?date= 139.47KB 2.3s 2.16s

POST roads/traject?date= 36.97MB 3.87s 4.85s

POST roads/point?date= 16.82MB 1331ms 1050ms

Table C.1: API calls and their response times

57



Profiler
Category SR1.0 - Case 1 SR1.0 - Case 2 SR2.0 - Case 1 SR2.0 - Case 2

Loading 158ms 222ms 14ms 22ms

Scripting 34182ms 36832ms 15742ms 32824ms

Rendering 6618ms 5791ms 548ms 858ms

Painting 1223ms 1316ms 708ms 1272ms

System 11256ms 15337ms 36314ms 52755ms

Idle 12168ms 9830ms 8088ms 15238ms

Total 65605ms 69328ms 61414ms 102969ms

Table C.2: Front end absolute performance

Profiler
Category SR1.0 - Case 1 SR1.0 - Case 2 SR2.0 - Case 1 SR2.0 - Case 2

Loading 0,24% 0,32% 0,02% 0,02%

Scripting 52,10% 53,13% 25,63% 31,88%

Rendering 10,09% 8,35% 0,89% 0,83%

Painting 1,86% 1,90% 1,16% 1,24%

System 17,16% 22,12% 59,13% 51,23%

Idle 18,55% 14,18% 13,17% 14,80%

Total 100,00% 100,00% 100,00% 100,00%

Table C.3: Front end relative performance

58



D
MoSCoW Requirements

59



Requirements to increase performance Design Goal MoSCoW
classification

SmartRoads 2.0 must be able to retrieve the following datas-
treams from The Nationale Databank Wegverkeersgegevens
(NDW):

• The NDW ”incidents” stream 1

• The NDW ”measurement” stream 2

• The NDW ”Wegwerkzaamheden” stream 3

• The NDW ”trafficspeed” stream 4

• The NDW ”traveltime” stream 5

• The NDW ”Matrixsignaalinformatie” stream 6

Must have

The SmartRoads 2.0 GUI must have better performance than
SmartRoads 1.0.

• Rendering of data on the map needs better performance
e.g. retrieved and rendered within 1 minute.

• To achieve this we need to apply component rendering
instead of rendering complete front end

• To achieve this the front end must only request what can
be seen by the user

Performance Must have

The current replay function is too slow and performance re-
play7of 1 hour should increase by 60%

Performance Must have

Database has multiple issues causing the retrieval of the
needed traffic information being too slow. The following re-
quirements will solve it:

• The data must be stored more efficiently e.g. smaller
tables, more foreign keys and less duplicate information.

• A lot of data collection and manipulation happens man-
ually and must be automated.

Performance Must have

Table D.1: List of requirements which aim to increase the performance of SmartRoads, along with their corresponding design
goal and importance

60



Requirements to increase performance Design Goal MoSCoW
classification

SmartRoads 2.0 should have at least the same features as
Analytics.SmartRoads features:

• Situational messages.

• Implement analytics contour plot.

• Implement analytics cloud plot.

Should have

SmartRoads 2.0 must have at least the following features of
SmartRoads 1.0:

• The DRIP layer

• The MSI layer, with different zoom levels

• The measurement point layer, with option to display only
critical points.

• The relative speed layer (Rotterdam and Amsterdam)

• The measurement speed history graph for every road
segment

• The measurement point history graph for every mea-
surement point

Must have

Table D.2: List of requirements which aim to increase the performance of SmartRoads, along with their corresponding design
goal and importance (part 2)

Requirements for new features Design Goal MoSCoW
classification

A new design should make the updates of the road-network
configuration file easier or even automatic. An improved de-
sign should be introduced to reduce manual handling and the
chance of errors.

Should have

SmartRoads 2.0 must be able to display free-flow, speed and
accidents of the entire road network of the Netherlands

Performance & Scalability Must have

SmartRoads 2.0 should retrieve, process, visualize and store
other data feeds, that cover the entire Netherlands (e.g. Waze
[42]), next to the NDW data.

Should have

Introduce an addition tab ”Exceptional situations”. On the ”ex-
ceptional tab”, only the exceptional situations which demand
attention of the traffic operator will be shown.

Should have

Table D.3: List of requirements which are about implementing new features, along with their corresponding design goal and
importance

61



Requirements for in-house development Design Goal MoSCoW
classification

Make a new architecture design from the current architecture
of Scenwise to a modular- or service-based architecture.

Maintainability Must have

Make a plan for future modules/services, such that a new stu-
dent group or a developer from Scenwise knows how to inte-
grate with the system.

Maintainability Must have

SmartRoads 2.0 must have good code quality.

• The code written by us needs to have at least an 80%
test coverage.

• The code written by us needs to be fully and clearly doc-
umented.

Maintainability Must have

Back end must be built in a modular way, such that new fea-
tures can be added easily in the future.

Maintainability Must have

Front end must become modular, in order to tailor software for
distinct customers, without rewriting existing functionality.

Maintainability Must have

Implement Route planner as a module/service. Maintainability Could have

For the following futuremodules/services a custom integration
plan should be created.

• Authentication.

• User Profiling.

• Route Planner.

• Automatic Accident Detection.

• Scenario Designer.

• Traffic Light Analytics.

Could have

Implement the Authentication as a module/service. Maintainability Could have

Table D.4: List of requirements which aim to ease in-house development, along with their corresponding design goal and
importance

Requirements to make it more configurable to customers Design Goal MoSCoW
classification

Implement the User profiling as a module/service.

• Add user profiles, with settings per profile.

• Users should be able to temporarily change the settings
of his/her user profile.

Maintainability Could have

Table D.5: List of requirements which aim to make SmartRoads more configurable to customers of Scenwise, along with their
corresponding design goal and importance

62



E
MoSCoW Evaluation

Requirements for new features MoSCoW classification Fulfilled?

A new design should make the updates of the road-network
configuration file easier or even automatic. An improved de-
sign should be introduced to reduce manual handling and the
chance of errors.

Should have No

SmartRoads 2.0 must be able to display free-flow, speed and
accidents of the entire road network of the Netherlands

Must have Yes

SmartRoads 2.0 should retrieve, process, visualize and store
other data feeds, that cover the entire Netherlands (e.g. Waze
[42]), next to the NDW data.

Should have No

Introduce an addition tab ”Exceptional situations”. On the ”ex-
ceptional tab”, only the exceptional situations which demand
attention of the traffic operator will be shown.

Should have No

Table E.1: List of requirements which are about implementing new features, along with their corresponding design goal and
importance

7with the following layers on: accidents, maintenance, obstructions and relative speed in Rotterdam and Amsterdam

63



Requirements to increase performance MoSCoW classification Fulfilled?

SmartRoads 2.0 must be able to retrieve the following datas-
treams from The Nationale Databank Wegverkeersgegevens
(NDW):

• The NDW ”incidents” stream 1

• The NDW ”measurement” stream 2

• The NDW ”Wegwerkzaamheden” stream 3

• The NDW ”trafficspeed” stream 4

• The NDW ”traveltime” stream 5

• The NDW ”Matrixsignaalinformatie” stream 6

Must have Yes

SmartRoads 2.0 must have at least the following features of
SmartRoads 1.0:

• The DRIP layer

• The MSI layer, with different zoom levels

• The measurement point layer, with option to display only
critical points.

• The relative speed layer (Rotterdam and Amsterdam)

• The measurement speed history graph for every road
segment

• The measurement point history graph for every mea-
surement point

Must have Yes

SmartRoads 2.0 should have at least the same features as
Analytics.SmartRoads features:

• Situational messages.

• Implement analytics contour plot.

• Implement analytics cloud plot.

Should have
Partly, only the
situational
messages

The SmartRoads 2.0 GUI must have better performance than
SmartRoads 1.0.

• Rendering of data on the map needs better performance
e.g. retrieved and rendered within 1 minute.

• To achieve this we need to apply component rendering
instead of rendering complete front end

• To achieve this the front end must only request what can
be seen by the user

Must have Yes

Table E.2: List of requirements which aim to increase the performance of SmartRoads, along with their corresponding design
goal and importance (part 1)

64



Requirements to increase performance MoSCoW classification Fulfilled?

The current replay function is too slow and performance re-
play7of 1 hour should increase by 60%

Must have Yes

Database has multiple issues causing the retrieval of the
needed traffic information being too slow. The following re-
quirements will solve it:

• The data must be stored more efficiently e.g. smaller
tables, more foreign keys and less duplicate information.

• A lot of data collection and manipulation happens man-
ually and must be automated.

Must have Yes

Table E.3: List of requirements which aim to increase the performance of SmartRoads, along with their corresponding design
goal and importance (part 2)

65



Requirements for in-house development and maintain-
ability

MoSCoW classification Fulfilled?

Make a new architecture design from the current architecture
of Scenwise to a modular- or service-based architecture.

Must have Yes

Make a plan for future modules/services, such that a new stu-
dent group or a developer from Scenwise knows how to inte-
grate with the system.

Must have Yes

SmartRoads 2.0 must have good code quality.

• The code written by us needs to have at least an 80%
test coverage.

• The code written by us needs to be fully and clearly doc-
umented.

Must have Yes

Back end must be built in a modular way, such that new fea-
tures can be added easily in the future.

Must have Yes (Gateway)

Front end must become modular, in order to tailor software for
distinct customers, without rewriting existing functionality.

Must have Yes

Implement Route planner as a module/service. Could have No

For the following future modules/services a custom integration
plan should be created.

• Authentication.

• User Profiling.

• Route Planner.

• Automatic Accident Detection.

• Scenario Designer.

• Traffic Light Analytics.

Could have No

Implement the Authentication as a module/service. Could have No

Table E.4: List of requirements which aim to ease in-house development, along with their corresponding design goal and
importance

Requirements to make it more configurable to customers MoSCoW classification Fulfilled?

Implement the User profiling as a module/service.

• Add user profiles, with settings per profile.

• Users should be able to temporarily change the settings
of his/her user profile.

Could have No

Table E.5: List of requirements which aim to make SmartRoads more configurable to customers of Scenwise, along with their
corresponding design goal and importance

66



F
Course of events

Week Date Worked on Deliverable

4.1 20-04 - 26-04

Meeting with client,
orientation on

technologies, code &
possible solutions

4.2 27-04 - 03-05

Setup project, research
possible solutions in

detail and start research
report

Project plan

4.3 04-05 - 10-05
Perform measurement
research & Set-up new
architecture design

4.4 11-05 - 17-05

Parser, set-up database,
development map view,
prototype first steps of the
new architecture design

Research report

4.5 18-05 - 24-05
Develop API and start

visualizing data feeds on
map view

Decide which parts of the new
architecture design we are

going to implement.

4.6 25-06 - 31-05

Development faster
replay functionality,

visualize the entire road
network of the

Netherlands (speed and
accidents)

First SIG code submission

4.7 01-06 - 07-06 further development

4.8 08-06 - 14-06
Incorporate feedback

from SIG & Finish faster
replay functionality

4.9 15-06 - 21-06 Start final report & Finish
Architecture design Second SIG code submission

4.10 22-06 - 28-06
Prepare presentation &
Finish final report &

Finishing up development

Final report & Architecture
design

4.11 29-06 - 01-07 Finishing up development
& Prepare presentation Final presentation

Table F.1: The actual course of events, as opposed to the planning

67



G
Project Plan

68



SmartRoads 2.0
Project Plan

by

J.L. Buijnsters 4598733
D. Hofman 4688988
J.G.P. Klein Kranenbarg 4586387
C. el Moussaoui 4609395
K. Zheng 4698290

Project duration: April 20, 2020 – June 28, 2020
Supervisors: Dr.ir. H. Wang, TU Delft, BEP Coordinator

Ir. O.W. Visser, TU Delft, BEP Coordinator
Dr.ir. B.H.M. Gerritsen Coach
Ir. K. F. Chan Client



Contents

1 Company background 1

2 Problem analysis 2
2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Change of project definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.4 Research plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Approach 7
3.1 Planning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Work-style. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3.1 Roles in the team. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.2 Communication types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.3 Other services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Quality control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Client and TU coach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.6 Agreements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Bibliography 11

A ProjectForum Description 12

B Internship Agreement 14

ii



1
Company background

Scenwise1 is a small company with big dreams. Their mission is: Organizing all available data within
the reach of the traffic management domain. They want to make this data uniform, accessible and
usable. With this ambitious and inspiring goal, they help their clients to develop high-quality applica-
tions and services. They do this on behalf of their clients, through the secondment of their software
development tracks. Scenwise has a large network of experienced professionals. They work together
with their partners to carry out large assignments. Scenwise also develops innovative applications and
services in collaboration with its business partners. An example of this is the ScenarioVerkenner® for
the automation of control scenarios. This algorithm will soon be rolled out to the road authorities in
North Holland.

1https://www.scenwise.com/

1



2
Problem analysis

2.1. Problem definition
Scenwise has developed the SmartRoads platform. This platform is used by its customers for moni-
toring and analyzing traffic situations. Scenwise intends to both solve currently existing performance
issues, add more functionalities to SmartRoads to support a wider range of customers. Multiple similar
web applications are currently being sold by Scenwise, with different extra features depending on the
demands of the customer.

After the initial meeting with the client and subsequent meetings with both client and their developer,
we were able to get a more detailed insight into the company. All of their solutions share the same base
functionality, but all of them have been built from the ground up. This approach to software development
is inefficient and indicates a lack of modularity in their software. This means they would greatly benefit
from making their code-base modular and thus easily reusable. Currently, it is hard for them to reuse
code because their applications are not modular, have little to no tests and are not properly documented.

The goal of this project is to create SmartRoads 2.0. This new platform has to have all features of
SmartRoads 1.0, plus some extra features specified by Scenwise. More importantly, SmartRoads 2.0
needs to solve the more fundamental problems of SmartRoads 1.0. This means that the platform is
designed with modularity as a core value, the code is tested and properly documented. This ensures
that the code can easily be reused in the numerous web applications used by Scenwise and further
improved by other developers.

2.2. Change of project definition
The original problem description on the ProjectForum (see appendix A) was already altered in an early
stage of the project. At the start of the project, Scenwise supplied a list of features SmartRoads 2.0
should include. In the first week, it was already clear that simply adding these features to SmartRoads
1.0 lacked a research component, which is required by the TU Delft. The team then noticed more
fundamental issues within Scenwise and started researching these issues. Furthermore, Scenwise
turned out to already have a new version of SmartRoads 1.0 made by a BEP carried out last year.
However, this version is not being used because some features are missing and the layout did not
correspond with the previous application. The team intends to research the possibility of building further
on top of this platform instead of SmartRoads 1.0, as it might turn out to have a superior code quality.
After a Skype meeting, the client was convinced of the added value of this research.

2.3. Requirements
Requirements from Scenwise
Scenwise wants us to develop a new platform that incorporates both the features of the old SmartRoads
and various new features.

SmartRoads has the following features:

• Display data from various sources concerning road usage.

2



2.3. Requirements 3

• Perform calculations on the data and display these.

• Generate a replay.

The following new features have to be added:

• The new application has to have better performance in all aspects.

• Make updating the road configuration easier or automated, this includes calculating free-flow and
capacity for the new road segments.

• User accounts with different access rights.

• An improved overview of the Situation messages.

• Add a tab Exceptional Situations that only displays abnormal data, that requires action from traffic
regulators.

• Automatic accident detection not based on users reporting implemented into the Exceptional
Situations tab.

• Implement GPS tracking of a phone app, which can continue when the GPS signal is lost tem-
porarily.

• Implement the innovative visualization features found in Analytics.SmartRoads made by a previ-
ous BEP group.

Scenwise stresses that they want to see a working product at the end of the project, otherwise they
consider it a failed project. This working product does not have to have all the aforementioned features,
but at least the following features:

• Display data from various sources concerning road usage for the whole of the Netherlands within
1 minute.

• Perform calculations on the data and display these for the whole of the Netherlands within 1
minute.

• Generate a faster replay.

Requirements from TU Delft
The TUDelft requires a certain degree of Software engineering and a research component. The degree
of software engineering is measured in four different areas according to the general guide [2], namely:
Software development cycle execution, Proper use of development strategies, Quality assurance and
justification and explanation of process and results.

To comply with the research component, we intend to not only research the provided requirements
but also how we can develop our solution in such a way that it can contribute to more efficient software
development at Scenwise as a whole. We chose to broaden the scope of our project in this way,
because there is room for improvement in the said area, and the team agreed with Scenwise that this
way the team can provide the most value for the company.

Final product requirements
After orientating we have concluded that the client needs a modular application, which can be easily
extended. To achieve this we should prioritize some features over others and add other requirements
besides the client his requirements that are needed to bring this project to a satisfying end. It also
became apparent that some of the features requested by the client would not contribute to a modular
and scalable application and thus will not be in the scope of this project. If we happen to complete our
plan and still have time left, these features can be added. From this, we have compiled the final list
of requirements for this project. We will use the MoSCoW-Method for clarity (must, should, could and
won’t-haves).



4 2. Problem analysis

Must-haves

• SmartRoads 2.0 must be able to retrieve the following datastreams from The Nationale Databank
Wegverkeersgegevens (NDW):

– The NDW ”incidents” stream 1

– The NDW ”measurement” stream 2

– The NDW ”Wegwerkzaamheden” stream 3

– The NDW ”trafficspeed” stream 4

– The NDW ”traveltime” stream 5

– The NDW ”Matrixsignaalinformatie” stream 6

• SmartRoads 2.0 must be able to display free-flow, speed and accidents of the entire road network
of the Netherlands.

• SmartRoads 2.0 GUI must have better performance than SmartRoads 1.0.

– Rendering of data on the map needs better performance e.g. retrieved and rendered within
1 minute.

• SmartRoads 2.0 must have good code quality.

– The code written by us needs to have at least an 80% test coverage.
– The code written by us needs to be clearly documented.

• Back-end must be built in a modular way, such that new features can be added easily in the future.

• Front-end must become modular, in order to tailor software for distinct customers, without rewrit-
ing existing functionality.

• Make a new architecture design from the current architecture of Scenwise to a modular- or
service-based architecture.

• Make a plan for future modules/services, such that a new student group or a developer from
Scenwise knows how to integrate with the system.

• Database retrieval of the needed traffic information is too slow. Resulting in:

– The current replay function is too slow and higher performance is required.
– The retrieval and processing of a specific amount of traffic data regarding road length and

duration must be under a specific amount of time.

Should haves

• SmartRoads 2.0 should retrieve, process, visualize and store other data feeds, that cover the
entire Netherlands (e.g. Waze[1]), next to the NDW data.

• SmartRoads 2.0 should have at least the same features as Analytics.SmartRoads features:

– Situational messages.
– Implement analytics contour plot.
– Implement analytics cloud plot.

1http://opendata.ndw.nu/incidents.xml.gz
2http://opendata.ndw.nu/measurement.xml.gz
3http://opendata.ndw.nu/wegwerkzaamheden.xml.gz
4http://opendata.ndw.nu/trafficspeed.xml.gz
5http://opendata.ndw.nu/traveltime.xml.gz
6http://opendata.ndw.nu/Matrixsignaalinformatie.xml.gz



2.4. Research plan 5

• A new design shouldmake the updates of configuration easier or even automatically. An improved
design should be introduced to reduce manual handling and the chance of errors.

• For the following future modules/services a custom integration plan should be created.

– Authentication.
– User Profiling.
– Route Planner.
– Automatic Accident Detection.
– Scenario Designer.
– Traffic Light Analytics.

Could haves

• Introduce an addition tab ”Exceptional situations”. On the ”exceptional tab”, only the exceptional
situations which demand attention of the traffic operator will be shown.

• Extra features situational messages.

– Group and filter the situation messages per region, road and direction
– Add the possibility to sort the messages in consecutive order w.r.t. the hectometer positions.

• Implement the Authentication module/service.

• Implement the User profiling module/service.

– Add user profiles, with settings per profile.
– Users should be able to temporarily change the settings of his/her user profile.

• Implement Route planner module/service.

• Show the number of free parking spots for parking garages in Amsterdam.

Won’t-haves

• Tracking app

– Users may accidentally stop the sharing of locations, solve this problem.
– The system may lose track of the vehicle when GPS signal is lost (e.g. in a cell where no

GPS coverage is, or in a tunnel). Create a solution for this.
– Find out what is the maximal numbers of vehicle tracking that can be supported.

• Modules/services that won’t be implemented.

– Automatic Accident Detection.
– Scenario Designer.
– Traffic Light Analytics.

2.4. Research plan
Most of the requirements are related to the improvement of existing functionalities. To do so, we need
to know the current causes of the need for improvement. Therefore we want to research the current
systems in order to define a metric that should be able to determine whether we have met the require-
ments.

First, we want to identify the causes of the problems we want to solve. To do so we have to research
the current state of the systems. Most of these problems consist of functionalities not meeting the
expected performance. The main functionalities experiencing these problems are the map plotting and
the replay functionality. We want to start by deciding on what tools to use for tracing the systems to
find the causes for these insufficient performances.



6 2. Problem analysis

Based on our meetings with both the client and the developer, we derived the front-end, the back-
end and the database to be the possible causes for the performance issues the client is experiencing
in his systems. Therefore, we want to profile these areas using the decided metrics and tools and then
analyze the acquired data to identify the causes. Once these causes have been determined, we will
decide on what feasible improvement rates for the performances of the different systems could be in
our new design. Finally, based on these improvement rates, we will sharpen the related requirements
to correspond to these rates and making it more clear on whether requirements are met at the end of
the project.

The other problems we want to solve are the scalability and modularity of the systems. To solve
these problems we want to start with determining metrics on how to measure these aspects. Once
these metrics are determined, we will apply these metrics on the systems to know the scalability and
modularity of the current systems. We will then apply a feasibility study on both of these aspects to de-
termine if these aspects can be improved and to what extent. Finally, we will sharpen our requirements
to correspond to the feasible improvement rate found in our research and use this data to propose a
new architecture design for the current systems. A part of this architecture design is meant for clarifi-
cation on how the client can migrate from their old product to their new product, but also to migrate to
a more efficient project workflow.



3
Approach

3.1. Planning
Based on the requirements of the project we have made an estimation of the workload and made a
planning accordingly in table 3.1. As it is still unclear in which week the final presentations will be, we
added them to both weeks 4.10 and 4.11. Note that the deadline for the final report is dependent on
the presentation, which means this deadline also can not be determined.

3.2. Meetings
Every day from Monday till Friday we have two fixed meetings with the group. The first one is at 9:00
clock in the morning. This meeting is meant to discuss the activities of everybody for the rest of the day.
The second one is at the end of the project day at 16:45, here we can discuss the progress of the day
and any questions which arise during the day. The product owner tries to meet with us every Friday,
but because of time constraints, it could be necessary for this meeting to be skipped. Thus we have
agreed that we will have this Friday meeting with the product owner at least once every two weeks. We
also have weekly meetings with our TU coach on Thursdays.

3.3. Work-style
In any project, it is very important to agree on a work-style beforehand. The agile scrum methodology
is used for the workflow. Our client Kin Fai Chan is the Product owner in this project. Daily scrums are
done in every morning meeting. We have weekly sprints on Monday mornings, where we review our
previous sprint, create a retrospective and make a sprint backlog/planning for the next sprint. The tool
used for the scrum board is the GitLab issue board. In the scrum board we have the lists mentioned in
table 3.2:

3.3.1. Roles in the team
The team roles are defined in table 3.3:

3.3.2. Communication types
• Group: the main way of communicating within the group is through Discord, where we have our
aforementioned meetings. WhatsApp will be used for extra communication when members are
not in the discord.

• Client/Product Owner: Email is used to formally communicate with our client and Skype is used
for our meetings.

• TU Coach: Email and Mattermost are used to formally communicate with the coach and Skype
is used for our meetings.

7



8 3. Approach

3.3.3. Other services
To ensure a smooth workflow GitHub is used as a development platform. All documents of the meetings
and reports are recorded in a Google Drive folder.

3.4. Quality control
It is our goal to complete the project to the best of our ability and with the satisfaction of both the client
and the TU Delft. To ensure we achieve this we have documented the project and our approach in
detail in this project plan along with the agreements and conditions. To prevent conflict and ensure
smooth collaboration in the future we will present this project plan to both the client and the coach.
The coach will then approve of this plan. In this manner, there can be no doubt whether this project
fulfills the expectations of both parties. Expectations and requirements can change, which is why we
will need written confirmation of any future changes to our plan after it has been finalized.

To keep the client and coach updated with our progress, we will plan weekly meetings with both.
The client and coach can let us know if anything is not according to the plan or their liking. If needed
more meetings can be scheduled.

Quality will also be maintained within the team. This means we will be honest and transparent in
our communication towards one another. Problems will be solved immediately as a group. Apart from
team dynamics, there is also code quality. Our standard will be checked by each other before any code
can be merged by adopting the agile way of working. Not only code style is important, but to be certain
code does not break after future changes we have to implement automated tests. As a team, we have
agreed that tests are just as important as code and thus we should aim for code coverage of at least
80% for branch, class and line coverage.

3.5. Client and TU coach
This project has two external parties involved, the TU Delft and Scenwise, both parties have supplied
us with an advisor. The TU Delft provides us with a coach, Bart Gerritsen, with whom we will meet
every week and who will offer us support in making sure the project follows the designated timeline.
Scenwise provides us with Kin Fai Chan, who provides us with an open problem to which we have
to provide a solution by scientific research. The team and Kin Fai Chan have signed an Internship
Agreement, included in appendix B.

3.6. Agreements
We have set up some agreements within the team. We will work from Monday till Friday from 9:00
- 17:00. Everybody has to be online on our discord channel at the beginning of the day. And at the
end of the day, we have a last meeting of the day at 16:45 also via discord. We will have a weekly
scrum meeting on Monday. The meetings with the project owner will take place via Skype. We will take
minutes of all the meetings, Jan is responsible for the minutes. All members of the group have signed
a non-disclosure agreement to ensure confidential information of Scenwise. We agreed with the client
that we don’t have to deal with any privacy-related data. All members receive internship compensation
and travel allowance conform to market prices. Therefore all members have filled in the payroll tax
form. Additional to these documents we also have established an internship agreement with the client,
included in appendix B.



3.6. Agreements 9

Week Date Tasks Deadline

4.1 20-04 - 26-04

Meeting with client,
orientation on

technologies, code &
possible solutions

Deliverable: Project plan

4.2 27-04 - 03-05

Setup project, research
possible solutions in

detail and write research
report

4.3 04-05 - 10-05

Perform measurement
research regarding

front-end, back-end and
database;

Set-up new architecture
design to a modular- or

service-based
architecture

Deliverable: Research report

4.4 11-05 - 17-05

NDW Parser, set-up
database, development
map view, prototype first

steps of the new
architecture design

4.5 18-05 - 24-05

Develop API, start
visualizing data feeds on
map view, development
faster replay functionality

Decide which parts of the new
architecture design we are

going to implement.

4.6 25-06 - 31-05

Continue development
faster replay functionality,
visualize the entire road

network of the
Netherlands (free-flow,
speed and accidents)

Deliverable: First SIG code
submission; Must-have
functionalities should be

implemented.

4.7 01-06 - 07-06
Incorporate feedback
from SIG & further

development

4.8 08-06 - 14-06
Incorporate feedback
from SIG & start final

report

Deliverable: Second SIG code
submission; Should-have
functionalities should be

implemented

4.9 15-06 - 21-06 Wrap up final product &
finish report

Deliverable: Final report seven
days before the presentation

4.10 22-06 - 28-06 Prepare presentation Final presentation
4.11 29-06 - 05-07 Prepare presentation Final presentation

Table 3.1: Planning per week



10 3. Approach

List name Description
Product backlog The entire backlog containing all items to be done

Sprint backlog The backlog for the current sprint containing the items to be done for this
sprint

In-progress The items that are in progress
In-review The items that need to be reviewed

Revision required The items/pull requests that have been reviewed and should be revised

Approved The items that have been approved and are ready to have a final Quality
Assurance check after which they can be properly rounded up and merged

Finished The finished items

Table 3.2: Scrum board lists

Role Team member Definition

Project-leader Jasper Responsible for meetings, proper discussions and
team ambiance

Lead-communication Kawin Responsible for all communication within the team
and with the client & coach

Scrum master Chakir Responsible for overall scrum process
Lead Testing Daan Responsible for test quality and coverage
Secretary Jan Responsible for the minutes of every meeting

Quality assurance responsible Jasper
Responsible for quality of the product by making
sure that every requirement is properly met without
loss of quality

Front-end responsible Chakir Responsible for the front-end code quality
Back-end responsible Jan Responsible for the back-end code quality

CI & Git responsible Daan Responsible for Continuous Integration and proper
GitHub usage

Table 3.3: Role division



Bibliography
[1] Google. Waze, 2020. URL https://developers.google.com/waze.

[2] General Guide for TU Delft TI3806 Computer Science Bachelor Project (2020). TU Delft, Delft, 3
2020.

11



A
ProjectForum Description

Company Background
Scenwise B.V. is a company with a lot of experience in Data Science & smart mobility domain. We
work together with our partners to develop innovative software for the domains:

• traffic management (e.g. automatic incident detection, response plans, etc.)

• data science (e.g. traffic monitoring, data fusion, Big Data, Machine Learning)

Our customers are the Dutch Highway Agency (Rijkswaterstaat), Nationale DatabankWegverkeers-
gegevens (NDW), provinces, large cities, ITS system suppliers, Feyenoord Stadium and recently also
the city of Edmonton in Canada.

Project description
Scenwise has developed the SmartRoads platform. SmartRoads is used by our customers to monitor
and analyze traffic situations. For example:

• Feyenoord Stadium uses SmartRoads to monitor the traffic during a day with a football match;

• Rijkswaterstaat uses SmartRoads for road-tests of Driving Automation.

Scenwise intends to extend the functionalities of SmartRoads to support a wide range of customers.
For this reason, we start a new project to rebuild SmartRoads. The development will include:

1. Flexible web-interface supporting differentmaps layers (e.g. GoogleMaps, ESRI, OpenStreetmaps,
Mapbox, etc.);

2. Big Data back-end incorporating a wide range of Open Data and proprietary data;

3. Real-time data analyze functionalities;

4. High-performance replay-function;

5. Interface with Decision Support Applications (e.g. Automatic Accident Warning);

6. Interface with mobile apps to provide traveler advice.

Within this project, a team of students will work together to conduct research, make design deci-
sions, develop the application inclusive testing. The back-end should be a new big data platform using
different data sources. The front-end should be web-based using modern graphical interfaces which
different real-time graphics to provide adequate information to the end-users. This is an innovative
project with a lot of technical challenges.

We are looking for enthusiastic students with skills and interest in database techniques, data pro-
cessing, geographical information systems (GIS), visualization techniques and algorithms who are will-
ing to take the challenge of developing a new platform to meet the upcoming requirements of our
customers.

12



H
Research Report

83



SmartRoads 2.0
Research Report

by

J.L. Buijnsters
D. Hofman
J.G.P. Klein Kranenbarg
C. el Moussaoui
K. Zheng

Project duration: April 20, 2020 – June 28, 2020
Supervisors: Dr.ir. H. Wang, TU Delft, BEP Coordinator

Ir. O.W. Visser, TU Delft, BEP Coordinator
Dr.ir. B.H.M. Gerritsen Coach
Ir. K. F. Chan Client



Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Shifting the focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Problem Analysis 3
2.1 Scenwise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Scenwise problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 Customer problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 Developer problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.4 Maintenance problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Current solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.1 SmartRoads 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 Analytics.SmartRoads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Integration problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 SWOT-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Research Approach 10
3.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Research method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Research Results 13
4.1 API calls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Back end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Front end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Requirements revised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Design Goals 16
5.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Maintainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2.1 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.2 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.3 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Design Decisions 18
6.1 Front end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.1.1 React . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1.2 AngularJS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1.3 Angular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.2 Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2.1 Google Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2.2 ArcGIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2.3 Mapbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.3 Back end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3.1 Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3.2 Long-Term evolution design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ii



Contents iii

6.4 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.4.1 Relational databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.4.2 Non relational databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.4.3 Using the file system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Success Criteria 24
7.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2 Maintainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Glossary 27

Acronyms 28

A ProjectForum Description 29

B Requirements 31

C Research Results 35
C.1 User Stories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

C.1.1 Story 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
C.1.2 Story 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
C.1.3 Story 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
C.1.4 Story 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
C.1.5 Story 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
C.1.6 Story 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

C.2 API Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
C.3 Database Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
C.4 Back end Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
C.5 Front end Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
C.6 Current application vs Proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

D Revised Requirements 41



1
Introduction

1.1. Overview
The first part of any new software project is the research phase. In this report, we will discuss the
research we conducted regarding the problems Scenwise B.V is dealing with and the way we will try to
solve them. We will first discuss the problem analysis in chapter 2. Then chapter 3 will categorize our
requirements in specific research questions, and how we are going to research these requirements.
The results of this research can be found in chapter 4, based on these results we refined our require-
ments. Next in chapter 5 the outline of the design goals we aim to achieve within this project are
discussed. Based on the design goals we give detailed design decisions in chapter 6 as well as their
justifications. And finally, we will set our success criteria for the requirements and design decisions in
chapter 7 to be able to evaluate the success of this project.

1.2. Shifting the focus
Within the first days of the project, we found some larger, more fundamental issues about the way the
company handled its software products. We decided that it would be more valuable for the company if
we first tackle these bigger, more fundamental problems.

When we reviewed the original requirements our client gave us, we missed the scientific research
part. We have scanned through the code bases in order to form an initial idea on how we want to
create the newer version of SmartRoads 1.0. First of all we noticed a few flaws. An example would be
the use of the GitHub repository. It is missing the proper tools in order to ensure a healthy workflow,
e.g. continuous integration. When going through the back end code, we noticed an almost complete
absence of tests and documentation. This is a big problem, because the software at Scenwise is being
written by many different developers and or student teams. These developers and teams currently lose
a considerable amount of time trying to understand the current code, let alone verifying the correctness.

Scenwise currently has multiple tools that share the same base functionality, but have some small
unique features. For every new customer they essentially create a whole new application from scratch,
even though the functionality overlaps significantly. Because their entire business is based on selling
these applications, we think the company can greatly benefit from applying concepts like modularity,
proper documentation and adding tests.

We are going to create a detailed analysis of the good things and the bad things, as we learned
that another Bachelor End Projects (BEP’s) from the past also worked an application for Scenwise,
but was ultimately incompatible with SmartRoads 1.0. We want to make a detailed plan to ensure the
good parts of the current projects can be migrated to the new system we will design. To ensure future
projects can also be integrated with our new framework and to make it future proof, we will focus on
scalability, modularity and quality of code. We think it is very important for the long term value that these
fundamentals are thoroughly researched and implemented from the beginning of a software project.

1



2 1. Introduction

With this in mind, we switched the focus of our project from just trying to finish as many tasks from
our clients task list as possible, to finding a future proof solution to improve the workflow and efficiency
of Scenwise’s entire software stack.



2
Problem Analysis

2.1. Scenwise
Scenwise B.V.1 is a company with experience in the data science and smart mobility domain. They work
together with partners to develop software for domain of Traffic management (e.g. automatic incident
detection, response plans, etc.), and Data science (e.g. traffic monitoring, data fusion, Big Data, Ma-
chine Learning). Their customers include: Rijkswaterstaat, Nationale DatabankWegverkeersgegevens
(NDW), provinces, large cities, IT system suppliers, Feyenoord stadium and recently also the city of
Edmonton in Canada.

They created a collection of tools, which are mainly meant for traffic managers or large venues (like
Feyenoord stadium) that want to monitor traffic on the most important roads nearby. The main functions
these tools offer are:

• Monitoring traffic density

• accident detection

• displaying matrix sign information

• scenario planning and response plans

• Visualizing traffic data in clear graphs

• Replay functionality: Looking at historical data

These functions are spread over multiple different applications, which are listed in section 2.3. Their
main data-source is the publicly available data of the NDW.

2.2. The problems
In this section we will take a better look at the problems and requirements from the client. We will place
the problems into four categories, depending on where the problems originate. The four categories are:
Problems Scenwise is facing, Problems customers of Scenwise (e.g. Feyenoord, Rijkswaterstaat) are
facing, Problems developers at Scenwise are facing and Problems with the software itself.

2.2.1. Scenwise problems
Scenwise has provided us a list with problems they are currently dealing with and features they would
like to have implemented. This is thoroughlymapped in B. Besides the software problems, the client has
given us a detailed explanation of how the company has developed from the beginning until now. The
client has also explained the future they have in mind. At this moment in time the company is hosting
multiple applications which are sold independently. Each application has also been built independently.
1https://www.scenwise.com/

3



4 2. Problem Analysis

Some big functionalities have been rebuild multiple times and are all in production at the same time in
different code bases. The Scenario tool, for example, is such a tool with much potential and competitors
are way behind. Next to the Scenario tool there is a tool in development by another student group which
is about accident detection before they are reported by any road user. The future vision of the client is
one application which combines each previously independently developed application, but one of the
problems is that they all have a different back end. This architectural problem arose because of funding
problems. Each developed tool creates funding and enables development for new tools, meaning there
is little room for restructuring the architecture. In our meeting at the end of week 1 we explained to the
client what was needed in order to enable such future sights. At this point the client is convinced that
this is the moment to invest in a better architectural approach.

2.2.2. Customer problems
The customers of Scenwise have the problem of missing features and a poor performance of the overall
system, but especially of the replay functionality in SmartRoads 1.0. We can also imagine that having
to use multiple different applications for each task is far from ideal. A problem for a new customer from
a new region is that there is not yet any historical data stored about that region. This means they will
be missing some key information for traffic management.

2.2.3. Developer problems
The software of the client is currently developed by two part-time software developers. They primarily
work on the SmartRoads 1.0 application, but also have separate research projects in development.
One key problem is the lack of documentation and automated tests. The main reason of missing these
are a lack of time and them having a low priority. The employers functional demands are mainly focused
on the graphical usability, the performance of the front end and manually checking and calculating if
the information shown in the application is correct. Besides the part-time developers, the client often
uses students projects to develop new applications and functionalities. An example is later described in
section 2.3. This workforce has to deliver a working product in a development time of around 10 weeks.
The main problem of these work forces is that the decision between continuing development on one of
the products of the client or starting a new project from scratch is quickly made, as it is easier to start
from scratch instead of working on a code base without any documentation. For a new developer it is
hard to know where to start developing in the software of our client.

2.2.4. Maintenance problems
A well maintained piece of software includes clear documentation and at least some degree of testing
to make sure no code breaking changes are introduced when pushing to deployment [1]. The code
of the tools created by other student projects are well tested and the documentation is clear. But,
as stated before, the tests and documentations for SmartRoads 1.0 are lacking. This deteriorates
the maintainability. Another problem of the software is the performance. The client is considering to
upgrade the hardware of the server implying vertical scaling [2], which would not be beneficial. Vertical
scaling can only be done to a certain extend, adding more power to onemachine will eventually become
too expensive.

2.3. Current solutions
Scenwise currently has multiple separate systems for traffic data analysis and traffic management
scenarios. Despite all sharing the same base functionality, they have been implemented in a different
manner. These systems are:

• SmartRoads 1.0

• Analytics.SmartRoads (made by a previous BEP group [3])

• Scenario Designer 1.0

• Scenario Designer 2.0 (made by a previous BEP group [4])

• Incident Detection



2.3. Current solutions 5

• SmartRoads 3D

• Vlog viewer

• Regelaanpak GUI

• VRI-PZH & VRI routes-pzh

• IWAP/RRIP

• Datafusie Amsterdam

Scenwise never made use of Analytics.SmartRoads and its features. Instead, Scenwise decided to
built further upon their own version, adapting a small number of features from Analytics.SmartRoads.
We will look at their respective design decisions to have a better understanding as to what their funda-
mental differences are.

2.3.1. SmartRoads 1.0
SmartRoads 1.0 is where the company started four years ago. This product has been updated ever
since, however, adding more and more features over the years has not been favourable to the docu-
mentation, performance and maintainability. Despite all this it is still the solution that is being used and
sold due to the amount of features that attract customers.

Figure 2.1: SmartRoads 1.0 current architecture

Used frameworks
To provide an overview of the system it is important to knowwhat frameworks are used. The frameworks
can be divided into the front end, back end, Application Programming Interface (API) and database. The
front end is built using AngularJS [5]. The back end and the API utilise Java Spring and the database
is a Postgres database [6], [7]. However an effort has been made to enhance the performance of the
replay functionality. This is done in a separate repository, the measurement-repository. This server
is used by the back end to get historical data. This data is not stored in a database, but on the local
filesytem. The communication between these two servers is established with a socket [8].

Data structure
Another important aspect in understanding the architecture is uncovering the data structure of the
application. This can be seen when we look at the different tables in the database:

• drip_information, where information about DynamischRoute-informatiepanelen (DRIP’s) is saved.

• drip_information_latest, where the latest DRIP information is stored.

• drip_locations, the locations where the DRIP’s are located.

• hectopunten, information about mile markers are saved.

• measurement_characteristic, has information about measurements.



6 2. Problem Analysis

• measurement_site, with information about the site where measurements are made.

• measurement_site_critical_density, stores the critical density of measurement sites.

• measurement_site_group, contains descriptions of measurement sites.

• measurement_site_group_sites, assigns measurement sites to groups.

• msi, has information on matrix signs.

• status_construction, contains the construction status messages.

• status_construction_text, contains the texts for the construction status messages.

• status_coords, contains the coordinates of status messages.

• status_messages, contains the status messages.

Features
With this software architecture SmartRoads 1.0 is able to provide the following features, but only with
so much lag it becomes almost unusable.

• Retrieve, process, visualize and store data from different data feeds for the regions of Rotterdam
and Amsterdam. The following data is supported:

– Free flow

– Traffic intensity

– Parking spots only supported in Amsterdam

– Accidents

– Matrix signs

– Construction sites

• Replay traffic situations in the past for Rotterdam and Amsterdam.

2.3.2. Analytics.SmartRoads
As stated before, just a small number of features of Analytics.SmartRoads were adopted by Scenwise
due to fundamental differences. As Analytics.SmartRoads has better performance, we will look at their
design decisions to have an insight of their approach in contrast to SmartRoads 1.0.

Figure 2.2: Analytics.SmartRoads current architecture

Used frameworks
As for the frameworks and API’s they use we will separate them into three categories; front end, back
end and communication between them. In the front end no actual framework is used since the User
Interface (UI) is relatively small. Instead of native JavaScript however, they have chosen to use Type-
Script for added type safety. For the back end they decided to go with Java Spring [6] as this made it
easier to make use of legacy code. The connection between these two was done using the RESTful
API to ensure separation between them.



2.4. Integration problems 7

Data structure
PostgreSQL is used as a database [7]. The data structure itself is kept relatively small and simple, as
can be seen in the following tables :

• measurement

• measurement_sites

• msi_locations

• msi

• status_messages

Features
Features Analytics.SmartRoads provides are :

• Creating routes

• Countour plot

• Point cloud

• Cover entirety of the Netherlands

• Matrix signs

• Status messages

• Live traffic intensity

2.4. Integration problems
As can be seen in table 2.1 there are differences in some aspects of the software. Since there is a
notable difference in the size of functionality between the applications, there also be a difference in front
end. Due to the smaller scope of Analytics.SmartRoads they decided to work without a framework,
but this would less favourable to do for an application as big as SmartRoads 1.0. There is also a
notable difference in the size of data that is stored. This resulted in SmartRoads 1.0 opting for a local
file system whereas Analytics.SmartRoads did not need to, thanks to the smaller size of data stored.
Finally, Analytics.SmartRoads makes use of docker which is by no means implemented by SmartRoads
1.0.

SmartRoads 1.0 Analytics.SmartRoads
Back end framework Java Spring Java Spring
Front end framework AngularJs 1.6 No framework
Front end hosted by Node.JS Node.JS
Data storage PostgreSQL and local files system PostgreSQL
Communication back- and front end RESTful API RESTful API
Replay functionally Yes, using local file system for data storage No
Uses docker No Yes

Table 2.1: Comparison between SmartRoads 1.0 and Analytics.SmartRoads

2.5. SWOT-analysis
To get a better understanding of what lays in the scope of this project, a Strengths Weaknesses Op-
portunities and Threats analysis (SWOT-analysis) of Scenwise was made (see figure 2.2). ScenWise
has two functional back-ends with functionalities applicable to SmartRoads 2.0. They have a clear view
of what features need to be implemented in the near future and lots of possible features for the future.
However, there is room for improvement in the workflow at Scenwise. SmartRoads 1.0 has an unin-
tuitive front-end design. Their current solution has a large technical debt, caused mostly by the lack



8 2. Problem Analysis

of tests, the lack of documentation and the lack of a modular structure. This makes their applications
difficult to maintain. We aim to solve these weaknesses by creating a modular and easily maintainable
structure. This will allow combining functionalities from various other back-ends created by ScenWise
opening up new possibilities such as creating new tailored products for custom clients using the exist-
ing codebase. This maintainable approach will also improve the efficiency with which new and existing
developers can work. Being able to solve the performance issues will make SmartRoads available for
customers anywhere located in the Netherlands. This could even create a snowball effect allowing
ScenWise to extend to other countries as well. Some of the threats outside of the scope of the project
would be the disability of ScenWise to follow-up on our proposed guidelines, like an improved workflow,
taken to the extreme would be even an unsuccessful migration to SmartRoads 2.0. ScenWise has to
keep in mind the threat that an enabling technology becomes unusable, for example, a pricing change,
this is the case with Google Maps in SmartRoads 1.0.

Internal

Strengths: Weaknesses:

Lots of functionalities available from the existing
back-ends of SmartRoads 1.0 and Analytics.SmartRoads. Workflow

ScenWise has a clear view of what features they want to
add now and in the future

Code Quality → not modular, no extensive
testing, missing documentations

Periodical manual operations needed in
order to keep the software up to date

SmartRoads 1.0 performance issues:

Replay

Only able to display information about
a small part of the roads of the
Netherlands.

Some unintuitive elements in front-end
design

External

Opportunities: Threats:

Extending to nearby countries, by combining more data
feeds

SmartRoads 2.0 will be just another
Analytics.SmartRoads

Adding functionalities of the other existing application
back-ends with a modular approach

Fundamental enabling technologies become
unusable

Higher efficiency of new and existing developers Stop focus on the more fundamental
problems of ScenWise:

Creating new tailored products for custom clients using
the existing codebase

By unsuccessfully remaining a healthy
Workflow

By unsuccessfully remaining the code
quality, which gradually makes the
code unmanageable

Being available for customers anywhere located in the
Netherlands

Table 2.2: SWOT-analysis



2.6. Conclusion 9

2.6. Conclusion
After performing the problem analysis the team has concluded that software at Scenwise can be im-
proved. Lack of performance, maintainability and scalability are the main problems we identified within
existing code at Scenwise.



3
Research Approach

These requirements can be seen in appendix B as follows:
• Requirements which aim to increase the performance of SmartRoads (table D.1)

• Requirements which are about adding new features to SmartRoads (table D.2)

• Requirements which aim to ease in-house development (table D.3)

• Requirements which aim to create more configurability to customers (table D.4)
The requirements made at the beginning of the project were based on meetings with the client and

their developers. They had suspicions about most of the limitations of SmartRoads 1.0, however, these
were just suspicions and based on assumptions. In the section 2.6 the problem was broken down into
three main problems. To find the root causes of these problems we decided to conduct our research
with three main research questions and subquestions that are given in section 3.1. If we can find the
answers to these questions and subquestions, we have found the root causes. These root causes can
then be categorized for each of the main problems and solutions can be found accordingly. With the
solutions, we intend to further refine our requirements so we can be sure that we will solve the problems
that exist in SmartRoads 1.0.

An overview of our research approach will be given in fig. 3.1.

3.1. Research questions
• How can performance be improved?

– Is the performance bottleneck located in the API?
– Is the performance bottleneck located in the database?
– Is the performance bottleneck located in the back end?
– Is the performance bottleneck located in the front end?

• How can maintainability be improved?

– Is the maintainability bottleneck located in the API?
– Is the maintainability bottleneck located in the database?
– Is the maintainability bottleneck located in the back end?
– Is the maintainability bottleneck located in the front end?

• How can scalability be improved?

– Is the scalability bottleneck located in the API?
– Is the scalability bottleneck located in the database?
– Is the scalability bottleneck located in the back end?
– Is the scalability bottleneck located in the front end?

10



3.2. Research method 11

3.2. Research method
To conduct the research scientifically and systematically we have defined user stories of the most basic
functionalities of the application. The idea was to measure and analyze the performance, scalability
and maintainability of these functionalities since the performance was one of the main problems in
SmartRoads 1.0. These measurements could then be divided into different categories so it would be-
come clear what the root causes were. These categories are: API, database, back end and front end.
To measure the API performance we used Postman, for database performance we used PgBadger, a
log analyzer for Postgres databases [7] and the back end was measured using The API yaml fileJava’s
built-in Java mission control. Lastly, we used the Google Chrome Runtime Performance Analyzer to
analyze the front end.

However, it quickly turned out that these user stories did not matter, as all the data is loaded as soon
as the application is opened and that the only action triggering any data retrieval is the replay function.
These user stories can still be of use when validating our end product.



12 3. Research Approach

Figure 3.1: Research approach



4
Research Results

The research yielded too much data to be included and talked about. The research can be broken
down into different parts such that each parts can be analyzed and a conclusion can be reached.
These conclusions are supported by visuals obtained using the various tools used in the research.

4.1. API calls
In table C.1 we have an overview of the different API calls made by SmartRoads 1.0 complete with
the response times and sizes. From this table we can conclude that the response times for most API
calls are less than half a second. Only one API call really stands out and could possible cause a
performance bottleneck. There were several issues concerning maintainability of the API. The most
important being the complete lack of tests and documentation. As for the scalability aspect, there was
nothing remarkable.

4.2. Database

.

13



14 4. Research Results

4.3. Back end
The measurements of the back end were obtained during the execution of the user stories in ap-
pendix C.1. The backend op SmartRoads 1.0 consists of two different back ends, one main back
end and one to write and read only one kind of data locally.

We will start with the second one, the ’measurement repository’ since it is the simple one and it
stores one kind of measurement, the average speed that is measured on that road segment. It does
not need to be said that storing measurements locally is a bad design choice and if we look at the
numbers in fig. C.1 we see that it performs worse than a database as it reads less data in more time
and that is also it’s only task as demonstrated in fig. C.2. This means that this separate back end is not
beneficial to the performance of the application. Then we have to take into account that the code for this
system has a small README, no further comments and no tests, which means that it is absolutely not
maintainable. The fact that this stores data locally inherently means that this approach is not scalable.

Then there is the main backend where most of the parser for the NDW data is located, the other
parsers are not included in this repository. This is the part where the calculations are done and every
other part of the application is connected to. When we look at the method profiler in fig. C.3 we can see
that almost 90% of the code leads back to the TimerThread. After closer inspection we saw that this is
the parser which runs on a timer. As this parser is largely the same as the one built by a previous BEP
group and their overhead was 600ms and 2000 ms on startup. Since there is not much other compu-
tationally heavy functions except some average computing, we can conclude that the performance of
the back end is sufficient. Maintainability wise we can say that the code is not easily understandable,
since there is almost no documentation and comments. There are almost no tests and the code style
is very inconsistent. As far as scalability is concerned there is nothing notable.

4.4. Front end
The front end performance was measured during the execution of the user stories in appendix C.1.
They were then analyzed using Chrome’s performance analyzer. This allowed us to obtain the diagram
in fig. C.4 when starting the frontend and logging in, fig. C.5 when we do user story 4 and fig. C.6 when
the replay function is tested. We see that the bulk of the time is consumed by scripting followed by idle
and then system. The same goes for all user stories and this can be explained. Most of the time there
is nothing to do for the system as there is only new data once per minute, so it sits idle. Then once per
minute there is new data and this data needs to be plotted and that is where we see scripting spike. This
includes everything from animations to function calls in AngularJS [5]. Then there is ’system’ category,
but that is just the ’other’ category. The difference between fig. C.6 and the other two is that the replay
is longer and thus idles more of the duration of the recording and scipts less.

Combine this knowledge with the observation that the clock begins to stutter and skip seconds
whenever a new minute hits and thus new data is coming in. This means that the whole front end is
rerendered when new data is coming in. Add the fact that all information is requested from the back
end at startup and it is certain that the whole road network is updated every time even if it is not visible
to the user. Then there is the fact that whenever the map is zoomed in, out or dragged, the whole
frontend renders again. These are all things that only make the UI feel unresponsive and seem to be
the cause of the performance bottlenecks, since the front end should only be scripting 1 second of the
minute and not almost half the time.

The level of maintainability is the same as the other parts, there are no tests, almost no documen-
tation or comments. This means that the code is hard to understand due to the lack of documentation
and comments. If there would be any desire to change anything at all, it is likely that a lot of code would
break due to the lack of tests. These issues make if inefficient, time wise and cost wise, to maintain
this part of the application.

The front end scores low on scalability as well, as additional features can not be added as compo-
nents.



4.5. Conclusion 15

4.5. Conclusion
In conclusion, the answer to the first research question: ’How can the performance be improved?’, is
that the application performance suffers mainly from the way the front end handles the rendering on
the map and the retrieval of certain data. To improve this the focus should be to look at a new front
end that only renders changed components and this should have the highest priority. Then there were
several smaller improvements in the API calls and database structure.

The second research question is: ’How can the maintainability be improved?’. The maintainability
of all components is very low due to lack of documentation and tests. Naming is vague for most
components and code style is inconsistent. These issues propagate throughout the entirety of the
application. It seems easy to improve on these points, so why has this not already been done? For
Scenwise it has more value to work on new features than to improve on what already works and since
the company has to remain economically beneficial, this has simply been ignored. This is where this
project can step in, as the team is not torn between meeting financial obligations and making a sound
application, which would be financially more beneficial to the company in the long run.

The last research question is: ’How can scalability be improved?’. There are several big issues with
scalability in some parts of the system. The database should not be filled manually and the measure-
ment repository should not save measurements in a local filesystem. It is not easy to add features to
the front end. It comes down to making different design choices for populating the database and using
a different framework for the front end.

4.6. Requirements revised
Based on the results of our research we have identified the root problems of the current Scenwise
approach as can be found in fig. C.7. For each problem we have devised a solution in table C.2
and are going to revise our requirements accordingly. In the end our product should have the structure
proposed in fig. C.8. The main idea behind this architecture is that we will retain all current features and
even incorporate the features of Analytics.SmartRoads, but can easily replace any under performing
feature such as a replay function by a new one.

For all new components that the team is going to build there has to be documentation and tests. A
new front end should be built that requests data in a smarter way, so we should request as little data as
possible and only what is actually needed. Then it should adopt a new rendering method so that we only
re-render what has changed. This new front end should be better scalable by using components that
can be easily reused. The back end will be a combination of SmartRoads 1.0, Analytics.SmartRoads
and brand new back ends for specific functions. This architecture does still have the problems found
in the back end, but is a step in the right direction since this enables us to rebuild features and then
replace them until the old back ends is not needed anymore. A new database will be setup, but used
besides the old databases until it is ready to take over all functionality. This new database will not be
a local file system and will not require manual data collection and storage. The database schema will
have to be thought through to minimize double data.

These new insights will be used to refine the requirements which can be found in appendix D. That
will be our final list of requirements.



5
Design Goals

In this section, we will elaborate on the main design goals of this project. After performing extensive
research we have come to the conclusion that software at Scenwise can be improved, by having clear
goals and focus. Lack thereof is the main problem we identified within existing code at Scenwise.
During the development of our application, these are the main values that we will always keep in mind
while making decisions. The main design goals are: performance, maintainability and scalability.

5.1. Performance
Performance is an important design goal for this project. Our solution must provide mostly the same
features as the current solution, but work in a different, more efficient way. The main reason our client
has requested a new system is the decreasing performance of the current system, which at this point
has declined so much it has become a substantial problem. This means that to make this project a
success, the performance has to be substantially better than the current application. The way we will
measure this performance increase is mentioned in chapter 7.

5.2. Maintainability
An important aspect of any software engineering system is for it to be maintainable, that is, it is relatively
easy to replace parts and update pieces of software in order to keep the performance at an all time
high. It also reduces a big portion of the life cycle cost of a system [9]. This is achieved by testing,
documenting and keeping it all modular.

5.2.1. Testing
Testing allows for code changes to happen without breaking the system unconsciously, ensuring high
code quality and persistency.

5.2.2. Documentation
Documentation allows for new developers to know what functionality a piece of code brings. It is also
for clarity of functionality of code when it is changed.

5.2.3. Modularity
In order to keep up with this change, the concept of modularity has been introduced. Modularity enables
a project to safely replace a part of a whole to enhance its performance, and all that without too much
complication. That is why we will make the base of this project a modular core so that it can benefit
from the ever increasing amount of changes in technology.

5.3. Scalability
Scenwise wants to expand its customer base, and for this they want to be able to offer their service
for any customer based anywhere in the Netherlands. In the current solution there is only one version

16



5.3. Scalability 17

of the application. Due to the fact that displaying traffic information of the entire Netherlands does not
have the desired performance, they only implemented two regions, Amsterdam and Rotterdam. The
regions for which traffic information is displayed are hard coded. This is not a scalable approach as
it makes it very tedious to expand beyond the regions of Rotterdam and Amsterdam, because new
functionality needs to be added if a new customer wants to see a new region. Furthermore, every time
a new region is implemented on the SmartRoads 1.0 map, the performance declines. This means that
it is very hard for Scenwise to scale up their application for new customers.

The current design of SmartRoads 1.0 does not scale with the amount of users that use the so-
lution at the same time. This is currently not yet a problem, because there are not many users. The
performance is affected by the amount of processing needed to serve multiple users simultaneously,
which means that it will decline even further when there are more users. We want to enable Scenwise
to grow, so the application should be able to handle an increase in the numbers of concurrent users.

These reasons have led to the conclusion that we need to build smartroads 2.0 with scalability as
one of our design goals.



6
Design Decisions

In this chapter the design decisions made for the new solution (SmartRoads 2.0) are explained.

6.1. Front end
According to stackoverflow.com [10] the most used front end tools for user interfaces are ReactJS,
Angular and AngularJS. The team looked at the most popular frameworks, because they have a bigger
community and more resources to use for development.They were researched separately and decided
on which one will be used depending on several criteria. These criteria include development speed,
performance, testability etc.

6.1.1. React
React [11] is a JavaScript library which is specific to building user interfaces. It is also component
based so it allows for any modularity within the framework. Updating any component in the application
is fast due to the use of virtual DOM by React. It is lightweight and allows for third party libraries to be
used. However, there are drawbacks to it. Finding the right library and continuously updating them can
turn out to be quite an obstacle and time consuming. Potential future mobile application development
is supported by React.

Documentation
Being lightweight and depending on third party libraries, the documentation of React is minimal, but
does not imply that there is no documentation as the libraries used are sure to have documentation.

Testing
Testing is be done by testing different components with different tools, as there is no single way to test
everything.

6.1.2. AngularJS
AngularJS [5] is already used for the SmartRoads 1.0 application, so if desirable it is possible to reuse
some of the soon to be legacy code. It alsomakes use of dependency injection which allows for services
to be used within the front end components.

Documentation
AngularJS has everything well documented and explained.

Testing
Testing can be done using Karma [12] or Jasmine [13] as a tool for unit and end-to-end testing purposes.

18



6.2. Map 19

6.1.3. Angular
Angular [14] provides TypeScript instead of plain JavaScript that AngularJS uses. TypeScript allows for
cleaner code as it eases the process of finding common errors made in programming. It also ensures
high code quality which is important for maintainability. In contrast to AngularJs, Angular makes use of
Angular CLI, which is used for generating components and services, ultimately enhancing development
speed. Like AngularJS, Angular also makes use of dependency injection but does in a more clear way.
It also has a component-based architecture to ensure modularity within the front end. A drawback to
developing with Angular is that it has a steep learning curve.

Documentation
Contrary to React, Angular has a lot of documentation which makes development easier, but it is under
development, so it might not be up to date at all times.

Testing
Like in AngularJS, testing tools like Karma and Jasmine can be used. Like, React, Angular also sup-
ports mobile application development.

6.1.4. Conclusion
Since Angular is the more improved version of AngularJS and adds extra possibilities it comes down
to Angular and React. To be more specific it comes down to the development speed of Angular vs the
performance speed of React. Performance is very important to the new application and having a steep
learning curve takes away development speed for Angular. Therefore, it was decided to use ReactJS
for the front end.

6.2. Map
In this section the choice for the map that is going to be used is discussed. The following three mapping
platforms were considered: Google Maps [15], ArcGIS [16] and Mapbox [17].

6.2.1. Google Maps
The Google Maps does not give much breathing space in terms of free usage of the API. That is why
it was quickly dropped.

6.2.2. ArcGIS
ArcGIS was, next to Mapbox, one of the API’s preferred by the client, but for different reasons. ArcGIS
is seen as a more strategic choice as they are potential to the company. ArcGIS is also somewhat
vague about their pricing, as they do give out free credits in the beginning, but do not specify what a
credit entails. This does not give a good impression as to how long it is possible to use it without having
to pay for it.

6.2.3. Mapbox
Mapbox is preferred by the client, because of the possibilities is provides. It has a more clear definition
of a free trial. The free trial itself allows us to make up to 200.000 API calls and 50.000 map loads which
should be enough for our development. It has, like ArcGIS, library support for ReactJS and good docu-
mentation. It also adds customizability to the maps used which could prove very useful for our use case.

Due to the of advantagesMapbox has over GoogleMaps and ArcGIS in terms of possibilities, pricing
and practicality in developing, it was decided to go with Mapbox as our mapping platform.

6.3. Back end
We want to create the back end in a way such that future functionalities can be added separately from
existing code. We, however, have the constraint of wanting to ensure that SmartRoads 1.0 will be able
to systematically migrate to our new version. To do so it is important for the back end to choose a
software design which allows for this new system to meet these requirements.



20 6. Design Decisions

6.3.1. Migration
The following points are important when migrating to the new system:

There is currently a lot of functionality in the back end of SmartRoads 1.0 and Analytics.SmartRoads.
It would not only be inefficient to start over from scratch again, but also put ScenWise again in a dire
situation yet again, where they should invest in order to migrate.

The API’s of the two back ends are not uniform, hence one of the reasons why they never migrated
Analytics.SmartRoads in their current system. This could be due to the fact that there currently are no
specific rules on how the API should look and act. In order to set these rules and thus create a uniform
API to communicate with the front end and possibly a future mobile application, an API Gateway will
be created.

This API Gateway should serve all data endpoints which the back end of SmartRoads 1.0 supports.
It would only be a gateway to the already existing end-points. This means that the newly developed front
end will have the needed data available to support the already existing functionality of SmartRoads 1.0.

Likewise the current deployed SmartRoads 1.0 front end should be able to function via this control
API as well. The endpoints of Analytics.SmartRoads should also be reachable from the control API.
Some endpoints, which have better performance and the same functionality, might even replace the
old ones. Such a gateway is shown in figure 6.1.

Figure 6.1: API Gateway set-up

After this setup, the strangler pattern [18] can be used. Which means gradually implementing func-
tionality from the ”legacy code” into independent new services. Once such functionality is done de-
veloping, the control API can update it’s public endpoint accordingly if necessary. This means that
endpoints in our API Gateway will not be using the endpoints of the ”old back end”, but of the new
services. Meaning ScenWise can gradually migrate to a new back end, with the back end complexity
abstracted away from the front ends. This process would be similar for new functionalities, but the
control API will then need new endpoints for them.

Data is currently stored multiple times on different databases, the new architecture should not be
that redundant. This issue will be solved by having centralized databases. One such database would
for example be the NDW database. A NDW parser service would fill this database, and all services
which need NDW data can get it from that centralized NDW database. It could be beneficial to give
future new implemented data streams their own centralized database, as this keeps the system de-
coupled. In figure 6.2 you can see how the replay function would be separated from the back end of
SmartRoads 1.0 into its own service and using the new centralized NDW database.



6.3. Back end 21

Figure 6.2: Replay service with centralized database

The migration of the front end should be pretty straightforward. First the new SmartRoads 2.0 front
end should be developed to a point where all the minimum functionalities for a viable replacement prod-
uct are adhered. At that point the new front-end can be served to the user and the front end migration
is complete.

To make sure ScenWise will have the knowledge to follow all these migration steps a Long-term
evolution (LTE) design document will be created as a deliverable for ScenWise. This document will,
next to the aforementioned steps, also include guidelines regarding code quality and testing, version
control, an explanation regarding the communication between the components in the system and an
explanation for new developers on how they can add their own services to the system.

6.3.2. Long-Term evolution design
After the steps in section 6.3.1 are taken, the team will should focus on a future architecture design for
the back end.

Layered Architecture
An layered architectural [19] approach was considerd, but as this architecture is in place right now and
it does not seem to work, this is not a good direction to go in for the future.

Microkernel Architecture
A Microkernel Architecture [19] has also been considered. As the concept of this plug-in module could
be a good way for new developers to add to the system. However, enabling the migration from the
current situation into a Microkernel Architecture is probably very hard, as the core functionality should
be in the core system. This would mean it needs to be decided what the core functionality is going
to be, most likely this will be a lot of functionality from the current codebase. As discussed this code
base lacks documentation and testing, forcing us to begin from scratch. Still, the idea of minimum
communication between plug-ins is something to keep in mind.

Service Orientated Architecture
A Service Orientated Architecture [20] seems to fall right in place. With the separately created services
for improving the performance, the first steps towards such an architecture have already been taken.
Next to that, it is mostly in harmony with our design goals. Compared to the monolith, maintainability



22 6. Design Decisions

of the services is high because services are smaller code bases functioning independently from other
services. When a service is in need of an update or even replacement, there is a limited amount of code
one has to dig through in order to understand how the service works. Performance can be improved
as the best performing stack for each service can be chosen, however this does come with some extra
communication costs between each service. CI/CD is easily implementable with services and thus the
testing goal is satisfied. Documentation wise, guidelines for how new services can be added should be
created. Modularity is almost a given with the loosely coupled services.

From this architecture, the decision can also still be made to further split services into a micro-
services architecture [18]. Though currently, this seems a bit too ambitious for the scale of ScenWise.

Communication services
For the communication between services, an Event-Driven architecture [19] could be great, because
of the live data streams. Even so, there is nothing like that in place at the moment. The possibility
of adding in event-driven messages between services and maybe extend them to the user will be ex-
plored. It is, however, the question whether this is in the scope of our project regarding the requirements
given. For now, the traditional, request/response messaging will be used.

At the moment both versions of the back end are created using Java Spring [6]. The only part which
is not easily replaceable in the aforementioned new system is the API Gateway. There are a few tech-
nologies which are considered for this API Gateway. The first one is from scratch, it should be fairly
simple to forward requests to specific endpoints. The API Gateway is a very good place for some extra
functionalities, it would be nice to be able to use functionalities from gateway frameworks. An open-
source API Gateway which was considered is Kong [21]. Kong, however, does not support aggregating
data, which could prove useful at some point in our project. Another framework is the Spring Cloud
Gateway [22]. This Spring Project gives the ability to provide security, monitoring/metrics, resiliency
and is non-blocking. Above all that it also supports long-lived connections like web-sockets, which can
be useful should event messages be implemented in the future. It is also built using Spring which is,
as stated before, well known in ScenWise. Zuul2 [23] was also considerd. It is similar to Spring Cloud
Gateway, but, as support for Spring Cloud Gateway is larger and it is easier to set up, went with Spring
Cloud Gateway was chosen.

For the new services that are going to be used, it needs to be checked whether there is a potential
performance upgrade in switching from Java Spring to another stack.

6.4. Data Storage
This section will discuss the database technology to use in the solution. There are two main types
of databases, relational and non-relational. Relational databases like MySQL [24] and PostgreSQL
[7] represent and store data in tables and rows. They’re based on a branch of algebraic set theory
known as relational algebra. Meanwhile, non-relational databases like MongoDB [25] represent data
in collections of JSON documents. Another option the team considered is simply storing the historical
data on the file system.

To make a well informed choice of database technology it is important to analyse the data it needs to
store. A previous bep project measured that the main data source, The NDW ”measurement” stream1,
has a write load of about 16000 new records per minute [3]. This was confirmed, and 16000-17000
new records per minute is an accurate measurement.

This datastream is needed for a minimal viable version of the replay function. Replaying more
distinct data types, like matrix signs or accidents requires more data to be stored. A record in this data
stream consists of a UUID, a timestamp, an id corresponding to the location of the measurement, an
finally a speed value and a flow value. The client requires that detailed data needs to be stored for
two weeks. Detailed data means one data point for every minute. This means that about 322.560.000
measurement records will be stored for the first two weeks. After the first two weeks, the data is stored
for an additional two weeks, but this data can be less detailed. The data storage needed can be
reduced by aggregating this data. The first two weeks have a data point every minute. For the second
1http://opendata.ndw.nu/measurement.xml.gz



6.4. Data Storage 23

two weeks, this interval can be increased to five minutes. This would already mean 5 times less data
needs to be stored, while still being able to accurately analyse the traffic situation development.

6.4.1. Relational databases
Relational databases include: Oracle Database 12c [26], PostgreSQL [7], mySQL [24] and IBMDb2[27].
Because the client does not have budget for a paid database service, only free to use database solu-
tions were considered. This excludes Oracle Database 12c and IBM Db2.

PostgreSQL and MySQL are both free to use open-source databases. They are both very popular
choices, though PostgreSQL’s popularity is still rising. PostgreSQL is more feature rich. It is scalable
and can handle terabytes of data. It can handle the large dataflow that is required [28]. It has many
predefined ready to use functions. It also supports JSON, which is nice to have. PostgreSQL also
adheres to the ACID (atomicity, consistency, isolation, durability) principle, an important principle in
database technology. Another advantage is that Scenwise currently uses PostgreSQL as database
solution, which means their developers are familiar with it.

6.4.2. Non relational databases
A popular non-relational database is MongoDB. MongoDB is a non-relational database that stores its
data in JSON like files. Non-relational database do not use SQL. This is a disadvantage, because Post-
greSQL is currently being used and SQL queries have already been written. Many of these queries
contain joins. In non-relational databases, there are no joins like there would be in relational databases.
When a join is needed, it requires two or more queries which are manually joined in the code. This
creates a risk for mistakes and bugs.

Another disadvantage is that MongoDB does not automatically treat operations as transactions in
the same way a relational database does. Instead, you must manually choose to create a transaction
and then manually verify it, manually commit it or roll it back. The documentation on the MongoDB
site warns that, without taking some potentially time-consuming precautions, the success or failure of
a database operation cannot be atomic. This means that part of a query succeeds, while another part
fails. This leaves the database in a faulty state. This violates the ACID (atomicity, consistency, isolation,
durability) principle.

6.4.3. Using the file system
The main function of the database in SmartRoads 1.0 is to enable the replay function. To this end it
needs to store data in chronological order, only to later retrieve it in the same order. It does not need
to modify the stored records in any way. Because of these simple requirements, the team considered
to use the file system instead of a database. Though, this would create some issues. Databases solve
numerous issues that exist when using the file system as a database. They comply to a set of rules,
called the ACID principle (atomicity, consistency, isolation, durability). Because database software
ensures that transactions always happen according to the principle, many issues are solved, like file
lock issues. These kind of issues can arise when multiple users try to read or write to a file at the same
time. Another disadvantage is that the structure of the data cannot be easily modified. If, in the future,
the client wishes to extend the replay functionality and store additional data, this can not easily been
done.

6.4.4. Conclusion
The team chose to use PostgreSQL as means of data storage, because of the superior performance
over other database solutions. It is also know that it can handle the amount of data needed for
SmartRoads, because this is specified in the PostGreSQL limitations [28]. In specific cases, storing
and retrieving files directly via the file system can be faster than using PostgreSQL. However, this in-
troduces new problems and risks (mentioned in section 6.4.3), which do not outweigh the performance
gained. To ensure quick retrieval of data, which is needed for the replay function, an index needs to be
created on both the timestamp and location field.



7
Success Criteria

To conclude the research, we decided to sharpen some of the requirements based on the results of the
research. We first identified the current issues in the system after which we determined what could be
able to fix these issues. But in order to confirm whether we actually solved the problem after finishing
our project we needed a way to determine this. Therefore we decided to determine success criteria and
some corresponding metrics allowing us to determine certain success criteria for the current issues.
And because of the following, we are now able to determine whether we were actually able to solve
the issues at the end of the project.

7.1. Performance
First of all, we wanted to determine a proper metric to measure the performance of our application in
order to make it clear whether certain requirements were met. Based on our results, we noticed that
most of the performance issues were caused in the front end of the system. Which is why we decided
to use the built-in chrome profiler that allows us to monitor the costs of the different areas of the front
end. Based on the result gained from these profilers, we noticed that the most time was taken by
retrieval and rendering of the data on the map. Therefore we wanted to set the success criteria for the
performance to ”For every user story appendix C.1, when performed, the time taken by scripting and
rendering should be at least 40% less in the new system when compared to the current system”.

7.2. Maintainability
Secondly, we initially wanted to determine a metric for the maintainability of the systems as well. How-
ever, as we concluded in section 4.5, the maintainability of the components of the current system is
incredibly low. Therefore we decided to not define a metric for the maintainability itself, but made re-
quirements concerning the code quality. For which we focus on two areas, documentation and testing.
For the documentation, we set the requirement to ”All components (folders, modules, services, APIs,
classes and components) should contain documentation and/or a readme”. For testing, we decided to
set 80% coverage as the success criteria.

7.3. Scalability
We also wanted to define a certain metric to define the scalability of a system. However, just like the
maintainability, the current scalability of the system is incredibly low and is not designed to scale for
larger areas and additional modules. Due to the current state of the system and the amount of time we
have for the implementation, we therefore decided to not define a metric for these requirements. And
because we most likely won’t have enough time to implement most of the modules, we decided that
we wanted to define the success criteria to be integration plans of planned modules.

24



Bibliography
[1] P. David Coward, “A review of software testing”, Information and Software Technology, vol. 30,

pp. 189–198, Apr. 1988. (visited on 10/21/2019).
[2] C.-Y. Liu, M.-R. Shie, Y.-F. Lee, Y.-C. Lin, and K.-C. Lai, “Vertical/horizontal resource scaling

mechanism for federated clouds”, in 2014 International Conference on Information Science &
Applications (ICISA), IEEE, 2014, pp. 1–4.

[3] J. Smit, M. van Niekerk, R. Oosterbaan, D. van Gelder, and S. Tromer, “Developing a platform for
traffic data analysis”, Also available as http://resolver.tudelft.nl/uuid:1f39c7d1-
7cbe-4985-a032-5ea71d5daa49, Bachelor’s thesis, TU Delft, Delft, the Netherlands, Jun.
2019.

[4] F. Bredius, T. Naber, B. Tjiong, and V. Leroy, “Smart traffic management system”, Also available as
http://resolver.tudelft.nl/uuid:e54b67cf-0593-42e1-a07c-3e072b71276e,
Bachelor’s thesis, TU Delft, Delft, the Netherlands, Feb. 2020.

[5] AngularJs,Angularjs api, Accessed: 2020-5-5, 2020. [Online]. Available: https://angularjs.
org/.

[6] Spring framework documentation, Accessed: 2020-4-30. [Online]. Available: https://docs.
spring.io/spring/docs/current/spring-framework-reference/index.html.

[7] Postgres documentation, Accessed: 2020-4-30. [Online]. Available: https://www.postgresql.
org/docs/.

[8] Java socket, Accessed: 2020-5-12. [Online]. Available: https://docs.oracle.com/javase/
7/docs/api/java/net/Socket.html.

[9] C. Chen, R. Alfayez, K. Srisopha, B. Boehm, and L. Shi, “Why is it important to measure main-
tainability and what are the best ways to do it?”, in 2017 IEEE/ACM 39th International Conference
on Software Engineering Companion (ICSE-C), 2017, pp. 377–378.

[10] Anonymous, Stack overflow developer survey 2019, Accessed: 2020-5-5, 2019. [Online]. Avail-
able: https://insights.stackoverflow.com/survey/2019#technology.

[11] ReactJS, A javascript library for building user interfaces, Accessed: 2020-5-5, 2020. [Online].
Available: https://reactjs.org/.

[12] Karma, Karma, Accessed: 2020-5-6, 2020. [Online]. Available: https://karma-runner.
github.io/latest/index.html.

[13] Jasmine, Jasmine: Behaviour-driven javascript, Accessed: 2020-5-6, 2020. [Online]. Available:
https://jasmine.github.io/.

[14] Angular, Angular features, Accessed: 2020-5-5, 2020. [Online]. Available: https://angular.
io/features.

[15] The google-maps platform, Accessed: 2020-5-8, 2020. [Online]. Available: https://developers.
google.com/maps/documentation.

[16] Mapping and analysis: Location intelligence for everyone, Accessed: 2020-5-8, 2020.
[17] Mapbox gl js api, Accessed: 2020-5-8, 2020.
[18] S. Newman, Building microservices, Feb. 2015. [Online]. Available: https://samnewman.io/

books/building_microservices/.
[19] M. Richards, Software architecture patterns by mark richards, Feb. 2015. [Online]. Available:

https://www.oreilly.com/library/view/software-architecture-patterns/
9781491971437/.

[20] Service orientated architecture patterns, Accessed: 2020-5-7. [Online]. Available: https://
patterns.arcitura.com/soa-patterns.

25



26 Bibliography

[21] Kong gateway, Accessed: 2020-5-8. [Online]. Available: https://konghq.com/kong/.
[22] Spring cloud gateway, Accessed: 2020-5-8. [Online]. Available: https://spring.io/projects/

spring-cloud-gateway.
[23] Zuul, Accessed: 2020-5-8. [Online]. Available: https://github.com/Netflix/zuul/wiki.
[24] O. Corporation, Mysql, Accessed: 2020-5-5, 2020. [Online]. Available: https://www.mysql.

com/.
[25] I. MongoDB,Mongodb, Accessed: 2020-5-5, 2020. [Online]. Available: https://www.mongodb.

com/.
[26] O. Corporation,Oracle, Accessed: 2020-5-5, 2020. [Online]. Available: https://www.oracle.

com/nl/database/.
[27] IBM, Ibm db2, Accessed: 2020-5-5, 2020. [Online]. Available: https://www. ibm.com /

analytics/db2.
[28] R. Stones and N. Matthew, Beginning Databases with PostgreSQL: From Novice to Professional.

2006, ch. Appendix A. [Online]. Available: https://link.springer.com/content/pdf/
bbm%5C%3A978-1-4302-0018-5%5C%2F1.pdf.

[29] Google,Waze, Accessed: 2020-5-5, 2020. [Online]. Available: https://developers.google.
com/waze.



Glossary
ACID stands for: atomicity, consistency, isolation, durability. These are principles used in database

software.. 23

Analytics.SmartRoads The application developed by a BEP group1 in 2019 to improve on SmartRoads
1.0. 4–7, 15, 20, 36

back end Relating to or denoting the part of a computer system or application that is not directly ac-
cessed by the user, typically responsible for storing and manipulating data. 1, 4–7, 10, 11, 13–15,
19–22, 34, 37, 44

continuous integration Tools for a development practice where developers integrate code into a
shared repository frequently, preferably several times a day. Each integration can then be verified
by an automated build and automated tests. 1

database A structured set of data held in a computer, especially one that is accessible in various ways.
5, 7, 10, 11, 13–15, 20–23, 27

framework An abstraction in which software providing generic functionality can be selectively changed
by additional user-written code. 1, 5–7, 15, 18, 22

free flow When traffic can continue without hindrance. 6

front end Relating to or denoting the part of a computer system or application with which the user
interacts directly. 4–7, 10, 11, 14, 15, 18–21, 24, 34, 38, 40, 42, 44

life cycle cost The cost of a software system over its life cycle, from Development to Entry into Ser-
vice, all the way to Disposal. 16

matrix sign A digital traffic sign above a highway to inform drivers. Also known as Matrix Signaalgever
(MS). 3, 6, 7

repository A central location in which data is stored and managed. 1, 5, 13–15

Rijkswaterstaat The Dutch Highway Agency. 3

SmartRoads 1.0 An application developed by Scenwise for traffic engineers to monitor the traffic sit-
uation. 1, 4–7, 10, 11, 13–15, 17–20, 23, 27, 36

software stack A set of software subsystems or components needed to create a complete platform
such that no additional software is needed to support applications. 2

1https://repository.tudelft.nl/islandora/object/uuid%3A1f39c7d1-7cbe-4985-a032-5ea71d5daa49?
collection=education

27



Acronyms
API Application Programming Interface. 5–7, 10, 13, 19, 20, 22, 36

BEP Bachelor End Project also known as the TU Delft Computer Science Bachelor Project. 1, 4, 14

DRIP Dynamisch Route-informatiepaneel. 5

JSON JavaScript Object Notation. 23

LTE Long-term evolution. 21

MS Matrix Signaalgever. 27

NDW Nationale Databank Wegverkeersgegevens. 3, 13, 14, 20

SWOT-analysis Strengths Weaknesses Opportunities and Threats analysis. 7, 8

UI User Interface. 6

UUID Universally Unique Identifier. 22

28



A
ProjectForum Description

Company Background
Scenwise B.V. is company with a lots of experience in Data Science & smart mobility domain. We work
together with our partners to develop innovative software for the domains:

• traffic management (e.g. automatic incident detection, response plans, etc.)

• data science (e.g. traffic monitoring, data fusion, Big Data, Machine Learning)

Our customers are the Dutch Highway Agency (Rijkswaterstaat), Nationale DatabankWegverkeers-
gegevens (NDW), provinces, large cities, ITS system suppliers, Feyenoord stadium and recently also
the city of Edmonton in Canada.

Project description
Scenwise has developed the SmartRoads platform. SmartRoads is used by our customers for moni-
toring and analyse traffic situations. For example:

• Feyenoord Stadium uses SmartRoads to monitor the traffic during a day with football match;

• Rijkswaterstaat uses SmartRoads for road-tests of Driving Automation.

Scenwise intends to extend the functionalities of SmartRoads to support a wide range of customers.
For this reason, we start a new project to rebuild SmartRoads. The development will include:

1. Flexible web-interface supporting differentmaps layers (e.g. GoogleMaps, ESRI, OpenStreetmaps,
Mapbox, etc.);

2. Big Data back-end incorporating a wide range of Open Data and proprietary data;

3. Real-time data analyse functionalities;

4. High performance replay-function;

5. Interface with Decision Support Applications (e.g. Automatic Accident Warning);

6. Interface with mobile apps to provide traveller advises.

Within this project, a team of students will work together to conduct research, make design deci-
sions, develop the application inclusive testing. The back-end should be a new big data platform using
different data sources. The front-end should be web-based using modern graphical interfaces which
different real-time graphics to provide adequate information to the end-users. This is an innovative
project with a lots of technical challenges.

We are looking for enthusiastic students with skills and interest in database techniques, data pro-
cessing, geographical information systems (GIS), visualization techniques and algorithms who are will-
ing to take the challenge of developing a new platform to meet the upcoming requirements of our
customers.

29



30 A. ProjectForum Description

Scenwise will provide detailed information for making design decisions and guidance in making
both the technical designs and the graphical interfaces designs. Setting up test scenario’s for software
acceptance is also a part of the project. Since this is a new development, there are enough rooms for
the project team to make design decisions. If the project team is familiar with Java Spring (back-end),
PostgreSQL, Python, React or Angular (front-end), then they may re-use part of the current source
code.



B
Requirements

31



32 B. Requirements

Requirements to increase performance Design Goal MoSCoW
classification

SmartRoads 2.0 must be able to retrieve the following datas-
treams from The Nationale Databank Wegverkeersgegevens
(NDW):

• The NDW ”incidents” stream 1

• The NDW ”measurement” stream 2

• The NDW ”Wegwerkzaamheden” stream 3

• The NDW ”trafficspeed” stream 4

• The NDW ”traveltime” stream 5

• The NDW ”Matrixsignaalinformatie” stream 6

Must have

The SmartRoads 2.0 GUI must have better performance than
SmartRoads 1.0.

• Rendering of data on the map needs better performance
e.g. retrieved and rendered within 1 minute.

Performance Must have

Database retrieval of the needed traffic information is too slow.
Resulting in:

• The current replay function is too slow and higher per-
formance is required.

• The retrieval and processing of a specific amount of traf-
fic data regarding road length and duration must be un-
der a specific amount of time.

Performance Must have

SmartRoads 2.0 should have at least the same features as
Analytics.SmartRoads features:

• Situational messages.

• Implement analytics contour plot.

• Implement analytics cloud plot.

Should have

Table B.1: List of requirements which aim to increase the performance of SmartRoads, along with their corresponding design
goal and importance



33

Requirements for new features Design Goal MoSCoW
classification

A new design should make the updates of the road-network
configuration file easier or even automatic. An improved de-
sign should be introduced to reduce manual handling and the
chance of errors.

Should have

SmartRoads 2.0 must be able to display free-flow, speed and
accidents of the entire road network of the Netherlands

Performance & Scalability Must have

SmartRoads 2.0 should retrieve, process, visualize and store
other data feeds, that cover the entire Netherlands (e.g. Waze
[29]), next to the NDW data.

Should have

Introduce an addition tab ”Exceptional situations”. On the ”ex-
ceptional tab”, only the exceptional situations which demand
attention of the traffic operator will be shown.

Should have

Table B.2: List of requirements which are about implementing new features, along with their corresponding design goal and
importance



34 B. Requirements

Requirements for in-house development Design Goal MoSCoW
classification

Make a new architecture design from the current architecture
of Scenwise to a modular- or service-based architecture.

Maintainability Must have

Make a plan for future modules/services, such that a new stu-
dent group or a developer from Scenwise knows how to inte-
grate with the system.

Maintainability Must have

SmartRoads 2.0 must have good code quality.

• The code written by us needs to have at least an 80%
test coverage.

• The code written by us needs to be fully and clearly doc-
umented.

Maintainability Must have

Back end must be built in a modular way, such that new fea-
tures can be added easily in the future.

Maintainability Must have

Front end must become modular, in order to tailor software for
distinct customers, without rewriting existing functionality.

Maintainability Must have

Implement Route planner as a module/service. Maintainability Could have

For the following futuremodules/services a custom integration
plan should be created.

• Authentication.

• User Profiling.

• Route Planner.

• Automatic Accident Detection.

• Scenario Designer.

• Traffic Light Analytics.

Could have

Implement the Authentication as a module/service. Maintainability Could have

Table B.3: List of requirements which aim to ease in-house development, along with their corresponding design goal and
importance

Requirements to make it more configurable to customers Design Goal MoSCoW
classification

Implement the User profiling as a module/service.

• Add user profiles, with settings per profile.

• Users should be able to temporarily change the settings
of his/her user profile.

Maintainability Could have

Table B.4: List of requirements which aim to make SmartRoads more configurable to customers of Scenwise, along with their
corresponding design goal and importance



C
Research Results

C.1. User Stories
C.1.1. Story 1
As a traffic controller at Feyenoord, I want to see the traffic flow in the region of Rotterdam as colors
on road segments, so that I can streamline the arrival and departure of soccer teams, supporters and
emergency services.

C.1.2. Story 2
As a traffic controller at Feyenoord, I want to see the maintenance sites in the region of Rotterdam, so
that I can streamline the arrival and departure of soccer teams, supporters and emergency services.

C.1.3. Story 3
As a traffic controller at Feyenoord, I want to see the accidents in the region of Rotterdam, so that I can
streamline the arrival and departure of soccer teams, supporters and emergency services.

C.1.4. Story 4
As a traffic controller at Feyenoord, I want to see the traffic flow on 3 road segments clockwise around
Feyenoord over the last 24 hours, so that I can streamline the arrival and departure of soccer teams,
supporters and emergency services.

C.1.5. Story 5
As a traffic controller at Feyenoord, I want to see the matrix sign A15L 65.25 above the road (Zuidoost
rotterdam), so that I can streamline the arrival and departure of soccer teams, supporters and emer-
gency services.

C.1.6. Story 6
As a traffic controller at Feyenoord, I want to see a replay of the region of Rotterdam from the prior day,
so that I can evaluate our methods to streamline the arrival and departure of soccer teams, supporters
and emergency services.

35



36 C. Research Results

C.2. API Research

HTTP
request
method

API call Response
size SmartRoads 1.0 time Analytics.SmartRoads time

POST activate-telpunten 206B 15ms

POST compute-critical-density 205B 16ms

PUT show-monica 177B 19ms

GET drip-all 568.23KB 139ms

GET status 268.72KB 458ms

GET freeflow-grt 138.53KB 43ms

GET init-map-data 60.2MB 1217ms

GET intensity-history 13.06KB 81ms

GET msi 3.19MB 609ms

GET msi-relations 13.22MB 2630ms

GET parking-availability 13.78KB 16ms

GET car-data 260B 19ms

GET traffic-speed 139.47KB 465ms

GET traveltime-history 20.55KB 57ms

GET traveltimes 136.15KB 632ms

GET traveltimes-avg-history 38.79KB 1804ms

POST roads/traject 37.01MB 3.59s

POST roads/point 16.79MB 1215ms

GET drip-date/date 575.21KB 46s

GET msi?date= 3.41MB 706ms

GET traveltimes?date= 137.03KB 886ms

GET status?date= 351.51 KB 601ms

GET traffic-speed?date= 139.47KB 2.3s

POST roads/traject?date= 36.97MB 3.87s

POST roads/point?date= 16.82MB 1331ms

Table C.1: API calls and their responses

C.3. Database Research
C.4. Back end Research

Figure C.1: File reads by the measurement repository



C.4. Back end Research 37

Figure C.2: Hot methods in the measurement repository

Figure C.3: Method profiler of the main back end



38 C. Research Results

C.5. Front end Research

Figure C.4: Summary of starting the front end

Figure C.5: Summary of selecting 3 roads

Figure C.6: Summary of the replay function



C.6. Current application vs Proposed solution 39

C.6. Current application vs Proposed solution

Figure C.7: Overview of the current application

Figure C.8: Overview of our proposed solution



40 C. Research Results

Problems in the current application Proposed solution

Lack of documentation All new code will have documentation

Lack of tests New code will be tested

Data in database is stored double Database will be redesigned

Data collection happens manually Automated data collection into database

Use of local filesystem Centralized database using engine

Front end renders as whole Use React component rendering

Front end requests all data at startup Only request data for what can be seen

Table C.2: Problems of the current and proposed solutions



D
Revised Requirements

41



42 D. Revised Requirements

Requirements to increase performance Design Goal MoSCoW
classification

SmartRoads 2.0 must be able to retrieve the following datas-
treams from The Nationale Databank Wegverkeersgegevens
(NDW):

• The NDW ”incidents” stream 1

• The NDW ”measurement” stream 2

• The NDW ”Wegwerkzaamheden” stream 3

• The NDW ”trafficspeed” stream 4

• The NDW ”traveltime” stream 5

• The NDW ”Matrixsignaalinformatie” stream 6

Must have

The SmartRoads 2.0 GUI must have better performance than
SmartRoads 1.0.

• Rendering of data on the map needs better performance
e.g. retrieved and rendered within 1 minute.

• To achieve this we need to apply component rendering
instead of rendering complete front end

• To achieve this the front end must only request what can
be seen by the user

Performance Must have

Database has multiple issues causing the retrieval of the
needed traffic information being too slow. The following re-
quirements will solve it:

• The current replay function is too slow and higher per-
formance is required.

• The retrieval and processing of a specific amount of traf-
fic data regarding road length and duration must be un-
der a specific amount of time.

• The data must be stored more eficiently e.g. smaller
tables, more foreign keys and less duplicate information.

• A lot of data collection and manipulation happens man-
ually and must now be automated.

Performance Must have

SmartRoads 2.0 should have at least the same features as
Analytics.SmartRoads features:

• Situational messages.

• Implement analytics contour plot.

• Implement analytics cloud plot.

Should have

Table D.1: List of requirements which aim to increase the performance of SmartRoads, along with their corresponding design
goal and importance



43

Requirements for new features Design Goal MoSCoW
classification

A new design should make the updates of the road-network
configuration file easier or even automatic. An improved de-
sign should be introduced to reduce manual handling and the
chance of errors.

Should have

SmartRoads 2.0 must be able to display free-flow, speed and
accidents of the entire road network of the Netherlands

Performance & Scalability Must have

SmartRoads 2.0 should retrieve, process, visualize and store
other data feeds, that cover the entire Netherlands (e.g. Waze
[29]), next to the NDW data.

Should have

Introduce an addition tab ”Exceptional situations”. On the ”ex-
ceptional tab”, only the exceptional situations which demand
attention of the traffic operator will be shown.

Should have

Table D.2: List of requirements which are about implementing new features, along with their corresponding design goal and
importance



44 D. Revised Requirements

Requirements for in-house development Design Goal MoSCoW
classification

Make a new architecture design from the current architecture
of Scenwise to a modular- or service-based architecture.

Maintainability Must have

Make a plan for future modules/services, such that a new stu-
dent group or a developer from Scenwise knows how to inte-
grate with the system.

Maintainability Must have

SmartRoads 2.0 must have good code quality.

• The code written by us needs to have at least an 80%
test coverage.

• The code written by us needs to be fully and clearly doc-
umented.

Maintainability Must have

Back end must be built in a modular way, such that new fea-
tures can be added easily in the future.

Maintainability Must have

Front end must become modular, in order to tailor software for
distinct customers, without rewriting existing functionality.

Maintainability Must have

Implement Route planner as a module/service. Maintainability Could have

For the following futuremodules/services a custom integration
plan should be created.

• Authentication.

• User Profiling.

• Route Planner.

• Automatic Accident Detection.

• Scenario Designer.

• Traffic Light Analytics.

Could have

Implement the Authentication as a module/service. Maintainability Could have

Table D.3: List of requirements which aim to ease in-house development, along with their corresponding design goal and
importance

Requirements to make it more configurable to customers Design Goal MoSCoW
classification

Implement the User profiling as a module/service.

• Add user profiles, with settings per profile.

• Users should be able to temporarily change the settings
of his/her user profile.

Maintainability Could have

Table D.4: List of requirements which aim to make SmartRoads more configurable to customers of Scenwise, along with their
corresponding design goal and importance



I
Long-term Evolution Design

131



ScenWise
Long-Term

Evolution Design
by

J.L. Buijnsters
D. Hofman

J.G.P. Klein Kranenbarg
C. el Moussaoui

K. Zheng

Project duration: April 20, 2020 – June 28, 2020
Supervisors: Dr.ir. H. Wang, TU Delft, BEP Coordinator

Ir. O.W. Visser, TU Delft, BEP Coordinator
Dr.ir. B.H.M. Gerritsen Coach
Ir. K. F. Chan Client



Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Architecture migration 2
2.1 Current architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Final architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Migration steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Software Development Lifecycle Guidelines 8
3.1 Containerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 API Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.3 Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Static-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Testing code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4.1 Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4.2 Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.5 Agile workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.6 Version control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7 CI/CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Communication Protocols 12
4.1 OpenAPI Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Event-driven communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Adding a new Service 15
5.1 Prerequisites new service external workforce. . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 API Gateway integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Glossary 17

ii



1
Introduction

1.1. Overview
In this document, the guidelines and practices of the high-level architecture for the future software of
Scenwise are mapped out, as well as the envisioned future guidelines regarding software develop-
ment lifecycles. The aim is to ensure new projects will be of high code quality and integratable with
low effort. This means that all new software developed in the future will form one big integrated system.

We first present a plan for an architecture migration from the current situation to the desired situa-
tion. It should become clear what is currently missing in the software architecture, but also how these
problems can be fixed. Furthermore, the concept of services will be explained and what they are good
for.

Next, an overview of the guidelines for software development lifecycles is given, this should enable
developers to create high-quality software. It will also ensure that the current code quality problems
will not be repeated in the future.

Then a layout of what you need to know about the communication technology that is used in this
architecture. This will go a little bit in-depth on the technical parts. This will explain what the rules are
for communication between the services and how to use them yourself.

And finally, an explanation will be given on how to add a new service to the software architecture of
ScenWise. You should then have all the necessary knowledge to better your software development at
ScenWise.

1



2
Architecture migration

2.1. Current architecture
The current architecture of ScenWise consists of multiple separate applications. Each application, in
their simplest form, exists of a front-end, a back-end and a database (see figure: 2.1). This means
functionalities and data are not shared between applications. For the front-end similarities, this implies
duplicate features, e.g. map, drawing on the map, login, etc. For the back-end, this means duplicate
data and functionalities.

Figure 2.1: Solo application architecture

2.2. Final architecture
What is desired is an architecture where once some functionality has been created, other applications
can reuse this functionality without having to rewrite the code. It is undesirable that duplicate data
is stored separately for each application, as this uses extra resources. And in the case that tailored
software has to be created for a specific client, modules can be reused from existing front-ends and
back-ends, with the added benefit that this new tailored software’s functionalities can also be integrated
by other front-ends and back-ends.

A solution to make reusing functionality a standard practice, a service-based architecture will be
created. Functionalities will be in the form of services. Services are small back-ends which only have
a small number of coherent functionalities. To use these services a request can be sent to them just
as you would normally do from the front-end to the back-end. An example service could be a Route
Planner. This service will be responsible for finding a route between two points on a map. After this
service has been created once, it can be used in all future applications. And if the Route Planner
needs an update, e.g. a faster algorithm has been found, it can be updated in one place, in the Route
Planner service, then all applications which use the Route Planner service will automatically use the
newly updated service. In figure 2.2 the Route Planner service is taken from the services-cloud to
show how this single service is connected to other services which use its outputs or use its inputs. The
service-cloud is an abstraction for all independent services.

As multiple services will probably need the same data to function, it would make sense to create
centralized databases. This means that the data collected is only stored in one specific database. All
services that need that data can read it from that database. In figure 2.2 it is shown how the NDW data
would be parsed by a specialized service called NDW (Nationale Databank Wegverkeersgegevens)
parser, which fills the centralized database. From there all services which need that data can request
it from the same centralized database.

2



2.2. Final architecture 3

To create custom-tailored software for specific customers it should be possible to connect to all
needed functionalities from existing services. It would be very convenient if we can reach all these
services from one place. This will be done by an Application Programming Interface gateway or API
gateway for short. This gateway knows which services are available in the system and where they are.
So for example, if a route needs to be found between two points on a map in the front-end, this can
simply be asked to the API gateway. The API gateway will then find the Route Planner service and
relay this question to it. The answer will then go back to the front-end from the Route Planner service
through the API gateway. This can also be seen in figure 2.2, all distinct front-ends can use the same
API Gateway to reach any service that is already functioning in the services-cloud. Thus all front-ends
can now use the Route Planner service.

Figure 2.2: Future application architecture



4 2. Architecture migration

2.3. Migration steps
At the moment, ScenWise has multiple of these solo applications on the market and in beta. It would
be beneficial if, for example, the data, or at least some of the functionalities are shared between the
applications. Ideally, ScenWise eventually owns an all-inclusive product were all functionalities of the
different applications are accessible via one website.

To achieve this, a migration from the current solo application architecture to the described Service-
Oriented Architecture [1] is needed. To do this the separate databases, front-ends and back-ends need
to be combined. The aforementioned API gateway is a good start to combine the back-ends.

Figure 2.3: Api Gateway

The first step would be implementing this API Gateway. Therefore all existing endpoints should be
connected. Endpoints are the places where requests can be made to the back-end for certain data. In
figure 2.4 it is visualized how these endpoints can look in a solo application architecture. Three distinct
endpoints with colours blue, red and black are visualized. Each endpoint has its own function and/or
returns some data, e.g. the black endpoint provides the functionality of the Route Planner. In this case,
the front-end needs these three endpoints to function correctly. When implementing the API Gateway,
the gateway should offer these distinct endpoints.

Figure 2.4: Solo Application endpoints

In figure 2.5 it is shown how two front-ends need the same endpoints for data or functionality. And
how these front-ends are not directly connected to their back-ends anymore, but to the API Gateway.
However it should be noticed that both back-ends supply all three endpoints, thus both back-ends pro-
vide a black endpoint with Route Planner functionality. The API Gateway can choose which endpoints
it is going to use, this could be configured based on performance.



2.3. Migration steps 5

Figure 2.5: API Gateway endpoint implementation

And lastly in figure 2.6, it is shown how the black endpoint, which is responsible for the Route
Planner functionality, is now provided by a separate Route Planner service. This means that the API
gateway now uses the black endpoint of the Route Planner Service for route planning requests, instead
of the previously used black endpoint from the Back-end of the Solo app 2.

Figure 2.6: Connecting new service endpoint

As you can see in figure 2.3, each solo application front-end is now connected with the API Gateway.
From here, the functionalities and data of the desired back-end can be used as shown in figure 2.6.
The API Gateway can be seen as a Traffic Controller, pun intended, as it will redirect each request from
the front-end to the correct place in the back-end. This means that all front-ends connected to this API
Gateway can use all back-end functionality connected to this API Gateway.

This step alone is very useful for the development of new front-ends, as you can reuse all func-
tionalities reachable by endpoints from previously developed back-ends. In figure 2.7, you can see
how such a front-end connects with the API Gateway and has access to all functionalities from the
connected Solo app back-ends. In this case, we are creating SmartRoads 2.0.



6 2. Architecture migration

Figure 2.7: New Front-end

From here, the first steps to the new services-cloud can be taken. At the moment, each back-end
has a lot of functionalities and endpoints. These need to be split up in clear services which only contain
very similar functionality. They should be able to function autonomously, meaning that they should not
depend on other services. Splitting up the back-end will be done with the so-called Strangler pattern
[2]. This means that, systematically, groups of similar functionalities should be taken from a back-end
and put in a service.

With this method, services will gradually take over more and more functionality from the old back-
end. This will occur until there comes a time that all functionalities have been turned into services and
the old back-end is no longer useful and can be taken down.

Some functionalities rely on data to function. In the Solo application architecture, the back-end
gets this data from its database. As discussed previously it would make sense to create a centralized
database which all services who need that data can use. This will ensure that data is not stored multiple
times in different databases and is not stored in different formats. An example of storing data in a
different format would be a date presented by dd/mm/yyyy or mm-dd-yyyy. By having it centralized, all
services need to use the same database and thus the same data formats. This makes the services
uniform and thus easier to use across multiple applications.

Figure 2.8: Services and centralized databases



2.3. Migration steps 7

As you can see in figure 2.8, a new centralized NDW database has been added. This database is
filled by the NDW Parser. Both services A and B use the data from this database to provide for their
functionalities. A second centralized database can be seen which is filled with data from another data
stream. As you can see, Service B uses data from both databases to provide for its functionalities. At
this point, all front-ends can make use of these services A and B.

Continuing this pattern will eventually provide a large and diverse service-cloud, where any service
can be accessed by any front-end connected via the API Gateway.

The main benefit of this architecture is the high re-usability. Each service is a small code base which
makes it much more maintainable. The API Gateway will allow monitoring of which services might be
lacking performance-wise. Then the decision can be made to swap such a service with a new solution,
without having to worry about all other services. It is very easy to add new functionality to the system in
this architecture. Data is available via the centralized databases and core functionalities are available
via the already existing services.

One of the pitfalls of this system is its complexity. This is why the API Gateway is very important. It
is the connection to the big cloud of services, meaning that it is the key component to knowing which
services are available and where. And for example, if a service is down because it has crashed, the
API Gateway has to be fault-tolerant and know how to deal with a malfunctioning service.

We are going to minimize this complexity by creating very clear guidelines and communication rules
in the next chapters. Finally, a tutorial will be given on how to correctly add a newly developed service
to the service-cloud.



3
Software Development Lifecycle

Guidelines

3.1. Containerization
We strongly advise to start adopting containerization for all existing components. We have used Docker
[3] for the containers of the front-end, API gateway, and each service. Containers bundle all needed
configuration files and dependencies required to run one of the system components. This container
ensures that components can always run regardless of what software is available on the host machine.

3.2. Documentation
To make the code more understandable for both current and future developers, there needs to be
sufficient documentation to explain each part of the code. Each component, e.g. front-end, gateway,
or services, should have a README.md file which gives an overview regarding what the component
is used for and how to set it up. This file can be found in the root directory of the component. Thanks
to this file, developers can start using this part of the codebase within a reasonable amount of time,
without any extensive debugging if they run into problems.

3.2.1. Front-end
In short, documentation should be written on a class/component, method, and in some cases, line
level. That is, almost every method/function should be documented, and some important or hard to
understand lines as well. Of course, methods/functions that are self-explanatory such as the simplest
form of a getter or setter can be left out of documentation. The functions constructor(props) and prop-
Types() can also be left out of documentation. A method/function should be documented on its function,
parameters, and if applicable the return statement.

3.2.2. API Gateway
OpenAPI 3.0 specifications for all end-points of each service. This makes it very clear what can be
easily re-used. More information regarding this documentation can be found in chapter 4. Besides
that, the code within the gateway should also be documented appropriately. Developers should be
able to understand what the code does after reading the documentation of a route or a filter.

3.2.3. Services
Each service should have its README.md file. All code in future services should also get appropriate
documentation. Make sure that regardless of what software stack is used, all functions are explained
by the documentation. Any developer should be able to understand what a function does by taking a
look at its documentation.

8



3.3. Static-analysis 9

3.3. Static-analysis
Static-analysis is a code analysis without execution of the code. It can check coding style rules, like
proper documentation, or find possible bugs. It is often one of the first steps in a CICD pipeline, as the
lack of code execution makes it very fast providing quick feedback to the developers. There are tons
of static-analysis tools available for most programming languages. We strongly advise to use some
sort of static analysis for each component of the system and integrate those in the CICD pipeline, more
information can be found in section 3.7.

3.4. Testing code
An important factor of attaining and maintaining high code quality is by testing.

3.4.1. Front-end
Unit tests
There are multiple ways of testing the front-end. In general, for each component, we test whether it
renders correctly. We also make a snapshot of the HTML so that unwanted changes in the HTML
can be detected. We also test state manipulation and each non-react function. We use the Jest and
Enzyme dependencies to write our tests, and keep the coverage on a minimum of 80%.

3.4.2. Services
Unit tests
Each service should be unit tested. Meaning all individual functions should be tested by one or more
tests. For example, a function is responsible for the addition of two numbers. It should be tested
whether this function returns the correct value for 2 given numbers. May a developer accidentally
change the addition character to amultiplication character this will be caught by our unit test. The benefit
of this is that bugs can be found in a very early stage. And for example, when updating dependencies
it will immediately be clear if functions do not behave as intended.

We advise setting a minimal rule of unit test coverage of 80% for each independent service. Note
that this is a bare minimum, maximizing this coverage is strongly advised.

Contract tests
Contract testing is a type of testing which ensures that the system is aware of any changes in the
interaction with an external service [4]. The contract of a service is the possible interactions which can
be made with that service. As ScenWise has software projects with other companies, this would be a
good way of making sure that, if for example, a development team from the other company change the
contract of a service which is integrated to the services-cloud of ScenWise, this will not go unnoticed and
the services of ScenWise which use the external service can be updated accordingly. In the following
section, it will be explained how these contract tests can be used for integration testing the services
of ScenWise. Contract testing will become specifically important when the company will get multiple
teams maintaining services.

Integration tests
Integration tests are responsible for the testing of independently deployed services. Two types of in-
tegration tests can be specified, namely, the narrow integration tests and the broad integration tests
[5]. The narrow integration tests are similar to unit tests, except that they are responsible for testing of
interactions of the tested service with external services. In this case, the external services are mocked.
The mocks can be supported by contract tests [4] of the external service, this makes the tests faster
and more reliable. This type of integration tests doesn’t require all services to be deployed. The broad
integration tests are run on a system where all services are live. These test if multiple services work
together as we expect them to, instead of only testing the code responsible for the interactions.

Based on the API specifications, we use broad integration tests. As explained, these tests are in-
troduced to make sure that if a service’s endpoint mutates or stops working we are aware of it. This
means that we should find the problem before a customer would. Therefore, each endpoint should be
tested. For the integration tests of the API Gateway, Postman [6] is used. Postman can run collections
of tests periodically on the deployed services. This will give a clear overview of the health of the system.



10 3. Software Development Lifecycle Guidelines

These tests should also be integrated into the CI/CD pipeline.

Correctly implementing and keeping up to date of both types of integration tests in the new archi-
tecture will ensure that if something in the service-based system fails, ScenWise can deal with it before
a customer has to deal with errors.

System testing
System testing includes testing the fully integrated system. The broad integration testing of the API
Gateway can be seen as system testing the back-end. However, it is also desirable the fully inte-
grated front-end is tested. In the CI/CD section 3.7 it is explained how a near-production version of
the application is deployed live in a staging environment. This staging environment can be used for
user acceptance testing, which is a type of system testing, for example, when a specific new feature
is requested by a product manager. When the feature is developed by a developer it can be deployed
on the staging environment where the product manager can test it out. May there be any feedback on
performance, design, colour mismatch, etc, this can be done before the new feature is deployed on the
production server.

3.5. Agile workflow
To work efficiently in a team on a large project, a structured workflow is necessary. An agile workflow
helps to break down a large project into concrete smaller tasks. A good framework for an agile workflow
is scrum. Scrum is based on sprints which usually take 1 or 2 weeks. A product owner or manager
specifies which results he wants to achieve, often given by using user stories. They are sorted on
priority. They can also be placed on a product backlog to keep a clear overview of what has to be
done. This can be done on a whiteboard or an online board.

At the beginning of a sprint the team discusses what user stories are going to be implemented the
upcoming sprint, the workload should be divided equally by estimating the amount of time per task.
These tasks are placed on a sprint backlog, this like the product backlog can be a whiteboard or an
online board. Each task has a corresponding status, for example, to-do, in-progress or done. In the
event tasks from the previous sprint have not yet been completed then these will also be taken into
account. If any problems or bugs arise during the sprint these tasks can be added to the current sprint
after consultation with the product owner, or they are passed on to the next sprint.

Every day a daily scrum meeting is held in the morning at a fixed time. The meeting should take
no longer than 15 minutes. Normally only the development team is present. Each team-member gets
asked what he or she has done the previous day, what he or she is going to do today, if they ran into
any problems or challenges, do they need help, or is there something which can be of interest for other
team members? The answers to these questions should be prepared to ensure they are succinct. If
there are any larger discussion, these should be held outside of this daily scrum meeting.

After the sprint, a sprint review can be held. Here the completed tasks can be showcased to the
whole team and any other interested coworkers.

Within the team, a retrospective should be held. This is an evaluation at the end of the sprint about
what went good and what went wrong. The main focus is to solve any problems which arose during
the sprint and make sure these problems will not manifest themselves in the next sprint. This can be
about anything relating the sprint for example team communication.

All these meetings are lead by a scrum-master, he or she is responsible for the whole scrum-
process.

As the number of developers will most probably grow in the future of ScenWise we advise adapting
such an agile workflow, as it will otherwise become increasingly harder to work efficiently on a large
end-product.

3.6. Version control
In terms of version control, it is pretty straightforward. Two important branches come into play; the
master and the develop branch. As the name indicates, the develop branch is for the development
stage. To change code, e.g. implement a new feature or fix a bug, you branch from the develop into a
separate new branch, with a descriptive title which is often the branch number following the title of the
corresponding issue. After making the changes needed, you put in a merge/pull request to the develop



3.7. CI/CD 11

branch. This merge request gets approved by other developers, which check if all code quality is up to
standard. When you feel comfortable deploying a new version of the code to production, you can make
a merge request to merge develop branch into the master. After that, it is a simple case of deploying
which will be explained in the next section.

3.7. CI/CD
To automate the integration of code and the checks that come with it, Continuous Integration (CI)
should be used. As the names indicate, the use of this concept is to continuously integrate code that
has been added, deleted, or changed. This allows developers to see with just one glance, whether the
tests, static analysis and build(s) pass. This avoids unnecessary time consumption and mistakes in
manually running tests, static analysis and build(s). Additional options can be added such as showing
the change in test coverage, and the overall test coverage. To automate the deployment of the new
code base, Continuous Deployment (CD) should be used. This stage can be run after a merge request
to the development or master branch has been merged. An update on the development branch should
be deployed on, for example, a staging environment on a beta server. A new version on the master
branch should be deployed on the production servers.



4
Communication Protocols

In this chapter, the communication protocols will be laid out. Developers need to be able to use services
created by other developers without having to work through their codebase. Besides, that communi-
cation protocols are specifically important in the envisioned architecture as a large number of services
need to be able to correctly communicate with each other when new services are added to the system.

4.1. OpenAPI Specification

As stated it is important that developers can easily use services they are not familiar with yet. A good
way to accomplish this is by documenting all reachable endpoints they can connect to. This means
each service should have an interface which maps out all possible requests and their corresponding
responses. A solution for describing REST (Representational State Transfer) APIs is the OpenAPI
Specification [7]. This allows describing available endpoints, operation parameters and authentication
methods. As REST is already in use within the company and as it is a very popular technology for
communications using HTTP, this will be very useful. OpenAPI specification [7] files can be served as
a simple user interface using Swagger UI [8]. An example endpoint for retrieval of status-messages
can be seen in figure 4.1. It describes an HTTP get request with a date as an optional request query
parameter. There is also an example response documented which will immediately make clear to a
developer what he can expect of a response from this endpoint. There is even a ”Try it out” button to
send a request and get a real response. This is the place where developers can learn what the gateway
or a specific service has to offer.

In the OpenAPI Specification [7] files multiple responses can be described for the same request.
For example, if an invalid input query parameter date is given to the status-messages endpoint it should
return an HTTP 400 status which means a Bad Request. The HTTP-status-codes can be found here
[9]. The services must respond with the correct status code. Therefore, it is important to make sure
that the service responses always adhere to the OpenAPI specification.

12



4.1. OpenAPI Specification 13

Figure 4.1: Example documentation endpoint

As discussed in the previous chapter integration tests should be used to make sure the system
is healthy and functioning. These integration tests should adhere to the OpenAPI specification files
as these should be correct. If, for example, the status-messages endpoint is updated and would now
use a different date format, then this should not only be updated in the integration tests, but also in
the OpenAPI documentation because if there are any inconsistencies between the two, the integration
tests should fail.

Unfortunately, there is no correctness check if the OpenAPI documentation is according the Post-
man integration tests this should be implemented in the near future. This can be easily done by running
the integration tests on an OpenAPI mock server. We strongly advise getting such a system in place
within the CICD to check the OpenAPI documentation.

A REST API is specifically useful for communication between the front-end and back-end. However,
this request-response communication is less ideal between the services in the future services-cloud.
This cloud should be using another way of communication, intending to be loosely coupled and highly
scalable, namely Event-driven communication. Loose coupling means each service has little to no
knowledge about other services in the system. This inherently makes the system highly scalable as
adding, updating or deleting a service does not require any changes across the whole system. Such a
system is very much desired in an ever-growing codebase.



14 4. Communication Protocols

4.2. Event-driven communication
In an event-driven architecture, a service will produce events after it has done its work. Unlike REST,
services that produce events do not need to know the specific locations of other services. The events
can be published to a queue which processes them and makes sure the services which need the event
gets them. Or the events can be delivered via a pub/sub model [10]. After an event is delivered to the
appropriate services each service will consume the event, which means performing their corresponding
tasks, this can include creating follow-up events. For example, after a user has requested a new
account an event will be produced, namely the ’create_user’ event. This event contains the login
information of the new user. An authentication service which is subscribed to this event via pub/sub
or a queue creates the new user and sends a follow-up event, namely ’user_created’, containing the
email address of the new user. An email service which is subscribed to the ’user_created’ event gets
the event from the queue or pub/sub model and consumes it. It will send a welcome email to the new
user.

Services operate independently without the knowledge of other services, which makes the system
loosely coupled. They will only need to know the types of events which are interesting to them. This
decoupling makes the system very scalable.

On top of all this, event-driven communication is very appropriate for the type of data ScenWise
collects and processes. The main data feeds are live data. At the moment these data feeds are coming
in via a pull-based matter which is inherent to the Request/Responsemodel currently used. This means
that in the case that new data is available every minute and this data would be polled every minute,
there will always be a delay of 0 to 59 seconds before being up to date. In most cases, this live data
could also come in via a pushed-based manner which is inherent to the event-driven model. Meaning,
when there is new data available at the source, the data will be immediately pushed to the system. This
always ensures a minimal delay in obtaining new data. At the moment the pull-based approach is used
for the NDW data, even though NDW supports a pushed-based interface. We suggest that ScenWise
switches to the pushed-based approach for all data streams which have this option.

Unfortunately setting up the basics for an event-driven communication architecture between ser-
vices was out of the scope of our project as ScenWise demanded a better performing and fully func-
tioning new version of SmartRoads 1.0. As a consequence, the focus was almost solely needed for
the front-end and a functioning gateway. We want to emphasize that the implemented gateway and
the new front-end are just a start to the new architecture. Implementing event-driven communication
between services asks for investment, and is not necessary to create a functioning service-based ar-
chitecture. We do however strongly advice to start implementing an event-driven architecture in this
phase as from this moment all services are going to be created. It will be less costly implementing
event-driven communication right from the start than over a few years. The longer ScenWise waits,
the higher the effort will be.

If ScenWise is willing to make this investment then it will be equally important that the event types will
also be properly documented. The events can be seen as a variation of the traditional REST endpoints.
Unfortunately, OpenAPI specification [7] is not ideal for documenting these events. Luckily there are
event-based alternatives like AsyncAPI [11].



5
Adding a new Service

5.1. Prerequisites new service external workforce
As ScenWise regularly has workforces which are not yet familiar with the software at ScenWise, for
example, student projects, it is important to provide the group with appropriate information about the
software architecture and the appropriate tools for the desired software development.

List of things a new group of developers should get from the start of their project:

• A front-end codebase for implementing new features in the desired UI

• Access to all remotely useful services and their documentation, for example, OpenAPI specifica-
tions

• A clear set of rules ScenWise imposes on their software, for examples see chapter 3

• A virtual private server for hosting a live version of the service

• Optional: Providing an OpenAPI specification file for the new service

5.2. API Gateway integration
To integrate the new service in the API Gateway and make it available to all front-ends the following
steps must be taken. In the API Gateway configuration file (application.yaml) the host of the service
must be set. In the case of a student project, the host can be set to the provided VPS. Next, the service
route must be set by creating an extra routes entry in the same configuration file. If there is a need
for extra more specific configurations please check the docs of the Spring Cloud Gateway [12]. Add
the OpenAPI specification files for the routes which should be available through the gateway to the
API Gateway docs. In the case that the service is under development, tag the routes as WIP (Work In
Progress) in the OpenAPI specification file, to make sure other developers know this route is not yet
available but will be in the near future. If the service is ready for production, make sure the routes are
added to the integration tests of the gateway. And that’s it, the endpoints of the new service should
now be available via the API Gateway.

15



Bibliography
[1] Service orientated architecture patterns, Accessed: 2020-5-7. [Online]. Available: https://

patterns.arcitura.com/soa-patterns.
[2] S. Newman, Building microservices, Feb. 2015. [Online]. Available: https://samnewman.io/

books/building_microservices/.
[3] Docker, Docker. [Online]. Available: https://www.docker.com/ (visited on 06/18/2020).
[4] M. Fowler,Contracttest, martinFowler.com, Jan. 2011. [Online]. Available: https://martinfowler.

com/bliki/ContractTest.html (visited on 06/22/2020).
[5] M. Fowler, Integrationtest, martinFowler.com, Jan. 2018. [Online]. Available: https://martinfowler.

com/bliki/IntegrationTest.html (visited on 06/22/2020).
[6] Postman,Postman. [Online]. Available: https://www.postman.com/ (visited on 06/17/2020).
[7] SMARTBEAR,What is openapi. [Online]. Available: https://swagger.io/docs/specification/

about/ (visited on 06/16/2020).
[8] SMARTBEAR,Swagger ui. [Online]. Available: https://swagger.io/tools/swagger-ui/

(visited on 06/16/2020).
[9] w3, Http status codes. [Online]. Available: https://www.w3.org/Protocols/rfc2616/

rfc2616-sec6.html (visited on 06/16/2020).
[10] Microsoft, Implementing event-based communication. [Online]. Available: https://docs.

microsoft.com/en-us/dotnet/architecture/microservices/multi-container-
microservice-net-applications/integration-event-based-microservice-
communications (visited on 06/17/2020).

[11] A. Initiative,Asyncapi. [Online]. Available: https://www.asyncapi.com/ (visited on 06/16/2020).
[12] Spring, Spring cloud gateway. [Online]. Available: https://spring.io/projects/spring-

cloud-gateway (visited on 06/21/2020).

16



Glossary
containerization Containerization has become a major trend in software development as an alterna-

tive or companion to virtualization. It involves encapsulating or packaging up software code and
all its dependencies so that it can run uniformly and consistently on any infrastructure. The tech-
nology is quickly maturing, resulting in measurable benefits for developers and operations teams
as well as overall software infrastructure. 8

17


	Introduction
	Problem Analysis
	Problem definition
	Limitations to overcome

	Research
	Research Approach
	Methodology
	Results
	Data analysis
	api
	database
	backend
	frontend

	Conclusion
	Requirements revised

	Success Criteria

	Design
	Long-term evolution design
	Architecture migration
	Software Development Lifecycle Guidelines
	Communication protocols
	Adding a new Service

	api Gateway
	frontend
	Framework
	Map
	support for mobile browsers

	Parser and Central Database

	Process
	Workflow
	Sprint meetings
	Daily scrum
	Gitlab workflow

	Internal communication
	Meetings
	Role division

	External communication
	Meetings client
	Meetings coach


	Code Quality and Testing
	Code quality
	Documentation
	Code size
	Front-end
	Back-end
	OpenAPI documentation
	Continuous Integration/Continuous Deployment

	Testing
	Unit tests
	Integration tests
	System testing

	SIG Feedback
	Initial feedback
	Second feedback


	Deliverables
	Features
	Front-end design
	Layers
	DRIP
	Speed Map
	MSI
	Status messages
	Measurement points
	Replay
	3D view

	Long-term evolution design
	api Gateway
	Parser and Central Database
	Technical details
	React
	Graphs
	Replay
	Docker


	Product evaluation
	Implementation challenges
	Unique project
	Mapbox
	Docker
	api Gateway

	Requirements assessment
	Requirements to increase performance
	Requirements for new features
	Requirements for in-house development
	Requirements to increase configurability


	Project Evaluation
	Workflow evaluation
	Inter group challenges

	Client satisfaction
	Course of the project
	Evaluation of Ethical implications

	Conclusion
	Success criteria assessment
	Documentation
	Tests
	Performance
	Modularity

	Conclusion

	Recommendations
	Requirements
	Long-term evolution design
	Improvements
	Moving conversions from the frontend to the backend
	Separate data in the analytics backend
	Support iPhones

	Extra features
	New services
	User accounts
	Event-driven communication
	Server-sent events
	Kubernetes, Docker Swarm


	Bibliography
	Glossary
	Acronyms
	Info Sheet
	ProjectForum Description
	Evaluation Success Criteria
	MoSCoW Requirements
	MoSCoW Evaluation
	Course of events
	Project Plan
	Research Report
	Long-term Evolution Design

