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ABSTRACT

Phase-resolved volumetric velocity measurements of a pulsed jet are conducted by means of three-dimensional particle tracking velocimetry
(PTV). The resulting scattered and relatively sparse data are densely reconstructed by adopting physics-informed neural networks (PINNs),
here regularized by the Navier-Stokes equations. It is shown that the assimilation remains robust even at low particle densities (ppp < 10~%)
where the mean particle distance is larger than 10% of the outlet diameter. This is achieved by enforcing compliance with the governing equa-
tions, thereby leveraging the spatiotemporal evolution of the measured flow field. Thus, the PINN reconstructs unambiguously velocity, vor-
ticity, and pressure fields, enabling a robust identification of vortex structures with a level of detail not attainable with conventional methods
(binning) or more advanced data assimilation techniques (vortex-in-cell). The results of this article suggest that the PINN methodology is
inherently suited to the assimilation of PTV data, in particular under conditions of severe data sparsity encountered in experiments with lim-

ited control of the seeding concentration and/or distribution.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0212585

I. INTRODUCTION

The projection of particle tracking velocimetry (PTV) data onto a
structured grid (Cartesian grid reduction, CGR) and the recovery of
information in-between the measured scattered vectors persist as a
challenge ever since the early PTV experiments.' The most straightfor-
ward method is to collect velocity vectors into bins that yield the local
ensemble-average.”” Alternatively, linear interpolation circumvents
the need to select a bin size. These techniques offer the advantage of
simplicity and generality of application to data from a broad range of
problems. As such, they do not introduce explicit modeling of the
underlying physical process.

In the past decade, methods that impose specific constraints
based on the fluid dynamic governing equations have emerged. For
instance, mass conservation can be imposed by vanishing velocity
divergence during CGR."” In addition, the momentum equation can
be used for the assimilation of particle trajectories obtained from PTV
measurements. When rewritten in terms of the vorticity dynamic
equation, this approach has led to the Vortex-in-Cell data assimilation
method (VIC+,"” VIC#," and VIC-TSA”). Similarly, penalization of
divergence as well as of a residual pertaining to the momentum

equation have led to the FlowFit method, introduced in Ref. 10 and
further developed in Ref. 11. These methods succeed in the dense
reconstruction of velocity and vorticity fields from experiments per-
formed at various levels of the seeding density. As is the case with tech-
niques that rely on radial basis functions,'”'” they provide continuous
or functional representations of the flow field, yielding significant
advantages when computing derivatives. On the other hand, the inte-
gration of boundary conditions both at the edges of the domain (open
boundaries) and at fluid-solid boundaries is regarded as challenging.
Alternative to the above-mentioned methods of PTV data assimi-
lation is the use of artificial neural networks, first attempted by
Labonté to track particles across two image frames, thus obtaining the
underlying velocity field."* The approach was applied to simulated
images with simplified motion field, showing robustness in the inter-
polation between particles and yielding low noise levels. More recently,
the suitability of a specific network class, namely physics-informed
neural networks (PINNs), for the handling of sparse data has been rec-
ognized.”” The PINN methodology has been introduced by Raissi
et al.'">"” who established several relevant aspects, in particular the
incorporation of prior system knowledge by enforcing consistency
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with the underlying physics. Examples of this method in the field of
fluid mechanics are provided in a recent review,'” including successful
solutions of inverse problems where unknown, or hidden, flow proper-
ties are assimilated.

PINNSs have also been employed to infer velocity and pressure
fields from numerical and experimental PTV data. Wang et al. exam-
ined the PINN assimilation of scattered data obtained from the analyti-
cal solution of two-dimensional Taylor’s decaying vortices'” and the
direct numerical simulation of a channel flow, respectively.”’ Along
with synthetic datasets, Clark di Leoni et al.”" assessed an experimental
PTV dataset of a backward-facing step configuration,” comparing
PINN predictions with results of the Constrained Cost Minimization
Method.”” Most recently, Cai et al. demonstrated the capability of
PINNS to handle particularly sparse velocity fields by providing only a
fraction of the vectors measured in a turbulent jet flow.”*

While the aforementioned three studies suggest that PINN
frameworks are suited to the assimilation of PTV data, the benchmark-
ing is still ongoing considering the relatively recent introduction of this
approach. Therefore, emphasis in the present article is placed on the
comparison of PINNs with commonly used alternative data assimila-
tion techniques, namely binning and VIC-TSA. The dataset is pro-
vided by 3D-PTV measurements of a pulsed jet (Re ~ 3000) featuring
a variable concentration of flow tracers, formation of ghost particles
and image corruption due to laser light reflections, often reported in
real-world experiments as opposed to numerical simulations thereof.
Reference velocity fields are obtained by high-resolution planar mea-
surements. Two cases are considered to assess the performance for dif-
ferent degrees of data sparsity: first, the phase-locked nature of the
experiment is exploited and velocity vectors are accumulated from
multiple snapshots, resulting in a mean particle distance on the order
of 10% of the outlet diameter (d,,/D ~ 0.1); second, individual snap-
shots are considered, yielding a number of velocity vectors that is two
orders of magnitude lower than in the first case (up to d,, /D ~ 0.4).

The experimental apparatus and measurement procedure are
introduced first, followed by an overview of the assimilation methods
compared in this paper (Sec. III). Then, in Sec. IV, design consider-
ations for the PINN are discussed in detail before a comparison
between PINN, traditional data binning, and data assimilation with
the vortex-in-cell technique is presented in Sec. V. The main learnings
and conclusions are provided in Sec. V1.

Il. LAYOUT OF EXPERIMENTS
A. Pulsed jet facility and operation parameters

The flow under consideration is a starting, or pulsed, circular jet
consisting of air that is forced from an initial state of rest, leading to
the generation of vortex rings. A detailed description of the pulsed jet
actuator (Fig. 1) is given in previous studies.”” *’

A magnetic valve periodically interrupts the supplied mass-flow,
allowing defined amounts of air to enter the nozzle before being
ejected through the circular orifice. The divergent-convergent nozzle
features an inlet of d; = 3.8mm, a maximum cross section
dmax = 10 mm, converging to an outlet diameter of D = 5mm. The
cross section is constant over the final 10 mm upstream of the outlet.
Under some assumptions,”* a nominal bulk jet velocity in the exit
plane can be estimated based on the (constant) supply mass flow, the
outlet diameter, and the relative duration where the valve is open. The
jet was operated at a bulk velocity uj; ~ 10m/s, translating into a
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FIG. 1. Pulsed-jet actuator used to produce axisymmetric vortex rings that are eval-
uated in a 10 x 10 x 10 mm? domain spanning the jet near-field.

Reynolds number of Re = ujD/v = 3300. Considering the concept
of a formation number,”” maximum-circulation vortex rings can be
expected at L/D ~ 4. In the present study, L = tuj is interpreted as
the time-dependent length of a virtual fluid column emerging from the
nozzle exit at bulk velocity. This suggests that the vortex ring forma-
tion is completed at ¢ ~ 2 ms. In order to produce fully developed vor-
tex rings, the pulse duration is set to £, = 5ms and the delay between
pulses is set to fo = 15ms so as to reduce the interaction between
successively generated vortex rings.

B. Reference planar PIV measurements

As a benchmark for the reconstruction methods assessed in this
article, high-resolution planar PIV measurements are performed by
seeding the air jet with micrometer-sized DEHS tracer particles’” sup-
plied to the compressed air line feeding the jet. The tracer concentra-
tion is set by adjusting the flow through the Laskin nozzle-type particle
generator. In addition, an unseeded air feed is connected to the supply
for a controlled dilution of the seeded air. The jet exhausts inside a
confined box with acrylic glass walls of dimensions 500 mm (axial)
%250 mm (radial). Before initiating the data acquisition, this cavity is
filled with a sufficient amount of tracers such that the velocity field in
the ambience can be determined in addition to the seeded jet flow.
Variations of the number of particles between individual runs occurred
due to the sensitivity of the particle concentration toward the duration
of seeding injection.

The particles were illuminated inside the jet symmetry plane with
an EverGreen200 dual-cavity Nd:YAG laser (4 = 532 nm, 2 x 200 m]J
pulse energy). A light sheet with a maximum thickness of 0.1D
(~ 500um) was formed by means of beam-expanding optics and a
knife edge filter. The light scattered by the particle tracers was recorded
in double-frame mode with an sCMOS camera (2560 x 2160 px,
6.5mm pixel pitch) equipped with an f = 105 mm Canon objective
and an f-stop set to 16. The images were pre-processed by background
removal, subtracting the minimum intensity at each pixel. The field of
view of (30 x 26)mm? (ca. 6D x 5D) covers the jet near field, where
the vortex ring formation occurs. Each measurement comprises 100
recordings at a selected phase as set by synchronizing the PIV
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FIG. 2. Vortex ring formation: out-of-plane vorticity overlayed with streamlines in vortex ring frame of reference.

acquisition to the signal controlling the magnetic valve. The time sepa-
ration of 12 us corresponds to a particle displacement of 0.12 mm
(9.6px) at the bulk jet velocity. The particle motion was obtained using
multi-pass cross correlation to allow the accurate reconstruction of the
velocity gradient in the vortex core and across the shear layer. The inter-
rogation window is refined from 96 x 96 px* down to 16 x 16 px?, the
latter of which corresponds to a spatial resolution of
Ax = Ay ~ 0.2 mm. An overlap factor of 75% reduces the vector pitch
to approximately 0.05 mm (0.01D).

The dynamical evolution of the jet and its vortex ring is illustrated
in Fig. 2. The appearance and growth of the axisymmetric vortex is
highlighted with the out-of-plane (viz. azimuthal) vorticity. Note that
the non-dimensional formation time t* = uj,t/D that is referred to in
Fig. 2 and throughout this article is defined with reference to the nomi-
nal jet velocity and the time coordinate, where t = 0s marks the
moment when the jet emerges from the exit plane (x = 0 mm). To
ease the topological analysis, streamlines are overlaid after Galilean
transformation to a frame of reference that moves with the average
vortex ring velocity. With such choice, the saddle point is visualized
that separates the rotational fluid issued by the jet on the one hand and
the ambient fluid on the other.

At t* = 1.6, a first vortex core (A) detaches from the outlet, fol-
lowed by a second one (B) at t* = 4.

C. 3D particle tracking

Volumetric velocity measurements of the pulsed jets are per-
formed using a particle tracking velocimetry technique. The experi-
mental setup is schematically represented in Fig. 3.

The seeding procedure is the same as that for the planar PIV
measurements; however, the tracer concentration was set to a lower
value to mitigate the occurrence of ghost particles. This was achieved
by carefully regulating the seeding generator and switching it off just
prior to data acquisition. As a result, the seeding concentration features
a temporal decay followed by a period when it remained at a relatively
stable level for a duration that was sufficiently long to record the data
for one time step/phase.

The laser beam of 7 mm diameter was expanded into an elliptical
cross section of approximately 40 X 20 mm in the axial and radial
(transverse) direction, respectively, which exceeded the dimensions of
the region of interest. The Gaussian light distribution is sharply cut by
a knife edge filter yielding uniform illumination throughout the mea-
surement domain (Fig. 3, upper left), facilitating particle detection.
The light intensity is amplified with a double-pass system,”’ composed
of a planar surface-coated mirror at the outer edge of the confinement

box, reflecting the collimated light back through the region of interest.
This approach produces the additional advantage that two directions
of forward-scattering are obtained for the benefit of the collected inten-
sity of the imagers positioned along the arc as shown in Fig. 3. The
resulting illuminated domain extends over a region of (30 x 25
x10)mm? or (6 x 5 x 2)D>.

A set of four imagers is placed subtending a tomographic aper-
ture of 50°. The f-stop of the f = 105 mm Nikon objectives was set to
32 for all cameras, ensuring a depth of focus encompassing the inter-
section of the cameras lines of sight with the illuminated region. The
3D system calibration was based on a pinhole model and the coeffi-
cients were obtained using a two-level calibration target (LaVision type
11 plate). The volumetric self-calibration procedure’” reduces residual
calibration errors below 0.1px.

The temporal (viz. phase) evolution of the jet and the vortex ring
formation were resolved by measurements at 31 phases, corresponding
to time increments of 100us (At* = 0.2) in the range t* = [0, 4] and
200us (At* = 0.4) in the range t* = [4, 8]. While approximately con-
stant for each phase (measurement set), the seeding density varied in
the range ppp = 107*,...,107> across different sets. Representative
raw image samples are shown in Fig. 4 (top) along with the results of
pre-processing operations including a minimum-intensity subtraction
and setting all intensities below a certain threshold to zero.

Double images were separated by a time delay of 20us for PTV
data acquisition. The 3D particle detection and motion analysis was
performed using the two-pulse variant™ of the shake-the-box (STB)

Cropped
light sheet

/

X

Cameras

RIr7
) et} {

Laser <>

Beam- expandln .\ /‘

optics Knife edges

Knife edge

Mirror

FIG. 3. PTV setup; detailed view in the top left shows how the original light sheet
highlighted by the green ellipse is cropped.
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00
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three phases (inverted)—top: raw images;
bottom: pre-processed images.

0 Pixel no. (-) 350 Pixel no. (-) 350

algorithm available in the LaVision DaVis 10 software. The processing
domain was restricted to the jet near field spanning (20 x 10
x10)mm?® [(4 x 2 x 2)D?]. Particles were detected by limiting trian-
gulation errors to 1px and applying three iterations of particle recon-
struction and tracking.”* Particle track detection was restricted to the
velocity ranges u = [—5,15] and [v, w] = [—5,5] m/s, conservatively
spanning the expected velocities for all phases of the jet pulsation.

t* = 4.0 (ppp = 0.0005)

—_

y/D ()

RN

oY

t* = 4.4 (ppp = 0.001)

Pixel no. (-) 350

However, this setting increases the probability of spurious particle
pairings and produces some outliers that are removed using a spatial
median filter.””

Example particle distributions obtained at three different seeding
conditions (the same as in Fig. 4) are shown in Fig. 5 (color-coded by
the axial velocity). Outliers, mainly characterized by a streamwise
velocity exceeding uj, are included in the top row whereas the images

jet (-)

=N

t* = 4.8 (ppp = 0.0015)

y/D (-)

-1
0 Q) ~ 0 R
1 4 1 1

FIG. 5. Examples of particle pairs obtained at different phases and seeding levels (left to right). Top row, includes outliers; bottom row, after data validation; jet outlet and axis

indicated by ellipse and dash-dotted line, respectively.
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in the bottom row show the filtered PTV results that are used for the
data assimilation. The measurement captures the maximum velocity
near the jet centerline (z = y = 0D), whereas the outer jet region fea-
tures smaller displacements. The variation of seeding concentration is
illustrated in this example. The maximum concentration ppp ~ 1073
(right-hand side in Fig. 5) is still far below the concentration of ppp
= 0.1 that can be handled by the STB algorithm.”*” It should, how-
ever, be retained in mind that the latter limit applies to optimal seeding
and imaging conditions. In the present experiments, for instance, the
particle image diameter is approximately 6.5 pixels, which lowers the
upper limit for the concentration.

A priori and a posteriori uncertainty analyses for the PTV mea-
surements described above are reported in Appendix B.

D. Datasets for velocity reconstruction

Emphasis is put on the reconstruction capability for different
degrees of data sparsity. Therefore, two types of datasets are assessed
in this article.

For the statistical dataset (addressed in Sec. V A), the effective
spatial concentration of the velocity field is increased by accumulating
particle tracks from 100 snapshots taken at the same phase of the
pulsed jet. The approach is justified considering that the cycle-to-cycle
velocity fluctuations do not exceed 5% of the jet exit velocity (see
Appendix A). However, these variations introduce a non-negligible
divergence in the accumulated statistical dataset which poses chal-
lenges to the reconstruction techniques.

For a single-snapshot dataset (Sec. V B), the number of velocity
vectors is two orders of magnitude lower since only individual snap-
shots are evaluated.

The average number of detected particle tracks at each phase is
shown in Fig. 6, yielding significant variations due to slightly different
durations for which the measurement domain was seeded prior to
acquisition. Since the data for each phase were recorded with one run
(105s), the per-phase fluctuation is relatively low as indicated by the
bars in Fig. 6. For both datasets, three phases are selected for further
analysis (highlighted by red circles) spanning the range of detected
particles N;, = [100, 600], corresponding to the time steps presented in
Figs. 4 and 5. Along with the number of particles projected onto the
image sensor, ppp, the mean particle distance d, = {/V/N, is stated
in Fig. 5 and indeed throughout the article. Note that V = 1000 mm?
is the volume of the domain of interest (see Fig. 1) evaluated with data
assimilation techniques.

In addition to the temporal variation of the tracer concentration,
the particle distribution was also slightly inhomogeneous (Fig. 7). This

6007 0.24
; 400 027 5
2003 034

0

FIG. 6. Average number of particle tracks, particle image density, and mean particle
distance per snapshot; error bars span one standard deviation; red circles highlight
the conditions considered in the present article.
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z/D (-) Z/D (-) Z/D (-)

N

FIG. 7. Time-averaged mean particle distance at different phases—top row: jet
symmetry plane (z = 0D); bottom row: cross section at x = D.

is reflected in a larger time-averaged particle distance near the jet
centerline.

The conditions described above, including low particle concentra-
tion and inhomogeneous distribution, are found in many real-world
experiments where they typically cannot be controlled to perfection.

lll. DENSE VELOCITY RECONSTRUCTION

Three methods are considered to process the 3D-PTV data in the
jet near field that extends over a region of (2 x 2 x 2)D* or (10
%10 x 10)mm? indicated in Fig. 1.

It is important to note that data binning is applied to velocity
data pertaining to single phases whereas short time series spanning
three phases of the jet development process are provided for PINN
training and vortex-in-cell assimilation.

A. Data binning

Partitioning the domain into sub regions (bins) where the velocity
vectors are ensemble-averaged is among the simplest approaches to
CGR. Estimating the velocity spatial distribution within the bin by a
polynomial function (typically linear or quadratic) fitting the velocity
samples reduces the effect of spatial averaging and produces more
accurate estimates of the turbulence statistics.” The resulting spatial
resolution depends primarily upon the bin size while the accuracy
depends on the tracking precision, the local level of fluctuations, and
the number of samples captured in the bin. Consequently, a higher
seeding concentration allows to choose smaller bin dimensions.

In the present study, cubic bins with edge lengths of 2 mm (statis-
tical dataset) and 4 mm (single-snapshot dataset) were chosen at an
overlap of 75%, and a second-order polynomial was used as fitting
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function inside the bins. As a result, the data are represented on a grids
of 21 x 21 x 21 and 11 x 11 x 11 points spaced by 0.5 and 1 mm,
respectively. The runtime required to process one snapshot is less than
a second using an Intel(R) Xeon(R) CPU at a clock speed of 2.7 GHz.

B. Vortex-in-cell assimilation

More advanced CGR methods follow the vortex-in-cell (VIC) par-
adigm™ by considering the governing equations in vorticity-velocity for-
mulation. While initially used to enhance the temporal resolution of
tomographic PIV data,” the method was proven to be applicable to
leverage time-resolved recordings for spatial interpolation of scattered
data.” The VIC+ algorithm assimilates the instantaneous particle veloc-
ity and acceleration taking into account the vorticity transport equations.
The method was shown to significantly improve upon tomographic PIV
and interpolators to the point of obtaining estimates of the turbulent dis-
sipation rate with reasonable accuracy.” The vortex-in-cell time-segment
assimilation (VIC-TSA) leverages the temporal evolution by taking into
account time-resolved PTV data to assimilate instantaneous velocity
fields.” Its main drawback lies in a sensitivity toward data at the bound-
aries of the domain, which was recently addressed by introducing some
ingenious modifications (VIC#).2

In the present study, the VIC-TSA technique is employed to
reconstruct the velocity field on 17 x 19 x 17 (statistical dataset) and
9 x 10 X 9 (single-snapshot dataset) grids by applying 40 iterations
per snapshot. Using an Intel(R) Xeon(R) CPU at a clock speed of
2.7 GHz, the runtime required for single snapshots is on the order of a
few seconds.

C. PINN
The proposed PINN approach features multilayer perceptrons
that are trained to model the function
¥(x,7,2,1) = (,7,W,p), 1
mapping the input layer consisting of Cartesian coordinates x, y, z and

time ¢ to the three velocity components u, v, w and pressure p (Fig. 8).
Note that a tilde indicates normalization to the range [0, 1] to avoid

LPTV. LBC ‘CNS

FIG. 8. Schematic representation of PINN—orange: input coordinates (that can be
chosen arbitrarily); purple: hidden layers; red: output quantities; green: automatic
differentiation.

pubs.aip.org/aip/pof

training issues that could arise from network input/output differing by
orders of magnitude.

A multilayer perceptron, also called feedforward neural net-
work,”” consists in a series of layers of neurons connected to all neu-
rons of the subsequent layer through a weight matrix W;. The
intermediate output of layer [ is then expressed as {; = W} &,_, + by,
where &;_, is the output of the previous layer and b; is the bias in layer
1*” Finally, non-linear behavior is introduced through the activation g,
as & = g({;). The weights and biases of all hidden layers are updated
during training to minimize a loss function. In the case of PINNs, the
latter also accounts for physical information.

In the present study, the loss function consists of three parts:
Zpry which accounts for the training data (the PTV data here), Zxs
which represents the residual of the governing equations, and Zpc
which accounts for the boundary conditions:

L = Lprv + InsLns + Loe- (2)

Only one weighting coefficient Ays is applied in the loss function
to balance the physics-informed loss as will be explained in Sec. I'V. No
further weight is required since the minimization of Zpc is not
expected to interfere with the remaining loss terms.

The term Lpry is the prediction error reflecting the deviation
between the PINN output and the available experimental data that are
represented by velocity vectors uppy = (upry, vprv, wprv) measured
at locations x = (x, y,z). After data normalization, the PTV loss is
defined in a mean-squared sense as

NP
Lrry = Nip; (8(xi, t;) — dprv(xi, 1)) (3)

In the above equation, (-)* is an inner product and i (x;, £;) is the
output of the network estimated at N, space-time locations where
PTV observational data upry (X, t;) are available. The prediction error
ZLp1v, therefore, allows the network to anchor its output at the mea-
surement locations.

The second term, £y, accounts for the agreement of the PINN
output with the incompressible Navier-Stokes equations evaluated at a
set of N randomly distributed space-time locations (called collocation
points). It is estimated as

1 .
ot o

where ° denotes the sum of the squared residuals related to mass
conservation and the momentum equations, respectively (after
denormalization):

Z*(u,p) = ||[Vu + 0|* + |[uVu + (Vp) /o — vVu|[.  (5)

In the above equation, the required gradients of u and p with
respect to space and time are readily obtained using automatic differ-
entiation.”’ The air density and kinematic viscosity are set to ¢
= 1.25kg/m? and v = 1.5 x 107> m? /s, respectively, corresponding
to laboratory conditions during experiments. It is worth mentioning
that the PINN function [Eq. (1)] can be evaluated at spatiotemporal
locations other than those of the training data, and therefore, the collo-
cation points can be arbitrarily sampled so that they ensure that the
PINN satisfies the Navier-Stokes equations densely throughout the
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space-time domain and not just a the locations where PTV measure-
ments are available. This effectively enables PINNS to increase the res-
olution of the original (sparse) PTV data by providing a physics-based
method to interpolate in-between PTV measurements (in space and
time). A parallel can be established between the collocation points and
the choice of the output grid in the VIC method.” Furthermore, the
space-time coverage of the PINN method can be regarded as an equiv-
alent of the time segment optimization in the VIC-TSA technique’ as
both methods take into account the temporal evolution of the flow
during the measured time interval. While doing so, neither approach
relies on Lagrangian information in the shape of particle trajectories.

It is worth mentioning that the pressure (gradient) field is solely
assimilated by minimizing the physics-informed residuals. Contrasting
with the velocity field, no reference training data are provided. The
third term in Eq. (2), Zpc, ensures that the PINN output satisfies
boundary conditions including a base value of zero pressure along
with vanishing velocity at a transverse jet centerline distance of three
outlet diameters. These conditions were enforced at a set of Npc
~ 4000 locations surrounding the measurement domain, and the loss
term was defined by mean squared deviations (@y and p, correspond
tou = 0m/s and p = 0 Pa when scaled to the range [0, 1]):

1 Nic ~ o 1 Nic ~ .
L= 5w G -F) (®
BC Ngc = (8 = Go) Ngc — (P pO) (©)

The overall loss [Eq. (2)] was minimized using the ADAM opti-
mizer'” at a learning rate of Ir=1x 107> for 1000 epochs.
Subsequently, to further fine-tune the network, 15000 evaluations of
the loss function were handled by a Limited-memory Broyden-
Fletcher-Goldfarb-Shanno ~ (L-BFGS)  optimizer'’ driving the
supremum norm of the loss function gradient below ||V (Zpry +
Lns + Lrc)ll, =1 x 1078 for all cases presented in Sec. V. The
runtime required for training both on the statistical and the single-
snapshot dataset is approximately 15min using a V100 Tensor Core
GPU.

IV. PINN DESIGN CONSIDERATIONS

From the above introduction to PINNS, it is apparent that there
are several hyperparameters that can have a large impact on the PINN
accuracy in reconstructing the velocity and pressure fields. Specifically,
we have observed that the following parameters have a strong
influence:

1. Number of collocation points N, used to estimate the physics-
informed loss -Zns [Eq. (4)]

2. The weight of the physics-informed loss Ays [Eq. (2)]

. Number of phases provided for training N;

4. Number of layers/neurons pertaining to the PINN

W

In Subsections I'V A-IV D, the design choices with regard to these
parameters are discussed.

A. Number of collocation points

The collocation points play a crucial role in the training of the
PINN s as they indicate in which space-time locations the residual of
the Navier-Stokes equations is estimated (using the network’s predic-
tion). The number of collocation points N, needs to be chosen suffi-
ciently large to ensure that the PINN output complies with the

ARTICLE pubs.aip.org/aip/pof

governing equations throughout the domain of interest. However,
using too many points comes at the cost of unnecessary computational
cost.

The sensitivity of the PINN prediction toward the number of col-
location points N, per time step is illustrated in Fig. 9. Here, root-
mean-squared deviations between cases with different N, per training
phase N; are compared to the prediction for the maximum tested
N./N; = 8000. A discussion on the number of training phases N; will
be provided later (in Sec. ITI C). Clearly, the output is altered substan-
tially for N./N; < 1000 whereas not much is to be gained for larger
numbers of collocations points. Therefore, a moderate number of
N./N; = 2000 is chosen.

B. Weighting the physics-informed loss

The optimization of the PINN output requires attention to bal-
ance the loss terms during training by adjusting the weight of the
physics-based loss Axs [Eq. (2)].

In Fig. 10, the output for three settings of the balancing coefficient
is presented. This yields three different PINN, all of which are inferred
in the jet symmetry plane at t* = 4.0. For each model, the velocity,
vorticity, and the physics-based error fields Z = Vu + 0,u + uVu
+(Vp)/p — vV?u are shown along with the development of loss
terms during training (from left to right). The top row represents
results for a PINN where the Navier-Stokes equations are not taken
into account during training. The result corresponds to an uncon-
strained interpolation solely driven by the PTV data. The two remain-
ing models were constrained by the Navier-Stokes equations enforced
with weights of Axs =1 x 107 (center row) and Ans =1 x 1077
(bottom row), respectively.

Recall (from Sec. I1 B) that at t* = 4.0, a vortex ring is fully devel-
oped, pinching off from the trailing jet, featuring a bulk region of large
induced velocity enclosed by the toroidal vortex ring corresponding to
the maximum vorticity.

The unconstrained solution (top row) yields a consistent velocity
field, yet the vorticity pattern is affected by the sparse nature of the
measurement. This approach is expected to improve in accuracy when
a richer training dataset is provided, in turn requiring a higher seeding
concentration. However, the contour plot of the Navier-Stokes resid-
ual returns large values in the range % = 10° — 10°, which indicates
violations by the interpolated velocity field of the governing Navier—

0.4
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FIG. 9. Influence of number of collocation points per training phase on velocity
predictions.
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FIG. 10. Influence of physics-informed loss on model output: (a) Navier-Stokes equations not taken into account during training, (b) physics-based loss weighted with
Ins =1 x 107°, and (c) Zns = 1 x 107"; the colored circles shown in the left column indicate the PTV measurement data at a maximum distance of 0.1 mm (0.02D) from

the symmetry plane.

Stokes equations. Such violations arise not only because the pressure
output (not shown here) is completely unconstrained, but also the
observational velocity data themselves may be in conflict with the
Navier-Stokes equations due to the measurement uncertainty on the
one hand and the accumulation of particle tracks from different snap-
shots on the other. Specifically, the latter can be expected to introduce
divergence due to the non-negligible cycle-to-cycle variation. The loss
term development during training (right column) shows a monotonic
decrease in .Zpry while the physics-based term increases.

In the center row of Fig. 10, a weight of Ans = 1 x 10~ was cho-
sen for the physics-based loss, leading to smooth velocity and vorticity
distributions rather consistent with the reference flow field shown in
Fig. 2 (ie., local extrema associated with the primary and secondary
vortex ring cores). The residual also drops below % = 10° almost
throughout the symmetry plane, and across the entire training domain
(not shown here). In accordance, .Zxs decreases by approximately
four orders of magnitude compared to the unconstrained case.

By further enforcing compliance with the Navier-Stokes equa-
tions (Axs = 1 x 1077, bottom row), the physics-based loss is reduced

to an even greater extent (see second column from the right).
However, this condition appears to overly constrain the solution, forc-
ing the PINN output toward a trivial solution of the Navier-Stokes
equations (i.e., homogeneous velocity), which greatly departs from the
measurement data. In other words, the influence of the PTV data are
marginalized by increasing the contribution of the physics-based loss,
allowing for larger deviations between the measurement data and the
PINN output. This conflict is illustrated in Fig. 11, showing the
physics-informed loss (orange curve) and the training data loss (blue
curve) for a varied weighting coefficient. By taking the square-root of
the training data loss defined in Eq. (3), the values can be interpreted
as deviations in (m/s) normalized with the velocity range pertaining to
the training dataset.

Considering the pivotal role played by the weight coefficient on
the PINN output, one may wonder how to set this parameter sensibly.
While acknowledging that this issue is an open research question,” *°
a heuristic approach is proposed based upon a crossed evaluation of
the PINN output compared to the PTV data (Fig. 10, left column) and
the magnitude of the data loss term (Fig. 11). The model output may

Phys. Fluids 36, 095110 (2024); doi: 10.1063/5.0212585
Published under an exclusive license by AIP Publishing

36, 095110-8

€0:/5:€l ¥20T Joquiaydes /|


pubs.aip.org/aip/phf

Physics of Fluids

10t :
2 Physise..
) oL lnfOr
= - Threshold ]
&
, PTV data loss
10° : : :

0 10"™ 10" 10" 10° 10° 107
ANS (')

FIG. 11. Loss terms as a function of the physics-based weight coefficient; dashed
line indicates threshold for PTV data loss informed by measurement uncertainty.

be required to follow the training data within a bound that is defined
by the velocity measurement uncertainty. The latter is estimated to be
on the order of 10% of the bulk jet velocity by an a posteriori analysis
(see Appendix B). The largest order of magnitude in /g that results in
a model with a data loss smaller than 10% is Axs = 1 x 10~ (center
row in Fig. 10). We, therefore, proceed with this value.
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C. Number of pulsed jet phases

When designing a PINN for dense flow field reconstruction, a
choice needs to be made regarding the length of the modeled time
series. For instance, one may use a single PINN for the entire available
time series. However, this would require the same set of neurons to
represent both the spatial flow geometry and its complex temporal
evolution. An alternative is to cut the reconstruction problem into
smaller time windows and train a shallower PINN for each window.

The latter approach is taken here as no single PINN could be
trained to accurately reconstruct the entire time series. The question is
now related to the optimal time window over which to train individual
networks. It should be noted first that providing a single time step is
not sufficient as the Navier-Stokes equations require a time-derivative
information [Eq. (5)] which would not be available in that case.
Therefore, PTV data spanning multiple phases need to be provided.
The influence of the number of phases on selected model predictions
after the same number of training epochs (Nygpgs = 15000) is shown
in Fig. 12 for N; = (3,5,7) (from top to bottom). For each case, the
presented target phase is t* = 4.0 but different numbers of preceding
and succeeding phases are considered. The number of collocation
points is increased by 2000 for each added phase.

Clearly, cases b and ¢ depart from the ground truth, which is
manifested in blurred spatial velocity gradients yielding an elongated
shear-layer where the primary and secondary vortex rings become
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FIG. 12. Influence of number of training phases on velocity, vorticity, and pressure predictions after the same number of epochs: (a) Ny = 3, (b) Ny = 5, and (c) N; = 7.
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indistinguishable. Similarly, the temporal velocity gradients u, and v,
are diminished, resulting in a reduced magnitude observed in the static
pressure field (right column). This is explained by the inability of the
PINN to capture the non-linear time evolution beyond a certain
length. To handle the larger degree of complexity introduced by add-
ing training phases, one may increase the network dimensions and/or
train the PINN for a larger number of epochs. In the present study, the
number of epochs required to reach convergence (for a fixed model
architecture) was approximately proportional to the number of train-
ing phases. However, the computational cost is increased dispropor-
tionally as collocation points are added for each phase. We, therefore,
chose to train the PINNs on N; = 3 phases for all cases presented in
the following where the target phase is accompanied by phases just
before and after. It is worth mentioning that this does not mean that
the temporal gradients are computed based on only three time steps as
the collocation points are sampled randomly inside the range spanned
by the preceding and succeeding training phases.

D. Network depth

Finally, the width and depth of the PINN need to be chosen.
Keeping the number of neurons per layer constant at N, = 50 (each
activated with a tanh function), the number of layers was varied and
the overall loss evaluated (Fig. 13).

As the network depth is increased, its expressivity is enhanced,
leading to a reduction of the overall loss. Beyond a certain network
depth, the number of dataset features not yet represented by the model
decreases. In other words, choosing an excessive network depth brings
no significant benefits but increases the wall time required for training.
The current analysis suggests that increasing the depth beyond 12
layers returns negligible benefits.

V. DEMONSTRATION OF PTV DATA ASSIMILATION

In this section, the PINN method is compared to alternative CGR
techniques, namely data binning and VIC-TSA. It is important to reit-
erate that for the VIC-TSA and PINN methods, measurement data
from three time steps are taken into account whereas binning is
applied per time step.

The performance of the three methods is examined for different
degrees of PTV data sparsity. In the first scenario, the number of par-
ticles inside the near-outlet domain x = 0, ..., 10 mm is on the order
of O(N,) = 10*, which was facilitated by accumulating particle tracks

0.014
£ 0.013

0.012 1

Overall loss

0.011 ¢

0.01 e
2 4 6 8 10 12 14 16 18 20
Number of layers

FIG. 13. Overall loss as a function of the number of hidden layers; training with
N¢ = 3 phases and target phase t* = 4.0.

pubs.aip.org/aip/pof

from 100 snapshots. Then, individual snapshots will be evaluated;
hence, the number of particles is two orders of magnitude lower. The
particle image density for these two conditions ranges between
O(ppp) = 107! (accumulated particles, highest concentration) and
O (ppp) = 107> (single snapshot, lowest concentration).

A. Training on a statistical dataset

Along with the reference high-resolution planar PIV measure-
ments (right column), the results for the three methods are displayed
in Fig. 14. Recall that for the binning method, cubes with an edge
length of 2mm (75% overlap) were chosen, yielding a vector pitch of
0.5mm. The same spatial resolution is imposed with the VIC-TSA
method. Although the trained PINN can be sampled at arbitrary reso-
lution, an equal vector spacing was chosen for ease of comparison.

For the first phase (t* = 4.0, ppp &~ 2 x 1072), the binning of
approximately 6700 velocity vectors leads to some discontinuities and
a bulk velocity that is smaller than observed in the reference planar
PIV results. The VIC-TSA method yields a higher degree of similarity
with the planar PIV results. The PINN method also captures the main
features of the starting jet. Specifically, there is a connected region of
increased axial velocity that is enclosed by two counter-rotating projec-
tions of the primary vortex ring onto the symmetry plane.
Furthermore, the secondary vortex ring that starts to develop at the jet
outlet is captured although its velocity distribution in lateral direction
differs from the one indicated by planar PIV measurements. For the
subsequent time steps, featuring a higher seeding concentration, a
clearer picture is revealed by the binning and VIC-TSA methods, and
comparable reconstruction results are noted for all three techniques.

The above discussion is extended to the accuracy and resolution
of the spatial velocity gradient by observing the reconstructed out-of-
plane vorticity (Fig. 15).

As indicated by planar PIV measurements, two local extrema
(primary and secondary vortex rings) can be expected on both sides of
the jet symmetry plane. While binning and VIC-TSA reconstructions
yield blurred and fragmented distributions for the first time step,
respectively, the PINN prediction exhibits more similarities with the
reference PIV measurements. Specifically, the vorticity magnitude of
the secondary vortex ring is captured more accurately. Yet, the intri-
cate structure of the detached vortex ring, which seems to be composed
of two merged vortices, is not rendered in full detail.

Assuming axisymmetric vortex rings with no swirl, the circula-
tion, hydrodynamic impulse, and kinetic energy can be computed
based on the velocity and vorticity fields presented above as*’

Ir= [szdydx; I= anszrjdydx; E= anJ(uz +v*)r,dydx,
™)

where 7, denotes the radius of the vortex ring. The integration limits
are chosen such that only data associated with the vortex ring are con-
sidered. The respective regions are defined by two criteria: (1) they
enclose the vortex core and (2) they exhibit vorticity above 10% of the
maximum value. Using the invariants of motion stated in Eq. (7), the
non-dimensional vortex ring energy

E

“= ®)
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FIG. 14. Velocity field reconstruction with different methods at 0.5 mm grid resolution, reference planar PIV: Ax = Ay = 0.1mm, vectors indicated by white arrows with 1mm
spacing: (a) t* = 4.0 (N, ~ 6700, d,/D ~ 0.11), (b) t* = 4.4 (N, =~ 27300, d, /D =~ 0.07), and (c) t* = 4.8 (N, ~ 59000, d,/D = 0.05).

is obtained for different time steps. Note that this quantity decreases as
the vortex ring grows in thickness during its formation (Fig. 16). The
limiting value reported by Gharib et al” is o = 0.33, which is
highlighted by the dashed horizontal. Indeed, this value is also indi-
cated by planar PIV measurements in the present study at t* > 5.
Whereas a deviation is noticed at smaller formation times, the o curve
obtained for the PINN output (blue line) almost collapses with the pla-
nar PIV data otherwise. In contrast, slightly larger differences are on
display for the binning and VIC-TSA methods where the non-
dimensional energy does not drop below o = 0.4. We, therefore, con-
clude that the integral vortex ring properties are represented most
accurately by PINN models.

It is worth recalling that all methods have been applied to volu-
metric PTV data but only a slice of the respective output, namely the
symmetry plane, has been presented so far. Next, in Fig. 17, the full
three-dimensional structure of the flow field is represented by means
of iso-surfaces. The Q criterion™ (red iso-surface) is adopted to unam-
biguously detect the vortex ring produced by the pulsed jet.
Furthermore, the PINN also returns the spatial distribution of the rela-
tive static pressure (Ap = —11Pa), illustrated by a blue iso-surface in
the last column. The latter is strongly correlated with the vortex core
and it has been often considered as equivalent vortex identification

criterion.*® Recall that the pressure gradient is assimilated through the
momentum equation and the reference value for pressure is defined
via boundary conditions three outlet diameters away from the jet exit
axis (y = z = £3D,x = [0,4]D).

For the PINN, a smooth primary vortex is revealed by the Q cri-
terion, even at t* = 4.0 (ie,, for the condition of highest data sparsity).
Furthermore, the formation of the secondary vortex ring can be
observed which is not captured by the other methods. At
t* = (4.4,4.8), both vortex rings are returned by all methods although
the lowest noise level appears to be at hand for the PINN method.

In the pressure field predicted by the PINN, toroidal structures cor-
responding to the primary and secondary vortex rings are adequately
captured at t* = (4.4, 4.8) while an oblate spheroid and a fragmentary
ring are produced at the first phase. Against this backdrop, a reasonable
assimilation of the pressure field, being a hidden quantity, can be attested.

B. Training on a single snapshot

In the following, even more challenging conditions for data
assimilation are considered. Specifically, only vectors from single snap-
shots, as opposed to the dataset based on 100 snapshots assessed in the
previous section, are assimilated. While the evaluated time steps
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FIG. 15. Vorticity fields obtained by different methods compared to reference planar PIV results, grid resolution, and vector spacing the same as in Fig. 14, (a)~(c) same as in Fig. 14.

remain the same, the number of particles is, therefore, reduced by two
orders of magnitude. To cope with these data sparsity, the bin size was
increased from 2 to 4 mm leading to a bin volume increase by a factor
8. For ease of comparison, the resolution pertaining to VIC-TSA and

27 — Binning
VIC-TSA
— Planar PIV

o

t*(-)

FIG. 16. Development of non-dimensional vortex ring energy obtained by different
methods compared to reference planar PIV results.

PINN output are increased by the same factor. The assimilation results
for this single-snapshot dataset are presented in Fig. 18.

At the lowest particle concentration (N, = 89, i.e., less than 0.1
particles per mm?), a substantial performance deficit is observed at the
first phase. For the binning method and VIC-TSA, the jet flow is barely
recognizable. The PINN, on the other hand, predicts a velocity distribu-
tion that is similar to the reference velocity field, apparently benefitting
to a greater extent than VIC-TSA from the availability of data at the pre-
ceding and succeeding phases (N, = 137 and N, = 389, respectively).

As can be expected, the binning and VIC-TSA methods yield
more reliable results for the velocity field at t* = (4.4,4.8) than at
t* = 4.0 given the larger number of particles for the two later time
steps. Yet, the largest similarity with the true velocity field is achieved
by the PINN. This also applies to the vorticity fields where the PINN
captures both the primary and secondary vortex ring and, perhaps sur-
prisingly, the deviation from the test case with a much larger number
of particles (Fig. 15) is relatively small.

Finally, the same type of iso-contours as in Fig. 17 are presented
for the evaluation of single snapshots (Fig. 19).

As was indicated by velocity and vorticity fields presented
above, binning and VIC-TSA produce more noisy vortex rings at
t* = (4.4,4.8) whereas no such structure can be found at * = 4.0.
The PINN output allows for a clearer identification of the same flow
structures.
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FIG. 17. Time series of iso-contours used for vortex detection obtained by different methods: (a) t* = 4.0 (N, ~ 6700, d,/D ~ 0.11), (b) t* =4.4 (N, ~ 27300,
dy,/D =~ 0.07), and (c) t* = 4.8 (N, ~ 59000, d,, /D ~ 0.05): Q criterion shown at Q = 5 - 10852 (red) and low pressure region at Ap = —11Pa (blue).

To summarize this section, we conclude that assimilating PTV VI. CONCLUSIONS

data using PINNs appears to be superior to the binning method and The objective of this study was to assess the suitability of PINNs
data assimilation using VIC-TSA in the present study. Specifically, to assimilate measurement data obtained by PTV, an approach
smaller amounts of velocity data are required to infer reasonable veloc- recently proposed by Wang et al,”’ Clark di Leoni et al,”' and Cai
ity fields of larger spatial coherence. etal”™
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FIG. 18. Velocity and vorticity field reconstruction with different methods at 1mm grid resolution, reference planar PIV: Ax = Ay = 0.1mm, vectors indicated by white arrows
with 1mm spacing: (a) t* = 4.0 (N, ~ 100, d,/D ~ 0.43), (b) t* = 4.4 (N, ~ 400, d,/D ~ 0.27), and (c) t* = 4.8 (N, ~ 700, d,/D =~ 0.23).
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FIG. 19. The same as in Fig. 17, but now iso-surfaces obtained from a single snapshot: (a) t* = 4.0 (N, ~ 100, d,/D ~ 0.43), (b) t* = 4.4 (N, ~ 400, d,/D ~ 0.27), and

(c) t* = 4.8 (N = 700, dp/D = 0.23).

PTV delivers scattered velocity field information associated with
the displacement of individual particles supplied to the flow.
Considering the configuration of pulsed jets, PINNs were set up to pre-
dict three-component velocity vectors along with the pressure at (arbi-
trary) query locations, here defined by Cartesian coordinates and time.
This mapping was learned by constraining the PINN output by time
series of measurement data on the one hand and the three-
dimensional, incompressible Navier-Stokes equations on the other.

It was shown that care must be taken when weighting the major
loss terms (ie, the PTV data loss and the physics-based loss).
Specifically, only taking into account the measurement data leads to
model predictions violating the governing partial differential equa-
tions, for which two sources can be identified: first, a lack of constraints
for the interpolation in-between the relatively sparse measurement
data, especially in terms of the pressure output; second, the introduc-
tion of divergence in the case of the statistical database that arises from
accumulating velocity data from different snapshots with slight varia-
tions. The PINN paradigm is suited to handle both of these issues.
However, overly enforcing physics compliance yields trivial solutions
with blurred features of the flow at hand. To handle this balancing act,
we propose to evaluate the training data loss for a range of weighting
coefficients. As a larger relative importance is assigned to the physics-
based loss, the data loss increases, and the order of the velocity mea-
surement uncertainty can be applied as a reasonable threshold for the
latter.

One major focus point of this study was the comparison of the
PINN method with two alternative standard techniques, namely bin-
ning’ and a vortex-in-cell technique (VIC-TSA”). In terms of the
required computational cost, the binning method is the least expensive

as one snapshot is processed in less than a second using an Intel(R)
Xeon(R) CPU at 2.7 GHz clock speed. For the same amount of data, the
VIC-TSA processing takes approximately 4 s whereas a PINN model is
trained in approximately 15 min (on a V100 Tensor Core GPU).

While both binning and VIC-TSA perform reasonably well in
cases of higher particle numbers, they fail to overcome the data sparsity
otherwise. The same is not true for the PINN that is shown to ade-
quately replicate the flow pattern underlying the particle-based mea-
surements. Consequently, a clearer picture of the occurring vortex
structures is revealed, even for cases of substantial data sparsity. As an
example, clear iso-surfaces of the Q criterion corresponding to the
studied vortex rings are delivered at a mean particle distance as low as
d, ~ 0.25D (ppp < 107?). In addition, the PINN allows to infer
regions of low pressure, assimilated through the Navier-Stokes equa-
tions, that can augment the vortex identification. To obtain the
pressure magnitude, in addition to the gradient that appears in the
Navier-Stokes equations, a base pressure can be seamlessly integrated
into the PINN training. As a particular benefit of the PINN approach,
this boundary condition can be enforced at locations outside of the
measurement domain.

Another advantage of the PINN approach lies in the robust
physics-based spatiotemporal interpolation, which is consistent with
the concept of “pouring time into space.”"” This feature may help alle-
viate data sparsity (per snapshot) due to low tracer concentrations by
providing multiple time steps that capture the temporal evolution.
However, in the present study, we noted a performance degradation
when the number of time steps was increased beyond a number of
three, which was explained by the inability of the network (i.e., a single
set of neurons) to capture the dynamics both in space and time. While
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noting that up to 1000 time steps were provided successfully in another
study,”' establishing guidelines for the training of PINNs in multi-
scale (in terms of space and time) configurations remains a future
research direction.
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APPENDIX A: REPRODUCIBILTY OF PULSED JET FLOW

As a measure for the reproducibility of the flow, the mean fluc-
tuating part of the main velocity component determined with high-
resolution planar PIV is presented in Fig. 20. Recall that for each
phase, 100 instantaneous velocity fields are considered.

While velocity fluctuations are small compared to the jet exit
velocity (mostly below 3%, i.e., on the order of the planar PIV mea-
surement uncertainty) in the majority of the measurement domain,
large fluctuations are observed to encompass the vortex core.
However, these fluctuations may also be caused by local maxima of
the measurement uncertainty due to a combination of high velocity
gradients, vanishing particle displacement and seeding depletion
(centrifugal forces) rather than a lack of reproducibility.

Overall, a high degree of reproducibility can be attested, justify-
ing the approach of accumulating particle tracks for the respective
phases.

APPENDIX B: UNCERTAINTY ESTIMATION

The uncertainty of velocity information obtained with PTV
can be determined a priori by propagating the uncertainty associ-
ated with the particle location. The latter is determined by
0y = C:dpi/M, where ¢, = 0.3 represents the uncertainty in locating
the particle centroid,”’ dp; ~ 6.5px is the particle image diameter,

pubs.aip.org/aip/pof
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FIG. 20. Time series of pulsed jet—top: phase-averaged axial velocity contour over-
layed with in-plane velocity vectors, locations of vortex core highlighted by red and
blue circles; bottom: probability density functions of vortex core outlet distances for
the displayed phases.

and M =~ 0.3 the magnification. This yields o, ~ 40 um such that
the uncertainty in velocity measurement becomes o, = o,/At
~ 2m/s (ie., 20% of the bulk jet velocity).

Furthermore, the uncertainty is estimated a posteriori by com-
paring PTV data with a pseudo ground truth (in the absence of an
absolute ground truth). The reference velocity field is provided by a
well-converged VIC-TSA evaluation applied to a segment of five
time steps with t* = 4.0 being the target time step. By providing
phase-locked data at the respective phases, this approach also
accounts for the uncertainty induced by cycle-to-cycle fluctuations.
After linear interpolation at the available particle locations, the dis-
parity is computed, and its dispersion is used to estimate the uncer-
tainty. Specifically, the values corresponding to the half-peak
heights are determined for the three velocity components (Fig. 21).
The highest values are determined for the u and w components
(approximately 1m/s). The former is driven by the intense axial
dynamics of the flow while the latter is explained by the optical
setup where the depth position and displacement are determined

Phys. Fluids 36, 095110 (2024); doi: 10.1063/5.0212585
Published under an exclusive license by AIP Publishing

36, 095110-15

€0:/5:€l ¥20T Joquiaydes /|


pubs.aip.org/aip/phf

Physics of Fluids

ARTICLE pubs.aip.org/aip/pof

150

O 100
€
>
o
O 50

0 |

-0.5 0 0.5 -05 0 0.5 -0.5 0 0.5

Au/u, (-) Av/ug (-) Aw/u, (-)

FIG. 21. Histograms of disparity between PTV measurement data and pseudo ground truth provided by VIC-TSA for all three velocity components.

less accurately. Furthermore, errors associated with ghost particles
are produced mostly along the depth direction, increasing the
uncertainty of the w component, in a relative sense. For the v com-
ponent, the uncertainty is lower in comparison (0.7 m/s).

In summary, the a posteriori analysis suggests an uncertainty
on the order of 10% of the bulk jet velocity.
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