Faculty of Aerospace Engineering

A Theoretical Approach for Analysing
the Stability Characteristics of Tiltrotor =
Aircraft

~ Giel Steinbusch
"‘""’“‘;’? December 27, 2021

Delft
e t University of
Technology

Challenge the future







A Theoretical Approach
for Analysing the
Stability Characteristics
of Tiltrotor Aircraft

MSc. Thesis

by

Giel Steinbusch

In partial fulfilment of the requirements for the degree of

Master of Science
in Aerospace Engineering

at the Delft University of Technology,
to be defended publicly on January 11th, 2022 at 10:00

Student number: 4479289

Thesis Supervisor  Dr. M.D. Pavel TU Delft, chair
Thesis Committee Dr. M.D. Pavel TU Delft

Dr. E. van Kampen TU Delft

Ir. P.C. Roling TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Cover image (adapted): V-22 Osprey tiltrotor aircraft, February 2012 - Accessed December 2021
https://commons.wikimedia.org/wiki/File:
US Navy 120131-M-DK975-090 An MV-22 Osprey tiltrotor aircraft lands aboard the amphibious
assault ship USS Kearsarge (LHD 3) during exercise Bold A.jpg

]
TUDelft


http://repository.tudelft.nl/
https://commons.wikimedia.org/wiki/File:US_Navy_120131-M-DK975-090_An_MV-22_Osprey_tiltrotor_aircraft_lands_aboard_the_amphibious_assault_ship_USS_Kearsarge_(LHD_3)_during_exercise_Bold_A.jpg
https://commons.wikimedia.org/wiki/File:US_Navy_120131-M-DK975-090_An_MV-22_Osprey_tiltrotor_aircraft_lands_aboard_the_amphibious_assault_ship_USS_Kearsarge_(LHD_3)_during_exercise_Bold_A.jpg
https://commons.wikimedia.org/wiki/File:US_Navy_120131-M-DK975-090_An_MV-22_Osprey_tiltrotor_aircraft_lands_aboard_the_amphibious_assault_ship_USS_Kearsarge_(LHD_3)_during_exercise_Bold_A.jpg




Preface

You are currently reading the final thesis report of my master Aerospace Engineering, which | conducted
at Delft University of Technology. Throughout my studying career in aerospace engineering | have become
intrigued by the helicopter in particular, and | find the technology behind it overwhelming but fascinating.
Conducting my thesis research on the topic of tiltrotor aircraft, which have both helicopter and airplane
characteristics, was a very challenging but enriching experience.

| would like to express my gratitude towards my thesis supervisor Marilena for providing me with the guidance
and support that | needed throughout my thesis. Although you have a very busy schedule you always took
your time to share your thoughts on my research progress with and help me steer into the right direction.
Thank you for sharing your expertise on helicopters with me and enlighten me with more knowledge about
these fascinating vehicles.

Furthermore, | would like to thank my roommates Bart, Bas, Guy and Tristan. We have made some amazing
memories together during our student life in Delft. Although the past 2 years have not been up to normal
standards due to current COVID-19 pandemic, | have enjoyed every second of it. Bart, being stuck at home
and doing all our thesis work remotely has not been easy, but our lunches and coffee breaks together at home
during which we would discuss our thesis troubles have helped me get through this final phase of my masters.

To my family, thank you bearing with me the past year while | worked on my thesis, but also for the other
23 years of my life. Thank you for giving me the opportunity to move to Delft and for encouraging me in
times of little advancements. Your motivation and support means a lot to me.

Giel Steinbusch
Delft, December 2021

iii






Contents

List of Figures vii
List of Tables ix
List of Abbreviations ix
List of Symbols xi
I Scientific Article 1
II Technical Report 23
1 Introduction 25
1.1 Research Objective. . . . . . . . . . . . . i e 26
1.2 Research Questions . . . . . . . . . . . 0 i i e e e e e e 26

2 Background 29
2.1 Tiltrotor Aircraft . . . . . . . . . . e e e e e e 29
2.1.1 Introduction to Tiltrotor Aircraft. . . . . . . . . . . . . ... ... ....... 29

2.1.2 History . . . . . . o o e e e e e e 29

2.1.3 Flight Modes. . . . . . . . . . e 31

2.2 The XV-15 Tiltrotor Research Aircraft. . . . . . . . . . ... .. .. .. ... ..... 31
2.2.1 Conversion Corridor . . . . . . . . . . . e e e e e 31

2.2.2 Control Strategy . . . . . . . . . o e e e e e 31

2.2.3 Pilotinceptors. . . . . . . . . L e e e 32

2.3 Tiltrotor Models. . . . . . . . . . e e e e e e e 33
2.3.1 3-DoF Model. . . . . . . . e e e 34

2.3.2 GTRS Model. . . . . . . . e e e e 37

2.3.3 FLIGHTLAB Model . . . . . . . . . . e e e e e e e 38

2.3.4 JANRAD Model . . . . . . . . e e e e 39

2.3.5 HeliUM Model. . . . . . . . . e e e e e e e e 39

2.3.6 Other Models . . . . . . . . . . . . e e 40

2.4 Aircraft Stability . . . . . ... 42
2.4.1 Staticstability. . . . . . . ... 42

2.4.2 Dynamic stability. . . . . . . . ... 42

3 Non-linear Model 47
3.1 Model Description . . . . . . . . . . i e e e e e e e e e e e 47
3.2 General Assumptions . . . . . . . . ..o e e e e e e e e e 48
3.3 Modules . . . . . . . e e e e e e e e 50
3.3.1 Module: Initialize Model. . . . . . . . . . . . . . . . e 50

3.3.2 Module: Articulated Rotor . . . . . . . . . .. . . ... ... .. e 52

3.3.3 Module: MAC (Mean Aerodynamic Chord) . . . . . . ... ... ... ..... 56

3.3.4 Module: Rotor Wake . . . . . . . . . . . . . i e 58

3.3.5 Module: Wing Downwash . . . . .. .. ... ... ... ... ... ... 59

3.3.6 Module: Lifting Surface . . . . . .. . .. ... 61

3.3.7 Module: Fuselage. . . . . . . . . . . . . e 62

3.3.8 Module: Main . . . . . . . . . . e e e e e e e e 64

3.4 Trimresults . . . . . . . . e e e e e e e e e 64



vi Contents

4 Linear Model 69
4.1 Linearized Equations of Motion . . . . . .. ... ... ... .. .. .. .. ... 69
4.2 The Stability Derivatives . . . . . . . . . . . L e 72

4.2.1 Longitudinal Stability Derivatives . . . . . . . . ... ... ... ... 73
4.2.2 Lateral/directional Stability Derivatives . . . . . . .. ... ... ... .... 83
4.3 The Control Derivatives . . . . . . . . . . .. . e 91
4.3.1 Longitudinal Control Derivatives. . . . . . . . . .. . ... ... ... ..... 91
4.3.2 Lateral/directional Control Derivatives. . . . . . . . .. .. ... ... .... 94

5 Natural Eigenmodes 101

5.1 Uncoupled Longitudinal Modes . . . . . . . .. .. ... . .. .. ... ... 101
S5.1.1 Shortperiod. . . . . . . . . . e e e e e e 102
5.1.2 Phugoid . . . . . . . . e e e 105

5.2 Uncoupled Lateral/directional Modes. . . . . . . .. ... ... ... ... .. .... 107
5.2.1 Rollingmode . . . . . . . . . . . e e 108
5.2.2 Spiralmode . . . . . . ... e 110
5.2.3 Dutchroll . . . . . . . e 112

5.3 Coupled Modes . . . . . . . . o e e e e 114
5.3.1 Comparison with Uncoupled Modes. . . . . . .. ... ... . ......... 115
5.3.2 Comparison with FLIGHTLAB Results . . . . ... ... ... ......... 116

6 Conclusions and Recommendations 123
6.1 Conclusions. . . . . . . . . e 123
6.2 Recommendations for Future Work . . . . . . .. .. ... ... L L. 125

Bibliography 127

A 3-DoF Model Equations 129

B 6-DoF Model Equations 133
B.1 Equation ag . . . . . . . . L e e e e e e e e 133
B.2 Equation a; . . . . . . . e e 135
B.3 Equation by . . . . . . L e e e e e e 137
B.4 Equation Crpgpy - - « « v v v v v v i e e e e 139
B.5 Equation Cy . . . . . . . . e e e e e e e e e e e 141
B.6 Equation Cs . . . . . . . . . e e e e e e e 147
B.7 Equation Cp . . . . . . . ... 154

C GTRS look-up tables 159
C.1 Horizontal stabilizers downwash angle . . . . . .. .. ... ... ... ........ 159
C.2 Fuselage aerodynamic coefficients. . . . . . ... .. ... .. . 162

D Sensitivity Analysis Stability Derivatives 163



21
2.2
2.3
2.4
25
2.6
2.7

31
3.2
3.3
3.4
35
3.6
3.7
3.8

3.9

4.1
4.2
43
4.4
4.5
4.6
47

4.8
4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

List of Figures

The XV-15 Tiltrotor aircraft in helicopter mode [1] . . . . . . .. .. ... ... .. ..., 30
XV-15 conversion corridor [2] . . . . . ... . 32
XV-15 control functions in both helicopter (a) and airplane mode (b) [2] . . . . . . . . . .. 33
The generic tiltrotor model developed in HeliUM [3] . . . . . . . .. ... ... ... .... 40
Migration of longitudinal stick w.r.t. airspeed [4] . . . . . . . ... ... ... ... ..., 42
Static stability . . . . . . .. 43
Dynamic stability . . . . . . . . . e 43
Top-level block diagram of the 6-DoF flight dynamics model . . . . . . . . ... ... ... 48
Schematic figure of the XV-15 with all separate components numbered [1] . . . . . . . . .. 49
Detailed block diagram of the 6-DoF flight dynamics model . . . . . . . .. ... ... ... 50
The shift of the centre of gravity as a function of nacelleangle . . . . . .. ... ... ... 51
The moments of inertia as a function of nacelle angle . . . . . . ... ... ... ... ... 52
Schematic diagram visualizing the interference of the rotor wake with the wing [5] . . . . . 58
Body pitch angle (8;), collective stick deflection X0, and longitudinal cyclic stick X, oy trim
curves compared with GTRS model data [6]. . . . . . . . ... .. ... ... ... ...... 65
Collective pitch angle (6;), longitudinal cyclic angle (8;15) and elevator deflection angle (§,)
trim curves compared with GTRS model data [6]. . . . . . . . . ... .. ... ... .... 67
Flapping angle trim curves compared with GTRS model data [6]. . . . . . . . ... ... .. 68
Conceptional relation between perturbation size and linearization error [7] . . . . . . . . .. 72
Linearization process . . . . . . . . . L 72
The orthogonal body axes system [2] . . . . . . . . . ... ... 73
Stability derivative X,, in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . . ... 74
Stability derivative X, in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . . . . .. 76
Stability derivative X4 in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglenn . . . . . . . .. 7
Stability derivative Z,, in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . . .. 78
Variation of the heave-damping derivative Z,, for both rotary- and fixed-wing aircraft [2] . . 79
Stability derivative Z,,, in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . ... 79
Stability derivative Zg in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . . .. 80
Stability derivative M,, in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . . . . . 81
Stability derivative M,, in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . . . 82
Stability derivative M, in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . . . 83
Stability derivative Y, in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . . .. 84
Stability derivative Y, in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . . .. 85
Stability derivative Y, in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . .. 86

vii



viii List of Figures

4.17 Stability derivative L, in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . . . 87

4.18 Stability derivative L, in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . . .. 88

4.19 The in-plane velocity distribution of the tiltrotor in helicopter mode with a positive yaw rate
leads to a positive L, . . . . . . 88

4.20 Stability derivative L, in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . .. 89

4.21 Stability derivative N,, in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . . . . . 90

4.22 Stability derivative Np in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . . .. 91

4.23 Stability derivative N, in helicopter mode, conversion mode and airplane mode, and as a
function of nacelle anglen . . . . . . . . 92
4.24 Control derivatives with respect to the collective pitch angle 6, . . . . . . . ... ... ... 93
4.25 Control derivatives with respect to the longitudinal cyclicangle 64, . . . . . . . . . .. ... 94
4.26 Control derivatives with respect to the elevator deflection angle 6, . . . . . . . . ... ... 95
4.27 Control derivatives with respect to differential collective pitch angle g4 . . . . . . . . . .. 96
4.28 Control derivatives with respect to the aileron deflection angle 6, . . . .. ... ... ... 97
4.29 Control derivatives with respect to differential longitudinal cyclic angle 6154 . . . . . . . . . 98
4.30 Control derivatives with respect to the rudder deflection angle 6, . . . . . . . ... ... .. 100
5.1 XV-15 uncoupled longitudinal eigenmodes in helicopter mode (n = 90deg) . . .. ... .. 102
5.2 XV-15 uncoupled longitudinal eigenmodes in conversion mode (n = 60deg) . . . . . . . . . 102
5.3 XV-15 uncoupled longitudinal eigenmodes in airplane mode (n =0deg) . . . . ... .. .. 103

5.4 XV-15 uncoupled longitudinal eigenmodes in airplane mode as a function of nacelle angle (V
=120 KtS) . . . . 104
5.5 XV-15 uncoupled lateral eigenmodes in helicopter mode as a function of airspeed (n = 90deg)108
5.6 XV-15 uncoupled lateral eigenmodes in conversion mode as a function of airspeed (n = 60deg)108
5.7 XV-15 uncoupled lateral eigenmodes in airplane mode as a function of airspeed (n = 0Odeg) 109

5.8 XV-15 uncoupled lateral eigenmodes in airplane mode as a function of nacelle angle (V =
120 kts) . . o 110

5.9 XV-15 coupled longitudinal eigenmodes compared with the uncoupled modes in helicopter
mode . . .. L 115

5.10 XV-15 coupled longitudinal eigenmodes compared with the uncoupled modes in conversion
mode . . .. L 116
5.11 XV-15 coupled longitudinal eigenmodes compared with the uncoupled modes in airplane modell7

5.12 XV-15 6-DoF model coupled eigenmodes in helicopter mode compared with the FLIGHTLAB
eigenmodes . . .. L L 119

5.13 XV-15 6-DoF model coupled eigenmodes in conversion mode compared with the FLIGHTLAB
eigenmodes . . .. L L 120

5.14 XV-15 6-DoF model coupled eigenmodes in airplane mode compared with the FLIGHTLAB
eigenmodes . . .. L L L 121
D.1 Sensitivity Analysis of the Stability Derivatives on the Frequency of the Short Period . . . . 163
D.2 Sensitivity Analysis of the Stability Derivatives on the Damping of the Short Period . . . . . 164
D.3 Sensitivity Analysis of the Stability Derivatives on the Frequency of the Phugoid . . . . . . . 165
D.4 Sensitivity Analysis of the Stability Derivatives on the Damping of the Phugoid . . . . . . . 166
D.5 Sensitivity Analysis of the Stability Derivatives on the Frequency of the Roll Mode . . . . . 167
D.6 Sensitivity Analysis of the Stability Derivatives on the Damping of the Roll Mode . . . . . . 168
D.7 Sensitivity Analysis of the Stability Derivatives on the Frequency of the Spiral Mode . . . . 169
D.8 Sensitivity Analysis of the Stability Derivatives on the Damping of the Spiral Mode . . . . . 170
D.9 Sensitivity Analysis of the Stability Derivatives on the Frequency of the Dutch Roll . . . . . 171

D.10 Sensitivity Analysis of the Stability Derivatives on the Damping of the Dutch Roll . . . . . . 172



21

3.1
3.6
3.8

4.1
4.2

51
5.2
53
54
55
5.6
5.7
5.8
5.9

5.10

C1
C.2
C3
C4
Ch

List of Tables

3-DoF preliminary model computation scheme . . . . . . . . . ... .00 35
The components considered in the 6-DoF model . . . . . . . . ... ... ... ... .... 49
Different flap settings . . . . . . . . . .. 60
An overview of the lifting surface components and their control surfaces . . . . . . . .. .. 60
The S.1. units of the stability derivatives . . . . . . . . . ... ... L. 73
Units of the control derivatives . . . . . . . . . . . . .. 91
Pitch and heave subsidence eigenvalues validation in hover . . . . . .. .. ... ... ... 103
Comparison of exact and approximation short period eigenvalues . . . . . . . ... ... .. 105
Phugoid eigenvalue validation in hover . . . . . . . . . .. ... ... ... . 106
Comparison of exact and approximation phugoid eigenvalues . . . . . . . . ... ... ... 107
Comparison of exact and approximation roll mode eigenvalues . . . . . . . . ... ... .. 109
Spiral mode eigenvalue validation in hover . . . . . . . . ... ... 110
Comparison of exact and approximation spiral mode eigenvalues . . . . . . ... ... ... 111
Eigenvalue validation in hover . . . . . . . . . . . . ... 112
Comparison of exact and approximation Dutch roll mode eigenvalues using the first-order

approximation equation . . . .. .. L L 113
Comparison of exact and approximation Dutch roll mode eigenvalues using the second-order

approximation equation . . . . . . ... L 114
Horizontal stabilizers downwash angle due to wake of the wing, XFL=11[8]. . . . . . . .. 159
Horizontal stabilizers downwash angle due to wake of the wing, XFL=21[8] . . . . . . . .. 160
Horizontal stabilizers downwash angle due to wake of the wing, XFL=31[8]. . . . . . . .. 160
Horizontal stabilizers downwash angle due to wake of the wing, XFL=41[8] . . . . . . . .. 161
Fuselage aerodynamic coefficients [8] . . . . . . . . . . . .. ... .. 162

ix






List of Abbreviations

ARL articulated rotor, left

ARR articulated rotor, right

BEM blade element theory

c.g. centre of gravity

c.m. centre of mass

FCS flight control system

FL fuselage

HSL horizontal stabilizer, left

HSR horizontal stabilizer, right

JANRAD joint army-navy rotorcraft analysis and
design

LCTR large civil tilt-rotor

LTR large tilt-rotor

MOI moment of inertia

Xi

RHILP

VSTL
VSTR
VSTL
VSTR
VTOL
WAL
WAR
WFL
WFLL
WFLR
WFR

rotorcraft handling, interactions and loads
prediction

vertical stabilizer, bottom left
vertical stabilizer, bottom right
vertical stabilizer, top left
vertical stabilizer, top right
vertical take-off and landing
wing aileron, left

wing aileron, right

wing free, left

wing flap, left

wing flap, right

wing free, right






General

Qo
Qo,pre
ay

a
A
A
b
by
BL

eq

CL,Oa

CT,BE M

CT,GLAU

coning angle (rad)

Pre-coning angle (rad)

longitudinal disc tilt (rad)

acceleration (m/s?)

flat plate drag area (m?)

system matrix

span (m)

lateral disc tilt (rad)

aircraft buttline (m)

control matrix

chord (m)

Drag coefficient (-)

zero angle of attack fuselage drag coeffi-
cient (-)

in-plane longitudinal rotor force coefficient
Q)

root chord (m)

tip chord (m)

Lift coefficient (-)

lift curve slope (-)

zero angle of attack fuselage lift coefficient
)

zero-lift drag coefficient (-)

first order drag coefficient (-)

second order drag coefficient (-)

zero angle of attack fuselage moment co-
efficient (-)

in-plane longitudinal rotor moment coeffi-
cient (-)

in-plane lateral rotor moment coefficient
rotor torque coefficient (-)

In-plane lateral rotor force coefficient (-)

thrust coefficient calculated using the
blade element momentum method (-)

thrust coefficient calculated using the
Glauert method (-)

xiii

List of Symbols

drag (N)

distance from body cg to component cg
along body x-axis (m)

distance from body cg to component cg
along body y-axis (m)

distance from body cg to component cg
along body z-axis (m)

oswald factor (rad)

force vector (N)

reference frame (-)

gravitational acceleration (m/s?)

gross weight (kg)

H-force, longitudinal in-plane rotor force
(N)

blade moment of inertia at the flapping
hinge about the flapping axis (kg m?)
identity matrix

incidence angle (rad)

input vector

moment of inertia about the x-axis (kg
m?)

moment of inertia about the y-axis (kg
m?)

moment of inertia about the z-axis (kg
m?)

product of inertia about the x- and z-axis
(kg m?)

centre-spring rotor stiffness (Nm/rad)
inertia coefficient for I, (-)

inertia coefficient for I, (-)

inertia coefficient for I, (-)

inertia coefficient for J,z (-)

lift (N)

Rolling moment about the x-axis (Nm)
nacelle length (m)

roll damping derivative (1/s)

dihedral stability derivative (rad/s/m)
mass (kg)



Xiv List of Tables
MAC mean aerodynamic chord position vector Xcop collective stick deflection (in)
(m) XFL flap setting (-)
Mp, blade hub moment (Nm) X force component along x-axis (N)
M Pitching moment about the y-axis (Nm)  x, ,~ lateral cyclic stick deflection (in)
M moment vector (N) Xion longitudinal cyclic stick deflection (in)
M, pitch damping derivative (1/s) XpeD pedal deflection (in)
M, speed stability derivative (rad/s/m) Xu drag damping derivative (1/s)
M, incidence  static  stability derivative T yaw rate, angular velocity component
(rad/s/m) about the body z-axis (rad/s)
N number of rotors (-) T non-dimensionalized yaw rate, angular ve-
N Yawing moment about the z-axis (Nm) I(o)uty component about the body z-axis
Ny yaw damping derivative (1/s) Y force component along y-axis (N)
N, weathercock stability derivative (rad/s/m) Y, Direct side force damping derivative (1/s)
q pitch rate, angular. velocity component force component along z-axis (N)
about the body y-axis (rad/s) ; o
_ Zy heave damping derivative (1/s)
q non-dimensionalized pitch rate, angular
velocity component about the body y-axis & angle of attack (rad)
) Qor zero-lift angle of attack (rad)
R radius of rotor blade (m) ay downwash angle of attack (rad)
roll rate, angular velocity component g, mast angle (rad)
about the body x-axis (rad/s) y flight path angle (rad)
7 non-dimensionalized roll rate, angular ve- p dihedral angle (rad)
locity component about the body x-axis
) P lock number (-)
ide sli I
SL aircraft stationline (m) 0 side slip angle (rad)
. 8 aileron deflection (rad)
t time (s)
Se elevator deflection (rad)
T thrust (N) .
8¢ flap deflection (rad)
Tyay transformation matrix from reference .
f 8, rudder deflection (rad)
rame x to y (-)
u velocity component along body x-axis ¢ damping ratio (-)
(m/s) n nacelle angle (rad)
v airspeed (kts, m/s) ] rate of nacelle angle change (rad/s)
Vv velocity vector (N) n non-dimensionalized rate of nacelle angle
h -
v induced velocity (ms) change () _
v oci | h < of th pitch angle, Euler angle defining the orien-
lat velocity component along the y-axis of the tation of the aircraft relative to the Earth
control plane reference frame (m/s) (. rad)
Vion velocity component along the x-axis of the 8o collective pitch (rad)
control plane reference frame (m/s) ] ] )
600 Zero collective stick displacement collec-
v velocity component along body y-axis tive (rad)
m/s
( /h) \ Ob10 blade twist angle at the blade root (rad)
w weight (N) 604 differential collective pitch angle (rad)
wi aircraft waterline (m) 6075 Collective pitch lower limit at 0.75 blade
w velocity component along body z-axis radius (rad)
(m/s) Bo,11L lower limit of the collective pitch at the
X state vector blade root (deg)
Xo initial state vector 00 mod global collective pitch modifier (deg)



List of Tables

XV

Bo.r blade pitch at the root (deg)
Op11 blade twist angle gradient (rad)
01 longitudinal cyclic angle (rad)
0154 differential longitudinal cyclic angle (rad)
A induced velocity ratio (-)

Ac inflow ratio (-)

A eigenvalue (1/s)

A sweep angle (rad)

1 advance ratio (-)

p air densitiy (kg/m?)
Subscripts

bl blade

b body

c component

cp control plane

DP disc plane

dr Dutch roll

f fuselage

h heave subsidence

h hub

hs horizontal stabilizer

NPP nacelle pivot point

g

7,

Sp

hs
waCP
waDP

roll angle, Euler angle defining the orien-
tation of the aircraft relative to the Earth
(°, rad)

rotor solidity (-)
Gearing from x to y (-)

yaw angle, Euler angle defining the orien-
tation of the aircraft relative to the Earth
(°, rad)

rotor speed (rad/s, RPM)
frequency (rad/s)

pylon

phugoid

pitch subsidence

roll mode

short period

spiral mode

vertical stabilizer

wind axis control plane
wind axis disc plane

wing






Part |

Scientific Article






Delft University of Technology, Faculty of Aerospace Engineering G.G.J. Steinbusch

A Theoretical Approach for Analysing the Stability

Characteristics of Tiltrotor Aircraft
G.G.J. Steinbusch

Delft University of Technology, Faculty of Aerospace Engineering

ABSTRACT

A tiltrotor is an aircraft that is able to combine the vertical take-off and landing capabilities of a conventional helicopter
with the high-speed cruise and long-range characteristics of an airplane. This is made possible by the tiltable rotors which
are mounted on the wingtips of a fixed-wing aircraft. Three flight modes can be distinguished in which the rotors are either
oriented vertically (helicopter mode), horizontally (airplane mode) or somewhere in between (conversion mode). The aim
of this research is to get a better understanding of the dynamic stability characteristics of this type of aircraft. For this
purpose a six-degrees-of-freedom model has been developed using the Bell XV-15 as a reference aircraft. This non-linear
model has been trimmed and linearized using a numerical differentiation technique. This paper describes the model and
its main features, together with a trim analysis and an analysis of the control and stability derivatives following from the
linearization. Using the linear model the stability characteristics are assessed at different combinations of airspeed and
nacelle angle. It is found that the phugoid and Dutch roll modes are unstable in hover. The dihedral effect L, destabilizes
the tiltrotor Dutch roll. The spiral mode is unstable at low speeds in helicopter mode. This is mainly caused by the lack
of yaw damping, which is provided by a tail rotor for conventional helicopters. Increasing the airspeed has generally a
stabilizing effect to the modes. The damping of the Dutch roll and phugoid increases with decreasing nacelle angle, which
can be attributed to the increase in yaw damping N, and drag damping X, respectively. The frequency of the spiral mode
and roll mode increases and decreases respectively with decreasing nacelle angle.

Keywords: Tiltrotor, Flight dynamics, Dynamic Stability, Stability Characteristics
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1. Introduction
A tilt-rotor aircraft, also referred to as simply tiltrotor, is an

aircraft that is able to perform vertical take-off and land-
ing manoeuvres like a conventional helicopter, as well as
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achieving cruise speeds and long ranges that are common
for a fixed-wing aircraft. This is achievable due to its rotor
tilting capabilities. The rotors, also called proprotors, are
mounted on the wingtips of a fixed-wing aircraft and can
be tilted around 90 degrees during flight to perform both
horizontal and vertical manoeuvres. The travel time to and
from airports could be reduced significantly as the tiltro-
tor is much more flexible in take-off and landing locations
because it does not require an entire landing strip [1]. This
feature could make air transport much more time efficient.

For a tiltrotor three different modes can be distinguished
during flight. The vehicle is said to be in helicopter mode
(H-mode) when the nacelles have an angle of 90 degrees
with respect to the fixed wing. In this mode the propro-
tors are positioned vertically generating a lift force like a
conventional helicopter allowing the aircraft to perform
vertical manoeuvres such as take-off, landing and hover. If
the nacelles are oriented parallel to the wing, the tiltrotor
is said to be in airplane mode (A-mode). In this mode, the
proprotors function as airplane propellers generating thrust
and the tiltrotor is able to reach high speeds. The lift in this
mode is provided by the wings. If the nacelles are not ori-
ented perpendicular or parallel with respect to the wing the
tiltrotor is said to be in conversion mode (C-mode).

Although there have been several projects and develop-
ments in tiltrotor technology, the only tiltrotor that has
made it to the market yet is the Bell Boeing V-22 Osprey
which has solely military applications. The development of
the V-22 has primarily relied on the data and experiences
of the Bell XV-15. The XV-15 is a experimental tiltrotor
which was the first in its sort to successfully reach a cruise
velocity which could never be achieved with a conven-
tional helicopter [2]. Many different researches have build
forward on the data and experiences of the XV-15. The
Generic Tilt-Rotor Simulator (GTRS) model has been de-
veloped to support tiltrotor aircraft design, pilot training
and flight testing [3, 4, 5]. This real time model is mainly
based on 1/5 scale wind-tunnel test data, in combination
with basic physical equations and correction factors. Many
different look-up tables are provided including among oth-
ers the effects on the aerodynamic coefficients of the angle
of attack, nacelle angle, sideslip, Mach number and flap
defection. Because of its high accuracy and availability of
data the GTRS model is often used for tiltrotor modelling.
Tischler developed a tiltrotor flight dynamics model using
frequency domain identification technology [6, 7]. Johnson
investigated the dynamics of tilting proprotor aircraft in
cruise flight [8]. The linear state space modelling a tiltrotor
was investigated by Klein using JANRAD (Joint Army-
Navy Rotorcraft Analysis and Design)[9]. This model is
however unable to investigate the conversion mode. A sim-

ple open-source flight dynamics model using basic aero-
dynamic equations was developed by Kleinhesselink [10].
At the University of Liverpool a flight dynamics model of
the XV-15 has been developed using FLIGHTLAB: the
FXV-15 [11]. FLIGHTLAB is a multi-body modelling
environment, providing a modular approach to the cre-
ation of flight dynamics models. The FXV-15 served as
the baseline model for several civil tiltrotor variants. The
EUROTILT tiltrotor configuration was developed and used
for the "Rotorcraft Handling, Interactions and Loads Pre-
diction’ (RHILP) project which is one the first projects to
develop handling qualities criteria for a civil tiltrotor [12].
The longitudinal stability, control and handling qualities
of the Large Tilt-Rotor (LTR) model, also developed in
FLIGHTLAB, are assessed by Walker and Perfect [13].
Berger et al. investigated the trim data, linearized control
and stability derivatives and eigenvalues of a lift offset
coaxial rotorcraft and a tiltrotor configuration. The generic
models of both aircraft were developed using HeliUM, a
comprehensive rotorcraft simulation code [14].

Currently, more research is conducted into the civil appli-
cations of the tiltrotor. The development of several tiltro-
tor projects is still ongoing, amongst others the Agusta
Westland AW609 project. This tiltrotor has been under
development for over 15 year but has not made it to the
market yet at the time of writing this article. In 2015 the
AW609 suffered a fatal crash when a high-speed dive dur-
ing a test flight became unstable. The AW609 showed un-
stable behavior about the roll and yaw axis which could
be described as a diverging Dutch roll mode [15]. The
overview above shows that there is already quite some
literature about tiltrotor aircraft, but most literature is fo-
cused on flight dynamics modeling or handling quality
evaluation. The stability of the tiltrotor is however much
less investigated and there is primarily a lack of knowledge
how the dynamic behavior is influenced by different flight
parameters. The AW609 accident shows that the stability
of the tiltrotor is still not sufficiently predictable. The aim
of this research is to get a better understanding on the sta-
bility characteristics of tiltrotor aircraft. It will be analysed
how the stability and control derivatives behave as a func-
tion of airspeed and nacelle angle and which components
contribute to each derivative. Furthermore, data from dif-
ferent models are compared and their similarities and dif-
ferences in results are explained by comparing their model
properties. The linear models are then used to investigate
the dynamic modes of the tiltrotor and how the modes are
affected by the stability derivatives.

Firstly, the non-linear flight dynamics model used for this
analysis is described. Thereafter, the model is linearized
at its trim conditions and the most important stability and
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Fig. 1. Block diagram of the 6-DoF flight dynamics model

control derivatives are discussed. This is followed by a dis-
cussion on the dynamic modes of the aircraft, after which
the conclusions of the research are drawn.

2. Nonlinear model

In this chapter the non-linear six-degrees-of-freedom tiltro-
tor flight dynamics model, from now on referred to as 6-
DoF model, will be described. A detailed description of
the model is written by Sokolowski [16]. For the analysis
the XV-15 tiltrotor aircraft is used as the reference aircraft.
A detailed description of this aircraft together with all its
important parameters can be found in reference [4].

2.1 General Model Description

In general, the flight dynamics model describing the mo-
tion of an aircraft takes the following non-linear form:

x=f(xu,) ey

where x denotes the state vector, # denotes the input vector
and t is the response time. The block diagram in Figure 1
depicts the structure of the 6-DoF model. The required in-
puts for the model are shown in the green blocks. Firstly,
some environmental parameters are required. The aero-
dynamic forces are dependent on the air density p and

gravitational forces are dependent on the gravitational ac-
celeration g. Secondly, the inputs of the pilot are required.
These inputs contain the collective stick deflection Xcor,
the longitudinal and lateral cyclic stick deflections Xz on
and Xy 47 and the pedals deflection Xprp. The input vector
u therefore looks as follows:

u = [Xcor,Xron, Xrar, XpeD| )

Thirdly, some general aircraft parameters are required as
inputs. These parameters contain among others aircraft ge-
ometry parameters and derivatives describing the effect of
the control surfaces deflections on the aerodynamic coeffi-
cients. Lastly, the initial states of the aircraft serve as input
to the model. These states contain the translational veloc-
ities, rotational velocities and aircraft attitude. The state
vector x has the following form:

x:[u7vvap7q7rv¢797q/] (3)

The model is build using a multi-body modeling approach
to construct the aircraft configuration using its subcom-
ponents (rotors, wing-parts, horizontal and vertical stabi-
lizers, fuselage etc.). In total, the XV-15 has been subdi-
vided into 15 different components which are shown in
Figure 2. All components have been numbered and given
an acronym. The forces and moments created by all com-
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Nr. | Component Acronym
1 Articulated Rotor Left ARL
2 Articulated Rotor Right ARR
3 Wing Free, Left WFL
4 Wing Free, Right WFR
5 Wing Flap, Left WEFLL
6 Wing Flap, Right WEFLR
T Wing Aileron, Left WAL
8 Wing Aileron, Right WAR
9 Horizontal Stabilizer, Left H5L
10 Horizontal Stabilizer, Right HSR
11 Vertical Stabilizer, Top Left VSTL
12 | Vertical Stabilizer, Top Right VSTR
13 Vertical Stabilizer, Bottom Left WSBL
14 Vertical Stabilizer, Bottom Right | VSBR
15 | Fuselage FL

Fig. 2. Overview of the XV-15 and its subcomponents

ponents are computed using different modules. Some mod-
ules require the outcome of other modules. The order in
which the modules should be used is also shown in Fig-
ure 1. In the bottom of each module the acronyms of the
components for which the module applies are given. The
different modules are discussed in the next section.

2.2 Modules

In this subsection the different modules of the model are
discussed.

2.2.1 Module: Initialize Model

When modelling the flight dynamics of a tiltrotor aircraft,
one should keep in mind that the rotation of the nacelles
causes a significant shift in aircraft c.g. along the longitu-
dinal axis. This also affects the moments of inertia (MOI)
of the aircraft. Linear equations describing these MOI as
a function of mast angle f3,, have been integrated in the
model. The mast angle is 0 degrees in H-mode and 90 de-
grees in A-mode. For example, I, is computed using

I —KI1By “

= Ix\pmzo

where K11 is a constant and Iy B is the MOI in heli-
copter mode. Similarly, expressions describing the c.g. sta-
tionline (SL) and waterline (WL) have been integrated. If
the nacelle angle is kept constant while running the model
this module only needs to be ran once at the beginning of
the simulation.

2.2.2 Module: Articulated Rotor

The rotor system is modelled by an articulated hub with

a flapping hinge and spring, but no lead-lag hinge nor
hinge offset. Furthermore, the lateral cyclic ;. is omit-
ted so the swashplate inputs consist of the collective 6,
and the longitudinal cyclic 0y,. The rotor-induced veloc-
ity v; is assumed to be constant across the rotor disc. The
induced velocity ratio A; is found by computing the thrust
coefficient Cr using both the beam element method en the
Glauert method and comparing the results. Both Cr and A;
are found when the following condition holds

Crrav(Ai) —Crpem(Xi) =0 %)

Using this value for A; all forces and moments induced by
the rotors can be computed.

2.2.3 Module: MAC

This module is used to compute the position of the mean
aerodynamic chord (MAC) of the lifting surfaces with re-
spect to the aircraft centre of gravity. It is assumed that

all forces created by the lifting surface act on this point.
Firstly, the MAC along the surface is computed. This is a
function of surface dimensions and sweep. Secondly, by
taking into account the incidence angle and dihedral an-
gle the position of the MAC along the surface is combined
with the position of the lifting surface root with respect to
the c.g..
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2.2.4 Module: Rotor Wake

The goal of the ’Rotor Wake’” module is to check whether
there is interaction between the wake of the rotor system
and the wings of the tiltrotor. If so, it is computed how

this interaction affects the airflow around the wings. The
interference of the rotor wake on the wing is calculated
based on fixed wake theory and the projection relationship
between the rotor disc and wing [17]. This more clearly vi-
sualized in Figure 3. If the MAC of the wing component is
located within the projection of the wake on the wing com-
ponent it is assumed that the whole component is affected
by the wake. If this is the case, the downwash due to the
rotor is computed using

Nw ) ’ dr2m

V1+n2

with d,,,, the normal distance from the rotor disc to the
MAC.

6)

wr=vi(14

Fig. 3. Schematic view of the interference of the rotor
wake with the wing [17]

2.2.5 Module: Wing Downwash

In this module the downwash on the horizontal stabilizers
caused by the wake of the wing is computed. This module
is only used for the wing parts containing the flaps, so its
concerns components WFLR and WFLL. The downwash
angle is obtained from the GTRS model data[4], and is
implemented as a function of wing angle of attack, flap
deflection and nacelle angle. The downwash angle that is
found by interpolating the GTRS data can then subtracted
from the effective horizontal stabilizer angle of attack.

2.2.6 Module: Lifting Surface

The forces and moments created by the lifting surfaces are
computed in this module. These forces and moments are a
function of the dynamic pressure, surface area and aerody-
namic coefficients. The lift and drag coefficients are com-
puted using a combination of linear aerodynamics and the
flat plate area theory. According to the linear aerodynamics
theory, the coefficients can be computed using

Cr;=Cr (a—oao)+AC, @)
Cps=C Cis AC 8
D, = Cpo+ TARe +ACp ()

According to the flat plate area theory, the coefficients are
computed using

CLsf =2 sin(ot) Cos(a)CL,max +ACL 9
Cp.; = sin(&t — o) *Cp max +ACp (10)

The former method gives inaccurate results at low air-
speeds (H-mode) due to the large angle of attack of the
wings as a result of the rotor wake downwash. The latter
method is less accurate at high airspeeds (A-mode). There-
fore, Cz and Cp are computed using a combination of both
methods as a function of nacelle angle

n=mn/90 (an
CL :nCLJ‘F(l*i’l)CL_f (12)
Cp =nCD,,/+(1 —n)CD,f (13)

The ACy, and ACp are computed based on the deflections
of the secondary control surfaces.

2.2.7 Module: Fuselage

In this module the aerodynamic forces created by the fuse-
lage are computed. The longitudinal aerodynamic coef-
ficients are computed using GTRS model data [4]. The
GTRS model data provides tables for the lift, drag and
pitching moment coefficient of the fuselage of the XV-15,
and these are implemented as a function of angle of attack.
The lateral forces and moments created by the fuselage
have not been implemented.

2.2.8 Module: Main

All the forces and moments created by the components
serve as input to the main module. In this module all force
vectors converted to the body frame of reference are added
up to compute the resultant force vector acting on the air-
craft. The same is done for the resultant moment vector,
however the moments due to the forces also have to be
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considered. These resultant forces and moments are then
inserted into the Euler equations of motion together with
the aircraft states to compute the dynamics acting on the
vehicle.

2.3 Trim Results

This section discusses the trim results of the 6-DoF model.
An aircraft is said to be in a trim state when the resultant
of the applied forces and moments equals zero [14]. The
aircraft has been trimmed in steady, horizontal, symmetri-
cal flight conditions. The trim results of the 6-DoF model
are validated against the GTRS model curves [5]. Both
models use the XV-15 as reference aircraft so their trim
curves should be very similar. The trim results of the body
pitch angle 6y, collective stick deflection X¢o;, and longitu-
dinal cyclic stick deflection X; oy are shown as a function
of airspeed in Figure 4. Various nacelle angle configura-
tions are compared.

The body pitch angle is approximately zero in hover and
decreases with airspeed. This is because the rotors need to
be tilted forward to provide more horizontal thrust to reach
higher speeds. When the nacelles are tilted more forward
higher speeds can be reached at higher values of 6;,. The
curves of the two models in H-mode look very similar. In
conversion mode three different nacelle angle configura-
tions are compared. For all three curves the 6-DoF has a
relatively higher trim body pitch angle. In airplane mode
the curves look again very alike. Both models find a maxi-
mum trim speed in A-mode of 280 kts.

The collective stick can have a deflection between 0-10
inch. The curves are shown as a percentage of the maxi-
mum deflection instead of as a function of the deflection
in inch. This has been done because the collective rotor
governor of the XV-15 has not been implemented in the
6-DoF model. Instead, the rotor governor collective con-
trol is superimposed on the collective stick control. This
allows the collective stick to have deflections larger than
10 inch in order to reach the high collective pitch angles
which are required to reach trim at speeds up to 280 kts.
Because the maximum deflection of the 6-DoF model is
thus significantly higher than the maximum deflection

of the GTRS model, which does include the rotor gover-
nor, the curves are shown as a percentage of their deflec-
tion bounds. These differences in collective pitch control
method however still cause quite some discrepancies be-
tween the two models. The percentage stick deflection of
the GTRS model is significantly higher in H-mode and C-
mode. Nevertheless, The shapes of the curves look quite
similar which gives some validation for the results. In A-
mode the curves look very similar and there is quite some
overlap.

The longitudinal cyclic can have a deflection between -4.8
and 4.8 inch. These curves are also shown as a percent-
age of the total deflection. This means that a 50% deflec-
tion corresponds to a 0 inch deflection. The shapes of the
curves look quite similar and there is some overlap. Only
the 90 degrees nacelle angle curves have different shapes.
The GTRS curve increases faster with airspeeds while the
6-DoF curve appears to stabilize at a value. Overall the
trim curves show quite some similarities so the model can
be assumed valid.

3. Linear Model

The linear model is analyzed in this section. The lineariza-
tion is briefly described followed by a description of the
most important stability and control derivatives.

3.1 Linearization

Once trimmed, the 6-DoF model can be linearized at vari-
ous airspeeds and nacelle angles coinciding with the con-
ditions at which trimming was possible. A numerical lin-
earization algorithm is applied, estimating the the deriva-
tives using a finite central difference scheme [18]. The
estimation of the derivatives is iterated until the trunca-
tion and round-off errors are minimized. The leads to the
following linear form of the equation of motion

X =Ax+Bu (14)
x:[%"awapa%’?d’ae:‘l/] (15)
u= [607 60(17 elxa Glsda 667 611» 5r] (16)

Instead of the pilot control, # now contains the the sym-
metrical and differential collective pitch (8y, 6y,), Symmet-
rical and differential longitudinal cyclic pitch (65, 8154),
and elevator (6,), aileron (8,) and rudder (8,) deflections.
For the control analysis of the 6-DoF model it is more in-
teresting to look at these controls rather than at the pilot
inputs. The aircraft response due to pilot inputs can quite
easily be altered by changing the gearing of the control
system. This has already been done for the collective pitch
angle to be able to reach 280 kts in airplane mode. The
aircraft responses to pilot inputs are therefore also harder
to validate. For this reason, the input vector of the linear
6-DoF model has been altered.

3.2 Stability Derivatives

In total there are 36 stability derivatives in the linearized
6-DoF equations of motion set. A number of the most im-
portant ones are discussed below, and the 6-DoF model
derivatives are compared and validated with the 3-DoF
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Fig. 4. Trim body pitch angle (6;), collective stick deflection (Xcor) and longitudinal cyclic stick deflection (X;oy) as a

function of airspeed.

preliminary tiltrotor model [19], the FLIGHTLAB model
(FXV-15) [11] and the GTRS model derivatives [5]. All
derivatives have been converted to the units shown in Ta-
ble 1. The forces and moment derivatives have been nor-
malized by dividing them with the aircraft mass and MOI
respectively. Furthermore, they are defined in the body
orthogonal axes system [11].

Tab. 1. The S.I. units of the stability derivatives
Force/translational velocity eg Xy s
Force/angular velocity e.g. X, m/s/rad
Moment/translational velocity e.g. M, rad/s/m
Moment/angular velocity eg. M, 1/s

3.2.1 Longitudinal Stability Derivatives

The drag damping derivative X,, usually shows a linear
relationship with speed and should be negative at any con-
dition to have stability [11]. Compared to a conventional
helicopter X,, should be larger for tiltrotors because of the
additional rotor and wings which create additional drag.

Figure 5 shows that the 6-DoF and 3-DoF model deriva-
tives are approximately constant with speed in H-mode
while for the other two models a decrease is observable.
The rotor system which dominates the derivative at this
mode has a roughly constant contribution with airspeed
for the 3-DoF and 6-DoF model. From subfigure (d) it be-
comes clear that when the thrust vector is tilted towards
the horizontal axis the contribution of the rotor system in-
creases and X, increases in magnitude.

The heave damping derivative Z,, should also be nega-
tive at all times to ensure stability. At low airspeeds, the
heave-damping derivative is generally larger for rotary air-
craft than for fixed-wing aircraft [11]. At low airspeeds
the derivative is mainly determined by the rotors, but with
increasing airspeed the wings and horizontal stabilizers
start creating lift and also affect the derivative. Generally
the derivative decreases with airspeed as shown in Fig-
ure 6(a-c). The rotor contribution decreases with decreas-
ing nacelle angle but simultaneously the wing contribution
increases due to the increase in angle of attack. This ex-
plains why Z,, remains roughly constant with nacelle angle
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Fig. 5. Stability derivative X,

as shown in subfigure (d).

The speed stability derivative M, has a mayor effect on

the longitudinal stability and handling qualities of an air-
craft [14]. For a conventional airplane M,, is practically
zero at subsonic speeds because all aerodynamic moments
cancel eachother out. For a conventional helicopter how-
ever M, is important along the entire flight envelope [11].
Clear differences can be observed between the models in
H-mode in Figure 7(a). The negative contribution of the
horizontal stabilizers causes the 3-DoF and 6-DoF deriva-
tive to become negative after a certain airspeed which does
not happen for the FXV-15 and the GTRS model. For the
same reason, the 3-DoF model derivative in C-mode is still
significantly lower than for the other models. The 6-DoF
model looks more comparable to the GTRS and FLIGHT-
LAB model results and remains positive. In A-mode all
four models have a positive M,,. The rotors have a positive
contribution to M,, which increases with decreasing nacelle
angle because the thrust is increasingly sensitive to pertur-
bation in u. This is visible in subfigure (d).

The incidence static derivative, also called the longitu-
dinal static stability derivative M,, is shown in Figure 8.
Together with M, this derivative largely affects the longitu-
dinal stability of an aircraft [11]. A negative M,, is desired
for static stability. The fuselage, wings and rotor system
are generally destabilizing while the horizontal stabilizers
are stabilizing. The 3-DoF model assumes that the aerody-
namic centre and the centre of gravity of the fuselage co-
incide which means that the fuselage is not stabilizing nor
destabilizing which explains the steeper slope. The GTRS

(a) H-mode (n = 90) (b) C-mode (n = 60)
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Fig. 6. Stability derivative Z,,

model has an outlier in the data at 40 kts H-mode [5]. In
A-mode the 6-DoF model derivative looks similar to the
GTRS model derivative, while the 3-DoF and FLIGHT-
LAB model derivatives are a factor 2-3 larger. The trim
angle of attack increases with nacelle angle, meaning that
the horizontal stabilizers create more lift and contribute
more to a stable M,,. This results in the slightly negative
slope at high nacelle angles in subfigure (d). When the na-
celle almost reach A-mode, the contribution of the rotors
change from negative to positive. This causes the increase
in slope at low values of 1.

The pitch damping derivative M, plays a very important
role in the longitudinal short-term handling characteristics
[14]. A positive perturbation in g should always results

in a restoring pitching down moment, meaning that M,
should be negative. The derivative is shown in Figure 9. In
hover the pitch damping derivative is almost entirely deter-
mined by the rotor system, which is stabilizing. When the
airspeed increases the horizontal stabilizers also create a
stabilizing contribution to M,, leading to a linear decrease
in value. The FXV-15 derivative decreases in magnitude
when the proprotors are tilted towards airplane mode, be-
cause the destabilizing effects of the in-plane rotor forces
increase [11]. From subfigure (d) it can be concluded that
the 6-DoF M, increases in magnitude with nacelle angle
for the 6-DoF model. The destabilizing effect of the rotor
indeed increases when rotating towards airplane mode, but
so does the trim angle of attack. This means that the hori-
zontal stabilizers create more lift and as a result the stabi-
lizing contribution to M, increases as well. This stabilizing
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Fig. 7. Stability derivative M,

effect by the horizontal stabilizers is bigger than the desta-
bilizing effect of the rotor causing the negative slope. One
possible explanation for this difference in trend compared
to the FXV-15 could be the different rotor hub model. The
FXV-15 is modelled with a gimballed rotor hub which has
usually larger in-plane forces than an articulated rotor hub
[11].

3.2.2 Lateral/directional Stability Derivatives

One of the two most important sideslip derivatives is L,,,
called the dihedral stability derivative. It is desirable for
stability that L, is negative. The rotor system is the largest
contributor to this derivative, while the vertical stabilizers
also have a significant contribution. Both contributions are
stabilizing. The rotor contribution remains fairly constant
with airspeed, while the contribution of the vertical stabi-
lizers increases. For the GTRS and FLIGHTLAB model
curves a clear linear decrease with airspeed is found. For
these models the contribution of the vertical stabilizers
might be larger. In C-mode and A-mode the vertical sta-
bilizers are dominant, causing a decrease with airspeed.
The contribution of the vertical stabilizers increases with
nacelle angle, while the rotor contribution decreases with
a similar magnitude. This explains why the derivative is
roughly constant with nacelle angle as seen in subfigure

(d).

The other important sideslip derivative is N,, the weath-
ercock stability derivative. N, is critically important for
both static and dynamic stability [11]. In contrary to L,,
N, is preferred to be positive. From Figure 11 it can be

(a) H-mode (n = 90)

(b) C-mode (n = 60)
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Fig. 8. Stability derivative M,,

concluded that N, increases linearly with speed. The re-
sults of the 6-DoF model in helicopter mode show that the
weathercock stability derivative is dependent on the rotor
system and the vertical stabilizers which are both stabiliz-
ing. The yawing moment created by the fuselage has not
been modelled in the 6-DoF model so its contribution to
N, is missing. The positive increasing contribution of the
vertical stabilizers with airspeed is dominant for N,. While
the contribution of the rotors becomes increasingly nega-
tive when the nacelles are rotated towards airplane mode,
the positive moment created by the vertical stabilizers in-
creases as well. The latter increases slightly more which
causes an increase of N, with decreasing nacelle angle.

The roll-damping derivative L, plays an important roll

in the short-term handling qualities about the x-axis. A
positive perturbation in p should result in a restoring neg-
ative rolling moment L, meaning that L, should be neg-
ative. The roll-damping derivatives have been plotted in
Figure 12. Although this derivative is insensitive to speed
for a conventional helicopter, the speed highly affects the
tiltrotor roll damping derivative in all flight modes [20].
This is because of the lateral offset of the two rotors and
the contribution of wings. The stabilizing contribution of
the wings increases with airspeed. The rotors are stabiliz-
ing as well. With decreasing nacelle angle L, decreases in
magnitude because the rotors become less aligned with the
airflow resulting from a rolling motion.

The yaw-damping derivative N, should also be negative for
stability. For a conventional helicopter the tail rotor is the
main contributor to the yaw damping, especially at low ve-
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Fig. 9. Stability derivative M,

locities. Since the tiltrotor has no tail rotor the magnitude
of the yaw damping is relatively small at low airspeeds
[14]. The stabilizing contribution of the vertical stabiliz-
ers increases when the airspeed increases resulting in a
linear decrease of N, with speed. when the nacelles are
tilted forward the stabilizing effect of the proprotors to the
yaw damping increases as the thrust force becomes aligned
with the airflow resulting from a yawing motion. This in-
crease in yaw damping with decreasing nacelle angle is
clearly visible in subfigure (d).

3.3 Control Derivatives

The linearized set of equations consists of 42 different con-
trol derivatives. In this section the most important ones
will be discussed. The 6-DoF derivatives are compared
with the FLIGHTLAB derivatives. All derivatives have
been converted to the units shown in Table 2. The longi-
tudinal and lateral/directional control derivatives are dis-
cussed respectively.

Tab. 2. The S.I. units of the control derivatives
Force/control angle e.g. Xg, m/s?/rad

Moment/control angle e.g. Mg, 1/s

3.3.1 Longitudinal Control Derivatives

In Figure 14 the longitudinal control derivatives are shown.
The top two rows show the derivatives with respect to the
collective pitch 8y. By increasing 6y the total average

a) H-mode (n = 90) (b) C-mode (n = 60)
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Fig. 10. Stability derivative L,

blade pitch increases. This means that the blades create
more lift and thus the total rotor thrust force is increased.
In helicopter mode the thrust vector points in negative Z-
direction. The thrust force increases when 6 increases,
$0 Zg, is negative in H-mode. When the nacelles are in
A-mode, the thrust is more aligned with the X-axis. This
explains the smaller value of Zg, and bigger value of Xg,
in this configuration. The derivatives of the two models
show a very similar trend. On the right figures the same
derivatives of the 6-DoF model are shown as a function of
nacelle angle with the airspeed V kept constant. The de-
crease of Zg, and increase of Xg, is also clearly visible in
these figures.

Symmetric longitudinal cyclic control is used in helicopter
mode to move the aircraft horizontally. Simultaneously in-
creasing the longitudinal cyclic angle on both rotors causes
the tip-path plane to tilt forward resulting in an increase

in forward speed [21]. This means that the resultant force
along the X-axis increases which explains why Xg, is pos-
itive. The derivative appears to be almost independent of
airspeed. At a nacelle incidence of 60 degrees we sud-
denly see a negative value for this derivative. An increase
in Oy, still causes the thrust vector to tilt forward but si-
multaneously the total thrust force drops which explains
the negative derivative. In airplane mode the derivatives
with respect to 0;; become meaningless because the lon-
gitudinal cyclic angle is fixed in this configuration [4]. B
tilting the tip-path plane forward in helicopter mode the Z-
component of the the rotor which is negative decreases in
magnitude. This causes the resultant Z-force to increases

10
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Fig. 11. Stability derivative N,

which means that Zg, _ is positive. A clear increase with
airspeed is shown for Zg, , while the derivative slightly
decreases with nacelle angle.

In airplane mode the elevators are used to control the
pitching of the aircraft. Downward deflection of the ele-
vators is defined as positive. The following relationship for
Zs, can be derived from the 6-DoF model:

dz 1 dCp s
— V2 Shs
d&e 2p hsPhs ™ ¢

The derivative grows proportionally with V2. The same
goes for the M, derivative which heavily depends on L%Ze'
This is clearly visible in the bottom two graphs. The na-
celle angle has no influence on the elevator derivatives at
all.

COS Qg (17)

3.3.2 Lateral/directional Control Derivatives

The most important lateral/directional control derivatives
are shown in Figure 15. The top two rows show the deriva-
tives with respect to the differential collective pitch 6y,.
Differential collective pitch is used in H-mode to control
the rolling motion. An increase and decrease of the collec-
tive pitch on the right and left rotor respectively is defined
as a positive differential collective control input. If the
right rotor collective is higher than the left rotor collective
the right rotor creates more lift. This leads to a negative
rolling moment L which is why Lg, is negative. When the
nacelles rotate towards A-mode the derivative significantly
decreases in magnitude. The FLIGHTLAB derivative is
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Fig. 12. Stability derivative L,

approximately three times larger than the 6-DoF model
derivative. This difference is also most likely due to the
higher in-plane forces of the gimballed rotor hub which
also create a significant rolling moment. The two plots

on the second row show the yawing moment due to dif-
ferential collective derivative Ng,,. This derivative has a
similar order of magnitude as Lg, but is small in H-mode
and large in A-mode. This makes sense because in airplane
mode the thrust vector is more aligned with the yawing
airflow.

Differential longitudinal cyclic 0y, is used at low air-
speeds to control yaw. An increase and decrease of the
longitudinal cyclic on the right and left rotor respectively
is defined as a positive differential longitudinal cyclic in-
put. The Lg, , curve shows some similarities between the
models. In helicopter and conversion mode the derivative
is positive and increases with airspeed. When the right ro-
tor increases its longitudinal cyclic its thrust vector is tilted
forward while the left rotor thrust vector is tilted aft. An
increase in longitudinal cyclic however decreases the total
force created by the rotor. Therefore the left rotor creates
a larger thrust force than the right rotor which results in a
positive rolling moment. Since the main purpose of differ-
ential longitudinal cyclic is to control the yawing motion
of the aircraft Ng, , is its primary derivative. A positive
0144 input results in a negative N in H-mode. When the
nacelles are tilted forward the thrust vectors are also tilted
forward resulting in a positive X-component. Since the
thrust magnitude of a rotor decreases when 6, increases
the left rotor produces more forward thrust force resulting

11
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Fig. 13. Stability derivative N,

in a negative Ny, ,. The derivatives in A-mode are not of
interest since the 0 is fixed in this mode.

In A-mode the ailerons are used to control roll. A positive
aileron deflection means that the right aileron is deflected
downward and the left aileron upward. The result of this
deflection is that the right wing will produce more lift than
the left wing, resulting in a negative rolling moment L.
The derivative can analytically (before normalization) be
defined as

SL 1 5Cr
Ly =5, = PV "

This equation shows that Ls, decreases proportionally

with V2 which is clearly visible in the figure. The rudders
on the vertical stabilizers are used to control yaw in this
mode. A positive rudder deflection creates a lateral force in
positive Y-direction. This creates are negative yawing mo-
ment so therefore Ng,_ is negative. This derivative can very
similarly as Ls, be approximated (before normalization)
using

by, (18)

BN 1 3C .

The FLIGHTLAB curves are a bit steeper than the 6-DoF

model curves which could indicate that a different %

dvs 19)

and 2 5 are used. Furthermore, the drag of the ailerons
and rudders have not been modelled which could also a
difference in the results. From the graphs on the right side
it can be concluded that the nacelle angle does not affect

the derivatives with respect to the control surfaces.

4.  Dynamic Modes

In this section the eigenvalues of the linear 6-DoF model
will be analysed. The eigenvalues can be determined using

A-AI=0 (20)

The eigenvalues of the system describe the behavior of

the tiltrotor by means of five different dynamic modes.
The eigenvalues describing these modes have been plot-
ted as a function of airspeed in Figure 16, Figure 17 and
Figure 18. These figures illustrate the dynamic modes

in H-mode (n = 90deg), C-mode (n = 60deg) and A-
mode (1 = 0deg) respectively. For validation purposes the
FLIGHTLAB eigenvalues have been included in the fig-
ures as well. Furthermore, the variations of the eigenvalues
of the 6-DoF model modes with nacelle angle are shown in
Figure 19. For this analysis the airspeed is kept constant at
120 kts. The five different modes are discussed below.

4.1 Short period

The short period is a relatively highly damped longitudi-
nal oscillatory dynamic mode which consists of a coupled
pitching and heaving motion. At low airspeeds in heli-
copter mode the short period is uncoupled into a pitch and
a heave subsidence. Their eigenvalues are located on the
real axis. The two subsidences can usually be approxi-
mated using:

M =Zy 20
Ay =M, (22)

This means that the subsidence eigenvalues can be as-
sumed approximately equal to their damping derivatives.
Derivatives Z,, and M, equal -0.226 and -0.284 respec-
tively in hover. This shows that the heave damping deriva-
tive very accurately represents the heave subsidence (-
0.227). The pitch subsidence (-0.703) has a lot more
damping than the pitch damping derivative would sug-
gest. The relatively low value of M, results in translational
velocities building up during pitching motion, resulting

in a strong coupling between pitch and surge [11]. When
the airspeed increases the subsidences couple together and
form the short period. The short period can accurately be
predicted using the following characteristic equation [20]:

Ady— (Z+My)Asp + ZuMy — Myug =0 (23)

This shows that the mode is dependent on derivatives Z,,,,
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Fig. 16. XV-15 6-DoF model coupled eigenmodes in helicopter mode (1) = 90deg) compared with the FLIGHTLAB eigen-

modes

M, and M,,. Furthermore, the frequency increases with
airspeed since the horizontal trim velocity component ug
is included in the term. This is also clearly visible in the
eigenmodes figures. The variation of the damping with air-
speed is somewhat different for the flight modes. In heli-
copter mode (Figure 16) and conversion mode (Figure 17)
the damping decreases slightly with airspeed, while in air-
plane mode (Figure 18) the damping increases with air-
speed

The short period of the FLIGHTLAB shows in general

a similar trend. In H-mode the frequency increases with
airspeed while the damping decreases. However, the
FLIGHTLAB mode presents a stronger increase in fre-
quency and is more heavily damped. The damping and
frequency of the short period are both heavily dependent
on M. From Figure 9 it became clear that the pitch damp-
ing derivative is significantly higher for the FLIGHTLAB
model than for the 6-DoF model. This was mainly at-
tributed to the destabilizing rotor contribution for the latter
model which is stabilizing for the former. This is also true

in C-mode. In A-mode the 6-DoF model short period is
more heavily damped than the FLIGHTLAB model mode
while the latter has a higher frequency. Both observations
can be explained by looking at differences in static sta-
bility derivative M,, in airplane mode (Figure 8(c)). The
6-DoF model derivative is a factor 2-3 smaller. A smaller
value of M,, increases the damping of the short period
while it decreases the frequency.

The variation of the short period eigenvalues with nacelle
angle is shown in Figure 19a. The figure shows that at high
nacelle angles the short period frequency increases when
the rotors are tilting towards airplane mode. This is caused
by the decrease of the incidence static stability derivative
M,, with nacelle angle up to 40 degrees after which it re-
mains somewhat constant. This is also the point at which
the frequency in Figure 19a stops increasing rapidly. The
damping ratio of the short period is less affected by the
rotations of the rotors. Along the 1) range the damping is
constantly between 0.3 and 0.4 at an airspeed of 120 kts.
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4.2 Phugoid

The phugoid is a longitudinal oscillatory mode with a vari-
ation of airspeed, pitch angle and altitude over time. The
mode has a large period because of which the angle of at-
tack remains almost constant over time. There is a very
slow interchange between kinetic and potential energy
during the mode, while the aircraft attempts to restore the
steady horizontal equilibrium state. From Figure 16b it can
be concluded that the phugoid is unstable in hover. When
the airspeed increases the phugoid becomes stable and the
damping increases. For the 6-DoF model the damping in-
creases so fast that at approximately 70 kts the phugoid
becomes non-oscillatory. This non-oscillatory behavior of
the phugoid is not something that is found in literature. To
analyse what causes this behavior, a closer look has to be
taken at the derivatives affecting the phugoid. The phugoid
of the tiltrotor is best approximated using [11]

M, g M,
2 u u
Aph—(Xu—XwMiw)kph_ ;O(ZM—Z ) :0 (24)

w Miw
The eigenvalues of the phugoid are located on the real axis
when the damping is equal to 1. According to this equa-
tion the damping is mainly dependent on X, X,,, M,, and
M,,. Comparing the 6-DoF model M,, derivative in H-mode
with other models in Figure 7 leads to the observation that
the 6-DoF model and 3-DoF model derivatives are negative
at high airspeeds while the other models’ derivatives are
positive. This means that the second term in Equation 24
of the damping increases the damping instead of decreas-
ing it. This results in damping ratios reaching 1 and thus

a non-oscillatory phugoid. In C-mode and A-mode the

M, derivative of the 6-DoF model is positive and thus the
phugoid is oscillatory.

Because the FLIGHTLAB model has a positive M, in he-
licopter mode its phugoid is also oscillatory at higher air-
speed. Both models’ curves in helicopter mode show quite
some overlap up until 60 kts. In A-mode and C-mode there
is less overlap, mainly due to the quite significant differ-
ences in X, and M,,. However, both models have an unsta-
ble phugoid in hover and the tendency of the eigenvalues
with airspeed is quite similar. The damping increases with
airspeed while the frequency remains somewhat constant.

The variation of the phugoid eigenvalues with nacelle an-
gle is shown in Figure 19b. The airspeed is kept at 120
kts while the nacelles are tilted from 80 to O degrees. The
fact that the phugoid is oscillatory at at nacelle angles
between 80 and 0 degrees shows that the mode is only
non-oscillatory at nacelle angles very close to hover. As
the nacelle are rotating away from helicopter mode the
M,, derivative increases as shown in Figure 7(d). At the
same time the drag damping X, becomes larger and X,,

increases. The combination of these three results in an in-
crease in damping with decreasing nacelle angle. At the
same time the frequency of the phugoid increases slightly.

4.3 Roll mode

The rolling mode is usually a pure roll subsidence, which
is stable, highly damped and non-oscillatory. The roll sub-
sidence eigenvalues are located on the real axis, mean-

ing that the mode is critically damped. When airspeed in-
creases the roll mode eigenvalue moves to the left which
indicates that the frequency of the mode increases. The roll
motion can be written in the first-order differential form of
a rate response type :

p=Lyp (25)

Which simply leads to the following approximation for the
roll mode eigenvalue:

A =L, (26)

This approximation is quite accurate, but the exact val-

ues of A, are roughly 15% larger than L,,. The relatively
lower value of L, shows that there is some coupling with
the sway motion, meaning that there are translational ve-
locities building up along the y-axis during the rolling mo-
tions. In conversion mode and airplane mode the roll mode
frequency similarly increases with airspeed. In general the
FLIGHTLAB curves show a similar trend with airspeed.

From Figure 19a it can be concluded that the roll mode
eigenvalue moves moves to the right on the real axis when
the nacelle angle decreases. This means that the frequency
of the mode decreases. In Figure 12(d) it is illustrated that
L, decreases in magnitude with decreasing nacelle angle.
This is mainly due to decreasing roll damping of the ro-
tors. The coupling of the roll mode with yaw increases
with decreasing nacelle angle because of the orientation of
the rotors.

4.4 Spiral mode

The spiral mode is the second non-oscillatory lat-
eral/directional mode. The mode is usually developed
very slowly and involves a combination of roll, yaw and
sideslip. The spiral mode for conventional helicopters at
low speeds is usually primarily a yawing motion, mean-
ing Ay = N,.. Since N, is a damping derivative the spiral is
a stable mode and equilibrium is restored by the helicopter
itself [11]. The dihedral effect is destabilizing the spiral
mode [22], and this effect is much more prominent for
tiltrotors than for conventional helicopters. In Figure 16b
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Fig. 17. XV-15 6-DoF model coupled eigenmodes in conversion mode (1 = 60deg) compared with the FLIGHTLAB eigen-

modes

we see a negative real eigenvalue for the spiral mode in
hover, meaning that the mode is stable. Padfield gives the
following approximation equation for the spiral mode [11]

. g (Ler _Ner)

==-—— < 27
* L, (uN, + oiL,) 7)
with
—-N
o, = 8 "r0 (28)
Ly
In hover this equation can be simplified to
N,
}Ls =N,— var (29)

v

The first term in this approximation is the yaw damping
derivative, which is negative and thus stabilizing. The yaw
damping derivative for tiltrotors in H-mode is significantly
lower than for helicopters due to the absence of a tail ro-

tor. The second term consist of the dihedral effect L, and
weathercock stability derivative N, which are negative and
positive respectively. Besides the two sideslip derivatives
the yaw-roll coupling derivative L, is included in the equa-
tion which is positive in H-mode. This means that the sec-
ond term of the approximation equation is destabilizing. In
hover, the stabilizing N, term is bigger than the destabiliz-
ing second term, although they are not far off (-0.0883 and
0.0618 respectively). When the airspeed increases to mod-
erate airspeeds N, does not significantly increase, while the
other derivatives affecting the spiral do. This causes the
6-DoF model spiral mode to become unstable. The peak
of instability is reached at approximately 30 kts, where

the real positive eigenvalue is at its largest. Thereafter

the eigenvalue moves towards the stable axis again which
mainly happens because N, starts increasing in magnitude.

In C-mode the spiral is stable and barely affected by the
airspeed. Derivative N, is higher than in H-mode and L,
which was destabilizing in H-mode is now stabilizing. In
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Fig. 18. XV-15 6-DoF model coupled eigenmodes in airplane mode (1 = 0deg) compared with the FLIGHTLAB eigenmodes

A-mode (Figure 18b) the spiral mode is also stable but
the frequency decreases with airspeed. The roll damping
derivative L, increases in magnitude with airspeed which
contributes to the decrease in magnitude of A;.

The FLIGHTLAB spiral mode shows similar trends with
airspeed in C-mode and A-mode. In H-mode the mode is
already unstable in hover, in contrary to the 6-DoF model
mode. Its stabilizing yaw damping N, is hover is smaller
(Figure 13). The mode destabilizes even more with air-
speeds up to 20 kts, after which the eigenvalue moves
towards the stable side of the axis. Both models’ spiral
modes are stable at airspeeds higher than approximately 80
kts.

In Figure 19b the spiral eigenvalues as a function of na-
celle angle are shown. It can be concluded from the fig-
ure that the spiral mode becomes more stable when the
nacelles are rotated towards airplane mode. The positive
roll-yaw coupling derivative L, is destabilizing at high na-
celle angles. The derivative decreases and becomes nega-
tive when the nacelles are rotated towards O degrees. This

contributes to the stabilization of the spiral mode. Simul-
taneously the roll damping derivative L, decreases in size
which also contributes to the spiral becoming more stable.

4.5 Dutch roll

The Dutch Roll mode is an oscillatory lateral/directional
mode which consists of a combination of yawing, rolling
and sidesliping motion. The Dutch Roll has quite a short
period and is usually lightly damped. The Dutch Roll is of-
ten considered an undesirable mode since it interferes with
the pilot’s ability to hold a trim. Besides this, the mode

is quite unpleasant for passengers [23]. In Figure 16 the
Dutch Roll eigenvalues in helicopter mode as a function of
airspeed are shown. In hover the mode is unstable which is
also sometimes the case for conventional helicopters [11].
When the airspeed increases the Dutch Roll becomes a
very lightly damped stable mode. The frequency increases
with airspeed, while the damping remains roughly con-
stant. The eigenvalues in conversion mode and airplane
mode show a similar trend. The instability of the Dutch
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roll in hover is captured by the following approximation
equation:

S +EL,=0
L,

lj—(N,+Yv—L2
P

(30)
The dihedral derivative L, is negative as seen in Figure 10.
That means that the third term for the damping is desta-
bilizing. Since the stabilizing damping derivatives N, and
Y, are low in hover this results in an unstable Dutch roll.
The damping derivatives increase with airspeed causing
the mode to stabilize. The FLIGHTLAB curves look very
similar to the 6-DoF model curves.

Figure 19a shows the dutch roll eigenvalues as a func-
tion of nacelle angle. From the figure it can be concluded
that the frequency of the mode slowly increases with de-
creasing nacelle angle. The frequency of the Dutch roll is
mainly determined by N, and ug. Since the forward speed
is kept constant the effect of uy can be neglected. From
Figure 11 it can be concluded that N, slightly increases
with decreasing nacelle which explains the slight increase

in frequency. The increase of the damping slowly builds
up with decreasing nacelle. This mainly happens due to
the increase in yaw damping N,.. Furthermore, the roll-yaw
coupling derivative N, first increases in magnitude up to

~ 30 degrees which withholds the damping from increas-
ing faster. Thereafter the derivative decreases again, which
explains why the damping suddenly increases faster with
nacelle angle.

5. Conclusions

The aim of this research was to get a better understand-

ing of the stability characteristics of tiltrotor rotor. For this
purpose, a six-degrees-of-freedom nonlinear flight dynam-
ics has been developed and linearized. The stability and
control derivatives following from this linearization have
been analysed, together with the eigenvalues describing
the dynamic modes of the aircraft. From the research de-
scribed in this paper the following main conclusions can be
drawn:
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* The six-degrees-of-freedom nonlinear flight dynam-
ics model described in this paper has been proven to
be valid for stability and control related research pur-
poses.

The stability derivatives of the 6-DoF model have
proven to be comparable to the derivatives found by
other models. The damping derivatives (e.g. Xy, Lp)
are all negative and increase in magnitude with air-
speed. The rotors have a large effect on the heave and
roll derivatives (e.g. Z,, L) in helicopter mode and
on the surge and yaw derivatives (e.g. X,,, N,) in air-
plane mode.

The control derivatives of the 6-DoF model show a lot
of similarities with the FLIGHTLAB model data and
the control inputs lead to the desired responses. The
assumption that elevators, ailerons and rudders create
no drag results in some discrepancies between the
curves of the models. The effectiveness of the control
surfaces of the models seems to be dissimilar while
they should be equal.

In hover, the heave and pitch subsidences are both
non-oscillatory but stable. As airspeed increases, the
heave and pitch subsidence couple together and form
the short period. The frequency of the short period
increases with airspeed while the damping slightly
decreases at high nacelle angle configurations. At low
nacelle angle configurations the damping increases
with airspeed. When the airspeed is kept constant
and the nacelle angle decreases the frequency slowly
increases while the damping remains roughly con-
stant. In hover the phugoid is oscillatory but unstable.
The mode stabilizes when the airspeed increases and
becomes at some point non-oscillatory. This can be
attributed to the negative value of M,, which ampli-
fies the phugoid damping. In C-mode and A-mode the
phugoid is oscillatory and stable. At constant airspeed
and decreasing nacelle angle the phugoid damping in-
creases. At the same time the frequency of the mode
increases slightly. The roll mode is mostly a pure roll
subsidence which is stable, highly damped and non-
oscillatory. Its frequency increases with airspeed but
decreases with decreasing nacelle angle. The cou-
pling with yaw increases with decreasing nacelle an-
gle. The spiral mode is mostly unstable in helicopter
mode. In hover the mode is stable, but as airspeed
increases the mode destabilizes. The instability in-
creases with airspeed up to =+ 30 kts, after which it
decreases again. At airspeeds higher than + 80kts in
H-mode the spiral is again stable. The spiral mode
also becomes more stable with decreasing nacelle

angle. In hover the Dutch roll is also unstable, but be-
comes stable after airspeed increases. The dutch roll
frequency increases with airspeed while the damp-
ing remains constant. Decreasing the nacelle angle
however clearly increases the damping of the mode.
The 6-DoF model eigenmodes results showed a lot of
similarities with the FXV-15. Both models have an
unstable phugoid and Dutch roll in hover. The spi-
ral modes are often unstable in helicopter mode and
have similar trends with airspeed. The FXV-15 spiral
is however already unstable in hover, due to its lower
value of N,. The FXV-15 short period in H-mode and
C-mode is relatively more damped due to its higher
pitch damping M. The biggest difference in modes
between the two models is the phugoid in helicopter
mode. The 6-DoF model phugoid is non-oscillatory
at high airspeeds because of the negative M,, at those
flight conditions. In the same flight conditions the
FLIGHTLAB M, is positive and thus the phugoid
remains oscillatory.

BIBLIOGRAPHY

(1]

(2]

(3]

(4]

(5]

(6]

L. A. Young, W. W. Chung, A. Paris, D. Sal-

vano, R. Young, H. Gao, K. Wright, D. Miller,

and V. Cheng, “A study of civil tiltrotor aircraft in
nextgen airspace,” in 10th AIAA Aviation Technol-
0gy, Integration, and Operations (ATIO) Conference,
(Forth Worth, Texas), pp. 1-18, American Institute of
Aeronautics and Astronautics, 2010.

M. D. Maisel, D. J. Giulianetti, and D. C. Dugan, The
Histort of The XV-15 Tilt Rotor Research Aircraft:
From Concept to Flight. National Aeronautics and
Space Administration, 2000.

P. B. Harendra, M. Joglekar, T. M. Gaffey, and R. L.
Marr, “V/stol tilt rotor study-volume 5: A mathe-
matical model for real time flight simulation of the
bell model 301 tilt rotor research aircraft,” tech. rep.,
NASA CR-114614, 1973.

S. W. Ferguson, “A mathematical model for real time
flight simulation of a generic tilt-rotor aircraft,” tech.
rep., NASA CR-166536, 1988.

S. W. Ferguson, “Development and validation of a
simulation for a generic tilt-rotor aircraft,” tech. rep.,
NASA CR-166537, 1989.

M. B. Tischler, “Identification and verification of
frequency domain models for xv-15 tilt-rotor aircraft
dynamics,” tech. rep., NASA-TM-86009, 1984.

19



Delft University of Technology, Faculty of Aerospace Engineering

G.G.J. Steinbusch

(7]

(8]

(9]

[10]

[12]

[13]

[14]

[17]

(18]

M. B. Tischler and R. K. Remple, Aircraft and Ro-
torcraft System Identification: Engineering Meth-
ods with Flight Test Examples. Reston: AIAA, 2nd
edn ed., 2012.

W. Johnson, “Dynamics of tilting proprotor aircraft in
cruise flight,” tech. rep., Ames Research Center and
U.S. Army Air Mobility R&D Laboratory, Moffett
Field, Carlif., 1974.

G. D. Klein, “Linear modelling of tiltrotor aircraft (in
helicopter and airplane modes) for stability analysis
and preliminary design,” Master’s thesis, Naval Post
Graduate School, Monterey, CA, 1996.

K. M. Kleinhesselink, “Stability and control model-
ing of tiltrotor aircraft,” Master’s thesis, University
of Maryland, Department of Aerospace Engineering,
2007.

G. D. Padfield, Helicopter Flight Dynamics, Includ-
ing a Treatment of Tiltrotor Aircraft. Wiley, third ed.,
2018.

G. D. Padfield and M. M. Meyer, “First steps in the
development of handling qualities criteria for a civil
tiltrotor,” Journal of the American Helicopter Society,
vol. 50, no. 1, p. 33-46, 2005.

D. Walker and P. Perfect, “Longitudinal stability and
control of large tilt-rotor aircraft,” tech. rep., Engi-
neering Department, Liverpool University, 2007.

T. Berger, O. Juhasz, M. J. S. Lopez, M. B. Tischler,
and J. F. Horn, “Modeling and control of lift offset
coaxial and tiltrotor rotorcraft,” CEAS Aeronauti-
cal Journal, vol. vol. 11, no. no. 1, pp. pp. 191-215,
2020.

D. Perry, “Aw609 control laws initiated *dutch roll’:
investigators,” Flight Global, 2016.

P. Sokolowski, “Msc. thesis: Flight dynamics mod-
elling of a tiltrotor aircraft,” Master’s thesis, Delft
University of Technology, 2021.

Y. Yuan, D. Thomson, and D. Anderson, “Manoeu-
vrability investigation for tiltrotor aircraft with an
integrated simulation engine,” 47th European Rotor-
craft Forum, 2021.

B. L. Stevens, F. L. Lewis, and E. Johnson, Aircraft
control and simulation: Dynamics, controls design,
and autonomous systems. John Wiley & Sons,
third ed., 2016.

[19]

[20]

(21]

(22]

(23]

P. Sokolowski, “Literature study: Flight dynamics
modelling of a tiltrotor aircraft,” Master’s thesis,
Delft University of Technology, 2020.

K. Lu, C. Liu, C. Li, and R. Chen, “Flight dynamics
modeling and dynamic stability analysis of tilt-rotor
aircraft,” International Journal of Aerospace Engi-
neering, vol. vol. 2019, pp. 1-15, 2019.

T. van Holten, J. A. Melkert, B. Marrant, and
M. Pavel, “Helicopter performance, stability and con-
trol lecture notes,” 2002.

R. Prouty, Helicopter Performance, Stability and
Control. PWS Publishers, 1986.

M. Pavel, “Rotorcraft mechanics course ae4314, lec-
ture slides,” March 2020.

20



Part 1l

Technical Report






Introduction

A tilt-rotor aircraft, also referred to as simply tiltrotor, is an aircraft that is able to perform vertical take-off
and landing manoeuvres like a conventional helicopter, as well as achieving cruise speeds and long ranges
that are common for a fixed-wing aircraft. This is achievable due to its rotor tilting capabilities. The rotors,
also called proprotors, are mounted on the wingtips of a fixed-wing aircraft and can be tilted around 90 de-
grees during flight to perform both horizontal and vertical manoeuvres. The travel time to and from airports
could be reduced significantly as the tiltrotor is much more flexible in take-off and landing locations because
it does not require an entire landing strip [9]. This feature could make air transport much more time efficient.

Although there have been several projects and developments in tiltrotor technology, the only tiltrotor that
has made it to the market yet is the Bell Boeing V-22 Osprey. This aircraft, which is used by the US Marine
Corps, US Air Force Special Operations Command and the US Navy has solely military applications. The
development of the V-22 has primarily relied on the data and experiences of its predecessor, the Bell XV-15.
This experimental tiltrotor, funded by NASA, was the first in its sort to successfully reach a cruise velocity
which could never be achieved with a conventional helicopter [1]. Currently, more research is conducted
into the civil applications of the tiltrotor. The developments of several tiltrotor projects are still ongoing,
amongst which the Agusta Westland AW609 project. This civil tiltrotor has been under development for
over 15 year but has not made it to the market yet at the time of writing this thesis report.

In 2015 the AW609 suffered a fatal crash when a high-speed dive during a test flight became unstable. The
pilots commenced the dive with a 180-degree turn, targeting 293 knots for the manoeuvre. The aircraft
started oscillating about the roll axis after exiting the turn. Shortly after the first roll oscillation, the aircraft
experienced additional oscillations about the yaw axis. Initially, the crew did not react to these oscillations,
as they believed they were self-damping and thus not dangerous. When the pilot felt that the oscillations
increased in magnitude, he tried to counter them using roll-tracking, but this resulted in a pronounced yaw,
which he tried to counter using the rudder pedals. Although the pilot followed the standard procedure for
controlling the aircraft, the yaw oscillation was amplified even more, causing the proprotor to interfere with
the right wing, causing an in-flight break-up and fire, eventually resulting in a fatal crash. Investigations
into the crash pointed out that the AW609's flight control system (FCS) control laws were a cause for the
crash, together with a project simulator that was unable to predict this instability in any way. [10].

The fatal AW609 crash shows that it is crucial to be able to accurately predict the flight dynamics of an
aircraft at any situation in order to prevent fatalities. The AW609 showed unstable behavior which could be
described as a diverging Dutch roll mode [11]. There is already quite some literature about tiltrotor aircraft,
but most literature is focused on flight dynamics modeling or handling quality evaluation. The stability of
the tiltrotor is however much less investigated. The aim of this research is to get a better understanding
on the stability characteristics of tiltrotor aircraft. A six-degrees-of-freedom tiltrotor flight dynamics model
has been developed which will be trimmed and linearized. It will be analysed how the stability and control
derivatives behave as a function of airspeed and nacelle angle and which components contribute to each
derivative. Furthermore, data from different models are compared and their similarities and differences in
results are explained by comparing their model properties. Coupled and uncoupled linear models are then
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26 1. Introduction

used to investigate the dynamic modes of the tiltrotor and how the modes are affected by the stability
derivatives.

The report is structured as follows. This introductory chapter is concluded with the research objective and
the research questions. Chapter 2 gives some background information about tiltrotor aircraft in general
and the XV-15 in particular, which is used as the reference aircraft throughout this research. Furthermore,
some previously developed tiltrotor models are discussed and their strong and weak points are elaborated
upon. The chapter is concluded with a brief description of stability in general. chapter 3 describes the main
non-linear model which is used throughout this research and provides a computation scheme encapsulating
the mathematics behind the modelling. The chapter is concluded with a trim analysis and validation of the
trim results. In chapter 4 the linearization process of the model is described and the stability and control
derivatives following from the linearization are analysed in detail. The dynamic modes following from the
linear model are investigated in chapter 5. This thesis is concluded in chapter 6 after which recommendations
for future work are given.

1.1. Research Objective

Although there already exists quite some literature on tiltrotors, most literature is limited to the flight
dynamics modelling of the aircraft or is focused on addressing the handling qualities characteristics. The
dynamic stability characteristics of the tiltrotor are less investigated, and a thorough analysis of the variation
of the characteristics with airspeed and nacelle angle is missing in literature. In order to get a better
understanding of how the tiltrotor behaves when it is moving through its conversion corridor a detailed
analysis of its dynamic characteristics is provided in this research. The main objective of this research can
be formulated as follows

"To investigate the stability characteristics of tiltrotor aircraft theoretically by using the technique
of linearized stability derivatives on a six-degrees-of-freedom tiltrotor flight dynamics model”

1.2. Research Questions

In order to reach this objective and to structure the research, several research questions are posed at the
start of this research. The main research question can be formulated as follows

"Which tiltrotor stability characteristics can be identified by analyzing a linearized six-degrees-
of-freedom tiltrotor flight dynamics model?”

The main research question is split up into several subquestions for which it is intended to find an answer
to during the research. These questions can then be broken down into lower layer subquestions.

= Which features characterize a tiltrotor aircraft?
— Which general features distinguishes the tiltrotor from a conventional helicopter or fixed-wing
aircraft?
— What are the differences between the control strategies of a tiltrotor and a conventional helicopter

or fixed-wing aircraft?

= How can the dynamic behavior of the tiltrotor most accurately be predicted by modelling its principles
into a flight dynamics model?

— What are the largest weak points of the current six-degrees-of-freedom model and how can they
be improved?

= Which conclusions can be drawn about the stability characteristics of the tiltrotor from the linearized
stability and control derivatives?

— Which derivatives are supposed to be negative and which are supposed to be positive in order to
have a stable tiltrotor?

— How do the derivatives compare to the derivatives for conventional helicopters or fixed-wing
aircraft?
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— How do the derivatives compare to the derivatives found by other tiltrotor models?

= Which conclusions can be drawn about the stability characteristics of the tiltrotor from the eigenvalues
of the dynamic modes?

Under which circumstances are the dynamic modes stable and under which circumstances unsta-
ble?

— How are the dynamic modes influenced by the airspeed and nacelle angle?

How do the eigenvalues from the uncoupled linear systems compare to the eigenvalues from the
coupled linear system?

How do the found eigenvalues compare to the eigenvalues found by other tiltrotor models?






Background

This chapter serves as an introduction to tiltrotor aircraft and to tiltrotor research in general. The features
that characterize tiltrotor aircraft are elaborated upon and the current state-of-the-art in tiltrotor modelling
is discussed. The tiltrotor is introduced in section 2.1 and the history in tiltrotor development is elaborated
upon. The reference aircraft that will be used during this research is the Bell XV-15. This tiltrotor aircraft
will be introduced in section 2.2. The flight dynamics modelling of tiltrotor is no unknown territory; several
tiltrotor models exist and are described in literature. The most prominent ones are described in section 2.3.
Lastly, the chapter is concluded with a general introduction to aircraft stability.

2.1. Tiltrotor Aircraft

This section serves as an introduction to tiltrotor aircraft in general. Firstly, the general characteristics of
the aircraft are discussed with its advantages and potential benefits to air traffic. Thereafter, the history of
the tiltrotor is elaborated upon together with its recent developments. Lastly, the different flight modes that
can be distinguished for tiltrotor aircraft are discussed.

2.1.1. Introduction to Tiltrotor Aircraft

A tilt-rotor aircraft, also referred to as tiltrotor aircraft or simply tiltrotor, is a hybrid aircraft that attempts
to combine the vertical take-off and landing (VTOL) and hover capabilities of a helicopter with the speed
and range characteristics of an fixed-wing airplane. The tiltrotor uses multiple rotors, also called proprotors,
to generate lift during vertical manoeuvres and to provide thrust during high-speed horizontal manoeuvres.
The rotors have the ability to be tilted in order to increase or decrease flight speed. By far the most popular
and promising tiltrotor configuration is one with two proprotors, both located at the wing tips of a fixed-
wing aircraft. The XV-15, one of the most well-known tiltrotor aircraft is shown in 2.1. In this figure the
proprotors, mounted on nacelles, are rotated 90 degrees with respect to the fixed wing, meaning that the
aircraft is in helicopter mode. This angle between the fixed wing and the rotor nacelle, from now on referred
to as the nacelle angle (1), can vary between around 0 and 90 degrees.

The biggest advantage of the tiltrotor compared to other aircraft that are functional at the moment is its
combination of the VTOL capabilities of helicopters with the speed and range of an airplane. This makes the
tiltrotor a runway independent aircraft, which has the potential of increasing the airspace capacity due to its
flexibility in take-off and landing locations. This could make air transport more time efficient since the travel
time to and from the airports would be reduced significantly, resulting in an increased throughput through
the entire system [9]. Besides this advantage, the flight ceiling of the tiltrotor is around 25,000 feet, which
is more than twice as high as for conventional helicopters allowing the aircraft to circumvent bad weather.

2.1.2. History

Although the first tilt-rotor was developed decades later, the idea of a vehicle that combines the VTOL
characteristics of a helicopter with the speed and range of an airplane already existed in the 1920s. One
of these ideas came from Henry Berliner, who came up with a design that resembled a fixed wing biplane
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Figure 2.1: The XV-15 Tiltrotor aircraft in helicopter mode [1]

aircraft with 2 two propellers mounted on vertical shafts near the tip of the wings. The shafts would be
slightly tilted forward during forward flight which, although they could not be tilted 90 degrees, had a similar
rotor arrangement as the current tiltrotor aircraft [1].

Several others tried to come up with a good reliable design to combine vertical lift and forward flight in the
decades following, but none of them were able to succeed. The reasons for this were among others perfor-
mance, structural dynamics or control deficiencies or a lack of financial support. In 1947 the development of
the Transcendental 1-G was initiated which was able to conduct its first successful test flight in 1954. This
model is generally recognized as the first tilt rotor aircraft which was able to explore the conversion between
vertical lift and airplane mode [1].

A year later the prototype crashed during a test flight after which the Transcendental Model 2 was created.
This project was funded by the US Air Force, but they decided to withdrawn the funding and instead start
investing in the Bell Model 200 which was later designated the XV-3. This model had stability issues and lim-
ited hover and cruise performance; the maximum cruise speed of 115 knots was not enough to show that the
vehicle had adequate airplane mode performance. On the positive side, the XV-3 project has proven us that
the conversion from vertical lift to horizontal flight and back can be performed in a stable, controllable, re-
liable manner. This ensured that the interest in the development of tiltrotor technology did not disappear [1].

In 1972 the development of the XV-15 was initiated with funding from NASA, the US Army and the US
navy. This new project resulted from improved technologies, new test techniques and a thorough research
into the issues of the XV-3. The XV-15 was the first tilt rotor aircraft which was able to demonstrate
high-speed performance during airplane mode and reach flight speeds which could never be achieved with a
conventional helicopter [1].

Based on the results of the XV-15 testing the V-22 Osprey program was initiated. The V-22 was the follow
on operational aircraft developed jointly by Bell-Boeing for the US Marine Corps, US Air Force Special Op-
erations Command, and the US Navy. This was in 2003, and four year later the V-22 fully entered service for
the US Marines. Nowadays, more than a decade later, the V-22 is still the only operational tiltrotor that exists.

The year 2003 was also the first year that the first prototype off the Bell-Agusta BA609 flew. The BA609
is similar in size to the XV-15 and was designed to meet the civil airworthiness regulatory standards[2]. The
BAG609, nowadays called the AgustaWestland AW609, has had quite some difficulties during its development
and testing, including a fatal accident during testing in Italy in 2015 [10]. At the time of writing this thesis
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report in 2021, the aircraft is still not operational.

2.1.3. Flight Modes

For a tiltrotor three different modes can be distinguished during flight. The vehicle is said to be in helicopter
mode (H-mode) when the nacelles have an angle of 90 degrees with respect to the fixed wing. In this mode
the proprotors are positioned vertically generating a lift force like a conventional helicopter. During the
helicopter mode the forward speed is relatively low or even equal to zero, meaning that this mode can be
used for vertical manoeuvres including take-off, landing and hover.

If the nacelles are oriented parallel to the wing, the tiltrotor is said to be in airplane mode (A-mode). In
this mode, the proprotors function as airplane propellers generating thrust and allowing the tiltrotor to reach
high horizontal velocities comparable to conventional airplanes.

A tiltrotor converts from helicopter mode to airplane mode and vice-versa by rotating its nacelles with respect
to the fixed wing. If the nacelles are not oriented perpendicular or parallel with respect to the wing, the
aircraft is said to be in conversion mode (C-mode). Back in the days when the first tiltrotors were developed,
this mode was merely used as a transitional mode between the two previously described modes, but nowadays
the potential benefits of operating in this so-called conversion mode are being further investigated [12].

2.2. The XV-15 Tiltrotor Research Aircraft

Throughout this research, the analysis is mainly conducted on the XV-15 Tilt Rotor Research Aircraft which
employs the tilt rotor concept and displays generic tiltrotor characteristics. An image of the XV-15 is shown
in Figure 2.1. The XV-15 has two three-bladed rotors mounted on a stiff in-plane gimballed hub. This
aircraft has been chosen for the analysis simply because it is the only tilt rotor aircraft for which enough data
is publicly available to conduct the analysis. The flight envelope of the XV-15 can be expressed in a so called
conversion corridor. This conversion corridor is elaborated upon in subsection 2.2.1. There after, the control
strategy and the control inceptors of the aircraft are discussed in subsection 2.2.2 and subsection 2.2.3
respectively.

2.2.1. Conversion Corridor

Because of the ability of the XV-15 to convert between three different flight modes, the aircraft also has
an extensive operating range. At low velocities the tiltrotor is usually in helicopter mode, but as velocity
increases the nacelles can be tilted towards airplane mode. At different nacelle angles there also exist different
airspeed boundaries at which it is safe to operate. The safe regions to operate in are defined as the conversion
corridor. The conversion corridor of the XV-15 is shown in Figure 2.2. In the conversion corridor, also called
the transition corridor, it is safe to convert between helicopter, conversion and airplane mode. A conversion
is called successful when the change in lift created by the wing and the rotor compensate for each other,
keeping the total lift and the altitude constant [2]. The normal nacelle tilt rate is around 7.5 deg/s for the
XV-15. If the tilt rate is too small while accelerating the right boundary of the corridor could be reached,
which could lead to exceeding the control and power limits of the vehicle or reaching unsteady rotor loads.
On the other side, if the nacelles are tilted too fast, the left boundaries would be reached and there is the
possibility that combined lift of the rotor and wing is insufficient to balance the weight of the aircraft [2]. The
Leonardo AW609 features a corridor protection function to reduce the workload while manoeuvring in the
conversion corridor [13]. This automatic conversion protection functions stops the conversion if a boundary
of the corridor is reached. It first corrects the speed of the vehicle and then tilts without any further command
the nacelles to the desired nacelle angle. A similar system is incorporated in the Bell-Boeing V22 Osprey [2].

2.2.2. Control Strategy

The tiltrotor is essentially a hybrid between a helicopter and an airplane. Therefore, it also uses the control
strategies of both aircraft types. In helicopter mode the aircraft uses conventional helicopter control strate-
gies. The control functions of the XV-15 in helicopter mode are shown in Figure 2.3a. Collective control is
used to alter the pitch angle of all rotor blades which is mainly used to move the vehicle vertically. Cyclic
control is used to alter the tip path plane tilt of the rotors, allowing the vehicle to move horizontally. A
big difference with the conventional helicopter is that the tail rotor has become redundant as the tiltrotor
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Figure 2.2: XV-15 conversion corridor [2]

has two counter-rotating rotors, eliminating the induced torques of each other. However, this also means
that the directional stability has to be controlled in a different manner. This is done by using differential
longitudinal cyclic control: if the pilot wishes to yaw to left, the right proprotor is tilted forward and the left
rotor is tiled aft, creating a moment around the vertical axis. Moreover, in addition to the classic helicopter
control strategies, the tiltrotor has an unique method to perform rolling manoeuvres. A roll can be initiated
using differential collective pitch on the rotors. If the pilot wishes to roll to the right, he/she increases the
collective angle on the left proprotor while decreasing the one on the right, creating a thrust imbalance,
which together with the large moment arm induces a roll [12]. The control mechanisms for the different
tiltrotors are quite similar but still there exist some differences: the AW609 for example does not use lateral
cyclic pitch for lateral translation in helicopter mode[14].

When the XV-15 is in airplane mode it makes use of conventional airplane flight control surfaces. Ailerons
(or flaperons) are located at the trailing edges of the wings to control the rolling motions about the longi-
tudinal axis of the vehicle. Rudders are used to control the aircraft about its vertical axis, or in other words
to control its yawing motions. This is however the case for the XV-15 [12], the AW609 does not have a
rudder and uses differential collective blade pitch to control yaw [14]. Elevators are located on the horizontal
stabilizers at the tail to control the pitching movements of the aircraft. The control mechanisms in airplane
mode are shown in Figure 2.3b.

In conversion mode the control strategies of both the helicopter and airplane mode are combined. When the
nacelles are rotating forward from a vertical to a horizontal orientation the control required by the propro-
tors decreases as the dynamic pressure increases and the airplane control strategy becomes more important.
When the nacelles are almost completely rotated into airplane mode the effect of the proprotors on the lift
has been phased out leaving only the thrust effects active. Naturally the opposite thing happens when the
tiltrotor converts back to helicopter mode; the control required by the rotors increases while the dynamic
pressure decreases. The effects of the airplane control surfaces do not completely phase out when horizontal
speed decreases, but their influences are only minor.

2.2.3. Pilot inceptors

Since the tiltrotor combines both helicopter and airplane control strategies the question during the design
arose: what is the most convenient way for the pilot to control this aircraft? Some designers argued that
helicopter control inceptors should be used, because the most tricky manoeuvres including vertical take-off
and landing happen in helicopter mode. This would have meant that a cyclic stick, a collective stick and
pedals would be used. Other designers argued that airplane inceptors should be used because the tiltrotor



2.3. Tiltrotor Models 33
X ‘ ' Elevator
%\ Longitudinal Cyclic J! =
- . .
— Pitch —C i —
i )
Pitch : M | Throtie with Beta Governing
E- Throttle and Collective Pitch ‘
with Beta Governing — r,i;, 5
—_ 7 Thrust rmp| N
Thrust <l | | Flaperons
Differential I |
m, T Collective Pitch Roll | |
{e] { —r
—_— —— — ¥ < f/
Roll : . I
7. 'l § T -
& & _ \
] d Lateral Cyclic l _
— — — L= r‘ ;‘,‘I Rudder
Side force R ’ '
= ‘ A
Differential (= =
'Y Longitudinal Cyclic Yaw N '
Right Rotor Y — Left Rotor i .
- 1"--'__'___ L \_ i}
< Y
Yaw T\ ’I
R/C mode F/W mode

(a)

(b)

Figure 2.3: XV-15 control functions in both helicopter (a) and airplane mode (b) [2]

spends most of its time in airplane mode. This would have resulted in a yoke or stick, a throttle and pedals.
It was decided that a center cyclic stick would be used for pitch and roll control and pedals for yaw control.
A discussion arose when deciding between a collective stick of a throttle to alter the thrust of the aircraft.
The collective stick is used in a helicopter to control the vertical motion by changing the collective pitch of
the blades. If the pilot would pull the collective stick the helicopter would go up and by pushing the stick the
helicopter would go down. The throttle of an airplane is used to control the horizontal velocity. By pushing
the throttle the airplane would increase its velocity and by pulling the velocity would decrease. Picking one
of these two inceptors raised an issue. If a collective control stick would be used, a counter-intuitive action
would be required to increase the velocity of the tiltrotor in airplane mode: instead of the habitual action
of pushing the throttle the pilot has to pull the collective stick. A similar problem would arise in helicopter
mode when using a throttle instead of a collective stick. The arm extension which is normally used to descent
in a helicopter would now cause the vehicle to go up. Eventually it was decided that a collective-like power
lever would be used to control the thrust of the tiltrotor. In helicopter mode pulling the lever would increase
the thrust and thus the aircraft would go up. When converting to airplane mode, the controls convert as
well, so pushing the lever in airplane mode would cause the velocity to increase. This way both modes have
intuitive controls [2].

2.3. Tiltrotor Models

Before being able to conduct a stability analysis, a flight dynamics model needs to be derived. Multiple
tiltrotor models have been derived in the past, some with very high accuracy, some with a lot of simplifications.
The choices and assumptions made during the modelling process affect the results and the accuracy of model.
In this section, the most prominent tiltrotor models are described. Firstly, a preliminary three degrees of
freedom model is described. This model has also been linearized and is used for the analysis of the longitudinal
stability characteristics. Thereafter, multiple models found in literature are described, some of which will
also be used later this research to validate the results.
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2.3.1. 3-DoF Model

In this section the preliminary 3 degrees of freedom model, from now on referred to as 3-DoF model, will
be briefly described. This model has been developed in previous research conducted at the Delft University
of Technology by Sokolowski [15]. The model is capable of predicting symmetrical motions, so the three
degrees of freedom are the surge and heave translations and the pitching rotation. During the development
of the model, the following general assumptions were made [15]:

= The symmetric motions can be decoupled from the asymmetric motions.

= All subsystems of the tiltrotor are assumed to be rigid

= The mass of tiltrotor is constant as well as the longitudinal position of the centre of mass (c.m.).
= Gravity is constant, and therefore the c.m. coincides with the centre of gravity (c.g.).

= The geometry and mass distribution of the tiltrotor are symmetrical in the surge-heave plane.

= The simulation environment is defined by a flat, non-rotating Earth.

= The contributions of the vertical stabilizers to the longitudinal dynamics are negligible.

The 3-DoF model is developed in 3 different phases. The product of the last phase, meaning phase 3, is used
for the analysis. In this phase, the external moments and forces contain the contributions from the rotor
system, the wing, the fuselage and horizontal tail. The modelling of the rotor system is relatively complex
and required the following simplifying assumptions [15]:

= The rotor is modelled as an articulated hub with a flapping hinge and spring. No lead-lag hinge nor a
hinge offset is modelled.

= The blade aspect ratio is high, air is incompressible.

= The rotor angular velocity {2 is constant along the entire flight envelope.

= Rotor-induced velocity is uniform across the rotor disk.

= The blade cross-section is constant along its length.

= Blade is treated as a slender rod in terms of mass moment of inertia.

= The Lift coefficient of the blade increases linearly with angle of attack.

= The aerodynamic centre of the blade is located at quarter-chord.

= The feathering axis of the blade coincides with with the aerodynamic centre.

Furthermore, for the fuselage the following assumptions are made:

= The fuselage only produces drag, no lift nor a pitching moment is created.
= The aerodynamic centre of the fuselage coincides with the body c.g.

The fuselage drag is aligned with the body velocity vector.
= The fuselage drag does not depend on the angle of attack.

For the wing and horizontal tail it is assumed that the forces and moments act at their aerodynamic centres,
which are located at quarter chord. For the horizontal tail it is assumed that the change in lift coefficient is
linearly proportional with the elevator deflection.

The above mentioned assumptions capture the most important simplifications made during the development
of the preliminary model. The comparison of the trim curves with other literature has proven that the model
is somewhat valid and can be used for preliminary estimations [15]. The mathematical equations behind the
model are encapsulate by the computation scheme shown below. For an elaborate description of the model
and derivation of the equations the reader is referred to the report by Sokolowski.
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Table 2.1: 3-DoF preliminary model computation scheme
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2.3.2. GTRS Model

Ferguson [8] documented the Generic Tilt-Rotor Simulation (GTRS) model, a real time model that can be
used in support of aircraft design, pilot training and flight testing. The model is mainly based on 1/5 model
scale wind-tunnel test data, in combination with basic physical equations and correction factors. The model
consists of more than 20 different modules that account for different subsystems within the aircraft, such as
the fuselage, the wings, the rotors, the landing gear, the SCAS, the engines and the horizontal and vertical
stabilizers.

The model has been validated with XV-15 flight test data [6]. Due to its high level of detail and accuracy
the model is often used as the baseline of current tiltrotor research and development activities. It contains
many lookup tables including among others the effects of angle of attack, nacelle angle, sideslip, Mach
number and flap defection on the aerodynamic coefficients and they contain the correction factors to the
dynamic response of the aircraft. The GTRS data is also often used to validate the stability characteristics
of a tiltrotor model. Ferguson included many tables containing the the stability and control derivatives of
the XV-15 under different flight conditions, nacelle angles and velocities.

The mathematical was originally developed by Bell Helicopter Textrom (BHT), also under a contract of
NASA, for the Bell Model 301 Tilt Rotor Research Aircraft. This real-time model, documented by Harendra
et al. [16], was developed to support tiltrotor design, pilot training and flight testing. The model was
developed with as much precision as possible, representing the kinematic, dynamic and aerodynamic char-
acteristics of the Model 301. The model development was constrained by two important factors. Firstly the
fast loop computational time had to be less than 50 milliseconds in order to maintain real time simulation.
For this reason, the rotor representation was limited to steady, linearized aerodynamics with uniform inflow.
Compressibility effects and rotor stall were only used to define a maximum rotor thrust coefficient limit, and
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further not considered not in the model. This has the consequence that the rotor model is accurate enough
for most handling qualities studies, but not sufficiently adequate to evaluate certain flight conditions where
stall and compressibility effects are significantly present. Secondly, the rigorousness of the model is limited
due to the lack of available validation data. For example, the rotor interference at the wing and tail were
not properly tested at the time of the development of the model.

Ferguson used this model as the foundation for the GTRS model, but made quite a lot of changes to both
the model and the report structure. Ferguson had a lot more data at his disposal coming from XV-15 flight
tests, and he used this data to revise and improve the equations of the BHT model. He used the XV-15 flight
test data together with multiple other program data to validate the results, and the deficiencies that were
found were corrected for. In order to keep the GTRS model real-time, Ferguson was not able to solve the
stall and compressibility deficiencies that were part of the BHT model. The rotor wake-airframe aerodynamic
interactions are however significantly improved in the GTRS model, using XV-15 test data.

2.3.3. FLIGHTLAB Model

At the University of Liverpool, a multi-body modelling environment called FLIGHTLAB has been developed,
which provides a modular approach for creating flight dynamics models. This tool enables the user to create
a complete vehicle model from a library of predefined components. FLIGHTLAB was originally developed
for rotorcraft, using blade element theory (BEM) models, but has been further developed to also support
fixed-wing aircraft. Based on the BHT model [16], a FLIGHTLAB model of the XV-15 has been developed,
the FXV-15. The development of the multi-body dynamics model has been extensively described by Padfield
[2]. The main components of the FXV-15 have been divided into subcomponents, which in turn have been
further split into even smaller components. At the lowest sub-branche, the components have been modelled
and using multiple body dynamics (MBD) FLIGHTLAB assembles all components into one system. The
hub and rotor system are modelled as a rigid gimbal combined with torsional spring-damping components
allowing motion in pitch and roll directions. FLIGHTLAB neglects the coning and the first harmonic flapping
motion due to the blade flexibility and only models lower frequency flapping due to the motions of the gimbal.
The Peters-He three-state inflow model is used for the FXV-15, which is derived from the general Peters-He
finite-state model. Twist, chord, inertia, sweep and droop are included in the blade modelling.

The rotor wake on the wing and empennage are derived from wind tunnel tests. The rotor wake on the
horizontal stabilizers causes an upwash during low-speed helicopter flight, and a downwash during high-speed
flight in airplane mode, according to Padfield. This rotor wake has a significant influence on the stability of
the tiltrotor, and may cause a pitching moment or sideslip. The wake also affects the directional stability
due to interactions with the vertical stabilizer.

The FXV-15 is validated performing trim, stability and response analyses and comparing the results with the
among other the GTRS model [8] and the SID model [17]. The stability results are discussed in more detail
later in this report, but proved to be quite accurate. For this reason, the FXV-15 is taken as the baseline con-
figuration in the 'Rotorcraft Handling, Interactions and Loads Prediction’ (RHILP) project [18]. The RHILP
project is one the first projects to develop handling qualities criteria for a civil tiltrotor. The tiltrotor design
concept that was used besides the FXV-15 during this project is the EUROTILT configuration, developed
by Eurocopter. Because of the promising results of the FXV-15, a FLIGHTLAB model of this tiltrotor has
been created as well, used to study tiltrotor handling qualities.

Walker and Perfect [19] analysed the longitudinal stability and control of a Large Tilt-Rotor (LTR). The re-
search contains the modelling of a large tiltrotor and consequently using this model to improve the handling
qualities of the aircraft. The model has been developed using FLIGHTLAB as well. Consequently the model
is tested using HELIFLIGHT, which is a real-time piloted simulation facility, located at the university of
Liverpool. The focus of this research is mainly limited to conversion mode, and only the longitudinal modes
of the aircraft are assessed. It was found that the handling qualities of the large tiltrotor are characterized by
poor predictability, which is mainly due to the pitch drop back phenomenon. Instability occurs in low-speed
helicopter mode.
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2.3.4. JANRAD Model

Klein [20] investigated the linear state space modeling of a tiltrotor by modifying an existent MATLAB
model which is used for conventional helicopter stability analysis. This software model, called JANRAD
(Joint Army-Navy Rotorcraft Analysis and Design) takes in the physical and aerodynamic characteristics
of a rotorcraft as inputs and generates performance, stability and control data based on these inputs. The
tiltrotor in helicopter mode has similar characteristics as a conventional helicopter, so for analysis in helicopter
mode the JANRAD model already had most of its important parameters included. The only parameter that
needed to be added was a flapping spring constant. The flapping of the rotor blades in a gimballed rotor
system is constrained by centrifugal force, and in most designs also by a flapping spring. This spring
produces additional significant moments when the blades flap. In airplane mode a lot more parameters
needed to be added. The wing, fuselage and tail parameters which were included were not sufficient to
accurately model a tiltrotor so these needed to be modified. Completely new routines needed to be written
to analyse the stability characteristics of the tiltrotor in airplane mode because the dynamics differ so much
from conventional rotorcraft. Separate trimming and linearization routines were written for the helicopter
and airplane modes because their dynamics are very different. To simplify the modelling process, several
assumptions were made. The body of the tiltrotor is assumed to be rigid, and the effects of the rotor wake
on the fuselage were neglected. In order to verify the model, four analysis methods were used:

1. Stability and control derivatives comparison

2. Eigenvalue comparison of the linear system A matrix.
3. Frequency response comparison.

4. Time response comparison to various inputs.

The model is validated using XV-15 data and by comparing the results with two other models; Ferguson's
GTRS [8] and an airframe state space model of the V-22. Although this model is a lot simpler than many
higher order models such as the GTRS, the results proved to be fairly accurate. The conversion mode is
however not addressed in this project.

2.3.5. HeliUM Model

Berger et al. [3] investigated the trim data, linearized control and stability derivatives and eigenvalues of
two types of aircraft: a lift offset coaxial rotorcraft and a tiltrotor. The generic models of both rotorcraft
were developed using HeliUM, which is a comprehensive rotorcraft simulation code that uses a finite-element
approach to model flexible rotor blades with nonlinear coupled torsion, lag and flap dynamics to capture
the aerodynamic, inertial and structural loads along each blade segment. The two aircraft configurations
are build within the model using a multi-body-like approach, combining all aircraft independent subsys-
tems. The coaxial model has been validated against the Sikorsky X2 GenHel model, while the tiltrotor has
been validated against XV-15 flight data, the GTRS model and a CAMRAD Il model of the Large Civil
Tiltrotor (LCTR), which will be described later in this section. As the main topic of this research is the sta-
bility characteristics of a tiltrotor a further description of the coaxial rotorcraft model is left out of this review.

The generic tiltrotor configuration developed in this research is a combination of the XV-15, V22 Osprey
and the NASA Large Civil Tilt-Rotor 2 (LCTR2)[21]. A render of the configuration is shown in Figure 2.4.
The configuration has a stiff in-plane hingeless rotor system with 4 rotor blades. The airfoil is similar to the
LCTR2, while the baseline properties for twist and chord are taken from the XV-15 but slightly tuned to be
more consistent with trends of current more advanced tiltrotors, which use a stiffer but lighter rotor system.
The wings do not have any forward sweep, but have inboard flaps and outboard ailerons just like the XV-15.
The inflow model which is used for this configuration leaves the wake of each rotor isolated, impinging on the
wing which results in an additional down force. Instead of a horizontal tail plane combined with two vertical
tails which we know for the XV-15, this configuration uses a V-tail, which properties come from lookup
tables of representative airfoils. The flaperons on the tail can deflect symmetrically creating a pitching
moment or asymmetrically inducing a yawing moment, combining the tasks of the elevators and the rud-
ders respectively. The nacelle angle ranges from 0 degrees in airplane mode to 95 degrees in helicopter mode.

After completion of the trim, the models were linearized in order to assess their stability characteristics. The
tiltrotor linearized model contains nine rigid-body states, together with four second-order rotor states per
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Figure 2.4: The generic tiltrotor model developed in HeliUM [3]

blade, three inflow states per rotor and two second-order nacelle rotational dynamic states per nacelle. In
addition to these in total fifty-one states the model has ten inputs; symmetric longitudinal and lateral cyclic
and collective, differential longitudinal cyclic and collective, deflection of the aileron, elevator and rudder and
the torque of both nacelles. The reduced form of this linearized model together with its states and inputs is
shown below:

% = Ax + Bu (2.1)
x=[uv,wpqr¢0,y] (2.2)
u = [0, 61, 9(,)' AB15,460,84, 8¢, 67, Qnacy Qnacz] (2'3)

The two nacelle inputs were transformed to symmetric (8,,.) and differential (Ad,,4.) angles before further
analysis was done. The further analysis contains the analysis of the trends of the stability and control deriva-
tives with airspeed for six different nacelle angles: 0, 30, 60, 75, 90 and 95 degrees. Furthermore, the blade
natural frequencies and deflections are analysed and the eigenvalues and modes are investigated.

2.3.6. Other Models

One of the first successful flight dynamics models for tiltrotors has been developed by Tischler [17]. Tis-
chler has developed a flight dynamics model using frequency domain identification technology. The XV-15
bare-airframe dynamics have been evaluated and documented, and the results of the simulation model have
been compared with actual flight test data. In total four different flight conditions have been compared,
from hover to cruise. This model, however, has been verified by comparison of trim data, and the stability
analysis has been left as a recommendation for later research.

Many years later Tischler wrote a book on aircraft and rotorcraft system identification [22]. In this book,
Tischler explains the procedures of system identification, and presents example results of handling qualities
and flight control analyses of different types of rotorcraft and fixed-wing aircraft. One of these example
rotorcraft is the XV-15. Tischler also treats amongst others state space model identification, and produces
state space matrices which are then validated with GTRS model data.

Johnson [23] investigated the dynamics of tilting proprotor aircraft in cruise flight. For this purpose, a
nine degrees of freedom theoretical model is developed for dynamic analysis of a proprotor mounted on a
cantilever wing operating at high velocity. The nine degrees of freedom contain the longitudinal and lateral
cyclic flap, the longitudinal and lateral cyclic lag, the collective flap and lag and the wing vertical bend-
ing, chordwise bending and torsion. The cyclic and collective pitch controls serve as input to the model,
together with three-dimensional gust perturbations. Johnson also investigates the contribution of the pro-
protor to the stability derivatives of the aircraft by deriving analytical expressions. In contrary to other
literature about tiltrotor stability derivatives, Johnson uses more classical airplane derivatives instead of heli-
copter derivatives, which entail the forces and moments due to angle of attack and sideslip, e.g. Clﬁ and Gy, .

Kleinhesselink [12] attempted to create an open-source model of a tiltrotor, using basic equations of motion.
This model is focused on the control and stability characteristics of the XV-15 tiltrotor and uses simple
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linear analysis. The features of the model are based on the minimum required model complexity for piloted
simulation for handling qualities, as defined by Heffley and Mnich [24]. The most important features of this
model entail the all rigid-body degrees of freedom, the first-order flapping dynamics of the rotor and the first
order main rotor induced velocity approximations. The rotor was modelled as an articulated rotor, meaning
that there is no lead-lag degree of freedom. Furthermore, the model includes blade twist, hinge offset and a
flapping spring. The model has 6 degrees of freedom, meaning that there are forces and moments along 3
axis, which are used in conjunction with the nonlinear rigid body Euler equations of motion. In this model
no correction or scaling factors are used to obtain a better comparison with actual flight data. The analysis
included a trim- and time history solution, whereafter the model was linearized. All steps of the analysis
included validation using the GTRS. During the linearization process the stability and control derivatives
were determined for several nacelle angle and airspeed combinations. The A and B matrices, which contain
the stability and control derivatives respectively were constructed. Using the A matrix, the eigenvalues could
be determined which are then compared with the GTRS data roots during hover in helicopter mode and 200
kts in airplane mode.

Lu et al. [4] developed a nonlinear flight dynamics model for tiltrotor aircraft and investigated its dynamic
stability characteristics. The analysis conducted in the research is performed using XV-15 data. Lu et
al. modelled several tiltrotor subsystems separately and combines them to form the full model. The most
challenging subsystem to model is the rotor. The XV-15 has two 3-bladed gimballed rotors. The motion
of the gimballed hub relative to the rotor shaft has two degrees of freedom; the longitudinal tilt angles and
lateral tilt angles. This is something that we also see for articulated blades, making them in some sense
similar. Therefore, Lu et al. decided to model the gimballed hub system as an articulated system, just
like Kleinhesselink [12]. Furthermore, the wing is modelled using functions dependent on angle of attack,
nacelle angle and flap setting. The effect of the rotor wake on the wing is also included. The empennage is
modelled similar to the wings, also including the downwash due to the wing and the rotors. The full flight
dynamics model includes 47 states, of which 26 are rotor inflow states, 12 are flapping motion states and 9
are rigid-body aircraft states. Validation is firstly executed through comparison of the trim results with the
GTRS. Secondly, the model is linearized resulting in a reduced model with only the 9 aircraft states and 4
control inputs:

x =Ax + Bu (2.4)
x=[wv,wpqr¢0,¢] (2.5)
u = [Scottr SIong' O1ats 6ped] (2-6)

By comparison of the eigenvalues of the A matrix from Equation 2.4 with results from flight tests and the
GTRS, the model is further validated. With the eigenvalues conclusions can be drawn about the dynamic
modes of the tiltrotor. The Dutch roll and phugoid are unstable in helicopter mode. In airplane mode, all
eigenmodes are stable.

Lu et al. also analyse the tiltrotor speed stability. This speed stability stability defines the relationship
between the forward speed and the longitudinal stick. Positive speed stability is required for cyclic control,
as defined by ADS-33E-PRF handling quality requirements [25]. This means that pushing the cyclic stick
forward should result in an increase in flight speed. Four different nacelle angle cases were analysed, and
their migration of the longitudinal stick with respect to speed is shown in Figure 2.5. It can be observed that
the requirement is not met for an increase in velocity between 20 and 40 knots in helicopter mode, as this
requires pulling the cyclic stick. This occurs mainly due to the aerodynamic interference of rotor wake and
horizontal stabilizer. The dotted line in the figure shows a conversion path from helicopter mode to airplane
mode. It can be seen that the speed stability is positive when the aircraft is converting from helicopter
mode to conversion mode with a nacelle angle of 60 degrees. However, when converting from this condition,
through 140 knots with a 30 degrees nacelle angle, to 160 knots in airplane mode, the longitudinal cyclic
migrates aft. This results in negative speed stability. This feature can be explained by the increase of the
efficiency of the elevator with increasing flight speed. This feature is also mentioned by Kleinhesselink [12].

NASA [21] [26] developed the 'Large Civil Tilt-Rotor’ concept. The project started with the Large Civil
Tilt-Rotor (LCTR), but has evolved into an even newer concept: the LCTR2. The LCTR2 is intended to
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Figure 2.5: Migration of longitudinal stick w.r.t. airspeed [4]

replace regional medium range airliners, with a passenger capacity of 90, a cruise speed of 300 knots and a
range of over 1000 nautical miles. A high-fidelity flight dynamics model model has been developed which
also incorporates flexible wing dynamics. This model is validated against XV-15 test data and against the
GTRS model. This research is however mainly focused on the flight dynamics modelling, control system
architecture and the handling qualities of a tiltrotor, and less on the dynamic stability characteristics of the
aircraft.

2.4. Aircraft Stability

The stability of an aircraft can be viewed as the problem of finding an equilibrium state and maintaining this
equilibrium while coping with all types of perturbations from all different directions. A body is said to be in
equilibrium when the net forces and net moments acting on the body all equal zero. This means that there
are no accelerations acting on the body and all states are kept constant. The aspects of aircraft stability can
be divided into static stability and dynamic stability. Respectively, both will be addressed in the upcoming
two subsections.

2.4.1. Static stability

An aircraft response to a perturbation in one of the states is defined statically stable when the initial ten-
dency to that perturbation is toward the equilibrium state. However, if the aircraft increases the orientation
following the disturbance, the aircraft is said be statically unstable. If the aircraft changes attitude following
a disturbance and retains in this new orientation without further changes in attitude, the aircraft is said to
be statically neutral.

In Figure 2.6 the different static stability cases are depicted for an aircraft that is disturbed about the
pitching axis. Subfigure (a) shows the aircraft in equilibrium state in steady horizontal flight. In subfigure
(b) a disturbance occured causing the angle of attack of the aircraft to increase. After the disturbance,
the angle of attack keeps on increasing instead of returning to the original state, meaning the airplane is
statically unstable. In subfigure (c) a similar disturbance occured causing the angle of attack to increase.
The aircraft maintains this new attitude and a new equilibrium state is found. This is an example of statically
neutral aircraft.

2.4.2. Dynamic stability

The dynamic stability of an aircraft describes how an aircraft behaves over time following a disturbance.
When an aircraft is statically stable, there are three different types of oscillatory motions it may undergo
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after a perturbation. If the magnitude of the oscillations decreases over time and the aircraft returns to its
original equilibrium the vehicle is said to be dynamically stable. However, if the magnitude of the oscillations
increases over time the equilibrium position will never be reached again without interference by the pilot the
aircraft is dynamically unstable. If the oscillations are neither damped nor increasing, a dynamically neutral
state is reached by the aircraft.

In Figure 2.7 the three different types of dynamic stability are depicted using the same disturbance example
as in the previous subsection about static stability. In subfigure (a), the aircraft is dynamically stable since
the pitching oscillations decrease and the same equilibrium state is reached over time. In subfigure (b) the
magnitude of the oscillations is constant over time meaning that the aircraft is dynamically neutral. In sub-
figure (c) the vehicle is dynamically unstable; the oscillations increase over time, eventually reaching angles
of attack which are very dangerous to fly under.

The dynamic responses experienced by an aircraft can be further divided into five different types. These
five types are also known as the dynamic modes of the aircraft, and play a very important role in stability
analysis. There are 2 longitudinal and 3 lateral /directional dynamic modes. All five will be briefly discussed
hereafter.
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Phugoid

The first longitudinal dynamic mode is called the phugoid. The phugoid is an oscillatory mode with a
variation of airspeed, pitch angle and altitude over time. This basically means that the motion consists of
a coupling between a pitch and surge subsidence, which is why the phugoid is sometimes referred to as
the 'pitch-surge’ mode. The mode has a large period because of which the angle of attack remains almost
constant over time. There is a very slow interchange between kinetic and potential energy during the mode,
while the aircraft attempts to restore the steady horizontal equilibrium state. For conventional helicopters,
the phugoid is often unstable, primarily at low airspeeds [27]. For airplanes, the mode is most often stable
and easily controlled by a pilot [28]. The difference between the two lies in the stability derivative M,,.
Helicopters often have a positive M,, value, which destabilizes the mode. For airplanes, the M,, is often
approximately zero for subsonic speeds. The moments from all aerodynamic surfaces are proportional to
dynamic pressure and tend to cancel eachother out [2]. A tiltrotor in hover has a lot of helicopter stability
characteristics. Because the aerodynamic surfaces do not contribute to the stability when the airspeed is
zero, the phugoid of the tiltrotor is also unstable in hover. As airspeed increases the tiltrotor starts to behave
more like an airplane and the phugoid stabilizes [3].

Short Period

The second longitudinal mode is called the short period, and as the name already suggest, is an oscillatory
mode with a relatively short period. The short period is a rapid pitching motion with a variation in pitching
rate and angle of attack, but with almost constant velocity. In hover and low airspeeds the VTOL short period
is decoupled into non-oscillatory heave and pitch subsidences. This happens because the pitch-heave coupling
derivative M,, is very small [2]. For airplanes this decoupling does not occur because they only operate at
relatively high airspeeds. For both helicopters and airplanes the short period is usually a heavily damped
stable mode. For airplanes, the damping of the short period is mainly provided by the horizontal tailplane.
[28]. A tiltrotor also experiences the decoupling of the heave and pitch subsidences at low airspeeds. At
high airspeeds the tiltrotor short-period is highly damped and oscillatory [3].

Roll Subsidence Mode

The roll subsidence mode is a lateral dynamic mode, and is simply the damping of the rolling motion. A
damping moment should be created by the aircraft in order to damp an induced roll rate, preventing roll
rates from building up. For both helicopters and airplanes the mode is stable, and the damping increases
with airspeed. The same holds for the tiltrotor.

Spiral Mode

The spiral mode is a non-oscillatory lateral/directional mode which combines roll, yaw and sideslip. The
mode usually happens so slow that it can not be sensed by the pilots, but only perceived visually. The spiral
mode for conventional helicopters at low speeds is usually primarily a yawing motion only dependent on N,..
Since N, is a damping derivative the spiral is a stable mode and equilibrium is restored by the helicopter
itself [2]. The dihedral effect is destabilizing the spiral mode [29], and this effect is much more prominent for
fixed-wing aircraft than for conventional helicopters. Therefore, airplanes and tiltrotor often experience an
unstable spiral mode. However, the mode usually happens so slow that this is not considered a big problem.

Dutch Roll

The Dutch Roll mode is an oscillatory lateral/directional mode which consists of a combination of yawing,
rolling and sidesliping motion. For VTOL aircraft in hover the Dutch roll mainly consists of a coupling
between roll and sway, and the mode is often referred to as the 'lateral phugoid' because of its similar
character as the longitudinal phugoid [3]. The Dutch Roll has quite a short period and is usually lightly
damped. The mode is often considered an undesirable mode since it interferes with the pilot’s ability to
hold a trim. Besides this, the mode is quite unpleasant for passengers [27]. The Dutch roll is strongly
influenced by the yaw damping and the dihedral effect, of which the former is stabilizing and the latter
destabilizing. A conventional helicopter often has high yaw damping due to its tail rotor and the dihedral ef-
fect is small because of the absence of wings. Therefore, the Dutch roll is most often stable for helicopters [2].
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For an airplane, the Dutch roll mode is the more or less the lateral/directional equivalent of the short
period. The moments of inertia in pitch and yaw or an airplane are of similar magnitude and therefore is the
frequency of the two modes of similar order. However, the fin which damps the Dutch roll is less effective in
damping than the tail plane which damps the short period. Therefore, the Dutch roll is more lightly damped.
Nevertheless, the mode is most often stable for airplanes [28]. For a tiltrotor, the Dutch roll damping is
provided by the vertical stabilizers. This creates a lightly-damped but stable mode at moderate to high
airspeeds. At low airspeeds, the aerodynamic efficiency of the vertical stabilizers is low and not enough yaw
damping is created. The destabilizing dihedral effect is more dominant in hover and at low airspeeds which
causes an unstable Dutch roll [2].






Non-linear Model

In this chapter the non-linear six-degrees-of-freedom tiltrotor flight dynamics model, from now on referred
to as 6-DoF model, will be described. The basis of this model has been developed by Sokolowski and is
modelled in MATLAB [30]. The model serves as the main model for the stability analysis conducted in the
research described in this report. This chapter contains a general description of the model and a schematic
overview of the equations describing the dynamics. If the reader is interested in a more thorough explanation
about the underlying equations, he/she is referred to the report by Sokolowski. Multiple changes have been
made to the 6-DoF model in order to increase the accuracy of the stability analysis results. These changes
will also be elaborated upon in this chapter.

In the first section of this chapter a global description of the 6-DoF is given. The second section elaborates
upon the assumptions made during the modelling process. The third section describes the different modules
of which the 6-DoF model consists and gives a schematic representation of the underlying equations.

3.1. Model Description

In general, the flight dynamics model describing the motion of an aircraft takes the following non-linear form:

x=f(xut) (3.1)

where X denotes the state vector, u denotes the input vector and t is the response time. The block diagram
in Figure 3.1 depicts the top-level structure of the 6-DoF model. The required inputs for the model are
shown in the green blocks. Firstly, some environmental parameters are required. The aerodynamic forces are
dependent on the air density p and gravitational forces are dependent on the gravitational acceleration g.
Secondly, the inputs of the pilot are required. These inputs contain the collective stick deflection X.¢;, the
longitudinal and lateral cyclic stick deflections X;on and X;4r and the pedals deflection Xpgp. The input
vector u therefore looks as follows:

u = [Xcor, Xron, Xpar» Xpep] (3.2)

The tilt toggle, with which the pilot can control the nacelle angle, has not been integrated into the model
yet. Thirdly, some general aircraft parameters are required as inputs. These parameters contain among
others aircraft geometry parameters and derivatives describing the effect of the control surfaces deflections
on the aerodynamic coefficients. Lastly, the initial states on the aircraft serve as input to the model. These
states contain the translational velocities, rotational velocities and aircraft attitude. The state vector x has
the following form:

u=[uuv,wpqr¢06,yP (3.3)

The 6-DoF model describes the motion of the tiltrotor body centre of gravity. The motion of the body is
defined in the body reference frame (%, ), which is a non-inertial rotating frame. The different components
of the tiltrotor create separate forces and moments which all influence the general motion of the aircraft.

47
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Figure 3.1: Top-level block diagram of the 6-DoF flight dynamics model

These forces and moments are often more easily defined in a reference frame aligned with the component
itself instead of directly in (F,). Therefore the XV-15 has been split up in different components and for
all components the forces and moments are calculated separately in their preferred reference frame. These
forces and moments are then converted to the body reference frame using transformation matrices after
which they can be summed up to compute the total resultant forces and moments acting on the aircraft.
The 6-DoF model makes a distinction between 15 different components, which are all numbered in Table 3.1.
The numbers in the table coincide with the numbers in Figure 3.2, which gives a clear overview which exact
components are dealt with.

In order to compute the forces and moments created by the different components several modules have been
constructed. A lot of components are very similar so not every component requires its own separate module.
For example, each wing is separated in three different components. The only thing that distinguishes these
components are the secondary control surfaces attached to them and their distance to the body centre of
gravity. Therefore the calculations of the forces and moments are very similar. In Figure 3.3 a detailed block
diagram of the 6-DoF flight dynamics model is given containing all the modules and the order in which all
modules should be executed. Some components require the outputs of other components so therefore the
order of calculation of all components is very important. At the top of each block the required module is
given and at the bottom the components are given for which the module should be ran. In the end the sum
of forces and moments of all components are gathered in the main module in which the equations of motion
are derived. The output of this main module defines the behavior of the body centre of gravity. All modules
will be elaborated upon in more detail later this chapter.

3.2. General Assumptions

In order to bound the scope of the model and to simplify the modelling process several general assumptions
have been made. The assumptions which are component specific are discussed in the descriptions of the
modules, which are elaborated upon in the next section. The most important general assumptions are listed
below

= All subsystems of the tiltrotor are assumed to be rigid.

= The mass of tiltrotor is constant, although the longitudinal position of the centre of mass may vary.
= The geometry and mass distribution of the tiltrotor are symmetrical in the surge-heave plane.

= The simulation environment is defined by a flat, non-rotating Earth.

= Gravity is constant, and therefore the centre of mass coincides with the centre of gravity.

= The engine dynamics can be integrated into the model by changing the rotor gearing.
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Table 3.1: The components considered in the 6-DoF model

Nr. | Component Acronym
1 Articulated Rotor Left ARL
2 Articulated Rotor Right ARR
3 Wing Free, Left WFL
4 Wing Free, Right WFR
5 Wing Flap, Left WFLL
6 Wing Flap, Right WFLR
7 Wing Aileron, Left WAL
8 Wing Aileron, Right WAR
9 Horizontal Stabilizer, Left HSL
10 Horizontal Stabilizer, Right HSR
11 Vertical Stabilizer, Top Left VSTL
12 | Vertical Stabilizer, Top Right VSTR
13 | Vertical Stabilizer, Bottom Left | VSBL
14 Vertical Stabilizer, Bottom Right | VSBR
15 Fuselage FL

Figure 3.2: Schematic figure of the XV-15 with all separate components numbered [1]
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Figure 3.3: Detailed block diagram of the 6-DoF flight dynamics model

3.3. Modules

In this section all different modules of the flight dynamics model are elaborated upon. The inputs for each
module are given as well as the aircraft components to which the modules apply. The specifics of each
component are highlighted as well as the important outputs. Furthermore, if a variable in the right column
of the module is bold, then we are dealing with a vector. This vector, with an x- y- and z-component, is
defined in the reference frame indicated in the left column. For a more detailed description of the reference
frames the reader is referred to the report by Sokolowski.

3.3.1. Module: Initialize Model

When modelling the flight dynamics of a tiltrotor aircraft, one should keep in mind that the rotation of the
nacelles causes a significant shift in aircraft c.g. along the longitudinal axis. Often for simplicity’s sake this
nacelle shift effect on the c.g. is neglected and the helicopter c.g. is assumed for the entire conversion corri-
dor [12]. The same goes for the moments of inertia, for which the H-mode MOI's are often used. This was
also the case for the initial 6-DoF model. For the stability analysis the stability and control derivatives quite
heavily depend on the moments of inertia and therefore it was chosen to integrate this effect of nacelle angle.
Linear equations describing the moments of inertia as a function of mast angle f3,, have been integrated
in the model. The mast angle is 0 degrees in H-mode and 90 degrees in A-mode. Similarly, expressions
describing the c.g. stationline (SL) and waterline (WL) have been integrated. These expressions are also
a function of the mast angle. The moments of inertia changes with nacelle angle are shown in Figure 3.5.
The SL and WL have been plotted as a function of nacelle angle in Figure 3.4.

The expressions mentioned above are integrated in the Initialize Model module, and the SL, WL and mo-
ments of inertia are used in other modules. Using the SL and WL the distances between the body c.g. and
the components can be computed. As long as the nacelle angle is kept constant this module only has to be
used once at the start of the simulation.

Furthermore, it is important to mention that the 6-DoF model uses a different definition of the nacelle than
used throughout the rest of this report. In theory the nacelle angle equals 90 degrees in H-mode and 0
degrees in A-mode. In this model the nacelle angle has shifted 90 degrees; this means in helicopter mode
the nacelle angle equals 0 degrees and in airplane mode -90 degrees. The mast angle however still equals 0
degrees in H-mode and 90 degrees in A-mode, which explains the relation f,,, = —7 in the scheme below.
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Figure 3.5: The moments of inertia as a function of nacelle angle

3.3.2. Module: Articulated Rotor

The articulated rotor module is, as the name already suggests, used to compute the forces and moments
induced by the articulated rotor system. The XV-15 has two rotors, ARL and ARR, so the module should be
ran for each rotor separately. The distinction between the two rotors is made by the inputs dgg, and Q 4y
which are both negative for ARL but positive for ARR. A few important assumptions have been during the
modelling process:

= The rotor is modelled as an articulated hub with a flapping hinge and spring instead of a gimballed
hub. No lead-lag hinge nor a hinge offset is modelled.

= The blade aspect ratio is high, air is incompressible.

= The rotor angular velocity £ is constant when the nacelle angle is kept constant.
= Rotor-induced velocity is uniform across the rotor disk.

= The blade cross-section is constant along its length.

= Blade is treated as a slender rod in terms of mass moment of inertia.

= The Lift coefficient of the blade increases linearly with angle of attack.

= The aerodynamic centre of the blade is located at quarter-chord.

» The feathering axis of the blade coincides with with the aerodynamic centre.

= The aerodynamic forces created by the rotor nacelles are neglected.

= The inertial angular rates are equal to the aerodynamic angular rates.

The most inputs required for the module are rotor parameters. Furthermore, the distances from the body
c.g. to the nacelle root are required. These distances are defined along the axes of the body reference frame.
The force and moment vectors of the rotors are defined in the wind axis control plane F,,cp. These vectors
and then converted to the control plane reference frame F.p, after which they are converted to F,.

The force and moment vectors in F, are used in module '"Main’ to compute the resultant forces acting on
the aircraft. Furthermore, distances from the body c.g. to the nacelle root and the induced velocity v; are
required in the module 'Rotor Wake'.

The rotor flapping angles and force/moment coefficients expressions have been derived in MAPLE by
Sokolowski [30]. These angles and coefficients depend on many different variables, which lead to very
extensive expressions. In order to keep the accuracy of the model as high as possible these expressions have
not been simplified before they were implemented in MATLAB. In Appendix B the extensive expressions for
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the flapping equations, the rotor forces and the rotor torque can be found. Besides the long expressions, for
each variable a simplified short(er) version of the expression is included. These simplified versions have been
included to make the equations more understandable and to be able to compare them with the equations
that are known for a conventional helicopter. In order to simplify the expressions, the following assumptions
have been made:

= The rate of change of the nacelle angle is negligible: n = 0

= The sideslip angle is small, and can be set equal to zero: f =0

= The longitudinal cyclic angle is small, and can be set equl to zero: 8,54, =0

= The hub accelerations are negligible: ay, = a,, = a,p =0

= The higher order terms of the angular rates are negligible: p™ = q* =" =0forn > 1
= The angular accelerations equal zero: p =g =7=0

* Qpzr = -ngn
Furthermore, the rotor solidity o has been substituted into the expressions, with

Nc

" Rm

The assumptions lead to a massive reduction in the amount of terms in the expressions. Although they have

been simplified a lot, the accuracy of the equations does not decrease a lot since the fundamental terms

have remained. This is although only true if the model is used for analysis in symmetrical flight. If the

simplified tiltrotor equations are compared to the flapping and force equations of a conventional helicopter

[31], they show a lot of similarities. The tiltrotor expressions are however more dependent on the yaw rate r,

which is often neglected for helicopters. Besides that, the strong twisting of the tiltrotor blades significantly
influences the flapping angles and rotor forces.

(3.4)

Input parameters
Rotor parameters N R Cpl Gblog 91,10 Gbll QO Ibl Mbl Kﬁ Clabl
Cay, Ca, Ca,

Nacelle parameters den dyn dzn Iy

Environmental parameters | p

Control variables XCOL XLON XLAT XPED
State variables u v wopgqgr ¢ 6 Yo
If:

Left rotor dsgn = —1 Qggn =-1

Right rotor dsgn =1 Qsgn =1

Transformation matrices
cosn—6;; 0 —sinn—6
Fp = Fep Tpacp = 0 1 0

sinn—60;; 0 cosn—6;

_ -1
Fer = Fp Tepap = TbZCp

continues on next page
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cosd —sind O

Fep = Fuvace Tcrawace =|sind  cos§ 0
0 0 1
— 71
Fwacp = Fep Twacpzce = Tepawace
cos a, 0 sinaq
Fwacp = Fwapp Tcpawapr =| sina; sinb; cosbh; —cosa,sinb;

—sina;cosa; sinb; cosaqcosb;

— 71
TwaDP i TwaCP TwaDPZwaCP - TwaCPZwaDP

Calculations

Fp 0o, = Bor + 8omoa
pi
0y = (Wcol—»OXCOL + dsgn!plat—wXLAT + OO,LL)ﬁ
Yions1s = 2.1 cosn
1.2
Yped—s1s = COSTI(—eO.1944u—8+1 +0.4)
pi
015 = Wion-1sXLon + dsgng/ped—&sXPED)m
—_ P
p=y
—_ q
a=q
_ '
rT=—
Q
= _ 7
n=9q
Fracp Qpzr = pcosn sin ;5 — 7 cosncoshys — psinn cos O,

—7rsinn cos 5 + Qsgy

Vion = cosn cos 6;,u + cosn sin 8w — cos B4 sinnw
—cos 0441, + sinn sin 6;,u — cos B441,q
—cosncosby;d, ,q + cosnsinbgd,,q
—sinnsinf;,d, ,q — cosn cos O5dsgndy 17
+cosnsinb,4dsgndy np — cos 0y sinndsgndy np
—sinn sin 0;,dggndy ,v — cOS 015 sinnd, nq

Vigt = v +dznp — dy 7 + cosnly,p — sinnl,r

V,er = cosn cos B;,w — cosn sin Oy,u + cos O, sinnu
+ sinn sin 6;,w + sin 81, + sin 644l,q

+cosncosby5d,,q + cosnsinbyd, ,q—

+ sinn sin 0;,d, ,q + cosn cos O1,dggndy np

continues on next page
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+ cosn sin 0,4dsgndy 7 — COs 015 sSinndggndy, 1
+ sinn sin 0;,dggndy np — cOs 0,5 sinnd, ,q

v
§ = arctan &£
lon

A Vion
He = 4R
A i
A = Zver
¢ QR
_ PclaCR4

Yor =",
ayp = cosnu —sinnw —nl, — 1§ — cosnd, ,q — sinnd, ,q
+ cosnQ? dx‘nﬁz + cos nQ? dx,an — 0?%sin ndz,nﬁz
—0? sin ndz‘nﬁz — cosNdggndy 7 — sinndsgndynp
—cosnQ? sin 171,152 + cosnQ? sin r)lnFZ — cosnQ?d, ,pr
—cosn%02L,pr + 0% sinnd, ,pr
+0Q% sinn?l,pr + cos n02d;g,d,, ,pq — Q% sinndsgndy ,qr
ayp =V +dynp — dynt + cosnl,p — sinnl,7 — desgndy,nﬁz
~Qdggndy T — 02y G — Qd, T
—2 cos N2, — cos nQ21,qr — 202 sinnnl,p
—Q? sinnl,pq
ayp = Qzlnﬁz + 202197 + cos nw
+ sinni + cosndy G — sinnd, 4 + Q21,5 + cos nﬂzdzmjz
+ cos nﬂzdzlnﬁz + cos nzﬂzln;_oz + Q2% sin r]dx,nﬁ2
+0? sin ndx‘an + cosndsgndy »p + O sin nzlnF2
—cosnQ%d, ,pr — O sinnd, ,pr
—2 cos nQ? sinnl,pr + cos NQ?dsgndy nqr

+0% sinndsgndy npq — sinndsgndy 7

TwaCP

Loop through A; until F(4;) =0
ag = f(ﬁCl /iC! 51 E: ?! ERZR! 915! n, 8! ax,h! ay,hl az,h' 'Q' Ibll KB' Y1, gblov
ebllﬁo‘sgnt R' /11" al'Mbl) + aO,pre
(see section B.1)
a; = f(p' q' 7:" ﬁcr j'c' 5' a' F' ﬁl 5RZR! 9151 n 6! ax,hl ay,h' Ibl'
Yo Ob10) Op11, Qsgns Ry Ais ag, M)
(see section B.2)
by = fB, 4.7 fes Aes P G770, Qrzrs 01501, 6, ey Ay s I,
Kg, Vb1, Ob10, Ob11, Qsgns R, ao, a1, Mpy)
(see section B.3)

Crgem = f (0, ﬂc;ic'l_% q,7, 5RZR' 015,18, Ip1, Vo1, Op10s Opi1,

continues on next page
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TwaDP

ngn' R: al:/li)
(see section B.4)
Cu = £ (P, fics A, 2.0, T, Qazr, 1,1, 8, 015, Int, You, 010, Op11, Lsgns R, N,
Clabl' Cdoi Cdli Cdzl Ao, A1, bl' Al)
(see section B.5)
CS = f(P. laC! icv 5! a: 7_", ﬁRZR! ﬁ' n 5! 9151 Ibl' 1428 0bl0! gblll -ngn' Rv N!
Ciubi Cay» €dyr Ao A1, b1, A7)
(see section B.6 )
_CH,waDP _CH
_CS,waDP = TwaCPZwaDP _CS
—Cr BEMwapp —Cr BEm

Crgrav = ZAi\/alziﬁ—Zalliﬁc+li2—2/11-26+i%+/2§

F(A) = Cr BEM,waDP — Cr ¢rav

TwaCP

Cr = Crpem
_ NblKB
~ 2pmQ2RS
Co = —Na;Kp
P = 2pna2Rs

Co = f(P e Ae, D, 0T Qrzro 1, 8, 015, It You, Op10, Op11, Lsgns R, N,

Clabl' Cdoi Cdli Cdzl Ao, A1, bl' Al)

(see section B.7)

—Cy

F=|_c,|pnQ°R®
—Cy

M=|_c,|pmQ*R®
—Cy

F = TcpapTwacraceF

M = Tcp2p Twacr2cpM

3.3.3. Module: MAC (Mean Aerodynamic Chord)

The module '"MAC' is used to to calculate the mean aerodynamic chord of the lifting surfaces of the aircraft.
This module applies to the wings and horizontal and vertical stabilizers, and is used for components 3 to
14. The MAC of different components are required for multiple different modules. The MAC of the wing
components are required to compute the rotor wake interference with the wings themselves. Furthermore
the MAC is used to compute the aerodynamic forces and moments created by the lifting surfaces. The
distinction between the left and right lifting surfaces is made by the input dgg4,. The inputs required for
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this module are mainly geometric parameters of the lifting body surface, which is indicated in the module
as 'component’ and with the subscript 'c’. The distance vectors [dy, dy , d, ] are the distances from the
body c.g. to the root of the lifting surface.

The module essentially consists of two different parts. In the first part the MAC along the surface of the
component is computed. This MAC, which is defined as MACg,,r4ce, is a position vector with respect to
the root of the lifting surface defined in the reference frame of the component itself (F.). This vector is
then converted to the body frame of reference. The distance vector from the body c.g. to the root of the
lifting surface, defined as MAC,,,;, is then added to MACg,,4ce. This results in the final position vector
MAC,, which defines the position of the point on the lifting surface at which the aerodynamic forces act
with respect to the body centre of gravity.

Input parameters

Component parameters dyec dyc dye be Cre Cre I e Ag
If:

Left component dsgn = —1

Right component dsgn =1

Transformation matrices

cosi, —sini,sinl, sini.coslI,
Fp = F Tp2ce = 0 cos I, sin T,
—sini, —cosi.sinl, cosi.cosl,
Fe—-F Tywop = nglc
Calculations
F, A=
MACoyan = i
—MAC;,qn tan A,
MAC;yrface = MACspan
0
dye
Fo MAC,00c = [d,, . [[0 dygn 0]
dz,c
MAC.rrace = TeapMACsyrface
MAC,

MAC, = MACy = MAGC,40; + MACsurface
MAC,
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3.3.4. Module: Rotor Wake

The goal of the 'Rotor Wake' module is to check whether there is interaction between the wake of the rotor
system and the wings of the tiltrotor. If so, it is computed how this interaction affects the airflow around
the wings. This module should be applied to all wing components, so number 3 to 8 of Table 3.1. The
interference between the rotor wake and the wing is calculated based on fixed wake theory and the projection
relationship between the rotor disc and wing [5]. How the projection works is visualized in Figure 3.6.

Iy

Figure 3.6: Schematic diagram visualizing the interference of the rotor wake with the wing [5]

The position and the orientation of the two rotors is determined in the 'Articulated Rotor’ module. The
position of the MAC of the wing components is determined in the '"MAC’ module. The distance vector
between the hub and the wing component MAC can be computed using both their positions with respect to
the body c.g. and is then converted to the control plane reference frame F;p. To determine whether the wing
component is located in the rotor wake two conditions have to be met. The first condition checks whether
of the MAC of the component is located behind the hub. If not, the component can never be located in the
wake. The second condition checks whether the MAC of the wing component is located within projection
of the rotor disc on the wing. If both conditions are met the effect of the rotor wake on the velocity states
can be computed. A few gross assumptions are made for this rotor wake effect computation. To fully take
account of the rotor wake effects a complex vortex wake, distorted by itself and the aircraft motion should be
modelled. For flight dynamics purposes this simplified representation of the rotor wake, based on actuator
disc theory, is assumed sufficient [2]. Some of the assumptions made are listed below:

= The component is either as a whole or not at all affected by the rotor wake. This is completely
dependent on the position of the MAC.

= The rotor has an infinite number of blades, able to uniformly accelerate the air through the rotor disc
(rotor actuator disc theory).

= Only the the normal component of the rotor inflow is considered, i.e. the rotor-induced downwash.

= The wake is assumed to be steady, inviscid and incompressible.

The module requires a few rotor parameters which come from the 'Articulated Rotor’ module and the MAC
positions of the wing components computed in the '"MAC' module. If the component is located in the wake
the velocity states u, w and z are recomputed for that specific component. These new states should then
be used for the component in the 'Lifting Surface’ module, which is discussed hereafter.

Input parameters

Rotor parameters R vy Tyacp Tepan

continues on next page
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Nacelle parameters

Component parameters
Aircraft states u v ow
Calculations
dx,hZMAC MACx dx,n
Fep dy namac|= Thacr( MAC, |~ [dyn )
dz,hZMAC MACZ dz,n
Check if the component is in the wake of the rotor:
Condition 1: dznamac >0
Condition 2: \/dDZC,hZMAC +d5 homac <R
If both conditions are met:
Ny = dz,hZMAC
w =11+ )
Vitng
Uwake 0
Fy Vwake | = Ywacpzp| 0
[Wwake »Ww
u u Uwake
vi=|v Vwake
| w w Wyakel
If not
u u
vi=|v
w w

3.3.5. Module: Wing Downwash

In this module the downwash on the horizontal stabilizers caused by the wake of the wing is computed. This
module is only used for the wing parts containing the flaps, so its concerns components WFLR and WFLL.
The downwash angle is obtained from GTRS model tables[8], and is implemented as a function of wing
angle of attack, flap deflection and nacelle angle. The downwash angle that is found by interpolating the
GTRS data can then be subtracted from the effective horizontal stabilizer angle of attack. This is done in
the 'Lifting Surface module’. The flap can be deflected under 4 different angles. XFL is defined as the flap
setting. The flap deflection angles that come with the different flap settings are shown in Table 3.6 [12]. In
helicopter and conversion mode usually XFL 3 is used, in airplane mode XFL 1. These settings are also used
for the trim analysis at the end of this chapter.
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Table 3.6: Different flap settings

XFL | Flap angle (deg)
1 0

2 20

3 40

4 75

Table 3.8: An overview of the lifting surface components and their control surfaces

Aircraft states

u v w p qr1r Qg

Nr. Component Control Surface ocL | &cb
5X 5X
3.4 WFL, WFR - - -
SCL | &cp
5,6 WEFLL, WFLR | flap 35, | oo,
7.8 | WAL, WAR | aileron % -
9,10 HSL, HSR elevator (;gL -
11,12 | VSTL, VSTR | rudder ‘Z;L ]
13,14 | VSBL, VSBR | - - -
Input parameters
Wing parameters MAC, MAC, MAC, XFL i, I,

Transformation matrices

Tb_’?c

TCﬁTb

Tyoe =

cosi, —sini.sinl,
0 cosl,
—sini, —cosi.sinl}

— 71
TWZb - Tb2c

sini.cos I,

sin [,

cosi.cosl,

Calculations

Fp

Ve

] [p] [mAC,
v|+|q[X|MAC,
wl L] [mMAC,
»

v | T Tp2cVe

[ We

w .
a, = arctan u—” +i.
C

ag = interpolate(a,, [—90,90],1,[90, 60, 30, 15, 0], table(XFL))
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3.3.6. Module: Lifting Surface

The purpose is this module is to compute the aerodynamic forces and moments induced by the lifting surfaces.
This means that this module should be applied to the wing and horizontal and vertical stabilizers, which are
components 3 to 14 in Table 3.1. These are the exact same components to which module '"MAC’ should be
applied, but both modules are separated because the 'Rotor Wake' module has to be applied to the wings in
between. The module primarily requires some geometric parameters of the lifting surface component, which
is indicated by the subscript 'c’ for component. Two parameters have a different definition among the com-
ponents, % and L2 These parameters define the change in lift and drag coefficients respectively due to a
control surface deflection. The type of control surface varies per component. Which type of control surface
each component contains can be found in Table 3.8. In the table it is also indicated if the control surface
influences the aerodynamic coefficients in the 6-DoF model. The flaps, ailerons, elevators and rudder deflec-
tions all influence the lift coefficient, but contributions to the drag coefficient of the latter three are neglected.

The lift and drag coefficients are computed using a combination of linear aerodynamics and the flat plate
area theory. The former method gives inaccurate results at low airspeeds (H-mode) due to the large angle
of attack of the wings as a result of the rotor wake interference. The latter method is less accurate at
high airspeeds (A-mode). Therefore, C; and Cp are computed using a combination of both methods. The
dependency on the two methods has been implemented as a function of nacelle angle. In helicopter mode the
flat plate area method is used. When the nacelles are rotated towards airplane mode this method is phased
out while the linear aerodynamics method is phased in. In airplane mode the coefficients are computed using
solely the linear aerodynamics method.

Input parameters
Aircraft states u v w p qr
Component parameters MAC. b. ¢ ¢ I ic Ac Crpe Cpoc
dc, dcp
Cmac,c ToLc €c ax  dx
Environmental parameters | p
If:
Left component dsgn = —1
Right component degn =1
Transformation matrices
cosi, —sini,sinl, sini.cosIl
Fp = F Tp2e = 0 cos I} sin T,
—sini, —cosi.sinl, cosi.cosl,
—_ -1
Fe=F Twap —szc
Calculations
u r| |MAC,
Fp Ve =|v|*t]|q|¥|MAC,
w rl LMAC,

continues on next page
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uC
Fe Ve =|v, = Tr2cVe
WC
Vior = Vué + vé +wé
a = arctan ‘1% +i.—ag
B = arctan Z—Z
Cry = Cp, (@ —ag,cosp) + %X
1=%
Cr
AR = ﬁ
Cpy = Cpo + mi’ze +22x
CLy = 2sin(a) cos(a)Cpmax + %X
Cpr = sin(a — ao)?Cpmax + %X
n= (—7277
Co=nC+1—-n)Cp,f
Cp =nCp;+ (1 —n)Cpy
S = 3b(ce +cr)
L=2pV2SC,
D = ZpV2SCp
F, =Lsina—Dcosa
F,=—Lcosa—Dsina
My = 2pV2SCp,,
Fx
F=1lo
F,
0
M= M,
0
F F =T.,,F
M=T,;M

3.3.7. Module: Fuselage

In the 'Fuselage’ module the aerodynamic forces created by the fuselage are computed. Obviously this
module only applies to the fuselage component. The initial fuselage module used the assumption that the
fuselage only produces drag. The lift and moments created by the fuselage were assumed to equal zero. The

drag was computed using
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1
Dy = EPVl%nAeq (3.5)

which then lead to the following force and moment vector

—Dfcosa 0
F= 0 M=o (3.6)
—Dfsina 0

According to multiple sources in literature the fuselage however quite significantly affects among others the
pitching motion of the aircraft [2, 3, 6]. This would also result in a significant contribution to the pitching
moment derivatives during the stability analysis. Therefore it was decided to use a look-up table for the
aerodynamic coefficients of the fuselage. The GTRS model data provides tables for the lift, drag and pitching
moment coefficient of the fuselage of the XV-15[8], and these are implemented as a function of angle of
attack. The table can be found in section C.2. Interpolation is used to compute the coefficients. The 0 angle
of attack force coefficients are added to the coefficient found by the interpolation. The resulting scheme is
shown below. The force and moment vector calculated in this module serve as inputs to the '"Main’ module.

Input parameters
Fuselage parameters Croa Cpoa Cumoa
Environmental parameters | p

Aircraft states u w

Calculations
Fo Vion = VuZ +w?

a= arctan%

q=3pV2,

C, = Cpoq + interpolate(a, [—28, 28], table(C}))
Cp = Cp g + interpolate(a, [—28, 28], table(Cp))
Cy = Cpq + interpolate(a, [—28, 28], table(Cy))

L =qC(
D =qCp
M =qCy
F,=Lsina—Dcosa
F,=—Lcosa—Dsina
Fy
F=lo
E,
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3.3.8. Module: Main

All the forces and moments created by the different components serve as input to the final module: the main
module. In this module all force vectors converted to the body frame of reference are added up to compute
the resultant force vector acting on the aircraft. The same is done for the resultant moment vector, however
the moments due to the forces also have to be considered. These resultant forces and moments are then
inserted into the equations of motion together with the aircraft states to compute the accelerations acting
on the vehicle.

Input parameters

Aircraft parameters m

Components parameters F. M, d,. d,

Environmental parameters | g
u

Aircraft states v wopqrTr ¢ 68 Y

Calculations

[ x —mg sin(0)
15
Fy Y|=|mgcos@sing |+ Le=1 Fe
| Z mg cos 6 cos ¢
L Ay e
15

M ZZC=1(MC+FCX dy,c )
| N dye
¢
u=_——qw +rv
.Y
V= ——1v+pw

z

W= T pvtqu
I L=(Iz—Iy)qr+]xzpq
2 (N = (I = [pq + [y 25T — )

q= %(M = —I)rp _]xz(pz - rZ))

p = (L=~ L)qr +]( +pg))

r=

3.4. Trim results

Trim curves are often used to verify and validate a model. An aircraft is said to be in trim when the resultant
of the applied forces and moments equals zero [3]. In the trim condition the pilot controls are fixed and
are the unknowns in the trim computation. A trim state is found by solving the differential equations which
describe the motion of the body. These differential equations are defined in the '"Main" module described in
subsection 3.3.8.

In this section the 6-DoF model trim curves are validated against the GTRS model curves documented by
Ferguson [6]. Both models use the XV-15 as reference aircraft so their trim curves should be very similar.
The aircraft has been trimmed in steady, horizontal flight conditions for various nacelle angles and airspeeds.
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The trim curves of the body pitch angle 8, the collective stick defection X, and the longitudinal stick
deflection X; oy are shown in Figure 3.7. For each parameter five different flight configurations have been
plotted, ranging from 90 to O degrees nacelle angle. The curves are shown as a function of airspeed.

—e—6-DoF Model n =90
—=—6-DoF Model n =75

6-DoF Model n =60
—a—6-DoF Model =30
—+—6-DoF Model n =0
-6 GTRS Model n =90
- = -GTRS Model n =75
‘ GTRS Model =60

150 300 _ o .GTRS Model n =30
Airspeed [kis] -+ GTRS Model n = 0

0, [deg]

XeoL [7]

0 50 100 150 200 250 300
Airspeed [kis]
)I
A
A -

XLON [%]

150 200 250 300
Airspeed [kis]

Figure 3.7: Body pitch angle (85), collective stick deflection Xcor and longitudinal cyclic stick Xy on trim curves compared
with GTRS model data [6].

The H-mode 8, trim curves look very similar. In hover the body pitch angle is very close to zero, but the
angle decreases when airspeed increases. The maximum trim speed is 100 kts for both models. In conversion
mode three different nacelle angle configurations are compared; a 75, 60 and 30 degrees configuration. For
all three configurations the 6-DoF model has a relatively higher trim body pitch angle. Furthermore, the
trim airspeed ranges of both models in C-mode are of almost equal lengths, but the 6-DoF model is able to
find trim solutions at higher airspeeds. In airplane mode the curves look again very alike. Both models find
a maximum trim speed of 280 kts.

The XV-15 collective stick can have a deflection of 0 to 10 inch. The trim collective stick curves are shown
as a percentage of the maximum deflection instead of as a function of the deflection in inch. This has
been done because the gearing between the collective stick and the collective pitch angle required a different
approach for the 6-DoF model. The XV-15 contains a rotor governor, which also has control over the
collective pitch angle. While the pilot control over the collective pitch angle using the collective stick is
phased out when the nacelles are rotated towards airplane mode, the rotor governor has control over the
collective pitch in all flight modes. The collective rotor governor is superimposed on on the collective stick
input. This rotor governor is implemented in the GTRS model, but not in the 6-DoF model. This means
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that, without changing the collective stick to collective pitch phasing, the 6-DoF model has no control over
the collective pitch angle in airplane mode. This also has as a result that the 6-DoF is not able reach the
high collective pitch angles which the XV-15 is able to achieve. In order to compensate for the absence of
the rotor governor, the boundaries of the collective stick have been altered. The governor collective pitch
bound is translated and superimposed on the collective stick bound. This altered bound allows collective
stick deflections higher than 10 inch. The new lower and upper bound of the collective stick (which are
usually 0 and 10) are computed using

n Bo,uLR
Xcorur = 10(1 + m) + Do)
. col-0
0o,LL,r
% _ JoLL,
COL,LL Dot

The collective stick upper limit X¢o, 1, is now dependent on the phasing of the collective stick gearing with
nacelle angle and the rotor governor collective pitch upper bound 8y, g. For the XV-15 this means that
the collective stick can be deflected 30.94in in H-mode and 20.94in in A-mode. Since the rotor governor can
also give a negative collective pitch input the collective stick now also has a negative lower bound, which
equals in this case -3.125. The 6-DoF model X [%] is then calculated using

Xcor + XcorLL

X %] = * 100 3.7
cou[%] Xcorur T 1 Xcor Ll (3.7)
The GTRS model Xc0.[%] is computed using
X
XcoLl%)] = ;SL*100 (3.8)

with the original 0 to 10 inch bounds. Although both stick deflections have been converted to a percentage of
their boundaries, it is not a perfect method to validate the 6-DoF collective stick trim results. In Figure 3.7
we see that there are quite some discrepancies between the two models due to the different calculation
methods. The percentage stick deflection of the GTRS model is significantly higher in H-mode and C-mode.
Nevertheless, The shapes of the curves look quite similar which gives some validation for the results. In
A-mode the curves look very similar and there is quite some overlap.

The longitudinal cyclic stick trim results have also been plotted as a percentage of their deflection range.
The cyclic stick can have a deflection between -4.8 and 4.8 inch. This means that X;,,[%] can be computed
using

Xion
Xion[%] =

«100 (3.9)

This equation holds for both models, so the percentages should show similarities. In the bottom plot of
Figure 3.7 it is shown that the shapes of the curves look quite similar and there is some overlap. Only the 90
degrees nacelle angle curves look very different. The GTRS curve grows exponentially with airspeeds while
the 6-DoF curve converges to a value around 70 %. Furthermore, the GTRS conversion and airplane mode
curves are a lot steeper than those of the 6-DoF model.

The cyclic stick can also have a lateral deflection between -4.8 and 4.8 inch. The trim curves of the lateral
cyclic stick have not been included in this report. Since the aircraft is trimmed in steady, horizontal flight
conditions the lateral cyclic stick is fixed at 0 inch deflection. The GTRS model data also shows no lateral
stick deflection in similar trim conditions. Since the plot would only contain straight horizontal lines at a
50% deflection the plots have not been included.

The trim collective pitch angle (6,), cyclic pitch angle (815) and elevator deflection (8, ) curves are compared
with the GTRS data in in Figure 3.8. All three control variables are a function of the pilot inputs. In horizontal,
symmetrical trim (which means Xpgp and X; 47 equal zero) the following relations for the control variables
with the pilot inputs hold:
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80 L —e—6-DoF Model n =90
—a—6-DoF Model n =75

= o1 6-DoF Model n =60
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Figure 3.8: Collective pitch angle (6,), longitudinal cyclic angle (8,5) and elevator deflection angle (8¢) trim curves compared
with GTRS model data [6].

90 = 1'6XC0L + BO,LL (310)
015 =2.1cosnX;ony + 1.5(1 —cosn) (3.11)
59 = 4'17XL0N (312)

The collective pitch angle curves look very similar. In helicopter mode the trim collective angle first de-
creases and then increases with airspeed. At low nacelle angle configurations the angle increases linearly
with airspeed. Since 6, is controlled using the collective stick, the shapes of the trim curves of both variables
look very similar. The trim plots of the longitudinal cyclic angle 65 and elevator deflection angle &, look
very alike. The differences between the models are also identical to what was found for the longitudinal
cyclic curves. The GTRS model has generally steeper curves. The 8; trim curves in airplane mode perfectly
coincide. This is because the longitudinal cyclic angle is fixed at 1.5 degrees in this configuration.

In Figure 3.9 the trim curves of the flapping angles are shown. The first plot shows the coning angle ay,
while the second and third plot show the longitudinal and lateral cone tilt angles a; and b, respectively. In
order to validate the results by comparing them with the GTRS model some modifications to the validation
data had to be made. The disk tilt angles of the GTRS model are derived in the mast axis system [8], while
the 6-DoF model derives the angles with respect to the control plane. To transform the flapping angles
from the mast axis reference frame to the control plane reference frame the cyclic pitch angles have to be
added. Because the 6-DoF model assumes that there is no lateral cyclic input, the lateral tilt angles b; of
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Figure 3.9: Flapping angle trim curves compared with GTRS model data [6].

the models are equivalent. The GTRS longitudinal coning angle a, has to be offset by the longitudinal cyclic
615 in order to match the 6-DoF model angle. Unfortunately, no comparable coning angle a, data was found
for the GTRS model, so the first plot only shows the 6-DoF model data. Angle a, has a value between 2.5
and 2.6 degrees in all flight conditions. The pre-coning angle a,;,e, Which has a fixed value of 2.5 degrees,
mainly determines the value of ay. The a; curves look quite comparable. In helicopter and conversion mode
the longitudinal tilt angle increases with airspeed, while in airplane mode the angle decreases. The 6-DoF
model angle is slightly higher than the GTRS model angle in conversion mode. In airplane mode there is a
good overlap. The bottom figure shows the lateral tilt angle b;. In hover, b, is approximately zero for both
models. When airspeed increases b; decreases up to 40 kts after which it increases again. The trends of
both curves in helicopter mode look comparable, although b; of the GTRS model is about 3 times larger in
magnitude. The difference in magnitude is also quite clearly present in conversion mode. In airplane mode
the lateral tilt angle is almost zero for the 6-DoF model while the GTRS model angle increases with airspeed.



Linear Model

Stability is concerned with the behavior of an aircraft following a disturbance from an equilibrium state.
Although the response of an aircraft to pilot inputs or atmospheric disturbances is a nonlinear problem,
many stability characteristics can be determined from an analysis of the linearized model. In this chapter
the linear version of the nonlinear model elaborated upon in chapter 3 is described. Firstly, the methodology
behind the linearization is described in section 4.1. Thereafter, the derivatives following from the linearization
are analysed. Firstly, the stability derivatives are analysed in section 4.2. Thereafter, the control derivatives
are investigated in section 4.3.

4.1. Linearized Equations of Motion

In this section the methodology behind the linearization of the nonlinear equations of motion is described.
The linearization always happens at an equilibrium state. The trim results described in section 3.4 are used
for this purpose. The nonlinear equations of motion can described in the following form:

x=f(x,u,t) (4.1)

The equations of motions are written in expanded form in subsection 3.3.8. Just as a small recap, X is the
state vector and u is the control vector. The state vector of the 6-DoF model contains nine different states:

X= [ul UI W;p, q’r; ¢I 9: ¢] (42)

The nacelle angle could also be considered an aircraft state, but since this angle is kept constant throughout
this analysis it is left out of the state vector. The input vector consists out of four different pilot inputs:

u = [Xcor, Xrons Xpar: Xpep] (4.3)

With these four pilot inputs the aircraft can be controlled by altering the symmetrical and differential collective
pitch (8, 8pq), symmetrical and differential longitudinal cyclic pitch (015, 0154), and elevator (&,), aileron
(84) and rudder (6,) deflections. For the control analysis of the 6-DoF model it is more interesting to look
at these controls than at the pilot inputs. The aircraft response due to pilot inputs can quite easily be altered
by changing the gearing of the control system. This has already been done for the collective pitch angle to
be able to reach 280 kts in airplane mode. The aircraft responses to pilot inputs are therefore also harder
to validate. For this reason, the input vector of the 6-DoF model has been altered to the following form:

u= [90' HOd' 61Sl elsd! 66! 6(1' 67"] (44)

Now, returning to Equation 4.2. At the equilibrium state, all moments are forces are in equilibrium or in
other words: the aircraft does not accelerate linearly or rotationally. This means that the following condition
holds:

x=0 (4.5)
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It can be assumed, using small perturbation theory, that during disturbed motion the behavior of the aircraft
can be described as a perturbation from the trim condition

X = Xo + 6Xx (4.6)

In this equation Xg is the trim condition. Linearization relies on the assumption that all forces and moments
can be written as a Fourier series approximation of the nonlinear equations of motion and truncating the
series at the first derivative. This results in a steady state term and linear derivatives. All forces and moments
can then be described in the form shown below:

d +6X6 +aX6 + ..+ aXOG
u+—ov+ —ow+ ..+ —

o ow 26, °
All six forces and moments can be expanded in the same manner. The derivatives are generally written in

the following form:

X

X=X+
o7 du

(4.7)

X

ou
The obtained linear equations of motion of the perturbed motion around a trim condition can then be written
as:

(4.8)

X = Ax + Bu(t) (4.9

In this equation A is the system matrix containing all force and moment derivatives with respect to the
aircraft states:

JF
A= (&)9@9‘0 (4.10)
Similarly, B is the control matrix containing all force and moment derivatives with respect to the control
inputs:

oF

B = (a)x=x0

(4.11)

The derivatives in matrix A are called stability derivatives, and those in matrix B are called control derivatives.
The full expanded linear system is shown below.

r Xu Xw—qo Xq—wo —gcos by Xyp+10 Xp 0 Xr+vg 1
u Zuy+qo  Zw Zg+ug —gcos ¢gsin by Z,—po Zp—vg —g sin ¢ cos 6y Zy u
w My —=2pglxz1 My—=2791551
" Y4 0lxz y T 0lxz y w
q My Mw Mq 0 My =10 (Ix—Iz)Iy 0 —2po(Ux—Iz)1y a
g = 0 0 cos By 0 0 0 -2 cos B, —sin 6y g (4_12)
) Yu—10 Yw+Do Yq —gsinggsinfy Y, Yp+wo g cos ¢g cos b Yr—uq P
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(4.14)

Besides the linearized aerodynamic forces and moments, the kinematic, perturbation inertial and gravitational
effects of the equations of motion are also incorporated in the linear system. The inertial effects in the A
matrix are denoted by

[$0, B0, Lo, Vo, Wo, Po, G0, To ] (4.15)
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Furthermore, the derivatives in Equation 4.12 are written in semi-normalized form. This means that the force
derivatives are divided by the mass of the system and the moment derivatives by the appropriate moment of
inertia.

X
Xy=—, M,

M
— (4.16)
L
The rolling and yawing moment equation are often coupled. Because of this reason, primed derivatives are
usually introduced [2, 12]. An example of a primed derivative is shown below:

IZZ Ixz

L, = L,+ —N, (4.17)

Ixxlzz - IJ%Z b Ixxlzz —Ixz

The stability and control derivatives can be determined in different ways. Firstly, analytic differentiation of
the force and moment equations can be used to determine the exact values of the derivatives. One advantage
of this method is that the derived equations for the derivatives shows exactly what parameters affect the
derivative and to what extent. This method is however very time-consuming and might not be the most
effective and error-prone method when a rigorous model has to be analysed.

By far the most popular method used is the numerical perturbation method method [3, 4, 12, 20, 26]. The
aircraft states at trim are known as well as the initial values of the forces and moments which are zero. Now,
perturbing one of the states will disturb the equilibrium of the aircraft. By investigating the effect of the
disturbance on the forces and moments, their variations can be quantified. These variations are the numerical
values for the stability derivatives. Similarly, the control inputs can be varied one by one to determine the
values of the control derivatives.

A third method involves a model matching process, in which a linear model is adapted such that the responses
fit the responses of the nonlinear system [17, 22]. This method can also be used to match flight data, and
is a type of system identification. The accuracy of this method depends on the degree of nonlinearity, the
noise of the flight data and the correlation between the states and the responses. The system identification
approach seeks to find the best overall fit with the nonlinear response, and varies all derivatives simultane-
ously until this best fit is found.

It was decided that the stability and control derivatives of the 6-DoF model can best be determined using
the numerical perturbation method. The derivatives are estimated using a finite central difference. If the
motion of the aircraft is denoted by f(x) with X the trim state and § the perturbation size, the following
generic finite central difference scheme can be used [7]:

f(xo +8) — f(x0 — 6)
28

As mentioned, this is only an estimation of the derivative. Complete accuracy would only be achieved if the
number of significant numbers would be infinite and the perturbation would be infinitesimal. The level of
inaccuracy of this method depends on two error sources. Firstly, we have the truncation error. The nonlinear
functions are represented by Taylor-expansions where the higher order terms are neglected. Therefore, the
accuracy of this method is dependent on the dominance of the constant, linear and quadratic terms of terms
of the expansion with respect to the higher-order terms [7]. The error arises by truncating the higher order
terms, or in other words truncating the Taylor expansion. In order to minimize the truncation error, the per-
turbation size should be as small as possible. Secondly, there is the problem of round-off errors. Computers
have limited precision, meaning that they will never yield the exact result. Decreasing the perturbation to
an arbitrary small value leads to the quantities f(xy + §) and f(xy, — §) becoming almost equal. At this
point, the finite central difference scheme starts losing accuracy again due to round-off errors.

DF® = (4.18)

Therefore, a trade-off between truncation and round-off errors has to be considered in order to achieve
the most accurate linearization results. There exists an operational region in which the the error of the
linearization is minimized. This region is shown in Figure 4.1. It can be seen that if the perturbation size
is too small, the round-off error is relatively big. On the other side, if the perturbation size is too big, the
truncation error plays the biggest role.
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Figure 4.1: Conceptional relation between perturbation size and linearization error [7]

To determine which perturbation size gives the smallest error, an iterative process is introduced. This process
is visualized in the flow chart in Figure 4.2. By picking an arbitrary large number as initial perturbation,
the linearization error is most probably in the truncation region. The derivative can be computed using
this perturbation size, after which the perturbation size is reduced and the derivative is recalculated. The
two derivatives are compared, and as long as the difference between the two is above some threshold, the
perturbation size keeps on reducing. At some point the derivative has converged to some value, indicating
that the optional region is reached and the error is minimized. This process is repeated for all derivatives,
resulting in the linear state space system.
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Figure 4.2: Linearization process

4.2. The Stability Derivatives

In this section the stability derivatives of the 6-DoF linear tiltrotor model are discussed. From these deriva-
tives a lot can already be told about the stability of the aircraft. All derivatives are defined in the body
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orthogonal axes system, which is shown in Figure 4.3. The origin of this reference system coincides with the
body centre of gravity. The X-axis is aligned with the the centerline of the fuselage and points towards the
nose. the velocity component along this axis is denoted by u. The Y-axis points towards the starboard of the
aircraft and the lateral velocity component v is aligned with this axis. The Z-axis points down perpendicular
to the centerline. The velocity component along this axis is denoted by w. The angular velocities in this
reference frame follow the right-hand rule.

b S
-

Z

Figure 4.3: The orthogonal body axes system [2]

The derivatives are analysed at different combinations of airspeed and nacelle angle. The variations of the
derivatives are analysed as a function of airspeed in all three flight modes. Furthermore, the influence of the
nacelle angle variation on the derivatives is investigated. The 6-DoF model derivatives are also compared
with data obtained from other models. This serves as validation for the results, but the differences between
the models can also say a lot about the effects of the different assumptions made during the modelling
process. All derivatives have been converted to the same units, which are shown in Table 4.1. Furthermore,
no longitudinal-lateral coupling derivatives are described, only direct derivatives. The reason for this is that
the coupling derivatives are usually negligibly small. Firstly the longitudinal stability derivatives are discussed.
Thereafter, the lateral/directional stability derivatives are elaborated upon.

Table 4.1: The S.I. units of the stability derivatives

Force/translational velocity eg. Xy 1/s
Force/angular velocity eg. X m/s/rad
Moment/translational velocity e.g. M, rad/s/m
Moment/angular velocity eg. My 1/s

4.2.1. Longitudinal Stability Derivatives

In this subsection the longitudinal stability derivatives are described. These are the derivatives which describe
the symmetric motions along the X- and Z-axis of the body frame of reference. The longitudinal derivatives
of the 6-DoF model are compared with three different other models: the preliminary 3-DoF model, the GTRS
model and the FLIGHTLAB model (FXV-15).

Stability Derivative X,

The X,, derivative practically reflects the drag of the aircraft, according to Padfield [2]. The derivative usually
shows a linear relationship with speed and should be negative at any condition in order to have stability.
This means that X;, decreases with increasing airspeed which is also usually the case for a fixed-wing aircraft
and a conventional helicopter. The tiltrotor drag damping derivative should actually decrease faster with
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Figure 4.4: Stability derivative X;, in helicopter mode, conversion mode and airplane mode, and as a function of nacelle angle n

increasing speed compared to a conventional helicopter, because of its additional rotor and wings which
significantly increases its drag. For a conventional helicopter the phugoid is usually unstable in hover, but
the mode stabilizes with increasing airspeed. The tiltrotor phugoid shows similar behavior, but because of
its higher drag damping the mode stabilizes at a lower airspeed [4].

In Figure 4.4 X,, is plotted for several models in several different configurations. From the four subfigures it
can be concluded that the requirement that X,, should be negative is satisfied for all models in all configura-
tions. The curves of the derivatives in helicopter mode are expected to show similarities with curves we know
from conventional helicopters, which show a linear descent [2]. This linear decrease with airspeed is indeed
the case for both the FLIGHTLAB and GTRS model. The X,, derivative of both the 3-DoF and 6-DoF model
do not show this behavior and appear to be almost unaffected by the airspeed. Padfield mentions that the
X, reflects the drag of the whole aircraft, but while the drag does increase with airspeed, the rotor forces
are the dominant contributor to X, in this mode for both models. This contribution which is mainly due to
the longitudinal in-plane forces of the rotors does not increase with airspeed and this the main reason why
the X,, derivative also remains fairly constant.

The linear slope that was expected in helicopter mode is more visible in conversion mode. The derivative
decreases in value with increasing airspeed, and shows a similar trend for all four models. The X-component
of the fuselage drag, the thrust and H-force decrease in value when the horizontal velocity component u is
increased, all contributing to the negative value of X,,. The biggest contributor to this derivative is still the
rotor system, with a contribution of around 85% for the 6-DoF model.

In airplane mode the magnitude of X, is larger than we saw in conversion and helicopter mode. This is
because the thrust vector is now aligned with the body X-axis making the contribution of the rotors to X,
even more dominant in this mode. The derivatives of the 3-DoF model and 6-DoF model decrease slightly
with airspeed, which makes sense as the drag still increases with airspeed. The FLIGHTLAB and GTRS
model derivatives are more or less constant with speed.

In subplot (d) the variation of the derivative is plotted as a function of nacelle angle, using the 6-DoF model.
As the nacelles are tilted from helicopter mode towards airplane mode the magnitude of the derivative
increases. This happens because the thrust vector is tilted as well, increasing its force component along the
x-axis and thus also its contribution to X,,.
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Stability Derivative X,

Derivative X,, is shown in Figure 4.5. Subplot (a) shows the derivative in helicopter mode. In hover, X,, is
approximately zero, but as airspeed increases the derivative slowly decreases. This is the case for all models.
As airspeed increases, the wing becomes the main contributor to the decreasing value of the derivative for
the 3-DoF model with a contribution of around 70%. The angle of attack of the tiltrotor in helicopter mode
is negative and decreases with increasing airspeed. This also means that the angle of attack of the wing
becomes increasingly negative, which eventually leads to a negative C; and thus a negative lift force. A
positive perturbation in w decreases the total airspeed as w is negative, and thus the magnitude of the
negative lift force decreases which decreases the X-direction force created by the wing. For the 6-DoF model
the same principle applies, however the contribution of the wing to the derivative is significantly smaller,
around 45 %. The rotor system which makes X,,, more positive has a larger contribution for the 6-DoF model
than for the 3-DoF model which explains the difference between the two plots.

While X,, is negative at high airspeeds in helicopter mode, positive derivative values are found in conversion
mode. This is mainly because the horizontal X-component of the thrust force increases when the nacelles
are tilted towards airplane mode. A positive perturbation in w causes an increase in thrust force, which
largely contributes to the positive value of X,,. With increasing airspeed the derivative decreases for the
3-DoF model, FLIGHTLAB model and GTRS model which was also observed in helicopter mode and can
be explained using similar logic. For the 6-DoF model a more constant value with airspeed is found. The
trim angle of attack in a 60 degrees nacelle angle configuration decreases from approximately 10 to -1 de-
grees when the airspeed is increased from 100 to 160 kts. Because the angle of attack approaches zero the
aerodynamic forces created by the wing decrease and thus also its contribution to X,,,. For this reason X,, is
mainly determined by the rotor forces, which contribution remains roughly constant with airspeed.

In airplane mode the decreasing trend with airspeed is present for all 4 models. All curves start at a positive
X,,. The 3-DoF model decreases with airspeed and approaches zero, while the 6-DoF, FLIGHTLAB and
GTRS models become negative at some point. At positive angles of attack the rotor thrust, the wing and
the horizontal stabilizer have a positive contribution to X,, for both the 3-DoF and 6-DoF model. The 3-DoF
model trim angle of attack decreases from 6.3 to 1.3 along the airspeed range of 140 to 200 kts. The 6-DoF
and GTRS model can be trimmed at higher airspeeds and reach 280 kts. At airspeeds higher than 240 kts
both models have a negative trim angle of attack. This change in sign of angle of attack is the reason why
X,, changes sign as well for these two models and not for the 3-DoF model. The X-component of the lift
force is directed along the negative x-axis when the angle of attack becomes negative. This could cause the
derivative to change sign at high airspeeds.

In sub-figure (d) the variation of X, with nacelle angle is shown. When the nacelles are tilted from helicopter
mode towards airplane mode the derivative increases up to approximately 40 degrees where a peak appears
to be reached. The increase in value can be explained by looking at the thrust vector which rotates towards
the positive X-axis, and thus increasingly affects the resultant force in that direction. When the nacelles are
tilted further towards airplane mode, the effect of a perturbation in w on the thrust force decreases because
their vectors are approaching orthogonality. This also explains why X,,, decreases again at some point.

Stability Derivative X,

In helicopter mode the X, derivative increases exponentially with speed as shown by Figure 4.6 (a). The
increase in value is mainly due to the increasing magnitude of the inertial trim velocity wy, which is subtracted
from the derivative (see Equation 4.12). According to Ferguson [6], the only contributor to this derivative
in hover is the rotor system. This is also in accordance with the memorandum by Pavel [32], who derived
the following equation for X, of a helicopter:

__c da, 6Cr  6Cy,
" " e T sq
This shows that the derivative in helicopter mode is dependent on the longitudinal coning angle a4, the

thrust force T and the longitudinal in-plane H-force. As airspeed increases, —wy increases which mainly
causes the increase in the curves.

Xq (4.19)
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Figure 4.5: Stability derivative Xy, in helicopter mode, conversion mode and airplane mode, and as a function of nacelle angle
n

Subplot (b) shows that in conversion mode the derivative starts at a negative value and then increases
somewhat linearly with velocity and becomes positive. The change in sign of angle of attack with increasing
airspeed also causes the wy to change sign, which then causes the X, derivative to change sign as well.

In airplane mode the X, derivative plot is just as in the helicopter and conversion mode mainly dominated
by wy. The trim velocity component is equal to Vsin(f¢). In the analysis of the X,, derivative it was
mentioned that the angle of attack of the 3-DoF model is positive along the entire velocity range in A-mode,
but the GTRS model and 6-DoF model angle of attack decreases below zero with increasing velocity. This
also explains why the X, derivative of the 3-DoF model remains negative while the derivative of the other
two models changes sign when a certain flight speed is reached.

When the airspeed is kept constant and the nacelles are tilted towards airplane mode the angle of attack
decreases and becomes negative at some point. This also means that the wy increases with decreasing 7.
Because the wy is subtracted from the derivative subplot (d) shows a decrease with nacelle angle.

Stability Derivative 7,

The Z,, derivative shows the same trend with increasing airspeed in helicopter mode for all four models
(Figure 4.7). In hover, a perturbation in u barely affects the resultant Z-force, but as velocity increases the
derivative decreases fast up to around 40 knots after which it starts increasing again. This effect mainly
occurs due to the wing. At low speeds the wing generates a positive lift force, meaning a negative resultant
Z-force contributing to a negative Z,,. As airspeed keeps on increasing, the angle of attack of the wing
decreases and eventually becomes negative, which eventually results in a negative lift force. This negative
lift force has a positive contribution to Z,,, causing the derivative to increase in value.

In conversion mode the curves of the models differ quite a lot. The 3-DoF and 6-DoF model curves look
very comparable but are positive while the FLIGHTLAB and GTRS model curves are negative. The deriva-
tive is for £90 % determined by the wing and rotor system, which have an nearly equal share. A positive
perturbation in u causes an increases in lift by the wings and thus a negative change in Z-force, while for
the same perturbation the rotor system creates a positive change in Z-force. For the 3-DoF and 6-DoF
models the rotor system slightly dominates the derivative, which leads to its positive value. For the GTRS
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Figure 4.6: Stability derivative X, in helicopter mode, conversion mode and airplane mode, and as a function of nacelle angle n

and FLIGHTLAB models this is the other way around; the wing is the dominant factor hence its negative
value. For all four models the derivative slightly increases with airspeed. This happens because the angle of
attack of the aircraft decreases with speed, resulting in a smaller lift force and thus a decreased influence of
the wing on the derivative.

In airplane mode the Z,, derivative is negative for all four models. The 3-DoF and 6-DoF models and
FLIGHTLAB model barely show any variation in Z, with speed, while the GTRS model shows a small
decrease. The derivative is mainly determined by the contribution of the wings which provide the lift in
A-mode. An increase in airspeed usually also increases the lift force, but as the angle of attack decreases
with increasing airspeed the lift force remains fairly constant. The data of the GTRS model however does
show a small increase in lift with increasing airspeed, leading to the marginal decrease of Z,, [6].

Subplot (d) shows that the Z, derivative increases with decreasing nacelle angle up to an angle of 40
degrees after which it starts decreasing again. When the nacelles are rotating from H-mode towards A-
mode the influence of u on the rotor forces increases which causes the Z, to increase at high nacelle
angles. Simultaneously, the magnitude of the Z-component of the rotor forces decreases which decreases
the dominance of the rotor system on the derivative, eventually causing the derivative to decreases in value
again at low nacelle angles.

Stability Derivative 7,

The heave-damping derivative Z,, should be negative in order to have stability. At low airspeeds, the heave-
damping derivative is generally larger for rotary aircraft than for fixed-wing aircraft [2]. A helicopter is more
sensitive to gust loads below approximately 50 knots. As speed increases, the heave response of the rotary
aircraft flattens of while for the fixed-wing aircraft it increases linearly, as shown in Figure 4.8. This is
because of the increasing contribution of the wings on the derivative as speed increases. As the tiltrotor
also has fixed wings, the Z,, curve is more similar to the fixed-wing aircraft. This is also clearly visible in
Figure 4.9. Subfigures (a), (b) and (c) show that a linear decrease of Z,, with airspeed is present for the
four models in all flight modes. Furthermore, the derivative is negative along the flight envelope so there the
aircraft is stable along the heave axis. At low airspeeds the derivative is mainly determined by the rotors, but
with increasing airspeed the wings and horizontal stabilizers start creating lift and also affect the derivative.
All subsystems contribute to the negative value of the derivative.
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Figure 4.7: Stability derivative Z;, in helicopter mode, conversion mode and airplane mode, and as a function of nacelle angle n

In subfigure (d) the variation of the 6-DoF model derivative with nacelle angle is shown. The derivative is
approximately constant with eta. Tilting the nacelle angle decreases the Z-component of the rotor force
and thus its contribution to Z,, derivative. Simultaneously, the trim angle of attack of the aircraft increases
resulting in more lift created by the wings. This increases the contribution of the wings to Z,,. The decrease
and increase of the rotor and wing contributions respectively happens at a similar rate, which explains why
Z,, remains approximately constant with nacelle angle.

Stability Derivative Z,

In Figure 4.10 the Z, derivative is depicted. The results of the models look very similar in all three flight
modes. This is not that surprising, while the horizontal trim velocity u, is also included in the graph, which
is added to derivative itself. This horizontal velocity component is almost identical for the three models and
has a much larger magnitude that the derivative Z solely, thus is the dominant factor in the plot. The small
differences between the models are due to the differences in trim angle of attack which means that u, is also
different for the models. The nacelle angle barely affects Z; as seen in subfigure (d). The angle of attack of
the tiltrotor increases when the nacelles are tilted towards A-mode which decreases u slightly. This results
in a slightly negative slope which is barely observable in the figure.

Stability Derivative M,

The speed stability derivative M,, has a mayor effect on the longitudinal stability and handling qualities of
an aircraft [3]. For a conventional airplane M,, is practically zero at subsonic speeds, because all moments
induced by the aerodynamic surfaces are proportional with dynamic pressure, so they cancel each other out
during perturbations. For a conventional helicopter however M,, is important along the entire flight envelope.
The moments induced by the main rotor due to changes in speed are roughly constant, but the aerodynamic
loads acting on the fuselage and empennage vary strongly with increasing airspeed. Primarily the horizontal
stabilizer produces a strong pitching moment around the centre of mass, affecting the speed stability deriva-
tive. According to Padfield [2] a positive M,, is beneficial for good handling qualities, but it can degrade the
dynamic stability of the helicopter. If a positive perturbation in u causes a positive pitching up moment, the
drag of the aircraft increases, which in turn decreases forward speed again. For a conventional helicopter M,,
is usually positive, so a positive speed stability derivative can also be expected for a tiltrotor in helicopter
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Figure 4.10: Stability derivative Z; in helicopter mode, conversion mode and airplane mode, and as a function of nacelle angle
n

mode. As airspeed increases and the nacelles are tilted towards airplane mode M, should approach zero
according to Berger et al. [3]. At high airspeeds the tiltrotor is expected to behave like a conventional
fixed-wing aircraft, so the moments induced by the lifting surfaces should all be proportional to dynamic
pressure and should cancel eachother out.

Looking at the curves for the speed stability derivative M, in helicopter mode in Figure 4.11 (a), quite
some significant differences between the models can be observed. The FLIGHTLAB model derivative is
positive and increases with airspeed up to 40 knots after which it decreases again. The 6-DoF and 3-DoF
models are positive at low airspeeds but start decreasing linearly after 20 kts. After approximately 60 and
90 knots the derivative becomes negative for the 6-DoF and 3-DoF model respectively. This is caused by
the pitching moment induced by the horizontal stabilizers. At low airspeeds the effect of the horizontal
stabilizer is relatively small and the derivative mainly depends on the rotor forces, but as airspeed increases
an increasingly negative pitching moment is induced which eventually causes M,, to become negative. This
horizontal stabilizer dominance is clearly not present in the GTRS model, which has a completely different
curve. The GTRS data provided by Ferguson [6] shows the total airframe (including fuselage, wing, stabiliz-
ers) contributes positively to M,, which is definitely not the case for the 3-DoF and 6-DoF models.

In conversion mode the results of the models look a lot more comparable than in helicopter mode, but there
are still quite some significant differences. The plot of the 3-DoF shows that M,, starts at a positive value
but decreases and becomes negative when airspeed increases. Similar as in helicopter mode this is caused
by the horizontal stabilizer. The negative moment induced by this horizontal surface dominates the speed
stability derivative at high airspeeds. The 6-DoF model derivative shows a similar trend but has a higher
value and remains positive. The rotor system creates a positive pitching up moment which outweighs the
negative pitching moment induced by the horizontal stabilizers for this model. For the GTRS model the
airframe pitching moment is still very dominant, hence its relatively higher derivative values.

In airplane mode the M,, derivative is positive for all models at all airspeeds. According to Berger et al. [3],
M,, should approach zero in airplane mode as airspeed increases. However, this is the case for none of the
models. The GTRS and 6-DoF models show an increase in M, with speed. For the 3-DoF and 6-DoF models
it is found that the positive pitching moment induced by the rotor system is very dominant in airplane mode
when u is disturbed, preventing the derivative from approaching zero.
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Figure 4.11: Stability derivative M, in helicopter mode, conversion mode and airplane mode, and as a function of nacelle
angle n

From subfigure (d) is becomes apparent that the speed stability derivative increases in magnitude with
decreasing nacelle angle. This happens mainly because the thrust force is rotated towards the positive
x-axis. The thrust force decreases in magnitude when a positive perturbation in the horizontal velocity
component u occurs. Since the thrust force creates a negative pitching moment, this moment also decreases
resulting in a positive resultant moment M. The thrust force is increasingly sensitive to disturbances in u
when the 71 decreases, which leads to an increase of M,, when rotating towards the airplane configuration.

Stability Derivative M,

The incidence static derivative, also called the longitudinal static stability derivative M,, represents the
change of pitching moment about the centre of mass of an aircraft due to a perturbation in the vertical
velocity component w. Together with M,, this derivative largely affects the longitudinal stability of an air-
craft [2]. If a positive perturbation in w causes a positive pitching moment, then M,, is positive and the
aircraft is said to be statically unstable. For a conventional airplane this derivative is extremely important.
Helicopters, however, are often inherently unstable in pitch. If a positive incidence occurs, the advancing
blade creates more lift than the retreating blade. As a result of this differential lift in combination with
the 90 deg phase shift, the rotor disc will flap back creating a positive pitching moment around the centre
of gravity. This effect increases with increasing speed. For a tiltrotor, M,, is usually negative along the
entire velocity range and thus the aircraft is statically stable. According to Lu et al.[4] the wing and the
fuselage of a tiltrotor have a destabilizing contribution to M,, because the centre of gravity is located after
the aerodynamic center. However, the aircraft is still stable due to the stabilizing effect of the large tailplane.

Figure 4.12 shows the M,, curves for the different models. In hover, M,, is approximately zero, but the
derivative decreases with speed increasing the static stability. This is the case for all four models mean-
ing that they are statically stable. A linear trend can be observed for the FLIGHTLAB, 3-DoF and 6-DoF
model, although the slopes are significantly different. For the 3-DoF model the aerodynamic centre and the
centre of gravity of the fuselage are assumed to coincide, which means that the fuselage is not stabilizing
nor destabilizing for this model. For the other models the fuselage is destabilizing which partly explains the
steeper curve of the 3-DoF model. Besides that, the destabilizing effect of the wings is very small compared
to the stabilizing effect of horizontal stabilizers for the 3-DoF model which also results in a steeper curve.
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Figure 4.12: Stability derivative M,, in helicopter mode, conversion mode and airplane mode, and as a function of nacelle
angle n

The GTRS model shows a statically unstable aircraft at 40 knots with an M,, of 0.027. While the airframe
as a whole has a stabilizing effect for all other velocities, it appears to be destabilizing at 40 knots.

In conversion mode M,, is negative for all models at all airspeeds, meaning that they are statically stable
in this configuration. Just as we saw in helicopter mode, the derivative of the 3-DoF model has a larger
magnitude than the other three models because the model does not consider the destabilizing effect of the
fuselage. The tailplane of the aircraft has a big stabilizing effect, which increases with flight speed. The
wings are destabilizing, while the rotors provide a stabilizing contribution.

In airplane mode the M,, derivative of the 3-DoF model and FLIGHTLAB model look quite similar. The
derivative is negative and decreases with speed. The wings have a destabilizing effect, but the stabilizing
effect of the horizontal stabilizer makes the aircraft overall statically stable. The 6-DoF model derivative
looks more similar to the GTRS model derivative and has relatively small values compared to the other two
models. In airplane mode the rotors have a destabilizing contribution to M,,.

In subfigure (d) the 6-DoF derivative is plotted as a function of nacelle angle. At low airspeeds the nacelle
angle does not significantly affect the speed stability derivative. At higher airspeeds the curves decrease
slightly with nacelle angle, which means that the aircraft becomes more statically stable. The trim angle
of attack increases with nacelle angle, meaning that the horizontal stabilizers create more lift and have a
larger stabilizing contribution to the static stability derivative. This causes the negative slope with decreasing
nacelle angle at high nacelle angle configurations. When the nacelles rotated further towards A-mode, the
rotor contribution changes from negative to positive. This causes the increase in slope at low values of 7.

Stability Derivative M,

The pitch damping derivative M, plays a very important role in the longitudinal short-term handling charac-
teristics, which means that the derivative hugely affects the short-period of the aircraft. A positive pertur-
bation in g should always results in a restoring pitching down moment, meaning that M, should be negative
[3]. The magnitude of the pitch damping derivative usually increases linearly with airspeed. Lu et al. [4]
mention that this is due to the tailplane, which is the main source contribution to this derivative. According
to Padfield [2], M, reduces in magnitude as the rotors are being tilted from helicopter to airplane mode.
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Figure 4.13: Stability derivative My in helicopter mode, conversion mode and airplane mode, and as a function of nacelle
angle n

This is due to in-plane lift components of the proprotors, which have a positive contribution to the derivative.

The pitch damping derivative M, is shown in Figure 4.13. For all four models the derivative is negative
along the entire velocity range, which is desirable for stability. In hover (subfigure (a)) the pitch damping
derivative is almost entirely determined by the rotor system, which is stabilizing. When the airspeed increases
the horizontal stabilizer also creates a stabilizing contribution to My, leading to a linear decrease in value.
In subfigure (b) the conversion mode derivatives are shown. All four models show a linear decrease in value
with airspeed. The 6-DoF curve is significantly less steep than the other three model curves. The rotor forces
which are stabilizing for the other models are destabilizing for the 6-DoF model in conversion mode with
airspeed. This destabilizing contribution is still present in airplane in airplane mode. The biggest contributor
to the derivative is however still the horizontal stabilizer system which is stabilizing.

According to Padfield [2] the derivative should decrease in magnitude when the proprotors are tilted towards
airplane mode, because the destabilizing effects of the in-plane rotor forces increase. From subfigure (d) it
can be concluded that M increases in magnitude with nacelle angle for the 6-DoF model. The destabilizing
effect of the rotor indeed increases when rotating towards airplane mode, but so does the trim angle of
attack. This means that the horizontal stabilizers create more lift and as a result the stabilizing contribution
to M, increases as well. This stabilizing effect by the horizontal stabilizers is bigger than the destabilizing
effect of the rotor causing the negative slope. One possible explanation for this difference could be the
difference in modelled rotor hub. The FXV-15 is modelled with a gimballed rotor hub which has usually
larger in-plane forces than an articulated rotor hub [2].

4.2.2. Lateral/directional Stability Derivatives

In this subsection, the lateral /directional stability derivatives are discussed. These are the derivatives with
respect to the lateral velocity component v, the roll rate p and the yaw rate r. Similarly as the longitudinal
stability derivatives the lateral /directional derivatives will be compared with the GTRS model and FLIGHT-
LAB model data. The 3-DoF model data is not included in the comparison as this model is limited to
symmetrical motion.
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Figure 4.14: Stability derivative Y,, in helicopter mode, conversion mode and airplane mode, and as a function of nacelle angle
n

Stability Derivative Y,

The direct side force damping derivative Y,, derivative is depicted in Figure 4.14. The behavior of this deriva-
tive should be similar to the drag damping derivative X, and the heave damping derivative Z,,, and thus
should always be negative in order to have stable side force damping [2]. Subfigure (a), (b) and (c) show that
this requirement is satisfied at a 90, 60 and O nacelle angle for all three models. During hover in H-mode the
derivative is mainly determined by the rotor system which has a stabilizing contribution. There is however
also a small destabilizing contribution from the wings due to rotor wake induced velocities. This contribution
is significantly higher in hover when the nacelles are at a 80 degrees inclination. This causes an unstable side
force damping at these conditions as seen in subfigure (d). When the airspeed increases the contribution of
the vertical stabilizers increases which is stabilizing as well. The GTRS model shows an unexpected bump
in the helicopter mode plot at 40 kts, which we also saw for the M,, derivative. The GTRS data shows that
both the rotor and vertical stabilizers are stabilizing at this airspeed, but their contribution to the derivative
is much smaller than at other airspeeds. It is hard to find an explanation for the bump in the graph and
unfortunately no explanation about the data is given by Ferguson [6]. In conversion and airplane a similar
linear trend is observable. The contribution of both the rotor system and the vertical stabilizers increases
linearly with airspeed.

Besides the instability in hover, subfigure (d) shows that the Y, derivative is barely affected by the nacelle
angle. At high airspeeds a small decrease in value can be observed. The influence of the vertical stabilizers
is barely affected by the nacelle angle, meaning that this small decrease is due to the rotor system side force
component which increases with nacelle angle.

Stability Derivative Y,

In Figure 4.15 the Y,, derivative has been plotted. Similar to X,, the inertial trim velocity component w,
contributes to the derivative and is also included in the graph. In helicopter mode the aircraft is trimmed
at a negative angle of attack, which also means that wy is negative. As airspeed increases the velocity
vector increases in magnitude and the angle of attack decreases resulting in an exponential grow of the wy,
component. This is also clearly visible for all three models in subfigure (a). The differences between the
models are mainly due to the differences in trim angle of attack. For example, the trim angle of attack of
the GTRS model at 100 kts is slightly lower than for the 6-DoF model (-12.6 versus -11.2 degrees). This



4.2. The Stability Derivatives 85

Stability derivative Y

(a) H-mode (n = 90) C mode (n = 60)

Legend (a), (b) & (c)

d —%—6-DoF Model
5f —A-FLIGHTLAB Model
-F-GTRS Model

L L L L L L L L L i
0 10 20 30 40 50 60 70 80 90 100 80 90 100 110 120 130 140 150 160

=)

&

Airspeed [kis] Airspeed [kis]
(c) A-mode (n = 0) d) 6-DoF Derivative
1z Legend (d)
=V =0 kts
6 B~V = 40 kis
4 AV = 80 kis
2 =¥=V =120 kts
V =160 kis
) =9~V = 200 kis
4 -~V =240 ks
V =280 kts
-?20 M‘to 1{;0 12;0 2(;0 zéo 2<‘10 2(;0 2;0 -690 86 7‘0 60 5‘0 40 3‘0 20 16 0
Airspeed [kis] Nacelle angle [deg]

Figure 4.15: Stability derivative Y}, in helicopter mode, conversion mode and airplane mode, and as a function of nacelle angle
n

means that the w, component of the former model is obviously significantly bigger than the latter, which
explains the somewhat steeper curve of the GTRS model.

In conversion mode Y}, decreases with airspeed for the same reason as we saw in helicopter mode. The
graphs all start at a positive value but cross the zero border at some point. At this point the angle of attack
changes from positive to negative. For every model this moment happens at a different airspeed, hence the
differences between them. Because the angle of attack is not constantly increasing in magnitude a linear
trend can be observed instead of a exponential one. The 6-DoF curve is significantly higher than the GTRS
curve. This could be expected because we saw in section 3.4 that the trim angle of attack at a 60 degrees
nacelle angle of the model was also significantly higher than for the GTRS model. In airplane mode the
three models show a lot of overlap.

As mentioned before, the angle of attack of the aircraft increases when the nacelles are tilted towards airplane
mode while the airspeed is kept constant. Consequently, w, increases hence the positive slope observable in
subfigure (d). At zero airspeed wy is obviously zero thus the graph merely shows the aerodynamic effects of
Y, which are relatively small.

Stability Derivative Y,

The inertial velocity component uy completely dominates the Y, derivative, making the aerodynamic effects
almost negligible, as shown in Figure 4.16. In all flight modes a strong linear relationship with airspeed can
be observed and the results of the three models almost perfectly coincide. When the nacelles are rotated
towards airplane mode the contribution of the rotor system to Y, increases. However, the inertial effect of
Ug is very dominant thus although there is small increase in value with decreasing nacelle angle this is barely
visible in subfigure (d).

Stability Derivative L,

One of the two most important sideslip derivatives is L, also called the dihedral stability derivative. If the
aircraft is disturbed by a positive v perturbation the aircraft is deflected from its path to the right. This
means that a negative roll response is required to bring the aircraft back on its path. Therefore it is desirable
for stability that L,, is negative. This is the case for both convectional helicopters and airplanes, thus logically
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Figure 4.16: Stability derivative Y, in helicopter mode, conversion mode and airplane mode, and as a function of nacelle angle
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this also applies to tiltrotor aircraft. The L, curves of the models are shown in Figure 4.17. From subfigure
(a) it can be concluded that the derivative is indeed negative in helicopter mode. The GTRS derivative curve
has an unexpected peak at 40 kts which we also saw for the M,, and Y,, derivatives. For helicopters the main
rotor is usually the main contributor to L, [2]. This is also the case for the tiltrotor in H-mode according to
the 6-DoF model results. The rotor contribution is the most dominant, while the vertical stabilizers also have
a significant contribution. Both contributions are stabilizing. The rotor contribution remains fairly constant
with airspeed, while the contribution of the vertical stabilizers increases. For the GTRS and FLIGHTLAB
model curves a clear linear decrease with airspeed is found. For these models the contribution of the vertical
stabilizers might be larger.

In conversion and airplane mode a similar linear decrease with airspeed is found for all three models. The
vertical stabilizer is in these modes the main contributor to L,,. The contribution of the rotor decreases when
the nacelle are tilted towards airplane mode. The thrust vector of the rotor which creates a rolling moment
in helicopter mode is parallel with the rolling axis in airplane mode, meaning that the induced rolling moment
vanishes. The contribution of the vertical stabilizers increases with nacelle angle while the rotor contribution
decreases with a similar magnitude.. This explains why the derivative is roughly constant with nacelle angle
as seen in subfigure (d).

Stability Derivative L,

The roll-damping derivative plays an important roll in the short-term handling qualities about the x-axis. A
positive perturbation in p should result in a restoring negative rolling moment L, meaning that L, should
be negative. The roll-damping derivatives have been plotted in Figure 4.18. Although this derivative is in-
sensitive to speed for a conventional helicopter, the speed highly affects the tiltrotor roll damping derivative
in all flight modes [4]. In subfigure (a) a clear decrease in L, with airspeed is visible. In helicopter mode
the two rotors are the dominant contributors to L,. The contribution from the wings becomes increasingly
more important with increasing airspeed which explains the decrease of the L, curves.

In conversion mode the contribution of the wings becomes more important while the contribution of the
rotor system decreases. This happens because the rotors become less aligned with the airflow resulting
from a rolling motion. At a nacelle angle of 60 degrees the rotor system however still remains the biggest
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Figure 4.17: Stability derivative L, in helicopter mode, conversion mode and airplane mode, and as a function of nacelle angle
n

contributor. According to Lu et al. [4] and Berger et al. [3] the contribution of the rotor system is much
smaller than the contribution of the wing in airplane mode. Johnson [23] however states that the rotor
contributions to the roll damping derivative during cruise is of the same order as the contributions of the
wings. Both the H-force and torque of the rotors have the same sign and contribute significantly to the
roll damping in airplane mode. The latter claim is more in alignment with the results found for the 6-DoF
model in A-mode. Although the contribution is the biggest in A-mode, the contribution of the rotor is still
of the same order of magnitude. Even though the influence of the rotors on L,, is significant the entire flight
envelope, its decrease of influence with nacelle angle is clearly visible subfigure (d). The derivative decreases
in absolute value with decreasing nacelle angle.

Stability Derivative L,

The stability derivative L, couples the roll and yaw motions together with N,,. This derivative is positive in
helicopter mode, mainly due to the contribution of the rotor system. Why the rotors have a positive contri-
bution to N, can be explained with the help of Figure 4.19. If the yaw rate r is positive the advancing blade
of the left rotor has a higher velocity than the advancing blade of the right rotor. Therefore, the left rotor
creates more lift than the right rotor, causing a positive rolling moment to the right. In Figure 4.20(a) the
derivatives of the different models in helicopter mode are shown, which confirms that L, is indeed possible
in helicopter mode. The models show a very similar trend in this configuration. In hover the roll response
to a perturbation in 7 is quite small, but as soon as the airspeed increases the derivative stabilizes around a
value of 0.35. The contribution of the rotor decreases with airspeed while the the contribution of the vertical
stabilizers increases at the same rate.

When the nacelles are tilted the rotor response to a positive yaw rate becomes a negative rolling moment
instead of a positive one. Subfigure (b) shows that L, is already negative at a nacelle angle angle of 60
degrees. There are some differences between the models in this configuration. The FLIGHTLAB curve
decreases with airspeed while the other two models show an increase. For the 6-DoF model the negative
rotor contribution significantly decreases when airspeed increases, causing an increase in L.

In airplane mode the opposite happens. The FLIGHTLAB curve is increasing while the other two curves are
decreasing. The 6-DoF curve shows quite a steep decrease with airspeed. The wing and vertical stabilizers
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» Direction of airflow
> Direction of rotor rotation

Figure 4.19: The in-plane velocity distribution of the tiltrotor in helicopter mode with a positive yaw rate leads to a positive L,
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Figure 4.20: Stability derivative L, in helicopter mode, conversion mode and airplane mode, and as a function of nacelle angle
n

have a positive contribution to Ly, but the negative contribution of the rotors is dominant for the 6-DoF
model. The influence of the rotors increases significantly with airspeed and this causes the decreasing L,,.
In subfigure (d) the decrease of the positive rotor contribution with nacelle tilt is clearly visible. When the
nacelles are almost in airplane mode the derivative starts increasing again. This mainly happens due to the
increase in angle of attack with decreasing nacelle angle. An increase in angle of attack means that the lift
force created by the wings increases and thus also its positive induced resultant moment.

Stability Derivative N,

According to Padfield [2], the weathercock stability derivative N,, is critically important for both static and
dynamic stability. This derivative basically defines the ability of the aircraft to turn in to the wind in order
to maintain directional equilibrium [33]. Together with L, they form the most important sideslip derivatives.
A positive perturbation in the lateral velocity component v should result in restoring positive yawing mo-
ment meaning that N,, should be positive. Up to moderate airspeeds the derivative should be linear with
airspeed [2]. Looking at Figure 4.21(a) this is indeed the case for the 6-DoF and FLIGHTLAB model in heli-
copter mode. The GTRS model once again shows a unexpected unstable derivative at 40 kts. The negative
weathercock stability derivative value at this airspeed would mean that the aircraft is directionally/laterally
unstable. For a helicopter this derivative is mainly determined by the tail rotor, the vertical fins and the
fuselage. Since a tiltrotor does not have a tail rotor the latter two remain. Additionally, the rotors of the
tiltrotor have a relatively large moment arm compared to a conventional helicopter which means that they
could also have a significant contribution to N,,. The results of the 6-DoF model in helicopter mode indeed
show that the weathercock stability derivative is dependent on the rotor system and the vertical stabilizers
which are both stabilizing. The yawing moment created by the fuselage has not been modelled in the 6-DoF
model so its contribution to N,, is missing.

In conversion mode a similar linear trend is apparent. The vertical stabilizers have a contribution of approxi-
mately 90%, while the rotor system covers the other 10%. The former has a stabilizing effect while the latter
in this configuration is destabilizing. In airplane mode the destabilizing contribution of the rotor increases to
up to 20%. While the induced negative yawing moment by the rotor system increases when the nacelles are
rotated towards airplane mode, the positive moment created by the vertical stabilizers increases as well. The
latter increases slightly more which causes an increase of N,, with decreasing nacelle angle. This explains the
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Figure 4.21: Stability derivative N,, in helicopter mode, conversion mode and airplane mode, and as a function of nacelle angle
n

increasing curves in Figure 4.21(d).

Stability Derivative N,

The second derivative that couples roll and yaw motions is the N,, derivative. The coupling effects of N,
are more significant than those of L, according to Padfield [2]. For a conventional helicopter we know that
N, is negative. Large negative values of N,, causes strong adverse yaw effects. Adverse yaw is the tendency
to yaw into the opposite direction of the roll. In Figure 4.22(a) the N, curves of the three different models
in helicopter mode are compared. The tiltrotor derivative is positive for all models, which is different than
what we know from conventional helicopters. The rotors and vertical stabilizers mainly determine the value
of N, and both have a positive contribution in H-mode. The 6-DoF model curve shows significantly lower

values of Ny than the other two models.

In conversion mode the derivative is negative instead of positive. The rotors have a negative contribution to
Ny, and mainly determine its value. The wings also have a negative contribution while the vertical stabilizers
contribution is positive. The FLIGHTLAB and 6-DoF derivatives are roughly constant with airspeed while
the GTRS shows quite a strong increase. In airplane mode the contribution of the vertical stabilizers has
increased. The negative contribution of the rotors and the positive contribution of the vertical stabilizers
grow at the same rate with airspeed which explains the roughly constant N,,. In subfigure (d) it is clearly
visible that the rotor contribution decreases in value when the nacelles are tilted towards A-mode. Up to 30
degrees N,, decreases due to the rotor influence. Thereafter the rotor contribution increases again, which is
why N, increases as well.

Stability Derivative N,

The yaw damping derivative is depicted in Figure 4.23. A positive yawing rate r should create a negative
restoring yawing moment N, thus N, should be negative. In subfigure (a) it can be seen that the yaw
damping derivative decreases linearly with speed. The GTRS model has an unstable yaw-damping derivative
at 40 kts. For a conventional helicopter the tail rotor is the main contributor to the yaw damping, especially
at low velocities. Since the tiltrotor has no tail rotor the magnitude of the yaw damping is very small at low
airspeeds causing an unstable spiral mode [3]. The stabilizing contribution of the vertical stabilizers increases
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Figure 4.22: Stability derivative N, in helicopter mode, conversion mode and airplane mode, and as a function of nacelle
angle n

when the airspeed increases.

In airplane mode yawing moment created by the rotors is almost constant with airspeed. The negative
moment created by the vertical stabilizers increases however, which explains the decrease of N, with airspeed.
The GTRS curve shows a similar rate of decrease with airspeed. The FLIGHTLAB curve remains fairly
constant. In general, when the nacelles are tilted forward the stabilizing effect of the proprotors to the yaw
damping increases as the thrust force becomes aligned with the airflow resulting from a yawing motion. This
increase in yaw damping with decreasing nacelle angle is clearly visible in subfigure (d).

4.3. The Control Derivatives

In this subsection the control derivatives of the linearized 6-DoF model are elaborated upon. The control
derivatives are shown in the B matrix of Equation 4.12 Similar to the stability derivatives the control
derivatives are analysed as a function of airspeed and nacelle angle. In order to see whether the results
make sense, they are compared to the FLIGHTLAB results [2]. All control derivatives have been converted
to the units shown in Table 4.2. Firstly the longitudinal control derivatives are analysed. Thereafter, the
lateral /directional control derivatives.

Force/control angle eg Xg, m/s?/rad

Moment/control angle e.g. My, 1/s

Table 4.2: Units of the control derivatives

4.3.1. Longitudinal Control Derivatives

In this section the longitudinal control derivatives of the XV-15 are discussed. The outcomes of the 6-DoF
model are compared with those of the FXV-15 [2]. The collective stick and longitudinal movement of the
cyclic stick provide the longitudinal control in the XV-15. Collective pitch control is used in helicopter mode
to ascent or descent while longitudinal cyclic control is used to alter the tip-path plane and move the aircraft
horizontally. When the nacelles are tilted towards airplane mode the longitudinal cyclic control vanishes
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Figure 4.23: Stability derivative N, in helicopter mode, conversion mode and airplane mode, and as a function of nacelle angle
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and elevators are used instead for pitch control. The longitudinal derivatives with respect to the blade-
root collective pitch angle 8, the longitudinal cyclic angle 8,5 and the elevator deflection &, are discussed
respectively.

Control Derivatives with respect to 6,

By increasing the blade-root pitch angle 8, the total average blade pitch increases. This means that the
blades create more lift and thus the total rotor thrust force is increased. In Figure 4.24 the longitudinal
derivatives with respect to 8, are shown. On the left side the derivatives are shown as a function of airspeed
with the nacelle angle kept constant. The results for both the 6-DoF model and the FLIGHTLAB model are
shown in H-mode (n = 90deg), C-mode (n = 60deg) and A-mode (n = 0deg). In helicopter mode the
thrust vector points in negative Z-direction. The thrust force increases when 6, increases, so Zg should be
negative in H-mode. This is indeed the case, as shown in subfigure (b1). The derivatives for both models
look very alike. At a nacelle angle of 60 degrees the Z-component of the thrust force is still dominant. When
the nacelles are however rotated to A-mode, the thrust is more aligned with the X-axis. This explains the
smaller value of Zg and bigger value of Xy in this configuration. On the right figures the same derivatives
of the 6-DoF model are shown as a function of nacelle angle with the airspeed V kept constant. The decrease
of Zg, and increase of Xq_ is also clearly visible in these figures.

The My, derivative seems to be almost independent of airspeed, but quite dependent on nacelle angle.
The derivative is positive in H-mode, but becomes increasingly negative with decreasing nacelle angle. An
increase in thrust results in a positive pitching up moment when 7 equals 0 degrees. When the nacelles
are rotated the moment arm of the thrust force decreases until the line of action passes through the centre
of gravity of the aircraft and the induced moment equals zero. When the nacelles are rotated further and
negative pitching moment is created and while the moment arm increases My, decreases.

Control Derivatives with respect to 6,

Symmetric longitudinal cyclic control is used in helicopter mode to move the aircraft horizontally. Simul-
taneously increasing the longitudinal cyclic angle on both rotors causes the tip-path plane to tilt forward
resulting in an increase in forward speed [31]. This means that the resultant force along the X-axis increases,
thus Xg _ should be positive. In the top left corner of Figure 4.25 it can be seen that this is indeed the
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Figure 4.24: Control derivatives with respect to the collective pitch angle 6,

case for both models in H-mode. The derivative appears to be almost independent of airspeed. At a nacelle
incidence of 60 degrees we suddenly see a negative value for this derivative. An increase in 0,5 still causes
the thrust vector to tilt forward but simultaneously the total thrust force drops. This results in a negative
derivative for the 6-DoF model in this configuration and the FLIGHTLAB curve shows similar behavior. In
airplane mode the derivative is negative at low airspeeds but increases with airspeed. The derivatives with
respect to 85 are however meaningless in airplane mode, because the longitudinal cyclic angle is fixed in

this configuration.

By tilting the tip-path plane forward in helicopter mode the Z-component of the the rotor which is negative
decreases in magnitude. This causes the resultant Z-force to increases which means that Zg, _ is positive. A
clear increase in value with airspeed is seen in subfigure (bl). The results for this derivative in helicopter
mode and conversion mode look very similar. In airplane mode the models show clearly different results.
These curves are however meaningless because 0,5 is fixed in A-mode. Graph (b2) shows that the derivative
is almost constant with nacelle angle at low speeds. At higher speeds in a low nacelle angle configuration a

small decrease can be observed.

Looking at the My, _ curves we see that a negative pitching is induced when 63, increases. This pitching
moment is approximately constant with airspeed but gets smaller when the nacelles are rotated towards
A-mode. When the nacelles are almost aligned with the wings the derivative decreases again.
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Figure 4.25: Control derivatives with respect to the longitudinal cyclic angle 6,

Control Derivatives with respect to 6,

The longitudinal control derivatives with respect to the elevator deflection are shown in Figure 4.26. Down-
ward deflection of the elevator is defined as positive. The 6-DoF and FLIGHTLAB model X;, derivative
clearly deviate a lot; the FLIGHTLAB derivative is approximately a factor 10 larger. The drag of the elevator
is not incorporated in the 6-DoF model which is most likely the reason for this distinction. This means that
the change in lift force created by the elevator is the only contributor to this derivative. The change in lift
force due to the elevator increases with airspeed, which is also clearly visible in the graphs. The following
relationship for Zs, can be derived from the 6-DoF model:

iz _ 1,
dae_ zp hs

dc
Shsﬁ'hs COS Uy (4.20)
e

The derivative grows proportionally with V2. The same goes for the Ms, derivative. The nacelle angle has
no influence on the derivative at all.

4.3.2. Lateral/directional Control Derivatives

The lateral /directional control derivatives will be analysed in a very similar manner as the longitudinal ones
which were treated in the previous section. In helicopter mode, differential collective pitch 8y4 is used to
control roll and differential cyclic pitch ;5 to control yaw. In airplane mode the ailerons and rudders are
used to control roll and yaw respectively. All lateral/directional control derivatives with respect to these four
controls are discussed in this section.
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Figure 4.26: Control derivatives with respect to the elevator deflection angle &,

Control Derivatives with respect to 6,

Differential collective 8,4 is used to generate a rolling motion in helicopter mode. An increase and decrease
of the collective pitch on the right and left rotor respectively is defined as a positive differential collective
control input. The top two figures of Figure 4.27 represent the Y, derivative. A clear difference in derivative
magnitude between the models can be observed. The FLIGHTLAB derivative is between a factor 10 and
100 larger than the 6-DoF derivative. The FLIGHTLAB model has implemented a gimballed rotor hub while
the 6-DoF assumes an articulated rotor hub. The lateral hub forces are significantly higher for a gimballed
hub compared to an articulated hub [2], which could explain this difference in magnitude.

The middle two figures of Figure 4.27 show the rolling moment as a response to a differential collective
input. If the right rotor collective is higher than the left rotor collective the right rotor creates more lift.
This leads to a negative rolling moment L which is why Lg , is negative. When the nacelles rotate towards
A-mode the derivative significantly decreases in magnitude. The FLIGHTLAB derivative is approximately
three times larger than the 6-DoF model derivative. This difference is also most likely due to the higher
in-plane forces of the gimballed rotor hub which also create a significant rolling moment.

The bottom two plots show the yawing moment due to differential collective derivative Ng ,. This derivative
has a similar order of magnitude as Lg , but is small in H-mode and large in A-mode. This makes sense
because in airplane mode the thrust vector is more aligned with the yawing motion. This derivative however
appears to be less dependent on airspeed, concluding from the horizontal trends in the left graph.
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Figure 4.27: Control derivatives with respect to differential collective pitch angle 644

Control Derivatives with respect to §,

In airplane mode the rolling motion of the XV-15 can be controlled using the ailerons. If the right aileron is
deflected downward and the left aileron upward &, is defined positive. In the top left corner of Figure 4.28
Ys, is shown as a function of airspeed. The lateral force created by aileron deflection is approximately zero
for straight wings [34], but since the XV-15 has a swept wing this derivative is nonzero. There are some clear
differences between the 6-DoF and FLIGHTLAB derivative. First of all, in hover the FLIGHTLAB derivative
is zero while the 6-DoF derivative is nonzero. The flight speed is equal to zero but the rotor wake interference
with the wing induces aerodynamic forces. Therefore it makes perfect sense that the 6-DoF derivative is
nonzero. When airspeed increases the FLIGHTLAB derivative increases wile the 6-DoF derivative decreases.
The Y-component of the lift forces created by the ailerons has a negative contribution to the derivative
which is why the 6-DoF derivative is negative. The drag of the aileron is not incorporated in the 6-DoF
model but most likely is in the FLIGHTLAB model. This could be a possible explanation for the differences
in sign between the models. Nevertheless, the influence of Y5, on the flight dynamics is very small and often
is usually neglected [34].

A much more important derivative is Ls,. As mentioned earlier, a positive aileron deflection means that the
right aileron is deflected downward and the left aileron upward. The result of this deflection is that the right
wing will produce more lift than the left wing, resulting in a negative rolling moment L. The derivative can
analytically be defined as:

SL  8C, 1

= _— = 4.21
%~ §qil ~ 8, 27 T4T@ (4.21)
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This equation shows that L, decreases proportionally with V2, which is also clearly visible in subfigure (b1)
for both models. The magnitude of the derivative is also dependent on %, which is defined as the aileron
a
effectiveness. The magnitude of % strongly depends on the dimensions and the spanwise location of the
a
ailerons [34]. Since both models consider the XV-15 as reference aircraft the aileron effectiveness should
be equal. The fact that there is a clear distinction between the steepness of the curves, primarily at high

airspeeds indicates that most likely different values for the aileron effectiveness are used.

If the lift over the right wing increases the drag increases on that side as well, while both aerodynamic forces at
the left wing decrease. Consequently, the right wing is pulled back and a positive yawing moment is created.
If the pilot wants to turn left he/she deflects the lateral cyclic stick to the left which creates a positive
aileron deflection. This initiates a negative rolling moment but simultaneously a positive yawing moment.
This unwanted yawing response of the aircraft is called 'adverse yaw' Since the drag of the aileron is not
modelled in the 6-DoF model this adverse yaw effect is not expected to be visible in simulations. In subfigure
(c1) the yaw derivative with respect to aileron deflection Nj_ is plotted as a function of airspeed. The 6-DoF
derivative is small compared to the FLIGHTLAB one which is expected since it is only dependent on the lift
force created by the aileron. The behavior of the FLIGHTLAB derivative is also somewhat unexpected. The
derivative appears to be heavily dependent on the nacelle angle and increases from negative to positive in
C-mode and A-mode.
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Figure 4.28: Control derivatives with respect to the aileron deflection angle §,
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Figure 4.29: Control derivatives with respect to differential longitudinal cyclic angle 0,54

Control Derivatives with respect to 6,

In Figure 4.29 the derivatives with respect to differential longitudinal cyclic ;54 are plotted. Differential
longitudinal cyclic is used at low airspeeds to control yaw. An increase and decrease of the longitudinal
cyclic on the right and left rotor respectively is defined as a positive differential longitudinal cyclic input.
In the top two figures Yy, . is shown. Similar to Yy , there is huge discrepancy between the two models.
The FLIGHTLAB derivative is a factor 10-100 larger in magnitude. The most logical explanation for this
difference is the different hub incorporated in the models. The gimballed hub modelled in FLIGHTLAB is
expected to create larger in-plane forces than the articulated hub used in the 6-DoF model.

The Lg, , curve shows some similarities between the models. In helicopter and conversion mode the deriva-
tive is positive and increases with airspeed. When the right rotor increases its longitudinal cyclic its thrust
vector is tilted forward while the left rotor thrust vector is tilted aft. An increase in longitudinal cyclic
however decreases the total force created by the rotor. Therefore the left rotor creates a larger thrust force
than the right rotor which results in a positive rolling moment. In airplane mode the longitudinal cyclic angle
is fixed so the airplane curves can be neglected. From graph (b2) it can be concluded that the derivative
is somewhat constant as a function of nacelle angle. At high nacelle angles a small decrease can be observed.

Since the main purpose of differential longitudinal cyclic is to control the yawing motion of the aircraft Ny, _,
is its primary derivative. When a positive 8154 input is initiated the thrust vector on the right side is tilted
forward and decreases in magnitude. Simultaneously the thrust vector on the left rotor is tilted aft and
increases in magnitude. In helicopter mode the thrust vectors have a negative X-component thus both the
tilting and change in magnitude of the vectors contribute to a negative yawing moment. It can be seen that
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the curves of both models for Ny, , are indeed negative in H-mode. When the nacelles are tilted forward the
thrust vectors are also tilted forward resulting in a positive X-component. The consequence of this change
in sign is that the change in thrust magnitude of the rotors now has a positive contribution to Ng,_,. The
tilting of the vectors still has a negative contribution to the derivative but the former mentioned contribution
is larger, resulting in a positive Ny, _, after a certain nacelle tilt. This effect is also clearly visible in subfigure
(c2). At low nacelle angle configurations the derivative decreases again, but Ny, _, is less meaningful at low
values of 1 because differential longitudinal cyclic control is phased out towards A-mode.

Control Derivatives with respect to 6,

In airplane mode directional control of the XV-15 is achieved using rudders. The XV-15 has two vertical
stabilizers which both have a rudder mounted on the top half. A positive rudder deflection creates a
lateral force in positive Y-direction. Therefore Y5 is positive. The derivative (before normalization) can be
computed using [34]:

~pV2s (4.22)

This equation shows that the derivative grows proportionally with V2 and this is also clearly visible in
Figure 4.30 (al). The FLIGHTLAB curve is a bit steeper than the 6-DoF model curve which indicates that

a different 6—L is used. A similar difference is visible for the Ls_ derivative. This is not surprising since Ls,

N
(before normalization) can be approximated using:

L5r = YSrdz,vs (423)

We know Y5 _ is positive and since the vertical stabilizers are located higher than the body centre of gravity
d s is also positive. Therefore Ls_is logically also positive. Since the rudders are used for yaw control N,
is the primary rudder derivative. This derivative (before normalization) can be approximated using:

N8r = _Yé'rdx,vs (4'24)

Both Y5, and dy s are positive so Ng_ is negative. Furthermore, from the three graphs on the right hand
side of Figure 4.30 it can be concluded that the nacelle angle does not affect the rudder control derivatives.
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Natural Eigenmodes

The dynamic stability of an aircraft can usually be described by two different subsets. The first subset
contains the longitudinal motions, which can be described using the surge (u), heave (w) and pitch (q)
states of the aircraft. The second subset contains the lateral/directional modes, described by the sway (v),
roll (p) and yaw (r) states. The coupling between these two subsets is usually small for conventional aircraft
and can thus be neglected. Helicopters are much more affected by this coupling, primarily at low speeds.
Nevertheless, for describing the dynamic modes of both type of aircraft the assumption that the coupling be-
tween the subsets is small is usually made. This allows the simplification of the linearized equations of motion.

For a tiltrotor the uncoupling of the two types of modes is also assumed to be valid. In section 5.1 the
longitudinal eigenmodes are analysed. The variation of the eigenvalues with airspeed and nacelle angle are
investigated and how this variation affects the stability of the aircraft. In section 5.2 a similar analysis is
conducted on the lateral /directional modes. To verify the validity of the uncoupling of the modes the results
of the full linear model are compared with the uncoupled models in section 5.3. Furthermore, the results of
the 6-DoF model are compared with data from the FLIGHTLAB model for validation purposes.

5.1. Uncoupled Longitudinal Modes

It is assumed that the longitudinal eigenmodes can be described by using only the longitudinal aircraft states.
This means that the state vector can be simplified to the following form

x =[uw,6,q]" (5.1)

This reduces the full 8x8 state space system given by Equation 4.12 to the following simplified 4x4 form

Xu Xw —gcos(by) Xq—wollu Xxcor  Xxon

6; 0 0 0 1 0 0 0 ||X.on
q M, M, 0 Mq q MXCOL MXLON

Zy Zy —gsin(0y) Zg;+ugl||lw + Zxcor  Zxion || XcoL (5.2)

For the analysis of the natural modes the free response of the aircraft is of interest meaning a disturbance to
one of the aircraft states. Therefore the controls are assumed fixed and only the first matrix is of interest.
This reduces the system to the following from

X = Ax (5.3)

To analyse the stability of this system the eigenvalues have to be computed. The eigenvalues can be found
using

A-1=0 (5.4)
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The eigenvalues of the longitudinal state space model represent the phugoid, the short-period and the heave
and pitch modes. The heave and pitch mode merge together to form the short period when the airspeed

increases. Firstly, this short period will be discussed, after which the phugoid will be analysed.
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Figure 5.1: XV-15 uncoupled longitudinal eigenmodes in helicopter mode (n = 90deg)
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Figure 5.2: XV-15 uncoupled longitudinal eigenmodes in conversion mode (n = 60deg)

5.1.1. Short period

B V=160 kts

4 V=100 kts
A V=120 kts
x V=140 kts

The short period is a relatively highly damped oscillatory dynamic mode, which consists of a pitching and
heaving motion [35]. At low airspeeds in helicopter mode the short period is split up in these two subsidences.
Their eigenvalues are located on the real axis. In Figure 5.1 the eigenvalues in helicopter mode are shown. The
different dynamic modes are indicated in the figure. The real eigenvalue on the left is the pitch subsidence,
the one on the right the heave subsidence. In order to validate the results, the 6-DoF model eigenvalues of

these motions in hover are compared to the results of other models in Table 5.1.



5.1. Uncoupled Longitudinal Modes 103

05 L 0.4 od 02 01 A V=120 kts

3| | % V=140 kts
m V=160 kts
* \/ =180 kts
D> V =200 kts
25— 24 * V=220 kts
D> V =240 kts
07 O V=260 kts
il -| | % V=280 kts

08 Short period

08

[-09 ‘ B

05— Phugoid -

i i |
2 18 16 14 12 -1 08 06 04 02 0

Re(A)(1/s)

Figure 5.3: XV-15 uncoupled longitudinal eigenmodes in airplane mode (n = 0deg)

Table 5.1: Pitch and heave subsidence eigenvalues validation in hover

Model Pitch subsidence Heave subsidence
6-DoF model -0.703 -0.227
3-DoF model -0.794 -0.212
GTRS model[6] -0.373 -0.201
FLIGHTLAB model [2] | -0.681 -0.141
Flight test [4] -1.320 -0.105

The pitch subsidence is stable for all models. The eigenvalue of the 6-DoF model is quite comparable to the
3-DoF model and FLIGHTLAB eigenvalue. The GTRS model value is significantly smaller while none of the
models come really close to the flight test value. The heave subsidence eigenvalue looks more comparable
between the models. The FLIGHTLAB model eigenvalue comes closest to the flight test data. To analyse
what causes the differences between the results the modes can be approximated analytically. This allows us
to see which derivatives affect the modes and get a better physical understanding of the results. The short
period typically occurs so quickly that the velocity of the aircraft is approximately constant throughout the
motion [35]. For this reason u can be set equal to zero. This allows us to simplify the linear state space
model to:

w _ Zy Zgtugl||w (5.5)
q M, Mg ||4g
This leads to the following characteristic equation for the short period:
lﬁp —(Zw+ M)Ay + ZyMyg — Myug =0 (5.6)
Where the damping and frequency are given by:
2{spwsp = —(Zw + My) (5.7)
wé, = Z,Mg — Myuy (5.8)

The short period eigenvalues can then be computed using:
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Figure 5.4: XV-15 uncoupled longitudinal eigenmodes in airplane mode as a function of nacelle angle (V = 120 kts)

Asp = _(sp(‘)sp t (‘)sp,’ 1- zszpi (5-9)

In order to verify whether this approximation is valid for tiltrotor aircraft the numerical eigenvalues are
compared with the approximated eigenvalues. This is done for different combinations of V and 1. The
results are shown in Table 5.2. In the last two columns of the table the errors of the approximations are
shown. It can be concluded that the approximation is not completely valid in hover. The approximation
equation results in two eigenvalues which are close to the heave subsidence eigenvalue but far away from the
pitch subsidence eigenvalue. This is not surprising, while we know that both modes are critically damped,
which means that the damping ratio { = 1. Substituting this in Equation 5.9 leads to A5, = -wg),, which
gives only one eigenvalue. Instead of using Equation 5.9, the following approximation equations should be
valid for the heave and pitch subsidences [2]:

Ay =M, (5.11)

This means that the subsidence eigenvalues can be assumed approximately equal to their damping derivatives.
Derivatives Z,, and M, equal -0.226 and -0.284 respectively in hover. This shows that the heave damping
derivative very accurately represents the heave subsidence (-0.227). The pitch subsidence (-0.703) has a lot
more damping than the pitch damping derivative would suggest. The relatively low value of M results in
translational velocities building up during pitching motion, resulting in a strongly coupled pitch-surge mode
[2]. Going back to Table 5.1 we saw that the GTRS heave mode eigenvalue in hover equals -0.373, while
a value of -0.3017 was found for M. According to this data there is not that much coupling between the
pitch and surge mode as the 6-DoF model results would suggest. However, it should be mentioned that the
GTRS data are extracted from two different references [12][6], meaning that the model setup could be not
completely similar. When the airspeed is nonzero and the modes are coupled Equation 5.9 leads to quite
accurate results, with errors below 10%. This shows that the short period is indeed mainly dependent on
Zy, My, and M,.

A sensitivity analysis on the stability derivatives has also been conducted for all dynamic modes. The results
of this analysis can be found in Appendix D. Each derivative of the 4x4 reduced system has been varied
from 0 to twice the value of the original. The effect of this variation on the frequency and damping of each
mode has been plotted. The purpose of this sensitivity analysis is to shows which derivatives are the most
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Table 5.2: Comparison of exact and approximation short period eigenvalues

n [deg] Airspeed [kts] Ay, (model) Asp (approximation) error Re(Asp) [%] error Im(Agy,) [%]
90 0 -0.703, -0.227 -0.287, -0.223 138.2 1.7
90 100 -0.628 £ 1.2871 -0.630 £ 1.228i 0.4 45
60 100 -0.713 £ 1.907i -0.694 + 1.836i 2.6 3.7
60 140 -0.800 + 2.380i -0.784 + 2.370i 21 0.4
0 140 -1.043 £ 2.1341 -1.051 £ 2.019i 0.8 5.4
0 240 -1.702 £ 2.7441 -1.724 £+ 2.781i 13 1.4

prominent for each mode [36]. The derivatives which are mainly determined by inertial effects such as Z,
are left out of this analysis. The variations in short period frequency and damping due to the variation of the
derivatives are shown in Figure D.1 and Figure D.2. From the graphs showing the derivatives with respect
to u it can be concluded that the short period is indeed almost independent on variations in u. The graphs
verify that Z,,, M,, and M, are the most important derivatives for the short period. Primarily the effect
of M, on the frequency is very dominant at high airspeeds. This is not surprising when we look back at
Equation 5.8; the contribution of M,, to the frequency is amplified by u,.

In general, from the eigenvalue figures and Table 5.2 it can be concluded that the frequency of the short
period increases with airspeed. The damping of the modes behaves less predictable with airspeed. In heli-
copter mode (Figure 5.1) and conversion mode (Figure 5.2) the damping decreases slightly with airspeed.
In airplane mode (Figure 5.3) the damping increases slightly with airspeed. The more significant jump in
damping between 120 and 140 kts can be explained by looking back at the M,, derivative, which also jumped
from approximately -0.75 to -0.6 between these speeds and then remained constant with increasing airspeed.

Lastly, the variation of the short period eigenvalues with decreasing nacelle angle is shown in Figure 5.4.
The airspeed is kept constant at 120 kts. This speed has been chosen because it has the largest range
of possible nacelle angle configurations at which a trim solution exists. According to the 6-DoF model
conversion corridor the XV-15 can be trimmed at 120 kts in a 80deg nacelle angle configuration as well as
in a 0Odeg configuration. The figure shows that at high nacelle angles the short period frequency increases
when the rotors are tilting towards airplane mode. It can be determined from Figure 4.12 that the incidence
static stability derivative M,, decreases with nacelle angle up to 40 degrees after which it remains somewhat
constant. This is also the point at which the frequency in Figure 5.4 stops increasing rapidly. The damping
ratio of the short period is less affected by the rotations of the rotors. Along the n range the damping is
constantly between 0.3 and 0.4 at an airspeed of 120 kts.

5.1.2. Phugoid

The phugoid is an oscillatory mode with a variation of airspeed, pitch angle and altitude over time [35]. The
mode has a large period because of which the angle of attack remains almost constant over time. There is a
very slow interchange between kinetic and potential energy during the mode, while the aircraft attempts to
restore the steady horizontal equilibrium state. From Figure 5.1 it can be concluded that in hover the phugoid
is unstable. To validate this conclusion, the hover eigenvalues are compared with results from other models
in Table 5.3. We see that indeed the phugoid is unstable in hover for all models. Compared to the GTRS,
FLIGHTLAB and 3-DoF model the 6-DoF model most accurately reproduces the flight test eigenvalues.

When the airspeed increases the phugoid becomes stable and the damping increases. The damping increases
so fast that at approximately 70 kts the phugoid becomes non-oscillatory. This non-oscillatory behavior of
the phugoid is not something that is found in literature. To analyse what causes this behavior, a closer look
has to be taken at the derivatives affecting the phugoid. Constructing an accurate approximation equation
for the phugoid is less straightforward for tiltrotor aircraft than for helicopters or conventional airplanes.
For helicopters, the heave velocity component w contribution to the phugoid is small so all derivatives with
respect to this state are set to zero. For an airplane M,, heavily affects the longitudinal stability due to
wing and large fuselage thus its contribution to the phugoid is not negligible [2]. The same goes for the
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Table 5.3: Phugoid eigenvalue validation in hover

Hover Phugoid

6-DoF model 0.1880 + 0.4827i
3-DoF model 0.1281 + 0.4335i1
GTRS [6] 0.0810 + 0.2352i

FLIGHTLAB [2] | 0.1471 + 0.4208i
Flight test [4] | 0.2681 + 0.5132i

tiltrotor. The Lanchester approximation which is often used for conventional airplanes assumes that the
phugoid is simply an exchange between height and speed with ¢ equal to zero [28]. Derivative M,,, which
couples the phugoid with pitch is usually zero for conventional airplanes but nonzero for tiltrotors as we saw
in subsection 4.2.1. Therefore the Lanchester approximation does not hold in this case. Padfield suggests
the following approximation for tiltrotor aircraft [2]

M, g
App — (Xy — XWM_W)APh T m

M
(Zy = Zw~) =0 (5.12)
M,

The damping of and the frequency of the phugoid mode can then be computed using

My,
2th(‘l)ph =—(Xy — Xw7) (5'13)
w
> g M,
wph = —u—O(Zu - ZW—MW) (514)

Using these two expressions, the eigenvalues of the phugoid can be found

}lph = _gphwph i wph 1-— clthl (515)

In order to verify the accuracy of this approximation equation the exact values and the approximation values
are compared for all three configurations in Table 5.4. The first conclusion that can be drawn from the
equation itself is that it can not be used to approximate the hover eigenvalues. The trim horizontal velocity
component ug is zero in hover which gives an undefined solution. At low airspeeds the approximation will
also lead to inaccurate high values of the frequency. When the airspeed increases the equation becomes
reasonably accurate with errors around + 50%. Equation 5.15 is also able to approximate the critically
damped phugoid at high airspeeds in H-mode. According to the approximation the damping ratio can be
computed using:

M,
_(Xu - Xw ﬁ)

(ph = (5'16)

g My
ZJ—u—O(Zu ~Zyg

The eigenvalues of the phugoid are located on the real axis when the damping is equal to 1. According to
this equation the damping is dependent on Xy, X,,, Zy,, Z;, My, and M,,. To see which of these derivatives
causes the phugoid to become non-oscillatory the sensitivity analysis results in Appendix D can be used.
Figure D.4 shows how the damping of the phugoid varies when the stability derivatives are varied from 0 to
2 times the original value.

From the graphs it can be concluded that the high damping in airplane mode is mainly due to the large
magnitudes of X,, and M,,. The same holds for the conversion mode, although Z,, Z,, and M,, also affect
the damping. If M,, or Z,, would be one fourth of their magnitudes the phugoid would be critically damped
as well. In helicopter mode X,, is relatively small because the rotor contribution to the drag damping is
insignificant. Therefore doubling or halving its value does not do much to the damping. Derivatives Z,, and
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Table 5.4: Comparison of exact and approximation phugoid eigenvalues

n [deg] Airspeed [kts] 4,5 (model) Apn (approximation) error Re(Ayp) [%] error Im(dpp) [%]
90 0 0.1880 + 0.48271 - - -

90 100 0.1490, -0.2050 0.1865 -0.2342 25.1 14.3

60 100 -0.0418 £+ 0.2094i 0.0007 + 0.2389i 101.6 14.1

60 140 -0.0558 + 0.1247i -0.0415 + 0.1402i 25.6 12.4

0 140 -0.2731 £ 0.24791 -0.1748 £ 0.4024i1 36.0 62.3

0 240 -0.3145 £+ 0.1806i -0.2862 + 0.3061i 9.0 69.5

Z,, are also important for the phugoid damping in H-mode. However, the primary reason why the phugoid is
non-oscillatory in H-mode is not visible in the sensitivity analysis graphs. Comparing the 6-DoF M,, derivative
in H-mode with other models in Figure 4.11 leads to the observation that the 6-DoF model derivative is
the only derivative that is negative at high airspeeds. This means that the second term in Equation 5.16
increases the damping instead of decreasing it. This results in damping values reaching 1.

In Figure D.3 the sensitivity analysis results on the frequency of the phugoid are shown. In A-mode and
C-mode the frequency appears to be mostly affected by M,,, Z,, and M,, also have a contribution. In H-mode
the frequency is unaffected by the X derivatives. Derivatives Z,, Z,,, My, and M,, all affect the wy,, according
to the approximation:

(5.17)

g M,
Wpp = ]—U—E(Zu —ZWM—W)

(5.18)

The pitch damping derivative M is not considered in the approximation equation but significantly affects
the phugoid frequency at low airspeeds in H-mode according to the sensitivity analysis plot.

The variation of the phugoid eigenvalues with nacelle angle is shown in Figure 5.4. The airspeed is kept
at 120 kts while the nacelles are tilted from 80 to O degrees. The fact that the phugoid is oscillatory at
at nacelle angles between 80 and O degrees shows that the mode is only non-oscillatory at nacelle angles
very close to hover. As the nacelle are rotating away from helicopter mode the M,, derivative increases as
shown in Figure 4.11(d). At the same time the drag damping X,, becomes larger and X,, increases. The
combination of these three results in an increase in damping with decreasing nacelle angle. At the same time
the frequency of the phugoid increases slightly.

5.2. Uncoupled Lateral/directional Modes

For the analysis of the lateral/directional modes of the tiltrotor it will be assumed that the contribution of
the longitudinal states to the modes is negligible. This means that the state vector can be reduced to the
following form:

x=[v,p,¢,r]" (5.19)

Furthermore, only the free response of the aircraft will be analysed meaning that only the A-matrix is of
interest. The reduced 4x4 lateral /directional state space system is given by:

v Y, Y,+wy, gcosgy Y. —upllv
pl_ L, Ly, 0 L, D (5.20)
) 0 1 0 cos ¢ || P
T N, N, 0 N;. r



108 5. Natural Eigenmodes

The aircraft response to the lateral /directional perturbations consists of three different modes; one oscillatory
mode and two non-oscillatory modes. The non-oscillatory modes are the spiral mode and the rolling mode,
of which the former is usually unstable and the latter is heavily damped. The oscillatory mode is the Dutch
Roll mode, which consists of a combination of rolling, yawing and sideslipping. Firstly the roll mode will be
discussed, whereafter the spiral mode and Dutch Roll mode will be elaborated upon.
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Figure 5.5: XV-15 uncoupled lateral eigenmodes in helicopter mode as a function of airspeed (7 = 90deg)
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Figure 5.6: XV-15 uncoupled lateral eigenmodes in conversion mode as a function of airspeed (n = 60deg)

5.2.1. Rolling mode

The rolling mode is usually a pure roll subsidence, which is stable, highly damped and non-oscillatory.
In Figure 5.5 the lateral /directional eigenmodes in helicopter configuration are shown. The roll subsidence
eigenvalues are located on the real axis, meaning that the mode is critically damped. When airspeed increases
the roll mode eigenvalue moves to the left which indicates that the frequency of the mode increases. The
roll motion can be written in the first-order differential form of a rate response type :
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Figure 5.7: XV-15 uncoupled lateral eigenmodes in airplane mode as a function of airspeed (n = 0deg)

p=Lyp (5.21)

Which simply leads to the following approximation for the roll mode eigenvalue:

A =1, (5.22)

The accuracy of this approximation is investigated in Table 5.5. The error is below 25 % for all conditions,
so the approximation can be assumed to be reasonable. The relatively lower value of L,, shows that there is
some coupling with the sway motion, meaning that there are translational velocities building up along the
y-axis during the rolling motions. The sensitivity analysis results for the roll mode frequency are shown in
Figure D.5. As expected the figures show that the roll mode frequency is mainly dependent on the value
of L. In helicopter mode the derivatives with respect to the yawing moment N have a negligible effect on
the roll. Higher values of L, and L,, would increase the frequency of the roll mode. In conversion mode and
airplane mode the rotors are tilted so the thrust force is more aligned with the x-axis. This results in more
coupling between roll and yaw when a perturbation in p occurs. This is also clearly visible in the yawing
moment derivatives, which all have some effect on the roll mode eigenvalue.

Table 5.5: Comparison of exact and approximation roll mode eigenvalues

n [deg] Airspeed [kts] A, (exact) A, (approximation) error [%)]

90 0 -0.6691 -0.5041 247
90 100 -1.3380 -1.1976 10.5
60 100 -1.2465 -1.1111 10.9
60 140 -1.4745 -1.3127 11.0
0 140 -0.8697 -0.7397 14.9
0 240 -1.5428 -1.3457 12.8

In conversion and airplane mode the roll mode frequency similarly increases with airspeed as seen in Figure 5.6
and Figure 5.7, which mainly happens because L, increases in magnitude. In Figure 5.8 the variation of
the lateral eigenvalues with nacelle angle are shown. The airspeed is again kept constant at 120 kts.
The roll mode eigenvalue moves moves to the right on the real axis when the nacelle angle decreases. In
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Figure 5.8: XV-15 uncoupled lateral eigenmodes in airplane mode as a function of nacelle angle (V = 120 kts)

Figure 4.18(d) it is shown that L, decreases in magnitude with decreasing nacelle angle. The rotors have a
smaller contribution to the roll damping derivative when the thrust vectors are oriented more horizontally.

5.2.2. Spiral mode

The spiral mode is the second non-oscillatory mode and is determined by the other real root from the 4x4
lateral state space system. The mode is usually developed very slowly and involves a combination of roll,
yaw and sideslip. The spiral mode for conventional helicopters at low speeds is usually primarily a yawing
motion, meaning A, = N,.. Since N, is a damping derivative the spiral is a stable mode and equilibrium is
restored by the helicopter itself [2]. The dihedral effect is destabilizing the spiral mode [29], and this effect
is much more prominent for tiltrotors than for conventional helicopters. In Figure 5.5 we see a negative real
eigenvalue for the spiral mode in hover, meaning that the mode is stable. The hover eigenvalue is validated
with data from other models in Table 5.6. The GTRS model and flight test data show a stable eigenvalue
in hover as well, while the FLIGHTLAB model finds an unstable spiral mode. The differences in magnitude
between the eigenvalues are quite significant.

Table 5.6: Spiral mode eigenvalue validation in hover

Hover Roll mode
6-DoF model -0.0265
GTRS [6] -0.0008
FLIGHTLAB [2] | 0.136
Flight test [4] -0.105

To get a better understanding what could cause these differences it can help to look at a spiral mode
approximation equation. Padfield gives the following approximation equation for the spiral mode [2]

_ i(Ler —NyL;)

= 5.23
s Lp (uoNy + osLy,) ( )

with
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_ 9~ Npuo
L

Os

(5.24)
P

In table Table 5.7 the results of this approximation are compared with the real spiral eigenvalues and it can
be concluded that the approximation is quite accurate. The approximation can be simplified in hover when
ug is equal to zero, leading to

As =N, — &Lr (5.25)
Ly

The first term in this approximation is the yaw damping derivative, which is negative and thus stabilizing.
In subsection 4.2.2 it was mentioned that the yaw damping derivative for tiltrotor in H-mode is significantly
lower than for helicopters due to the absence of a tail rotor. The second term consist of the dihedral effect
L, and weathercock stability derivative N,, which are negative and positive respectively. Besides the two
sideslip derivatives the yaw-roll coupling derivative L, is included in the equation which is positive in H-mode.
This means that the second term of the approximation equation is destabilizing. For the 6-DoF model the
stabilizing N, term is bigger than the destabilizing second term, although they are not far off (-0.0883
and 0.0618 respectively). In Figure 4.2.2(a) it is shown that the 6-DoF model finds a larger N, than the
FLIGHTLAB and GTRS models, which explains why its spiral mode is the most stable. When the airspeed
increases to moderate airspeeds N, does not significantly increase, while the other derivatives affecting the
spiral do. This causes the 6-DoF model spiral mode to become unstable as seen in Figure 5.5. The peak of
instability is reached at approximately 30 kts, where the real positive eigenvalue is at its largest. Thereafter
the eigenvalue moves towards the stable axis again which mainly happens because N, starts increasing in
magnitude.

Table 5.7: Comparison of exact and approximation spiral mode eigenvalues

n [deg] Airspeed [kts] A (exact) Ag (approx eql) error [%]

90 0 -0.0265 -0.0265 0.0
90 100 0.0216 0.0229 6.2
60 100 -0.0476 -0.0484 1.7
60 140 -0.0304 -0.0305 0.2
0 140 -0.1000 -0.0991 0.9
0 240 -0.0519 -0.0527 15

In Figure 5.6 the spiral mode eigenvalues as a function of airspeed in C-mode are shown. In this configuration
the spiral mode is barely affected by the airspeed. The frequency remains fairly constant over the airspeed
range. The yaw damping in this configuration is higher than in helicopter mode and the destabilizing positive
L, in H-mode is now negative. The result is a stable spiral mode. In airplane mode (Figure 5.7) the spiral
mode is also stable but the frequency decreases with airspeed. The roll damping derivative L, increases in
magnitude with airspeed which contributes to the decrease in magnitude of A;.

Looking at the frequency plots of the sensitivity analysis results for the spiral in Figure D.7 also confirms the
influence of L, on the spiral mode. Furthermore the dependency of the spiral mode on the yaw moment N
other roll moment L derivatives is clearly visible, primarily in airplane mode. In helicopter mode the deriva-
tives from Equation 5.25 mainly influence the spiral frequency. The roll-yaw coupling derivative contribution
is amplified by the horizontal trim velocity component 1, which explains the small contribution in H-mode
and large contribution in A-mode. In Figure D.8 a sensitivity analysis on the damping of the spiral has
been conducted. In helicopter mode the destabilizing effects of N,, and L, are visible. If these derivatives
would be significantly smaller the spiral mode would be stable at 40 kts. It is also interesting to see what
would happen if L, would decrease in magnitude in airplane mode. This would result in slow roll damping
causing other angular rates and translational airspeeds to build up, eventually resulting in an oscillatory mode.
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In Figure 5.8 the spiral eigenvalues as a function of nacelle angle are shown. It can be concluded from the
figure that the spiral mode becomes more stable when the nacelles are rotated towards airplane mode. The
positive roll-yaw coupling derivative L, is destabilizing at high nacelle angles. The derivative decreases and
becomes negative when the nacelles are rotated towards 0 degrees. This contributes to the stabilization of
the spiral mode. Simultaneously the roll damping derivative L, decreases in size which also contributes to
the spiral becoming more stable.

5.2.3. Dutch roll

The Dutch roll mode is an oscillatory lateral /directional mode which consists of a combination of yawing,
rolling and sidesliping motion. The Dutch roll has quite a short period and is usually lightly damped. The
Dutch roll is often considered an undesirable mode since it interferes with the pilot’s ability to hold a trim.
Besides this, the mode is quite unpleasant for passengers [27]. In Figure 5.5 the Dutch roll eigenvalues in
helicopter mode as a function of airspeed are shown. In hover the mode is unstable which is also sometimes
the case for conventional helicopters [2]. If we compare the 6-DoF model hover eigenvalues with the the
values found by the GTRS model and the one measured during a flight test we find a similar instability.
The comparison is shown in Table 5.8. The real part of the Dutch roll eigenvalue found by 6-DoF model
is significantly lower than the other two eigenvalues. The imaginary part however comes quite close to the
flight test value.

Table 5.8: Eigenvalue validation in hover

6-DoF model | 0.0381 + 0.3028i
Flight test [4] | 0.1868 + 0.4061i
GTRS [6] 0.1866 + 1.0826i

When the airspeed increases the Dutch roll becomes a very lightly damped stable mode. The frequency
increases with airspeed, while the damping remains roughly constant. The eigenvalues in conversion mode
and airplane mode show a similar trend, as shown in Figure 5.6 and Figure 5.7. The frequency increases
linearly with airspeed.

To get a better understanding of which derivatives affect the mode it is useful to have a look at how the
Dutch roll is often approximated. Padfield proposes the following first-order approximation characteristic
equation for the Dutch roll eigenvalues for conventional helicopters[2]:

L,

22— (N, +Y,+ 9a— )Ap + (uoNy + gqLy,) = 0 (5.26)
0
with
- Nyu
oq = P00 (5.27)
Ly
The damping of and the frequency of the Dutch roll can then be computed using
_(Nr + Yv + O-di_r)

{a = > (5.28)

2\/ (UoNv + O-dLv)
wq =~ ugN, + o4L, (5.29)

Leading to the following approximation for the Dutch roll eigenvalues

Ag = —(qwq wd,fl 1 (5.30)

There are many different Dutch roll approximations used in literature for both airplanes and helicopters.
This first-order approximation for helicopters proved to be one of the most accurate ones for applications to
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Table 5.9: Comparison of exact and approximation Dutch roll mode eigenvalues using the first-order approximation equation

n [deg] Airspeed [kts] Ay, (exact) Aar (approx) error Re(A4,)[%] error Im(A4,) [%]
90 0 0.0381 + 0.30281 -0.0576 + 0.34661 251.1 14.4

90 100 -0.0749 £ 0.84991 -0.1550 + 0.8611i 106.9 1.3

60 100 -0.1040 + 1.0050i -0.1518 + 1.0501i 45.9 45

60 140 -0.1513 £+ 1.3983i -0.2238 + 1.47191 47.9 53

0 140 -0.5384 £+ 1.54161 -0.6350 + 1.6613i 17.9 7.8

0 240 -0.7405 + 2.6312i -0.8388 + 2.7812i 13.3 57

the tiltrotor, surprisingly primarily in C-mode and A-mode. The approximations are compared with the exact
values in Table 5.9. Unfortunately this approximation is unable to capture the instability of the Dutch roll in
hover. N, and Y, are both damping derivatives which are negative, so they have a positive contribution to
the damping. The third term in the numerator contains the inertial velocity component u, which is zero in
hover, so this term can be disregarded. To see which derivatives are destabilizing at low airspeeds we have
to extend the analysis to second-order terms. This leads to the following characteristic equation [2]:

2 Lr Lv UdLr O-dLr
B = (e Yy 00 = 1)/ (1= TNy + oMy + 0alu)/ (1= 20 =0 (531)
with
- Nyu
gq = 200 (5.32)
Ly
The damping of and the frequency of the Dutch roll can then be computed using
Ly Ly Ly
—(Ny + Y, +0a(GE = 72)/(1 = 745)
{a = £ 2 (5.33)
2 [ty +04Ly)/ (1 = 745)
Lpug
UdLr
wg = |ugN, +04L,)/(1 — I (5.34)
pUo

In hover, these equations can be simplified using uy = 0

_(Nr + Yv - Z_;)
(o= ——F—" (5.35)

2\/oqLy)
Wq = 4/ O_dL‘U (536)

A comparison between this second-order approximation and the exact results is made in Table 5.10. The
results show that this approximation is able to capture the unstable Dutch roll mode at low airspeeds.
According to the approximation, the Dutch roll damping is also affected by the dihedral effect L,. In sub-
section 4.2.2 it was explained that the dihedral derivative is preferably negative, which is also the case in
H-mode. According to Equation 5.35 this has a destabilizing effect to the Dutch roll mode. At low air-
speed the damping derivatives are quite small which is why the destabilizing L,, is dominant for the mode.
When airspeed increases the damping derivatives increase in magnitude while the dihedral effect remains
roughly constant. Therefore the Dutch roll is stable after a certain airspeed (approx. 20kts) is reached. At
high airspeeds the second-order approximation produces less accurate results than the first-order approxi-
mation. Primarily in A-mode the first-order approximation shows more coherence with the exact eigenvalues.
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Table 5.10: Comparison of exact and approximation Dutch roll mode eigenvalues using the second-order approximation

equation

n [deg] Airspeed [kts] g, (exact) Aqr (approx) error Re(Ag,)[%]  error Im(24;) [%]
90 0 0.0381 £+ 0.30281  0.0648 + 0.34531  70.0 14.0

90 100 -0.0749 + 0.8499i -0.1262 + 0.8815i 68.4 3.7

60 100 -0.1040 + 1.0050i -0.0259 + 1.0213i 75.1 1.6

60 140 -0.1513 + 1.3983i -0.0563 + 1.4616i 62.8 4.5

0 140 -0.5384 + 1.54161 -0.1629 + 1.7282i 69.7 12.1

0 240 -0.7405 £ 2.6312i -0.3353 £+ 2.83011 54.7 7.6

In Figure D.10 the sensitivity analysis results on the Dutch roll damping are shown. The stabilizing contri-
butions of the damping derivatives Y,,, L,, and N, in H-mode are clearly visible. Primarily L,, which reduces
the destabilizing effect of the dihedral effect L,, plays an important role. The weathercock stability derivative
N, and the roll-yaw coupling derivative L, also seem to have a significant stabilizing effect on the damping.
When the nacelles are rotated towards airplane mode the importance of N,. and L, on the damping increases
and reduces respectively. The coupling derivative L, becomes less important while the importance of the
other coupling derivative N,, increases. Derivatives N,, and N, have a destabilizing effect to the Dutch roll
of the same order as L,, in airplane mode. From Equation 5.29 and Equation 5.34 and the eigenvalue figures
it could already be concluded that the frequency of the mode is very dependent on the horizontal speed
component. From Figure D.9 a similar conclusion can be drawn; the derivatives barely affect the frequency.
Only N, which is amplified by u, clearly affects the frequency. The higher the velocity, the higher the
sensitivity to changes in N,,.

Figure 5.8 shows the Dutch roll eigenvalues as a function of nacelle angle. From the figure it can be concluded
that the frequency of the mode slowly increases with decreasing nacelle angle. It was established that the
tiltrotor Dutch roll frequency was mainly determined by N,, and u,. Since the forward speed is kept constant
the effect of uy can be neglected. From Figure 4.21 it can be concluded that N, slightly increases with
decreasing nacelle which explains the slight increase in frequency. The increase of the damping slowly builds
up with decreasing nacelle. This mainly happens due to the increase in yaw damping N,.. Furthermore, the
roll-yaw coupling derivative N,, first increases in magnitude up to ~30 degrees which withholds the damping
from increasing faster. Thereafter the derivative decreases again, which explains why the damping suddenly
increases faster with nacelle angle.

5.3. Coupled Modes

In the previous two sections the longitudinal and lateral eigenmodes of the tiltrotor have been analysed
by using a reduced state space system. The assumption has been made that the longitudinal modes can
be decoupled from the lateral modes. In this section the validity of this assumption will be investigated.
The eigenvalues of the full 8x8 state space A-matrix will be analysed and compared with the results of the
reduced systems. The comparison is elaborated upon in subsection 5.3.1. The full uncoupled A-matrix is
shown below.

Xu Xw—qo Xq—Wo —gcos by Xy+To Xp 0 Xr+vg
i Zy+qo Zy Zgtug —g cos ¢g sin by Z,—py Zp—vg —gsin ¢g cos by Zy u
w My —2pglyzI My—2101x51
v 14 0fxzly r 0fxzly w
q My My Mq 0 My —To(x=Iz)Iy 0 —2po(Ix—I7)Iy qa
?; = 0 0 cos 6y 0 0 0 -2y cos B —sin g (5_37)
) Yu—10 Yw+Do Yq —-gsinggsinfy Y, Yp+wo g cos ¢q cos B Yr—ug P
é Ly, Ly  Lg+kipo—kaTo 0 Ly, Lp+k1qo 0 Ly—k2qo ?
T 0 0 sin ¢ tan 6y £29 sec By 0 1 0 cos ¢ tan Gy
N, Ny Ng—ki1o—kspo 0 Ny Np—ksqo 0 N7—k1qo

Furthermore, the validity of the whole linear 6-DoF model will be tested by comparing the uncoupled eigen-
values results with the FLIGHTLAB results. The differences between the two models will be analysed and
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Figure 5.9: XV-15 coupled longitudinal eigenmodes compared with the uncoupled modes in helicopter mode

explained by looking at the differences in modelling approaches and stability derivatives. This is done in
subsection 5.3.2.

5.3.1. Comparison with Uncoupled Modes

In order to verify whether the uncoupling of the longitudinal and lateral eigenmodes is valid for tiltrotor
aircraft the coupled system eigenvalues are compared with those of the uncoupled systems. The eigenval-
ues of the three different systems have been plotted in the three different configurations, as a function of
airspeed. The comparison in helicopter mode is shown in Figure 5.9. It can be observed that there is a lot
of overlap between the uncoupled models and the coupled model. The longitudinal modes (phugoid and
short period) show an almost perfect resemblance, meaning that there is little to no coupling with lateral
motion. For the lateral modes there appears to be slightly less overlap. The coupled Dutch Roll is a little
bit less damped than the uncoupled one. Investigation of the longitudinal-lateral coupling derivatives shows
that none of the derivatives in helicopter mode has a significant magnitude that could influence the dynamic
modes. The differences are caused by the assumption for the uncoupled lateral/directional system that the
modes are independent of the pitch angle. This means that cos 8y and tan 6, are assumed to be equal to
1 and 0O respectively. This assumption is not made for the uncoupled system and is mainly the reason for
the observed differences.

In conversion mode the eigenvalues are also very similar. This is shown in Figure 5.10. The longitudinal
eigenvalues have an almost perfect overlap, while the lateral eigenvalues have a small discrepancy. This
shows that the longitudinal-lateral coupling is also negligible in conversion mode. At an airspeed of 100 kts
the Dutch Roll eigenvalues are clearly not perfectly equal while at 160 there is a perfect overlap. This can be
related to the the absence of the pitch angle influence to the uncoupled lateral eigenmodes. At an airspeed
of 100 kts the pitch angle is approximately 10 degrees while at 160 kts the angle is around zero Figure 3.7.
Therefore the assumption that cos 6y, = 1 and tan 6, = 0 for the uncoupled lateral/directional modes is
less valid at 100 kts.

In airplane mode there are also no noteworthy differences between the coupled model and the uncoupled
models (Figure 5.11). There is even more overlap than in helicopter and conversion mode. Generally, the
conclusion can be drawn that for the 6-DoF model the uncoupling of the modes is valid for the entire flight
envelope. There appears to be little to no coupling between the longitudinal and lateral motion in these
flight conditions. However, the results of the FLIGHTLAB model show quite some coupling between the
subsets, primarily in helicopter mode. The following A-matrix is found by the FLIGHTLAB model for the
XV-15 at a 20 kts H-mode horizontal trim condition [2]:
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Figure 5.10: XV-15 coupled longitudinal eigenmodes compared with the uncoupled modes in conversion mode

u
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At the same conditions the following A-matrix is found by the 6-DoF model:
W -0.052937  0.000936697  0.558781  —9.80988 0 -4.81993e-17 0  —4.81993e—17 1 ¥
q -0.0974182  —0.265395 10.396  0.0489084 0 0 0 0 w
. 0.022537  —0.00721859  —0.408926 0  3.9256le-17 23063e-16 0 —1.17768e-16 || 4
6 0 0 0.999988 0 0 0 0 0.00498556 || 6
v 1.30025e—34 —2.34908¢—16 0 0 -0.0577036  —0.454964 9.80988 —10.3117 v
b -1.2369¢-17 0 -147791e-19 0 -0.0116449 —0.555316 0 0334559 p
P 0 0 0 0 0 1 0  —0.00498562 || ¢
¢ -8.44383e—19 0 -6.32303e-18 0 0.00665441  0.0312379 0 ~0.10829 T
(5.39)

While the coupling derivatives of the 6-DoF are almost infinitesimally small the FLIGHTLAB model has quite
some significant coupling derivatives e.g. Z,, My, and Z,.. These nonzero coupling derivatives are mostly the
result of the rotor wake interference with the wing [2]. The aerodynamics for the rotor wake on the wing
and empennage used in the FLIGHTLAB model are derived from wind tunnel tests conducted in support
of the preflight simulation development. The 6-DoF model uses the rather simplistic method described in
subsection 3.3.4 to compute this interaction. In order to better predict the longitudinal-lateral coupling
effects a better interaction model should be incorporated in the 6-DoF model.

5.3.2. Comparison with FLIGHTLAB Results

In this subsection the results obtained by the 6-DoF model will be validated by comparing them with the
FLIGHTLAB model (FXV-15) results. The eigenvalues of the two linearized models will be compared by
plotting them together in the same figure as a function of airspeed. This will be done for three different
nacelle configurations; H-mode (90deg), C-mode (60deg) and A-mode (0Odeg). For both models the cou-
pled state space systems are used. The FLIGHTLAB eigenvalues are plotted with steps of 20 kts, while the
6-DoF model uses steps of 2 kts.

Figure 5.12 presents the eigenvalues of the two models in helicopter mode. The airspeed of both models
ranges from 0 to 100 kts. Subfigure (a) presents the full set of eigenmodes while in subfigure (b) the low
frequency modes are expanded. Some eigenvalues which are located on the real axis have been plotted
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Figure 5.11: XV-15 coupled longitudinal eigenmodes compared with the uncoupled modes in airplane mode

with some vertical offset in order to distinguish between the different modes and models in the figures.
In hover, the phugoid and the Dutch Roll are unstable for both models. The roll mode, spiral mode and
heave and pitch subsidences take their place on the real axis. The frequency of the roll mode increases
with airspeed. The spiral mode is unstable for both models at moderate airspeeds. The 6-DoF model spiral
mode is however stable in hover while the FLIGHTLAB model mode is unstable. Both eigenvalues move to
right on real axis up until 20-30 kts, after which they move towards the stable side of the graph again. The
spiral stabilizes at around 80 kts for both models. According to Padfield, the increase in instability up to
20-30 kts can be attributed to the increasing interaction of the rotor wakes with the wings [2]. There is a
significant increase in the destabilizing derivative L, which is captured by both models (Figure 4.20). The
weathercock stability derivative N,, is the second derivative that destabilizes the spiral mode according to
Equation 5.25. In Figure 4.21 we saw that the FLIGHTLAB weathercock stability derivative is a factor 2
or 3 larger than the 6-DoF derivative. The most obvious reason for this difference was explained to be the
fuselage contribution to the yawing moment which is not modelled in the 6-DoF model. Consequently, this
also explains the differences in spiral eigenvalues at low airspeeds.

The Dutch Roll mode stabilizes shortly after the airspeed is increased from hover according to both models.
The Dutch Roll damping is also quite similar while the frequency of the FLIGHTLAB model increases faster
with speed. In subsection 5.2.3 it became clear that the frequency of the mode is mainly dependent on u,
and N,. Trim velocity component u, is obviously almost equal for both models at the same speed. The
larger weathercock stability of the FLIGHTLAB model thus causes the bigger increase in frequency. The
short period of both models show a similar trend. The frequency increases with airspeed while the damping
decreases. However, the FLIGHTLAB mode presents a stronger increase in frequency and is more heavily
damped. The damping and frequency of the short period are both heavily dependent on M, (Equation 5.9).
From Figure 4.13 it became clear that the pitch damping derivative is significantly higher for the FLIGHT-
LAB model than for the 6-DoF model. This was mainly attributed to the destabilizing rotor contribution for
the latter model which is stabilizing for the former. Lastly, the most striking difference between the models
in helicopter mode is the phugoid mode. In subsection 5.1.2 we saw that the phugoid damping increases
with airspeed until the mode is critically damped and decouples. From Figure 5.12 it can be concluded that
this is only the case for the 6-DoF model. The FLIGHTLAB model phugoid damping increases as well but
the mode remains oscillatory. This happens because the speed stability derivative M,, is positive for the
FLIGHTLAB derivative while for the 6-DoF model the derivative is negative at high airspeeds. A negative
M,, amplifies the damping according to Equation 5.16.

A similar comparison between the models is presented in Figure 5.13 for the XV-15 in conversion mode with
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a 60 degrees nacelle angle configuration. The 6-DoF model eigenvalues range from 100 to 160 kts while
those of the FLIGHTLAB model range from 100 to 140 kts. The roll mode eigenvalue are quite comparable.
The frequency of the mode increases with airspeed for both models. The FLIGHTLAB roll damping deriva-
tive is larger than the 6-DoF derivative in this configuration which also explains why the former model its
eigenvalues are located more to the left on the real axis. Similarly as in helicopter mode the FXV-15 short
period is more heavily damped than the 6-DoF model mode, which is caused by the larger M, value. The
FLIGHTLAB Dutch Roll mode is also slightly more damped, but the results look already more comparable
than in helicopter mode. This is because the differences between the N, derivatives have decreased. In
subfigure (b) the low frequency modes are expanded. The spiral mode of both models is stable and the
frequency increases slightly with airspeed. The FLIGHTLAB spiral mode frequency is however roughly double
the frequency of the 6-DoF model. From Figure D.7 it can be concluded that larger N, and L,, increase the
spiral frequency. These two derivatives are significantly larger for the FLIGHTLAB model. In contrary to
the H-mode both models have an oscillatory phugoid along the entire airspeed range. In this configuration
the M,, derivative is positive for both models. The phugoid damping increases with speed for both models
while the frequency slightly decreases.

In Figure 5.14 the eigenvalues of the models in airplane mode are compared. The 6-DoF model has an
airspeed range of 120 to 280 kts in this configuration. For the FLIGHTLAB model data was available at
140, 180 and 220 kts so this has been used for this comparison. In subsection 5.2.1 we already saw that
the roll mode frequency of the 6-DoF model increases with airspeed. This is also the case for the FXV-15.
The short period of the 6-DoF model is more heavily damped than the FLIGHTLAB model while the latter
model has a higher frequency. Both observations can be explained by looking at differences in static stability
derivative M,, in airplane mode (Figure 4.12(c)). The 6-DoF model derivative is a factor 2-3 smaller. A
smaller value of M, increases the damping of the short period while it decreases the frequency, according
to Equation 5.7 and Equation 5.8. The Dutch roll modes look quite comparable. In contrary to H-mode
and C-mode the 6-DoF model now has a more highly damped Dutch roll. Both N,. and Y,, which influence
the Dutch roll damping significantly according to Equation 5.28 have increased more for the 6-DoF model
compared to the FLIGHTLAB model. In Figure 5.14b the spiral mode is shown, which becomes less stable
with airspeed for both models. According to Padfield, this happens due to the reduction in yaw damping (N;.)
and increase in the roll-yaw coupling (N,). However, the 6-DoF yaw damping increases while N,, decreases
so this does not explain the behavior of the 6-DoF model. The roll damping L, significantly influences the
spiral frequency which causes its decrease with airspeed. The phugoid damping mode in A-mode increases
slightly with airspeed for both models. The frequency is more or less constant with airspeed.

In general, the XV-15 stability characteristics obtained by both models are quite similar. Both models have
an unstable phugoid and Dutch roll in hover. The spiral mode is unstable at moderate airspeed in helicopter
mode. The curves of the eigenvalues with airspeed also show a lot of similarities. The trends of the frequency
and damping of the modes with speed are more or less the same for both models. The main discrepancy
between the two models is phugoid in helicopter mode. The 6-DoF model phugoid is non-oscillatory at high
airspeeds, which is caused by the negative speed stability derivative M,,. Other than that, the 6-DoF model
has proved to be a valid model for stability research.
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Conclusions and Recommendations

In this final chapter the research conducted is concluded. The research questions are answered and conclusions
are drawn following from the research objective. Lastly, recommendations are provided for future work about
this topic.

6.1. Conclusions

The objective of this research was to to investigate the stability characteristics of tiltrotor aircraft theo-
retically by using the technique of linearized stability derivatives on a six-degrees-of-freedom tiltrotor flight
dynamics model. In order to reach this objective several research subquestions were posed in the introduction
of this report, which answers together serve as an answer to the main research question. The answers to
these subquestions can be find below. Afterwards, a general conclusion about the research is drawn.

1. Which features characterize a tiltrotor aircraft?

The most promising feature of the tiltrotor aircraft is its capability of performing vertical manoeuvres like a
conventional helicopter as well as reaching high flight speeds and long ranges like a fixed-wing airplane. This
can be achieved by tilting the rotors which are located at the tips of the wing. Because of this capability, the
tiltrotor also requires a special control strategy. Both helicopter and airplane control strategies are combined
to have good control at both very low and very high flight speeds. A tail rotor which is a necessity for a con-
ventional helicopter has become redundant as the two counter rotating rotors cancel out each others torque.
Longitudinal cyclic is used to control the pitch motion in helicopter mode. In the same mode differential
collective and cyclic pitch is used to control yawing and rolling motions. Ailerons, elevators and rudders are
also included to control the tiltrotor in airplane mode. The controls in helicopter mode are gradually phased
out while the airplane controls are phased in when rotating the nacelles towards the horizontal axis. In all
flight modes the pilot uses a center cyclic stick to control pitch and roll while pedals are used to control
yaw. A collective stick is included to control the collective pitch of the blades in helicopter mode, and the
same stick functions are a power lever in airplane mode.

2. How can the dynamic behavior of the tiltrotor most accurately be predicted by modelling its principles into
a flight dynamics model? In order to investigate the stability characteristics of a tiltrotor a flight dynamics
model has to be developed. In prior research conducted at Delft University of Technology a six-degrees-
of-freedom tiltrotor flight dynamics model has been developed (6-DoF model). This model describes the
motion of the tiltrotor using 9 different states; 3 translational velocity states, 3 rotational velocity states
and three Euler angles describing the orientation of the aircraft with respect to the earth. Furthermore, the
motion of the aircraft can be controlled using 4 different inputs; the longitudinal and lateral cyclic stick
deflection, the collective stick deflection and the pedal deflection. The 6-DoF model divides the tiltrotor
into 15 different components and the forces and moments acting on each component are computed and
converted to the same reference frame. In order to improve the prediction of the dynamic behavior of the
aircraft some important additions are made to the model. The aerodynamic coefficients of the lifting surfaces
are computed using a combination of flat plate area theory and linear aerodynamics, solving issues with the
rotor wake-wing interference. Furthermore, the centre of gravity and moments of inertia of the aircraft are
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made dependable on the nacelle angle. This improves primarily the prediction of the pitching moments.
Look-up tables have been implemented to the model to add the aerodynamic contributions of the fuselage.
Moreover, the interference between the wing wake and the empennage has been implemented into the model.
The effective angle of attack of the horizontal stabilizers is influenced by this interference and results in a
more accurate prediction of the empennage aerodynamic forces.

3. Which conclusions can be drawn about the stability characteristics of the tiltrotor from the linearized
stability and control derivatives? The nonlinear 6-DoF model has been linearized and the stability and con-
trol derivatives following from the linearization have been analysed as a function of airspeed and nacelle
angle. The derivatives are also compared with data obtained from other models. This serves as validation
for the results, but the differences between the models can also say a lot about the effects of the different
assumptions made during the modelling process. Generally, most of the derivatives in H-mode have con-
ventional helicopter characteristics while in A-mode they have fixed-wing airplane characteristics. There are
however some exceptions, such as X, in helicopter mode for example. The drag damping derivative of a
tiltrotor in this mode is much larger than for a conventional helicopter due to the extra drag of the wings
and the second rotor. Furthermore, the damping derivatives (Xy, Z,,, Ly, etc.) are all negative along the
entire flight envelope which is required for the stability of the subsidences. The rotor contribution to Z,, is
large in helicopter mode and large to X,, in airplane mode. The heave-surge coupling derivatives Z,, and X,
are the largest when the nacelle angles are approximately at a 45 degrees inclination. The same goes for
the roll-yaw coupling derivatives N, and L,.. The models’ stability derivatives show a lot of similarities. The
speed stability derivative M,, curves look less similar. The 6-DoF model derivative is negative at high air-
speeds in H-mode while the derivatives of the GTRS and FLIGHTLAB models remain positive. The negative
contribution of the horizontal stabilizers to M,, is very dominant for the 6-DoF model, which seems to be
not the case for the other models. Furthermore, the weathercock stability derivative N,, and dihedral effect
L, are positive and negative respectively. Lastly, the yaw damping derivative N, is relatively small at low
airspeeds compared to conventional helicopters due to the absence of a tail rotor. The control derivatives
of the 6-DoF model show a lot of similarities with the FXV-15 and the control inputs lead to the desired
responses. The assumption that elevators, ailerons and rudders create no drag results in differences between
the curves of the models. The effectiveness’s of the control surfaces of the models seem to be dissimilar
while they should be equal.

4. Which conclusions can be drawn about the stability characteristics of the tiltrotor from the eigenvalues
of the dynamic modes? Firstly, the dynamic modes have been evaluated by uncoupling the longitudinal and
lateral modes. In hover, the heave and pitch subsidences are both non-oscillatory but stable. As airspeed
increases, the heave an pitch subsidence couple together and form the short period. The frequency of the
short period increases with airspeed while the damping slightly decreases at high nacelle angle configura-
tions. At low nacelle angle configurations the damping increases with airspeed. When the airspeed is kept
constant and the nacelle angle decreases the frequency slowly increases while the damping remains roughly
constant. In hover the phugoid is oscillatory but unstable. The mode stabilizes when the airspeed increases
and becomes at some point non-oscillatory. This can be attributed to the negative value of M, which
amplifies the phugoid damping. In C-mode and A-mode the phugoid is oscillatory and stable. At constant
airspeed and decreasing nacelle angle the phugoid damping increases. At the same time the frequency of
the mode increases slightly. The roll mode is mostly a pure roll subsidence which is stable, highly damped
an non-oscillatory. Its frequency increases with airspeed but decreases with decreasing nacelle angle. The
coupling with yaw increases with decreasing nacelle angle. The spiral mode is mostly unstable in helicopter
mode. In hover the mode is stable, but as airspeed increases the mode destabilizes. The instability increases
with airspeed up to £ 30 kts, after which it decreases again. At airspeeds higher than + 80kts in H-mode the
spiral is again stable. The spiral mode also becomes more stable with decreasing nacelle angle. In hover the
Dutch roll is also unstable, but becomes stable after airspeed increases. The dutch roll frequency increases
with airspeed while the damping remains constant. Decreasing the nacelle angle however clearly increases
the damping of the mode. Furthermore it was found that the uncoupling of the modes is valid for the 6-DoF
model since the coupling derivatives are approximately zero. The 6-DoF model eigenmodes results showed
a lot of similarities with the FXV-15. Both models have an unstable phugoid and Dutch roll in hover. The
spiral modes are often unstable in helicopter mode and have similar trends with airspeed. The FXV-15 spiral
is however already unstable in hover, due to its lower value of N,. The FXV-15 short period in H-mode and
C-mode is relatively more damped due to its higher pitch damping M,. The biggest difference in modes
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between the two models is the phugoid in helicopter mode. The 6-DoF model phugoid is non-oscillatory
at high airspeeds because of the negative M,, at those flight conditions. In the same flight conditions the
FLIGHTLAB M, is positive and thus the phugoid remains oscillatory.

In general, the 6-DoF model shows good agreement with previously published data from other tiltrotor
models. The trim data of the 6-DoF model looked similar to the GTRS trim data. The linearized model
derivatives also showed a lot of resemblance with derivatives from other models with a few exceptions such
as M. This gives confidence in using the model for future research related to flight dynamics, stability,
control or handling qualities.

6.2. Recommendations for Future Work

Now that the thesis research is concluded and the research questions have been answered, there are still
some recommendations for future research. These recommendations are mainly focused on improvement
of the nonlinear model, since the accuracy of the predicted stability characteristics heavily depends on the
accuracy of the nonlinear model.

The first recommendation | would propose is a further investigation into the M,, derivative. The nega-
tive value of the speed stability derivative at high airspeeds in helicopter mode is not in line with what
is found in literature. This negative M,, amplifies the phugoid damping, which results in a non-oscillatory
phugoid. The negative contribution of the airframe, with in particular the horizontal stabilizers, causes the
negative value of M,. According to the GTRS model data the airframe should have a positive contribution
to the derivative, but what the actual cause is for this difference has not been discovered during this research.

Furthermore, the comparison between the eigenmodes of the coupled and uncoupled linear state space sys-
tems showed that there is almost no coupling at all between the longitudinal and lateral modes. The FXV-15
however showed quite some significant values for the coupling derivatives, primarily at low airspeeds in he-
licopter mode. This was mainly attributed by Padfield to the interference between the rotor wake and the
airframe. For example, any perturbation in yaw or sideslip should lead to variations in rotor downwash at the
horizontal stabilizers resulting in a pitching moment. For this reason, the M,. and M,, derivatives are non-zero
for the FXV-15. Rotor wake-empennage interference has not been implemented in the 6-DoF model which
is most likely the cause why these derivatives are zero for the 6-DoF model. The interference between the
rotor wake and the wing of the 6-DoF model is modelled rather simplistic and far away from reality. The
interference model is also dependent on the the induced velocity which is computed using basic momentum
theory. This theory assumes that the induced velocity is constant along the rotor disc, which is a rather
big assumption. An improved induced flow model which does not make this assumption is expected to give
more realistic results. In order to more accurately investigate the coupling between longitudinal and lateral
motions, the interference models between the rotors and airframe should be improved.

Lastly, in the introduction of this report the accident of the AW609 during flight testing was mentioned. The
accident happened after diverging yaw- and roll oscillations were experienced. The accident was described as
an unstable Dutch Roll. During the dynamic stability analysis conducted in this research no stability issues
were found for the Dutch Roll. However, the research was limited to steady, horizontal, symmetrical flight.
The accident occured while exiting a turn after a high-speed test dive was performed. This means that the
aircraft was probably not flying level. The effect of for example the glide slope angle or sideslip angle on the
Dutch Roll stability was not investigated. It would be interesting to further investigate what the effect is of
these two angles on the Dutch roll stability and investigate more deeply what caused the instability before
the accident.
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B.1. Equation a,

Simplified equation

Full equation

Ao

DIy Vi 4 4 2
=—— T (1 +u2)0yg— =} — 1 =+ -ul
QZIbl"'Kﬁ' 3 ( +/~‘c) 0 3( i )+ 5+3.“c
0.0083
ao (120 cos 61 sMp,a, p

6-DoF Model Equations

10203, + Kg
—120My,; sin 0150, p,

+ 60M,,; sinda ayp

— 201, 0%y

+ 201, 0%y A,

+ 1515, 0%y,0p10

+ 60 cos My, sinB,,a1a,p

+ 121, Q* Ry 0p11

+ 101, Q0% aq Vpi e

+ 151, Q%Y1 1260110

+ 60 cos b cos 0y My aia,

+ 101bl-QZRYblﬁ39bll

+ 15cos 915211,102 sin leybzﬁzeblo
- 101leZngnQRZRa1ybl.ﬁc

+ 15 cosn? cos Glszlblﬂzybﬁzebm
+ 10]blﬂzﬂsgn sin Syblﬁca
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+ 20 cos 7 cos 051, Q% Qs gn Vi AT
— 20 cosncos Glslblﬂzﬂsgnybl/ic?
— 30 cos 7 cos 0151, Q% Qs gnVpiTOpio

+ 12 cosn? cos BlszlleZRymT‘Z@bu

— 20 cos NIy Q2O gy, Sin Oy 5¥p 4D

+ 20 cos Glslblﬂzﬂsgn sinnyyAip

+ 20 cos 1 Q% Qg sin O15VbiAcD

— 20 c08 0y 1, Q2 Qs g SINTYpAD

+ 30 cos 1 Q2O gy, SIN 01 5¥1 P10

— 3008 015159 g, SINNYH1POp10

+ 12 cos 0,,°1,,,Q%R sin nzyb1529b11

— 201,02 Q4 sing sin Oy 5y AT

= 301, 0% Qg gy sin g sin 015760410

- 101leZngn sin 6‘alybl/ica

— 151, 0% Qg Sin §a1¥51q6p10

+ 10 cos & cos 1 cos 0151, Q% QsgnVpificP
+ 10 cos & cos Nl Q2O gy, SIN Oy ¥ AT
— 10 cos & cos 0151y V* Qs g SINNYp1 AT
— 24 cos 1 cos 0151 Q% Qg g0 RYp T0p11

— 30 cos 7 cos 0,102 sinn sin Hlsyblﬁzeblo
— 10 cos 7 cos 0151, Q% QsgnA1Vp1AcT

+ 10 cos 81,0 Q gy Sin 7 Sin Oy AcD

+ 24 cos Nl Q2O g R Sin 0153 POp11

— 2408 0151, Q% Qg R SIN Ny D01
—10cos glslleZQSgn sin rlalybl,acl_7

— 241, 9%Q gy R sinm sin 0,5y, 70p11

+ 30 cos 7 cos 0,1, Q% sin 0y, T 010

- 12]leZQSgnR sin 8§a1¥5199%11

— 10 cos § cosn cos Blslblﬂzﬂsgnalyblicﬁ

— 15 cos & cos 7 cos 0151, Q%* Qs gn a1 Y1010
+ 10 cos § cos 815 QA gy siNNA Vi AT

— 15 cos & cos Nl QO gy, SIN O;5a1 YT 0pi0
+ 15 cos & cos 015152 Qg g, SINNA1 Y TOpi0
— 15 cos 81, 0% Qg g, Sin 7 Sin 015a1 Y1 PO10
+ 24 cos 7 cos 0> I, Q%R Sin Yy pr 6y

— 12 cos § cos 1 cos 051, Q% QsgnRa1 V1 POp11
— 12 cos § cos Nl Q2 Qg gy R Sin 01521V 70511
+ 12 cos 8 cos 015159 Qs gn R sinnay vy 76p11
— 12 c0s 615 0* Q5 gy R sinn sin 015015 0p11)
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B.2. Equation a4
Simplified equation

_lea

. 8
Yo @ - %ngn cosn — %ngn sinn — ZMC(AI: - lc) + ggoﬂc + ZgbllﬂcR

a; = (B.2)

1
1— e

Full equation

a; = 0.4000(301,,0%y;, A
— 120 cos 6Mp; Qsgnaoay
— 1201, Q445 sin g
— 300, Q%Y Acfi
— 4015, Q%Yp1cBp10
— 120 cos 6 cosn cos glslblﬂsgnp
+ 240 c0s 61,020 4 Qpzrl
+ 120 cos 6 cos 0,51 Qs gy sSinnr
+ 240 cos 6150 Og g Qpzrq
— 120 cos 61 Qs g4p sinn sin H;5p
+ 120 cos 01sMpQ5gn SiNSagay
— 151, Q%Q g, SIN 877Yp
— 151,;02Q gy, SIN 8y q
— 301, Q°RYp1ficOpis
+ 30 cos 81,;Q%a0V19010
— 240102 Q5 gn Qpzg Sin 6 sinn sin 6;5p
— 15 cos 1,02 g, Siny sin 05y P
+ 15 cos & cos 02 cos 0y Iy Q2yy, pr
+ 15 cos 1 cos 0;41,,Q? sin 8y, qr
+ 15 cos 041,92 sin § sinny,;pq
+ 24 cos 81, Q%Ragyp 19611
+ 15 cos 6 cosn cos 015211,102 sin nyblﬁz
— 15 cos 6 cosn cos 915211,192 sin nybﬂ_‘z
— 15 cos § cos 0,1, Q%sinn’y,, pr
— 240 cos 7 cos 01515 Q% Qs g Qg zr Sin 6P
— 15 cos & cos 7 cos 0151, 0% Qg gy Vi1 P
— 240 cos N1y Q% QsgnQrzg Sin § sin 6,7
+ 240 cos 051, Q% Qs gn Qrzg Sin 8 sinnr
— 15 cos & cos Nl Q% Qg gy Sin Oy 7
+ 15 cos & cos 01515, Q%* Qs gy SiNNYp T
— 20 cos 1 cos 015,02 sin §agypAcp
— 30 cos 1 cos ;41,02 sin §ay Yy P0p10
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+ 20 cos 6,41, 0% sin & sinnagyy A r

+ 40 cos 1 cos 051, Q% Qs gnVbifcTOp10

+ 30 cos 0,1,,Q2 sin § sinnayyy 7610
— 40 cos N1y Q%O gy SIN O15Vp1AcPOb10

+ 40 cos 01515 Q% Qg g, SIN NV DOB10

+ 401,02 gy SiN Y SIN O35V AcTOp10

+ 60 cos & cos 1 cos 0;,1,Q? sinn sin 8,5y, pT
— 24 cosn cos B4, Q%R sin §ayyp POsi1
+ 30 cos 7 cos 051, Q% Qs gy RYp1AcT6p11
+ 24 cos 0115, Q2R sin 6 sinnagyp70p11
— 30 cos Nl Q2O g R Sin 01V AcPOpi1
+ 30 cos 01515 Q% Qg g, R SINNYp1 e POpi1
+ 301,02 Qg g R Sinn sin 015y AcT0p11)
/

UpQ* Bypiié

- 6ngnQR-ZRVbl

+ 6c0os 7 CoS 01 QrzrViiT

— 6.COSNQpzp SIN O3V

+ 6 cos 0,3Qpzr SIN YLD

+ 6Qp g Siny sin 6,y 7

— 48 cos § cos n? cos Hlszﬂsgn sin 652

- 4ngn sin 5Vbzﬁc§9bzo

- 3ngnR sin (szﬂcﬁ‘%u

+ 96 cos § cosn cos Glszﬂsgn sin § sinnpr
—4cosé cos ncos elstgnyblﬁ659b10

+ 4 cos 6 cos 015Qgn SINNYL AT Op10
—3cos §cosncos 014050 RYp1fcPOp11
+ 3 cos § cos 015Q5gn R SINNYp1ficT0p11))
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B.3. Equation b,

Simplified equation

8 16
b = _8Kﬁ —2pc(A; — Ac) — Eﬂceo + V_bl% - %ngn cosn — ZR#CBbll
L Qs gn Q21 %,u? -1
4 16 p
- ﬁﬂsgn + Ea + §,ucaOngn - V_blﬁ cosn
Full equation
0.0333
(2401(/;(11

1=
Iy Q2 QrzrYn

+ 240 cos 619
— 240Mp,; sin §a0ay,

+ 4801,,,Q% Qg5 sin 67

+ 240 cos 051, sin § sinnr

+ 30 cos 81, Q2 7y,;

+ 4801,,02Qp 75 5in 67

— 180 cos 621, 0%a,p-

— 2401, sin § sinn sin 65p

+ 30 cos 81,;Q%y,,q

— 401,,0%a0yp i

— 240 cosn cos 41y, sin 8p

— 240 cos 6 cos 8, Mp;a0a,

+ 180 cos 62 cos nzlblﬂzalﬁz

+ 180 cos 62 cos Olszlblﬂzalg_az

— 120 cosn? cos Hlszlblﬂzalﬁz

+ 480 cos § cos ) cos 011 V2 0g 7D
— 240 cos 8% cos 12 cos 8,21, 0%, P
+ 480 cos & cos N1, Q% Qpzp Sin 0,7
— 480 cos § cos 015102 0p 5 Sin T
+ 480 cos 81,02 Qg 4 Siny sin 6;sp
— 30 cos 1 cos 0;,1,,Q% sin 5y,

+ 240 cos 61,02 sin & sinnip

— 30 cosnlp; Q2 sin 8 sin 6,5y,,,7

+ 30 cos 01,02 sin § sinny,,

— 301,92 sin § sinn sin 0,5y, p

+ 360 cos 6% cos n? cos Hlszlblﬂzalfz
— 360 cos 62 cosnl,, Q% sinna,pr

+ 240 cos 7 cos 0,5 1, Q% sinna, pr

+ 401,020, sin 8a0yyA.q



138

B. 6-DoF Model Equations

+ 601,02 g, Sin §a0y;, G610

+20cos 81,07 a1 V1 G610

— 360 cos 6 cosn cos 0,192 sinda,; pq

+ 480 cos 62 cos 1) cos 0,5 1,02 sinna, pr

— 720 cos 62 cos n? cos 811,02 sin 0,,a,pr
— 30 cos & cos 7 cos 0151 Q% Qg g Vi1 qT

+ 360 cos § cos 0;,1,,Q? sin § sinna,qr

— 30 cos & cos 051, Q% Qg gy SinNyy pq

+ 30 cosn? cos Glszlblﬂzﬂsgn sin 8y, pr

+ 40 cos 01515, 9% Qs g SinnaOyp Acp

+ 481, Q%O g R sin 5a0y;,,46p11

+ 15 cos 61, 0°Ra1 ¥p1ficq0p11

+30 cos 7 cos 035”1, 020 g, SIN 8 SIN Yy D
— 30 cos 7 cos 0y5° 1020 g, SiN 8 SiN Yy T
—30cos Hlszlblﬂzﬂsgn sin 8sinn’y,,pr

+ 40 cos § cos 7 cos 051 Q% Qs g, a0y AP

+ 60 cos & cos 7 cos 031, 0% 0 5,,a0yp POp10
— 40 cos § cos 051, Qg g SinNa0yy AT

— 60 cos § cos 015150 Qg gy SINNA0Y 7610
+ 60 cos 61, 0*Q g, Sinn sin 015a05 P00
— 20 cos 7 cos 0;1p,Q% sin 8a, V1. P10

+ 20 cos 0151,,Q? sin & sinna Yy AcT0p10

+ 48 cos & cos 7 cos 0151, 0% 0 g Ra0Y, PO

+ 120 cos 1 cos 0y5I, 0* Qg gy sin & sinn sin Oy, pr

— 48 cos & cos 01515 Q% Qs gn R sin a0y, 70,11
+ 48 cos 81,0%Q g, R sinn sin 6,5a0y5p0p1
— 15 cos 1 cos 0151, Q%R sin §a, VA POpi1
+ 15 cos 011, 92R sin & sinna, ¥p1A:760p11)
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B.4. Equation Crggy
Simplified equation
Claa 2 2 1 2
Crpem = —o=(60(5 + 2 + 505, RAL+2) = (2 = 20) (8:3)

Full equation

_00133119[1\]}/19[

CT,BEM = T 64;

- 64,

— 46p10

— 3R0O,1

—3a1/lc

— 612610

— 3RAZ6p11

+ 305 gn Qrzr A1 e

— 4c0s 0, Sinn?p Oy

— 3Qggn sinédii.q

— 6.cosncos 01sQsgn i

+ 6 cosncos Hlsﬂsgnij

+ 8.cos 1 cos 015Q5gnT0p10

+ 6 cos N4y, Sin O1,4;p

— 608 01,04y SiNNA;p

— 6.cos N4, sin 615265

+ 6 cos 01,04y sin ni.p

— 8cos N4, SiN O13pO0

+ 8.cos 0104y SiNNPO;o
—3cos 6;5°R sin 172;_9291,11

+ 684y sinn sin 0,4,

+ 8Qgn sinn sin 01,760,19

+ 3Q44n sin 6a1icﬁ

+ 4Q54y sin 8a, g0y

— 3cosn? cos 8y 2RT Oy

— 3 cos 6 cosncos 0y Qggnficp
— 3 cos § cosnlyy sin B4, 7
+ 3 cos § cos 01504, Sin AT
+ 6 cosn cos 015Qs4n RT6p1

+ 8 cosn cos B4 siny sin 91552 Op10
+ 3 cosncos 015Q5gnai AT
—3cos 6Q4, sinn sin Oy5ficp
— 6cosNQsgnR sin 015p0p 4
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+ 6 oS 015054y R SIN PO,

+ 3 cos 01,04y sinna, Acp

+ 6Q54n R sinn sin 01,7614

— 8cosn cos b;5° sinyproy,

+ 3QgnR sinda,q0,1,

+ 3 cos § cosncos Blsﬂsgnalij

+ 4 cos 6 cos1 cos 01,0s5n,a100p10
—3cos § cos 01504, sin na, At

+ 4 cos 6 cos Nl gy Sin B,5a,176,0
— 4 cos 6 cos O304, SiNNA170;
+ 4 cos §Q 4, sin 7 sin 615a1 PO
— 6COs 17 COoS 9152R sinnproy;,

+ 3 cos 6 cosncos 0;:QggnRa;pOpq
+ 3 cos § cos nlggnR sin B15a,76p4
— 3 cos 6 cos 015Q54nR sinna 76y,
+ 3 cos 6Q4,R sinn sin 615a,p0,1)
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B.5. Equation Cy

Simplified equation (further reductions lead to inaccuracies)

o
Cn = ﬁ(‘*clwblfheo

= 9C,p1a1(A; — A¢)

+ 6C;,pittcbo(A; — A¢)
+ 3Cy p1Ra16p11

+ 3C,piRuOp11 (A — A¢)
+ Cd06,U.C

+ cq, (—2a4

- 6ﬂc(/1i - Ac))

+ Cdz (_40,190
+6a,(4; —A.)

+ 611(6p” + 6)

+ 3a, 1?0,

- 12:“c90(/1i - /10)

- 3Ra19bll

+ 4R Op11
+3/2Ra 1 u6p1

=+ 3R2M69511

+ 8Ru:006p11

— 6RU:Op11 (A — ()

Full equation (next page)
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Cu

= m0.0033lb1Nyb1(24cd0ﬁc

—12C, p1ash;

+12C; pias e

+ 8Cy,p1a10p10

— 24cq, Aifle

+ 24cq, Acflc

+ 24c¢q, 0 Op10

+ 24cd2/2€9§lo
+12a4¢4, 420510
—48cq, AificOp10

+ 48Cd2/'icﬁc9blo
—8co0s8Cy p1a0q

- SngnﬂRZRalcdl

+ 6C, piRa16p11

+ 24Cy,p14ificOpio

- 24Clablicﬁc9bl0

+ 16Rcq, ficOp11
+12R%¢cq, 165,

— 24C; 51 QsgnQrzrA1 44
+ 24ClablﬂsgnQRZRa1/ic
+8C1, b1 Qs gnQrzrA10p10
+ 24C;p Qs g SN STA;
— 24C)p Qs gn Sin 67 A,
= 8Cy p1Qsgn sin 57791;10
+ 24Cy 51 Qsgn Sin 84,9
— 24C; 1 Qsgn sin 64,7
— 8Cy,p1Qsgn SIN 8GO,
+ 24Q59n Orzr 01 Ca,
- 24'ngnQRZRalcdz/ic
— 16Q59nQrzrA1¢4a, Op10
+ 24Q, gy sin 8y, A,
+ 1684y, sin dcdzﬁeblo
+ 12Cy, 5 RAif1cOp11

- 1ZClablRic.acebll
—24Q,4n sindcy, 4;q
+ 24Q44y sin 6cdzicﬁ
+ 16Q,4n sin 8¢y, q0p10
+ 6Raycq, 420,11

— 24Rcq,AificOp11

+ 24Rcq, Acfic O

+ 32Rcq, AcOp100pi1
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+ 8cos § cosn cos 015QsgnCa, P

+ 8cosnC,p; cos Oy, sindagp

— 8Cy,p1 COS b1 sin § sinnaor

+ 6C1 b1 Qs gnQrzrRA1 Op11

— 6C1 1 QsgnR Sin 676y

= 6Cy,p1QsgnR SN 5qOp;4

+ 8Cy,p; cOs 6,,° sin nzalﬁzebm

- 3Clablﬂsgn sin 5(11/%5

— 12040 QrzrRa1cq, Op11

+ 120, R sin 8cq, N0p11

+ 12 cos 6Clabla0;1c66blo

+ 12Q44nR sin 8¢y, q0p11

— 16 cos 6,5 sin § sinncg, pqyi0

— 2404, sinn sin 0,54, AT 0p10

— 24Q gy sinn sin Ocq, icT05

— 24 cos 5RayCa,q0p100p11

+ 24 cos § cos1Cy p; cOS O15Q5gnAiD

— 24 cos § cosnCy,p; cOs GISQSgnicﬁ
—8cos § cos Nl p; COS 015Q5gn P10

+ 8 cos § cosnCy p; coS 9152 sin m‘azem
— 8cos § cosn?Cy,p; cOS by sin 915529“0
— 8cos d§ cosnCy,p; cos 9152 sin 777_‘291,10
+ 24 cos § cos 1€y 1 Qsgn SiN O1 4,7

— 24 cos 6Cyp; COS 015054y SINNA;T

— 24 cos § cos €y p1Qsgn SIN O15A.T

+ 24 cos §Cyp; €OS 0104y Sin nA.r
—8cos 6 cosNCy pQsgn SiN 01570410

+ 808 §Cy,p; cOS O15Q55p SINNTOY 0

+8cos 8C;p; cos b, sinn? sin 915529“0
+ 12 cosnCy,p; €Os 01Qggnas A;7

— 12 cosnC,p; cos Blsﬂsgnalij

— 24 cos § cos1n cos O015Q5gnCa, AiD
+ 24 cos 6 cosn cos Hlsﬂsgncdzicﬁ
+ 24 cos §Cy 1 Qsgn siny sin O154;p
— 24 cos §Cy 1 Qs gy siny sin 015AcD
— 16 cos nC;,p; €08 B15Q5gnA170p10
— 8cosnCp; 08 015Qrzra1 7010

+ 16 cos § cos 1 cos 015Q5gnCa, POpio
— 808 8Cy, 1 Qsgn Siny sin O,5p0;g
+ 8 cos § cosn*Cy, p; COS 0,52 D7 010

— 16 cos § cosncos 9152 sin ncdzz_)zebm
+ 12C;, p; €08 01504, sinNa, 4;p

+ 12 cosnCy, p1Qsgn Sin 015014,



144

B. 6-DoF Model Equations

—12C;p; cos O15Q5gn sinna,;A.p

+ 24 cos 6 cos 01,04, SinnCcy, A;T

+ 24 cos § cos g4y Sin Glscdzij

— 24 cos 6 cos 01,Q4, sin ncdziCF

+ 16 cos nCy, p1Qsgn SiN O15a1 P00

— 16Cy, b1 €OS 815054, SINNA1POK10
+8c081Cy,piQpzr SiN 01501 P60

— 8(y,p1 COS 015Qrzr SINNA;1 DOy

+ 16 cos 6 cos gy Sin B15¢4, 7010

— 16 cos § cos 015 gpn SINNCq, T0h10
—8cos 8Cyp; cos 0,5 sinn2pr6,;,

+ 8 cosnC;,p; COS b1 Sin §qroyo

— 12Cy p1Qsgn sinn sin 6,50, 4.7

— 2404y, sinn sin 0,54, AT 0p10

— 24Qgy sinn sin Ocq, fAcT05

— 24 cos 5RagCa,q0p100p11

+ 24 cos § cos1Cyp; cOS O15Q5gnAiD

— 24 cos § cosnCy,p COS Glsﬂsgnicﬁ
—8cos § cosnCy p; COS 015Q5gn P10

+ 8 cos § cosnCy p; cos 6152 sin m_azeblo
— 8cos § cosn?Cy, p; cOS B4 sin 915529,”0
— 8cos § cosnCy,p cos 9152 sin 777_‘29,,10
+ 24 cos § cos 1€y 1 Qsgn SiN O1 4,7

— 24 cos 6Cyp; COS 01505y SINNA;T

— 24 cos § cos €y, p1Qsgn SIN 01547

+ 24 cos §Cyp; €OS 0104y Sin nA.r
—8cos 6 cosNCy pQsgn SiN O1570,10

+ 808 §Cyp; cOS O15Q55p SINNTOY0

+8cos §C; p; cos Oy sinn? sin 019 010
+ 12 cos nC;, p; COS O15Qsgnas 4T

— 12 cosnCy,p; cos Blsﬂsgnalij

— 24 cos § cosn cos O015Q5gnCa, AiD
+ 24 cos 6 cosn cos Hlsﬂsgncdzicﬁ
+ 24 cos §Cy 1 Qsgn sinn sin O154;p
— 24 cos §Cy Qs gp siny sin 015AcD
— 16 cos nC;, p; €08 B15Q5gnA170p10
— 8c0snC,p; cOS 015Qrzra1 7010

+ 16 cos § cos 1 cos 015Q5gnCa, POpio
— 808 8Cy, 1 Qsgn Siny sin O,5p0y;g
+ 8 cos § cosn*Cy, p; COS 015> D7 010

— 16 cos § cos 7 cos 0% sin ncdzf)zebm
+ 12C;, p; €08 01504, sinna, 4;p

+ 12 cos €y, p1Qsgn Sin 015014,
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— 12Cy,p; €08 81504, sin na;A.p

+ 24 cos 6 cos 01,04, Sinncy, ;T
+ 24 cos § cos g4y, Sin Hlscdzij
— 24 cos § cos 01504, sin ncdzij
+ 16 cos nC;, p1Qsgn Sin O15a1 P10
— 16C;,p; COS B304y Sin na,pyio
+ 808 1Cyp1Qrzr SIN 01501 D0p0

— 8Cy p1 COS 015Qrzr SINNA;1 DO

+ 16 cos 6 cos gy Sin B15¢4,70p10
— 16 cos & cos 15y SINNCq, Ok
— 8cos 8Cyp; coOs 6,5 sinn2pr6,y
+ 8 cosnCy,p; €OS b1 sin §qroyo
—12Cy,p1Qsgn sinn sin 0 sa; 1.7

+ 24 cos Qg 4y siny sin Hlscdzicﬁ
+ 16 cos 7 cos 0150rzra1Cq,TOp10
—16C;, p1Qsgn sinn sin b;5a,76p,0
- 8ClablﬂRZR sinn sin 615a,70p9

+ 16 cos 6Q 4y, Sinn sin 15¢4,00p10
+ 16 cos 7 cos 0y sin Sagcq, PO,

+ 8Cy,,p1 COS b1 sin & sinnpqby;g

— 16 cos § cos n? cos Glszcdzﬁeblo
+ 8cos 5Clab1Raoic59bz1

— 24 cosn cos 015Q5gnCa, AcTOp10

— 24 cosn cos 01s0sgncq, 1705,

— 16 cos NQgzg Sin 015a4¢q, P0p10

+ 16 cos 015Or g SiNNaA;Cq, POpio

+ 16 cos § cos 6y5° sinn?cq, Drpo
+ 24 cos Ny Sin O15Cq, AcPOpio

— 24 cos 01504y, sinncg, AcpOpio

+ 24 cos Ny, sin B15¢q, D0},

— 2408 013Qgn sinneg, 1005,

— 6.cos 6 cosNCy, p1QsgnR sin O1576p4
+ 6 cos 6C;, p; €OS 0105 R SINNT 614

+ 3 cos 6C, p; €O 0104y SinNa T
— 12 cos nCy,p; €08 015Q5gnRaA1T0p 1

— 608 1Cy, p; COS 0150k zrRA1 7O

+ 12 cos § cos 1 cos 015QggnRcq, P11
— 608 6Cy,p1Qsgn R sinn sin 6,5p0y;4

+ 6 cos § cos n?Cy, p; COS 0, °Rprop,

— 12 cos § cos 7 cos 0;5°R sin ncdzfazebll
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+ 12 cos nC;, p1QsgnR sin O15a1 P01
—12Cy,p; 08 015Q5gn R sinna,pby1;
+ 6 cos1Cy b QrzrR SN 0150, D0y

— 6Cy, b1 COS 015025 R siNNa; POy

+ 12 cos § cos NQgnR sin 0;15¢4,70,14
— 12 cos 6 cos 01,Q54,R SinNCy, 70,14
— 608 §Cy, p; COS 0,5°R sinn?proy,;,
+ 6 cosnC;, p; cOS B15R sin §qroy;,

— 12 cosnCy,p; cos Oy, sin 8agA.pOpi0
+ 12 cos 1 cos 015QrzrRa1Cq,TOp11
—12C;,p1QsgnR sinn sin 650,70y,

— 6Cy, b1 QrzrR sinn sin ;50,76

+ 12 cos Qg g, R sinn sin 015¢4, POp11
+ 6Cy,p; COS O15R sin & sinnpqby;q

+ 16 cosnCy,p; cOs 9152 sinna,proy
— 16 cosn cos 15QsgnRCq, AcT0p11

— 12 cosn cos 0150gnR*cq, 1765,

+ 12 cos 0;5QgzrR sinna; cq,pp11

+ 12Cy,p; cOs b4 sin § sin Nag AT 010
+ 16 cos NQsgn R sin O34, A POy
—16.cos 015Q5gnR sinncg, ficpOpin

+ 12 cos NQggn R? sin 015c4, A0S,

— 12 cos 0130 gnR? sinnca, AcpOpy,

— 16Q44nR sinn sin 015¢q, A T0p11

— 12044, R? sinn sin 6;5¢4, 4765,

— 6.cos 6 cosnC;, p; COS B15Q5gn RPOp 11
+ 6 cos § cosnCy,p; COS 0,5°R sinnﬁzebll

— 6cos b cosnCy,p; cos HlszR sinn?zebll

— 3 cos 6 cosnCy,p; cos O15Q5gnai Aicp

+ 32 cos § cos nCy,p; cOs B4 sinn sin O15p70p0
— 8cosnCy,p; cos b;4R sin Saoicﬁ%ll

+ 12 cosnCy,p; cOS 6,5°R sinna, prép;;

+ 8Cy,p; COS 45R sin § sin NagAcT0p11

+ 24 cosn cos O15R sin §agcq, pOp100pi1

— 32 cosncos 015QsgnRcq, icTOp100p11

— 24 cos 6;4R sin § sinnagcq, 0p100p11
+32cos nﬂsgnR sin elscdz ﬁcﬁebloebll
—32cos glsﬂsgnR sin Ncq, ﬁcﬁgbloebll
—32Q44nR sinn sin Oy5¢q, A T0p100p11

+ 24 cos § cosnC;,p; cOs B4R sinn sin O15p70p;4
—8cos§ cosncosO;,QggnRaicq, f1cPOpi10Opi1)
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B.6. Equation (g

Simplified equation (Extra assumption: cg, = 0)

ClaO'
C=-—
b,6,
+ 2
b190
+ 3
3b (A=A
4
Rb16p11
+ 4
+ 3ngna0.uc(/1i - Ac)

Rb10p11

(ué( 2

)

2
3 ngn Aolc 60
B 4
_ -ngnRaOﬂcgbll
2
ngnao Cd1 Uc
4Cy,p1

Full equation (next page)
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s =

_ 6.6315¢ — 041, Ny
CpR%p

— 60Cy, p1b1Ac
—40C,,p1b16p10

+ 60b1Cq, 42010

+ 40 cos §QggnCq, q

+ 40C;p; sinSagq
—30C;,p1Rb160p11

- 6OngnaOCd1/:‘c

— 120C;, b1 /32 0p10
+120 cos 8Cyp Qs gnTTAi
— 120 c08 8Cy 1 Qs gnTT e

(60C,,pi1b14;

— 40 cos 8Cp, 1 Qs gnNBp10

+ 120ClablﬂsgnQRZRb1/1i

— 120C;, 1 Q5 gnQrzrb1 A

+ 120 cos §Cy 11 Qsgndiq

— 120 cos 8Cyp1sgndcq

— 40C;, 510 gnQrzrD16b10

— 40 cos §Cy,p1Q2sgnq0b10

+ 120 cos 6ﬂsgncdzﬁic
—360C;, 185 gnaoliflc
+360C;, 1 0sgnaodchlc

+ 80 cos (5‘ngncd2ﬁ9blo

— 1209590 Qrzrb1Ca, Ai

+ 120Q55nQrzrbirca, Ac

— 120 cos 6Q4gncq,Aiq

+ 120 cos Sﬂsgncdzicﬁ

+ 180C;, 51 Qs gnaofcOpi0

+ 80050 Qrzrb1q, Opi0

— 60C;, pRb1 120y

+ 80 cos 6QsgnCa,q0p10

+ 240Q054n,a0Cq, Aifle

— 240040 a0Ca, Acflc
—120Q4g,a0¢q, A Op10

+ 80 sin daycq, q0p10

+80sin 8agcq, G075,

+ 40 cos 6 cos1Cyp; cOS B15a0D
+ 40 cos § cos nCy,p; sin O,5a07
— 40 cos §Cp; cos By sinnagr
— 40 cosn cos 015Q4n sSindcy, p
+ 40 cos 6C_p; sinn sin 6;5a0p

—30cos 6ClablﬂsgnRﬁgbll
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—105cos 6Clablﬂsgna1ﬁﬁc

—30C;, 1105 gnQrzrRD16p11

—30c0s 8C;, 11 QsgnRqOp11

+ 40 cos 1504y Sin § sinncg, 7
—105c08 6Cy 1 Qsgnarficq

+ 60 cos 8 nRca, N0p11

- 75Clablﬂsgn sin 5b1ﬁca

+ 120C;, 51905 gnRaofcOp11

+ 6OngnQRZRRb1Cd2 ebll

+ 60 cos 6QsgnRca, q0p11

+ 90 cos 6Qggpna;cq,ficq

- BOngnRaOCdzﬁcebll

+ 60C;,p; Sin8agA;q0p;0

— 60C;_p; sin 8agd.q6p10

+ 60R sin §agcy, qOp11

+ 48R* sin §aycq, G075,

+ 120 sin (Saocdzicﬁeblo

+ 20 cos 6Cyp; sin 6a1§29b10

— 80 cos 6, sin § sin n%Ca,PT 010
+30cos 6Q44na1Ca,Acq0p10

+ 30 cos Sngnalcdzﬁcﬁeglo

+ 120 cos 645 sinnaycq, ficpOpio

+ 80R sin 8agcg, A:q0p11

+ 120R sin 8aycq, q0p100p11

— 120 cosnCy,p; cos B304y Sin 5A;p

+ 120 cos 7Cy,p; €08 015Q5gp Sin 84D

+ 40 cos nC;,p; cOS 01504y SN 6PBOy0

— 40 cosnC,p; cos 9152 sin § sin m_azeblo
+ 40 cos n?Cy,p; cOS Oy sin 6 sin 015529,,10
+ 40 cosnCy,p; cos 9152 sin § sin 777_‘291,10
— 40 cos n*Cy,p; cOs By sin § sin 915?29“0
+ 60 cosnCy,p; cos Blsﬂsgnblij

— 120 cosnCy b1 Qsgn Sin 8 sin O1 4,7

+ 120C;, p; cOs 01504, sin § sinnA;r

+ 120 cos nCy piQsgn Sin b sin 01547

— 120C;,p; €OS 01504y Sin & sinnd.7

+ 80 cosnC;,p; cOS 015Q5gnb17 0410

+ 40 cosnCy,p; €0S O150rzrb1T0p 0

+ 40 cosnCy, p1Qsgn Sin & sin O1576),0
—40C;,,p; €08 01504, 8iN 8 SINNT O,

+ 40 cos § cos nC,p; cOs B15qT 00

— 40C;, p; cos b, sin § sinn? sin 915529“0

+ 40 cos §Cy p; cOs Oy sin nﬁ_prlo
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+40C;p,; cos b, sin § sinn? sin elstebm
+ 60C;,p; cOS 01504, sin nbyA.p

+ 120 cosn cos 01504, sin cg, Aip

— 120 cosn cos 01,04, sin SCdZ/TC;_a

— 120Gy, 1 Qsgn sin b siny sin O154;p

+ 120C;, p1Qsgn sin 6 siny sin 015A.D
— 80 cosnCy, pQsgn sin 01sb1P0p10

+ 80C;,,p; cOS 015Q4n SiNNb; POy

+ 40C;,p; c0s 015Qpzg SINNb1 POy

— 80 cosn cos 81504, Sin 8¢y, DOp10

+ 40C, 1 Qsgn sin § sinn sin 6;5p0;g
+ 80 cos 6 cos 1 cos 6,5a¢Cq, P10

+ 80 cos § cos 7 cos 015a0Cq, PO,

— 40 cos 6 cosnCy,p; Sin O15pq00

+ 40 cos §Cy,p; cos 015 SINNPqOy10

— 40 cosn*Cy,p; cOS 0,5° sin 6pr 6,0

+ 80 cos 7 cos 0,5 sin 6 sin ncdzﬁzeblo
— 80 cosn? cos B sin § sin Glscdzﬁzebm
— 80 cosncos 0152 sin § sin ncdzfzebm
+ 120 cos nQ gy, sin 6 sin Oy5¢4, 4,7

— 120 cos 6,5Q44p sin & sinncy, ;7

— 120 cos nfg4y sin 6 sin 91Scd2ﬁcr_‘

+ 120 cos 6,504, sin § sin ncdzicr_‘

— 180 cos nC;,p; cOS B15a0fic T Ok

+ 80C;,p1Qsgn SinN siN O15b1 70,

— 80 cos Ny, sin 6 sin B15¢4,76p0

+ 80 cos 0,504y, Sin & sinncy, 760
+40C;_p; cos 6% sin & sin n2préy,

— 80 cos 6 cos 0y, sinnagcy, 700

— 80 cos & cos Oy sinnagcy, 765,

— 80 cos & cosn cos B15cq,qT0p10

+ 40 cos §Cy 1, sinm sin 015qT0p0

+ 80 cos 8, sin § sinn? sin Blscdzﬁzebw
+ 1200445, sin 6 sinn sin 9150112/11‘5

— 1200445, sin 6 sinn sin Glscdzicz_a

+ 180 cos nCy,p; Sin 615a0ficpOpi0

— 180C;,p; cos 615 sinnagficpbpio

— 80 cos 0;5Qrzg SinNbyca,POp1o

— 8004, sin § sinn sin 6,54, POpio

— 80 cos 6 cos 0y, sinncg,pqpio

+ 80 cosn? cos 0;° sin 8¢a,PT0p10

— 40C;, R sin 8agAqOp1

+ 120 cos 7 cos 815a0Cqa, AcTOp10
—180C; 1 sinn sin 8;5a0f: 7010



B.6. Equation Cs

151

+ 30 cosnC,p; cos B15Q5gn R Sin 6pOp14
. —2
—20coséd cos nZClabl cos 9152 sindap Gy
. . —2
—30cosnC,p; cos GISZR sind sinnp 61
. . —2
+ 30 cos n?Cy,p; COS O15R sin 8 sin 65" Oy
. . —2
+ 30 cosnC;,p; cOS 9152R siné sinnr 6y

— 30 cosn*Cy,p; cos Oy5R sin § sin 015?29“1
+ 105 cos 1Cy p; cOs 01504y SiNSayficp

+ 75 cos §Cyp; COS 015Q5gp SiNNbyficT

+ 60 cosnC_p; COS 015055 Rb176p11

+ 30 cosnCy,p; €OS O150rzrRb1 Ty

+ 30 cos NGy, pQsgn R sin 8 sin 01,70y,
—30C;,p1 €08 01504, R sin & sinnréy;,

+ 30 cos 6 cosnCy,p; cOS O15RqT 011

— 300y, p; cOs 614R sin & sinn? sin els;‘azeml
— 20 cos 8C;,p; cOS 0,5 sin & sin nzaleem
+30C;, p; cOS 614R sin & sinn? sin 0,7 Op11
+ 105 cos €y 1 Qsgn Sin & sin Oy 5a4 i
— 105C;, p; €08 01504, sin & sinna, A1
+ 60 cos § cos 1Cy,p; cOs B15a04;pOpi1o

— 60 cos § cosnCy,p; cOs 015a0ADOu10

— 60 cosnCy,pQsgnR sin O15b1 P01y

+ 60C;,p; cOS O15Q5gn R SinNb; POy
+30C;,,p; c0s 01Oz R sinnbypbyy

— 60cosncos 1,Qs4,R sin ¢y, pOpiq

+ 30C;, 11 Qsgn R sin 8 sinn sin 6150014
+ 20 cos 82 cos 1€y, p,; €OS 01501 G010

+ 60 cos § cosn cos 815Rancq, DOp11
—30cos § cosnCy R sin 013pq0p11

+ 30 cos §Cy ,; cos O15R sinnpqOy;q
+48cos & cosn cos 8;R*agcq, pop,

— 30 cosn*Cy,p; COS 6,5°R sin 6970,

+ 60 cosn cos 9152R sin § sin ncdzﬁzebll
— 60 cosn cos 9152R sin § sin ncdzT’szll
— 90 cosn cos 504y sindaycq, Acp

+ 105C;, p1Qsgn Sin & sinn sin 0;,a, Acp
— 120 cos nCy,p; cos O15RapficT0p11

— 60 cos §Cy p,; cos 05 sinnagA;r0p;0

— 60 cos § cosnC,p; sin 015a0A:T6p10

+ 60 cos 6Cy,p; cOs by sin NaAcT0p10

+ 60C; 11 Qsgn R sinn sin O15b, 76y,

— 20 cosnCy,p; cOs O sin §2a;pq0hp;o

— 60 cosnNQsgyR sin & sin O15¢4,70

+ 60 cos 815Q54n R sin 6 sinncy, 70414

— 20 cos §%Cyp; oS b5 Sinna; qréy;o
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+30C),p; cOS 015 °R sin § sinn?préy;,
— 60 cos § cos 013R sinnagcy, 70,1

— 60 cos 6 cosn cos 0;5Rcq, qr0p;1

+ 30 cos §Cy R sinn sin 8,5q70p;4

— 48 cos § cos 015R? sinnagcy, 765,
+ 90 cos 0,04y sin 6 sinna,cq, AT
+ 120 cos nC;, ;R sin O:5a0 i pOpi1
—120C;,,p; cos 015R sinnagficpOpiy

A

+ 120 cos § cos 1 cos 15a¢Cq, AP0
—60cos §Cy p; siny sin Hlsaoicﬁﬁbm

— 60 cos 0;5QpzgR sinnbycq, POp11

— 60Q,4,R sin § sinn sin O15¢4, 00511

— 60 cos § cos 65R sinncgq, pqOyis

+ 60 cos n? cos 0;s°R sin 8¢a,Pr0p11

+ 20Cy, p; cOs 05 sin 8% sinna, qroyg
—90Q,, sin § sinn sin 6,5a,cq, icp
—120C, R sinn sin 6,5a0f. 70y

— 120 cos § cos 645 sin naocdziCFGblo

— 60 cos 0,,°R sin § sin n%Ca,PT0p11

+ 20 cos 6QsgnRaicq, 1cqOpi1

+ 15 cos 8QggnR?*a;cq, 4965,

+ 80 cos 0;4R sinnaycq, ficpOpin

— 75 cos § cos NGy, p; c0s O15Q5gn b1 Acp

— 15 cos 6 cos UZCzabz cos 9152R sin 6a1529b11
— 15c0s 6Cy,p; COS 0,.2R sin & sinn?a,7 Oy
+ 40 cos § cosnC;,p; cos B15RagA;pbpiq

— 40 cos 6 cosnCy,p; COS 61sRag AP0y

+ 15 cos 62 cos nCy, p; cOs B15Ra1 gy

— 160 cos nC;,p; cOs b1 sin § sinn sin O,5pr6y0
— 40 cos § cosnC;, ;R sin 015a0A. 70011

+ 40 cos 6Cyp; cos O15R sin NagA:T0p11

— 15 cosnCy,p; cos B4R sin §%a;pqby

+ 80 cos § cosn cos leRaocdzicﬁebll

— 40 cos §C; R sinn sin 015004 P0p11

+ 120 cos § cos 1 cos 015RaoCq,D0p100p11

+ 320 cosn cos 64, sin & sinn sin 0;5¢4,pT6p10
—30cosncos 815Q4n sindaycq, AcPOpio

— 30 cos 7 cos 01,0y Sin 8a,cq, AcpOi,

— 80 cos 6 cos B4R sin naocdzijebll

— 120 cos 6 cos O15R sinnaycq,70p100p11

+ 30 cos 6,504y sin 8 sinna, cq, A:T0p10

+ 30 cos 0;3Qgn sin § sinna, cq, Ac 765,

+ 120 cos 6R sinn sin 6,5a¢Cq, POp100p11



B.6. Equation Cs

153

+ 40 cos 6QggnRa;ca, ficqOpi0Opin

+ 20 cos 0,,QsgnR sin & sinna,cq, ficT0p11

+ 15 cos 013Qgn R? sin & sinnay cq, A:7605;,

+ 40 cos § cos nCy,p; COS 0,% sin & sinna,;préy,
— 120 cosnC;,p; cos O14R sin § sinn sin O1,p164
+ 240 cosn cos 014R sin § sinn sin ,5¢4, 0701
— 20 cos 7 cos 015054y R sin da,cq, AcPOpi1

— 15 cos 7 cos 0105y R? sin 8ay cq, AcpOi,

+ 30 cos § cosnCy, p; COS HlszR sin § sinna,;préy;;
— 40 cosncos 015QsgnR sinda;cq, ficpOpi0Opin

+ 40 cos 6,504, R sin 8 sinna,cq, Ac760p1060p11)
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B.7. Equation (),

Simplified equation

—O'.Q 4(). - /‘l )Hblo
Co = 859" (4dAe —2(U2+ D) + %
Cd
+ G (1);1 + R(A; = A0)0p11 + 2a1 (4 — Ao e
_Acq,(hi—Ac)  ca,Op0 | 4Rca, Opin
3Ci,p1 Ci,p1 5Cin1
Full equation
0'0013IblN]/bl
0T T G O eonc
— 60Clalesgn/1;2
~ 60C,,p1Qsgn Az
— 400 gnca, Ay

~

+ 400 gnCa, A
+ 600 Cq, A2

+ 600 gncq, A2

+ 30Q4nCq, Op10
+30Q5gnCa, 02,
+120C; 1 Qs gnAidc
+40C;, 11 QsgnAiOpio

- 4OClalesgn/ic9blo

+ 24Q5gnReq, Op1n

+ 2005 nR%cq, 0%,

— 120QnCq, Aide

= 80Q4nCa,4i0b10
+80Q44,Ca, AcOpi0

+ 3005 gnCa, A2Op10
+30QgnCa, BE051,

+ 30C;, 51 QsgnRAiOp11

= 30C;,51Q5gnRAOp11

+ 60C;, 11 Qsgnai difdc

— 60C;,51 Qsgn 1 Achc

— 60cosncos B15¢4,70p10
— 60 cos 7 cos O15¢q,707,
- ZOCzalesgna1ﬁc9blo

+20C;, 51 QrzrA1ficOp10

— 60 cos 815 sinncg, pOpio
+ 60 cos 7 sin 615¢q, P65,
— 60 cos 6, sinncy, pbi;,
= 60Q545nRCq,Ai0p11
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+ 60Q5g,Rcq, AcOp11
+ ZOngnRCdiﬁggbll
+ 1SngnR2Cd2.a59§ll
—20C;,p; Sin 8f1:q0p;0
+ 48Q5gnRCq, 0p100b11
- 6Ongnalcd2 Aiﬁc

+ 6Ongnalcd2 /Alc.ac

— 60 sin7 sin 615¢4,707;,
+ 4'()ngnaflCdzﬁceblo
— 400 2R 01 Ca, ficOpio
—30sin 8a,cq,q07,
+ 40 sin §cg, A:q0p10

—2
— 15 cos §% cos n*Cy, p,; cOS Glszﬂsgnp

=2
— 15 cosn?Cy,p; cOS Hlszﬂsgn sin §%p

— 15 cos §%Cy,p,; cos Glszﬂsgn sinn?r
— 15, COS O35> Qg gy sin 62 sin 27"
+30C;, 51 Q5gnQrzr Sinda;q
— 40 cosnC;,p; cOS B154;70p0
+ 40 cosnCy,p; cos 015 A:T0p10
— 48 cosn cos 15Rcy, T0h1

— 40 cosncos B13R?*cq, 765,
= 15C;,p1QsgnRa1f1cOp11

+15C;, 51 QrzrRA1 AcOp11

— 30Q5nQrzr sinda;cq,q

+ 40 cos NG, p; Sin 6154;p0p0
—40C,,p; cos 15 sinnA;pbpo
— 40 cosnC,p; sin 01sA: D010
+ 40C;,p; cOs ;5 sin NAPO10
— 48 cos 4R sinncg, pOpin
+40 cos nR? sin 654,05,
— 40 cos 6,4R? sinncy, pbj;,
—15C;, R sin 6A.q6p11

+ 80 cosn cos 815¢4,4;T0p10
— 80 cosncosby,¢q, 170410
—40C;,p; sinm sin 0;54;7609
+ 40C;,p; siny sin 015 A:T0p10
— 40R? sin7 sin 6;5¢4,7607;,
+ 30QsgnRasca, AcOb11
—30QgzrRa1Cq,AcOp11

+ 20Clabl sin 5(1126691710
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+ 80 cos 6,5 sinncg, A;pOpi0

+ 80 cos 7 sin Blscdzicﬁﬁbm

— 80 cos O4 sin UCdzicl_?gbzo

— 20R? sin 8a,cq,q65),

+ 40050 Rca, 42610011

+ 30R sin §cq, i.q0p11

— 80 sin7n sin BlstZiCFﬁbm
—40sinda;cq, 23610

+ 96 cos R sin 0;15¢4,00p100p11

— 96 cos 0;5R sinncy, pOpioOpi1

— 60R sinn sin 6;5¢4, 170,11

— 96R sinn sin 0;5¢4,70p100p11

— 30R sin Salcdzijﬁbll

— 48R sin da ¢4, q0p100p11

— 20 cos 6 cosnCy,p; OS O154: P10
— 30 cos nCy,p; cOS 015RA;T 0,14

+ 30 cosnCy,p; cOS 01sRA.T0,1

— 20 cos § cosnC;, p; Sin O15fi T0p10
+ 20 cos §C,p; cOS 05 Sinnfi T
— 30 cos § cos 7 cos 015a; ¢4, 00,
+ 30 cosnCy, pR sin 0154;p0p4
—30C;,p; cOs B3R sinnd;pby,;4
—30cosnCy, p R sin 015A:POp11

+ 30C;,p; cos B4R sinnA.p0y4

+ 20 cos nC;,,p; €OS O15a1 AcT 00

+ 40 cos § cos 7 cos B15Cq, A POpio
—20cos 6Cyp; sinn sin B4 pbpio
+ 30 cos & cos 05 sinna; cq, 705,
+ 20C;,p; cOs 015 sinnay Acpbpio

+ 60 cosn cos O15Rcy, AiT0h 4

— 60 cosncos HlsRcdzicFebll
—30C;,pR sinn sin 6,54;760,4

+ 30C;, ;R siny sin 015 AcT0p11

— 40 cos & cos Oy sinncg, AT 0k
— 96 cosn cos O15Rcy, T0h100p11

+ 15C;piR sin 6a,4.q0p11

+ 60 cos 0,5R sinncy, A;p6p11

+ 60 cosnR sin 91Scdzicﬁeb,1

— 60 cos 6,4R sin r]cdzicﬁebll

+ 30 cosnCy,p; cOS 015° Qg gy sin 82 sinnpr
+ 30 cos 8 cos 015059, Qrzr SINNA 4, T
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— 15 cos § cos 1Cy p; cos O15RA:POp11

— 20 cos 6 cosnCy,p; cOS B15a14;D0p10

+ 20 cos 6 cosnCy,p; COS 015a14:P6p10

— 15 cos § cos nCy, R sin O15/2.70p;4

+ 15 cos §Cyp; cos B15R sin i T6p;q

— 20 cos 8 cos 7 cos 01sR%a;cq, POy,

+ 15 cos nCy,p; cOS 61sRa ficT0p1

+ 20 cos 6 cosnCy p; Sin 0,5a14.76510

— 20 cos §Cyp; cOs By sinna, A:T0p0

+ 30 cos § cosn cos OsRcq, POy
—15cos 6Cy R sinn sin O,54.pOp;4

+ 20 cos § cos 013R? sinna; cq, 765,

+ 15C;,p; cos O15R sinna, ficpOpiq

— 40 cos § cosn cos Glsalcdzicﬁﬂ,w

+ 20 cos 6Cyp; sinn sin 0,5a14:06p10
—30cos & cos B4R sinncg, Ac:T0p11

+ 60 cos7 cos Blszﬂsgn sinnecq, projy,

+ 40 cos § cos 0, sin nalcdzijebw

+ 4808 0;5°Qg g R sin nzcdzﬁzebl()@bll

+ 30 cos § cos nC;,p; COS O15Q5gnQrzraA1D
+ 30 cos 6 cosnCy, 1 QsgnQrzr Sin O 5a,7
— 30 cos §Cyp; €OS O15Q5gnQpzg sSinna v
+ 30 cos 62 cos nCy,p1 COS 9152959n sinnpr
—30cos 6 cosn cos 015Q5gnQrzrA1Ca, P
+30cos 6Cy 1 QsgnQrzr Sinn sin fy5a,p
+ 15 cos § cos nC;, p; COS 0,sRa; . pOp,
—15cos 6Cyp; cos O44R sin Nay A0,

— 30 cos 6 cosncos GlsRalcdzicﬁebll

+ 15co0s 6C; R sinn sin 01501 A.D0p11

— 48 cos 6 cosncos O5Ra cq,pOp100p11
+ 30 cos § cos B4R sin nalcdzijebu

+ 48 cos § cos 04R sinna,cq,70p100p11

+ 96 cosn cos BlszﬂsgnR sinnca, pr0p106p11)






GTRS look-up tables

C.1. Horizontal stabilizers downwash angle

a(deg) | n=90deg n=60deg n=30deg n=15deg n =0deg
-90 0 0 0 0 0
-16 0 0 0 0 0
-12 0 0 0 0 0
-8 0.06 0 0 0 0.09
-4 1.32 1.2 1.8 1.26 1.62
2.58 2.6 2.7 2.8 3.15
4 3.84 4 4.22 4.34 4.68
5.1 5.2 5.74 5.88 6.21
12 5.9 6.4 7 7.1 7.1
16 6.3 6.8 7.3 7.3 7.5
20 6 6.3 6.7 6.7 7
24 4 4.1 4.1 4.1 4.8
28 0 0 0 0 0
90 0 0 0 0 0

Table C.1: Horizontal stabilizers downwash angle due to wake of the wing, XFL = 1 [8]
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C. GTRS look-up tables

a(deg) | n=90deg n=60deg n=30deg n=15deg n =0deg
-90 0 0 0 0 0
-16 0 0 0 0 0
-12 0.45 0 0 0.4 0.8
-8 1.25 0.9 0.7 1.2 1.6
-4 2.6 2.25 2.1 2.7 31
0 4.08 3.8 3.6 4.3 4.7
4 5.35 53 5.2 6 6.2
8 6.6 6.8 6.7 7.1 7.8
12 7.4 7.8 7.9 8.7 8.5
16 7.55 8.2 8.2 8.9 8.6
20 6.7 7.4 7.4 8.2 7.5
24 4.4 4.8 4.8 53 4.9
28 0 0 0 0 0
90 0 0 0 0 0

Table C.2: Horizontal stabilizers downwash angle due to wake of the wing, XFL = 2 [8]

a(deg) | n=90deg n=60deg n=30deg n=15deg n =0deg
-90 0 0 0 0 0
-16 0 0 0 0 0
-12 0.95 0 0 0.7 1.47
-8 2.54 1.78 1.3 2.4 3.03
-4 3.92 3.38 2.9 4.1 4.59
0 5.4 4.98 4.5 5.8 6.15
4 6.88 6.58 6.1 7.5 7.71
8 8.26 8.18 7.7 9.2 9.27
12 8.9 9.2 8.9 10.4 9.8
16 8.8 9.5 9.1 10.8 9.7
20 7.3 8.4 8.1 9.8 8
24 4.8 5.5 5.5 6.4 5
28 0 0 0 0 0
90 0 0 0 0 0

Table C.3: Horizontal stabilizers downwash angle due to wake of the wing, XFL = 3 [8]
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a(deg)

n=90deg n=60deg n=30deg n=15deg n =0deg

-90
-16
-12

12
16
20
24
28
90

0

0
0.95
2.54
3.92
5.4
6.88
8.26
8.9
8.8
7.3
4.8
0

0

0

0

0
1.78
3.38
4.98
6.58
8.18
9.2
9.5
8.4
55
0

0

0
0
0
1.3
2.9
4.5
6.1
7.7
8.9
9.1
8.1
55
0
0

0

0
0.7
2.4
4.1
5.8
7.5
9.2
10.4
10.8
9.8
6.4
0

0

0

0
1.47
3.03
4.59
6.15
7.71
9.27
9.8
9.7
8

5
0
0

Table C.4: Horizontal stabilizers downwash angle due to wake of the wing, XFL = 4 [8]
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C. GTRS look-up tables

C.2. Fuselage aerodynamic coefficients

ar | Cuy Coy  Cuy

-28 | -1.5794 23226 -12.4504
24 | -1.3935 1.8581 -12.1762
-20 | -1.0099 1.4298 -10.7604
-16 | -0.6735 1.0015 -10.4772
-12 | -0.3372 05732 -8.3535
-8 | -0.0009 02787 -6.2014
-4 | 03354 0.1672 -4.0352
0 | 06717 0.1449 -1.8831
4 | 1008  0.1672 0.269

8 | 13443 02137 24211
12 | 1.6806 0.341  3.4971
16 | 2.0169 0537  4.0352
20 | 23532 0733  3.7661
24 | 26013 0929  2.6901
28 | 29729 13935 2.6901

Table C.5: Fuselage aerodynamic coefficients [8]
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