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Article 
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Abstract: Stumbling during gait is commonly encountered in patients who suffer from mild to seri-
ous walking problems, e.g., after stroke, in osteoarthritis, or amputees using a lower leg prosthesis. 
Instead of self-reporting, an objective assessment of the number of stumbles in daily life would in-
form clinicians more accurately and enable the evaluation of treatments that aim to achieve a safer 
walking pattern. An easy-to-use wearable might fulfill this need. The goal of the present study was 
to investigate whether a single inertial measurement unit (IMU) placed at the shank and machine 
learning algorithms could be used to detect and classify stumbling events in a dataset comprising 
of a wide variety of daily movements. Ten healthy test subjects were deliberately tripped by an 
unexpected and unseen obstacle while walking on a treadmill. The subjects stumbled a total of 276 
times, both using an elevating recovery strategy and a lowering recovery strategy. Subjects also 
performed multiple Activities of Daily Living. During data processing, an event-defined window 
segmentation technique was used to trace high peaks in acceleration that could potentially be stum-
bles. In the reduced dataset, time windows were labelled with the aid of video annotation. Subse-
quently, discriminative features were extracted and fed to train seven different types of machine 
learning algorithms. Trained machine learning algorithms were validated using leave-one-subject-
out cross-validation. Support Vector Machine (SVM) algorithms were most successful, and could 
detect and classify stumbles with 100% sensitivity, 100% specificity, and 96.7% accuracy in the in-
dependent testing dataset. The SVM algorithms were implemented in a user-friendly, freely avail-
able, stumble detection app named Stumblemeter. This work shows that stumble detection and 
classification based on SVM is accurate and ready to apply in clinical practice. 

Keywords: stumbling; detection; machine learning; inertial measurement unit; accelerometer;  
gyroscope; amputee; osseointegration 
 

1. Introduction 
1.1. Stumbling in Individuals with Impaired Gait 

Among non-disabled older adults, tripping over an obstacle has consistently been 
reported as the leading cause of falls [1–3], accounting for 33 [3] to 53 percent of all falls 
[2]. Fall risk is even increased in chronic disorders such as osteoarthritis [4], stroke [5], 
and leg amputees [6]. During gait, an individual may be particularly susceptible to trip-
ping or stumbling at the instant when the swing foot reaches its peak forward velocity 
and, simultaneously, the vertical distance between the swing foot and the ground reaches 
a local minimum [7]. This point in the gait cycle has been referred to as the instant of 
minimum toe clearance (MTC). Theory predicts that small MTC and larger toe clearance 
variability increase the probability that the swing foot will contact an unseen obstacle, 
initiating a stumble [8]. In the absence of compensatory strategies, the lack of ankle 
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dorsiflexion muscles for individuals with a prosthesis is expected to affect MTC, possibly 
increasing the likelihood of stumbling over an obstacle [9]. Measuring the number of 
stumbles during daily life could be an effective way to identify older adults and impaired 
individuals who are prone to fall. Fall risk is directly associated with stumbles [10,11]. 
Sgyrley et al. [12] found that the elderly who reported multiple near falls were more likely 
to fall prospectively. For amputees, osseointegration is an innovative way to anchor the 
prosthesis to the bone of the stump. Such a direct skeletal connection of the prosthesis is 
claimed to provide superior walking stability over traditional prostheses [13,14]. How-
ever, scientific evidence is required to support these claims. Screening for individual fall 
risk is advocated for groups at risk (e.g., people with osteoarthrosis [4] or amputees), to 
indicate and tailor fall-prevention interventions. 

1.2. Automatic Stumble Detection for an Objective Evaluation of Fall Risk 
Assessing the number of stumbles is often based on subjective self-reports [15]. Even 

though these self-reports are a low-cost solution, they are not very accurate and reliable, 
but seriously biased, due to denial and under- or overestimation of the true occurrence of 
the stumbling events [14,16]. Therefore, accurate and reliable methods for objective detec-
tion of stumbles are required. Automatic stumble detection would enable clinicians to ob-
jectively assess patients who are at fall risk or monitor how an older individual’s fall risk 
changes over time. Moreover, such a system could be used to evaluate the efficacy of in-
terventions that aim to promote walking safety. Furthermore, it can be used to monitor 
patient progress during fall-prevention training programs. In addition to the number of 
stumbles, also identification of the type of stumble recovery strategy used could be im-
portant information to inform therapists. The body has two primary approaches to recov-
ering from stumbles [17,18]. In the elevating strategy, the obstructed foot is lifted over the 
impeding object and swung quickly forward to take the weight. In the lowering strategy, 
the obstructed foot is put onto the ground to take the body weight while the other leg 
performs a quick recovery step. 

1.3. Wearable Sensors and Machine Learning 
In near fall detection research, the rapid development in sensor technology and im-

provement of data-processing capabilities of devices has led to a shift from self-reports to 
remote monitoring using wearable sensors and advanced detection algorithms, as it gives 
the opportunity to potentially collect data outside the laboratory setting [19]. Especially 
the combination of an accelerometer and a gyroscope, also known as an inertial measure-
ment unit (IMU), has become more popular, as the development of micro-electro-mechan-
ical systems (MEMS) technology has led to the low cost, low mass, and low energy con-
sumption of sensors. 

However, if a stumble detection system is to be used in a real-world environment, it 
is hard to distinguish peaks in acceleration and angular velocity that are caused by stum-
bles from peaks that are caused by other movements, such as walking down the stairs. 
Using a threshold-based algorithm leads to dilemma: if it is too low, the device will also 
detect negative events (“false positive”), but if the threshold is too high, it will not detect 
positive events (“false negative”). The threshold is also dependent on the subject-to-sub-
ject variability [20]. Threshold-based algorithms cannot overcome this difficulty and more 
advanced algorithms are required to separate stumbles from other movements. Machine 
learning involves the development of algorithms that would enable computers to learn 
complex patterns and make intelligent decisions based on these algorithms, without ex-
plicitly being programmed to do so [21]. The development of advanced machine learning 
algorithms offers the possibility to classify complex data. However, machine learning is 
still a relatively new field in stumble and fall detection research. Different techniques have 
been developed to automatically identify stumbles with varying degrees of success using 
body-fixed sensors [15,22–28]. Sensitivities and specificities ranged from 75 to 100% and 
90.1 to 100%, respectively. However, only one study by Aziz et al. [22] included activities 
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of daily living (ADLs) in their dataset. Activities of daily living should be added in the 
dataset to check the accuracy of the developed stumble detection system and its ability to 
differentiate between stumbles and ADLs. Although Aziz et al. achieved 100% sensitivity 
and 100% specificity, their system required five sensors. They achieved 92.0% sensitivity 
and 99.2% specificity with a single sensor placed on the right thigh. No study aimed to 
create a lower leg-based stumble detection system. A lower leg-based stumble detection 
system could be of value to individuals with a prosthesis, as it offers the possibility to 
attach the sensor to the prosthesis. Furthermore, no study aimed to create a system able 
to classify the type of stumble (elevating strategy or lowering strategy). 

The goal of the present study is to investigate whether a single IMU sensor placed on 
the lower leg together with machine learning algorithms can be used to detect and classify 
stumbling events, with high sensitivity and specificity, in a context of activities of daily 
life. 

2. Materials and Methods 
2.1. Participants, Experimental Setup, and Protocol 

Ten healthy volunteers (9 young (25.4 ± 1.5 years) and 1 older (60 years)) participated 
in the study. The study was approved by the TU Delft Human Research Ethical Commit-
tee (HREC-1304). All risks and precautions of the experiment were explained to the par-
ticipants, after which they read and signed the informed consent form. 

To make the participants stumble unexpectedly, a stumbling device based on the de-
sign by King et al. [29] was built. The device consists of a ramp-based obstacle delivery 
apparatus that releases an obstacle onto a treadmill (see Figure 1). The obstacle was made 
out of aluminum and weighted approximately 6 kg. The horizontal velocity at treadmill 
touchdown could be modified by changing the point along the ramp where the obstacle 
is held by an electromagnet. When the obstacle was released, it rolled down the ramped 
track, on a set of flanged roller bearings mounted on shoulder bolts threaded into each 
corner of the obstacle, and then slid onto the treadmill belt. Firm foam padding was at-
tached to the front and bottom of the obstacle to protect the subjects’ toes and the treadmill 
belt, respectively. 

  
Figure 1. Stumbling device [29] mounted on a treadmill. 

Participants were asked to walk steadily on a treadmill and manage the unexpected 
tripping perturbations. To prevent subjects from hearing or seeing the obstacle being de-
ployed, each subject listened to music via earbuds, and a shield was placed directly above 
the stumbling device, to occlude visual perception of the obstacle sliding on the treadmill 
(see Figure 2). Participants wore a safety harness that was attached to the ceiling by a cord 
and a stiff spring, to prevent them from falling. Participants were given several minutes 
to walk on the treadmill before testing, to acclimate to the setup. During the stumbling 
trials, the treadmill speed was changed after every three consecutive stumbles, ranging 
from 1 to 5 km/h, to elicit different gradations of stumbles and to prevent habituation. 
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Changes in treadmill speed were chosen randomly. Release of the obstacle on the tread-
mill happened about once every minute. The legs of the participants were videotaped, to 
classify a trial as either a successful stumbling trial or a mistrial. A trial was labelled as 
successful if there was a clear impact of the swinging foot with the obstacle during the 
swing phase. Trials were labelled as unsuccessful if the subject stepped on or over the 
obstacle. For each test subject, at least 20 successful stumbles were recorded. Stumbling 
trials were divided into two classes based on the recovery strategy used: the elevating 
strategy or the lowering strategy [30,31]. The experimenter ensured that about the same 
number of elevating stumbles and lowering stumbles were evoked by manually timing 
the release of the obstacle. The recovery strategy was determined by the trajectory of the 
perturbed foot after impact: 

 
Figure 2. Stumbling device and experimental setup. 

- Elevating strategy: After impact with the obstacle, the perturbed foot lifts up and 
over the obstacle, landing past the obstacle. This strategy is used when the foot is 
perturbed in the early swing phase (5–50% of the entire swing phase). 

- Lowering strategy: After impact with the obstacle, the perturbed foot lowers in front 
of the obstacle, while the other foot performs a recovery step and lands past the ob-
stacle. This strategy is used when the foot is perturbed in the late swing phase (40–
75% of the entire swing). 
One Ax6 inertial measurement unit (IMU) from Axivity, Newcastle upon Tyne, UK, 

was used during this study. The IMU was placed on the tibia, 20 cm below the patella, 
using sports tape for fixation to the skin. The sensor was set to record at 100 Hz, with an 
accelerometer range of ±8 g and a gyroscope range of ±500 dps. The placement and direc-
tions of the axes of the IMU are shown in Figure 3. 
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Figure 3. Placement and direction of the axes of the Ax6 sensor. 

After the stumbling trials, the participants performed several Activities of Daily Liv-
ing (ADLs) that resemble common movements that are present in the daily life of individ-
uals with a prosthesis. The inclusion of ADLs in the training dataset is necessary to 
properly train the machine learning classification models and reduce the number of false 
positives and false negatives when the system is used in the real world. Each ADL was 
explained and demonstrated to the participants by the experimenter. The participants 
then performed the ADLs themselves (see Table 1). 

Table 1. Activities of Daily Living. 

ADL Amount/Time Instructions 
Walking straight 5 min 1, 2, 3, 4, and 5 km/h on a treadmill (1 min each) 
Walking corner 10× Walk 90-degree and 180-degree corners 
Come to a halt 10× Stand still after walking. Repeat 10 times. 

Sitting and rising 10× 
Sit down on a chair and rise from a chair in dif-

ferent ways and speeds. Repeat 10 times 

Pick up object from 
ground 

10× 
Throw a small ball on the ground and then pick 

it up from the ground in different ways and 
speeds. Repeat 10 times. 

Walking upstairs 
and downstairs 

5× 
Walk up and downstairs in different ways and 

using speeds. Repeat 5 times 

2.2. Dataset and Software 
Accelerometer and gyroscope data collected during the experiments were uploaded 

to a computer via Omgui (Newcastle: Open Movement Newcastle University) version 
V1.0.0.43., an open-source lightweight application. Omgui is used to set up and configure 
the Axivity sensors, as well as to visualize the data. 

The video recordings of the legs of the test subjects were synchronized with the IMU 
sensor data via ELAN (Nijmegen: Max Planck Institute for Psycholinguistics) version 5.9. 
In ELAN video recordings and IMU sensor data can be synchronized and played back. To 
obtain the ground truth, the experimenter used this application to manually label the dif-
ferent activities in MATLAB. Motions were labelled as ‘Stumble (Elevating)’, ‘Stumble 
(Lowering)’, and ‘Other’. Mistrials were labeled as ‘Other’ and kept in the dataset. The 
labelled activities (classes) from the video footage were treated as the ground truth, to 
train the machine learning models. 

POSITIVE X

POSITIVE Z
POSITIVE Y

POSITIVE X

POSITIVE Y POSITIVE Z

PATELLA
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MATLAB (Mathworks Inc., Natick, Massachusetts, US) release R2020b version 
9.9.0.1592791 was used for processing the data and developing the machine learning mod-
els. 

2.3. Data Pre-Processing 
The dataset required minimal pre-processing. Data from the IMU contains seven col-

umns. The first column contains the time as a serial date number. Columns 2 to 4 and 5 to 
7 contain the accelerometer and gyroscope data in X, Y, and Z direction, respectively. The 
logging frequency was set to 100 Hz, resulting in 100 data points per second. The serial 
date numbers were converted to a datetime array using the MATLAB function datetime. 
The resultant acceleration without gravity (g) and resultant angular velocity (deg/s) at 
each time was calculated using Equations (1) and (2): 

𝑎𝑎𝑟𝑟 = �𝑎𝑎𝑥𝑥2 +  𝑎𝑎𝑦𝑦2 +  𝑎𝑎𝑧𝑧2 − 1 (1) 

𝜔𝜔𝑟𝑟 = �𝜔𝜔𝑥𝑥2 + 𝜔𝜔𝑦𝑦2 + 𝜔𝜔𝑧𝑧2 (2) 

In total, 8 signals were used for machine learning; 𝑎𝑎𝑥𝑥 , 𝑎𝑎𝑦𝑦 , 𝑎𝑎𝑧𝑧 , 𝑎𝑎𝑟𝑟 ,𝜔𝜔𝑥𝑥,𝜔𝜔𝑦𝑦 ,𝜔𝜔𝑧𝑧 , and 𝜔𝜔𝑟𝑟. 

2.4. Window Segmentation and Labelling 
In machine learning problems where time series come into play, the data should be 

adequately partitioned and labelled with the corresponding activity, to distinguish be-
tween the different classes. In human activity classification, several windowing tech-
niques are used to divide the sensor data into smaller time segments (or windows), also 
known as window segmentation. Subsequently, feature extraction is applied to each win-
dow separately. 

In our approach, an event-defined window segmentation method was used. The first 
step in the event-defined window segmentation method is to find potential stumbles in 
the dataset. As each stumble is characterized by peaks in acceleration, the findpeaks option 
in MATLAB is used to locate peaks in the dataset. As both stumbles using an elevating 
strategy and lowering strategy are characterized by high acceleration peaks in the forward 
z direction, the findpeaks function in MATLAB was used to find peaks in this signal. To 
reduce the number of peaks considered, a threshold value of 1.75 g was empirically cho-
sen, as this value was just low enough to capture all stumbling peaks, as well as some 
peaks caused by other movements. Furthermore, the time interval in-between peaks was 
set to 4 s, ignoring the lower peaks within this range. This ensures that stumbles are not 
detected multiple times, as the acceleration signal may cross the 1.75 g threshold multiple 
times during a stumble. The findpeaks option returns the locations (indices) of the peaks. 
After the locations of the peaks were found, these locations were used as the centers of the 
windows. Time windows of 2560 milliseconds were created as this length is enough to 
fully capture a stumble. For each location, 1270 milliseconds before the peak to 1280 mil-
liseconds after the peak was considered to form a time window (see Figure 4). As the 
sampling frequency of the IMU was 100 Hz, each time window includes 256 data points 
for one signal. As there are 8 signals, each window contains 8 × 256 = 2048 data points. 
The event-defined window segmentation method reduces the computational time as only 
parts of the data that are potential peaks are fed into the machine learning algorithms and 
the rest of the data, the vast majority, is ignored for the rest of the process. 

Next, the time windows were labelled. During this study we evaluated two different 
approaches to classify the data into three classes: Stumble (elevating), Stumble (lowering) and 
Other. In the first approach, the three-class classification approach, we tested the capability 
of the different machine learning algorithms to directly classify the data into the three 
classes. We use dataset D1, where the data are grouped by the three classes, to evaluate 
this approach (see Table 2). In our second approach, the double binary classification 
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approach, we tested the capability of the different algorithms to first classify the data into 
two classes: Stumble and Other. Subsequently, all windows predicted as stumbles were 
classified as either Elevating or Lowering using a second machine learning algorithm. We 
used datasets D2 and D3 to test this approach (see Table 2). 

 
Figure 4. Event-defined window segmentation technique. Time windows were created around the 
intersection points between the accelerations in the (forward) z-direction (blue) and the threshold 
line (red). 

Table 2. Labelled datasets. 

Dataset Classes 
Amount of  
Windows 

(Validation) 

Amount 
of  

Windows 
(Test) 

(D1) Three-class classifica-
tion 

Stumble (elevating) 
Stumble (lowering) 

Other 

132 
114 
329 

12 
18 
77 

(D2) Stumble detection 
Stumble 

Other 
246 
329 

30 
77 

(D3) Stumble type classifica-
tion 

Elevating 
Lowering 

132 
114 

12 
18 

2.5. Feature Selection and Extraction 
Feature selection is an important area in machine learning. It is the process of select-

ing the relevant features to construct a model. The main idea behind feature selection is 
that some features are redundant or irrelevant and can therefore be removed without 
much information loss. Research has shown that it is an effective way to improve the 
learning process and recognition accuracy and decreases the complexity and computa-
tional cost. Some models are negatively affected by irrelevant features [32]. The main ob-
jective of feature selection in supervised machine learning is to improve the classification 
accuracy and reduce complexity [33,34]. 

In this study, both time domain and frequency domain features were tested and se-
lected. A Fast Fourier Transform was used to extract the frequency-domain features. Ini-
tially, 42 different feature classes were tested for usability. For each time window, a single 
feature class was extracted per IMU signal, creating 8-dimensional feature vectors (1 fea-
ture class × 8 signals). These feature vectors were then fed into different machine learning 
algorithms, to test the feature classes’ predictive power. Feature classes were only selected 
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if they were capable of achieving at least 70% sensitivity and specificity with a machine 
learning algorithm, indicating there is a strong correlation with the output. A total of 16 
features classes passed the first selection round (see Table 3). 

Table 3. Feature classes. 

Nr Feature Class 
1 Interquartile range 
2 Kurtosis 
3 Mean 
4 Median 
5 Mean absolute deviation 
6 Maximum 
7 Minimum 
8 Peak-magnitude-to-RMS-ratio 
9 Spectral entropy 

10 Prominence  
11 Root-mean-square level 
12 Root-sum-of-squares level 
13 Range 
14 Skewness 
15 Standard deviation 
16 Sum of local maxima and minima 

Next, for each time window, all 16 features classes were extracted for each of the 8 
IMU signals, creating 128-dimensional feature vectors (1 classes × 8 signals). This means 
that for each time window there are 128 features that could describe the characteristics of 
that window. An effective method to identify the most relevant features is sequential fea-
ture selection [35]. Sequential feature selection is a wrapper-type feature selection algo-
rithm that starts training using a subset of features and then adds or removes a feature 
using a selection criterion. The selection criterion directly measures the change in model 
performance that results from adding or removing a feature. The algorithm repeats train-
ing and improving a model until its stopping criteria are satisfied. This method has two 
components: 
• An objective function, called the criterion, in which the method seeks to minimize the 

overall feasible feature subsets. For our classification problem, the misclassification 
rate was set as the objective function. 

• A sequential search algorithm, which adds or removes features from a candidate sub-
ject while evaluating the criterion. 
The method has two variants: 

• Sequential forward selection (SFS), in which features are sequentially added to an empty 
candidate set until the addition of further features does not decrease the criterion. 

• Sequential backward selection (SBS), in which features are sequentially removed from a 
full candidate set until the removal of further features increase the criterion. 
SFS was chosen over SBS for feature selection as the computational cost is signifi-

cantly lower with SFS. For each model, features were selected using SFS with 30 objective 
evaluations. 

Finally, we normalized the extracted features to rescale the data to a common scale. 
Supervised machine learning algorithms learn the relationship between the input and out-
put and the unit, scale, and distribution of the input data may vary from feature to feature. 
This will impact the classification accuracy of the models. In this work, the data were nor-
malized by scaling each input variable to a range of 0 to 1. 
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2.6. Machine Learning Algorithms 
After the sensor data were properly processed and the features were extracted; the 

next step is to feed these feature vectors to a machine learning algorithm. In this study, 
seven types of machine learning algorithms were tested: Decision Tree [36], Discriminant 
Analysis [37], Logistic Regression [38], Naïve Bayes [39], Support Vector Machine (SVM) 
[40], k-nearest neighbors (KNN) [39], and Ensemble Learning [41]. Each type of machine 
learning algorithm has hyperparameters to select. For each type of machine learning al-
gorithm, the optimal set of hyperparameters was found for the three different machine 
learning classification datasets, by using a Bayesian Optimization Algorithm with 40 iter-
ations (see Appendix A for an overview of the Machine Learning algorithms that were 
trained and evaluated, with their optimal hyperparameters). 

2.7. Training, Validating, and Testing 
To evaluate the different machine learning algorithms, the dataset was divided into 

a training dataset, validation dataset, and testing dataset (see Figure 5). To determine the 
optimal hyperparameters, leave-one-subject-out cross-validation (LOOCV) was used to-
gether with Bayesian Optimization on the data from Subjects 1 to 9—the younger test 
subjects. Like k-fold cross-validation, the data were partitioned into training data and val-
idation data. The validation dataset provides an evaluation of a model fit on the training 
dataset while tuning the model’s hyperparameters [42]. With 9 subjects, the cross-valida-
tion process iterated 9 times. For each iteration, the data of the left-out subject was used 
as validation data and the data of the remaining subjects as training data. After the 9 iter-
ations, the predicted labels of the validation data were compared with the true labels. 
Trained models with the optimal hyperparameters, found using Bayesian Optimization, 
were exported. 

The trained models were then evaluated with the testing data from the remaining 
Subject 10—the older test subject. The testing dataset is a dataset used to provide an un-
biased evaluation of a final model fit on the training dataset [42]. This testing dataset was 
not used for training. The predicted labels of the testing data were compared with the true 
labels. 

Next, the total performance for each model was calculated with different metrics. For 
this study, the most important performance metrics to compute were sensitivity (also 
called true positive rate, hit rate, or recall), specificity (also called true negative rate), and 
accuracy (see Equations (3)–(5)). These metrics were calculated after training and validat-
ing with LOOCV (validation scores), and after testing the exported models on the holdout 
data from Subject 10 (test scores). It should be noted that the specificities were calculated 
over the reduced dataset, containing just time windows with peaks that cross the thresh-
old. 

 
Figure 5. Division of the dataset into a training dataset, validation dataset, and testing dataset. 

TRAIN VALIDATION TEST

Leave-one-subject-out cross -valida�on (Subject 1-9) Subject 10

Training dataset Valida�on dataset Tes�ng dataset

Train mul�ple models Validate models Evaluate models
Tune hyperparameters and Evaluate the models

select the best model based on various metrics
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 (3) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (4) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (5) 

where TP represent the true positives (true stumbles), TN represents the true negatives 
(true ADLs), FP represents the false positives (ADLs misidentified as stumbles), and FN 
represents the false negatives (stumbles misidentified as ADLs). TE represent true elevat-
ing stumbles and TL the true lowering stumbles. 

3. Results 
In total, 276 successful stumbles were captured by the IMU, of which 134 were stum-

bles that were recovered using the elevating strategy and 132 that were recovered using 
the lowering strategy. Subject 10 stumbled 30 times and recovered from 5 perturbations 
by jumping over the obstacle with both legs at the same time. These ‘hopping’ recoveries 
were labelled as elevating, as the obstructed foot was lifted over the object directly after 
the collision. No separate class was created for these ‘hopping’ stumbles as there was 
simply not enough data to do so. The dataset of all subjects combined, including both the 
stumbling data and ADLs, is approximately 11.5 h long. 

In this chapter, all the different machine learning algorithms are validated using 
leave-one-subject-out cross-validation and tested by using the exported models on the 
holdout data from Subject 10. In Section 3.1, single machine learning algorithms were used 
to separate three classes directly: Stumble (elevating), Stumble (lowering), and Other. In Sec-
tion 3.2, two machine learning algorithms were used in series, to first separate all stumbles 
from all other peaks, and subsequently differentiate between the type of stumble recovery 
strategy. Sensitivity and specificity were computed to validate and evaluate the model’s 
ability to separate the stumbles from the other data. Accuracy was computed to evaluate 
the model’s ability to distinguish between stumbles where an elevating strategy was used 
and stumbles where a lowering strategy was used. 

3.1. Three-Class Classification Approach 
Since we do not only want to separate stumbles from the other data, but also want to 

distinguish between the type of stumble (elevating strategy/lowering strategy), there are 
three classes in this machine learning classification problem. Intuitively, a single machine 
learning model can be used to classify the data into the three classes (see Figure 6). 

 
Figure 6. Single machine learning model to classify data into three classes. 

ML model Stumble
(lowering)

Stumble
(eleva�ng)

Other
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Tables 4 and 5 show the results for this classification problem. We used dataset D1 to 
validate and evaluate this approach. The model predictions were compared with the true 
labels. Sensitivities and specificities were calculated by taking both types of stumbles to-
gether as the positive class and the ‘Other’ windows as the negative class. Accuracy was 
calculated by the number of correctly classified stumbles (elevating as elevating and low-
ering as lowering) divided by the number of detected stumbles. The highest sensitivities, 
specificities, and accuracies where achieved with the SVM model during both validation 
and testing. 

Table 4. Results of the three-class classification approach (validation). 

ML Model Sensitivity (%) Specificity (%) Accuracy (%) 
SVM 98.4 99.4 98.5 

Ensemble Learning 98.0 98.5 93.4 
Discriminant Analysis 97.2 97.0 90.0 

KNN 97.2 95.1 74.1 
Naïve Bayes 91.1 95.4 75.4 

Decision Tree 87.8 93.3 77.8 

Table 5. Results of the three-class classification approach (testing). 

ML Model Sensitivity (%) Specificity (%) Accuracy (%) 
SVM 96.7 100 96.6 

Ensemble Learning 93.3 98.7 92.9 
Discriminant Analysis 93.3 97.4 89.3 

KNN 90 93.5 88.9 
Naïve Bayes 90 93.5 77.8 

Decision Tree 83.3 94.8 72.0 

3.2. Double Binary Classification Approach 
In our second approach, the machine learning classification problem was split into 

two parts. First, a machine learning model was used to detect stumbles in the data. We 
call this the stumble detection problem. Subsequently, a second machine learning model 
was used to classify the stumbles as either a stumble where an elevating strategy was used 
or a stumble where a lowering strategy was used. We will call this the stumble type clas-
sification problem (see Figure 7). 

 
Figure 7. Two binary machine learning models in series. 

Tables 6 and 7 show the results for the stumble detection problem, validated and 
evaluated with dataset D2. The model predictions were compared with the true labels. A 
confusion matrix was created for each model and the sensitivities and specificities were 

 ML model 1

Stumble detec�on Stumble type separa�on

Stumble

Other

Eleva�ng

Lowering

ML model 2
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calculated for both validation and testing. The best results were achieved with the SVM 
model, with a 100% sensitivity and 100% specificity in the testing dataset. Tables 8 and 9 
show the results for the stumble-type classification problem, validated and evaluated with 
dataset D3. The accuracy was defined as the amount of correct predictions over the total 
amount of predictions. Again the SVM model outperformed other models, with an accu-
racy of 96.7% in the testing dataset. 

Table 6. Results of the stumble detection problem (validation). 

ML Model 1 
Sensitivity (%) 

(Validation) 
Specificity (%) 

(Validation) 
SVM 98.8 100 

Discriminant Analysis 98.0 96.3 
Ensemble Learner 97.6 98.2 

Logistic Regression 97.6 94.8 
KNN 96.3 92.4 

Naïve Bayes 88.2 90.4 
Decision Tree 88.0 93.6 

Table 7. Results of the stumble detection problem (testing). 

ML Model 1 
Sensitivity  
(Testing) 

Specificity (%) 
(Testing) 

SVM 100 100 
Discriminant Analysis 96.7 97.4 

Ensemble Learner 96.7 97.4 
Logistic Regression 90.0 93.5 

KNN 90.0 92.2 
Naïve Bayes 86.7 89.6 

Decision Tree 83.3 88.3 

Table 8. Results of the stumble-type classification problem (validation). 

ML Model 2 
Accuracy (%) 
(Validation) 

SVM 95.5 
Ensemble Learner 91.9 

Discriminant Analysis 87.0 
KNN 86.6 

Logistic Regression 85.4 
Naïve Bayes 84.2 

Decision Tree 81.3 

Table 9. Results of the stumble-type classification problem (testing). 

ML Model 2 
Accuracy (%) 

(Testing) 
SVM 96.7 

Ensemble Learner 93.3 
Discriminant Analysis 83.3 

KNN 80.0 
Logistic Regression 80.0 

Naïve Bayes 76.7 
Decision Tree 73.3 
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3.3. Final Model 
For our final model, we look at the results of the previous two paragraphs. As precise 

detection of the stumbles is prioritized over accurate stumble-type classification, the main 
demand for the final model is its ability to detect as many stumbles as possible with keep-
ing the number of false positives as low as possible. For both validation and testing, the 
highest sensitivity and specificity were achieved with the double binary classification ap-
proach. For both the stumble detection problem and the stumble-type classification prob-
lem, the best results were achieved with SVM. For stumble detection, SVM achieved 100% 
sensitivity and 100% specificity in the testing dataset. For the stumble-type classification, 
the SVM was able to classify the stumble recovery type with 96.7% accuracy in the testing 
dataset. Therefore, for our final model we used these two SVM models in series. Table 10 
shows the selected features using SFS and the selected hyperparameters using Bayesian 
Optimization for both models. 

Table 10. Final models: features and hyperparameters. 

ML Model Type Features 
Kernel 
Func-
tion 

Box constraint 
Level 

Kernel Scale 

ML model 1 
(stumble vs. 

other) 
SVM 

Median 𝑎𝑎𝑥𝑥 
Maximum 𝑎𝑎𝑥𝑥 
Minimum 𝑎𝑎𝑧𝑧 
Minimum 𝜔𝜔𝑦𝑦 

Spectral entropy 𝜔𝜔𝑧𝑧 
Peak-magnitude-to-RMS 

ratio 𝜔𝜔𝑧𝑧 
Peak-magnitude-to-RMS 

ratio 𝜔𝜔𝑟𝑟 

Linear 976.7 7.5492 

ML model 2 
(elevating vs. 

lowering) 
SVM 

Interquartile range 𝑎𝑎𝑟𝑟  
Kurtosis 𝑎𝑎𝑥𝑥 

Mean 𝑎𝑎𝑥𝑥 
Mean 𝜔𝜔𝑥𝑥 

Maximum 𝜔𝜔𝑧𝑧 
Minimum 𝜔𝜔𝑟𝑟 
Skewness 𝜔𝜔𝑟𝑟 

Linear 0.0001 0.0293 

3.4. Stumblemeter App 
To make the programming work of this study accessible for clinicians, an application 

named Stumblemeter was created (see Supplementary Materials). After uploading the 
.cwa file containing the IMU data, the application automatically performs all the steps 
required for machine learning classification (see Figure 8 for the interface of the Stum-
blemeter app). The application displays the number of stumbles in the form of a histo-
gram. In the text area, the total amount of stumbles during a measurement is displayed, 
as well as the times when a stumble occurred. Depending on the physical activity of an 
individual with a prosthesis, the computation time for a 7-day measurement is about 3 
min. 
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Figure 8. Interface of the Stumblemeter app. The number of stumbles per day is displayed on the 
left in the form of a histogram. The total number of stumbles, the duration of the measurement, and 
the individual stumbling times are displayed on the right. 

4. Discussion 
4.1. Recap 

During this study, seven types of machine learning algorithms were trained, vali-
dated, and tested. For each type, optimized hyperparameters were found using Bayesian 
Optimization. All the models were first validated using leave-one-subject-out cross-vali-
dation, and then exported. The exported models were then tested on the testing dataset, 
which included the data from the older test subject. We found that using two binary SVM 
models in series produced better results that using a single SVM to directly classify the 
data into three classes. Therefore, these two SVMs were used in the final model. Even 
though the subjects performed a multitude of different ADLs, no other movements were 
recognized as a stumble in both the validation dataset and the testing dataset. 

4.2. Internal Validity 
The data were split into a training dataset, validation dataset, and testing dataset. 

The validation dataset is a sample of data held back from training the model that is used 
to give an estimate of the model skill while tuning the model’s hyperparameters. The val-
idation dataset is different from the test dataset, which is also held back from the training 
of the model, but is instead used to give an unbiased estimate of the skill of the final tuned 
model when comparing or selecting between final models [42]. 

For each type of machine learning algorithm, Bayesian Optimization was used dur-
ing leave-one-subject-out cross-validation with data from nine subjects to find the optimal 
set of hyperparameters. Models were trained with Bayesian Optimization to minimize the 
error function defined with respect to the training dataset. The performance of the models 
was compared by evaluating the error function using an independent validation dataset, 
which provided an evaluation of a model fit on the training dataset while tuning the 
model’s hyperparameters, and the models having the smallest error with respect to the 
validation dataset were selected. Since this procedure can itself lead to some overfitting 
to the validation dataset, the performance of the selected models was confirmed by meas-
uring its performance on a third independent test dataset, containing the data from Sub-
ject 10. Testing with the unseen data provided an unbiased evaluation of the final model 
fit of the training dataset [42]. The predicted labels were compared with the true labels 
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and the sensitivity, specificity, and accuracy of the models were calculated to evaluate the 
models. By using this method, it is certain that the testing data could not have influenced 
the training of the models. 

4.3. Comparison with Previous Studies 
In previous near-fall detection research, only two studies achieved 100% specificity. 

Aziz et al. [22] did include multiple ADLs in their dataset. However, the way they recre-
ated stumbles is questionable, as they had their participants act out a stumble on a mat-
tress after watching a video. It remains unclear whether their system would be able to 
accurately detect a real-world stumble. Moreover, their setup is too impractical for clinical 
use: it consists of five sensors of which one was placed on the head. The other study that 
achieved 100% specificity, by Choi et al. [23], added just three ADLs in their dataset—
standing, walking, and lying down—and did not include activities with high acceleration 
peaks. Such a limited dataset lacks realistic representation of real-life activity, which could 
result in an overestimation of the practical performance. Two sensors were used, which 
are less attractive for practical use than our single-sensor system. 

All in all, we expect that the Stumblemeter presented in this study will outperform 
previously reported systems. Importantly, the machine learning algorithm was trained 
and tested with naturally occurring stumbles in a dataset that contains a representative 
number of ADLs. For clinical feasibility, it is important that the single sensor can be at-
tached to the shank in an unobtrusive way and can be worn for a longer period of time, 
e.g., a week. 

This study also aimed to create an algorithm that is able to determine the type of 
stumble, whether an elevating recovery strategy was used or a lowering recovery strategy. 
A second model was used to classify the detected stumbles into the two classes. This 
model was trained, validated, and tested, separately. We found that an optimized SVM 
was able to distinguish between the two types of strategies with 96.7% accuracy in the 
testing dataset. 

In terms of computational cost, we cannot compare our system with other systems 
[15,22–28] as they did not give any specifications on that matter. However, it is evident 
that the event-defined window segmentation technique that was introduced ensures that 
the computational cost is considerably lower than when the full dataset has to be pro-
cessed. We made use of the fact that all stumbles are paired with high peaks in accelera-
tion. By using a threshold, the vast majority of irrelevant data (95.5% in our dataset) is 
eliminated at an early stage. As a result, a limited amount of time-window features have 
to be extracted and fed into the machine learning models. In this study, 682 high-peak 
time windows that were created, of which 276 (40.5%) were stumbles and 406 (59.5%) 
were non stumbles. The estimated computational time for a week-long measurement is 3 
min at most, depending on the user activity. 

4.4. Practical Application in Clinical Research 
The Stumblemeter has been validated and tested in healthy people. Strictly spoken, 

this will not guarantee that it will work as well in the target population: individuals with 
walking difficulties, e.g., those walking with a prosthesis. The system would have to be 
tested separately for the different pathologies. Nonetheless, it is expected that the Stum-
blemeter will work as desired during clinical research, e.g., in the amputee population. 
Shirota et al. [43] showed that transfemoral amputees generally exhibited typical able-
bodied recovery strategies (elevating and lowering) when recovering from stumbles on 
both the sound and prosthesis sides. They found that throughout the swing phase, ampu-
tees used similar recovery strategies to able-bodied subjects for perturbations that oc-
curred at similar time points in the gait cycle. However, two out of eight amputees in their 
study used a novel hopping strategy when tripped using a tether on the prosthesis side in 
early to mid-swing. This strategy was also found in the older test subject in our study. 
Such recoveries were labelled as elevating, as the obstructed foot was lifted over the object 
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directly after the collision. These ‘hopping’ stumbles were classified as elevating stumbles 
and were all detected correctly. Therefore, it is expected that our system is able to detect 
such stumbles, even though it is not specifically trained to classify this particular recovery 
type. Follow-up research on individuals with prosthetic legs should be conducted to val-
idate this expectation. 

5. Conclusions 
This work shows that stumble detection and classification based on an IMU and SVM 

is extremely accurate and ready to apply in clinical practice. Our proposed system consists 
of just one small IMU sensor, which can easily be integrated into the pylon of a prosthesis 
or attached to the shank, leaving no burden for the users. Out of the 30 evoked stumbles 
from an independent experiment, the optimized SVM model was able to detect all of them 
(100% sensitivity). Moreover, our models did not give any false-positive predictions 
(100% specificity), even though the dataset comprised of a wide variety of daily move-
ments. Moreover, this is the first study aiming to classify the type of stumble recovery 
strategy, which it did with 96.7% accuracy. The user-friendly Stumblemeter app makes it 
quite straightforward for clinicians to analyze the data. The introduction of the Stum-
blemeter enables clinicians to objectively assess fall risk in older adults, amputees, and 
other individuals with gait impairments, outside a laboratory or clinical setting. 

Supplementary Materials: The following are available online at https://doi.org/10.4121/14473269: 
Stumblemeter app and MATLAB code. 
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Appendix A 

Table A1. Decision Tree: optimized hyperparameters for each dataset. 

ML Model 
Maximum Number of 

Splits 
Split Criterion 

Surrogate Deci-
sion Splits 

Decision Tree (D1) 59 
Maximum deviance 

reduction 
Off 

Decision Tree (D2) 38 
Gini’s diversity in-

dex  
Off 

Decision Tree (D3) 19 
Gini’s diversity in-

dex 
Off 

 

https://doi.org/10.4121/14473269
https://doi.org/10.4121/14473320
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Table A2. Discriminant Analysis: optimal hyperparameters for each dataset. 

ML Model Discriminant Type 
Discriminant Analysis (D1) Linear 
Discriminant Analysis (D2) Linear 
Discriminant Analysis (D3) Linear 

Table A3. Logistic Regression. 

ML Model 
Logistic Regression (D2) 
Logistic Regression (D2) 

Note 1: Logistic Regression can only be used for binary classification problems. Note 2: Hyperpa-
rameter optimization does not apply to Logistic Regression as there are no hyperparameters to 
alter. 

Table A4. Naïve Bayes: optimized hyperparameters for each dataset. 

ML Model Distribution Type Kernel Type Support 
Naïve Bayes (D1) Kernel Gaussian Unbounded 
Naïve Bayes (D2) Kernel Triangle Unbounded 
Naïve Bayes (D3) Kernel Gaussian Unbounded 

Table A5. Support Vector Machine: optimized hyperparameters for each dataset. 

ML Model Kernel Function 
Box Constraint 

Level 
Kernel Scale 

SVM (D1) Linear 0.0010 0.0025 
SVM (D2) Linear 976.7 7.5492 
SVM (D3) Linear 0.0001 0.0293 

Table A6. K-Nearest Neighbors: optimized hyperparameters for each dataset. 

ML model Number of Neighbors Distance metric Distance weight 
KNN (D1) 1 Cosine Squared inverse 
KNN (D2) 5 Spearman Squared inverse 
KNN (D3) 1 Correlation Inverse 

Table A7. Ensemble Learner: optimized hyperparameters for each dataset. 

ML Model 
Ensemble 
Method 

Learner 
Type 

Max Num-
ber of Splits 

Number 
of Learn-

ers 

Learn-
ing 

Rate 

Subspace 
Dimension  

Ensemble 
Learner (D1) 

Bag 
Decision 

Tree 
320 12 - 53 

Ensemble 
Learner (D2) 

GentleBoost 
Decision 

Tree 
5 485 

0.00186
4 

38 

Ensemble 
Learner (D3) 

Bag 
Decision 

Tree 
182 27 - 35 
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