
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no

lo
gy

An Adaptive Control Strat-
egy for Neural Network
based Optimal Quadcopter
Controllers
R. Ferede

An Adaptive Control
Strategy for Neural

Network based Optimal
Quadcopter Controllers

by

R. Ferede
Student Name Student Number

Robin 5176603

Supervisors: Guido C.H.E. de Croon, Christophe de Wagter, Dario Izzo
Faculty: Faculty of Aerospace Engineering, Delft

Abstract
Developing optimal controllers for aggressive high speed quadcopter flight remains a major challenge
in the field of robotics. Recent work [8, 10, 15] has shown that neural networks trained with super-
vised learning are a good candidate for real-time optimal quadcopter control. In these methods, the
networks (termed G&CNets) are trained using optimal trajectories obtained from a dynamical model of
the quadcopter by means of a direct transcription method. A major problem with these methods is the
effects of unmodeled dynamics. In this work we identify these effects for G&CNets trained for power
optimal full state-to-rpm feedback. We propose an adaptive control strategy to mitigate the effects of
unmodeled roll, pitch and yaw moments. Our method works by generating optimal trajectories with
constant external moments added to the model and training a network to learn the policy that maps
state and external moments to the corresponding optimal rpm command. We demonstrate the effec-
tiveness of our method by performing power-optimal hover-to-hover flights with and without moment
feedback. The flight tests show that the inclusion of this moment feedback significantly improves the
controller’s performance. Additionally we compare the adaptive controller’s performance to a time op-
timal Bang-Bang controller for consecutive waypoint flight and show significantly faster lap times on a
3x4m track.

i

Contents

Abstract i

1 Introduction 1

I Scientific Paper 2

II Literature Review 3
2 Literature Review 4

2.1 Optimal control theory . 4
2.1.1 Optimal control problem formulation . 4
2.1.2 The Hamilton–Jacobi–Bellman equation . 4
2.1.3 Pontryagin’s minimum principle . 5
2.1.4 Direct transcription Methods . 5
2.1.5 Optimal control applied to quadcopters . 6

2.2 Machine Learning . 6
2.2.1 Neural networks . 6
2.2.2 Supervised learning . 7
2.2.3 Reinforcement learning . 7
2.2.4 ML for trajectory generation . 7
2.2.5 ML for aggressive trajectory tracking . 8
2.2.6 G&CNets . 8

2.3 System identification . 9
2.3.1 Quadcopter dynamic equations . 9
2.3.2 Thrust and drag model . 10
2.3.3 Moments . 10
2.3.4 Actuator model . 11
2.3.5 Combined model . 11

2.4 The Reality gap problem . 11
2.4.1 Advanced modeling . 12
2.4.2 Stochastic modeling . 12
2.4.3 Adaptive inner loop . 12

2.5 Proposal . 12

3 Preliminary Experiment 13
3.1 Actuators . 13
3.2 Thrust and Drag . 13
3.3 Moments . 16

4 Research Questions 18
4.1 Research Questions . 18
4.2 Research Objective . 18

5 Experimental Set-up 20
5.0.1 Computation and Simulation . 20
5.0.2 Flight tests . 20

6 Project Planning 22

7 Results, Outcome and Relevance 24

ii

Contents iii

III Additional Results 25
8 Extended Kalman Filter Implementation 26

8.1 State Transition and Observation Model . 26
8.2 Algorithm . 27

9 Time Optimal Control 29

References 32

1
Introduction

Nowadays there is an increasing demand for autonomous Unmanned Aerial Vehicles (UAV’s) for vari-
ous military and civilian applications [4]. For many applications such as emergency response, pursuit
tasks or racing, it is necessary for the drone to fly as fast as possible. However, developing autonomous
systems for aggressive high speed flight remains a major challenge in the field of drone control. In
order to push the boundaries of high speed autonomous flight and artificial intelligence, Lockheed Mar-
tin organised the Alpha Pilot AI Drone racing Challenge in 2019. This Challenge was won by Team
MAVLab from the TU Delft who managed to complete the race track in 12 seconds – 25% faster than
the second-place drone. Although this result is impressive, one of the best drone pilots in the world
Grabriel “Gab707” Kocher beat the game by finishing the same track in 6 seconds which is twice as
fast as Team MAVLab [1]. Decreasing this gap between human and AI flight performance is one of the
research objectives of the MAVLab and it is precisely what this thesis is about.

Recent research from the TUDelft and the Advanced Concepts Team from the European Space Agency
(ESA) aims to solve this real time optimal control problem by making use of deep neural networks called
G&CNets that are trained on a dataset of time optimal trajectories. Our proposal will be a further exten-
sion of this G&CNet research covering the future work as described in the conclusion of [8]. In this work
we test and implement a G&CNet that takes into account the full 6 degrees of freedom dynamics of the
quadcopter. The dynamical model is determined by running system identification experiments on the
Parrot Bebop quadcopter in the Cyberzoo at the TU Delft. The biggest obstacle with this approach is
the reality gap between the model and the real world. For this reason the identification of unmodeled
effects and the analysis of the controller’s robustness are essential to our project. The ultimate goal
of the research is to use G&CNets to take the quadcopter to its absolute physical limits in terms of
aggressive flight. This would not only make a great candidate for drone racing competitions, but also
provide a general solution to optimal control problems in robotics where the reality gap plays a big role.

This document is divided into 3 parts. Part 1 contains the scientific paper which present the main
results of this thesis. Part 2 will cover a Literature review elaborating on current research followed by
a detailed proposal specifying the content of this master thesis. The literature review also contains a
preliminary experiment in which the first system identification experiments are presented. Finally in
Part 3 additional results are presented that are outside of the scope of the scientific paper.

1

Part I

Scientific Paper

2

An Adaptive Control Strategy for Neural Network based Optimal
Quadcopter Controllers

Robin Ferede, Guido C.H.E. de Croon, Christophe de Wagter, Dario Izzo
Delft University of Technology, 2629 HS Delft, The Netherlands

Developing optimal controllers for aggressive high speed quadcopter flight remains
a major challenge in the field of robotics. Recent work [1–3] has shown that neural
networks trained with supervised learning are a good candidate for real-time optimal
quadcopter control. In these methods, the networks (termed G&CNets) are trained
using optimal trajectories obtained from a dynamical model of the quadcopter by means
of a direct transcription method. A major problem with these methods is the effects of
unmodeled dynamics. In this work we identify these effects for G&CNets trained for
power optimal full state-to-rpm feedback. We propose an adaptive control strategy to
mitigate the effects of unmodeled roll, pitch and yaw moments. Our method works by
generating optimal trajectories with constant external moments added to the model
and training a network to learn the policy that maps state and external moments to the
corresponding optimal rpm command. We demonstrate the effectiveness of our method
by performing power-optimal hover-to-hover flights with and without moment feedback.
The flight tests show that the inclusion of this moment feedback significantly improves
the controller’s performance. Additionally we compare the adaptive controller’s
performance to a time optimal Bang-Bang controller for consecutive waypoint flight
and show significantly faster lap times on a 3x4m track.

I. Introduction
Nowadays there is an increasing demand for au-
tonomous Unmanned Aerial Vehicles (UAV’s) for
various military and civilian applications [4]. For
many applications such as emergency response, pur-
suit tasks or racing it is necessary for the drone to fly
as fast as possible. However, developing autonomous
systems for aggressive high speed flight remains a
major challenge in the field of drone control.

Most research about high speed autonomous flight
focuses on making controllers to follow a reference
guidance trajectory [5, 6]. The type of trajectories
that are generated determine the aggressiveness and
efficiency of the performed manoeuvre. By choosing
a parameterization of the trajectory, these methods
are only optimal in a restricted sense. Additionally
these method require inner loop controllers to track
the reference trajectory that often do not take into
account the actuator limits. In optimal control theory
methods exist to obtain the true optimal trajectory that
takes into account the system dynamics and actuator

limits. These methods have mostly been developed in
the 1950s by Lev Pontryagin and Richard Bellman [7].
Although the theory has been around for a long time,
practical implementations remained limited due to the
computational power required to obtain the solutions.

Recent research [1–3] from the TU Delft and the
Advanced Concepts Team from the European Space
Agency (ESA) aims to solve this real-time optimal
control problem by making use of deep neural net-
works called G&CNets that are trained on state action
pairs from time optimal trajectories obtained by a di-
rect transcription method. Once trained, the G&CNet
can provide the optimal control in real time on-board
the quadcopter. With a real flight test this has been
demonstrated to work for longitudinal trajectories
based on a simplified quadcopter model [1]. In these
experiments the G&CNet was used to calculate a
thrust command and a pitch acceleration which where
tracked by an inner-loop controller. Our proposal
will be a further extension of this G&CNet research
covering the future work as described in the conclu-

1

sion of [1]. We will investigate the feasibility of
G&CNets trained using a 3 dimensional quadcopter
model taking into account drag, aerodynamic effects
and actuator delays. This network will then directly
calculate the rpm motor commands without using
an inner-loop controller. The biggest obstacle with
this approach is the reality gap between the model
and the real world. In this research we identify this
reality gap for power optimal flight and propose an
adaptive method to mitigate the effects of unmodeled
roll, pitch and yaw moments. Furthermore we will be
benchmarking our controller’s performance against a
time optimal Bang-Bang controller in a consecutive
waypoint flight.

The following sections will start with a detailed
description of our methodology which elaborates the
quadcopter model, control problem, machine learn-
ing method and the adaptive control strategy that we
use. Additionally a brief explanation of the Bang-
Bang controller is included. This is followed by the
experimental setup which we use for our flight test.
In Results & Discussion we showcase our flight test
results in which we identify the unmodeled effects,
demonstrate the improved performance of our adaptive
method and benchmark our controller’s performance
for consecutive waypoint fight. Finally in the con-
clusion we summarize our main contributions and
elaborate on further research.

II. Methodology

A. Quadcopter model

Figure 1. Axis definition (z-axis points downwards)

The quadcopter’s state and control input are defined
by

x = [p, v, _,Ω, 𝜔]𝑇 u = [𝑢1, 𝑢2, 𝑢3, 𝑢4]𝑇

Where p = [𝑥, 𝑦, 𝑧] and v = [𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧] are the
position and velocity in the world frame, 𝛀 = [𝑝, 𝑞, 𝑟]
is the angular velocity in body frame, _ = [𝜙, \, 𝜓]
are the euler angles that describe the orientation of
the body frame and 𝜔 = [𝜔1, 𝜔2, 𝜔3, 𝜔4] are the
angular velocities of each of the propellers in rpm.
The control input u contains the normalized rpm
commands 𝑢𝑖 ∈ [0, 1].

The system dynamics is described by:

¤p = v
¤v = g + 𝑅(_)F
¤_ = 𝑄(_)𝛀

𝐼 ¤𝛀 = −𝛀 × 𝐼𝛀 + M
¤𝜔 = ((𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛)u + 𝜔𝑚𝑖𝑛 − 𝜔𝑖)/𝜏

(1)

Where g = [0, 0, 𝑔]𝑇 is the gravitational accelera-
tion, 𝐼 is the moment of inertia matrix given by
diag(𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧), 𝜔𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥 are the minimum and
maximum propeller rpm limits and 𝜏 is the first order
delay parameter of the actuator model. Furthermore
𝑅(_) is the rotation matrix defined by

𝑅(_) =

𝑐\𝑐𝜓 −𝑐𝜙𝑠𝜓 + 𝑠𝜙𝑠\𝑐𝜓 𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑠\𝑐𝜓

𝑐\ 𝑠𝜓 𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠\ 𝑠𝜓 −𝑠𝜙𝑐𝜓 + 𝑐𝜙𝑠\ 𝑠𝜓

−𝑠\ 𝑠𝜙𝑐\ 𝑐𝜙𝑐\

and 𝑄(_) denotes a transformation between angular
velocities and Euler angles given by:

𝑄(_) =

1 sin 𝜙 tan \ cos 𝜙 tan \
0 cos 𝜙 − sin 𝜙
0 sin 𝜙/cos \ cos 𝜙/cos \

 (2)

F = [𝐹𝑥 , 𝐹𝑦 , 𝐹𝑧]𝑇 is the specific force acting on the
quadcopter in the body frame which we model as a
function of the body velocities and the propeller rpms

2

using a thrust and drag model based on [8]:

𝐹𝑥 = −𝑘𝑥𝑣𝐵𝑥
4∑︁
𝑖=0

𝜔𝑖

𝐹𝑦 = −𝑘𝑦𝑣𝐵𝑦
4∑︁
𝑖=0

𝜔𝑖

𝐹𝑧 = 𝑘𝜔

4∑︁
𝑖=0

𝜔2
𝑖 + 𝑘𝑧𝑣

𝐵
𝑧

4∑︁
𝑖=0

𝜔𝑖 + 𝑘ℎ (𝑣𝐵2
𝑥 + 𝑣𝐵2

𝑦)

(3)

Similarly, M = [𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧]𝑇 is the moment acting
on the quadcopter which we model with the following
equations:

𝑀𝑥 = 𝑘 𝑝 (𝜔2
1 − 𝜔2

2 − 𝜔2
3 + 𝜔2

4) + 𝑘 𝑝𝑣𝑣
𝐵
𝑦

𝑀𝑦 = 𝑘𝑞 (𝜔2
1 + 𝜔2

2 − 𝜔2
3 − 𝜔2

4) + 𝑘𝑞𝑣𝑣
𝐵
𝑥

𝑀𝑧 = 𝑘𝑟1(𝜔1 + 𝜔2 + 𝜔3 + 𝜔4)
+ 𝑘𝑟2(¤𝜔1 + ¤𝜔2 + ¤𝜔3 + ¤𝜔4) − 𝑘𝑟𝑟𝑟

(4)

See Table 1 for the parameter values identified for our
platform.

B. Optimal control problem
Given a state space 𝑋 and set of admissible controls𝑈,
the goal is to find a control trajectory u : [0, 𝑇] → 𝑈

that steers the system from an initial state x0 to some
target state 𝑆 ⊂ 𝑋 in time 𝑇 , while minimizing the
following cost function:

𝐽 (x, u, 𝑇) =
∫ 𝑇

0
| |u(𝑡) | |2𝑑𝑡 (5)

The optimal control problem can be formulated as

minimize
u,𝑇

𝐽 (x, u, 𝑇)

subject to ¤x = 𝑓 (x, u)
x(0) = x0

x(𝑇) ∈ 𝑆

(6)

Similar to [1] the control problem is transformed
into a Nonlinear Programming (NLP) problem us-
ing Hermite Simpson transcription. The trajectories
x(𝑡), u(𝑡) are discretized into 𝑁 + 1 points with a
time step Δ𝑡 = 𝑇/𝑁 such that x𝑘 = x(𝑘Δ𝑡) and
u𝑘 = u(𝑘Δ𝑡) Using the AMPL modeling language
with the SNOPT NLP solver, the optimal (discretized)
trajectory x∗0 . . . x

∗
𝑁

and u∗
0 . . . u

∗
𝑁

can be computed.

C. Dataset generation and network training
A dataset is created by generating optimal trajectories
for a range of initial conditions. From these trajecto-
ries, a dataset of state-action pairs can be obtained of
the form

(x∗𝑖 , u∗
𝑖) 𝑖 = 0, . . . , 𝑁

We use these state action pairs to train a Neural
Network to approximate the optimal feedback1 that
maps x∗

𝑖
to u∗

𝑖
. In all our experiments we use a neural

network with 3 Layers and 120 neurons with a ReLU
activation function. Similar to [1] we use the mean
squared error loss function:

𝑙 = | |𝑁 (x∗) − u∗ | |2

with mini-batch size 256 and a starting learning rate
of 1e-3.

D. Adaptive Method
We modify our model by assuming the exis-
tance of some constant external moment M𝑒𝑥𝑡 =

[𝑀𝑒𝑥𝑡,𝑥 , 𝑀𝑒𝑥𝑡,𝑦 , 𝑀𝑒𝑥𝑡,𝑧]𝑇 acting on the system. Fur-
thermore we assume that this moment can be measured
onboard the quadcopter in real time. The external
moment can thus be considered as part of our state
vector

x = [p, v, _,Ω, 𝜔,M𝑒𝑥𝑡]𝑇

The modified system dynamics becomes:

¤p = v
¤v = g + 𝑅(_)F
¤_ = 𝑄(_)𝛀

𝐼 ¤𝛀 = −𝛀 × 𝐼𝛀 + M + M𝑒𝑥𝑡

¤𝜔 = ((𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛)u + 𝜔𝑚𝑖𝑛 − 𝜔𝑖)/𝜏
¤M𝑒𝑥𝑡 = 0

(7)

Using the same approach as before, we can now
generate optimal trajectories for this system and train
a network to approximate the optimal state feedback.
Note that we now have to sample the values of M𝑒𝑥𝑡

as initial conditions for the trajectories. Additionally,

1As discussed in [2]: "the Hamilton-Jacobi-Bellman equations
are important here as they imply the existence and uniqueness of
an optimal state-feedback u∗ (x) which, in turn, allow to consider
universal function approximators such as deep neural networks to
represent it." (Sánchez-Sánchez 6)

3

𝑘𝑥 𝑘𝑦 𝑘𝜔 𝑘𝑧 𝑘ℎ 𝐼𝑥 𝐼𝑦 𝐼𝑧

1.08e-05 9.65e-06 4.36e-08 2.79e-05 6.26e-02 0.000906 0.001242 0.002054

𝑘 𝑝 𝑘 𝑝𝑣 𝑘𝑞 𝑘𝑞𝑣 𝑘𝑟1 𝑘𝑟2 𝑘𝑟𝑟 𝜏

1.41e-09 -7.97e-03 1.22e-09 1.29e-02 2.57e-06 4.11e-07 8.13e-04 0.06

Table 1. Model parameters for the Parrot Bebop quadcopter. The moments of inertia 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧
are obtained from [9]. All other parameters have been identified by means of system identification
experiments (see Appendix A)

the neural network will now have 3 extra inputs for
𝑀𝑒𝑥𝑡,𝑥 , 𝑀𝑒𝑥𝑡,𝑦 , 𝑀𝑒𝑥𝑡,𝑧 . The obtained controller will
now use these extra inputs to optimally compensate for
the unmodeled moments (assuming they are constant).

For the onboard implementation we will obtain the
values of M𝑒𝑥𝑡 by estimating

𝐼 ¤𝛀 +𝛀 × 𝐼𝛀 − M (8)

Since the gyroscope measurements tend to be very
noisy, ¤𝛀 will be obtained by first filtering 𝛀 using a
2nd order 8Hz Butterworth lowpass filter. Similarly,
𝛀 × 𝐼𝛀 − M will also be calculated using filtered
state variables. It is important to note that the fil-
tering causes our estimates for M𝑒𝑥𝑡 to be slightly
delayed. For this reason the method might not be
stable in the presence of high frequency modeling
errors. Furthermore, the controller’s output is based
on the assumption of a constant external moment so
we can expect our method to only be effective if the
modeling errors are in a sufficiently low frequency
range.

E. Bang-Bang Controller
In recent work from the TU Delft an approach for
time-optimal model predictive control for quadcopters
with limited computational resources has been inves-
tigated [10]. The proposed ’bang-bang’ controller is
derived by simplifying the system dynamics such that
Pontryagin’s minimum principle can give an analytical
solution. The model is simplified to a 2 dimensional
model where the altitude is assumed to be constant
(regulated by the collective thrust 𝑢𝑇). The control
input to be determined by the optimal control prob-
lem is the desired pitch angle 𝑢\ . The evolution of
the horizontal position 𝑥 is given by the following

equation:

¥𝑥 = 𝑢𝑇 sin 𝑢\

From these system dynamics, the following Hamilto-
nian can be constructed:

𝐻 (x, u, p) = 1 + 𝑝1 ¤𝑥 + 𝑝2𝑢𝑇 sin 𝑢\

With Pontryagin’s minimum principle the optimal
control input can be derived:

𝑢∗\ = arg min
𝑢\

[
𝑝2𝑢𝑇 sin 𝑢\

]
This means 𝑢\ is either 𝜋/2 or −𝜋/2 depending
on the sign of 𝑝2. Because these pitch angles are
infeasable to achieve in practice, maximum pitch and
roll angles are defined based on the quadcopter’s
specifications. Nevertheless, the optimal control for
this problem will abruptly switch between a maximal
and minimal value. Such a controller is known as
a bang-bang controller and it is the foundation of
the control algorithm implemented in this research.
The advantage of this approach is that the only
computation required for the optimal control is the
switching time between the minimal and maximal
pitch angle. Additionally this method requires very
little knowledge of the quadcopter’s dynamics.

Using the Parrot Bebop drone in the Cyber-
zoo at the TU Delft, this method has outperformed
a classical PID controller by performing waypoint
to waypoint flight. Although the approach in this
research is quite different from the proposal of our
research, the performed flight tests provide an useful
reference to compare performance against.

III. Experimental Setup
The quadcopter used in our experiment is the Parrot
Bebop 1 (Figure 3). The on-board software has

4

Figure 2. Control pipeline

been replaced by the Paparazzi-UAV open-source
autopilot project [11]. All computations will run in
real-time on the Parrot P7 dual-core CPU Cortex
A9 processor. The Parrot Bebop has an MPU650
IMU sensor that will be used to obtain measurements
of the specific force and angular velocity along the
body axes. Additionally the Bebop has sensors that
measure the angular velocities (in rpm) of each of the
propellers, which is a necessary requirement for our
control method.

Figure 3. The Parrot Bebop 1 is used as experi-
ment platform. The software is replaced by the
Paparazzi UAV open-source autopilot project. Im-
age from [12].

All flight tests will be performed in The CyberZoo
which is a research and test laboratory in the faculty
of Aerospace Engineering at the TU Delft. This lab
consists of a 10 by 10 meter area surrounded by nets
with an OptiTrack motion capture system that can
provide position and attitude data in real time. An
extended kalman filter is used to fuse the OptiTrack
and IMU data in order to obtain an estimate of the
position, velocity, attitude and body rates. These

state variables are used as an input to the G&CNet
along with the rpm measurements. The outputs of
the G&CNet will be directly used as rpm commands
to the propellers. A diagram of the proposed control
pipeline can be seen in Figure 2 where the red part of
the diagram shows the calculation of 𝑀𝑒𝑥𝑡 which will
be used for the adaptive method. For this calculation
the output of the Kalman Filter along with the rpm
measurements are used to compute equation 8 as
described in section II.D.

IV. Results & Discussion

A. Identifying unmodeled effects

1. Dataset and G&CNet
Using the system dynamics 1 we generate a dataset of
100,000 power optimal trajectories with a target state
defined by:

x = 0 v = 0 _ = 0 𝛀 = 0 ¤v = 0 ¤𝛀 = 0 ¤𝜔 = 0

The rpm limits are set to:

𝜔𝑚𝑖𝑛 = 5000, 𝜔𝑚𝑎𝑥 = 10000

and the initial conditions are uniformly sampled from
the following intervals:

𝑥 ∈ [−5, 5] 𝑦 ∈ [−5, 5] 𝑧 ∈ [−1, 1]
𝑣𝑥 ∈ [−0.5, 0.5] 𝑣𝑦 ∈ [−0.5, 0.5] 𝑣𝑧 ∈ [−0.5, 0.5]
𝜙 ∈ [−40◦, 40◦] \ ∈ [−40◦, 40◦] 𝜓 ∈ [−180◦, 180◦]
𝑝 ∈ [−1, 1] 𝑞 ∈ [−1, 1] 𝑟 ∈ [−1, 1]

5

Figure 4. Visualization of 10,000 trajectories

𝜔𝑖 ∈ [−𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥] 𝑖 = 1, . . . , 4

In figure 4 a visualization of this dataset can be seen.
We split this dataset into a training set of 90,000
trajectories and a test set of 10,000 trajectories. The
G&CNet is trained until a mean squared error of
∼0.0003 is obtained on the test set.

2. Simulation and flight test
With the trained G&CNet, we simulate the closed
loop system dynamics and do a flight test where the
drone flies from hover to hover in a 3x4m rectangle.
Both in simulation and in the flight test, the drone
flies 10 laps in which the target waypoint is switched
every 4 seconds. In figure 5 a top down view of the
trajectory can be seen for the simulation and the flight
test. As expected, in the simulation, the trajectories
show significant overlap and the drone consistently
arrives at the waypoint without overshoot. In the
flight test the trajectories are more spread out and a
deviation can be seen in the positive x-direction. The
unmodeled effects are especially visible in the forward
translation manoeuvre where the drone speeds up too
much and overshoots the next waypoint. In figure
6 these forward trajectories are shown both from a
top-down view and a sideways view. It can be seen
that the drone loses too much altitude causing it to
speed up and overshoot.

Figure 5. Trajectory comparison 4 waypoint flight.

3. Unmodeled Moments
We investigate the unmodeled effects from the for-
wards translation flight my comparing the measured
moments to the modeled moments. The modeled
moments is obtained from the moment model from
equation 4. The measured moments are calculated
from the following equation

𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝐼 ¤𝛀 +𝛀 × 𝐼𝛀

using the filtered (16Hz 2nd order Butterworth non-
causal filter) gyroscope measurements. Figure 7
shows these modeled and measured moments for
one of the forwards translation trajectories from fig-
ure 6. The pitch moment model seems to have the
biggest deviations. In figure 8, the difference between
the measured pitch moment and the modeled pitch
moment Δ𝑀𝑦 is plotted along with a power spectral
density plot. Here it can be seen that in the first
1.3 seconds the unmodeled pitch moment is mostly
negative. This modeling error might explain why
the drone is diving down so much in the flight test
since the negative unmodeled moment could cause
the drone to pitch down. Additionally from the power
spectral density plot in figure 8 it can be observed
that the unmodeled pitch moment is mostly in the low
frequency range below 5Hz which is desirable for our
adaptive method.

6

Figure 6. Trajectory comparison forward translation

Figure 7. Measured and modeled moments in
forward translation

Figure 8. Unmodeled pitch moment

7

B. Performance Adaptive method

1. Dataset and G&CNet
We use the modified system dynamics with external
moments from equation 7 to generate another 100,000
power optimal trajectories with the same target state
and initial conditions as before, only now we also
uniformly sample the external moments from the
following intervals:

𝑀𝑥,𝑒𝑥𝑡 ∈ [−0.04, 0.04]
𝑀𝑦,𝑒𝑥𝑡 ∈ [−0.04, 0.04]
𝑀𝑧,𝑒𝑥𝑡 ∈ [−0.01, 0.01]

With the generated dataset we train the adaptive
G&CNet with 3 extra 𝑀𝑒𝑥𝑡 inputs to learn the op-
timal state feedback for the modified system. Again,
we train until a mean squared error of ∼0.0003 is
achieved.

2. Performance comparison
With the adaptive G&CNet, we perform a hover to
hover flight test using the same 4 waypoints on the
3x4m rectangle and compare the results to the non-
adaptive network. In figure 9 a top down view of
the adaptive network’s trajectory is shown next to
the trajectory of the non-adaptive network from the
previous flight test. It can be seen that the trajectory
no longer deviates towards the positive x-direction and
the overshoot in the forward translation manoeuvre is
significantly reduced. In figure 10 and 11 the trajec-
tories from the adaptive- and non-adaptive network
are compared to the simulated trajectory for a single
lap. Here it can be seen that the adaptive network’s
trajectory remains a lot closer to the simulated trajec-
tory. Also the overshoot in both the y and z axis is
significantly less.

3. Simplified model
In order to demonstrate the robustness of our adaptive
method we now apply our method to a quadcopter
model with a slightly simplified pitch and roll moment
model:

𝑀𝑥 = 𝑘 𝑝 (𝜔2
1 − 𝜔2

2 − 𝜔2
3 + 𝜔2

4)
𝑀𝑦 = 𝑘𝑞 (𝜔2

1 + 𝜔2
2 − 𝜔2

3 − 𝜔2
4)

Figure 9. Trajectory comparison non-adaptive and
adaptive

Figure 10. Trajectory comparison 4 waypoint flight
simulation, non-adaptive and adaptive

8

Figure 11. Trajectory comparison forward trans-
lation simulation, non-adaptive and adaptive

Note that the 𝑘 𝑝𝑣 and 𝑘𝑞𝑣 terms are now left out. With
this model we generate a dataset with the same initial
conditions and external moments as before. Again we
train a G&CNet using the dataset until a mean squared
error of ∼ 0.0003 is reached. We perform the same
flight test with our adaptive ’simplified’ G&CNet and
compare it’s performance to the adaptive network. In
figure 12 and 13 a trajectory comparison between the
two controllers can be seen. Although some differ-
ences can be observed between the trajectories, the
overall performance is very similar. This similar per-
formance is expected since the moment feedback will
still compensate the 𝑘 𝑝𝑣𝑣

𝐵
𝑦 and 𝑘𝑞𝑣𝑣

𝐵
𝑥 moment terms

although they are not explicitly modeled. Moreover
these velocity depend moments are in a low frequency
range so we can expect the adaptive method to be
effective.

C. Benchmarking consecutive waypoint flight

1. Dataset and Network

For the task of flying through 4 waypoints in a 4x3m
rectangle, we will train a G&CNet to reach the way-
point with a forward final velocity in the direction of
a 45◦ yaw angle. Using the modified system dynam-
ics 7 we generate a dataset of 10,000 power optimal

Figure 12. Trajectory comparison 4 waypoint flight
adaptive and adaptive simplified

Figure 13. Trajectory comparison forward trans-
lation adaptive and adaptive simplified

9

trajectories with a target state given by:

𝑥 = 0 𝑦 = 0 𝑧 = 0
𝑣𝑥 = 𝑉 cos 𝜋/4 𝑣𝑦 = 𝑉 sin 𝜋/4 𝑣𝑧 = 0
𝜙 = − \ = − 𝜓 = 𝜋/4
𝑝 = 0 𝑞 = 0 𝑟 = 0
¤𝑝 = 0 ¤𝑞 = 0 ¤𝑟 = 0

Where 𝑉 > 0. The rpm limits are set to:

𝜔𝑚𝑖𝑛 = 3000, 𝜔𝑚𝑎𝑥 = 12000

and the initial conditions are uniformly sampled from
the following intervals:

𝑥 ∈ [−5,−2] 𝑦 ∈ [−1, 1] 𝑧 ∈ [−0.5, 0.5]
𝑣𝑥 ∈ [−0.5, 5] 𝑣𝑦 ∈ [−3, 3] 𝑣𝑧 ∈ [−1, 1]
𝜙 ∈ [−40◦, 40◦] \ ∈ [−40◦, 40◦] 𝜓 ∈ [−60◦, 60◦]
𝑝 ∈ [−1, 1] 𝑞 ∈ [−1, 1] 𝑟 ∈ [−1, 1]

𝜔𝑖 ∈ [−𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥] 𝑖 = 1, . . . , 4

In figure 14 a visualization of this dataset can be
seen. We split this dataset into a training set of 9000
trajectories and a test set of 1000 trajectories and train
until a mean squared error of ∼0.0003 is obtained on
the test set.

2. Performance comparison
With the trained network we perform a flight test
where we fly through 4 waypoints in a 3x4m rectangle.
The controller switches to the next target waypoint
once the drone is within 0.8m from the current target.
We compare the performance of our controller to the
time optimal bang bang controller from [10] explained
in section II.E. Figure 15 shows a top down view of
the trajectories from both controllers. It can be seen
that the neural network controller has more consistent
trajectories each lap while the bang bang controller
has more variation each lap. In Figure 16, the lap
times and minimum waypoint distances are compared
for both controllers. In terms of lap times the G&CNet
clearly outperforms the Bang Bang controller with a
0.5 seconds faster average lap time. The minimum
waypoint distance for the G&CNet is slightly higher
on average by about 5cm.

Figure 14. Dataset free final velocity

Figure 15. Trajectory comparison G&CNet and
Bang Bang controller

10

Figure 16. Lap times and minimum waypoint
distances for consecutive waypoint flight

V. Conclusion
We have extended the research from [1] by training
G&CNets to perform power optimal state to rpm feed-
back for the 3 dimensional quadcopter model from
equation 1. With a flight test we have investigated
the real life performance of this G&CNet for hover
to hover flight and showed that unmodeled moments
significantly influence the flight performance. To
mitigate these effects, we implemented an adaptive
control strategy that shows a significant improvement
in flight performance. Additionally we have shown
that the adaptive method applied with a simplified mo-
ment model shows similar performance. This implies
that less accurate system identification is required for
our adaptive method to work. Furthermore we have
shown that high speed consecutive waypoint flight can
be achieved with our adaptive G&CNet method. We
benchmark our results by comparing the performance
to a time optimal Bang Bang controller and show 0.5
seconds faster laptimes on a 4x3m track.

Future work can focus on making current G&CNets
more time-optimal while retaining their current ro-
bustness. A first step would be to investigate whether
unmodeled effects or the cost function used in the
optimal control problem (Eq. 5) are at the root of
the reality gap. The former can be tackled by not
only compensating the unmodeled moments, but also
errors in thrust, drag forces and actuator delay. The
latter can be solved by changing the cost function. In
this work the objective of the optimal control problem
is purely to minimize power, instead one can formu-
late a cost function that balances multiple objectives,

such as minimizing time and maximizing robustness.
Finally, in order to improve the maneuverability of
the quadcopter in turns, the G&CNet can be trained
on trajectories which account for two consecutive
waypoints.

References
[1] Li, S., Öztürk, E., Wagter, C. D., de Croon, G. C.

H. E., and Izzo, D., “Aggressive Online Control of a
Quadrotor via Deep Network Representations of Opti-
mality Principles,” CoRR, Vol. abs/1912.07067, 2019.
URL http://arxiv.org/abs/1912.07067.

[2] Sánchez-Sánchez, C., and Izzo, D., “Real-
time optimal control via Deep Neural Net-
works: study on landing problems,” , 2016.
doi: 10.48550/ARXIV.1610.08668, URL https:
//arxiv.org/abs/1610.08668.

[3] Tailor, D., and Izzo, D., “Learning the optimal state-
feedback via supervised imitation learning,” , 2019.
doi: 10.48550/ARXIV.1901.02369, URL https:
//arxiv.org/abs/1901.02369.

[4] Hassanalian, M., and Abdelkefi, A., “Classifications,
applications, and design challenges of drones: A
review,” Progress in Aerospace Sciences, Vol. 91,
2017, pp. 99–131.

[5] Kaufmann, E., Loquercio, A., Ranftl, R., Müller, M.,
Koltun, V., and Scaramuzza, D., “Deep Drone Ac-
robatics,” 2020. doi: 10.48550/ARXIV.2006.05768,
URL https://arxiv.org/abs/2006.05768.

[6] Faessler, M., Franchi, A., and Scaramuzza, D.,
“Differential Flatness of Quadrotor Dynamics Sub-
ject to Rotor Drag for Accurate Tracking of High-
Speed Trajectories,” IEEE Robotics and Automa-
tion Letters, Vol. 3, No. 2, 2018, pp. 620–626.
doi: 10.1109/lra.2017.2776353, URL https://doi.
org/10.1109/lra.2017.2776353.

[7] Bryson, A., “Optimal control-1950 to 1985,” IEEE
Control Systems Magazine, Vol. 16, No. 3, 1996, pp.
26–33. doi: 10.1109/37.506395.

[8] Svacha, J., Mohta, K., and Kumar, V. R., “Improving
quadrotor trajectory tracking by compensating for
aerodynamic effects,” 2017 International Conference
on Unmanned Aircraft Systems (ICUAS), 2017, pp.
860–866.

[9] Sun, S., de Visser, C. C., and Chu, Q., “Quadro-
tor Gray-Box Model Identification from High-Speed
Flight Data,” Journal of Aircraft, Vol. 56, No. 2,
2019, pp. 645–661. doi: 10.2514/1.c035135, URL
https://doi.org/10.2514/1.c035135.

[10] Westenberger, J., “Time-Optimal Control for Tiny
Quadcopters,” Master’s Thesis, TU Delft Aerospace

11

http://arxiv.org/abs/1912.07067
https://arxiv.org/abs/1610.08668
https://arxiv.org/abs/1610.08668
https://arxiv.org/abs/1901.02369
https://arxiv.org/abs/1901.02369
https://arxiv.org/abs/2006.05768
https://doi.org/10.1109/lra.2017.2776353
https://doi.org/10.1109/lra.2017.2776353
https://doi.org/10.2514/1.c035135

Engineering, 3 2021. An optional note.
[11] Gati, B., “Open source autopilot for academic

research - The Paparazzi system,” 2013 Amer-
ican Control Conference, IEEE, 2013. doi:
10.1109/acc.2013.6580045, URL https://doi.
org/10.1109/acc.2013.6580045.

[12] Li, S., Ozo, M. M. O. I., De Wagter, C., and de Croon,
G. C. H. E., “Autonomous drone race: A computa-
tionally efficient vision-based navigation and control
strategy,” 2018. doi: 10.48550/ARXIV.1809.05958,
URL https://arxiv.org/abs/1809.05958.

A. System Identification

Identification of values in Table 1

A. Actuator model

In order to fit the actuator model

¤𝜔𝑖 = (𝜔𝑟𝑒 𝑓 ,𝑖 − 𝜔𝑖)/𝜏

the rpm values from the propellers along with the
reference rpm commands need to be logged. For
each propeller an array of observed rpm values
𝜔𝑖 [𝑘], 𝑘 = 0, . . . , 𝑁 along with an array of refer-
ence rpm values 𝜔𝑟𝑒 𝑓 ,𝑖 [𝑘], 𝑘 = 0, . . . , 𝑁 is logged.
Also the numerical derivative ¤𝜔𝑖 is computed. From
these arrays the regression problem is formulated as:

1
𝜏
=

𝜔𝑟𝑒 𝑓 ,𝑖 [0] − 𝜔𝑖 [0]

...

𝜔𝑟𝑒 𝑓 ,𝑖 [𝑁] − 𝜔𝑖 [𝑁]

†

¤𝜔𝑖 [0]
...

¤𝜔𝑖 [𝑁]

Where † denotes the pseudo-inverse of a matrix given
by 𝐴† = (𝐴𝑇𝐴)−1𝐴𝑇 . Figure 17 shows the regression
fits for each of the propellers. This fit was performed
using data from an autonomous flight from hover to
hover in a 4x4m square.

Figure 17. Actuator model fit

B. Thrust and Drag model

For identifying the thrust and drag model, measure-
ment of the specific forces 𝐹𝑥 , 𝐹𝑦 , 𝐹𝑦 are required.
These measurements are obtained from the accelerom-
eter which essentially measures this specific force in
the quadcopter’s body frame. According to our model
these accelerometer measurements should satisfy the

12

https://doi.org/10.1109/acc.2013.6580045
https://doi.org/10.1109/acc.2013.6580045
https://arxiv.org/abs/1809.05958

following equation:

a =

𝑎𝑥

𝑎𝑦

𝑎𝑧

 =

𝐹𝑥

𝐹𝑦

𝐹𝑧

=

−𝑘𝑥𝑣𝐵𝑥

∑4
𝑖=0 𝜔𝑖

−𝑘𝑦𝑣𝐵𝑦
∑4

𝑖=0 𝜔𝑖

𝑘𝜔
∑4

𝑖=0 𝜔
2
𝑖
+ 𝑘𝑧𝑣

𝐵
𝑧

∑4
𝑖=0 𝜔𝑖 + 𝑘ℎ (𝑣𝐵𝑥 2 + 𝑣𝐵𝑦

2)

Since accelerometers tend to have biases a more accu-
rate model would be:

a =

−𝑘𝑥𝑣𝐵𝑥

∑4
𝑖=0 𝜔𝑖

−𝑘𝑦𝑣𝐵𝑦
∑4

𝑖=0 𝜔𝑖

𝑘𝜔
∑4

𝑖=0 𝜔
2
𝑖
+ 𝑘𝑧𝑣

𝐵
𝑧

∑4
𝑖=0 𝜔𝑖 + 𝑘ℎ (𝑣𝐵𝑥 2 + 𝑣𝐵𝑦

2)

+

𝑏𝑥

𝑏𝑦

𝑏𝑧

Additional measurements required for solving the re-
gression problems are the observed rpm values 𝜔𝑖 and
the body velocities 𝑣𝐵𝑥 , 𝑣𝐵𝑦 , 𝑣𝐵𝑧 . The drag regression
problems along the x-axis can be formulated as:

[
�̂�𝑥

𝑏𝑥

]
=

−𝑢[0]∑𝜔𝑖 [0] 1

...
...

−𝑢[𝑁]∑𝜔𝑖 [𝑁] 1

†

𝑎𝑥 [0]
...

𝑎𝑥 [𝑁]

Similarly the regression problem for y-component of
drag is given by:

[
�̂�𝑦

𝑏𝑦

]
=

−𝑣 [0]∑𝜔𝑖 [0] 1

...
...

−𝑣 [𝑁]∑𝜔𝑖 [𝑁] 1

†

𝑎𝑦 [0]
...

𝑎𝑦 [𝑁]

Figure 18. Drag model fit

And finally the thrust regression problem is:
�̂�𝜔

�̂�𝑧

�̂�ℎ

𝑏𝑧

=

∑
𝜔𝑖 [0]2 𝑤 [0]∑𝜔𝑖 [0] 𝑣𝐵𝑥 [0]2 + 𝑣𝐵𝑦 [0]2 1
...

...
...

...∑
𝜔𝑖 [𝑁]2 𝑤 [𝑁]∑𝜔𝑖 [𝑁] 𝑣𝐵𝑥 [𝑁]2 + 𝑣𝐵𝑦 [𝑁]2 1

†

𝑎𝑧 [0]

...

𝑎𝑧 [𝑁]

The drag model fit was again performed using data
from an automatic flight between 4 waypoints where
x- and y body velocities up to 1.4 m/s where reached
in both the positive and negative direction. The thrust
model was identified using a similar but slightly more
aggressive automatic flight where speeds up to 5m/s
were reached . Figure 18 shows a regression plot of the

13

Figure 19. Thrust model fit

drag fit and figure 19 shows a plot of the thrust fit com-
pared to the measured z-acceleration. Additionally,
sthe filtered (16Hz zero-phase 2d order Butterworth
lowpass filter) accelerometer data is shown.

C. Moments model

For the moment model identification, estimates of the
moments 𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧 are calculated from gyroscope
measurement Ω = [𝑝, 𝑞, 𝑟]𝑇 and their derivatives
using the following equation:

M =

𝑀𝑥

𝑀𝑦

𝑀𝑧

 = 𝐼 ¤Ω +Ω × 𝐼Ω =

𝐼𝑥 ¤𝑝 + (𝐼𝑧 − 𝐼𝑦)𝑞𝑟
𝐼𝑦 ¤𝑞 + (𝐼𝑥 − 𝐼𝑧)𝑝𝑟
𝐼𝑧 ¤𝑟 + (𝐼𝑦 − 𝐼𝑥)𝑝𝑞

In order to reduce noise, 𝑝, 𝑞 and 𝑟 are low passed
filtered at 16Hz using a zero-phase 2nd order But-
terworth filter. These moments are then used for the

Figure 20. Pitch and Roll moment model

following regression problems:

[
𝑘 𝑝

𝑏𝑝

]
=

𝜔1 [0]2 − 𝜔2 [0]2 − 𝜔3[0]2 + 𝜔4 [0]2 1

...
...

𝜔1 [𝑁]2 − 𝜔2 [𝑁]2 − 𝜔3[𝑁]2 + 𝜔4 [𝑁]2 1

†

𝑀𝑥 [0]
...

𝑀𝑥 [𝑁]

[
𝑘𝑞

𝑏𝑞

]
=

𝜔1 [0]2 + 𝜔2 [0]2 − 𝜔3[0]2 − 𝜔4 [0]2 1

...
...

𝜔1 [𝑁]2 + 𝜔2 [𝑁]2 − 𝜔3[𝑁]2 − 𝜔4 [𝑁]2 1

†

𝑀𝑦 [0]
...

𝑀𝑦 [𝑁]

𝑘𝑟1

𝑘𝑟2

𝑘𝑟𝑟

𝑏𝑟

=

∑4

𝑖=0(−1)𝑖+1𝜔𝑖 [0]
∑4

𝑖=0(−1)𝑖+1 ¤𝜔𝑖 [0] −𝑟 [0] 1
...

...
...

...∑4
𝑖=0(−1)𝑖+1𝜔𝑖 [𝑁]

∑4
𝑖=0(−1)𝑖+1 ¤𝜔𝑖 [𝑁] −𝑟 [𝑁] 1

†

𝑀𝑦 [0]

...

𝑀𝑦 [𝑁]

The pitch and roll moment model was identified using
flight data from an automatic flight where speeds up

14

Figure 21. Yaw moment model

to 3m/s where reached. The yaw moment model was
identified from an automatic flight in hover where
yaw commands where given that alternated from 0 to
180 degrees. Figure 20 shows a plot of the pitch and
roll moment fit and figure 21 shows a plot of the yaw
moment fit.

15

Part II

Literature Review

3

2
Literature Review

2.1. Optimal control theory
One of the main theoretical basis of this research is optimal control theory. This branch of mathematical
optimization focuses on finding controls for a dynamical system that optimizes an objective function.
The methods for deriving these optimal control policies has mostly been developed in the 1950s by Lev
Pontryagin and Richard Bellman [2]. Although the theory has been around for a long time, practical
implementations remained limited due to the computational power required to obtain the solutions. This
chapter will give a brief introduction of the theory followed by relevant research about optimal control
applied to quadcopters

2.1.1. Optimal control problem formulation
In optimal control theory the dynamical system is described by the following equation.

ẋ = f(x,u)

Here x ∈ Rn describes the state vector, u describes the control vector (that is often part of a restricted
set of allowed controls U ⊂ Rn) and f is the function that describes the dynamics of the system. The
goal is to find a control u(t), t ∈ [0, T] that steers the system from an inital state x0 to a specific final
state xf in time T , while minimizing a cost function of the form:

J(x,u, T) =
∫ T

0

g(x(t),u(t))dt (2.1)

The optimal control problem can be formulated as

minimize
u,T

J(x,u, T)

subject to ẋ = f(x,u)
x(0) = x0
x(T) = xf

(2.2)

The Hamilton–Jacobi–Bellman (HJB) equation and Pontryagin’s maximum principle are the main ana-
lytical tools used to solve and analyze such problems.

2.1.2. The Hamilton–Jacobi–Bellman equation
For optimal control problems as formulated before, the HJB equation gives a necessary and sufficient
condition for optimality. The HJB equation can be derived from Bellman’s principle of optimality [2]
which results in a partial differential equation of which the solution is the value function of the optimal
control problem. The value function denoted by J∗ is a real valued function that defines for each value
of x0 the optimal cost to steer the system to xf .

J∗(x0) = min
u,T

J(x,u, T)

4

2.1. Optimal control theory 5

The Hamilton–Jacobi–Bellman partial differential equation is

min
u

[
g(x,u) + f(x,u) · ∇xJ

∗] = 0

Subject to the terminal condition

J∗(xf) = 0

The solution to these equations is the value function J∗ which can be used to obtain the optimal control
input u∗. The optimal control policy is then

u∗ = argmin
u

[
g(x,u) + f(x,u) · ∇xJ

∗]
2.1.3. Pontryagin’s minimum principle
Unlike the HJB equation, Pontryagin’s minimum principle only provides a necessary, but not sufficient
condition for optimality. The principle is derived using methods from calculus of variations. It states that
any optimal control u∗(t) and state trajectory x∗(t) must satisfy a so-called Hamiltonian system. This
system is described by a Hamiltonian H defined for all t ∈ [0, T] by:

H(x(t),u(t),p(t)) = g(x(t),u(t)) + pT (t)f(x(t),u(t))

where p(t) are introduced as time varying Lagrange multiplier vector. Pontryagin’s minimum principle
states that this Hamiltonian should be minimal, meaning for the optimal trajectory x∗,u∗ along with the
corresponding Lagrange multiplier vector p∗ the following should hold:

H(x∗(t),u∗(t),p∗(t)) ≤ H(x∗(t),u,p∗(t)) for all u ∈ U (2.3)

It also defines a boundary value problem for the Lagrange multipliers:

ṗ∗(t) = −∇xH(x∗,u∗,p∗) (2.4)
p∗(T) = 0 (2.5)

These conditions are necessary for x∗ and u∗ to be optimal. In certain cases these conditions are suffi-
cient [9] in which case the optimal control input u∗ can be expressed in terms of x and p by calculating:

u∗ = argmin
u
H(x,u,p)

2.1.4. Direct transcription Methods
Direct transcription methods form an alternative to using the HJB equations or Pontryagin’s minimum
principle to obtain numerical solutions to an optimal control problem. Instead of applying mathematical
optimization to the continuous control problem, the control problem is transformed into a Nonlinear
Programming (NLP) problem that can be solved with various well-known methods. The trajectories
x(t),u(t) are discretized into N + 1 points with a time step ∆t = T/N such that xk = x(k∆t) and
uk = u(k∆t) The discrete optimal control problem can then be formulated as:

minimize
u,T

Jd(x0, . . . , xN ,u0, . . . ,uN , T)

subject to xk+1 = fd(xk,uk)
x0 = x0
xN = xf

(2.6)

Here Jd and fd are the discrete approximations of the cost function and system dynamics respectively.
A popular method of discretization often used for trajectory optimisation is Hermite-Simpson Colloca-
tion. In this method, the state is represented by a cubic-Hermite spline (i.e a third degree polynomial
defined by its values and first derivatives at the end points). In combination with Simpson’s rule for the
approximation of integrals, both Jd and fd can be computed. With this formulation of the optimal control
problem, popular NLP solvers like SNOPT can compute the optimal (discretized) trajectory x∗0 . . . x∗N
and u∗

0 . . .u∗
N .

2.2. Machine Learning 6

2.1.5. Optimal control applied to quadcopters
In recent work from the TU Delft an approach for time-optimal model predictive control for quadcopters
with limited computational resources has been investigated [17]. The proposed ’bang-bang’ controller
is derived by simplifying the system dynamics such that Pontryagin’s minimum principle can give an
analytical solution. The model is simplified to a 2 dimensional model where the altitude is assumed to
be constant (regulated by the collective thrust uT). The control input to be determined by the optimal
control problem is the desired pitch angle uθ. The evolution of the horizontal position x is given by the
following equation:

ẍ = uT sinuθ
From these system dynamics, the following Hamiltonian can be constructed:

H(x,u,p) = 1 + p1ẋ+ p2uT sinuθ
With Pontryagin’s minimum principle the optimal control input can be derived:

u∗θ = argmin
uθ

[
p2uT sinuθ

]
This means uθ is either π/2 or −π/2 depending on the sign of p2. Because these pitch angles are in-
feasable to achieve in practice, maximum pitch and roll angles are defined based on the quadcopter’s
specifications. Nevertheless, the optimal control for this problem will abruptly switch between a maxi-
mal and minimal value. Such a controller is known as a bang-bang controller and it is the foundation
of the control algorithm implemented in this research. The advantage of this approach is that the only
computation required for the optimal control is the switching time between the minimal and maximal
pitch angle. Additionally this method requires very little knowledge of the quadcopter’s dynamics.

Using the Parrot Bebop drone in the Cyberzoo at the TU Delft, this method has outperformed a classical
PID controller by performing waypoint to waypoint flight. Although the approach in this research is quite
different from the proposal of this thesis, the performed flight tests provide an important benchmark to
compare performance against.

2.2. Machine Learning
Another fundamental topic for this research is Machine Learning (ML): the study of computer algorithms
that can improve automatically through experience and by the use of data. More specifically, we will
focus on the application of Deep Neural Networks to optimal control problems for achieving high speed
autonomous flight. This chapter will start with a brief introduction of the theory of Neural networks
followed by recent research covering several approaches for applying ML to quadcopter control.

2.2.1. Neural networks
Many different types of neural networks exist, but here we will focus on a specific class of feed-forward
neural networks known as a multilayered perceptron. In it’s simplest form this a function f : Rdin →
Rdout that consists of a composition of affine functions Ai(x) = Wix + bi and activation functions σi
such that when x is the input to the neural network, the output can be calculated as follows:

y1 = σ1(W1x+ b1)

y2 = σ2(W2y1 + b2)

...
f(x) = yn = σn(Wnyn−1 + bn)

(2.7)

Here the intermediate values yi are known as the layers of the neural network,Wi is called the weight
matrix and has dimensions that match the dimensions of consecutive layers and bi are called the biases.
Popular choises for activation functions σi are the sigmoid and relu function:

σsigmoid(x) =
1

1 + exp(−x)
σRelu(x) = max(0, x)

2.2. Machine Learning 7

Multilayered perceptrons have the special property that under a set of mild conditions, they can approx-
imate any continuous function [5]. This result is known as the Universal Approximation Theorem and
it motivates the use of Neural Networks for approximating arbitrary functions. The process of learning
can be described as systematically changing the weights and biases Wi, bi, i = 1, . . . , n in such a way
that the neural network more closely approximates a desired function in terms of some performance
metric.

2.2.2. Supervised learning
In supervised machine learning, training is done by using a dataset which contains input output pairs.
These input-output pairs serve as an ideal example of what the network should compute. When training,
the neural network’s output is compared to the output specified by the training data. This difference
between outputs is quantified in terms of a loss function which is optimized by changing the parameters
of the neural network according to a gradient based optimization method.

2.2.3. Reinforcement learning
In contrast reinforcement learning does not use a dataset, but a simulated environment in which the
neural network is optimized based on rewards. In this simulated environment the neural network uses
the state of the system to compute an output that determines the action that is taken by the simulated
agent. After each action the system moves to a new state and a reward is provided. The goal of the
agent is to maximizes the expected cumulative reward. Policy gradient methods are a popular training
method for reinforcement learning problems. These methods attempt to estimate the gradient of the
cumulative reward with respect to the Neural networks parameters in order to apply gradient based
optimization.

2.2.4. ML for trajectory generation
In recent research from the Robotics and Perception Group from the University of Zurich [12], rein-
forcement learning is used to train a neural network to give optimal controls for a quadcopter in a drone
racing track. The training is done in a simulated environment where the quadcopter is modeled by a 6
degree-of-freedom rigid body that is acted upon by 4 forces generated by the propellers. A function is
defined that calculates a reward based on the progress between the gates, some safety margins and
a penalty for gate collisions. Using a policy gradient method called the Proximal Policy Optimization
(PPO) algorithm a feed forward neural network is trained with a architecture as seen in figure 2.1. This

Figure 2.1: Illustration of Neural Network from [12]

network takes the velocity, acceleration, attitude and body rates as input along with a series of gate
observations described by relative positions and angles. These values are normalized and plugged
into a 2 layered neural network with tanh activation function that computes the 4 forces that are used
as control input in the simulator. Using randomly sampled race tracks this network is successfully
trained. Several existing race tracks (including the Alpha Pilot race track) have been used to verify

2.2. Machine Learning 8

the performance in simulation. The study also included a real flight test to validate performance, but
the neural network’s control output was not directly used. The neural network outputs were used to
generate optimal trajectories that were successfully tracked using a model predictive controller on a
real drone.

2.2.5. ML for aggressive trajectory tracking
In other research from the Robotics and Perception Group [6] a neural network is trained using su-
pervised learning based on a privileged expert to track aggressive trajectories. The approach relies
solely on on-board sensing and computation. Figures 2.2 shows a composite image of the quadcopter
performing a flip which gives an indication of the type of trajectories considered in this research. In

Figure 2.2: The quadcopter performs a Matty Flip. Image from [6]

contrast to [12], trajectory planning is not considered here. The research assumes access to a refer-
ence trajectory that specifies an aggressive feasible manoeuvre. The real challenge in this research
is that the Neural network controller will only use on-board sensing via the IMU and camera. The priv-
ileged expert used for training is a model predictive controller that does have access to all states of
the quadcopter. Using a high fidelity simulator, a dataset with optimal control is generated along with
camera images processed into ’feature tracks’ 1. Using this dataset a Neural network is trained to
produce collective thrust and body rate commands from the processed camera images along with IMU
sensor measurements. The trained model could directly be deployed on a real quadcopter and has
successfully demonstrated a wide range of acrobatics maneuvers

2.2.6. G&CNets
In recent research from ESA’s Advanced Concepts Team and the TU delft (the main research line
from this proposal) supervised learning is used to train a neural network to give optimal controls. The
dataset used for training consists of optimal trajectories generated with a direct transcription method.
The goal of this approach is to achieve both guidance and control by a single neural network controller.
This method was introduced in the work of ESA’s Advanced Concepts Team in 2016 with the goal of
finding the optimal control action during a pinpoint landing for several spacecrafts and a quadcopter
[10]. This research was continued in collaboration with the TU Delft where the method was tested on a
real quadcopter [8]. The dynamic quadcopter model was described by the following state and control
input:

x = [x, z, vx, vz, θ, q]
T , u = [u1, u2]

T

1Feature tracks are an abstraction from camera frames that depend primarily on scene geometry, rather than surface appear-
ance.

2.3. System identification 9

where (x, z) is the position (vx, vz) the velocity, θ the pitch angle and q is the pitch rate. The control
inputs u1 and u2 represent the left and right throttles respectively. The dynamics are described by:

_x =

ẋ
ż
v̇x
v̇z
θ̇
q̇

 = f(x,u) =

vx
vz[

(u1 + u2)
∆F
m + 2 Fm

]
sin θ − βvx[

(u1 + u2)
∆F
m + 2 Fm

]
cos θ − g − βvz

q
L
Ixx

∆F (u2 − u1)

Wherem is the mass, β the drag coefficient, ∆F is the range of thrust and F is the minimal thrust. The
optimal control problem is formulated as:

minimize
u,T

(1− ϵ)T + ϵ

∫ T

0

u1(t)
2 + u2(t)

2dt

subject to _x = f(x,u)
x(0) = x0
x(T) = 0

Where ϵ ∈ [0, 1] is a hybridization parameter that can be varied to obtain time optimal control (at ϵ = 0)
or power optimal control (at ϵ = 1). Using Hermite Simpson transcription and the SNOPT NLP solver,
optimal trajectories were generated for a range of initial condition. Two datasets where generated, one
for ϵ = 0.5 and one for ϵ = 0.2. Using supervised learning two neural networks were trained on the state
action pairs. In a real world flight test the performance of these networks were compared to a commonly
used method DiffG&C. The flight tests showed that even the G&CNet with ϵ = 0.5 was competitive with
the DiffG&C while the G&CNet with ϵ = 0.2 even significantly outperformed it.

2.3. System identification
In the previous sections we have already seen some examples of quadcopter models. In the work of
[17] the model was simplified to such an extent that almost no knowledge of the quadcopter is required
to implement the control method. In the research on G&CNets the 2 dimensional model that was used
already requires some specific parameters to be estimated like mass, thrust range, moment of inertia
and drag coefficients. The estimation of these parameters is crucial for the final performance of the
model based controller. More complicated controllers that are based on higher dimensional quadcopter
models, require even more parameters to be estimated. This section will focus on the derivation of such
a 6 degree-of-freedom quadcopter models covering aerodynamic thrust and drag models along with
actuator models.

2.3.1. Quadcopter dynamic equations
The dynamics of a quadcopter can be modeled using rigid body mechanics. The quadcopter can be
described as a rigid body with massm and moment of inertia matrix I. The actuators of the quadcopter
along with aerodynamic forces produce a force F and moment M that can be best described along the
axis of the rigid body frame. The axes of the world frame and body frame can be seen in figure 2.3.
By using Newton’s second law of motion and Euler’s equation of rigid body dynamics, the following
dynamical system can be derived:

ẍ = g+
1

m
R(λ)F

IΩ̇ = −Ω× IΩ+M

Where g = [0, 0, g]T , x = [x, y, z]T is the position andΩ = [p, q, r]T is the angular rate in body frame. The
orientation of the quadcopter will be described by the euler angles λ = [ϕ, θ, ψ]T that each correspond
to a rotation around one of the axis in the world frame.

Rx(ϕ) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 Rz(ψ) =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 (2.8)

2.3. System identification 10

(a) The axis convention used for the world frame. (b) The axis convention used for the body axes.

Figure 2.3: Axis convention used in this sections. Images from dji website

The orientation of the body frame with respect to the world frame is written in terms of these rotation
matrices as follows:

R(λ) = R(ϕ, θ, ψ) = Rz(ψ)Ry(θ)Rx(ϕ)

=

cos θ cosψ − cosϕ sinψ + sinϕ sin θ cosψ sinϕ sinψ + cosϕ sin θ cosψ
cos θ sinψ cosϕ cosψ + sinϕ sin θ sinψ − sinϕ cosψ + cosϕ sin θ sinψ
− sin θ sinϕ cos θ cosϕ cos θ

Altogether the rigid body equations become

ẋ = v

v̇ = g+
1

m
R(λ)F

λ̇ = Q(λ)Ω

IΩ̇ = −Ω× IΩ+M

Here Q(λ) denotes a transformation between angular velocities and Euler angles given by

Q(λ) =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ/ cos θ cosϕ/ cos θ

 (2.9)

The rigid body mechanics defined so far hold for any rigid body that has forces and moments acting
upon it. The next step is to specify a model to describe how these forces and moment depend on the
state variables and actuator inputs.

2.3.2. Thrust and drag model
In recent work about improving quadcopter trajectory tracking, a parametric model for thrust and drag
is introduced that is shown to be easily identified offline while drastically improving the controller’s
performance [14]. The thrust T and drag in the x and y body axes Dx, Dy is modeled by the following
equations:

T = kω

4∑
i=0

ω2
i + kzw

4∑
i=0

ωi + kh(u
2 + v2) Dx = −kxu

4∑
i=0

ωi Dy = −kyv
4∑
i=0

ωi

In these equations ωi, i = 1, . . . , 4 are the rpms of the four propellers of the drone. u, v and w are the
velocity components along the body x, y and z axis respectively. In this model kω, kz, kh, kx, ky are the
parameters to be identified by performing linear regression on flight data.

2.3.3. Moments
Based on this theory a model for the moments can be derived as well. The pitch momentMy is gener-
ated by a difference in thrust between the front and back propellers while the roll momentMx depends
on the thrust difference between the left and right propellers.

2.4. The Reality gap problem 11

Figure 2.4: Propeller numbering and rotation directions

Using the propeller numbering from figure 2.4 the following equations can be derived:

Mx = kp(ω
2
1 − ω2

2 − ω2
3 + ω2

4)

My = kq(ω
2
1 + ω2

2 − ω2
3 − ω2

4)

Where kp and kq are new parameters to be identified which should essentially be equal to kω scaled by
the horizontal and vertical distances from propeller to center of mass. The yaw moment is unrelated to
the thrust model and depends the reaction moment from spinning up the propellers. Using the rotation
direction from 2.4, the yaw moment is given by:

Mz = kr1(−ω1 + ω2 − ω3 + ω4) + kr2(−ω̇1 + ω̇2 − ω̇3 + ω̇4)− krrr

2.3.4. Actuator model
Since the rotational speed of the propellers cannot be changed instantaneously by the motors, a first
order delay actuator model can be used:

ω̇i = (ui − ωi)/τ (2.10)

Where τ is the delay constant and ui is the rpm reference command.

2.3.5. Combined model
Combining the models for thrust, drag, moments and actuators into one model gives the following set
of dynamics:

ẋ = v

v̇ = g+
1

m
R(λ)

 −kxu
∑4
i=0 ωi

−kyv
∑4
i=0 ωi

kω
∑4
i=0 ω

2
i + kzw

∑4
i=0 ωi + kh(u

2 + v2)

 where [u, v, w]T = R(λ)Tv

λ̇ = Q(λ)Ω

IΩ̇ = −Ω× IΩ+

 kp(ω
2
1 − ω2

2 − ω2
3 + ω2

4)
kq(ω

2
1 + ω2

2 − ω2
3 − ω2

4)
kr1(ω1 + ω2 + ω3 + ω4) + kr2(ω̇1 + ω̇2 + ω̇3 + ω̇4)− krrr

ω̇i = (ui − ωi)/τ

(2.11)

Note that now the propeller rpms ωi are now part of the state vector, and the control input is the rpm
reference command ui.

2.4. The Reality gap problem
In the previous section we have seen a detailed description of the quadcopters dynamics in terms of
a deterministic equations. This model can be used to estimate how the quadcopter will behave, but

2.5. Proposal 12

only up to a certain point. Especially in high speed aggressive manoeuvres, additional aerodynamic
effects come into play that might be hard or even impossible to model. In our proposal we will aim to
achieve exactly these types of manoeuvres using neural network controllers that are based entirely on
a certain dynamical model. For this reason, the difference between the proposed model and the real
life quadcopter dynamics might be detrimental to the controller’s performance. In this section we will
go over several approaches to solve this ’reality gap’ problem.

2.4.1. Advanced modeling
One way to close the reality gap is to improve the model as much as possible. In recent work from
the TU Delft [13], free-flight tests with the Parrot Bebop quadcopter are carried out in a large-scale
wind tunnel to explore high speed aerodynamic effects. The flight data from this research shows that
complex aerodynamic effects can appear that cannot be predicted by state-of-art models such as [14].
To combat these effects, a complex parametric model is identified based on prior knowledge of rotorcraft
aerodynamic properties combined with data observations. The model is identified for a speed up to
14m/s and shows an 80% reduction of moment model residuals and a 20% reduction of force model
residuals compared to a simpler model similar to equation 2.11. The strength of this research is that for
their specific platform (Parrot Bebop), the results can be used to improve high speed flight controllers.
However, for other platforms this requires redoing the extensive wind tunnel experiments.

2.4.2. Stochastic modeling
In recent research from the Robotics and Perception Group at University of Zurich a stochastic mod-
eling approach is proposed to model aerodynamic effects [16]. In this proposal a Gaussian Process
is used to predict the difference between the theoretically modeled and observed aerodynamic forces.
The parameters of the Gaussian Process are obtained from flight data of a custom made quadcopter
reaching speeds up to 14m/s and accelerations beyond 4g. Using a Model Predictive Controller that
incorporates the Gaussian process, an up to 70% reduction in trajectory tracking error is achieved. The
advantage of this methods is that the model is both accurate, and simple to evaluate. However this
method still requires identification of the Gaussian processes for the specific platform.

2.4.3. Adaptive inner loop
An alternative solution to the reality gap problem is the work of [11] which proposes an attitude controller
that promises high performance nonlinear control without requiring a detailed model of the controlled
vehicle. The method only uses a control effectiveness model and uses estimates of the angular acceler-
ations to replace the rest of the model. The strength of this approach is that very little knowledge about
the platform’s dynamic while still achieving e high performance, disturbance rejection, and adaptive-
ness properties. A disadvantage is that the method relies on incrementing the actuator rpm commands
which makes it difficult to deal with actuator saturations.

2.5. Proposal
A promising research to expand upon is the work of about G&CNets. The strength of this research
is that the neural network is directly trained on the optimal state action pairs obtained from a direct
method. This provides great flexibility in the choice of quadcopter model. A real life experiment has
already shown that this method is competitive with a commonly used method by using a G&CNet
based on a simplified 2 dimensional quadcopter model. By extending upon this work by using more
accurate quadcopter models, it can be expected that even faster aggressive flight can be achieved. In
our proposal we aim to achieve this by training a G&CNet that takes into account the full 6 degrees of
freedom dynamics of the quadcopter including aerodynamic effects and actuator delays as described
in Section 2.3.5. If this project is successful, G&CNets would provide a method to reach a quadcopter’s
absolute limits in terms of aggressive flight. Additionally, this research fill focus on bridging the reality-
gap between simulated and real life flight performance which is a major challenge for machine learning
based control methods.

3
Preliminary Experiment

As a preliminary experiment, the parameters kx, ky, kω, kz, kh, kp, kq, kr1, kr2 and τ from the previously
described model (equation 2.11) will be identified for the Parrot Bebop quadcopter using the experi-
mental setup that is described in a section 5. Several manual flight tests are conducted to collect data.
Using least squares linear regression, the parameters can be found that give the best fit.

3.1. Actuators
In order to fit the actuator model, the rpm values from the propellers along with the reference rpm
commands need to be logged. For each propeller an array of observed rpm values ωi[k], k = 0, . . . , N
along with an array of reference rpm values ui[k], k = 0, . . . , N is logged. Also the numerical derivative
ω̇i is computed. From these arrays the regression problem is formulated as: ω̇i[0]...

ω̇i[N]

 =
1

τ

 ui[0]− ωi[0]
...

ui[N]− ωi[N]

 → 1

τ
=

 ui[0]− ωi[0]
...

ui[N]− ωi[N]

† ω̇i[0]...
ω̇i[N]

Where † denotes the pseudo-inverse of a matrix given by A† = (ATA)−1AT . Figure 3.1 shows the
regression fits for each of the propellers. This fit was performed using data from a manual flight with
aggressive upwards and downwards movements such that both low and high rpm values are reached.
The obtained values for τ differ slightly per propeller. An average value of 1

τ = 30.9 → τ = 0.032 can
be used in the model as approximation.

3.2. Thrust and Drag
For identifying the thrust and drag model, measurement of the thrust T and drag Dx, Dy forces are
required. These measurements are obtained from the accelerometer which essentially measures spe-
cific force in the quadcopter’s body frame. This specific force consists of all non-gravitational forces
acting on the quadcopter divided by it’s total mass. According to the model these accelerometer mea-
surements should be equal to the drag and thrust forces, normalized by the mass:

a =

axay
az

 =
1

m

Dx

Dy

T

 =
1

m

 −kxu
∑4
i=0 ωi

−kyv
∑4
i=0 ωi

kω
∑4
i=0 ω

2
i + kzw

∑4
i=0 ωi + kh(u

2 + v2)

Since accelerometers tend to have biases a more accurate model would be:

a =

axay
az

 =
1

m

 −kxu
∑4
i=0 ωi

−kyv
∑4
i=0 ωi

kω
∑4
i=0 ω

2
i + kzw

∑4
i=0 ωi + kh(u

2 + v2)

+

bxby
bz

13

3.2. Thrust and Drag 14

Figure 3.1: Regression fits of the actuator model for each of the propellers

For convenience, the following normalized parameters can be defined

k̂x = kx/m, k̂y = ky/m, k̂ω = kω/m, k̂z = kz/m, k̂h = kh/m,

such that no mass measurement is required after the parameter identification. Additional measure-
ments required for solving the regression problems are the observed rpm values ωi and the body
velocities u, v, w. The drag regression problems along the x-axis can be formulated as: ax[0]...

ax[N]

 =

 −u[0]
∑
ωi[0] 1

...
...

−u[N]
∑
ωi[N] 1

[
k̂x
bx

]
→

[
k̂x
bx

]
=

 −u[0]
∑
ωi[0] 1

...
...

−u[N]
∑
ωi[N] 1

† ax[0]...
ax[N]

Similarly the regression problem for y-component of drag is given by: ay[0]...

ay[N]

 =

 −v[0]
∑
ωi[0] 1

...
...

−v[N]
∑
ωi[N] 1

[
k̂y
by

]
→

[
k̂y
by

]
=

 −v[0]
∑
ωi[0] 1

...
...

−v[N]
∑
ωi[N] 1

† ay[0]...
ay[N]

And finally the thrust regression problem is: az[0]...

az[N]

 =

∑
ωi[0]

2 w[0]
∑
ωi[0] u[0]2 + v[0]2 1

...
...

...
...∑

ωi[N]2 w[N]
∑
ωi[N] u[N]2 + v[N]2 1

k̂ω
k̂z
k̂h
bz

 →

k̂ω
k̂z
k̂h
bz

 =

∑
ωi[0]

2 w[0]
∑
ωi[0] u[0]2 + v[0]2 1

...
...

...
...∑

ωi[N]2 w[N]
∑
ωi[N] u[N]2 + v[N]2 1

† az[0]...
az[N]

The drag model fit was performed using data from an automatic flight between 4 waypoints where high
x, y body velocities where reached. The thrust model was identified using the same dataset that was

3.2. Thrust and Drag 15

used for the actuator model identification. The results of the drag and thrust model fit can be seen in
table 3.1. Additionally, figure 3.2 shows a plot of the drag fit and figure 3.3 shows a comparison of the
thrust model to the measured accelerations.

Figure 3.2: Regression fits of the x, y drag model

Figure 3.3: Thrust model compared to raw and filtered accelerometer measurements.

3.3. Moments 16

Parameter Value Standard deviation
kx 9.82e-06 1.e-06
ky 9.84e-06 4.e-07
kω 4.36e-08 9.e-10
kz 1.39e-05 2.e-06
kh 6.3e-02 5.e-02

Table 3.1: Regression fit results for the Drag and Thrust model

3.3. Moments
For the moment model identification, estimates of the momentsMx,My,MZ are calculated from gyro-
scope measurement Ω = [p, q, r]T and their derivatives using the following equation:

M =

Mx

My

Mz

 = IΩ̇ + Ω× IΩ =

Ixṗ+ (Iz − Iy)qr
Iy q̇ + (Ix − Iz)pr
Iz ṙ + (Iy − Ix)pq

In order to reduce noise, p, q and r are low passed filtered at 16Hz using a zero-phase 2nd order
Butterworth filter. These moments are then used for the following regression problems:

[
kp
bp

]
=

 ω1[0]
2 − ω2[0]

2 − ω3[0]2 + ω4[0]
2 1

...
...

ω1[N]2 − ω2[N]2 − ω3[N]2 + ω4[N]2 1

† Mx[0]

...
Mx[N]

[
kq
bq

]
=

 ω1[0]
2 + ω2[0]

2 − ω3[0]2 − ω4[0]
2 1

...
...

ω1[N]2 + ω2[N]2 − ω3[N]2 − ω4[N]2 1

† My[0]

...
My[N]

kr1
kr2
krr
br

 =

 −ω1[0] + ω2[0]− ω3[0] + ω4[0] −ω̇1[0] + ω̇2[0]− ω̇3[0] + ω̇4[0] −r[0] 1
...

...
...

...
−ω1[N] + ω2[N]− ω3[N] + ω4[N] −ω̇1[N] + ω̇2[N]− ω̇3[N] + ω̇4[N] −r[N] 1

† My[0]

...
My[N]

The fit was performed using data from an automatic flight in hover where yaw commands where given
that alternated from 0 to 180 degrees. The results of the fit can be seen in table 3.2. Additionally, figure
3.4 shows a plot of the pitch and roll moment fit and figure 3.5 shows a comparison of the yaw moment
model to the measured moments.

Figure 3.4: Caption

3.3. Moments 17

Figure 3.5: Yaw moment model compared to the measured moment.

Parameter Value Standard deviation
kp 1.84e-09 2.e-12
kq 1.30e-09 3.e-12
kr1 2.57e-06 1.e-08
kr2 4.11e-07 1.e-09
krr 8.14e-04 2.e-05

Table 3.2: Regression fit results for moment model

4
Research Questions

4.1. Research Questions
Based on the previous section, the research question of this proposal can be stated as the following:

"To what extent can time optimal flight be achieved with a real quadcopter by
means of a neural network (G&CNet) trained on optimal state-action pairs pro-
viding on-board state to rpm feedback?”

The research can be split into the following sub-questions:

How can the reality gap problem be solved?
Experiments will be needed to validate whether our choice of model is sufficient for the method to be
stable. In the case where our method is unstable or has bad performance, the model would need to be
re-evaluated. Alternatively, it could be investigated how the unmodeled effects could be compensated
for without explicitly modeling them. If a solution to this problem is found, it can be expected that the
real life performance of our method is comparable with the simulated performance.

Can the network be evaluated on the quadcopter in real time?
The work of [8] shows the successful implementation of a Neural Network that can provide real time
optimal control on-board the Parrot Bebop quadcopter. But it remains to be seen how far this method
can be pushed for bigger neural networks based no more complicated models. It needs to be investi-
gated at what frequency the neural networks output can be computed and what frequency is sufficient
for stable flight. The answer of this question will determine whether our method is feasible with the
computational restriction of the Parrot Bebop.

To what extend can time-optimality be achieved in terms of the power/time-optimal cost func-
tion?
Our approach will use a cost function that is a hybrid between power- and time-optimality. The aim
of this question is to find out how far we can push our method towards time-optimality (ϵ = 0). The
amount by which this is possible is mostly constraint by the reality gap problem. With the faster more
time-optimal trajectories we can expect more influence from unmodeled effects that could de-stabilize
the quadcopter. For this reason the answer to this question will depend on the solution that is found
for question 1. The answer to this sub-question will give insight into the performance of our proposed
method which will provide the most direct answer to the main research question.

4.2. Research Objective
Our research will cover the investigation of a machine learning based control method that aims to
achieve time optimal flight. Therefore the main research objective of this thesis is:

"To achieve time optimal waypoint to waypoint flight with a quadcopter by
means of a G&CNet providing on-board state to rpm feedback."

18

4.2. Research Objective 19

This is an ambitious goal that we should not expect to achieve fully. However by attempting to achieve
this goal, we will find the limits of our proposed method which answers our research question. The
process necessary for achieving our research objective can be summarized by the next 4 sub-goals:

Sub-goal 1: System identification and Simulation
The first step necessary to achieve our research objective is to identify the model parameters of the
quadcopter that will be used for our experiments. This will be done by gathering data from manual
quadcopter flights. Based on the identified model, optimal trajectories can be generated using Hermite
Simpson transcription with an NLP solver on a powerful computer. These trajectories will be used to
train a neural network to approximate the optimal policy. To avoid crashes in the initial test, it seems
safest to start with slow hover to hover trajectories that are power optimal. By simulating the system
dynamic with the trained G&CNet controller it can be determined whether the performance is sufficient
for a first test flight.

Sub-goal 2: The first G&CNet flight tests
When the first sub-goal is achieved, a G&CNet is successfully trained and should be ready to be de-
ployed on our quadcopter. In order to perform the first G&CNet flight test, a practical implementation of
the neural network should be developed that can run on the quadcopter’s hardware. In the development
process, the answer to our second research question should become clear. Once the implementation
is working properly, the first flights can be performed and analyzed. By flying the hover-to-hover trajec-
tories that the G&CNet is trained on, the performance of the method can be evaluated. Flight logs will
have to be compared to the simulated trajectories to investigate any unmodeled effects.

Sub-goal 3: Reality-Gap analysis
This sub-goal covers the analysis of the fight data of the initial G&CNet flight tests. It can be expected
that the first flight tests show results that are quite different compared to the simulations. If this is the
case, it needs to be investigated what exactly this difference is and what is causing it. Ideally this goal
is achieved by providing a solution to the reality gap problem in some way. This could be done by
making changes to the quadcopter model, introducing some stochasticity to the problem, or by using
some adaptive method as described in section 2.4. The exact method that will be used to achieve this
goal is not determined yet which makes this goal the most difficult to achieve.

Sub-goal 4: Implement improvements and final tests
The final sub-goal involves the implementation of the improvements proposed in the previous steps.
These improved G&CNets are expected to fly near time-optimal tarjectories. By iteratively changing
the ϵ parameter in the optimal control problem, faster and faster G&CNets can be trained. By perform-
ing flight tests for all of these networks, the limits of the proposed method can be found. The fastest
succesfully operating G&CNet can then be compared to other state-of-the-art flight controller for a final
evaluation.

5
Experimental Set-up

The experiments in this project can be divided into two categories. The first category consists of per-
forming the computations and simulations necessary to obtain a G&CNet controller. The other category
covers all flight test experiments that will determine the real performance of the controller. In this re-
search we will continually switch between simulation experiments and real life flight tests in order to
iteratively improve the G&CNet controller. In this section we will go over the technical details of each
of our experimental setups.

5.0.1. Computation and Simulation
Similar to [8], the optimal control problem will be transformed into an NLP problem by using Hermite
Simpson transcritption. The AMPL modelling language will be used to specify the NLP problem which
can then be solved via SNOPT, an SQP NLP solver. Using AMPLPY (a python interface for the AMPL
interpreter), a set of initial conditions can be sampled for which the optimal solution can be computed.
From these optimal trajectories, a dataset of state-control pairs can be obtained. This dataset will
be generated using parallel computing on a remote server. Using the python library PyTorch, neural
networks will be trained to learn the control policy by a stochastic gradient descent method using only
a portion of the dataset. The rest of the dataset can be used for validation. The performance of the
trained neural network will then be investigated by simulating the closed loop system dynamics in
Python. The simulated trajectory can then be compared with a trajectory from the dataset with the
same initial condition. The simulation can also be modified to include external forces or moments to
investigate the robustness of the method.

5.0.2. Flight tests
The quadcopter used in our experiment is the Parrot Bebop 1 (Figure 5.1). The on-board software
has been replaced by the Paparazzi-UAV open-source autopilot project [3]. All computations will run
in real-time on the Parrot P7 dual-core CPU Cortex A9 processor. Based on previous research [8] it is
expected that this hardware is sufficient for our computational requirements, but experiments will have
to show if there are any limitations. The Parrot Bebop has an MPU650 IMU sensor that will be used to
obtain measurements of the specific force and angular velocity along the body axes. Additionally the
Bebop has sensors that measure the angular velocities (in rpm) of each of the propellers, which is a
necessary requirement for our control method.

20

21

Figure 5.1: The Parrot Bebop 1 is used as experiment platform. The software is replaced bythe Paparazzi UAV open-source
autopilot project. Image from [7].

All flight tests will be performed in The CyberZoo which is a research and test laboratory in the faculty
of Aerospace Engineering at the TU Delft. This lab consists of a 10 by 10 meter area surrounded by
nets with an OptiTrack motion capture system that can provide position and attitude data in real time.
Our control pipeline will use OptiTrack’s data in combination with the Bebop’s IMU in order to obtain
the most accurate state estimation possible. A diagram of the proposed control pipeline can be seen
in Figure 5.2.

Figure 5.2: Proposed control pipeline: An extended kalman filter is used to fuse the OptiTrack and IMU data in order to obtain
an estimate of the position, velocity, attitude and body rates. These state variables are used as an input to the G&CNet along

with the rpm measurements. The outputs of the G&CNet will be directly used as rpm commands to the propellers.

Since our control method is based on the assumption that the G&CNet has access to perfect state
information, the accuracy of our state estimator should be as high as possible. Inaccurate state esti-
mates could limit the controller’s performance or in the worst case even cause a crash. Additionally the
accuracy of the state estimates are important for the analysis of the flight data and the identification of
the model parameters.

6
Project Planning

The thesis project can best be structured by following the previously described sub-goals as a guide-
line. The first things to be done are the initial system identification experiments and Neural network
simulations along with setting up the required software. If this is achieved, the first G&CNet flight test
will be performed which is the second sub-goal. The G&CNet implementation can be developed in
parallel with the system identification experiments to save time. Once the first G&CNet experiments
are finished, an extensive analysis is required in an attempt to solve the reality gap problem. This is
the most uncertain phase of our project because the problems that could arise are still uncertain. The
phase is ideally completed by making a proposal that could improve the performance from our flight
test. At this point in the project it would be a perfect time to plan a midterm meeting to evaluate the
proposal and see if our goals are still feasible. The research will continue by implementing the new
proposals in our final experiments. These experiments would be the main results of this thesis that will
answer our main research question. In the final phase of this research the results from our experiments
will be worked out in the thesis report. The thesis is completed with a Green-light review followed by
the final defense.

The project planning is presented in a detailed Gantt chart in figure 6.1. This chart covers all the
previously discussed tasks planned over the period from April 2021 to March 2022.

22

23

Fi
gu

re
6.
1:

G
an

tt
C
ha

rt

7
Results, Outcome and Relevance

In our proposed research, we will perform flight test experiments to determine the performance of our
machine learning based controller. The goal of our controller is to achieve time-optimal flight. An ideal
outcome of these experiments would be a successful execution of a time optimal trajectory using our
experimental setup. Such a result could be validated by direct comparison with simulated trajectories.
However, as we have discussed before, the reality gap problem along with the inherent limitations of our
experimental setup make 100% time optimal flight extremely challenging. A more obtainable outcome
would be to outperform a previous attempt at time optimal control that used the same experimental
setup like [8] or [17]. Such a comparison would demonstrate the strengths of our proposed method.
On the other hand, the experiments could also provide insight into the limitations of our control method.
The final outcome of our proposed research will contribute to solving the challenge of real-time optimal
control. It will help decrease the gap between human and AI flight performance and push the quad-
copter to its physical limits. This is especially relevant for future technologies that rely on high speed
aggressive flight of UAVs.

24

Part III

Additional Results

25

8
Extended Kalman Filter Implementation

In the flight tests of this thesis an extended kalman filter is used to fuse the OptiTrack and IMU data
in order to obtain an estimate of the position, velocity, attitude and body rates. In this chapter the
implementation of this filter will be explained.

8.1. State Transition and Observation Model
The following equations describe the state transition and observation model:

State, inputs and measurements

x = (x, y, z, vx, vy, vz, ϕ, θ, ψ, lx, ly, lz, lp, lq, lr)

u = (axm
, aym , azm , pm, qm, rm)

z = (xm, ym, zm, ϕm, θm, ψm)

Where u is the accelerometer and gyro measurement from the IMU and z is the position and attitude
obtained from Optitrack. lx, ly, lz, lp, lq, lr are the biases corresponding to the accelerometer and gyro-
scope. The process noise is given by

w = (wx, wy, wz, wp, wq, wr)

which is equal to the IMU noise in our case. The measurement noise is gievn by

v = (vx, vy, vz, vϕ, vθ, vψ)

which is equal to the Optitrack noise in our case.

State transition equation
ẋ = f(x,u,w)

ẋ = vx

ẏ = vy

ż = vz

v̇x = (sϕsψ + sθcϕcψ) (azm − lz − wz) + (sϕsθcψ − sψcϕ) (aym − ly − wy) + (axm − lx − wx) cψcθ

v̇y = (−sϕcψ + sψsθcϕ) (azm − lz − wz) + (sϕsψsθ + cϕcψ) (aym − ly − wy) + (axm − lx − wx) sψcθ

v̇z = − (axm − lx − wx) sθ + (aym − ly − wy) sϕcθ + (azm − lz − wz) cϕcθ + 9.81

ϕ̇ = −lp + pm − wp + (−lq + qm − wq) sϕtθ + (−lr + rm − wr) cϕtθ

θ̇ = (−lq + qm − wq) cϕ − (−lr + rm − wr) sϕ

ψ̇ =
(−lq + qm − wq) sϕ

cθ
+

(−lr + rm − wr) cϕ
cθ

˙lx = 0 l̇y = 0 l̇z = 0 l̇p = 0 l̇q = 0 l̇r = 0

26

8.2. Algorithm 27

With sx = sinx cx = cosx tx = tanx

State observation equation
z = h(x) + v

xm = x+ vx

ym = y + vy

zm = z + vz

ϕm = ϕ+ vϕ

θm = θ + vθ

ψm = ψ + vψ

8.2. Algorithm
The Extended Kalman Filter will be applied to the state transition and observation model. The algorithm
consists of the following steps:

Step 0: initial values
An initial estimate for the state x0,0 and the state covariance matrix P0,0 needs to be chosen. Also the
noise co-variance matrices Q and R need to be known. The Kalman filter is initialized after the fist
Optitrack message is received. The initial states estimate will be obtained from the first position and
attitude measurement:

x0,0 = (xm, ym, zm, 0, 0, 0, ϕm, θm, ψm, 0, 0, 0, 0, 0, 0)

The state covariance is initialized as

P0,0 = diag(1, . . . , 1)

The noise co-variance matrices are set to

Q = diag(0.5, 0.5, 0.5, 0.01, 0.01, 0.01)
R = diag(0.001, 0.001, 0.001, 0.1, 0.1, 0.1)

Step 1: One step ahead prediction
Predicts the next state xk+1,k and measurement zk+1,k based previous state estimate xk1,k by integrat-
ing the state transit equation

xk+1,k =

∫ tk+1

tk

f(xk,k,uk, 0)dx ≈ f(xk,k,uk, 0)(tk+1 − tk)

zk+1,k = h(xk+1,k)

Step 2: Calculate Fx, Hx and G
The following jacobians need to be calculated

Fx =
∂f

∂x (xk+1,k,uk, 0) Hx =
∂h

∂x (xk+1,k) L =
∂f

∂w (xk+1,k,uk, 0)

The expression for the jacobians are obtained using SymPy’s jacobian method on the functions f and
g expressed symbolically.

Step 3: Discretize Fx and G
The matrices Fx and G are transformed to the discrete form using:

Φ = eFx∆t ≈ I + Fx∆t Γ =

∫ ∆t

0

eAτLdτ ≈ L∆t

8.2. Algorithm 28

Where ∆t = tk+1 − tk

Step 4: Predict covariance matrix
A prediction of the covariance matrix is made by calculating

Pk+1,k = ΦPk,kΦ
T + ΓQΓT ;

Step 5: Kalman gain calculation
Calculate Kalman gain

K = Pk+1,kH
T
x (HxPk+1,kH

T
x +R)−1

Step 6: Measurement update
The estimated state is calculated based on the obtained measurement and the predicted state:

xk+1,k+1 = xk+1,k +K(zk − zk+1,k)

Step 7: Covariance matrix update
The estimated covariance matrix is calculated

Pk+1,k+1 = (I −KHx)Pk+1,k

However, for numericall stability the following is used:

Pk+1,k+1 = (In −KHx)Pk+1,k(In −KHx)
T +KRKT

With these steps, an estimate for each of the state variables will be obtained

x = (x, y, z, vx, vy, vz, ϕ, θ, ψ, lx, ly, lz, lp, lq, lr)

9
Time Optimal Control

In the main results of this thesis only power optimal flight is considered. The reason for this choice is
that power optimal trajectories tend to be slower and less aggressive making them easier to imitate or
the G&CNets. Additionally, we expect that power optimal G&CNets are more robust to modeling errors
compared to the time optimal variant. In this section we will investigate this claim in order to find out
how far our G&CNet method can be pushed towards true time optimal control. A full investigation of
methods to obtain ’true’ time optimal control is out of scope for this project. For this reason, this chapter
can be viewed as a potential starting point for further research.

We will train a G&CNet that minimizes a hybrid cost function taking into account both time- and power
optimally given by:

J(x,u, T) = 0.5T + 0.5

∫ T

0

||u(t)||2dt

Using similar initial conditions and final state constrains as in the scientific paper, the network will be
trained to learn the ’50% time optimal’ state feedback. Unlike the G&CNet from the paper, here we use
the following rpm limits.

ωmin = 3000 ωmax = 9800

The controller switches to the next target waypoint once the drone is within 0.5m from the current target.
Additionally we are also using the adaptive moment feedback method with the same control pipeline
as described in the paper. In figure 9.1 a top down and sideways view can be seen of the performed
flight test. After 2 successful laps, the drone passe through waypoint 2, loses altitude and crashes.
In figure 9.2, the pitch and roll angles during this flight are plotted. Here it can be seen that around
t = 8.0s, the drone starts to oscillate and destabilize in the roll axis which is followed by an increasing
pitch angle as the drone crashes down. In Figure 9.3, the actuator rpms are plotted as well as the
reference rpm commands. As expected it can be seen that the actuators are often saturated during the
flight. Towards the end it can be seen that all actuators are saturated. Additionally it can be noted the
rpms sometimes overshoot the actuator limits which should not be possible according to the model. It is
hard to say what exactly is causing the drone to crash in this flight test, but it is clear that by increasing
time optimality we are somehow losing robustness. There are various methods that could be used
to mitigate these instability issues. A simple solution would be to switch the target waypoint earlier
such that the controller would not have to make any aggressive adjustments to approach the waypoint
more closely. This will however decrease the controller’s accuracy. Alternatively, the robustness could
also be increased by extending our adaptive method to also compensate for unmodeled effects in the
actuator, thrust and drag model.

29

30

Figure 9.1: 50% time optimal G&CNet flying in a 4x3m track. After 2 successful laps, the drone Crashes around waypoint 3.

Figure 9.2: Roll and Pitch angles during 50% time optimal flight

31

Figure 9.3: Angular velocities (in rpm) of each of the 4 actuator during 50% time optimal flight

References
[1] Ilona van den Brink and Christophe de Wagter. Mavlab World Champion in Airr Autonomous

Drone Race 2019. Dec. 2019. URL: https://www.tudelft.nl/en/2019/tu-delft/mavlab-
world-champion-in-airr-autonomous-drone-race-2019/.

[2] A.E. Bryson. “Optimal control-1950 to 1985”. In: IEEE Control Systems Magazine 16.3 (1996),
pp. 26–33. DOI: 10.1109/37.506395.

[3] Balazs Gati. “Open source autopilot for academic research - The Paparazzi system”. In: 2013
American Control Conference. IEEE, June 2013. DOI: 10.1109/acc.2013.6580045. URL: https:
//doi.org/10.1109/acc.2013.6580045.

[4] Mostafa Hassanalian and Abdessattar Abdelkefi. “Classifications, applications, and design chal-
lenges of drones: A review”. In: Progress in Aerospace Sciences 91 (2017), pp. 99–131.

[5] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are uni-
versal approximators”. In: Neural Networks 2.5 (1989), pp. 359–366. ISSN: 0893-6080. DOI:
https://doi.org/10.1016/0893- 6080(89)90020- 8. URL: https://www.sciencedirect.
com/science/article/pii/0893608089900208.

[6] Elia Kaufmann et al. “Deep Drone Acrobatics”. In: (2020). DOI: 10.48550/ARXIV.2006.05768.
URL: https://arxiv.org/abs/2006.05768.

[7] S. Li et al. “Autonomous drone race: A computationally efficient vision-based navigation and
control strategy”. In: (2018). DOI: 10.48550/ARXIV.1809.05958. URL: https://arxiv.org/
abs/1809.05958.

[8] Shuo Li et al. “Aggressive Online Control of a Quadrotor via Deep Network Representations of
Optimality Principles”. In:CoRR abs/1912.07067 (2019). arXiv: 1912.07067. URL: http://arxiv.
org/abs/1912.07067.

[9] O. L. Mangasarian. “Sufficient Conditions for the Optimal Control of Nonlinear Systems”. In: SIAM
Journal on Control 4.1 (1966), pp. 139–152. DOI: 10.1137/0304013. eprint: https://doi.org/
10.1137/0304013. URL: https://doi.org/10.1137/0304013.

[10] Carlos Sánchez-Sánchez and Dario Izzo. Real-time optimal control via Deep Neural Networks:
study on landing problems. 2016. DOI: 10.48550/ARXIV.1610.08668. URL: https://arxiv.
org/abs/1610.08668.

[11] Ewoud J. J. Smeur, Qiping Chu, and Guido C. H. E. de Croon. “Adaptive Incremental Nonlinear
Dynamic Inversion for Attitude Control of Micro Air Vehicles”. In: Journal of Guidance, Control,
and Dynamics 39.3 (Mar. 2016), pp. 450–461. DOI: 10.2514/1.g001490. URL: https://doi.
org/10.2514/1.g001490.

[12] Yunlong Song et al. Autonomous Drone Racing with Deep Reinforcement Learning. 2021. DOI:
10.48550/ARXIV.2103.08624. URL: https://arxiv.org/abs/2103.08624.

[13] Sihao Sun, Coen C. de Visser, and Qiping Chu. “Quadrotor Gray-Box Model Identification from
High-Speed Flight Data”. In: Journal of Aircraft 56.2 (Mar. 2019), pp. 645–661. DOI: 10.2514/1.
c035135. URL: https://doi.org/10.2514/1.c035135.

[14] James Svacha, Kartik Mohta, and Vijay R. Kumar. “Improving quadrotor trajectory tracking by
compensating for aerodynamic effects”. In: 2017 International Conference on Unmanned Aircraft
Systems (ICUAS) (2017), pp. 860–866.

[15] Dharmesh Tailor and Dario Izzo. Learning the optimal state-feedback via supervised imitation
learning. 2019. DOI: 10.48550/ARXIV.1901.02369. URL: https://arxiv.org/abs/1901.02369.

[16] Guillem Torrente et al. “Data-Driven MPC for Quadrotors”. In: IEEE Robotics and Automation
Letters (2021).

32

https://www.tudelft.nl/en/2019/tu-delft/mavlab-world-champion-in-airr-autonomous-drone-race-2019/
https://www.tudelft.nl/en/2019/tu-delft/mavlab-world-champion-in-airr-autonomous-drone-race-2019/
https://doi.org/10.1109/37.506395
https://doi.org/10.1109/acc.2013.6580045
https://doi.org/10.1109/acc.2013.6580045
https://doi.org/10.1109/acc.2013.6580045
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.48550/ARXIV.2006.05768
https://arxiv.org/abs/2006.05768
https://doi.org/10.48550/ARXIV.1809.05958
https://arxiv.org/abs/1809.05958
https://arxiv.org/abs/1809.05958
https://arxiv.org/abs/1912.07067
http://arxiv.org/abs/1912.07067
http://arxiv.org/abs/1912.07067
https://doi.org/10.1137/0304013
https://doi.org/10.1137/0304013
https://doi.org/10.1137/0304013
https://doi.org/10.1137/0304013
https://doi.org/10.48550/ARXIV.1610.08668
https://arxiv.org/abs/1610.08668
https://arxiv.org/abs/1610.08668
https://doi.org/10.2514/1.g001490
https://doi.org/10.2514/1.g001490
https://doi.org/10.2514/1.g001490
https://doi.org/10.48550/ARXIV.2103.08624
https://arxiv.org/abs/2103.08624
https://doi.org/10.2514/1.c035135
https://doi.org/10.2514/1.c035135
https://doi.org/10.2514/1.c035135
https://doi.org/10.48550/ARXIV.1901.02369
https://arxiv.org/abs/1901.02369

References 33

[17] Jelle Westenberger. “Time-Optimal Control for Tiny Quadcopters”. An optional note. MA thesis.
TU Delft Aerospace Engineering, Mar. 2021.

	Introduction
	Methodology
	Quadcopter model
	Optimal control problem
	Dataset generation and network training
	Adaptive Method
	Bang-Bang Controller

	Experimental Setup
	Results & Discussion
	Identifying unmodeled effects
	Dataset and G&CNet
	Simulation and flight test
	Unmodeled Moments

	Performance Adaptive method
	Dataset and G&CNet
	Performance comparison
	Simplified model

	Benchmarking consecutive waypoint flight
	Dataset and Network
	Performance comparison

	Conclusion
	System Identification
	Actuator model
	Thrust and Drag model
	Moments model

	cd7614f3-b033-4392-b2c0-1058f2d70db9.pdf
	Abstract
	Introduction
	I Scientific Paper
	II Literature Review
	Literature Review
	Optimal control theory
	Optimal control problem formulation
	The Hamilton–Jacobi–Bellman equation
	Pontryagin's minimum principle
	Direct transcription Methods
	Optimal control applied to quadcopters

	Machine Learning
	Neural networks
	Supervised learning
	Reinforcement learning
	ML for trajectory generation
	ML for aggressive trajectory tracking
	G&CNets

	System identification
	Quadcopter dynamic equations
	Thrust and drag model
	Moments
	Actuator model
	Combined model

	The Reality gap problem
	Advanced modeling
	Stochastic modeling
	Adaptive inner loop

	Proposal

	Preliminary Experiment
	Actuators
	Thrust and Drag
	Moments

	Research Questions
	Research Questions
	Research Objective

	Experimental Set-up
	Computation and Simulation
	Flight tests

	Project Planning
	Results, Outcome and Relevance

	III Additional Results
	Extended Kalman Filter Implementation
	State Transition and Observation Model
	Algorithm

	Time Optimal Control
	References

	33f1412c-8a50-492b-afe5-da89198f5b70.pdf
	Introduction
	Methodology
	Quadcopter model
	Optimal control problem
	Dataset generation and network training
	Adaptive Method
	Bang-Bang Controller

	Experimental Setup
	Results & Discussion
	Identifying unmodeled effects
	Dataset and G&CNet
	Simulation and flight test
	Unmodeled Moments

	Performance Adaptive method
	Dataset and G&CNet
	Performance comparison
	Simplified model

	Benchmarking consecutive waypoint flight
	Dataset and Network
	Performance comparison

	Conclusion
	System Identification
	Actuator model
	Thrust and Drag model
	Moments model

	cd7614f3-b033-4392-b2c0-1058f2d70db9.pdf
	Abstract
	Introduction
	I Scientific Paper
	II Literature Review
	Literature Review
	Optimal control theory
	Optimal control problem formulation
	The Hamilton–Jacobi–Bellman equation
	Pontryagin's minimum principle
	Direct transcription Methods
	Optimal control applied to quadcopters

	Machine Learning
	Neural networks
	Supervised learning
	Reinforcement learning
	ML for trajectory generation
	ML for aggressive trajectory tracking
	G&CNets

	System identification
	Quadcopter dynamic equations
	Thrust and drag model
	Moments
	Actuator model
	Combined model

	The Reality gap problem
	Advanced modeling
	Stochastic modeling
	Adaptive inner loop

	Proposal

	Preliminary Experiment
	Actuators
	Thrust and Drag
	Moments

	Research Questions
	Research Questions
	Research Objective

	Experimental Set-up
	Computation and Simulation
	Flight tests

	Project Planning
	Results, Outcome and Relevance

	III Additional Results
	Extended Kalman Filter Implementation
	State Transition and Observation Model
	Algorithm

	Time Optimal Control
	References

	33f1412c-8a50-492b-afe5-da89198f5b70.pdf
	Introduction
	Methodology
	Quadcopter model
	Optimal control problem
	Dataset generation and network training
	Adaptive Method
	Bang-Bang Controller

	Experimental Setup
	Results & Discussion
	Identifying unmodeled effects
	Dataset and G&CNet
	Simulation and flight test
	Unmodeled Moments

	Performance Adaptive method
	Dataset and G&CNet
	Performance comparison
	Simplified model

	Benchmarking consecutive waypoint flight
	Dataset and Network
	Performance comparison

	Conclusion
	System Identification
	Actuator model
	Thrust and Drag model
	Moments model

	cd7614f3-b033-4392-b2c0-1058f2d70db9.pdf
	Abstract
	Introduction
	I Scientific Paper
	II Literature Review
	Literature Review
	Optimal control theory
	Optimal control problem formulation
	The Hamilton–Jacobi–Bellman equation
	Pontryagin's minimum principle
	Direct transcription Methods
	Optimal control applied to quadcopters

	Machine Learning
	Neural networks
	Supervised learning
	Reinforcement learning
	ML for trajectory generation
	ML for aggressive trajectory tracking
	G&CNets

	System identification
	Quadcopter dynamic equations
	Thrust and drag model
	Moments
	Actuator model
	Combined model

	The Reality gap problem
	Advanced modeling
	Stochastic modeling
	Adaptive inner loop

	Proposal

	Preliminary Experiment
	Actuators
	Thrust and Drag
	Moments

	Research Questions
	Research Questions
	Research Objective

	Experimental Set-up
	Computation and Simulation
	Flight tests

	Project Planning
	Results, Outcome and Relevance

	III Additional Results
	Extended Kalman Filter Implementation
	State Transition and Observation Model
	Algorithm

	Time Optimal Control
	References

