
 
 

Delft University of Technology

Dynamic soil stiffness for foundation piles
Capturing 3D continuum effects in an effective, non-local 1D model
Versteijlen, W. G.; de Oliveira Barbosa, J. M.; van Dalen, K. N.; Metrikine, A. V.

DOI
10.1016/j.ijsolstr.2017.11.007
Publication date
2018
Document Version
Accepted author manuscript
Published in
International Journal of Solids and Structures

Citation (APA)
Versteijlen, W. G., de Oliveira Barbosa, J. M., van Dalen, K. N., & Metrikine, A. V. (2018). Dynamic soil
stiffness for foundation piles: Capturing 3D continuum effects in an effective, non-local 1D model.
International Journal of Solids and Structures, 134, 272-282. https://doi.org/10.1016/j.ijsolstr.2017.11.007

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ijsolstr.2017.11.007
https://doi.org/10.1016/j.ijsolstr.2017.11.007


Dynamic soil stiffness for foundation piles: capturing
3D continuum effects in an effective, non-local 1D

model

W G Versteijlena,b, J M de Oliveira Barbosab, K N van Dalenb, A V
Metrikineb

aSiemens Wind Power, Beatrixlaan 800, 2595 BN Den Haag, The Netherlands
bFaculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1,

2628CN Delft, The Netherlands

Abstract

A method is presented to accurately capture the 3D interaction phenomena of

a foundation pile embedded in soil, in a computationally efficient non-local 1D

model. It is shown how to extract the global stiffness kernels from simulations

with the 3D inhomogeneous continuum, and implement them in a 1D non-local

Winkler-type model that can subsequently serve as a stand-alone, condensed

substructure. The presented method for obtaining the kernels removes the need

to assume certain distributions for these functions. We show that the method is

very versatile, and yields accurate results for a wide range of pile geometries and

soil stiffness profiles, over the full depth of the embedded pile. For the dynamic

case, the discretized global stiffness kernels (matrices) become complex-valued

(they include soil stiffness, inertia and damping), and the 1D model proves

to be capable of mimicking also the out-of-phase part of the response. The

method being straightforward and fast, the engineering community is served

the benefits of accuracy (3D model) and speed (1D model), without the need of

empiric tuning.

Keywords: non-local dynamic stiffness, 3D soil-structure effects, effective 1D

soil stiffness, effective 1D soil damping, offshore wind foundations,

substructuring
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1. Introduction

The methods capturing the complex soil-structure interaction (SSI) have varied

over the last 2 centuries, depending on the application and computational power.

On the one hand, closed form analytical solutions exist for the case of homoge-

neous soil and a relatively simple, symmetric structure [1] - [4]. These are fast5

and can be quite accurate. A completely different approach has been enabled

by the modern capabilities of capturing the interaction using computationally

intensive numerical/semi-numerical methods that can model complex-shaped

structures and inhomogeneous soil [5]. Computational power is ever-increasing,

however, the demand in terms of precision and complexity of these numerical10

methods increases accordingly, making them time-expensive and therefore only

fit for ‘once-of’ simulations. The broad spectrum of methods in between these

two (analytical versus numerical) could be characterized by a mixture of both

methods, including empirical tuning. The high variability of in-situ soil prop-

erties (for instance strain, stress or load-history dependence, some of which are15

still not fully understood to date [6, 7]) calls for efficient methods that are de-

veloped on the basis of test verifications and tuning of a theoretical framework.

Such semi-emperical methods have allowed for safe construction of challenging

civil engineering structures without having to use expensive simulation algo-

2



rithms. For example, the tuning coefficients of Terzaghi [8] made the theory of20

subgrade reaction [1, 9] practically useable in the railroad industry, and for piled

foundations. Nevertheless, the theoretical frameworks with associated param-

eter tuning are bound to their original application, and should be cautiously

applied to SSI cases of which either the structure or the soil no longer coin-

cides with the original framework. An example of this is encountered in the25

offshore wind industry, the origin of motivation for the current work. In this

industry the p-y curve method, which was once developed for modelling large

lateral displacements of long flexible piles [10] - [12], is still used for modelling

the small-strain soil reaction against the short, rigidly behaving piles used in

offshore wind today [13, 14].30

Along with the development of rigorous numerical models, comes the need to

translate those into simpler models, combining the best of both: accuracy and

computational speed [15]. The latter is a requisite for some application fields,

where numerous load cases need to be simulated. Besides speed, simple models35

may facilitate improved understanding of the fundamental physics behind the

problem at hand. In our application field of offshore wind turbine foundations,

the design of large-diameter, thin-walled, rigidly behaving piles call for 3D SSI
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simulations. A 3D model automatically captures the complex interaction phe-

nomena for these piles, which, besides the lateral soil stiffness (being the main40

reaction principle for flexible piles), also includes significant rotational stiffness

components and pile-tip shearing effects [16]. To employ the accuracy of a 3D

model for engineering purposes (expensive time-domain simulations), we have

previously proposed a translation method to find an effective 1D stiffness (sub-

grade reaction) that represents the 3D soil reaction in the case of multi-layered45

soils [17]. The method introduced in [17] provides a substructure in the form of

a Winkler foundation stiffness in which the lateral springs are uncoupled (i.e.,

local spring stiffness).

In the current work a method is introduced to extract and use a non-local50

Winkler-type stiffness that couples the reaction forces of the soil in interaction

with the pile over the full embedment length. As will be explained in Section

3.1, capturing the global soil reaction mechanisms is a requisite for accurately

modelling rigidly behaving foundations. It is demonstrated that the proposed

method has great potential as the discretized stiffness kernels of the 3D model55

(Section 2.2) can be applied in a wide range of soil-pile systems (Sections 3.1

& 3.2), without the need of any further discrete correction springs. Moreover,

the presented non-local method holds the advantage that the stiffness kernels
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are obtained in a single, direct action, whereas the previously published local

stiffness method [17] involves an optimization process to find an appropriate60

effective 1D stiffness. Similar to that method, determining the 3D reaction

(captured in the stiffness kernels in this case) has to be performed only once,

after which the obtained 1D effective model is to be used as a stand-alone,

condensed model for extensive design simulations. For the linear elastic case,

3D simulations can still be relatively fast. However, the gain in computational65

efficiency due to the significant reduction of the number of degrees of freedom

in the transition from a 3D model towards a 1D model, becomes substantial

for application fields where thousands of simulations are required. For exam-

ple, due to the stochastic nature of the loading environment of offshore wind

turbines, currently about 120,000 10-min time-domain (for capturing the non-70

linear aeroelastic interaction) simulations are performed for an average design

case. Significantly decreasing the number of degrees of freedom of the design

model with negligible loss of accuracy, is clearly a large gain in such a design

community.

75

Other researchers have studied the capabilities of non-local elasticity as well.

However, where they assume certain distributions for the associated kernel func-
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tions [18, 19], the here proposed method shows how to directly obtain these

functions from the 3D model - the specific novelty of the current paper. The

choice of condensing towards a full Winkler-type model instead of for instance a80

lumped parameter model, stems from the strong desire of the engineering com-

munity to employ such 1D models. Winkler-type models have the advantage

of increased physical insight as they directly yield the distribution of stresses

within, and displacements of the pile. Therefore, other than only considering

the pilehead displacements (as is often done [16, 20]), we consider the match85

in response of the entire embedded pile in terms of its displacement, slope, ro-

tation and curvature. A great benefit of the method is that, for a dynamic

simulation, the 3D complex stiffness (i.e. including soil damping) can be di-

rectly integrated in the 1D effective model, so that the out-of-phase part of the

3D response will also be matched (Section 3.3). Therefore, simply an estimate90

of the intrinsic material damping properties related to the type of soil can be

used in defining the complex-valued Young’s modulus of the 3D model, and an

accurate 1D effective model can be directly derived that captures the material

and geometric damping of the 3D model. In Section 4 we discuss the remaining

small discrepancies between the 3D and 1D response, and how these could be95

minimized even further.
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2. Method

The non-local stiffness method comprises two steps: first, the global stiffness

kernels need to be extracted from the 3D continuum (Section 2.2), and second,

these stiffness kernels need to be integrated in the 1D beam model (Section 2.3).100

The non-local stiffness method can be used for any type of solution; it may be a

semi-analytical solution approach, or a numerical one using, for instance, finite

elements. In this paper, the continuum is modelled with finite elements, and

the governing equations of the 1D integrated beam model (discussed in the next

section) are solved using the finite difference (FD) method.105

2.1. Governing equations of the 1D model

We use the Timoshenko beam on a distributed, Winkler-type foundation model

as the basis for the 1D effective model. The equilibrium equations for the local,

static model are

GAκ
(
d2u(z)
dz2 −

dψ(z)
dz

)
− f(z, u, ψ) = 0, (1)

GAκ
(
du(z)
dz − ψ(z)

)
+ EI d

2ψ(z)
dz2 −m(z, u, ψ) = 0, (2)

where Eq. 1 describes the balance of lateral forces, and Eq. 2 describes the110

balance of bending moments. In these equations, u(z) and ψ(z) are the dis-

placement and rotation of the pile, respectively. f(z, u, ψ) and m(z, u, ψ) are
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respectively the distributed restoring force and moment of the soil. EI is the

product of the Young’s modulus of the structural steel E and the second mo-

ment of area of the cross section of the pile I. Furthermore, GAκ is the product115

of the shear modulus of the structural steel G, the area of the cross section A

and κ, the cross section-dependent Timoshenko shearing coefficient. For the

shape of the cylindrical cross section of the pile, κ = 0.53 is assumed. The sign

convention of the 1D model is given in Figure 1, in which the conventional case is

shown where f(z, u, ψ) reduces to f(z, u) and equals k(z)u, and m(z, u, ψ) = 0.120

Here k(z) is the local Winkler stiffness (often called the modulus of horizontal

subgrade reaction [8, 11]). The following boundary conditions apply:

GAκ(dudz − ψ)
∣∣∣
z=0

= −F, (3)

EI dψdz

∣∣∣
z=0

= M, (4)

GAκ(dudz − ψ)
∣∣∣
z=L

= 0, (5)

EI dψdz

∣∣∣
z=L

= 0, (6)

signifying that (from top to bottom) a lateral excitation force F and overturning

moment M are applied to the top of the pile, and that the tip of the pile is free

(zero shear force and moment).125
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κ

ψ

Figure 1: Graphical representation of the local 1D beam model and the used sign convention.

Introducing the non-local stiffness operator, the restoring force term f(z, u, ψ)

in the force equilibrium, Eq. 1, becomes an integral:

GAκ
(d2u(z)

dz2
− dψ(z)

dz

)
−
∫ L

0

Ku,u(z, z)u(z)dz = 0, (7)

signifying that the lateral restoring force of the soil on the pile at a location

z is the product of the displacement of the pile u(z) and stiffness of the soil

Ku,u(z, z = z) at that particular location (similar as in the local approach), and130

of the pile displacements u(z) and stiffness of the soil Ku,u(z, z) at all other

locations along the pile; the latter are the non-local contributions. Note that

although the integral in Eq. 7 only covers the domain of the pile (from 0 to

L), the forces exerted on the pile are the reaction of the continuum as a whole

(which extends beyond z = L). This is implicit in the stiffness kernel; Ku,u(z, z)135

is derived based on the 3D reaction of the entire medium (as will be described
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in Section 2.2).

Incorporating also other continuum-related effects like the rotational stiffness

Kψ,ψ and the stiffness operators for coupling the lateral stiffness with rotations140

Ku,ψ and vice versa Kψ,u, we get

GAκ
(d2u(z)

dz2
− dψ(z)

dz

)
−
∫ L

0

Ku,u(z, z)u(z)dz −
∫ L

0

Ku,ψ(z, z)ψ(z)dz = 0, (8)

GAκ
(du(z)

dz
− ψ(z)

)
+ EI

d2ψ(z)

dz2
−
∫ L

0

Kψ,ψ(z, z)ψ(z)dz −
∫ L

0

Kψ,u(z, z)u(z)dz = 0 (9)

The next section explains how to retrieve the global stiffness kernels K(z, z)

from a 3D FE continuum model, and Section 2.3 elaborates on implementing

these terms in a FD scheme for solving the 1D governing equations (Eqs. 8 and145

9).

2.2. Extracting the 3D continuum reaction

For modelling the reaction of the 3D stratified soil continuum, a FE model was

built using solid elements. To extract the global stiffness kernels, the soil should

be modelled including a cavity for the pile; no stiffness of the steel should be150

incorporated as these stiffness kernels should only represent the soil reaction.

The stiffness of the pile in the 1D model is represented by the first term in Eq.

8 and the first two terms in Eq. 9. We refer to the space occupied by the pile as
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the ‘cavity’ in the 3D model; this is the space the steel of the pile would occupy

if it were modelled. Furthermore, if the volume within the pile is to be modelled155

as only partly filled with soil, such a void needs to be created at this location in

the 3D continuum. In this paper we will consider piles that are fully filled with

soil. Figure 2 shows the FE mesh of (part of) the soil domain, with a cavity

for a pile that is fully filled with soil, with a vertical discretization h = 0.5 m

and a 1 m soil layer thickness. When using a numerical solution method, the160

global stiffness kernels (Ku,u(z, z),..,Kψ,u(z, z)) will be discretized into stiffness

matrices of size n × n, with n the amount of nodes employed to discretize the

vertical axis of the 1D model. The terms of the stiffness matrices will depend

on the properties of the soil and the diameter D of the pile. In this paper, for

ease of explanation, the 3D pile and adjacent soil (and consequently also the 1D165

model) have a regular mesh with fixed vertical discretization size h. However,

it is noted that the presented method can be generalized to any mesh shape.
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Figure 2: Example of the FE mesh, showing the cavity of a pile (with a diameter of 10 m and

thickness of 0.1 m) that is fully filled with soil, with a vertical discretization h = 0.5 m and 1

m soil layer thickness. Only part of the soil domain is shown.

The extraction of the lateral stiffness matrix Ku,u is straightforward. With refer-

ence to Figure 2, for every discrete depth z
i

(with i = 1, .., n, and discretization

length h, the mudline at z
1

= 0 and pile tip at z
n

= L), we displace the circum-170

ferential ring of nodes of the cavity surface with a certain displacement ui in

x-direction (see Figure 1) and collect the sum of the nodal horizontal reaction

forces at that ring, but also at all other vertically spaced rings, at depths zj 6=i.

We thus fill a matrix Fx with column vectors fx,j being the reaction forces at

depths zj due to the displacements in the continuum at depths zi . The pre-175
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scribed displacements are collected in U, which is a diagonal matrix. To be

consistent with the integral of Eq. 8, we furthermore introduce an auxiliary

matrix Ũ which incorporates the Trapezium rule for integration:

Ũ
i,j

=


1
2hUi,j

, for i = 1 and i = n,

hUi,j , otherwise.

(10)

With these matrices known, we can readily compute the stiffness matrix Ku,u.

To derive the stiffness matrix that can be used in the integral of Eq. 8, we write180

1

h


. ↑ .

. [fx,j ] .

. ↓ .

 =

 Ku,u



Ũ1,1 0 0

0 Ũi,i 0

0 0 Ũn,n

 . (11)

Note that the unit of the lateral equilibrium forces (Eq. 7) is N/m, therefore,

in Eq. 11, the nodal force matrix Fx is divided by the discretization length h.

Now we can readily find the stiffness matrix as185

Ku,u =
FxŨ

−1

h
. (12)

In a similar way, the rotational stiffness matrix Kψ,ψ can be found by imposing

a rotation ψi on the nodal rings along the circumference of the cavity surface,

collecting the nodal reaction forces in vertical direction for all depths fz,j , and

thus form the matrix Fz. The rotational stiffness relates the rotations to the190

13



distributed moment, so we incorporate the lever arm D/2 at which the vertical

soil reaction forces act with respect to the central axis of the pile:

Kψ,ψ =
DFzΨ̃

−1

2h
, (13)

in which Ψ̃ is the matrix containing the imposed rotations, adjusted to incor-

porate the trapezium rule in a similar way as is done for the displacements (Eq.195

10). Then, the coupling stiffness matrix for the lateral reaction to rotations of

the nodal rings is found as

Ku,ψ =
FxΨ̃

−1

h
, (14)

and the coupling stiffness matrix for the rotational reaction to lateral displace-

ments of the nodal rings as200

Kψ,u =
DFzŨ

−1

2h
. (15)

Figure 3 shows examples of the four stiffness matrices (Eqs. 12 - 15) for a cavity

of 5 m diameter, thickness of 0.06 m, 25 m embedment length, modelled with

an element length of h = 0.25 m, embedded in a stratified soil that will be

discussed in Section 3.1. Kψ,ψ and Ku,u are symmetric matrices, whereas Kψ,u
205

and Ku,ψ have the following interrelation:

Kψ,u
i,j

= Ku,ψ
j,i

. (16)
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It can be shown that this particular dependence is a direct consequence of the

Maxwell-Betti reciprocal work theorem (e.g. [21]), or, for the dynamic case

presented in Section 3.3, the elastodynamic source-receiver reciprocity relation

(e.g. [22]).210

0
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Figure 3: Example of Ku,u, Kψ,ψ, Kψ,u and Ku,ψ, shown in a clockwise order. The cavity

has a length of 25 m, a diameter of 5 m and was discretized with h=0.25 m. The soil profile

is “CPT20”, given in Section 3.1.

The next section covers the implementation of the global stiffness matrices in a

FD scheme to solve the 1D beam equations.

2.3. Implementation in a 1D model

We use Euler’s central finite difference schemes [23] to approximate the solution

of a Timoshenko beam on a non-local Winkler foundation. Let u and ψ be

sufficiently smooth functions of z, which we wish to evaluate in a domain of

length L at n equally spaced points, creating a discretization length h = L/(n−
1). In this schematization, we approximate (with error O(h2)) the first and

15



second derivative terms of Eqs. 8 and 9, and write - invoking summation over

repeated indices:

GAκ

h2
(ui−1 − 2ui + ui+1) − K̃u,u

i,j
uj − GAκ

2h
(−ψi−1 + ψi+1) − K̃u,ψ

i,j
ψj = 0,

(17)

GAκ

2h
(−ui−1 + ui+1) − K̃ψ,u

i,j
uj −GAκψi +

EI

h2
(ψi−1 − 2ψi + ψi+1) − K̃ψ,ψ

i,j
ψj = 0,

(18)

with i = 1, .., n and j = 0, .., n + 1, z
1

= 0 representing the location of the pile215

head and zn = L that of the pile tip. This implies we use 2 ghost nodes (j = 0

and j = n+ 1) to solve the equations at the boundaries of the domain. Similar

to Eq. 10, the tilde over the global stiffness matrices (K̃u,u
i,j

, .. ,K̃ψ,u
i,j

) in Eqs. 17

and 18 indicates that these matrices are auxiliary matrices, incorporating the

Trapezium rule modifications, where in this case the first and last columns of220

the original stiffness matrices are multiplied by 1
2 :

K̃u,u
i,j

=


1
2hK

u,u
i,j
, for j = 1 and j = n,

hKu,u
i,j
, otherwise,

(19)

with Ku,u
i,j

the stiffness matrix calculated in Eq. 12. Furthermore, a column of

zeros is added to the left and right side of the matrix to incorporate the ghost

nodes:

K̃u,u
i,j

= 0, for j = 0 and j = n+ 1. (20)

K̃u,ψ
i,j

, K̃ψ,u
i,j

and K̃ψ,ψ
i,j

incorporate similar modifications.225
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Next we rewrite the boundary conditions (Eqs. 3 - 6), isolating the ghost nodes:

GAκ(
−u0+u2

2h − ψ1) = −F,

u
0

= 2h
GAκF − 2hψ

1
+ u

2
, (21)

EI(
−ψ

0
+ψ

2

2h ) = M,

ψ0 = −2h
EI M + ψ2 , (22)

GAκ(
−u

n−1
+u

n+1

2h − ψn) = 0,

u
n+1

= 2hψ
n

+ u
n−1

, (23)
230

EI(
−ψ

n−1
+ψ

n+1

2h ) = 0,

ψn+1 = ψn−1 . (24)

These expressions need to be substituted into the system of equations given by

17 and 18 for i = 1 and i = n in order to eliminate the ghost nodes. Doing so

for the first equilibrium equation (17), for the upper boundary at z
1

(pile head),

we obtain:

GAκ

h2
(−2u1 + 2u2) − K̃u,u

1,j
uj − 2GAκ

h
ψ1 − K̃u,ψ

1,j
ψj = −2F

h
+
GAκM

EI
, (25)

and at the lower boundary zn:

GAκ

h2
(2un−1 − 2un) − K̃u,u

n,j
uj +

2GAκ

h
ψn − K̃u,ψ

n,j
ψj = 0. (26)

Similar for the second equilibrium equation 18, around the first point i = 1:

−K̃ψ,u
1,j

uj +
EI

h2
(−2ψ1 + 2ψ2) − K̃ψ,ψ

1,j
ψj = F +

2M

h
, (27)

and the last equation, at the last point i = n:

−K̃ψ,u
n,j

uj +
EI

h2
(2ψn−1 − 2ψn) − K̃ψ,ψ

n,j
ψj = 0. (28)

17



For the inner domain, Eqs. 17 and 18 remain unchanged. The outer ghost nodes

(j = 0 and j = n + 1) have now been eliminated, resulting in a square matrix

that can be inverted; by collecting the terms in Eqs. 25 - 28 in a coefficient

matrix A and a right hand side vector b, we can find the solution vector x235

(containing u and ψ) by solving the linear equation Ax = b.

3. Applications

In this section we demonstrate the potential of the technique. We will investigate

how well the full 3D solution matches with the 1D non-local solution for different

soil-pile combinations. From previous experience [17], it is known that the240

success rate of mimicking a 3D soil-pile response with a 1D effective model

depends on the rigidity of the soil-pile system. Therefore, first a selection of

4 examples is presented in the next section. First we consider the static case

(Section 3.2), and subsequently the dynamic case (Section 3.3), to see if the

damping related to 3D reactions can also be captured by the approach.245

3.1. Pile categorization & case selection

The degree of non-local interaction between the structure and the continuum

depends on the flexibility of the system. The displacement profile of a flexible

pile typically has multiple crossings of the zero-displacement line. While a

18



flexible pile evokes a more local reaction from the soil, a rigid pile makes the soil250

react in a global way; a larger part of the continuum is mobilized to counteract

the rigid pile [24]. A local 1D Winkler foundation may suffice for flexible piles,

but a 1D model for rigid pile behaviour needs additional features to capture the

complex SSI. Often the ratio of the embedment length L over the diameter D is

used to categorize piles in either slender, (long) flexible piles with a high L/D255

ratio, or rigidly behaving piles that are short, with a low L/D ratio. However,

when only considering the pile geometry in this categorization, the interaction

with the soil is neglected; a slender pile (high L/D) can still bend in a rigid way

when embedded in very soft soil. A useful parameter that incorporates the soil

stiffness in the soil-pile categorization is the pile flexibility factor introduced by260

Poulos and Hull [25], and used by Abadie [26]:

> 0.208: rigid pile behaviour,

Kr =
EIp
EsL4

{
< 0.0025: flexible pile behaviour,

(29)

in which EIp is the bending stiffness of the pile and Es the Young’s modulus

of the soil. The expression is based on the idea that for a homogeneous, linear

elastic soil, there is a certain critical length (Lc) of the pile, beyond which a

further increase of the length of the pile has no further influence on the pile265

head response [25]. The large precision in the boundaries of the behaviour type

19



seems a bit pretentious, however, together with the L/D ratio, it enables us

to graphically classify a few pile-soil systems, as is also done by Abadie [26].

Because the current research originates from the offshore wind industry, we

here duplicate some of the typical values of installed monopile foundations and270

the piles originally used to calibrate the p-y methodology, as shown in [26]. The

latter paper, however, recommends to use the Young’s modulus of the soil at

pile-tip level as the value for Es in Eq. 29. Indeed, the pile-tip soil reaction is

an important feature in the rigid pile behaviour, but we believe that the entire

soil stratum should be taken into account. We therefore propose to take the275

mean value of the Young’s modulus of the different soil layers. Secondly, Abadie

uses rather low values of the Young’s moduli of different soils: 50 MPa for dense

sand, 3 MPa for soft to medium clay, and 30 MPa for stiff clay. Generally

somewhat higher values are prescribed [27], and in our experience [17], [28],

the small-strain Young’s modulus for in-situ saturated dense sand can be in the280

order of 150 - 300 MPa. Because of these differences, we have multiplied the

soil Young’s modulus used for calculating the flexibility factors of the installed

monopile foundations and p-y development piles given by [26] by a factor of 5

(250 MPa/50 MPa). The resulting flexibility factors, together with the cases

that will be evaluated in this paper are presented in Figure 4.285

20



L/D [-]

2 3 4 5 6 7 10
1 20 30 40

F
le
x
ib
il
it
y
fa
ct
or

K
r
[-
]

10
-6

10
-4

10
-2

10
0

In-situ case
Short, softer soil
Short, stiffer soil
Caisson, intermediate soil
Sand p-y dev.
Clay p-y dev.
Sand UK
Clay UK
Sand future
Clay future

10
-6

10
-4

10
-2

10
0

stiffer soil

softer soil

flexible

rigid

Figure 4: Flexibility factors and L/D categorization. Note that the annotation for softer and

stiffer soil applies for the same pile geometry; for 2 equal piles, an embedment in softer soil,

yields more rigid behaviour.

As shown in Figure 4, 4 cases will be considered in this paper. The first case

is called “In-situ” pile; this is a pile on which we conducted extensive measure-

ments and for which we have previously performed a translation from a 3D to

a 1D model, using a local technique (locally reacting springs) [28]. We further

test the non-local technique for two short piles with a rather low L/D = 3, of290

which one pile is embedded in a relatively softer soil (the “Short-soft” case) and

the other in a stiff soil (the “Short-stiff” case). Furthermore, we will consider

a “Caisson” type pile: L/D = 2, embedded in stiff soil. The geometry of the

cylindrical, thin-walled piles, the average Young’s modulus Es and the flexibility

factors of the 4 cases are given in Table 1.295
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D L t Es Kr

[m] [m] [mm] [MPa] [-]

In-situ 5 24 50 319 0.0047

Short-soft 10 30 100 15 0.6437

Short-stiff 10 30 100 7368 0.0013

Caisson 10 20 100 1383 0.0362

Table 1: Pile-soil properties of the 4 considered cases, with t the wall thickness of the pile and

Es the average Young’s modulus of the soil profiles.

Note that for the Short-stiff case, and to a lesser extend also the Caisson case,

the piles are embedded in very stiff soil; the Young’s modulus is in actual fact

comparable to that of (weak) rock like shale and sandstone [29]. Although

maybe counter-intuitive, the Short-stiff pile is considered a flexible pile by defi-

nition of the flexibility factor. For the soil profiles used in this paper, 2 actual300

seismic cone penetration tests (SCPT) are used that have been previously pub-

lished [17, 28], called “SCPT20” and “SCPT45”. The in-situ density, Young’s

modulus and estimated Poisson’s ratio of both these profiles are given in Figure

5. SCPT45 is the profile of the In-situ case, and SCPT20 is used for the other 3

cases using a scaling factor which is applied to the entire Young’s modulus pro-305

file: 1
12 , 40 and 10 for the Short-soft, Short-stiff and Caisson case, respectively.

These 4 different profiles are used for modelling the 3D SSI and extracting the

global stiffness matrices. The SCPT20 profile was also used for the example

stiffness matrices given in Figure 3, where it can be seen that the form of the

diagonals of these matrices, quite well reflect the shape of the Young’s modulus310
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profile.
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Figure 5: In-situ density, Young’s modulus and estimated Poisson’s ratio for SCPT20 and

SCPT45. SCPT45 is used for the 3D model of the In-situ case, and scaled versions of the

Young’s modulus of SCPT20 are used for the other 3 cases.

3.2. Static response

The 3D SSI solutions in this paper are calculated with a FE model, which em-

ploys axisymmetry to decompose the 3D problem into a set of 2D problems;

both the soil and the pile are modeled with solid finite elements [30]. As previ-315

ously mentioned, the pile is assumed to be fully filled with soil. The same model

- however, excluding the pile - is used for extracting the global stiffness matrices.

In the next comparisons, the quality of the fit is based on the deflection u,
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the slope u′ = du
dz , the rotation ψ and curvature ψ′ of the 1D non-local solution320

compared to those of the 3D model for all depths. The misfit function is defined

as

Cu,u′,ψ,ψ′ =
1

4
(Cu + Cu′ + Cψ + Cψ′) =∑i=n

i=1

∣∣ui,1D − ui,3D∣∣
4
∑i=n
i=1

∣∣ui,3D∣∣ +

∑i=n
i=1

∣∣u′i,1D − u′i,3D∣∣
4
∑i=n
i=1

∣∣u′i,3D∣∣ + (30)

∑i=n
i=1

∣∣ψi,1D − ψi,3D∣∣
4
∑i=n
i=1

∣∣ψi,3D∣∣ +

∑i=n
i=1

∣∣ψ′i,1D − ψ′i,3D∣∣
4
∑i=n
i=1

∣∣ψ′i,3D∣∣ ,

in which Cu, Cu′ , Cψ and Cψ′ are the individual misfits for the corresponding

quantities. The comparison of responses for a static horizontal force of F = 1

N and an overturning moment M = 45 Nm for the 4 cases is given in Figures325

6 - 9, where for each case the same coloring is used as in the categorization of

Figure 4.
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Figure 6: In-situ case, comparison between 1D non-local and 3D solution for a static force of

F = 1 N and an overturning moment M = 45 Nm.
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Figure 7: Short-soft case, comparison between 1D non-local and 3D solution for a static force

of F = 1 N and an overturning moment M = 45 Nm.
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Figure 8: Short-stiff case, comparison between 1D non-local and 3D solution for a static force

of F = 1 N and an overturning moment M = 45 Nm.
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Figure 9: Caisson case, comparison between 1D non-local and 3D solution for a static force

of F = 1 N and an overturning moment M = 45 Nm.

The quality of the fit of the presented cases (Figures 6 - 9) is very good. In

the previous work [28], using the local stiffness method for the In-situ case,

we reached misfit values of Cu = 0.0184, Cu′ = 0.0247, Cψ = 0.0096 and330

Cψ′ = 0.0197 (Cu,u′,ψ,ψ′ = 0.0723). The misfits associated with the above

presented results are summarized in Table 2. Besides the fact that the misfits

using the here presented non-local technique are almost twice as low, Figures 6

- 9 show that the method is quite insensitive for the type of SSI, demonstrated

by the wide range in flexibility factors and different L/D ratios that were chosen335

for the 4 cases (Figure 4). We do see a somewhat poorer result for the Short-stiff

case. Nevertheless, the quality of the fit is still considered satisfactory. Using

the local technique [17] for this case would not yield useful results. Furthermore,

we emphasize that the newly developed non-local stiffness technique is a direct

approach, whereas the local technique requires optimization, involving much340
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more uncertainty (and computational cost) than the non-local stiffness method.

Cu,u′,ψ,ψ′ Cu Cu′ Cψ Cψ′

In-situ 0.0179 0.0074 0.0050 0.0018 0.0038

Short-soft 0.0360 0.0092 0.0111 0.0081 0.0076

Short-stiff 0.1342 0.0648 0.0296 0.0209 0.0189

Caisson 0.0727 0.0336 0.0165 0.0097 0.0129

Table 2: Misfits (Eq. 30) for the 4 SSI cases, static solution (Figures 6 - 9).

3.3. Dynamic response

The previously discussed 3D FE model (Section 3.2) incorporates, for the dy-

namic case (frequency domain1), perfectly matched layers, as defined in [31].

These layers are used at the outer boundary of the domain to avoid wave re-345

flections. For very low frequencies, the perfectly matched layers are replaced by

elastic layers whose dimensions are large enough so that the artificial boundaries

do not influence the results. In order to keep the calculation times small, the

size of the elements composing these buffer layers are made successively larger

as the distance to the pile increases. To account for energy loss due to the350

hysteretic behaviour of soil, the shear modulus of the soil Gs is made complex

1In this paper, we use the Fourier transform F (ω) =
∫∞
−∞ f(t)e−iωtdt to transform the

equations to the frequency domain.
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by including the input soil material damping ratio ζ [32]:

G∗s = Gs(1 + iηsgn(ω)) = Gs(1 + 2iζsgn(ω)), (31)

where η is the loss factor. The material and the geometric damping cause the

soil response and thus the global stiffness matrices (Eqs. 12 - 15) to become

complex valued. A 1% (ζ = 0.01) material damping was assigned to all layers in355

the 3D models. The 1D equilibrium equations (Eqs. 8 and 9) for the dynamic

case, written in the frequency domain, become

GAκ
(d2u(z)

dz2
− dψ(z)

dz

)
−
∫ L

0

K̊u,u(z, z)u(z)dz

−
∫ L

0

K̊u,ψ(z, z)ψ(z)dz + ω2ρAu(z) = 0, (32)

GAκ
(du(z)

dz
− ψ(z)

)
+ EI

d2ψ(z)

dz2
−
∫ L

0

K̊ψ,ψ(z, z)ψ(z)dz

−
∫ L

0

K̊ψ,u(z, z)u(z)dz + ω2ρIψ(z) = 0, (33)

containing complex-valued stiffness kernels K̊u,u(z, z), .. ,K̊ψ,u(z, z), lateral in-

ertia ρA and rotary inertia ρI, with ρ the mass density of the pile. Apart from360

the steel mass, the pile is assumed to be fully filled with the same soil as outside

of the pile. The frequency-dependent inertia forces of the soil are automatically

incorporated in the complex-valued stiffness matrices, which are calculated with

the obtained frequency response, see Eqs. 12 - 15.

365

The resulting comparison of the dynamic response of the 3D and 1D mod-
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els for the 4 cases, excited by a harmonic horizontal force of F (ω) = 1 N,

an overturning moment M(ω) = 45 Nm and excitation frequency f = 0.3 Hz

(ω = 2πf = 1.88 rad/sec) is given in Figures 10 - 13. This excitation frequency is

rather arbitrary, nevertheless, a frequency of f = 0.3 Hz is surely below the first370

resonance frequency of these soil-pile systems, ensuring a stiffness-dominated

response (rather than inertia-dominated), which is the focus of this paper. Fur-

thermore, f = 0.3 Hz is close to the typical first natural frequency of offshore

wind turbine structures.
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Figure 10: In-situ case, comparison between 1D non-local and 3D solution for a harmonic

force of F = 1 N and overturning moment M = 45 Nm at a frequency of f = 0.3 Hz.
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Figure 11: Short-soft case, comparison between 1D non-local and 3D solution for a harmonic

force of F = 1 N and overturning moment M = 45 Nm at a frequency of f = 0.3 Hz.
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Figure 12: Short-stiff case, comparison between 1D non-local and 3D solution for a harmonic

force of F = 1 N and overturning moment M = 45 Nm at a frequency of f = 0.3 Hz.
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Figure 13: Caisson case, comparison between 1D non-local and 3D solution for a harmonic

force of F = 1 N and overturning moment M = 45 Nm at a frequency of f = 0.3 Hz.

The fits for the imaginary and real parts of the response in case of a dynamic375

excitation, as presented in above Figures 10 - 13, are very satisfactory. The

misfits of the imaginary parts (CIm(..)) are comparable to those of the real parts

(CRe(..)). In some cases they are larger than the misfit of the real part; for

instance, CIm(u) > CRe(u) for the In-situ and Short-soft cases (Figures 10 and

11, respectively). However, the opposite also occurs (CIm(u) < CRe(u)) for the380

Short-stiff and Caisson cases (Figures 12 and 13, respectively). Although the

imaginary part of the rotations of the Short-soft case are matched quite well, the

misfit for the derivative CIm(ψ′) is quite high. The misfits of the above presented

results are summarized in Table 3.
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Cu,u′,ψ,ψ′ Cu Cu′ Cψ Cψ′

Re Im Re Im Re Im Re Im Re Im

In-situ 0.0178 0.0379 0.0073 0.0134 0.0049 0.0058 0.0017 0.0061 0.0038 0.0126

Short-soft 0.0338 0.1365 0.0088 0.0080 0.0102 0.0310 0.0072 0.0282 0.0076 0.0693

Short-stiff 0.1342 0.0747 0.0648 0.0398 0.0296 0.0174 0.0209 0.0069 0.0189 0.0105

Caisson 0.0727 0.0456 0.0336 0.0099 0.0165 0.0080 0.0097 0.0023 0.0129 0.0255

Table 3: Misfits (Eq. 30) for the 4 SSI cases, dynamic solution (Figures 10 - 13). The misfits

are defined for the real (Re) and imaginary (Im) parts of the solutions.

Similar efforts in matching 3D and 1D responses have been performed in [16]. As385

opposed to these authors, we do not aim to develop general relations between

3D and 1D SSI stiffness parameters; we developed a technique to accurately

translate the 3D SSI into 1D effective parameters for each case. In [16], a 20%

accuracy of the pile head displacement and a 13% accuracy for the pile head

rotations is reached (the responses over the soil depths are not addressed), for390

a pile of 2 m diameter, length of 8 m, embedded in a 3-layer soil profile with an

average Es = 25 MPa, and an excitation frequency of 5 Hz. For the presented

cases, we reach an overall (for all z) accuracy range of 3.43% (Short-soft case)

- 24.16% (Short-stiff) for the magnitude (absolute values) of the displacements

u(z) and 4.45% (Caisson) - 5.57% (Short-stiff) for the magnitude of the rotations395

ψ(z). Note that Table 3 gives the misfits of the imaginary and real parts of the

response separately, not of the absolute values (which are considered in [16]). In

case of only considering the mudline correspondence - as is often done - we reach
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a 1.92% (In-situ) - 11.15% (Short-stiff) accuracy for the displacement u(0), and

1.61% (In-situ) - 6.89% (Short-soft) for the rotation ψ(0).400

4. Discussion

The presented fits of both the static and dynamic responses of the 1D models

with those of the 3D models are very satisfactory, and within accuracy limits

that are acceptable for structural designers. Nevertheless, although this 1D

non-local approach could be considered an exact equivalent modelling method405

for the 3D models, there are still differences between the responses of these 2

models.

One cause could be the difference between the modelling methods of the pile:

the 1D Timoshenko beam versus the solid elements used in the 3D model. To410

further investigate this difference, 3 other cases were considered. First a static

cantilever pile (to exclude the soil reaction) with L = 25 m, D = 5 m and

t = 60 mm was analyzed using the 3D FE solid elements, and the 1D FD

solution. The overall mismatch in deflections between these two models was

Cu = 0.0068, which is small, but is of the same order as the values presented415

for the static SSI cases in Table 2. For completeness we note that the misfit

of the FD solution and the analytical solution for a 25 m cantilever beam gave
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an error for the deflection of Cu = 5.997 · 10−5 for h = 0.5 m. In the second

comparison, a Timoshenko beam FE model embedded in a 3D solid continuum

(with the same pile properties as the cantilever, and a similar soil profile as420

SCPT20, Figure 5) was compared to the 3D model as used in the previous

sections (solid elements to model the pile). The third case is similar to the

second, but employs shell elements for the 3D pile. The misfit of deflections for

these two cases was Cu = 0.0020 for the pile meshed with solid elements and

Cu = 0.0068 for the pile meshed with shell elements. Again, these values are425

small, but not negligible and they are of the same order as the values presented

in Table 2. Obviously, these misfit values will vary for different pile geometries

and soil combinations. The difference in 3D and 1D pile modelling is expected

to be the main cause for the higher misfit obtained for the Short-stiff case; the

ovalisation of the 3D pile in this high soil-stiffness case was verified to be higher430

than that in the Short-soft case (having the same pile geometry, but softer soil).

We can conclude that the modelling difference between a 3D pile and the used

beam theory can be a cause of the remaining mismatch between the observed

3D and 1D responses.

435

The modelling difference between a 3D pile and the beam theory could fur-
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thermore cause an inaccuracy in the modelled interaction of the pile with the

soil; to extract the global stiffness matrices, beam-shaped (rigid ring) defor-

mations are prescribed to the soil, whereas the 3D soil-pile model allows for

circumferential dependance of the displacements.440

Additionally we note that, in case an even higher accuracy is required, the

small remaining difference in stiffness can be easily further diminished by op-

timizing the global stiffness matrices, leading to lower misfits. Multiplying the

global stiffness matrices by a factor α - to be optimized - can compensate for445

the above discussed difference in 3D pile and beam theory.

5. Conclusions

In this paper we have demonstrated a novel technique to mimic the complex

3D dynamic response of a vast range of soil-pile systems with a 1D beam on

non-local Winkler foundation model. It was shown how to extract the global450

soil stiffness matrices from the 3D, inhomogeneous continuum, and how to in-

corporate them in a 1D model, which can subsequently serve as a condensed

substructure that can be connected to other design models. Since obtaining the

global stiffness matrices is a one-time action, the gain lies in the computational

time that can be saved in employing the non-local, reduced-order 1D model in455
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extensive design simulations. The explained procedure is straightforward and

fast, can be easily automated, and does not require any optimization to acquire

acceptable results. The global stiffness matrices automatically capture all the

3D mechanisms occurring in the interaction of (large-diameter) piles and soil,

removing the need for any empirical tuning factors that relate 3D soil param-460

eters to their 1D effective parameter. Four SSI cases are presented with L/D

ratios varying between 2 and 5, and a range of average Young’s modulus of the

soil between 15 and 7400 MPa. Very satisfactory fits are found between the re-

sponse of the 3D and 1D models over the full embedded length, in terms of the

displacement, slope, rotation and curvature, for both static and dynamic excita-465

tion. The presented work provides the engineering design community with dual

benefit of accuracy of a 3D model in defining the stiffness, mass and damping

properties of an SSI system, and the computational speed of a 1D model.
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