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Adaptive Asymptotic Tracking for a Class of
Uncertain Switched Positive Compartmental Models

with Application to Anesthesia
Maolong Lv, Bart De Schutter, Fellow, IEEE, Wenwu Yu, Senior Member, IEEE,

and Simone Baldi, Member, IEEE

Abstract—This brief work addresses and solves the adaptive
asymptotic tracking for a class of uncertain switched positive
linear dynamics (also known in literature as compartmental
models) subject to dwell time constraints. Compared to the state
of the art, the innovative feature of this method is to attain
for the first time asymptotic set-point tracking, while guarantee-
ing nonnegativity of the systems states. To achieve asymptotic
tracking, an interpolated Lyapunov function is adopted, which
is non-increasing at the switching instants and decreasing in two
consecutive switching instants. Such Lyapunov function results
in a novel adaptive law with time-varying adaptive gains, as
opposed to state-of-the-art laws with fixed positive adaptive gains.
The developed design is applicable to classes of compartmental
systems compatible with those proposed in literature: an example
involving the infusion of anesthesia is conducted to show that the
proposed method can achieve better performance than existing
methods.

Index Terms—Switched positive linear dynamics, compartmen-
tal systems, dwell-time, adaptive asymptotic control.

I. INTRODUCTION

THE past decade has seen several advances in the field of
switched dynamical systems and their applications [1]–

[15]. Switched dynamical systems switch among a family of
subdynamics using a switching rule, which can be state-driven
or time-driven [16], [17]. In some cases, the states of the
systems must remain nonnegative, then we have the special
class of switched positive systems, which has attracted much
attention thanks to its tremendous number of applications, such
as biology systems [18], compartmental model [19], traffic
flows systems [20], and communication networks [21]. In
all these systems, the positivity of system states is always
preserved as long as the input and initial states are positive.

Stability and stabilization of switched positive dynamics
has been deeply researched. More specifically, a discretized
copositive Lyapunov function has been adopted to conduct
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stability analysis under minimum dwell time constraint in [20].
In [4], a more general class of copositive polynomial Lyapunov
function is proposed, making existing classical Lyapunov
functions to be special cases of such method. Necessary and
sufficient stability criteria have been investigated in [22] under
average dwell time switching. More recently, an improved
stability condition and corresponding delay control have been
proposed in [23], which relaxes the notion of average dwell
time. Exponential stability has been studied in [24] for two-
dimensional and higher-order switched positive systems based
on copositive Lyapunov functions. More studies involving
switched positive systems can be found in [25] and in the
references therein.

It has to be stressed that most of the aforementioned stability
or stabilization approaches assume perfectly known dynamics,
i.e. they ignore system parametric uncertainty which is virtu-
ally present in all dynamical systems. It is well established
that when uncertainty is large adaptive methods are a viable
option (in place of fixed-gain robust control [26]). For non-
switched positive systems, adaptive control methods have been
studied for a special class of dynamics known in literature
as compartmental models [19], [27]–[29]. Such systems can
be used to represent many medical systems where high
uncertainty poses several control challenges. For example,
surgery or the infusion of anesthetic drugs are subject to
many uncertainties and disturbances coming from the patient.
Such dynamics can be often modelled by switching laws, i.e.
switching among certain regimes. However, to the best of
the authors’ knowledge, adaptive switching control for com-
partmental systems has not been studied. In fact, it is worth
remarking that, while some adaptive methods for switched
systems have appeared in [30], [31], none of these methods can
guarantee the systems states to remain nonnegative. Therefore,
such methods could not be applied in all the applications
(biology, traffic flows, communication networks, etc) where
positivity of system states must be preserved. In other words,
to the authors’ best knowledge, the development of adaptive
methods for uncertain switched positive dynamics or uncertain
switched compartmental systems is completely open.

Inspired by the above discussion, this work proposes an
adaptive design for a class of switched positive linear dynam-
ics, whose main innovations are:

1) In contrast with non-adaptive methods for switched
positive linear systems [4], [20], [22]–[24], a direct adaptive
switched method is investigated for the first time, so as to
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adapt the control gains according to system uncertainty and
switching.

2) In contrast with adaptive controllers for switched systems
[30], [31], the proposed method can guarantee that the states
always remain nonnegative (for nonnegative initial states),
which suggests that the strategy developed here find appli-
cation in all aforementioned fields where switched positive
dynamics are crucial.

3) It is well-known in the switched systems literature that
asymptotic adaptive state-tracking is challenging [30], and
asymptotic adaptive output-tracking is still unsolved [32].
Here, we show that, for the class of switched positive dy-
namics under consideration, asymptotic output-tracking (set-
point tracking) can be solved via an appropriately designed
interpolated Lyapunov function. As far as we know, such
adaptive output-tracking is established for the first time.

4) State-of-the-art adaptive laws rely on some fixed positive
adaptive gains to perform adaptation. In this work we show
that the designed Lyapunov function results in a novel adaptive
law with time-varying adaptive gains.

The rest of the paper is structured as follows. Section 2
gives the considered system and preliminaries. The switched
adaptive control with stability analysis is designed in Section
3. In Section 4, simulation results are given, followed by the
conclusions in Section 5.

Notations: We say that a vector x ∈ Rn or a matrix Λ ∈
Rn×m is non-negative or positive if every entry of x or Λ is
nonnegative or positive. This will be represented by x � 0
and x � 0 or Λ � 0 and Λ � 0, respectively. The symbols
R̄n+ and Rn+ are used to denote the nonnegative and positive
orthants of Rn. A matrix Λ ∈ Rn×n is said to be a Metzler
matrix if its off-diagonal entries are nonnegative. This will be
represented by Λ ∈Mn.

II. MATHEMATICAL PRELIMINARIES

Let us consider the continuous-time switched positive sys-
tem with M subsystems:

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), σ(t) ∈M := {1, ...,M} (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is a
piecewise continuous control input, and the subscript σ(t)
represents the active subsystem at time t. The switching signal
σ(t) can be represented in terms of its switching sequences
S :=

{
(κ0, t0), (κ1, t1), . . . , (κm, tm), . . .

∣∣κj ∈ M,m ∈ N
}

with t0 indicating the initial time. The notation (κm, tm)
indicates that the κmth subsystem is activated (i.e. σ(t) = κm)
for t ∈

[
tm, tm+1

)
. As all subsystems in (1) are positive

systems, we have Aσ(t) ∈ Mn and Bσ(t) ∈ Rn×m+ for all
σ(t) ∈M. This is clarified by the following lemma.

Lemma 1 [20]: The switched linear dynamics (1) are said
to be positive if and only if Aσ(t) is a Metzler matrix and
Bσ(t) � 0, ∀σ(t) ∈M.

We consider the class considered in [27], [19], [28] and
[29], where Bσ(t) =

[
Bσ(t)u, 0(n−m)×m

]T
with Bσ(t)u =

diag
{
bσ(t)1, ..., bσ(t)m

}
and bσ(t)i ∈ R+ for i ∈

{
1, ...,m

}
.

The matrices Aσ(t) and Bσ(t) are uncertain in the sense
that some of their entires are unknown. Define a desired

target state xe ,
[
xTd , x

T
u

]T
where xd =

[
xd1, ..., xdm

]T
with xdi a desired signal of the ith state xi(t), and xu =[
xu1, ..., xu(n−m)

]T
can be possibly unknown.

The aim of this work is to design u(t) such that
limt→∞xi(t) = xdi � 0 for i = 1, ...,m ≤ n.

One standard definition and one assumption are recalled.
Definition 1 [30]: The switching signal represented by the

switching sequences S :=
{

(κ0, t0), . . . , (κm, tm), . . .
}

is
said to be dwell time admissible if there exists a number
τd > 0 such that tm+1 − tm ≥ τd holds for ∀m ∈ N+.
The number τd > 0 is the dwell-time and the set D(τd) is
used to indicate all switching signals satisfying the dwell-time
constraint.

Assumption 1 [28]: There exist nonnegative vectors xu ∈
R̄n−m+ and uσ(t)e ∈ R̄m+ satisfying Aσ(t)xe +Bσ(t)uσ(t)e = 0
and there exists a matrix Θσ(t)g = diag

{
θσ(t)g1, ..., θσ(t)gm

}
such that Aσ(t)s = Aσ(t) + Bσ(t)Θ̃σ(t)g with Θ̃σ(t)g =[
Θσ(t)g, 0m×(n−m)

]
being asymptotically stable.

Remark 1: It has to be remarked that Assumption 1 has
been formulated for non-switched positive systems in [19],
[28]. Such an assumption guarantees well-posedness of the
tracking problem, thus it will be considered in the switched
case as well.

III. ADAPTIVE CONTROL DESIGN BASED ON A
DWELL-TIME SWITCHING METHOD

A novel adaptive controller will now be designed to ensure
asymptotic tracking error for the switched positive system (1).
The adaptive design is summarized in the following.

Theorem 1: Consider the target state xd, and the uncertain
switched positive linear dynamic (1). Assume there exists a
family of diagonal positive-definite matrices Pι,k ∈ Rn×n,
ι ∈ M, k = 1, ...,K, and a sequence {χk}Kk=1 with χk > 0

and
∑K
k=1 χk = τd such that the following matrix inequalities

are satisfied:

Pι,k � 0 (2a)
Pι,k+1 − Pι,k

χk+1
+ Pι,kAιs +ATιsPι,k ≺ 0 (2b)

Pι,k+1 − Pι,k
χk+1

+ Pι,k+1Aιs +ATιsPι,k+1 ≺ 0 (2c)

k = 0, ...,K − 1 (2d)

Pι,KAιs +ATιsPι,K ≺ 0 (2e)
Pι,K − P%,0 � 0 (2f)

for % = 0, ..., ι− 1, ι+ 1, ...,M (2g)

with K an adjustable integer and χk+1 = ti,k+1 − ti,k
after defining the sequence {ti,0, ..., ti,K} with ti,0 = ti and
ti,K−ti,0 = τd. Furthermore, define the time-varying diagonal
matrix Pι(t) = diag

{
pσ(t)1(t), ..., pσ(t)m(t)

}
with Pι(t) as

Pι(t) =

Pι,k +
Pι,k+1 − Pι,k

χk+1
(t− ti,k), for t ∈

[
ti,k, ti,k+1

]
Pι,K, for t ∈ [ti,K, ti+1)

(3)
Then, the adaptive controller

ui(t) = θσ(t)i(t)
(
xi(t)− xdi

)
+ ϕσ(t)i(t), i = 1, ...,m (4)
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with parameters adaptation laws

θ̇σ(t)i(t) = −ρσ(t)ipσ(t)i(t)
(
xi(t)− xdi(t)

)2
(5)

ϕ̇σ(t)i(t) =

{
0, if ϕσ(t)i(t) = 0 and xi(t) ≥ xdi
− ρ̂σ(t)ipσ(t)i(t)

(
xi(t)− xdi

)
, otherwise

(6)
where ρσ(t)i > 0, ρ̂σ(t)i > 0, θσ(t)i(0) ≤ 0 and ϕσ(t)i(0) ≥ 0,
can guarantee that limt→∞(xi(t) − xdi(t)) = 0 for all x0 ∈
Rn+. Moreover, x(t) � 0 for ∀t ≥ 0.

Proof : As a first step we write the error dynamics, invoking
(1) and (4), which yields

ẋ(t) = Aσ(t)x(t) +Bσ(t)Θσ(t)(t)
[
x̄(t)− xd

]
+Bσ(t)ϕσ(t)(t)

(7)
where we have used the compact notation for the control input

u(t) = Θσ(t)(t)
(
x̄(t)− xd

)
+ ϕσ(t)(t) (8)

with Θσ(t)(t) = diag
{
θσ(t)1(t), ..., θσ(t)m(t)

}
.

Using Assumption 1 gives

ė(t) =
(
Aσ(t)s −Bσ(t)Θ̃σ(t)g

)
x(t) +Bσ(t)ϕσ(t)(t)

+Bσ(t)Θσ(t)(t)
(
x̄(t)− xd

)
=Aσ(t)s

(
x(t)− xe

)
+Bσ(t)Θ̃σ(t)g

[
xe − x(t)

]
+Bσ(t)

[
Θσ(t)(t)

(
x̄(t)− xd

)]
+Bσ(t)

(
ϕσ(t)(t)− uσ(t)e

)
=Aσ(t)se(t) +Bσ(t)

(
ϕσ(t)(t)− uσ(t)e

)
+Bσ(t)

(
Θσ(t)(t)−Θσ(t)g

)(
x̄(t)− xd

)
(9)

where e(t) = x(t)− xe.
Take the quadratic Lyapunov function:

V (t) = eT (t)Pσ(t)(t)e(t) +

M∑
ι=1

tr
(
Θι(t)−Θιg

)T
Q−1ι ·

(
Θι(t)−Θιg

)
+

M∑
ι=1

(
ϕι(t)− uιe

)T
Q̂−1ι

(
ϕι(t)− uιe

)
(10)

that can be equivalently expressed in the form of

V (t) =

n∑
i=1

Pσ(t)i
(
xi(t)− xdi

)2
+

M∑
ι=1

m∑
i=1

bιi
ριi
·

(
θιi − θιgi

)2
+

M∑
ι=1

m∑
i=1

bιi
ρ̂ιi

(
ϕιi(t)− uιei

)2 (11)

with

Qι =


ρι1
bι1

· · · 0
...

. . .
...

0 · · · ριm
bιm

 , Q̂ι =


ρ̂ι1
bι1

· · · 0
...

. . .
...

0 · · · ρ̂ιm
bιm



From (6), (7) and (11), the time derivative of the Lyapunov
function follows

V̇ (t) =eT (t)
(
ATσ(t)sPσ(t)(t) + Pσ(t)(t)Aσ(t)s + Ṗσ(t)(t)

)
e(t)

+ 2eT (t)Pσ(t)(t)Bσ(t)(Θσ(t)(t)−Θσ(t)g)(x̄(t)− xd)

+ 2

M∑
ι=1

tr(Θι(t)−Θιg)
TQ−1ι Θ̇ι(t)

+ 2

M∑
ι=1

(ϕι(t)− uιe)T Q̂−1ι ϕ̇ι(t)

+ 2eT (t)Pσ(t)(t)Bσ(t)(ϕσ(t)(t)− uσ(t)e)
(12)

which leads to

V̇ (t) =eT (t)
(
ATσ(t)sPσ(t)(t) + Pσ(t)(t)Aσ(t)s + Ṗσ(t)(t)

)
e(t)

+ 2

m∑
i=1

Pσ(t)i(t)bσ(t)i(θσ(t)i(t)− θσ(t)gi)(xi(t)− xdi)2

+ 2

m∑
i=1

Pσ(t)i(t)bσ(t)i(xi − xdi)(ϕσ(t)i − uσ(t)ei)

+ 2

m∑
i=1

[
bσ(t)i

ρσ(t)i
(θσ(t)i(t)− θσ(t)gi)θ̇σ(t)i(t)

]

+ 2

m∑
i=1

[
bσ(t)i

ρ̂σ(t)i
(ϕσ(t)i(t)− uσ(t)ei)ϕ̇σ(t)i(t)

]
(13)

where we have used the fact that the adaptive laws for inactive
subsystems are inactive (i.e. only θ̇σ(t)i and ϕ̇σ(t)i are active).

Substituting (5) and (6) into (13) results in

V̇ (t) = eT (t)
(
ATσ(t)sPσ(t)(t) + Pσ(t)(t)Aσ(t)s + Ṗσ(t)(t)

)︸ ︷︷ ︸
ωσ(t)(t)

e(t)+

2

m∑
i=1

bσ(t)i(ϕσ(t)i − uσ(t)ei)

[
Pσ(t)i(t)(xi − xdi) +

ϕ̇σ(t)i(t)

ρ̂σ(t)i

]
︸ ︷︷ ︸

ζ(t)
(14)

In view of (7), two cases should be considered:
Case 1: If ϕσ(t)i(t) = 0 and xi ≥ xdi, then ϕ̇σ(t)i(t) = 0.

Thus we arrive

ζ(t) = −2

m∑
i=1

bσ(t)iuσ(t)eiPσ(t)i(t)(xi − xdi) ≤ 0. (15)

Case 2: If Case 1 is not satisfied, then ϕ̇σ(t)i(t) =
−ρ̂σ(t)iPσ(t)i(xi − xdi). Thus one has

ζ(t) = 0. (16)

In both cases, (15) and (16) imply that

V̇ (t) ≤ eT (t)
(
ATσ(t)sPσ(t)(t)+Pσ(t)(t)Aσ(t)s+ Ṗσ(t)(t)

)
e(t).
(17)

It has to be noticed that ωσ(t)(t) in (14) is continuous for
t ∈

[
ti, ti+1

)
thanks to the continuity of Pσ(t)(t) for t ∈[

ti, ti+1

)
.
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According to the definition of Pσ(t)(t), there are three
situations that should be considered:

Situation 1 (before the dwell time) : Let us first consider
t ∈

[
ti,k, ti,k+1

)
, k = 0, ...,K − 1. Then, we can rewrite

ωσ(t)(t) as

ωσ(t)(t) = ATσ(t)sPσ(t)(t) + Pσ(t)(t)Aσ(t)s + Ṗσ(t)(t)

= γ1

{
Pσ(t),k+1 − Pσ(t),k

χk+1
+ Pσ(t),kAσ(t)s

+ATσ(t)sPσ(t),k

}
+ γ2

{
Pσ(t),k+1 − Pσ(t),k

χk+1

+ Pσ(t),k+1Aσ(t)s +ATσ(t)sPσ(t),k+1

}
(18)

with γ1 = 1− t−ti,k
χk+1

and γ2 =
t−ti,k
χk+1

. Recalling (2), we have

ωσ(t)(t) ≺ 0, for t ∈
[
ti,k, ti,k+1

)
. (19)

Situation 2 (after the dwell time) : Let us now consider t ∈[
ti,K, ti+1

)
subject to the dwell-time constraint ti+1−ti > τd.

One has Pσ(t)(t) = Pσ(t),K, which suggests from (2) that

ωσ(t)(t) = Pσ(t),KAσ(t)s +ATσ(t)sPσ(t),K ≺ 0 (20)

when t ∈
[
ti,K, ti+1

)
. Therefore, from (19) and (20), we

obtain ωσ(t)(t) ≺ 0 when t ∈
[
ti, ti+1

)
, which results in

V̇ (t) = eT (t)ωσ(t)(t)e(t) < 0, for t ∈
[
ti, ti+1

)
(21)

Situation 3 (at the switching instant) : We finally consider
the switching instant t = ti+1. Thanks to the continuity of
e(t), Θσ(t)(t) and ϕσ(t)(t), one gets

Vσ(ti+1)

(
x(ti+1),Θσ(t)(ti+1), ϕσ(t)(ti+1)

)
− Vσ(t−i+1)

(
x(t−i+1),Θσ(t−i+1)

(t−i+1), ϕσ(t−i+1)
(t−i+1)

)
= eT (ti+1)

[
Pσ(ti+1) − Pσ(t−i+1)

]
e(ti+1)

= eT (ti+1)
[
Pσ(ti+1),0 − Pσ(t−i+1),K

]
e(ti+1)

(22)

which means that V (·) is non-increasing at switching instants
due to (2f). Strict decrease of the Lyapunov function between
two consecutive switching instants in conjunction with non-
increase at each switching instant allows us to conclude that
the equilibrium is Lyapunov stable (i.e. e ∈ L∞). Addition-
ally, it follows from

∫∞
0
eT (t)ωι(t)e(t)dt < ∞ and from

boundedness of Pι(·) and ωι(·) that e(·) ∈ L2. Note that
ė(t) = ẋ(t) ∈ L∞, thus we can conclude that e(t) → 0,
i.e., limt→∞ ||x(t)− xe||︸ ︷︷ ︸

e(t)

= 0 as t → ∞ in accordance with

Barbalats’s lemma.
Finally, we will show that the nonnegativity of states x(t)

is guaranteed by (4), (5), and (6). Note that

ẋ(t) =Aσ(t)x(t) +Bσ(t)

(
Θσ(t)(t)

(
x̄(t)− xd

)
+ ϕσ(t)(t)

)
=
(
Aσ(t) +Bσ(t)Θ̃σ(t)(t)

)
x(t) +Bσ(t)ϕσ(t)(t)

−Bσ(t)
(
Θσ(t)(t)xd

)
=Ξ̃σ(t)x(t) + ξ(t) + φ(t)

(23)

where

Ξ̃σ(t) =



ϑ̃11(t) · · · ϑ̃σ(t)1m · · · ϑ̃σ(t)1n
...

. . .
...

. . .
...

ϑ̃σ(t)m1 · · · ϑ̃mm(t) · · · ϑ̃σ(t)mn
...

. . .
...

. . .
...

ϑ̃σ(t)n1 · · · ϑ̃σ(t)nm · · · ϑ̃σ(t)nn



ξ(t) =



bσ(t)1θσ(t)1xd1
...

bσ(t)mθσ(t)mxdm
0
...
0


, φ(t) =



bσ(t)1ϕσ(t)1
...

bσ(t)mϕσ(t)m
0
...
0


with ϑ̃11(t) = ϑ̃σ(t)11 + bσ(t)1θσ(t)1(t) and ϑ̃mm(t) =

ϑ̃σ(t)mm+bσ(t)mθσ(t)m(t). From (6) and (7), one obtains that
θσ(t)i(t) ≤ 0 and ϕσ(t)i(t) ≥ 0 for t ≥ 0, i = 1, ...,m.
Therefore, it holds that ξ(t) � 0 and φ(t) � 0, for t ≥ 0.
Hence, according to the Proposition 7.1 of [29], it follows
that x(t) � 0, t ≥ 0 for all x0 ∈ R̄n+.

The proof of Theorem 1 is complete. �
Remark 2: Differently from the standard proofs for adaptive

control of switched dynamics [30], here we have not only
proven stability, but also that the adaptive law will guarantee
nonnegativity of the states. This is because the adaptive
closed-loop should remain a positive switched system. Note
that the methods in [30]–[32] cannot in general guarantee
nonnegativity of the system states.

Remark 3: It is worth remarking that the developed adaptive
controller (8) does not rely on the knowledge of Θσ(t)g ,
xu, and uσ(t)e. In other words, Θσ(t)g , xu and uσ(t)e are
assumed to exist, but their knowledge is not needed to achieve
asymptotic set-point tracking.

Remark 4: Because the proposed result relies on the se-
lection of some Aσ(t)s, in (2), some observations apply. If
the system is fully actuated (i.e. Bσ(t) is full row rank,
m = n), then the selection of Aσ(t)s can be arbitrary. This
is because any uncertainty in Aσ(t) can be matched by some
appropriate constant input. However, as the system becomes
less actuated (m < n), the uncertainty in Aσ(t) can be only on
the diagonal and on the actuated rows. This implies that the
non-actuated rows of Aσ(t)s (except the diagonal) must have
the same entries as Aσ(t). Therefore, there is a link between
the dimension of the input of the system and the number of
uncertain entries in Aσ(t) that one can handle.

Remark 5: Differently from [31], [33] where Pσ(t) is a
constant matrix, the proposed method adopts a time-varying
Pσ(t)(t) : because such matrix is also diagonal, this can be
seen as having a time-varying adaptive gain in (5)-(6). It has
also to be noticed that the interpolation approach implies that
the adaptive law is coupled with the switching law via (2).

IV. ILLUSTRATIVE EXAMPLES

To demonstrate the feasibility of the designed method,
a potential clinical application for general anesthesia and a
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numerical example are given.

A. Numerical Example 1

We take the positive switched linear dynamics in (1) with

A1 =

 −1.5 0.3 0.6
0.2 −0.3 0.2
0.5 0.25 −0.6

 , B1 =

 9.8
0
0


A2 =

 −0.9 0.5 0.8
0.3 −0.5 0.3
0.2 0.35 −0.8

 , B2 =

 9.8
0
0


We choose τd = 5 and K = 1. To address the fastest

dwell-time signal, we select the switching instants such that
ti+1− ti = τd ∀ i. Thus the time-varying matrix Pι(t) can be
computed by Pι(t) =

(
t− τd · floor( t

τd
)
)
·
(Pι,1−Pι,0

τd

)
+ Pι,0.

All initial values are x(0) = [0; 0; 0], θ1(0) = θ2(0) = −2.5,
ρ1 = 3.5, ρ2 = 4.5, ρ̂1 = ρ̂2 = 0.25 and ϕ1(0) = ϕ2(0) = 10.
To make the tracking more challenging, we select different
target states for each subsystem, i.e. xd1 = 40 for subsystem
1 and xd1 = 5 for subsystem 2. Fig. 1 suggests that good
tracking performance is achieved in spite of the systems
uncertainty. It has to be noted that the tracking has been
defined only for x1, whereas x2 and x3 will evolve according
to the system dynamics. Figs. 2 and 3 provide the evolutions
of the adaptive gains θ1, θ2, ϕ1, and ϕ2. From the figures it
can be noted that θ1 and φ1 are constant when subsystem 1
is inactive, while θ2 and φ2 are constant when subsystem 2 is
inactive.

0 10 20 30 40 50 60
0

20

40

60

80

Time[sec]

S
y
st
em

st
at
es

 

 

x1(t)

x2(t)

x3(t)

Figure 1: Systems states x1, x2 and x3.

B. Practical Example 2

We consider the hypothetical model for anesthetic propofol
in [19]. The overall structure of the model is provided in
Fig. 4. Moreover, αij ≥ 0, i 6= j, i, j = 1, 2, 3 are the
transfer constant rates for between compartments and u(t)
is the infusion rate. Such rates are in practice unknown due
to unknown pre-existing diseases or concomitant medication
of patients, or other causes. Two subsystems (named A and
B) with different constants are considered (summarized in
Table I): our goal is to change the propofol concentration in
compartment 1 to 4 µg/m` for subsystem A and 2.5 µg/m`
for subsystem B, respectively. In line with [19], we calculate
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Figure 2: Adaptive gains θ1 and θ2.
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Figure 3: Adaptive gains ϕ1 and ϕ2.

the propofol concentration of central compartment by x1

V1

with V1 =
(
0.159 `/kg

)(
W kg

)
the volume of central

compartment and W = 70kg the patient mass. Two sets
of pharmacokinetic parameters are provided in Table I with
dynamics described by (1) with

Aι =

 −(α11 + α21 + α31) α12 α13

α21 −α12 0
α31 0 α13

 , Bι =

 1
0
0



Figure 4: Three-compartment mammillary model

Table I: Pharmacokinetic parameters [19]

Subsystem α11 α21 α12 α31 α13 Unit
A 0.152 0.207 0.092 0.040 0.0048 min−1

B 0.119 0.114 0.055 0.041 0.0033 min−1

Let the initial values be x(0) = [0; 0; 0], θ1(0) = θ2(0) =
0 min−1, ρ1 = ρ2 = 1000 g−2min−2, ρ̂1 = ρ̂2 = 0.5 min−2
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and ϕ1(0) = ϕ2(0) = 0.01 g/min−1. For comparison
purposes, the method in [19] (using a single controller) and
the proposed switched strategy are compared for three cases
of the dwell time (i.e. Case 1: τd = 3 min, τd = 6 min, and
τd = 10 min). For each case we set ti+1 − ti = τd for the
switching signal σ(·) and K = 1.
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Figure 5: (a): Compartmental masses x1, x2 and x3; (b):
Adaptive gains θ1 and θ2; (c): Adaptive gains ϕ1 and ϕ2.
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Figure 6: Case 1 with τd = 3 min.
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Figure 7: Case 2 with τd = 6 min.

Fig. 5 (a) shows the masses of propofol in the three compart-
ments : good anesthetic control performance can be noticed in
compartment 1 despite switching. Figs. 5 (b) and (c) depict the
curves of the adaptive gains θ1, θ2, ϕ1, and ϕ2, respectively.
It can be seen from Figs. 6-8 that the developed switched
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Figure 8: Case 3 with τd = 10 min.

controllers work well and possess better control performance
than the method with a single controller of [19]. It is clear that
the method of [19] can be tuned to have better performance,
but, in the presence of switching, its main problem is that the
single controller has to continuously adapt to the two different
subsystems (instead of switching to different gains), which
eventually causes poor tracking.

V. CONCLUSIONS

This brief has proposed a direct adaptive control method for
a class of time-driven switched positive linear dynamics. The
main achievement of the method is to achieve asymptotic set-
point tracking, which, to the best of the authors’ knowledge,
has been proved for the first result for uncertain switched
positive linear dynamics subject to dwell time constraints. An
application to general anesthesia has been presented to validate
the developed strategy. Most notably, the proposed adaptive
switched approach works better than adaptive approaches pro-
posed in literature based on a single (non-switched) controller.
We believe that the following points are worth investigating
in future research: 1) it is still unclear if neural networks
[34] or fuzzy logic systems of [35]–[37] can be adopted
to handle some continuous uncertainties (e.g. unknown extra
disturbances); 2) it is still unclear the proposed method can be
adopted in a distributed control setting like in [38], [39] and
[40], when the systems have to minimize a consensus error, in
place of a tracking error: studying this point would be relevant
to address more general systems.
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