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Analytical calculation of plasmonic resonances in metal nanoparticles:
A simple guide

Marco Locarnoa) and Daan Brinksb)

Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft,
The Netherlands

(Received 7 April 2022; accepted 18 April 2023)

Localized surface plasmons (LSPs) in metal particles are used in medical, chemical, physical, and

biological sensing applications. In this paper, we revisit the classical description of LSPs. We use the

Drude model and the Quasi-Static approximation to describe the plasmon resonances in terms of

the material and the size of the particles embedded in a dielectric host. We then incorporate the

Clausius–Mossotti relation to include shape effects in the classical description. Finally, we incorporate

surface damping and retardation effects to arrive at a unified, classical description providing an

intuitive and realistic model of plasmonic resonances in metal particles. # 2023 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://

creativecommons.org/licenses/by/4.0/). https://doi.org/10.1119/5.0094967

I. INTRODUCTION

Advances in nanotechnology and photonics go hand in
hand, from super-resolution microscopy helping us visualize
life at the nanoscale,1 to extreme-UV lithography enabling
the creation of nanoscale chips needed to analyze it.2 At the
intersection of photonics and nanotechnology lies the topic
of plasmonics.3 Plasmonics involves the creation, study, and
manipulation of signals embedded in optical-frequency
oscillations of surface electrons along metal-dielectric inter-
faces. Plasmonics confines optical-frequency signals to
subwavelength-size volumes, thereby providing the interface
between optical electromagnetic fields and nanoscopic devi-
ces and circuitry.

When an electromagnetic field interacts with a metal
nanoparticle, it will lead to charge oscillations in the metal.
These collective oscillations, known as plasmons, are excited
when the frequency of the electromagnetic field matches the
resonant frequency of the metal nanoparticle. The electrons
are free to move within the boundaries of the particle but are
ultimately confined to its surface. For these reasons, the
effect is called a localized surface plasmon (LSP). Given
that the oscillation is at the same frequency as the incoming
field, the effect is interchangeably called plasmonic
resonance.

Designing metal nanoparticles to answer questions in
nanophysics, nanochemistry, and nanobiology requires
understanding the plasmonic resonance. Due to quantum
mechanical effects, the properties of nanoscale objects often
cannot be explained intuitively. Fortunately, the most promi-
nent plasmonic effects can be explained within a classical
framework. We will begin with a historical perspective.
Then, to model the plasmonic resonance in metal nanopar-
ticles, we will need a framework to describe three distinct
features: the metallic characteristic, the size (the “nano”),
and the shape of the particle. We will introduce the Drude
model, a reasonable description of electrons in metals. The
quasi-static approximation will then let us take into account
the nanoscale size of the particles. Additionally, the generali-
zation of the Clausius–Mossotti relation will let us consider
a particle embedded in a dielectric medium and the effect of
its shape. By combining these aspects, we are able to build a
classical model for the plasmonic resonance in metal nano-
particles. We will then deal with some of the limitations of

the quasi-static approximation by introducing final correc-
tions to the model, to extend its validity as far as possible.
As our assumptions are all based on classical electromagne-
tism, the final model will be classical too.

II. BRIEF HISTORY OF PLASMONICS

While nanotechnology emerged as a field only a few deca-
des ago, peculiar optical phenomena due to nanoparticles
have intrigued humankind since ancient times. Witnessing
and harnessing such “technologies” far preceded any possi-
ble scientific explanation: photonic crystals shape light, thus
creating spectacular iridescent colors in butterflies,4 lead-
based quantum dots have been involved in black hair dyes
manufactured by ancient Greeks and Romans,5 and copper
nanoparticles were employed in red opaque glass production
in Egypt and Mesopotamia.6

One of the most impressive pieces of glasswork incorpo-
rating metal nanoparticles is the Lycurgus cup (Figs. 1(a)
and 1(b)). Dated around the 4th century, this Roman cage
cup is made up of dichroic glass, so that an observer sees it
red if light passes through it, but green if light is reflected to
them. Recent analysis showed that the dichroism is due to
the presence of colloidal gold and silver nanoparticles dis-
persed throughout the glass. The embedded particles have
diameters around 70 nm, meaning that they are invisible to
optical microscopy and require transmission electron micros-
copy (TEM) to be seen.7

Michael Faraday is credited with performing the first sci-
entific experiments on the optical properties of nanoparticles,
focusing on gold colloids in the 1850s. He was puzzled by
the ruby red color of the solutions he synthesized (Fig. 1(c)),
far removed from the aureate color of bulk gold. A satisfying
classical explanation of this phenomenon came only in 1904,
when Maxwell Garnett combined the new Drude theory of
metals with Lord Rayleigh’s description of electromagnetic
properties of small spheres.8 Shortly after, in 1912, Richard
Gans successfully extended the description of optical phe-
nomena to oblate and prolate spheroids.9 However, these the-
ories were all purely based on the optical properties of bulk
metals, and it was not until 1970 that they were modified by
Uwe Kreibig and Peter Zacharias to take their nanoscale size
into account.10 For the first time, they explained the elec-
tronic and optical response of silver and gold nanoparticles
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in terms of localized surface plasmon excitations. It became
clear then that size, shape, arrangement, medium, and tem-
perature all have a crucial role in controlling the intensity
and frequency of plasmonic resonances.

From the early 2000s on, the interest in plasmonics
boomed, thanks to novel nanofabrication techniques, com-
mercialization of simulation software and the plethora of
biological and biomedical applications.11,12 To summarize
50 years of research and more than a century of theoretical
modeling, we start by examining the object under study, the
metal nanoparticle, and its defining features.

III. CLASSICAL DERIVATION OF PLASMONIC

RESONANCE

A. Drude model for metals

The electric properties of materials are characterized by
the dielectric constant �, which relates the electric displace-
ment ~D to the electric field ~E through the equation ~D ¼ �0

~E
þ ~P ¼ �0�~E. When the applied field is sinusoidal, the dielec-
tric constant is a complex number; the imaginary part repre-
sents the out-of-phase response of the material. Within the
Drude model, the complex dielectric function of a metal is
given by

�mðxÞ ¼ 1� x2
P

x2 þ c2
� i

x2
Pc

x3 þ c2x
: (1)

Two derivations of this well-known formula can be found in

the supplementary material.43 Here, xP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne2=�0m

p
is the

plasma frequency and c is the damping frequency, both
dependent on the metal considered. The plasma frequency
depends on the carrier density, N, the electron charge, e, and
the effective mass of the electron, m. The damping frequency

c is given by Matthiessen’s rule for different independent
collision events, each possessing a time constant sj,

c ¼
X

j

1=sj: (2)

This equation provides the statistical rate at which the elec-
tron motion in the bulk material is disrupted due to collisions
between electrons and nuclei, defects, impurities, or other
electrons. Furthermore, an extension to the Drude model has
been formulated to account for the positive background of
ions in the constant term �m;1, referred to as the core
polarization3,13

�mðxÞ ¼ �m;1 �
x2

P

x2 þ c2
� i

x2
Pc

x3 þ c2x
: (3)

In Table I, we report the Drude parameters for common
plasmonic metals, fitted from experimental data in Ref. 14.
Note that the experimental and fitted data do not match
completely, as the Drude model is an approximation of the
actual complex dielectric function, which can include inter-
band and intraband transitions. Throughout the paper, we
will take gold as a typical metal for plasmonics.

With these concepts in hand, we can provide a simple yet
rigorous derivation of plasmonic resonance in metal
nanoparticles.

B. Quasi-static approximation

If a nanoparticle is much smaller than the wavelength
(Fig. 2), then all the electrons inside the nanoparticle feel the
same electric field and oscillate in phase. This approach is

Fig. 1. (Color online) The Lycurgus cup changes color depending whether the light is (a) reflected or (b) transmitted (credits: copyright The Trustees of the

British Museum). (c) Faraday’s colloidal gold in a glass flask (credits: copyright Paul Wilkinson).

Table I. Drude parameters for common (bulk) metals.

�m;1 xP [rad/s] c [rad/s]

Au 7.926 1.23 � 1016 3.8 � 1013

Ag 5.303 1.42 � 1016 1.0 � 1014

Cu 6.087 1.34 � 1016 1.5 � 1014

Al 1 1.93 � 1016 2.4 � 1014

Fig. 2. Dipolar (left) and multipolar (right) excitation of the free electrons in

metal nanoparticles. The electron clouds are represented as light blue halos,

while the metal cores as solid yellow.
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called the quasi-static approximation (QSA). Let d be the
size of the nanoparticle, k the wavelength, ~k the wave vector,

x the angular frequency of the incoming field ~E
0
; ~r the rela-

tive position of an arbitrary point with respect to the center

of the nanoparticle, and t the time. If d � k, then ~k �~r � 0
and mathematically we obtain

~E
0ð~r; tÞ ¼ ~E

0
eiðxt�~k �~rÞ � ~E

0
eixt: (4)

Because of this, the polarization is uniform, and the effect of
the quasi-static approximation on the total dipole moment of
the nanoparticle~pnp is very conveniently translated to

~pnp ¼ V~P; (5)

where V is the volume of the nanoparticle and ~P is the polari-
zation density. The quasi-static approximation lets us drop
the dependence on the position~r .

The careful reader might point out that the wavelength
inside the nanoparticle may not be the same as the one in the
dielectric medium. The concept of wavelength itself may
even be ill-defined if the field decays exponentially inside
the metal. A relevant comparison would then be between the
size of the nanoparticle and the skin depth d of the metal.
For common metals like gold, silver, copper, and aluminum,
the skin depth at optical frequencies is on the order of a few
tens of nanometers. If d � d, then the field can penetrate the
nanoparticle completely and the uniformity of the polariza-
tion can still be assumed. Refer to the supplementary mate-
rial43 for more details regarding skin depth.

It is important to note that particles larger than the wave-
length may produce a plethora of effects that cannot be
explained as the simple radiation of a dipole, due to the
occurrence of multipolar effects. Eventually, extremely large
particles will exhibit the optical properties of bulk metal.

C. Generalization of the Clausius–Mossotti relation
for ellipsoids

Let us now consider an isolated ellipsoid having a com-
plex dielectric function �m and semiaxes, respectively, ax, ay,
and az, immersed in a dielectric material (from this point on
referred to as the “host”) having a real and positive dielectric
constant �h (Fig. 3(a)).

The nanoparticle’s dipole moment ~pnp is a function of its

polarizability tensor a
$

as well as of the local electric field

~Eloc. The latter is different from the applied field ~E
0

because
of the polarization of the host, but if the dielectric medium is

linear, homogeneous and isotropic, then the local field will

be proportional to the applied field (~Eloc ¼ �h
~E

0
), and so

~pnp ¼ �0a
$ ~Eloc ¼ �0�ha

$ ~E
0
: (6)

To calculate the polarizability, we, therefore, need to find the
relation between the dipole moment and the electric field.

First, we notice that the local electric field is the superpo-
sition of the applied field and the opposing field produced by
the displacement of charges. Although it is a well-known
fact that, in the static limit, the electric field in a conductor is
zero, we have to consider that under the QSA the order of
magnitude of the skin depth is comparable with the size of
the nanoparticle. In this case, the local electric field ~Eloc,
defined at the boundary of the nanoparticle, creates a polari-
zation in the metal ~Pm; hence electric charges appear at its
surface (Fig. 3(b)). As a consequence, the host dielectric also
polarizes near the surface (~Ph). We can treat the boundary as
an effective medium, encompassing both the charges in the
metal and in the host. The effective polarization ~P can be
deduced from the difference between the two opposing
polarizations. ~P is in the opposite direction from that of the
applied field, thus generating a restoring force. The local
electric field, for every j-th axis (j¼ x, y, z), is then15,16

Eloc;j ¼ E0
j � Lj

Pj

�0�h
; (7)

where Lj is the depolarization factor which accounts for the
shape of the particle itself

Lj ¼
axayaz

2

ð1
0

dq

ðqþ a2
j Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
g¼x;y;zðqþ a2

gÞ
q : (8)

The depolarization factors arise from the solution of
Laplace’s equation in ellipsoidal coordinates. A full deriva-
tion can be found in Ref. 15.

The effective polarization ~P is the difference of the polar-
izations of the metal ~Pm and of the host ~Ph ,16

Pj ¼ Pm;j � Ph;j ¼ �0�mEloc;j � �0�hEloc;j

¼ �0ð�m � �hÞEloc;j: (9)

Combining Eqs. (7) and (9), we write

Pj ¼ �0ð�m � �hÞ E0
j � Lj

Pj

�0�h

� �
: (10)

Fig. 3. (a) Ellipsoidal particle immersed in a dielectric medium with the chosen reference system. (b) Snapshot of the incoming electric field and the induced

polarization contributions of the metal and the host. This depiction is realistic only in the optical regime and under the quasi-static approximation (QSA), for

which the rearrangement of charge is collective and instantaneous.
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Solving for Pj,

Pj ¼
�0�hð�m � �hÞ
�h þ Ljð�m � �hÞ

E0
j : (11)

Then introducing the quasi-static approximation in Eq. (5)
we get

pnp;j ¼ �0�h V
�m � �h

�h þ Ljð�m � �hÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
aj

E0
j : (12)

Finally, making the volume of the ellipsoid explicit, we
obtain the polarizability

aj ¼
4paxayaz

3

�m � �h

�h þ Ljð�m � �hÞ
: (13)

It is important to note that a
$

is a diagonal matrix. In other
words, if the incoming field is aligned with one of the axes
of the ellipsoid, the polarization will be parallel to it. This
considerably simplifies the calculations.

Normally, we would have to calculate the integral in Eq.
(8), given an arbitrary set of semiaxes lengths. Such calcula-
tion is not trivial. Fortunately, an important property of the
depolarization factors can drastically simplify the results for
simple geometries. The sum of the three depolarization fac-
tors isX

j¼x;y;z

Lj ¼ 1: (14)

A simple, novel proof of this property can be found in the
supplementary material.43

Thanks to this normalization property, some easy geome-
tries (see Table II) can be treated without calculating the
integrals explicitly. Anisotropy is then reflected by the

matrix nature of a
$

, eventually leading ~pnp to not be parallel

to ~E
0
.

The Clausius–Mossotti relation, used to describe the
polarizability of spherical particles in a vacuum

aj ¼ 3v
�m � 1

�m þ 2
; j ¼ x; y; z; (15)

in which v is the volume of the spherical particle, coincides
with Eq. (13) for ax ¼ ay ¼ az, and �h ¼ 1. For this reason,
Eq. (13) is the generalization of the Clausius–Mossotti
relation.

D. Plasmonic resonance

We now have all the tools to calculate the plasmonic reso-
nance. However, what does it mean for a nanoparticle to

have a plasmonic resonance? Why do we talk about a plas-
monic peak? The simplest way to picture such an effect is by
directly plugging the result of the Drude model (Eq. (3)) in
the calculation of the polarizability (Eq. (13)). For a sphere
with gold-like Drude parameters, put either in vacuum or
water, we get the typical wavelength dependence of the
polarizability shown in Fig. 4.

The functional form for jaj is a sharp peak. At the angular
frequency where the polarizability is maximal, the electrons
oscillate with a higher amplitude. Given such a sharp feature
in the frequency, we refer to the peak position as the reso-
nance frequency.

To calculate the plasmonic resonance frequency, one can
maximize jaj. From Eq. (13), it is easy to see that if the
denominator approaches zero, the polarizability intensity
drastically increases, leading to a strong dipole moment at
frequency xres. This resonance condition translates to the
requirement that, in a given direction

Re �mðxresÞ½ � ¼ � 1� Lj

Lj
�h; Im �mðxresÞ½ � � 0: (16)

We see that the resonance frequency depends on the geomet-
rical features of the nanoparticle and on the dielectric
medium in which it is immersed. The generalized formula
for the resonance frequency xres for an arbitrary metal nano-
particle can be obtained by combining Eq. (16) with the
result of the Drude model (Eq. (3))

xres ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
P

�m;1 þ
1� Lj

Lj
�h

� c2

vuuut � xPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m;1 þ

1� Lj

Lj
�h

s ;

(17)

where the reasonable assumption of xP � c has been intro-
duced (refer to Table I for the realistic orders of magnitude).
The shift due to changes in �h enables a multitude of sensing
applications. In the host dielectric environment, variations
due to chemical, physical or biological activity result in fact
in shifts in plasmonic peaks.17–19

In the case of a sphere (Lj ¼ 1=3; 8j), the above equations
reduce to the Fr€ohlich condition

Table II. Depolarization factors for some typical shapes.

Particle shape Semiaxes Depolarization factors

Sphere ax ¼ ay ¼ az Lx ¼ Ly ¼ Lz ¼ 1=3

Long cylinder ax � ay; az Lx ¼ 0; Ly ¼ Lz ¼ 1=2

Large disk ax ¼ ay � az Lx ¼ Ly ¼ 0; Lz ¼ 1

Fig. 4. The volume polarizability of a nanosphere with gold-like parameters,

calculated from Eqs. (3) and (13), immersed either in vacuum (�h ¼ 1) or in

water (�h ¼ 1:77), exhibits a peak in wavelengths. (Plot colors have been

selected according to the color-vision deficiency friendly color cycle pro-

posed by Okabe and Ito and made popular by Wong (Ref. 41).)
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Re �mðxresÞ½ � ¼ �2�h; Im �mðxresÞ½ � � 0;

xres �
xPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�m;1 þ 2�h

p : (18)

As expected, Eq. (18) predicts the correct positions20 for the
resonance peak for a nanosphere with gold-like Drude parame-
ters: when in vacuum xres � 3:9� 1015 rad/s (kres � 480 nm),
while when in water xres � 3:6� 1015 rad/s (kres � 520 nm).
This surprisingly simple result is already sufficient to explain
the color of Faraday’s colloidal gold (Fig. 1(c)). As the solution
contains gold nanospheres, the resonance frequency xres will
be in the cyan-green part of the spectrum, so it appears ruby red
when illuminated by white light.

Unfortunately, only a few materials satisfy Eq. (18) in
the optical range. For the resonance to exist, the imaginary
part of the dielectric function must be sufficiently low. For
this reason, the most significant plasmonic materials are
also the most conductive: silver, gold, copper, and alumi-
num. Other less commonly used metals are palladium, plat-
inum and nickel.21 An invaluable contribution to the
investigation of plasmonic candidates was given by Eadon
and Creighton, in their review of the ultraviolet/visible
spectrum of 52 different metal nanospheres, in vacuum and
in water.22 Nowadays, the search for novel plasmonic can-
didates focuses on metallic alloys, (doped) semiconductors,
and metamaterials.23

Measurable effects due to the plasmonic resonance
include absorption and scattering, which are quantifiable by
their cross sections. In the dipolar regime (d � k), the
Rayleigh formula for cross sections can be applied15

rabs ¼ �kIm a½ �; rsca ¼
k4

6p
jaj2; (19)

where k is the wave number. It is important to note the cross
sections’ dependence on a and, as a consequence, on the vol-
ume: since the absorption cross section rabs scales linearly
with V while the scattering one rsca scales quadratically with
it, it is reasonable to assume that smaller particles mainly
absorb light while larger particles mainly scatter it.

However, the most prominent effect of plasmonic reso-
nances is that of field enhancement. Outside the particle, the

total field is a superposition of the incoming field ~E
0

and of
the dipolar field generated by the particle itself. For a contin-
uous wave, the local field outside the nanoparticle takes the
shape of a classical dipole field24

~Eð~rÞ ¼ ~E
0 þ 1

4p�0�h

3ð~r �~pnpÞ~r � r2~pnp

r5
; (20)

where r is the distance from the center of the particle. As
can be intuited, resonances in a will reflect on ~pnp and subse-
quently on ~Eð~rÞ. Field enhancement is typically quantified

by jEj2=jE0j2 (as in Fig. 5). This factor can make the local
electric field tens or hundreds of times higher than the
incoming field. The shape of the particle can be engineered
to create radiation enhancements that are wavelength-, polar-
ization-, and direction-dependent, just like in classical
antennas.25,26

One interesting effect can be noted in Fig. 5: along the
direction orthogonal to the oscillation, the radiated field
causes destructive interference with the incoming field, lead-

ing to areas where the field is quenched (jEj2=jE0j2 < 1)
instead of enhanced. This is possible because, in Eq. (20),
for some ~r and at a certain frequency, ~r �~pnp ¼ 0 and

j1� ða=4pr3Þj2 < 1.
The finite-difference time-domain simulations in Fig. 5

solve Maxwell’s equations in discretized space and time,
characterizing each portion of space with the complex
dielectric function � and complex magnetic permeability l.
These simulations introduce minimal approximations and
accurately compute the electric and magnetic fields, present-
ing a case very close to reality. Using this simulation, the
plasmonic resonance occurs at 540 nm, instead of 520 nm, as
shown previously in Fig. 4. This shift is mainly explained as
an effect of radiation damping,27 which shows that the quasi-
static approximation does not always provide accurate
answers. This is why we need to look beyond it.

IV. BEYOND THE QUASI-STATIC

APPROXIMATION

The quasi-static approximation describes nanoscale pro-
cesses fairly well, such as the absorption of certain colors or
the local field enhancement in the proximity of metal nano-
particles. However, it fails to predict other effects related to
particle size: in the quasi-static approximation, particle size
is irrelevant, as long as it is smaller than the incoming wave-
length. Can we extend this theory to include the particle’s
size and shape?

The first correction we will introduce takes into account
the collisions of the electrons with the nanoparticle bound-
aries, which have implicitly been neglected until now. Then,

Fig. 5. Finite-difference time-domain (FDTD) simulation of the field enhancement at k¼ 540 nm near a spherical gold nanoparticle of radius 25 nm in water.

(a) Sketch of the simulated object, (b) field enhancement in the XY plane (z¼ 0), and (c) field enhancement in the YZ plane (Dx ¼ 4 nm away from the surface

of the nanoparticle). (The code for simulation in Lumerical’s FDTD solutions can be found in the supplementary material and on GitHub (https://github.com/

Brinkslab/LSP). The results were plotted in Spyder, using the color-vision deficiency friendly and perceptually uniform color map “batlow” (Ref. 42.)
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the second correction will take us closer to the multipolar
regime by involving retardation effects. Considering the
classical nature of this extended model, it is impressive how
well it fits experiments for such nanoscopic objects, as we
will see.

A. Surface damping

Up to now, we have implicitly considered the damping
frequency c to be dominated by the collisions of electrons
with other electrons, lattice nuclei or phonons. At a very
small scale, however, electrons will also impact the particle
boundary. This is notably the case when the dimensions of
the particle are smaller than the mean free path, that is, the
average distance traveled by the electron between two con-
secutive collisions. In other words, if the particle is small
enough, the electrons will impact the boundary much more
often than they collide with other objects.15 The empirical
model developed hereafter aims at taking this effect into
account, and well matches experimental data. In the end, it is
very similar to the exact one obtained via semiclassical
calculations.28,29

As the free electrons move at the Fermi velocity vF, the
characteristic time between two consecutive collisions with
the boundary will be

sboundary ¼
kboundary

vF
; (21)

where kboundary is the characteristic length of the process. By
applying Matthiessen’s rule (Eq. (2)), the damping frequency
will become

c ¼ cbulk þ
1

sboundary
¼ vF

kMFP
þ vF

kboundary
; (22)

where cbulk is the bulk metal damping frequency and kMFP is
the mean free path.

For a sphere of radius r, Kreibig10 used the linear relation
kboundary ¼ 4

3
r, but coefficients between 1 and 4 have been

used by other authors.30–34 A simple and intuitive motivation
for a coefficient of 4

3
is provided hereafter, based solely on

geometrical considerations.
Consider a spherical nanoparticle of radius r inside which

electrons can travel only in straight trajectories. Let
Oðx; y; zÞ be the initial point on the surface where an electron
has just collided with the boundary, and let O0ðx0; y0; z0Þ be a
generic final point on the sphere surface where the electron
will impact after traveling a distance d½O;O0�. Then

x2 þ y2 þ z2 ¼ r2; x02 þ y02 þ z02 ¼ r2: (23)

Since the scattering is assumed to be isotropic inside the
sphere, all the points O0 belonging to the surface have the
same probability of being hit.

Without loss of generality, consider a reference system
such that the initial point is O(0, 0, r),

d O;O0½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02 þ ðz0 � rÞ2

q
¼

ffiffiffi
2
p

r

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z0

r

r
:

(24)

The characteristic length of the process kboundary can be
defined as the average distance d½O;O0�,

kboundary ¼

ð2p

0

ðr

�r

d O;O0½ �dz0dhð2p

0

ðr

�r

dz0dh

¼

ffiffiffi
2
p ðr

�r

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z0

r

r
dz0

2
:

(25)

By changing the integration variable

a ¼ 1� z0

r
) dz0 ¼ �rda; (26)

the integral can be rewritten and solved as follows:

kboundary ¼
ffiffiffi
2
p

r

2

ð2

0

ffiffiffi
a
p

da ¼ 4

3
r: (27)

Now let us examine the consequences of surface damping.
Around the plasma frequency, it is almost always true that
x� c (refer to Table I for the realistic orders of magnitude),
so in first approximation, the Drude model in Eq. (3)
becomes

�1 � �m;1 �
x2

P

x2
; �2 �

x2
Pc

x3
: (28)

While the real part is almost unchanged when introducing
the damping correction, near the resonance frequency (as
defined by the Fr€ohlich condition in Eq. (18)), the imaginary
part can be rewritten as

�2 �
x2

P

x3
res

cbulk þ
3vF

4r

� �
¼ �2bulk

þ A
vF

r
; (29)

where we have employed the Kreibig relation for spherical
nanoparticles, and A ¼ 3=4ðx2

p=x
3
resÞ. For very small par-

ticles this implies that, at xres, the condition of small �2 is
not true anymore, therefore drastically diminishing the reso-
nance peak in a. A calculated example for a nanoparticle
with gold-like parameters in water is provided in Fig. 6(a)
for various particle sizes.

B. Modified long-wavelength approximation

The dipolar approximation is valid as long as the dimen-
sions of the metal nanoparticle are such that d � k.
Otherwise, variations in the incoming field will not be negli-
gible, and multipolar modes will eventually be excited.
Between this dipolar treatment and the brute-force computa-
tional solution of Maxwell’s equations lies the so-called
modified long-wavelength approximation (MLWA), a cor-
rection to the polarizability obtained in the quasi-static
approximation (QSA) that includes retardation effects.17

The MLWA treats each atom in the nanoparticle as a
dipole emitter and takes into account that its electric field
propagates at the speed of light c (and not instantly), causing
a retarded dipolar field. While in the QSA we imposed
~k �~r ¼ 0 (Eq. (4)), in the following derivation of the MLWA
equations, the dipole radiation is expanded in a Taylor series
up to the third order ðkrÞ3. The infinitesimal electric field is
integrated over the volume of the particle, and finally a cor-
rected polarizability aMLWA is defined.

Using the complex notation, an oscillating dipole moment
p can be expressed as
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p ¼ p0eixte�ikr; _p ¼ ixp; €p ¼ �x2p: (30)

For a point emitter, the radial and tangential fields in spheri-
cal coordinates are35

ER ¼
2 cos h
4p�0�h

p

r3
þ _p

cr2

� �
;

Eh ¼
sin h

4p�0�h

p

r3
þ _p

cr2
þ €p

c2r

0
@

1
A
: (31)

Since the component of the electric field orthogonal to the
applied field cancels out on integration over the nanosphere
(as shown in the supplementary material43), we only need to
quantify the parallel one. For a point emitter,

E== ¼ ER cos h� Eh sin h

¼ p0eixte�ikr

4p�0�h

"
2 cos2h

1

r3
þ ix

cr2

� �

� sin2h
1

r3
þ ix

cr2
� x2

c2r

� �#
: (32)

Expanding e�ikr to the third order, rewriting sin2h ¼ 1� cos2h
and making x ¼ kc explicit

E== ¼
p0eixt

4p�0�h
cos2 h

3

r3
þ k2

2r

� �
� 1

r3
� k2

2r
þ i2k3

3

� �" #

¼ p0eixt

4p�0�h

1

r3
ð3 cos2 h� 1Þ þ k2

2r
ðcos2 hþ 1Þ � i2k3

3

� �
:

(33)

As an extension of the QSA, we can treat the nanoparticle as
a single emitter with a radiated field EMLWA being the super-
position of all the dipole fields with respect to its center. A
convenient reference system takes ~r ! �~r (r ! r; h! �h;
/! /), meaning that every vector starts from a point emit-
ter in the sphere and points to its center. This coordinate
change does not influence the signs in the equation because
of the symmetry in h. Therefore, for every volume element
dV ¼ r2 sin hdrdhd/ inside the sphere, we will have a radi-
ated field

dEMLWA ¼
1

4p�0�h

�
1

r3
ð3 cos2h� 1Þ

þ k2

2r
ðcos2 hþ 1Þ � i2k3

3

�
dp

¼ 1

4p�0�h

�
1

r3
ð3 cos2 h� 1Þ

þ k2

2r
ðcos2 hþ 1Þ � i2k3

3

�
Pr2 sin hdrdhd/:

(34)

We finally integrate dEMLWA over the volume of the sphere
of radius R and factor the volume out to obtain the total
MLWA correction

EMLWA ¼
1

4p�0�h

4p
3

k2R2 � i
2

3
k3R3

� �
P

¼ 1

4p�0�h

k2

R
� i

2

3
k3

� �
pnp: (35)

This formula can be generalized for ellipsoidal nanoparticles
of semiaxes aj; j ¼ x; y; z,17

EMLWA;j ¼
1

4p�0�h

k2

aj
� i

2

3
k3

 !
pnp;j: (36)

At this point, we only need to rewrite ~pnp,

~pnp ¼ �0�ha
$ ð~E0 þ ~EMLWAÞ ¼ �0�ha

$
MLWA

~E
0
; (37)

from which

aMLWA;j ¼
aj

1� aj

4p
k2

aj
� i

2

3
k3

 ! : (38)

For sufficiently small nanoparticles, we retrieve the QSA
(aMLWA;j � aj), as expected. For relatively small yet finite
volumes, the imaginary term proportional to k3 can be
neglected (aMLWA;j � 4paj=4p� ajk

2=aj). For larger vol-
umes, the imaginary term dominates the denominator.

The term ajðk2=ajÞ in Eq. (38) is called dynamic depolariza-
tion, because it is obtained in a dynamic calculation (k> 0), and
its coefficient is real, corresponding to a change in the effective
particle depolarization factor. Let us recall that aj is proportional
to particle volume (aj / axayaz). As ðaxayaz=ajk

2Þ increases, a
more negative value of �1 is necessary to meet the resonance
condition. At small but finite particle volumes, this effect enhan-
ces the plasmonic resonance; at larger volumes, it is responsible
for the shift of the resonance peak.

Fig. 6. Corrections to the quasi-static approximation: (a) Surface damping

effect calculated from Eq. (29) and (b) modified long-wavelength approxi-

mation (MLWA) calculated from Eq. (38). The red arrows indicate the

effects of either correction on peak positions and intensities, as a function of

decreasing, respectively, increasing, particle radius. (Plot colors have been

selected according to the color-vision deficiency friendly color cycle pro-

posed by Okabe and Ito and made popular by Wong (Ref. 41).)
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The term �iaj
2
3

k3 in Eq. (38) is called radiative damping,
because it arises from the spontaneous emission of radiation
by the induced dipole. The term grows rapidly with particle
volume. Being imaginary, it contributes heavily to �2 and,
therefore, to the resonance damping. For relatively large par-
ticle volumes, it accounts for the damping by radiative losses
and results in a broadening and a strong decrease in the plas-
monic resonance (also counterbalancing the enhancement
due to dynamic depolarization just mentioned).

According to this approximation, an increase in particle
size (aj) will result in a red-shifted, broadened and less
intense plasmonic resonance. This is indeed what we notice
in Fig. 6(b) in the calculated peaks for a nanoparticle with
gold-like parameters immersed in water. The MLWA usually
works well for nanoparticles of dimensions up to �200
nm,36 above which multipolar resonances cannot be
neglected, and computational methods are required.

The complete analytical model combines the corrected
Drude model, the generalized Clausius–Mossotti formula for
polarizability, the surface damping effect and the MLWA. In
Fig. 7, an example for a gold elongated ellipsoid having
ax=ay ¼ ax=az ¼ 2 is presented against a gold sphere of
r¼ 25 nm, of the same volume. The cross sections are calcu-
lated in the dipolar limit using Eq. (19). Agreement between
the finite-difference time-domain (FDTD) simulation and the
model is remarkable, both in the peak positions and the ratio
of cross section components. Experimental evidence also
corroborates this result.37

V. FINAL REMARKS

Starting from a general model for metals and from the
polarization of a particle immersed in a dielectric host, we
explored the effects of several features on the final resonance
peak induced by an external oscillating electric field.

The analytical approach took us far into the understanding
of the plasmonic resonance. However, as already hinted at
the end of Sec. IV, the corrections to the quasi-static approxi-
mation have their own limitations. In fact, neglecting key
features in the shape of the particle like spikes, neat edges,
flat sides, or amorphous protrusions will result in incorrect
predictions. Yet where the analytical approach fails, numeri-
cal simulations can be used. The most common numerical
techniques include generalized Mie theory, finite-difference
time-domain (FDTD), discrete dipole approximation (DDA),
finite-element method (FEM), and boundary element method

(BEM).38,39 Each simulation technique has its own advan-
tages and drawbacks.

Should this material be used as didactic reference, the
authors strongly suggest the incorporation of at least some
examples of applications from state-of-the-art research.
These examples should be tailored depending on the interest
of the course and can be directed towards optics, biophysics,
or condensed matter physics. To learn more about light-
matter interaction or expand knowledge about state-of-the-
art plasmonics and emerging applications, the authors
recommend Fox’s40 and Maier’s3 books, which provide
valuable insight into the field and are very accessible for
lecturers and students alike.

The properties of plasmonic resonances depend on mate-
rial shape and intrinsic properties. The analytical approach
supplied here is limited to ellipsoidal geometries but already
takes into account virtually all relevant material properties
(in a classical approximation). However, while only simula-
tions will provide reliable descriptions of the plasmonic
effects in realistic nanoparticles, the outlined fundamental
approach, no matter its flaws, provides an understanding of
why and how plasmonic resonances emerge in nanoparticles,
and thus gives an intuitive basis and plausibility check for
numerical design.
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