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1 Abstract 

Objective 

The primary aim of this study was to develop and validate a machine learning prediction model for 

respiratory deterioration in mechanically ventilated Intensive Care Unit (ICU) patients. The 

secondary aim was to identify physiological parameters associated with respiratory failure during 

mechanical ventilation. 

 

Methods 

Two distinct prediction models were developed using data from ICU patients admitted to the Leiden 

University Medical Centre (LUMC) between 2018 and 2023. Patients receiving invasive mechanical 

ventilation (IMV) for at least 48 hours with a PaO2/FiO2 ratio below 40 kPa were included and 

allocated to COVID training, COVID test, or non-COVID test sets. Model 1 predicts respiratory 

deterioration within six hours after switching from controlled to assisted ventilation. Model 2 is an 

hourly updating model predicting respiratory deterioration occurring more than six hours after this 

switch. XGBoost models were cross-validated on the COVID training set to identify the optimal 

observation windows and prediction horizons, after which feature selection and hyperparameter 

optimisation were performed. Model 1 was optimised for the area under the receiver operating 

characteristic (AUROC) and Model 2 for the area under the precision-recall curve (AUPRC). 

Discriminative performance, generalisability, and clinical utility were evaluated on the COVID and 

non-COVID test sets. 

 

Results 

A total of 296 patients were included in the COVID training set, 78 in the COVID test set, and 755 

to the non-COVID test set. For Model 1, a one-hour observation window was selected. The most 

important features were the mean fraction of inspired oxygen (FiO2), propofol infusion rate, and 

peripheral oxygen saturation (SpO2). This model achieved an AUROC of 0.78 on the COVID test and 

0.76 on the non-COVID test set. For model 2, a two-hour observation window and a six-hour 

prediction horizon were selected, with the SpO2/FiO2 ratio as the most important input feature. This 

model achieved an AUPRC of 0.05 on the COVID test set and 0.03 on the non-COVID test set. 

 

Conclusion 

Model 1 demonstrated moderate discriminative performance but limited clinical utility at relevant 

operating points. Model 2 showed very limited predictive value, primarily due to extreme class 

imbalance. Consequently, neither model is currently suitable for clinical implementation.  With larger 

datasets and more advanced modelling techniques, Model 1 may have the potential to become a 

clinically useful decision support tool to support decisions on switching from controlled to assisted 

ventilation.
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2 Introduction 

Patients with respiratory failure are mechanically ventilated in the Intensive Care Unit (ICU). Initially, 

clinicians typically employ a controlled ventilation mode, without spontaneous respiratory activity 

of the patient. Generally, after 24 to 48 hours of controlled ventilation, a switch to assisted 

ventilation is attempted, allowing the patient to breathe spontaneously. Assisted ventilation is 

considered beneficial due to reduced sedation requirements, no need for neuromuscular blockade, 

less respiratory muscle atrophy, improved haemodynamic stability, better distal organ perfusion and 

lung protection (1–3). Moreover, early switching to assisted ventilation has been associated with 

shorter durations of invasive mechanical ventilation (IMV) and ICU stay (4). 

However, in some cases, a deterioration in ventilatory parameters is observed during assisted 

ventilation without a clearly identifiable cause. This deterioration may necessitate a return to 

controlled ventilation, requiring neuromuscular blockade and increased sedation. These events 

were frequently observed during the COVID-19 pandemic (5). These switch failures are associated 

with worse outcomes, such as a higher 28-day mortality and less ventilator free days (5–8).  

Potential causes for deterioration during assisted ventilation are both ventilator-induced lung injury 

(VILI) and patient self-inflicted lung injury (P-SILI). VILI comprises four mechanisms of lung injury. 

Barotrauma and volutrauma result from alveolar overdistension caused by high transpulmonary 

pressures and tidal volumes, while atelectrauma arises from cyclic opening and closing of alveoli 

due to insufficient positive end-expiratory pressure (PEEP). These mechanisms can trigger 

biotrauma, characterised by the release and systemic dissemination of inflammatory mediators 

from the alveolar space. Lung-protective ventilation strategies are effective in mitigating VILI (9). 

More recently, P-SILI has been proposed, attributed to excessive patient breathing effort. The 

pathophysiology likely mirrors that of VILI, involving alveolar overdistension and atelectrauma. In P-

SILI, a vicious cycle may ensue: lung injury worsens gas exchange, which increases respiratory drive 

and effort, thereby exacerbating the injury. In such cases, reinitiating controlled ventilation may 

become necessary as a therapeutic intervention (10,11). 

If respiratory deterioration that necessitates a return to controlled ventilation could be predicted, 

clinicians could optimise the timing of initiating assisted ventilation, and, additionally, adapt 

ventilation strategy earlier in patients receiving assisted ventilation treatment to prevent P-SILI. 

ICU patients are continuously monitored, generating large volumes of physiological data that can 

be harnessed to develop predictive models using machine learning. Such models have 

demonstrated potential to detect clinical deterioration earlier than clinicians and could support 

clinical decision-making (12–15). Additionally, identifying which physiological parameters are 

predictive of failure in assisted ventilation could inform future research into the underlying 

pathophysiology. 
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Therefore, the primary aim of this study is to develop and validate a machine learning model to 

predict transitions from assisted to controlled mechanical ventilation in ICU patients. The secondary 

aim is to identify physiological parameters associated with respiratory failure in mechanically 

ventilated ICU patients. 
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3 Background 

3.1 Pathophysiology of lung injury in mechanical ventilated 

patients 

3.1.1 Ventilator induced lung injury (VILI) 

Positive-pressure mechanical ventilation differs substantially from physiological breathing, in which 

negative pressure generated by the respiratory muscles initiates inspiration. This counter-

physiological mechanism may have several adverse effects, on both the lungs and peripheral organs 

(9). VILI encompasses various types of injury, commonly classified as barotrauma, volutrauma, 

atelectrauma, and biotrauma, as illustrated in Figure 1 (9,16).  

 

Figure 1. Types of injury induced by mechanical ventilation. Ppl: pleural pressure, Palv: alveolar pressure, Ptp: transpulmonary 

pressure. Copied from Zou et al. 2024 (16) 

Barotrauma and volutrauma are closely related phenomena. Barotrauma, primarily results from a 

high transpulmonary pressure, whereas volutrauma is caused by the administration of a large tidal 

volume. Despite these differences, both ultimately lead to excessive stress and strain within the 

lungs, either locally or globally. Strain is defined as the ratio of tidal volume to end-expiratory lung 

volume, while stress refers to the transpulmonary pressure, which is defined as the difference 

between the alveolar and pleural pressure. During positive-pressure ventilation, tidal volume is 

delivered by increasing airway pressure, creating compressive stress (9,10). High stress and strain 

lead to alveolar overdistension, deforming cells and their supporting matrix into abnormal shapes. 
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In severe cases, this may even cause alveolar rupture, allowing air to escape into surrounding 

tissues (9,16). Additionally, high tidal volumes have shown to induce pulmonary oedema (10). 

Atelectrauma is caused by cyclic opening and closing of small airways and alveoli due to low tidal 

volumes and insufficient PEEP,  resulting in abrasion of the epithelial lining (9,16).  

Injured lung tissue and cyclic stretch trigger the release of injurious inflammatory mediators, a 

phenomenon known as biotrauma. Unlike the other mechanisms, this proinflammatory response is 

not confined to the lungs and may provoke a systemic inflammatory response (9,16).  

3.1.2 Patient self-inflicted lung injury (P-SILI) 

Assisted mechanical ventilation allows patients to breathe spontaneously using their respiratory 

muscles, while still providing ventilatory support with positive pressure. During assisted mechanical 

ventilation, lung injury may not only arise from the applied mechanical support, but also from the 

patient’s increased spontaneous breathing effort, a phenomenon known as P-SILI. Similar to VILI, 

P-SILI is largely caused by increased stress and strain (10). 

In spontaneous breathing, tidal volume is generated by creating negative pleural pressure rather 

than by increasing airway pressure, resulting in tensile stress. High inspiratory effort can lead to 

elevated levels of stress and strain, potentially inducing barotrauma and volutrauma (10). 

Moreover, high inspiratory effort in combination with inhomogeneous distribution of transpulmonary 

pressure across the lung, can result in cyclic inflation in regions with high transpulmonary pressure 

variations, reproducing the mechanism of atelectrauma. Increased regional inhomogeneity may also 

cause pendelluft, in which gas shifts intrapulmonary from regions with low transpulmonary pressure 

variations to regions with high pressure variations. This process can result in local volutrauma, 

independent of the tidal volume (10,17).  

During assisted ventilation, alveolar pressure can, in contrast to controlled ventilation, fall below 

the PEEP level due to high inspiratory effort. Such decreases in alveolar pressure may increase 

transvascular hydrostatic pressure, particularly in the presence of elevated airway resistance, 

potentially causing pulmonary oedema (10). 

In addition, in a spontaneously breathing patient, patient-ventilator interactions can contribute to 

lung injury through several mechanisms. Over-assistance may increase transpulmonary pressure, 

increasing the risk of alveolar overdistension, whereas under-assistance may increase inspiratory 

effort, risking P-SILI. Besides, patient-ventilator asynchronies, such as double-triggering and 

reverse triggering, can cause breath stacking and large tidal volumes (10,17). 

P-SILI can initiate a vicious cycle: lung injury impairs gas exchange, which increases respiratory 

drive and effort, further worsening the injury. In such cases, muscle relaxation and reinitiating 

controlled ventilation may be required as a therapeutic intervention (10,11). 
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3.2 Ventilatory parameters and modes 

In mechanical ventilation, several ventilatory parameters are adjusted by the operator; these are 

referred to as control parameters. Additionally, the Hamilton ventilator measures and computes 

other parameters, referred to as output parameters. These, together with demographic, 

haemodynamic, blood gas parameters, and medication infusion rates, are used as predictors in the 

prediction models in this project. An overview of ventilatory parameters is provided in Figure 2 and 

Table 1.  

 

Figure 2. Pressure, flow and volume curves of pressure controlled ventilation, with ventilatory parameters indicated. During 

an inspiratory hold, the flow is set to zero and the plateau pressure is reached. 

At the Intensive Care Unit of the Leiden University Medical Centre (LUMC), three distinct ventilation 

modes are used in clinical practice during IMV. For controlled ventilation, the Pressure-Controlled 

Mechanical Ventilation (P-CMV) mode is employed. In P-CMV, the primary control parameters are 

inspiratory pressure, PEEP, fraction of inspired oxygen (FiO2), respiratory rate, and the inspiration-

to-expiration time ratio (I:E ratio) (18).  

For assisted ventilation, either the (Intellivent) Adaptive Support Ventilation (ASV) mode, or the 

spontaneous (SPONT) ventilation mode is used. In ASV, the main control parameters are target 

minute volume, PEEP, FiO2, and expiratory trigger sensitivity (ETS). The expiratory trigger sensitivity 

is the percentage of the inspiratory maximum flow at which expiration is initiated. The ventilator 

determines the tidal volume and respiratory rate needed to achieve the target minute ventilation. 

When the patient is passive, ASV functions as pressure controlled ventilation. When the patient is 

active, the respiratory rate is controlled by the patient and the ventilator determines the inspiratory 

pressure needed to achieve the target minute volume (19). In Intellivent-ASV mode, target values 

for ventilation (end-tidal CO2) and oxygenation (SpO2) are set by the clinician, after which the 

ventilator automatically adjusts minute volume, PEEP, and FiO2 to achieve these targets. All settings 

can be readily overridden by the clinician (20). 
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In spontaneous ventilation, the primary control parameters are inspiratory pressure, PEEP, FiO2, and 

ETS, while the patient controls the respiratory rate and timing (18). 

Table 1. Definitions of ventilatory parameters and type (control, output, adaptive) per ventilation mode. 

Parameter Definition Control, output, 

adaptive 

FiO2 Fraction of oxygen in inspiration air Control 

Respiratory rate (RR) Number of ventilation cycles per minute P-CMV: control, SPONT: 

output, ASV: adaptive 

Tidal volume (VT) Difference between the end inspiratory volume and end 

expiratory volume 

P-CMV, SPONT: output 

ASV: adaptive 

Minute ventilation Ventilated volume per minute, product of tidal volume and 

respiratory rate 

P-CMV, SPONT: output 

ASV: control 

I:E ratio Ratio between the inspiration time and expiration time P-CMV: control 

ASV, SPONT: output 

Pinsp Target airway pressure during inspiration Control 

Pmean Mean airway pressure over one ventilation cycle Output 

Ppeak Maximum airway pressure during inspiration Output 

Pplat Plateau pressure, airway pressure at the end of inspiration 

when flow is zero, measured by Hamilton at the end of 

inspiration when flow is close to zero and pressure is 

stable. 

Output 

PEEP Positive end expiratory pressure, the airway pressure at 

the end of the expiration phase 

Control 

Auto PEEP PEEP generated by the patient itself Output 

Driving pressure (ΔP) Driving pressure, the difference between Pplat and PEEP.  Output 

Flowinsp Peak flow during inspiration Output 

Flowexp Peak flow during expiration Output 

Rinsp Difference between the Ppeak and Pplat pressure divided by 

the inspiratory flow (21). 

Output 

Compliance The elastic property of the respiratory system, ratio 

between VT and ΔP (21). 

Output 

RCexp Expiratory time constant, describing the speed of change 

in volume after a change in pressure, the product of 

compliance and resistance measured at expiration (21). 

Output 

VT/IBW Ratio between tidal volume and ideal body weight Output 

End-tidal CO2 (EtCO2) Partial pressure of CO2 in the expiration air at the end of 

expiration 

Output 

RSBI Rapid shallow breathing index, the ratio between the 

respiratory rate and tidal volume. 

Output 

PaO2/FiO2 (PF) ratio Ratio between the partial pressure of oxygen in arterial 

blood (PaO2) and the FiO2 

Output 

SpO2/FiO2 (SF) ratio Ratio between the oxygen saturation level in the blood 

(SpO2) and the FiO2 

Output 
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3.3 Machine learning models 

3.3.1 Logistic regression 

The logistic regression model is a linear model that describes the relationship between predictor 

variables (𝑋𝑖) and a binary outcome variable (𝑌; event or no event), expressed as the probability of 

the event 𝑃(𝑌 = 1) using the odds ratio (22). The odds ratio is defined as the ratio of the probability 

of an event occurring to the probability of an event not occurring: 

𝑜𝑑𝑑𝑠 𝑃(𝑌 = 1|𝑋1) =  
𝑃(𝑌=1|𝑋1)

1−𝑃(𝑌=1|𝑋1)
   (Equation 1) 

𝑃(𝑌 = 1|𝑋1): event probability given predictor variable 𝑋1 

An event probability below 0.5 results in an odds ratio between 0 and 1, whereas an event probability 

above 0.5 yields an odds ratio greater than 1, extending to infinity (Figure 3). To address this 

imbalanced scale, the logarithm of the odds ratio is used (23).  

 

Figure 3. Relationship between event probability and the odds ratio (upper panel), and between event probability and the 

logarithm of the odds ratio (lower panel). 

In logistic regression, it is assumed that the logarithmic odds ratio of the event probability is linearly 

related to the predictor variables (22). This relationship can be expressed as: 

𝑙𝑜𝑔 𝑜𝑑𝑑𝑠(𝑌 = 1|𝑋1) = log (
𝑃(𝑌=1|𝑋1)

1−𝑃(𝑌=1|𝑋1)
) =  𝛽0 + 𝛽1𝑋1  (Equation 2) 

𝛽0: intercept 

𝛽1: regression coefficient 

The regression coefficient 𝛽1 determines the rate of change in the outcome associated with 

predictor 𝑋1, and represents the strength of the relationship between predictor 𝑋1 and the outcome. 

The intercept 𝛽0 represents the log-odds when 𝑋1 equals zero. In models with multiple predictors, 

𝛽0 represents the log-odds when all predictors are zero, a situation that is usually not clinically 

meaningful (22). 
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From Equation 2, the logistic probability function can be written as: 

𝑃(𝑌 = 1|𝑋1) =
𝑒𝛽0+𝛽1𝑋1

1+𝑒𝛽0+𝛽1𝑋1
  (Equation 3) 

The prediction probability function 𝑃(𝑌 = 1|𝑋1) has an S-shaped form, in which the predictor 

variable 𝑋1 can range from -∞ to +∞, while the predicted probability 𝑃 is constrained between 0 

and 1 (Figure 4). In logistic regression, this S-shaped curve is fitted to map predictor values to event 

probabilities. 

 

Figure 4. Linear relationship between the log-odds and predictor variable 𝑋1 (upper panel), and the S-shaped relationship 

between event probability and predictor variable 𝑋1 (lower panel). With 𝛽
0  = 0 and 𝛽

1
 = 0.5. 

In a model with multiple predictor variables, additivity is assumed, meaning that no interaction 

effects between predictors are included. The log-odds equation then becomes: 

𝑙𝑜𝑔 𝑜𝑑𝑑𝑠(𝑌 = 1|𝑋1, … , 𝑋𝑛) =  𝛽0 + ∑ 𝛽𝑖𝑋𝑖
𝑛
𝑖=1   (Equation 4) 
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3.3.2 Extreme gradient boosting (XGBoost) 

The XGBoost machine learning model is a decision tree ensemble, similar to a random forest, in 

which the prediction scores of individual trees are combined to produce the final prediction. The 

key difference between a random forest and an XGBoost model lies in the way the models are 

trained (24). 

During XGBoost model training, trees are grown by optimising an objective function, which consists 

of a training loss component and a regularisation term to reduce overfitting. For binary classification, 

the loss function is typically logistic loss, measuring the difference between the predicted 

probability and the true outcome. In gradient boosting, trees are grown iteratively. At each boosting 

iteration, the previous tree is optimised by adding new splits to further reduce the loss (24,25). A 

schematic overview of the XGBoost training process is presented in Figure 5. 

 

Figure 5. Schematic overview of the XGBoost training process with three boosting iterations. First, a decision tree is fitted 

to the original data and the training loss is computed, after which the data are reweighted. A new decision tree is then fitted, 

and the final prediction is obtained by combining all trees in the ensemble. 

Several hyperparameters can be adjusted to optimise the XGBoost model, including those 

controlling the learning rate, model complexity, subsampling, and regularisation (25,26). An 

overview including definitions of the key hyperparameters is presented in Supplement D. 
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3.4 Evaluation methods in machine learning 

3.4.1 Training quality 

To evaluate the quality of model training, learning curves can be used. Similar to how humans 

improve at solving a problem through repeated exposure, machine learning models improve as they 

are trained on more data. A learning curve illustrates this behaviour by plotting model performance 

against the number of training samples (Figure 6).  

Learning curves are typically estimated using k-fold cross-validation. The dataset is divided into k 

folds, and for each split a training and validation set are created. The size of the training set is 

varied, and for each training size the model is trained and evaluated on the corresponding validation 

set across all folds. This results in k performance estimates per training size, which are 

subsequently averaged (27).  

Learning curves are assumed to converge to an asymptotic performance level. The point at which 

this level is reached is referred to as the saturation point. Before this point, models trained on 

smaller datasets show inferior performance, whereas beyond this point, increasing the training set 

size no longer yields performance gains. Observing a saturation point during model training 

indicates that sufficient data were available to train the model adequately (28). 

To assess overfitting and underfitting, training performance can be plotted alongside validation 

performance. Similar to humans, memorisation performance decreases as the amount of training 

data increases. Consequently, training performance typically declines and converges towards the 

validation performance (27). When training performance remains high and validation performance 

stays low, the model is overfitting and additional training data or stronger regularisation may be 

required. Conversely, when both training and validation performance remain low, the model is 

underfitting and a more complex model may be needed.   

In addition to varying the size of the training set, performance can be plotted against the number of 

optimisation iterations performed during model training (Figure 6). For XGBoost, this corresponds 

to the number of boosting iterations. Such iterative learning curves are also assumed to converge 

to a stable performance level (28). Identifying this saturation point allows the number of boosting 

to be limited, thereby reducing model complexity and mitigating overfitting.  

A third type of learning curve is the feature curve, which shows model performance as a function of 

the number of features used for training (Figure 6). This curve can be used to assess the number 

of features required. In some cases, a peaking phenomenon can be observed, indicating that adding 

additional features may actually degrade model performance (27). 
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Figure 6. Examples of a learning curve based on the number of training samples (left), an iterative learning curve based on 

the number of boosting iterations (middle), and a feature curve based on the number of features used for training (right). 

3.4.2 Classification and discriminative performance 

Classification performance reflects how accurately samples are assigned to the correct class. 

Classification metrics are derived from the contingency table, or confusion matrix (Table 2). To 

calculate these metrics, a decision threshold must be applied to the predicted event probability to 

classify samples as low or high risk. Classification performance is optimal when all samples with an 

event have predicted probabilities above the threshold, and all individuals without an event have 

probabilities below it.  

Table 2. Contingency table (confusion matrix) for a binary classification problem, showing true positives (TP), false negatives 

(FN), false positives (FP), and true negatives (TN). 

 Predicted high risk Predicted low risk 

Event True positives (TP) False negatives (FN) 

Control False positives (FP) True negatives (TN) 

 

Four basic classification measures can be distinguished: sensitivity (recall), specificity, positive 

predictive value (PPV; precision), and negative predictive value (NPV) (Table 3). Each addresses a 

different aspect of classification performance and is only relevant when reported together, as their 

values depend on the chosen classification threshold. 

Table 3. Definitions of classification metrics: sensitivity (recall), specificity, positive predictive value (PPV; precision), and 

negative predictive value (NPV). 

 Definition Formula  

Sensitivity or recall The proportion of event samples that are 

classified as high risk. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity The proportion of control samples that 

are classified as low risk. 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Positive predictive 

value (PPV) or 

precision 

The proportion of samples classified as 

high risk that are an event sample. 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Negative predictive 

value (NPV) 

The proportion of samples classified as 

low risk that are a control sample. 

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
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Discriminative performance without selecting a classification threshold is commonly evaluated by 

using the area under the receiver operating characteristic curve (AUROC) (Figure 7). The receiver 

operating characteristic (ROC) curve plots sensitivity against 1-specificity. The AUROC a priori level 

is 0.5 and represents a model with no discriminative ability.  

A precision-recall curve illustrates the trade-off between precision (PPV) and recall (sensitivity) 

(Figure 7). This is particularly relevant when a prediction model is used as an online alarm system, 

where both the predictive value of alarms (precision), and the ability to detect events (recall) are 

essential. The area under the precision-recall curve (AUPRC) summarises this trade-off. The a priori 

AUPRC depends on the ratio of event to control samples and equals the proportion of event samples 

in the dataset. 

 

Figure 7. Receiver operating characteristic (ROC) curve (left) and precision-recall curve (right). 

3.4.3 Clinical utility 

To retrospectively assess whether a prediction model has the potential to improve current clinical 

care, a net benefit analysis can be used (Figure 8) (29). This analysis evaluates the net benefit 

across a range of threshold probabilities (Pt). The threshold probability represents the predicted 

risk at which a clinician would apply an intervention for an event. Net benefit quantifies the gain  

from true positive decisions while accounting for the harm of false positives and is expressed in 

units of true positives: 

𝑁𝑒𝑡 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 = 𝑇𝑃 − 𝐹𝑃 × 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 (Equation 5) 

The gain from true positives and the harm from false positives are weighted by a value ratio, referred 

to as the exchange rate. This exchange rate depends on the chosen threshold probability and is 

equal to the corresponding odds ratio: 

𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 =
𝑃𝑡

1−𝑃𝑡
  (Equation 6) 
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When performing a net benefit analysis, it is important to define the clinically relevant range of 

threshold probabilities in advance. At low threshold probabilities, clinicians prioritise avoiding 

missed events over the risk of unnecessary intervention. For example, at a threshold probability of 

0.2, the odds ratio is 1:4, meaning that the gain of detecting one true positive is considered to 

outweigh the harm of four false positives. In contrast, at high threshold probabilities, clinicians place 

greater emphasis on avoiding unnecessary intervention rather than on missing events. At a 

threshold probability of 0.8, the odds ratio is 4:1, indicating that the harm of a false positive is 

weighted four times more heavily than the benefit of detecting a true positive (29). As the threshold 

probability can differ across patients and clinicians, a clinically relevant range should be defined. 

In addition to the net benefit of the prediction model, the net benefits of an ‘intervention for all’ and 

‘intervention for none’ strategy are shown in the graph (Figure 8). To evaluate whether a prediction 

model could be clinically useful, its net benefit should be compared with current practice, over the 

clinically relevant threshold range. In this study, current practice is best represented by the 

‘intervention for none’ line, as no successful interventions were applied to prevent events in the 

dataset.  

 

Figure 8. Net benefit analysis showing the net benefit across different threshold probabilities for a prediction model, an 

‘intervention for all’ strategy, and an ‘intervention for none’ strategy, with corresponding odds ratios indicated. 
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4 Methods 

The Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis 

+ Artificial Intelligence (TRIPOD+AI) guidelines (30) were used as a framework for model 

development and reporting. The completed TRIPOD+AI checklist is provided in Supplement J. 

4.1 Data 

The dataset used for model development and validation comprises detailed clinical information 

extracted from the Patient Data Management System (PDMS) MetaVision of ICU admissions at the 

LUMC, recorded between December 2018 and May 2023 as part of routine clinical care. The 

database includes ventilatory parameters and vital signs recorded at one-minute intervals, as well 

as laboratory results, administered medication, and demographic details. 

4.2 Participants 

Patients with a positive Sars-CoV-2 Polymerase Chain Reaction (PCR) test were allocated to the 

COVID group, and patients without a positive Sars-CoV-2 PCR test to the non-COVID group. 

Patients were excluded if they 1) did not receive IMV treatment, 2) had an IMV duration shorter 

than 48 hours, 3) were not ventilation with a Hamilton ventilator (C3 or C6), 4) did not have a 

PaO2/FiO2 (PF) ratio below 40 kPa, 5) received extracorporeal membrane oxygenation (ECMO) 

therapy, 6) were enrolled in the ICONIC trial, receiving a different PaO2 target strategy (31), 7) were 

aged below eighteen, 8) or medication data was not available.  

Inclusion and exclusion criteria were defined to obtain a homogeneous study population in which 

respiratory failure was the primary clinical problem (the COVID group), as well as a more 

heterogeneous non-COVID group with a major respiratory problem to serve as an external validation 

set to assess the model’s generalisability. 

Patient records in the COVID group were chronologically split into a training and test set based on 

the date of ICU admission. Patients admitted before November 2021 were assigned to the training 

set, whereas those admitted thereafter were assigned to the test set. Readmissions were allocated 

to the same subset as their initial admission to prevent data leakage. 

4.3 Data preprocessing 

Preprocessing was done to clearly differentiate between segments of controlled and assisted 

ventilation. First, time points with a spontaneous respiratory rate exceeding five breaths per minute 

were classified as assisted ventilation (Figure 9). A threshold of five was selected to balance 

between spontaneous irregular Cheyne-Stokes or opioid-induced breathing pattern and occasional 

spontaneous breaths occurring during controlled ventilation. Second, a median filter with a 31-

minute window was applied to remove short segments of one ventilation mode lasting 15 minutes 

or less within a longer segment of the opposite mode. Finally, segments with missing data shorter 

than one hour were merged with the preceding ventilation mode. 
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Figure 9. Data preprocessing steps for ventilation mode determination (controlled or assisted). 1) Time points with a 

spontaneous respiratory rate (RR) exceeding five are classified as assisted ventilation, 2) a median filter with a 31-minute 

window is applied, 3) segments with missing data shorter than one hour are merged with the preceding mode. 

4.4 Event definition 

The model outcome is the event probability. An event of respiratory deterioration, as defined by 

experienced ventilation specialists, is characterised by: 

1) a transition from assisted to controlled ventilation, where 

2) controlled ventilation persists for at least three hours, and 

3) the FiO2 was set to 40% or higher at least once within the time span of one hour before to 

one hour after the transition (Figure 10). 

 

Figure 10. An event of respiratory deterioration is defined as a conversion from assisted to controlled ventilation, where 

controlled ventilation lasts at least three hours, the FiO2 is set to 40% or higher in one hour before and after transition. 

This outcome is proposed because it is an actionable target (32) during the course of mechanical 

ventilation treatment, rather than before intubation or during the weaning phase, contexts in which 

prediction models already exist (33–35). The restrictions applied in the event definition (≥ 3 hours 

of controlled ventilation and FiO2 ≥ 40%) were introduced to minimise false-positive events resulting 

from sedation administered for procedural purposes. Transitions to controlled ventilation related to 

tracheostomy insertion were excluded as events. 

As FiO2 settings are operator-depended, this parameter serves as an imperfect marker of respiratory 

deterioration. To illustrate the influence of the FiO2 threshold on the number of detected events, a 

histogram was generated for the number of events for different threshold values, in the COVID 

group. Events were automatically detected based on the event definition. 
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4.5 Input features 

Initial predictors were selected based on availability, literature, and expert knowledge. Variables 

with less than 20% missing data and availability in at least 95% of records were included. A detailed 

overview of the variables used for input features is presented in Supplement A. 

To capture temporal dependencies, summary statistics of ventilatory and haemodynamic 

parameters, including the mean, standard deviation, and trend over multiple windows, were used 

as input features (36). The trend is defined as the slope of the linear regression line. Additionally, 

the most recent arterial blood gas results (routinely measured every six hours) at the time of 

prediction, as well as age, sex, body mass index (BMI), total IMV duration, and duration of assisted 

ventilation, were included as input features. To guarantee reliability of feature values, summary 

statistics were only calculated if at least 50% of the datapoints in the selected window were 

available, otherwise a missing value was given.  

Because aggregate features are employed, missing values are scarce and imputation of missing 

data is not required. Likewise, feature normalization is unnecessary for XGBoost, as decision trees 

split nodes according to the relative ordering of feature values rather than their absolute scale.  

To fit a logistic regression model, samples with four or more missing feature values were first 

removed, after which features containing missing values were excluded. In addition, standard 

scaling was applied for the logistic regression model by subtracting the mean and scaling it to unit 

variance (Equation 7). 

𝑧 =
𝑥−𝜇

𝜎
 (Equation 7) 

Z : standard value, x : feature value,  : mean, σ : standard deviation 

4.6 Model design 

4.6.1 Model 1 | Unreadiness for assisted ventilation 

The first model is designed to predict the probability of an event within six hours after switching 

from controlled to assisted ventilation. Therefore, the observation window is defined during the 

controlled ventilation phase, with predictions made at the point of transition from controlled to 

assisted ventilation (Figure 11). Events for this model are defined as occurrences within six hours 

after switching and are considered indicative that the patient was not yet ready for assisted 

ventilation. Control samples comprise cases in which patients did not fail or failed after a period 

longer than six hours after switching. Control samples within 24 hours prior to death were excluded. 

In clinical practice, this model could be used as a decision-support tool to evaluate at a certain 

time-point whether a patient is ready to switch from controlled to assisted ventilation. 

In addition, a variation to Model 1 with input features derived from both the last hour before 

transition to assisted ventilation and the first hour after transition was developed, results from this 

model are presented in Supplement H. 
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Furthermore, the clinical conditions and timing of all first attempts to switch from controlled to 

assisted ventilation were analysed and compared between patients who experienced an event 

within six or 72 hours and those who did not. The results of this analysis are presented in 

Supplement I.  

4.6.2 Model 2 | Development of P-SILI 

The second model is developed to predict the probability of an event over a 4-10-hour horizon during 

assisted ventilation. Therefore, the observation window is defined during assisted ventilation and 

predictions are made during assisted ventilation (Figure 11). Events for this model are defined as 

occurrences after a minimum of six hours of assisted ventilation, representing failure following a 

sustained period of assisted ventilation was attained, likely due to development of P-SILI.  

The prediction window was set at 2 hours, therefore event samples were included three times (at 

0, 1, and 2 hours after the prediction horizon). Control samples are drawn at a 1-hour interval from 

segments preceding true events or from segments without failure. Control samples within 24 hours 

before death were excluded. 

This model could be used in clinical practice as a real-time alarm system, generating a prediction 

score every hour during assisted ventilation, to alert clinicians when the predicted probability of an 

event is high. 

 

Figure 11. Overview of the observation window, prediction horizon, and prediction window aligned with ventilation modes 

for problem definition 1 (unreadiness) and problem definition 2 (P-SILI). 
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4.7 Model development 

XGBoost models were employed because of their demonstrated high performance in comparable 

prediction tasks (35,37). During development, a series of experiments was conducted using 

stratified 10-fold cross-validation, grouped by patient ID, to maintain class distribution over 

different folds and prevent data leakage. First, the optimal observation window (1, 2, 4, or 6 hours) 

and horizon (4, 6, 8 or 10 hours) (Model 2) were determined. Second, a logistic regression model 

was trained to benchmark the performance of the XGBoost model. Subsequently, feature selection 

and hyperparameter optimisation was performed. Finally, performance obtained with grouped 

cross-validation was compared to ungrouped cross-validation, to assess the impact of learning 

patient-specific characteristics. An overview of all experiments conducted in this study is presented 

in Figure 12. 

During model development, Model 1 was primarily optimised for the AUROC, reflecting the 

importance of discrimination in a decision-support tool, whereas Model 2 was primarily optimised 

for the AUPRC, reflecting the importance of predictive value in an alarm system. To compare the 

AUPRC between models during development, control samples were random under sampled 

obtaining a 1:3 ratio of event to control samples for Model 1 and 1:10 for Model 2. Differences in 

performance between models were evaluated using a one-sided Wilcoxon signed-rank test, with a 

significance level of 0.05.  

Furthermore, learning curves were generated before and after feature selection and hyperparameter 

optimisation to evaluate model stability and to assess whether the sample size of training data was 

sufficient. 

 

Figure 12. Overview of the experiments and analyses conducted for model development, validation and interpretation 

throughout the study. 
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4.7.1 Feature engineering and selection 

To reduce overfitting during feature selection the number of boosting iterations was reduced. The 

optimal number of estimators was assessed by plotting performance over each boosting iteration. 

For each model, two distinct feature sets were employed for the selected observation windows. 

Feature set 1 comprised the mean, standard deviation, and trend of ventilatory and haemodynamic 

parameters calculated over the entire observation window. Feature set 2 consisted of mean values 

calculated over multiple shorter sub-intervals within the observation window. Both feature sets 

were supplemented with the most recent arterial blood gas results, age, BMI, sex, IMV duration, 

and assisted mechanical ventilation duration (Model 2). 

For each feature set, mean feature importance was calculated across 10-fold cross-validation using 

the gain, defined as the average loss reduction resulting from tree splits in which a given feature is 

used. Subsequently, backward feature elimination was performed starting with the 25 features with 

the highest importance. After each feature elimination step, feature importance was re-evaluated 

and the least important feature was removed, until only a single feature remained. Feature curves 

showing performance as a function of the number of included features were used to determine the 

minimum number of features required to achieve a stable model performance, defined by high 

performance with a small interquartile range (IQR). 

4.7.2 Hyperparameter optimisation 

A stepwise approach for hyperparameter optimisation was employed, as outlined in Figure 13 

(25,38). First, the number of boosting was determined using the default learning rate by identifying 

the number of iterations at which model performance stabilises. Subsequently, tree complexity, 

subsampling and regularisation parameters were optimised using a 10-fold cross-validated grid 

search. The parameter values yielding high validation and relatively low training performance were 

selected to reduce overfitting. Finally, the learning rate was lowered, and the final number of 

iterations was determined. The exact hyperparameter values used during the grid search are 

provided in Supplement D.  

 

 

 

 

 

 

 

 

 

Figure 13. Stepwise hyperparameter optimisation approach. The number of boosting 

iterations is first determined, followed by optimisation of tree complexity, subsampling, 

and regularisation parameters. Finally, the learning rate is reduced and the final number 

of boosting iterations is selected. 
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4.8 Model validation 

The optimised models were subsequently validated on the hold-out COVID and non-COVID test 

sets. Model performance was assessed using AUROC and AUPRC. In addition, the sensitivity, 

specificity, PPV, and NPV were calculated. For this purpose, the target specificity for Model 1 was 

set to 0.80, reflecting the importance of a highly specific test to prevent patients from unnecessarily 

prolonged controlled ventilation due to falsely high predicted probabilities of failure after switching 

to assisted ventilation. For Model 2, the target PPV was set to 0.80, reflecting the need for a highly 

precise alarm system that minimises false-positive alerts. 

In addition to classification metrics, a net-benefit analysis was performed to assess clinical utility 

compared with the absence of a prediction model. To this end, the models were calibrated for each 

test set using a sigmoid function. Finally, probability distribution plots, showing the predicted 

probabilities for event and control samples, were generated to provide insight into overall model 

performance and behaviour (39). 

4.9 Model interpretation 

Model interpretability was achieved using Shapley additive explanations (SHAP) to quantify the 

contribution of individual features to model predictions and to interpret these contributions from a 

clinical perspective (40). In addition, detailed case descriptions of event and control samples with 

relatively high and low predicted probabilities were presented to explore the clinical conditions 

under which the model performs well or poorly. These case descriptions were complemented by 

local SHAP explanations to reveal the factors driving the model’s predictions for these individual 

samples. Finally, the first decision tree of the XGBoost ensemble, which contributes most strongly 

to the prediction scores, was visualised to illustrate the underlying split criteria. 

4.10 Software 

Data processing, model training, evaluation, and interpretation were performed using Python 3.12.4, 

with the scikit-learn (v1.4.2), xgboost (v3.1.1), dcurves (v1.1.7), shap (v0.50.0), and dtreeviz (v2.2.2) 

libraries. Python scripts are available in the GitHub repository: github.com/Emmelieve/TM3. 

4.11 Ethical approval 

The study is approved by the Medical Ethics Committee Leiden The Hague Delft. Consent was 

waived as the data consists of routinely collected clinical information and it was not considered 

reasonable to request consent after an invasive ICU admission. 

https://github.com/Emmelieve/TM3
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5 Results 

5.1 Dataset characteristics 

The LUMC ICU database comprises 11,922 records of patients admitted between December 2018 

and May 2023. Of these, 640 tested positive for Sars-CoV2 by PCR. Of these, 266 records were 

excluded: 138 did not receive IMV, 106 were ventilated for less than 48 hours, five were not 

ventilated using a Hamilton ventilator, 14 received ECMO therapy, and three were enrolled in the 

ICONIC study (Figure 14). A total of 374 records were included in the COVID group and 

chronologically split into a training set (n = 296) and a test set (n = 78). 

In the non-COVID group, 10,500 records were excluded: 4018 did not receive IMV, 5158 were 

ventilated for less than 48 hours, 1107 were not ventilated using a Hamilton ventilator, 69 received 

ECMO therapy, 131 were enrolled in the ICONIC study, three were aged under 18, and one record 

was excluded because medication data was not available. This resulted in a non-COVID test set of 

755 records.  

The COVID training set comprised 294 unreadiness events (failure within six hours) and 269 P-SILI 

events (failure after more than six hours). The COVID test set included 85 unreadiness events and 

72 P-SILI events, while the non-COVID test set contained 483 unreadiness events and 317 P-SILI 

events. Patient characteristics for each dataset are summarised in Table 4. 

 

Figure 14. Flow of records included in the study, based on inclusion and exclusion criteria. IMV = invasive mechanical 

ventilation, PF = PaO2/FiO2, ECMO = extra-corporal membrane oxygenation   
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Table 4. Characteristics of patients included in the COVID training set, COVID test set, and non-COVID test set, including 

age, sex, BMI, ICU mortality, ICU length of stay, IMV duration, and the number of events. 
 

 COVID training set COVID test set Non-COVID test set 

Records n 296 78 755 

Age  median (IQR) 63.0 (56.8-70.0) 59.0 (49.0-66.8) 61.0 (50.0-70.0) 

Male  n (%) 210 (71.0) 55 (70.5) 492 (65.2) 

BMI  median (IQR) 29.31 (26.1-33.2) 27.15 (24.8-30.4) 25.95 (23.2-29.3) 

ICU mortality  n (%) 80 (27.0) 25 (32.0) 207 (27.4) 

ICU length of stay (days)  median (IQR) 13.75 (8.3-23.9]) 13.31 (7.8-24.2) 9.33 (5.6-18.00 

IMV duration (days)  median (IQR) 11.21 (6.0-20.4) 9.33 (5.5-17.8) 6.08 (3.6-11.9) 

Unreadiness events n 294 85 483 

Records with unreadiness    n (%) 144 (48.7) 37 (47.4) 253 (33.5) 

P-SILI events n 269 72 317 

Records with P-SILI events n (%) 146 (49.3) 38 (48.7) 204 (27.0) 

BMI = body mass index, IMV = invasive mechanical ventilation, IQR = interquartile range 

5.2 Effect of the FiO2 threshold on the number of events 

The relation between number of detected events and the FiO2 threshold in the event definition is 

shown in Figure 15. The number of detected events with FiO2 threshold ranges from 30 to 80% is 

436 to 54 for unreadiness events and 368 to 119 for P-SILI events in the COVID dataset. 

 

Figure 15. Relation between the number of detected unreadiness events and P-SILI events in the COVID dataset and the 

FiO2 threshold in the event definition. 

5.3 Input features 

Summary statistics (mean, standard deviation, and trend) of six monitor parameters, 25 ventilatory 

parameters, and eight sedative and inotropic medication infusion rates were used as input features, 

together with the most recent value of 15 arterial blood gas parameter, as well as age, sex, and BMI. 

Details of the specific parameters, including missing data and availability per record in the COVID 

dataset, are provided in Supplement A.
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5.4 Model 1 | Unreadiness for assisted ventilation 

5.4.1 Observation window 

Different observation windows, defined as the timeframe from which features are derived, were 

evaluated for Model 1, predicting unreadiness for assisted ventilation. The highest median AUROC 

values were obtained with 1-hour (AUROC 0.60, IQR 0.58-0.63) and 6-hour observation windows 

(AUROC 0.60, IQR 0.57-0.63). Models using 2-hour (AUROC 0.59, IQR 0.55-0.64) and 4-hour 

observation windows (AUROC 0.58, IQR 0.56-0.62) showed comparable performance, with no 

statistically significant differences (p > 0.05) (Table 5).  

Table 5. Performance of Model 1 using different observation windows (1, 2, 4, and 6 hours), evaluated by the AUROC and 

AUPRC, p-values indicate differences in performance compared with the 1-hour observation window. 

Observation window 1 h 2 h 4 h 6 h 

Events 294 236 171 145 

AUROC median (IQR) 0.60 (0.58-0.63) 0.59 (0.55-0.64) 0.58 (0.56-0.62) 0.60 (0.57-0.63) 

p for AUROC - 0.385 0.278 0.216 

AUPRC median (IQR) 0.34 (0.29-0.36) 0.37 (0.29-0.41) 0.35 (0.26-0.38) 0.35 (0.33-0.40) 

p for AUPRC - 0.577 0.385 0.754 

5.4.2 Logistic regression 

The XGBoost model with a 1-hour observation window showed comparable performance (AUROC 

0.63, IQR 0.57-0.66) compared with the logistic regression model (AUROC 0.61, IQR 0.57-0.66, 

p=0.784)(Table 6).  

As logistic regression models do not handle missing values, 4 of 294 event samples and 15 of 117 

features containing missing data were excluded for this analysis. Regression coefficients per feature 

and an analysis of the correlation between XGBoost feature importance and logistic regression 

coefficients are provided in Supplement B. 

Table 6. Performance of the XGBoost and logistic regression model, both using a 1-hour observation window, evaluated by 

AUROC and AUPRC. 

Model XGBoost Logistic regression P 

AUROC median (IQR) 0.63 (0.57-0.66) 0.61 (0.57-0.66) 0.784 

AUPRC median (IQR) 0.35 (0.33-0.38) 0.35 (0.30-0.38) 0.688 

5.4.3 Feature engineering and selection 

To reduce overfitting during feature selection, the number of boosting iterations was set to 5; 

performance per iteration is shown in Supplement D. Four distinct feature sets were employed: 

1. The mean, standard deviation, and trend over 1 hour, with a 1-hour observation window 

2. The mean over each 20-minute interval, with a 1-hour observation window 

3. The mean, standard deviation, and trend over 6 hours, with a 6-hour observation window 

4. The mean over each 2-hour interval, with a 6-hour observation window 
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For each feature set, feature selection was performed using backward feature elimination. For 

feature set 1, nine features were selected, yielding a median AUROC of 0.68 (IQR 0.65-0.70) (Figure 

16, Table 7). Feature set 2 selected 10 features, with AUROC 0.66 (IQR 0.63-0.68); feature set 3 

selected 12 features, AUROC 0.64 (IQR 0.60-0.68); and feature set 4 selected nine features, AUROC 

0.63 (IQR 0.60-0.66). Feature set 1 was selected for further optimisation based on the highest 

median AUROC. Feature importance graphs and feature curves for each feature set are provided in 

Supplement C. 

Learning curves obtained before and after feature selection are shown in Figures 17 and 18. 

Table 7. Overview of the different features sets, showing the selected features and performance as evaluated by AUROC 

and AUPRC. 

 Set 1 Set 2 Set 3 Set 4 

Observation window 1 hour 1 hour 6 hours 6 hours 

Features Mean, std, trend 

over 1 hour 

Mean over 20 min Mean, std, trend 

over 6 hours 

Mean over 2 hours 

Selected features Mean FiO2 

Mean SF 

Mean PEEP 

Mean mida. 

Mean SpO2 

Mean VT/IBW 

Std of PFI 

Std of EtCO2 

Mean prop. 

Mean FiO2 40-60 min 

Mean SF 40-60 min 

Mean PEEP 40-60 min 

Mean SpO2 40-60 min 

Mean SF 20-40 min 

Mean SpO2 20-40 min 

Mean VT/IBW 20-40 min 

Mean SF 0-20 min 

Mean compl. 40-60 min 

Mean mida. 0-20 min 

Mean FiO2 

Std of MAP 

Trend of MAP 

Mean SF 

Trend of VT/IBW 

Std of Pinsp 

Mean RCexp 

Std of dia. ABP 

Trend of SpO2 

Trend of sys. ABP 

Mean dia. ABP 

Mean prop. 

Mean FiO2 4-6 h 

Mean suf. 0-2 h 

Mean SF 4-6 h 

Mean sys. ABP 2-4 h 

Mean VT,insp 4-6 h 

Mean MAP 4-6 h 

Mean RCexp 2-4 h 

Mean MAP 0-2 h 

Mean prop. 2-4 h 

AUROC median (IQR) 0.68 (0.65-0.70) 0.66 (0.63-0.68) 0.64 (0.60-0.68) 0.63 (0.60-0.66) 

p for AUROC - 0.216 0.065 0.024 

AUPRC median (IQR) 0.43 (0.38-0.47) 0.39 (0.36-0.41) 0.37 (0.33-0.49) 0.38 (0.29-0.44) 

p for AUPRC - 0.138 0.188 0.246 

FiO2 = fraction of inspired oxygen, SpO2 = peripheral oxygen saturation level, SF = SpO2/FiO2 ratio, PEEP = positive end-

expiratory pressure, VT = tidal volume, IBW = ideal body weight, PFI = peripheral flow index, compl. = compliance, EtCO2 = 

end-tidal CO2, prop. = propofol infusion rate, compl. = compliance, mida. = midazolam infusion rate, MAP = mean arterial 

blood pressure, Pinsp = inspiratory pressure, RCexp = expiratory time constant, dia. ABP = diastolic arterial blood pressure, 

sys. ABP = systolic arterial blood pressure, suf. = sufentanil infusion rate 
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Figure 16. Feature curve illustrating the backward feature elimination process for Model 1 with feature set 1 (mean, standard 

deviation, and trend over 1 hour). The 5th, 25th, 50th, 75th and 95th percentiles are indicated. 

 

 

Figure 17. Learning curve, illustrating the performance over the number of training samples, after reduction of boosting 

iterations, prior to feature selection. The 5th, 25th, 50th, 75th and 95th percentiles are indicated. 
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Figure 18. Learning curve of Model 1, illustrating the performance over the number of training samples, obtained after 

feature selection. The 5th, 25th, 50th, 75th and 95th percentiles are indicated. 

5.4.4 Hyperparameter optimisation 

The AUROC and AUPRC after hyperparameter optimisation were respectively, 0.67 (IQR 0.64-0.69) 

and AUPRC 0.41 (IQR 0.35-0.46). Details on optimised hyperparameter settings are provided in 

Supplement D. A learning curve obtained after hyperparameter optimisation is presented in Figure 

19. 

 

Figure 19. Learning curve of Model 1, illustrating the performance over the number of training samples, obtained after 

feature selection and hyperparameter optimisation. The 5th, 25th, 50th, 75th and 95th percentiles are indicated. 
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5.4.5 Training with data leakage 

Ten-fold cross-validation with data grouped by patient ID yielded a median AUROC of 0.67 (IQR 

0.64-0.69), whereas cross-validation without grouping, which introduces data-leakage, showed 

similar performance with a median AUROC of 0.66 (IQR 0.61-0.68, p=0.161) (Table 8). 

Table 8. Performance of Model 1 evaluated using 10-fold cross-validation with and without grouping by patient ID, reported 

as AUROC and AUPRC. 

 Grouped cross-validation Ungrouped cross-validation p 

AUROC median (IQR) 0.67 (0.64-0.69) 0.66 (0.61-0.68) 0.161 

AUPRC median (IQR) 0.41 (0.35-0.46) 0.38 (0.33-0.42) 0.161 

 

5.4.6 Model validation 

Validation on the test sets yielded an AUROC of 0.78 and an AUPRC of 0.38 for the COVID test 

set, and an AUROC of 0.76 and an AUPRC of 0.27 for the non-COVID test set. ROC and precision-

recall curves are shown in Figures 20 and 21. For the COVID test set, setting specificity at 0.80 

resulted in a sensitivity of 0.56, PPV of 0.39, and NPV of 0.89 (Table 9). For the non-COVID test 

set, setting specificity at 0.80 resulted in a sensitivity of 0.49, PPV of 0.25, and NPV of 0.92. 

 

 

 

 

  

Figure 20. Receiver operating characteristic curve of 

validation on the COVID test dataset (AUC = 0.78) and 

non-COVID test dataset (AUC = 0.76). 

Figure 20. 

 

Figure 21. Precision-recall curve of validation on 

the COVID test dataset (AUC = 0.38) and non-

COVID test dataset (AUC = 0.27). 

Figure 21. 
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Table 9. Overview of classification metrics for the COVID and non-COVID test set for Model 1. 

 COVID test set Non-COVID test set 

Events 85 483 

Controls 372 3483 

AUROC 0.78 0.76 

AUPRC 0.38 0.27 

Sensitivity (recall) 0.56 0.49 

Specificity 0.80 0.80 

Positive predictive value (PPV) (precision) 0.39 0.25 

Negative predictive value (NPV) 0.89 0.92 

 

After calibrating the model on the test sets, net benefit analyses were performed (Figure 22). A 

superior net benefit compared with a ‘treat all as unready’ or ‘treat all as ready’ strategy was 

observed for threshold probabilities ranging from 0 to 0.5 for the COVID group and 0 to 0.3 for the 

non-COVID group. Calibration curves are provided in Supplement E. The distribution of predicted 

probabilities per event class after model calibration is shown in Figure 23. 

 

Figure 22. Net-benefit analysis for Model 1 on the COVID and non-COVID test sets, showing the threshold probability on 

the X-axis and the net benefit on Y-axis. 
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Figure 23. Predicted probability distributions for the COVID and non-COVID test sets obtained with Model 1 after calibration, 

shown as violin plots (top), boxplots (middle), and scatterplots (bottom). 

5.4.7 Model interpretation 

A global SHAP analysis is presented in Figure 24. This analysis shows that high FiO2, propofol 

infusion rates, and PEEP values contribute most strongly to high predicted probabilities, whereas 

low a FiO2, PEEP, and VT/IBW, together with a high SpO2 and SpO2/FiO2 ratio, are associated with 

low prediction scores. 

Local SHAP explanations for samples with high or low predicted probabilities (Supplement F), as 

well as visualisation of the first decision tree (Supplement G), further indicate that model output is 

predominantly driven by FiO2 and propofol infusion rate. Detailed clinical case descriptions are 

provided in Supplement F. 

 

Figure 24. Global SHAP analysis of Model 1 showing the impact of feature values on the model output by aggregating local 

SHAP values across all training samples. 
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5.5 Model 2 | Development of P-SILI 

5.5.1 Observation window 

Different observation windows were evaluated for Model 2, which predicts respiratory deterioration 

due to P-SILI. The highest median AUPRC values were obtained with 2-hour (AUPRC 0.22, IQR 

0.20-0.24) and 4-hour observation windows (AUPRC 0.22, IQR 0.20-0.24). Models using 1-hour 

(AUPRC 0.21, IQR 0.19-0.23) and 6-hour observation windows (AUPRC 0.18, IQR 0.16-0.21) showed 

comparable performance, with no statistically significant differences (p > 0.05) (Table 10). 

Table 10. Performance of Model 2 using different observation windows (1, 2, 4, and 6 hours), evaluated by AUROC and 

AUPRC, p-values indicate differences in performance compared with the 4-hour observation window. 

Observation window 1 h 2 h 4 h 6 h 

Events 718 681 621 571 

AUPRC median (IQR) 0.21 (0.19-0.23) 0.22 (0.20-0.24) 0.22 (0.20-0.24) 0.18 (0.16-0.25) 

p for AUPRC 0.188 0.312 - 0.116 

AUROC median (IQR) 0.69 (0.67-0.70) 0.70 (0.63-0.73) 0.70 (0.68-0.72) 0.67 (0.63-0.73) 

p for AUROC 0.246 0.615 - 0.080 

 

5.5.2 Prediction horizon 

Varying prediction horizons, defined as the time between the prediction and the occurrence of an 

event, were evaluated in combination with a 4-hour observation window. The model with a 4-hour 

horizon obtained a median AUROC of 0.20 (IQR 0.17-0.27). A 6-hour horizon resulted in a median 

AUROC 0.22 (IQR 0.20-0.24), an 8-hour horizon in 0.20 (IQR 0.18-0.23), and a 10-hour horizon in 

0.23 (IQR 0.16-0.26). A 6-hour horizon was selected for further model optimisation because it 

combines a relatively high median AUPRC with a narrow IQR (Table 11). 

Table 11. Performance of Model 2 using different prediction horizons (4, 6, 8, and 10 hours), evaluated by AUROC and 

AUPRC, p-values indicate differences in performance compared with the 6-hour horizon. 

Horizon 4 h 6 h 8 h 10 h 

Events 727 621 604 516 

AUPRC median (IQR) 0.20 (0.17-0.27) 0.22 (0.20-0.24) 0.20 (0.18-0.23) 0.23 (0.16-0.26) 

p for AUPRC 0.216 - 0.116 0.313 

AUROC median (IQR) 0.70 (0.66-0.74) 0.70 (0.68-0.72) 0.68 (0.66-0.69) 0.69 (0.63-0.71) 

p for AUROC 0.385 - 0.097 0.161 
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5.5.3 Logistic regression 

The logistic regression model with a 4-hour observation window and a 6-hour horizon showed 

comparable performance (AUPRC 0.23, IQR 0.18-0.26) compared with the XGBoost model (AUPRC 

0.21, IQR 0.18-0.24, p=0.138) (Table 12).  

As logistic regression models do not handle missing values, 24 of 621 event samples and 11 of 127 

features containing missing data were excluded for this analysis. Regression coefficients per feature 

are provided in Supplement B. 

Table 12. Performance of XGBoost and logistic regression for Model 2, both using a 2-hour observation window and a 4-

hour horizon. 

Model XGBoost Logistic regression p 

AUPRC median (IQR) 0.21 (0.18-0.24) 0.23 (0.18-0.26) 0.138 

AUROC median (IQR) 0.71 (0.66-0.74) 0.71 (0.63-0.78) 0.784 

 

5.5.4 Feature engineering and selection 

To reduce overfitting during feature selection, the number of boosting iterations was set to 5; 

performance per iteration is shown in Supplement D. Four distinct feature sets were employed: 

1. The mean, standard deviation, and trend over 2 hours, with a 2-hour observation window 

2. The mean over each 30-minute interval, with a 2-hour observation window 

3. The mean, standard deviation, and trend over 4 hours, with a 4-hour observation window 

4. The mean over each 1-hour interval, with a 4-hour observation window 

For each feature set, feature selection was performed using backward feature elimination. For 

feature set 1, seven features were selected, yielding an AUPRC of 0.27 (IQR 0.25-0.35) (Table 13). 

For feature set 2, nine features were selected, resulting in AUPRC 0.32 (IQR 0.26-0.35) (Figure 25). 

For feature set 3 and 4, 10 features were selected, resulting in AUPRC 0.26 (IQR 0.23-0.27) and 0.27 

(IQR 0.24-0.27), respectively. Feature set 2 was selected for further optimisation based on the 

highest median AUPRC score. Feature importance graphs and feature curves for each feature set 

are provided in Supplement C. 

Learning curves obtained before and after feature selection are shown in Figures 26 and 27. 
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Table 13. Overview of the different feature sets for Model 2, showing the selected features and performances as evaluated 

by AUPRC and AUROC. P-values indicate differences in performance compared with feature set 2. 

 Set 1 Set 2 Set 3 Set 4 

Observation window 2 hour 2 hour 4 hours 4 hours 

Features Mean, std, trend 

over 2 hours 

Mean over each 30 min Mean, std, trend 

over 4 hours 

Mean over each 1 

hour 

Selected features Mean SF 

IMV duration 

Mean nor 

Std of Pinsp 

Assisted duration 

Art. base excess 

Mean VT/IBW 

Mean SF 90-120 min 

Mean SF 60-90 min 

Mean nor 60-90 min 

IMV duration 

Art. base excess 

Mean VT/IBW 60-90 min 

Mean SF 0-30 min 

Glucose 

Mean SF 

Mean prop. 

Mean nor. 

Mean VT,exp 

IMV duration 

Art. base excess 

Glucose 

Chloride 

PaCO2 

Mean PEEP 

Mean SF 3-4 h 

Mean prop. 3-4 h 

Mean nor. 3-4 h 

Mean VT,exp  

IMV duration 

Art. base excess 

Glucose 

Chloride 

PaCO2 

Mean VT/IBW 3-4 h 

AUPRC median (IQR) 0.27 (0.25-0.35) 0.32 (0.26-0.35) 0.26 (0.23-0.27) 0.27 (0.24-0.27) 

p for AUPRC 0.539 - 0.065 0.042 

AUROC median (IQR) 0.74 (0.68-0.79) 0.76 (0.68-0.78) 0.73 (0.71-0.80) 0.73 (0.68-0.76) 

p for AUROC 0.348 - 0.652 0.461 

SF = SpO2/FiO2 ratio, VT = tidal volume, IWB = ideal body weight, nor = noradrenaline infusion rate, RCexp = expiratory time 

constant 

 

 

Figure 25. Feature performance curve illustrating the backward feature elimination process for Model 2 with feature set 2 

(mean over each 30 minutes). 0 denotes minutes 0-30, 1 denotes minutes 30-60, 2 denotes minutes 60-90, and 3 denotes 

minutes 90-120. The 5th 25th, 50th, 75th and 95th percentiles are indicated. 
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Figure 26. Learning curve of Model 2, illustrating the performance over the number of training samples, after reduction of 

boosting iterations, prior to feature selection. The, 5th, 25th,50th, 75th and 95th percentiles are indicated. 

 

 

Figure 27. Learning curve of Model 2, illustrating the performance over the number of training samples, after feature 

selection. The 5th, 25th, 50th, 75th and 95th percentiles are indicated. 
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5.5.5 Hyperparameter optimisation 

The AUPRC and AUROC after hyperparameter optimisation were respectively, 0.29 (IQR 0.23-0.35) 

and 0.76 (IQR 0.70-0.79). Details on optimised hyperparameter settings are provided in Supplement 

D. A learning curve obtained after hyperparameter optimisation is presented in Figure 28. 

 

Figure 28. Learning curve of Model 2, illustrating the performance over the number of training samples, obtained after 

feature selection and hyperparameter optimisation. The 5th, 25th, 50th, 75th and 95th percentiles are indicated. 

5.5.6 Training with data leakage 

Ten-fold cross-validation, grouped by patient ID, yielded a median AUPRC of 0.29 (IQR 0.23-0.35), 

whereas cross-validation without grouping, which introduces data-leakage, resulted in a median 

AUPRC of 0.24 (IQR 0.26-0.31, p=0.116) (Table 14). 

Table 14. Performance of Model 2 evaluated using 10-fold cross-validation with and without grouping by patient ID, reported 

as AUPRC and AUROC. 

 Grouped cross-validation Ungrouped cross-validation P 

AUPRC median (IQR) 0.29 (0.23-0.35) 0.24 (0.26-0.31) 0.116 

AUROC median (IQR) 0.76 (0.70-0.79) 0.70 (0.66-0.77) 0.020 
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5.5.7 Model validation 

Validation on the test sets yielded an AUPRC of 0.05 and an AUROC of 0.69 for the COVID test set, 

and an AUPRC of 0.03 and an AUROC of 0.66 for the non-COVID test set. Precision-recall and ROC 

curves are shown in Figures 29 and 30. For both test sets the target PPV of 0.80 was not achieved, 

and the sensitivity was extremely low (≤ 0.02) (Table 15). The distribution of predicted probabilities 

per event class after model calibration is shown in Figure 31. 

 

 

Table 15. Overview of the classification metrics for the COVID and non-COVID test set obtained with Model 2. 

 COVID test set Non-COVID test set 

Events 169 1083 

Controls 8237 76619 

AUPRC 0.05 0.03 

AUROC 0.69 0.66 

Sensitivity (recall) 0.02 0.00 

Specificity 1.00 1.00 

Positive predictive value (PPV) (precision) 0.20 0.60 

Negative predictive value (NPV) 0.98 0.99 

Figure 30. Receiver operating characteristic of validation of 

Model 2 on the COVID test dataset (AUC = 0.69) and non-

COVID test dataset (AUC = 0.66). 

Figure 29. 

 

Figure 29. Precision-recall curve of validation of Model 2 

on the COVID test dataset (AUC = 0.05) and non-COVID 

test dataset (AUC = 0.03). 

Figure 30 
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Figure 31.  Predicted probability distributions for the COVID and non-COVID test sets obtained with Model 2, shown as 

violin plots (top), boxplots (middle), and scatterplots (bottom). 

5.5.8 Model interpretation 

A global SHAP analysis is presented in Figure 32. This analysis shows that low SpO2/FiO2 ratios, a 

long duration of assisted mechanical ventilation in most samples, a long total duration of IMV in a 

subset of samples, and high noradrenaline infusion rates contribute most strongly to high predicted 

probabilities. In contrast, a high SpO2/FiO2 ratio and VT/IBW, are associated with low prediction 

scores.  

Local SHAP explanations for event samples with high and low predicted probabilities (Supplement 

F), together with a visualisation of the first decision tree (Supplement G), further demonstrate that 

model output is predominantly driven by the SpO2/FiO2 ratio. 

 

Figure 32. Global SHAP analysis of Model 2 showing the impact of feature values on the model output by aggregating local 

SHAP values across all training samples. 0 denotes minutes 0-30, 1 denotes minutes 30-60, 2 denotes minutes 60-90, and 

3 denotes minutes 90-120.
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6 Discussion 

In this study, two types of prediction models for mechanically ventilated ICU patients were 

developed. The first model was aimed to predict early respiratory deterioration (≤ 6 hours) following 

a premature switch from controlled to assisted ventilation. This model demonstrated moderate 

discriminative performance, with an AUROC of 0.78 for COVID patients and 0.76 for non-COVID 

patients. However, its clinical value appears limited, as performance was poor within clinically 

relevant probability ranges. The most important predictors for unreadiness were the FiO2 and 

propofol infusion rate. 

The second model was designed as a real-time alarm system to predict delayed respiratory 

deterioration (> 6 hours after the switch to assisted ventilation) due to the development of P-SILI. 

The SpO2/FiO2 ratio emerged as the most relevant predictor. Nevertheless, the selected features 

were insufficient to capture the relatively rare respiratory deterioration events 6-8 hours in advance, 

resulting in an extremely low AUPRC (≤ 0.05). 

6.1 Event definition 

A critical component of any prediction model is a well-defined event definition. In this retrospective 

study, establishing such a definition was challenging because event labelling depended on historical 

clinical decisions. The timing of recognition and intervention varied between clinicians and patients, 

resulting in events that differed in both nature and severity. 

The event definition used in this study was carefully discussed and established by experienced 

ventilation specialist and subsequently refined through iterative review of detected and missed 

events in a subsample of patients. However, due to time constraints, it was not feasible to assess 

the sensitivity and specificity of this definition in a large validation sample. Consequently, 

uncertainty remains regarding the accuracy of the event labels, which may have affected model 

performance. 

To improve specificity, additional restrictions were applied to reduce false-positive event labels. A 

minimum duration of three hours of controlled ventilation following the event was required, thereby 

excluding brief interventions, requiring sedation, not related to respiratory deterioration. In addition, 

a minimum FiO2 threshold of 40% in the hour before and after the transition was imposed, increasing 

the likelihood that events reflected true respiratory deterioration demanding augmented oxygen 

support. Nevertheless, FiO2 settings are clinician dependent, and no clear threshold was identified 

at which most events occurred (Figure 15).  

Based on reviewed samples, the only events not adequately distinguished by these restrictions were 

gastroscopies and bronchoscopies, which are typically accompanied by sedation and elevated FiO2 

levels. Whereas bronchoscopies are often associated with respiratory deterioration, gastroscopies 

are generally not, likely resulting in a small number of falsely labelled positive events. Furthermore, 

control samples within 24 hours prior to death were excluded. However, this time window should 
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likely have been extended. As illustrated by a control sample presented in Supplement F (1.4), a 

patient in a severely deteriorated condition 30 hours before death was incorrectly labelled as a 

control sample. Nevertheless, the model appropriately assigned a high predicted risk of respiratory 

deterioration to this sample. 

Despite these limitations, the event definition used in this study seems to be more specific than 

those employed in comparable studies, for example by Smit et al. (6), where switch failure was 

defined solely by a minimum duration of one hour of controlled ventilation following the event. 

Furthermore, during review and discussion of detected events, two distinct event patterns emerged: 

early failures occurring shortly after the switch to assisted ventilation, and delayed deteriorations 

following a period of initial stability with spontaneous breathing. The first group likely reflects 

patients who were not yet ready to resume spontaneous inspiratory effort, as the acute phase of 

respiratory failure had not fully resolved. In contrast, the second group appears to represent 

secondary deterioration during assisted ventilation, plausibly driven by P-SILI. Given the 

fundamentally different underlying pathophysiology, supported by previously observed differences 

in ventilatory parameters immediately prior to the transition to assisted ventilation (6), and the 

distinct clinical implications of these event types, two separate prediction models were developed 

to address them. 

6.2 Model 1 | Predicting respiratory deterioration due to 

unreadiness for assisted ventilation 

For predicting readiness for assisted ventilation, the length of the observation window used to 

derive aggregate features did not significantly influence model performance. Moreover, no specific 

period within the 0-6 hour window was identified as containing substantially more predictive 

information. Feature importance analyses and feature performance curves showed that only a 

limited number of features contributed meaningfully to model performance (Supplement C). SHAP 

analyses demonstrated that high FiO2, propofol infusion rate, and PEEP values were particularly 

predictive for subsequent respiratory deterioration, whereas low FiO2, PEEP, and tidal volume per 

kg ideal body weight, and high SpO2 and SpO2/FiO2 values were particularly predictive of the 

absence of respiratory deterioration (Figure 24). These findings are consistent with clinical 

experience, as most of these parameters are key indicators of a patient’s oxygenation status. In 

addition, previous prediction models have also identified PEEP and FiO2 as important predictors of 

respiratory status in ICU patients (41–43). Together, this concordance with clinical knowledge and 

existing literature supports the face validity of the model and reduces the likelihood that its 

performance is driven by noise in the dataset. 

The logistic regression model demonstrated performance comparable to that of the XGBoost model. 

Notably, the regression coefficients of individual features did not fully align with the feature 

importance scores derived from the XGBoost model, as detailed in Supplement B. This discrepancy 

is likely attributable to differences in the underlying model assumptions, as well as to overfitting 

effects in both models.  
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Comparison of learning curves across different stages of model development shows that feature 

reduction and hyperparameter optimisation, which substantially reduced model complexity, 

markedly decreased overfitting and slightly improved overall performance (Figures 17-19). For the 

final model, the training and validation curves converge to a stable plateau, suggesting that the 

available sample size was adequate for training this low-complexity XGBoost model. 

Introducing data leakage during model training did not result in improved performance (Table 6), 

arguing against the notion that the model first has to ‘learn’ patient-specific characteristics during 

training to make accurate predictions (44,45). In theory, this would allow data from the first hours 

of ICU admission to be used to calibrate the model to individual patients. However, in this setting, 

such an approach is unlikely to provide additional benefit. 

The model achieved an AUROC of 0.76-0.78 on the test sets, indicating a moderate discriminative 

and outperforming the AUROC of 0.58 reported by Smit et al. (6) for a similar task with a 72-hour 

prediction window. However, inspection of the ROC curves shows that this performance is largely 

driven by good discrimination at high sensitivity and low specificity, corresponding to low probability 

thresholds (Figure 20). This observation is consistent with the probability distribution plots (Figure 

23) and calibration curves (Supplement E), which demonstrate that the model is poorly capable of 

identifying samples with a high event probability. As a result, the model only provides added value 

in detecting events of respiratory deterioration when applied at low threshold probabilities (Figure 

22). In clinical practice, however, this is undesirable, as it would likely lead to unnecessary 

prolongation of controlled ventilation in many patients, exposing them to increased risks of 

complications such as respiratory muscle weakness (1). At the clinically relevant operating point 

with a target specificity of 0.80, sensitivity is very low (0.49-0.56), and comparable to a no-model 

strategy. Consequently, in its current form and performance level, this model does not appear to 

have clinical utility. 

The model demonstrated comparable performance on the COVID and non-COVID test sets, 

suggesting good generalisability to the broader ICU population at the LUMC with respiratory failure 

(PaO2/FiO2 ratio ≤ 40). 

6.3 Model 2 | Predicting respiratory deterioration due to 

development of P-SILI 

For predicting respiratory deterioration due to P-SILI, a real-time alarm system with hourly updates 

was envisaged. Accordingly, hourly samples were extracted from periods of assisted ventilation and 

labelled as control or event samples. This design, combined with the relatively low event incidence, 

resulted in a highly imbalanced dataset, with an event-to-non-event ratio of approximately 1:400 in 

COVID patients and even lower in non-COVID patients, yielding an extremely low a priori AUPRC. 

During model development, under sampling was applied to facilitate model comparison and reduce 

computational burden. However, during validation on the test sets, the original class proportions 

were retained to reflect real-world performance. 
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For this model, a two-hour observation window in combination with a six-hour horizon yielded the 

best performance. Although shorter prediction horizons might have improved predictive 

performance, this would offer limited clinical value, as clinicians are generally able to recognise 

respiratory deterioration within four hours before escalation to controlled ventilation becomes 

necessary. 

Within the XGBoost model, the SpO2/FiO2 ratio consistently emerged as the most relevant predictor. 

This parameter is indeed a key marker of lung function and oxygenation and is included in the global 

Acute Respiratory Distress Syndrome (ARDS) criteria (46,47). However, its value is strongly 

influenced by FiO2 settings, which are adjusted by clinicians. Consequently, increases in FiO2  

initiated by clinicians in response to deterioration may have been captured by the model, suggesting 

that clinical recognition of deterioration could have preceded model detection. SHAP analysis 

indicates that a high predicted event probability was particularly influenced by a low SpO2/FiO2 ratio 

(especially during the last 30 minutes of the observation window), a high noradrenaline infusion 

rate and a short duration of both assisted and total IMV duration, although these effects were not 

entirely consistent (Figure 32). Conversely, a low predicted event probability was primarily driven 

by high SpO2/FiO2 ratios and tidal volume per kg ideal body weight. 

Using these features, the model was able to achieve an AUPRC significantly higher than the a priori 

baseline. Nevertheless, the absolute performance remained far below a level that would be clinically 

useful, and the predefined target precision could not be reached. Given the extreme imbalance 

between events and non-events and the hourly sampling design, achieving a clinically acceptable 

precision appears infeasible in this population and model setup. 

As observed for the first model, logistic regression showed similar performance as XGBoost. In 

addition, introducing data leakage did not improve performance. 

6.4 Strengths and limitations 

This study has several limitations. First, the event definition was inherently imperfect, introducing 

uncertainty into the prediction targets and, consequently, the model outputs. Second, the sample 

size was limited. Although learning curves indicated that sufficient data were available to train an 

XGBoost model, both prediction tasks ultimately showed limited predictive performance. This may 

be attributable to high inter-patient variability, severe class imbalance, and the possibility that the 

underlying events are intrinsically difficult to predict from routinely collected ICU data. This latter 

explanation is supported by the low performance (AUROC 0.58-0.70) observed in a variation of 

Model 1 that used data from the first hour after the switch to assisted ventilation to predict early 

failure (Supplement H). Even with post-switch data, switch failure could not be reliably predicted. 

Furthermore, it has been shown that pre-switch characteristics for successful and failed first switch 

attempts are generally very similar (6), which was also the case in the LUMC dataset (Supplement 

I). Third, no separate validation dataset was reserved for model development and optimisation. 

Instead, 10-fold cross-validation was employed, which is a widely accepted and appropriate 

alternative given the limited sample size (48). However, during feature selection, a small degree of 

data leakage was introduced by determining the feature elimination order using information from 
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all ten folds. Fourth, only two different types of machine learning models, XGBoost and logistic 

regression, were evaluated. Although other machine learning techniques might have yielded 

improved performance, previous studies suggest that other simple models, suitable for this amount 

of data, often achieve comparable or lower performances than XGBoost (42,49,50). 

Despite these limitations, the study also has notable strengths. First, the event definition was 

carefully developed through expert consultation, and respiratory deterioration events were stratified 

into two clinically distinct types. This distinction allowed for the development of separate models 

tailored to their respective clinical implications. Second, the LUMC ICU dataset is a unique, highly 

granular dataset with minimal missing data, providing access to a broad range of haemodynamic 

and ventilatory parameters. Third, extensive feature exploration and selection, and stepwise 

hyperparameter optimisation were performed. This approach effectively reduced overfitting. Finally, 

comprehensive model evaluation was conducted using performance measures aligned with the 

intended clinical applications. Validation on unseen data from distinct patient populations further 

enabled a meaningful assessment of generalisability.  

6.5 Clinical implications 

With the current performance levels, neither model is suitable for clinical use. If future retrospective 

performance improves to a clinically acceptable level, prospective validation would be required to 

assess effects on treatment outcome and obtain user feedback. In addition, appropriate clinical 

interventions corresponding to different predicted probability thresholds would need to be defined. 

Careful consideration of implementation is essential, as key input variables such as FiO2 and PEEP 

are clinician-dependent and may change once clinicians are aware of the model’s use. Moreover, 

users must be aware that the models were trained and validated exclusively on LUMC ICU patients 

ventilated for at least 48 hours with a PaO2/FiO2 ratio ≤ 40 kPa and are therefore not applicable to 

all ICU patients. Finally, technical feasibility should be explored, ideally integrating the models into 

the PDMS, where predictions could be accessed or activated at the clinician’s discretion. 

6.6 Future directions 

Future research should primarily focus on improving model performance. This may be achieved by 

using larger datasets in combination with more advanced modelling approaches. In particular, 

recurrent neural networks could directly leverage high-frequency ICU data rather than aggregated 

features, enabling more effective capture of temporal dynamics in ventilatory and haemodynamic 

parameters. Such models have demonstrated promising performance in related prediction tasks for 

ICU patients (51). 

For the hourly updated P-SILI prediction model, an alternative design should be considered. The 

current approach inherently results in extreme class imbalance, making it unlikely to achieve 

clinically useful performance. Potential solutions include increasing the update interval or focusing 

on patient populations with a higher event density. 
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In addition, given the limited number of predictive features, especially for P-SILI, more fundamental 

research is needed to identify key pathophysiological drivers that could serve as meaningful 

predictors. 

Once satisfactory performance is achieved, retrospective validation on external hospital datasets 

should be performed, followed by prospective validation to assess clinical impact and effects on 

patient outcomes. 
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7 Conclusion 

In this study, two prediction models were developed to support clinical decision-making during the 

transition from controlled to assisted ventilation, and to alert clinicians to respiratory deterioration 

during assisted mechanical ventilation. The first model, aimed at predicting early respiratory 

deterioration due to premature switching, demonstrated moderate discriminative performance but 

lacked sufficient clinical utility at relevant operating points. The second model, designed as a real-

time alarm system to predict delayed deterioration due to P-SILI, showed very limited predictive 

value, largely due to extreme class imbalance and the scarcity of informative predictors. 

Although extensive exploration of optimal observation windows, prediction horizons, and predictive 

features, as well as careful model optimisation, were performed, both models remain unsuitable for 

clinical implementation in their current form. These findings highlight the complexity of predicting 

respiratory deterioration in mechanically ventilated ICU patients and underscore the challenges 

posed by retrospective event labelling, and clinician-dependent parameters. 

Nevertheless, this study provides a careful and clinically relevant model design and establishes a 

transparent and reproducible framework for future work. With larger datasets and advanced 

modelling techniques capable of leveraging high-frequency ICU data, clinically useful prediction 

models may become feasible. 
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A Input variables 

Table A1. Overview of variables used as input features specified for Model 1 and 2, with percentages of missing data and 

availability per record in the COVID dataset. 

Variable Type Metric % missing 

data 

Nr records 

available 

Model 

1 

Model 

2 

Heartrate Monitor Mean, std, trend 0.9 374 ✓ ✓ 

Mean arterial blood 

pressure 

Monitor Mean, std, trend 

1.3 374 

✓ ✓ 

Systolic arterial blood 

pressure 

Monitor Mean, std, trend 

1.3 374 

✓ ✓ 

Diastolic arterial blood 

pressure 

Monitor Mean, std, trend 

1.4 374 

✓ ✓ 

Perfusion flow index Monitor Mean, std, trend 2.0 372 ✓ ✓ 

SpO2 Monitor Mean, std, trend 2.0 372 ✓ ✓ 

FiO2 Ventilator Mean, std, trend 4.3 374 ✓ ✓ 

Respiratory rate Ventilator Mean, std, trend 4.3 374 ✓ ✓ 

Spontaneous respiratory 

rate 

Ventilator Mean, std, trend 

4.4 374 

 ✓ 

Expiratory tidal volume Ventilator Mean, std, trend 4.6 374 ✓ ✓ 

Inspiratory tidal volume Ventilator Mean, std, trend 4.6 374 ✓ ✓ 

I:E ratio Ventilator Mean 5.0 374 ✓ ✓ 

End-tidal CO2 Ventilator Mean, std, trend 4.5 373 ✓ ✓ 

Spontaneous minute 

ventilation 

Ventilator Mean, std, trend 

5.1 374 

 ✓ 

Rinsp Ventilator Mean, std, trend 8.8 374 ✓ ✓ 

VT/IBW Ventilator Mean, std, trend 5.0 374 ✓ ✓ 

Pinsp Ventilator Mean, std, trend 5.4 374 ✓ ✓ 

Minute ventilation Ventilator Mean, std, trend 4.5 374 ✓ ✓ 

Pmean Ventilator Mean, std, trend 4.5 374 ✓ ✓ 

RCexp Ventilator Mean, std, trend 4.5 374 ✓ ✓ 

PEEP Ventilator Mean, std, trend 4.5 374 ✓ ✓ 

Auto PEEP Ventilator Mean, std, trend 4.7 374 ✓ ✓ 

Ppeak Ventilator Mean, std, trend 4.9 374 ✓ ✓ 

Flowinsp Ventilator Mean, std, trend 4.9 374 ✓ ✓ 

Flowexp Ventilator Mean, std, trend 5.0 374 ✓ ✓ 

Compliance Ventilator Mean, std, trend 5.7 374 ✓ ✓ 

Delta P Ventilator Mean, std, trend 5.4 374 ✓ ✓ 

PF ratio Ventilator Mean, std, trend 15.8 374 ✓ ✓ 

RSBI Ventilator Mean, std, trend 4.6 374  ✓ 

SF ratio Ventilator Mean, std, trend 4.7 374 ✓ ✓ 

IMV duration Ventilator  0 374 ✓ ✓ 

Assisted IMV duration Ventilator  0 374  ✓ 
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Variable Type Metric % missing 

data 

Nr records 

available 

Model 

1 

Model 

2 

Sufentanil Medication Mean 0 374 ✓ ✓ 

Noradrenaline Medication Mean 0 374 ✓ ✓ 

Propofol Medication Mean 0 374 ✓ ✓ 

Rocuronium Medication Mean 0 374 ✓ ✓ 

Midazolam Medication Mean 0 374 ✓ ✓ 

Dexmedetomidine Medication Mean 0 374 ✓ ✓ 

Remifentanil Medication Mean 0 374 ✓ ✓ 

Dobutamine Medication Mean 0 374 ✓ ✓ 

Glucose Lab Last value 6.8 374 ✓ ✓ 

Potassium Lab Last value 8.1 374 ✓ ✓ 

Chloride Lab Last value 8.4 374 ✓ ✓ 

Free calcium Lab Last value 10.0 374 ✓ ✓ 

Sodium Lab Last value 8.8 374 ✓ ✓ 

Arterial pCO2 Lab Last value 8.8 374 ✓ ✓ 

Arterial pH Lab Last value 8.9 374 ✓ ✓ 

Arterial pO2 Lab Last value 8.9 374 ✓ ✓ 

Arterial Alkali Reserve Lab Last value 8.9 374 ✓ ✓ 

Arterial Base Excess Lab Last value 8.9 374 ✓ ✓ 

Lactate Lab Last value 9.1 374 ✓ ✓ 

Arterial O2 saturation Lab Last value 10.3 374 ✓ ✓ 

Arterial Ht Lab Last value 10.4 374 ✓ ✓ 

Age Other  0 374 ✓ ✓ 

Sex Other  0 374 ✓ ✓ 

BMI Other  0 374 ✓ ✓ 
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B Logistic regression coefficients 

1 Model 1 

 

Figure B1. The 25 features with the largest absolute regression coefficients resulting from the logistic regression model 

fitted in Section 5.4.2. 

 

Correlation between logistic regression coefficients and XGBoost feature importance 

The correlation between the logistic regression coefficients and the XGBoost gain metric for each 

feature was explored using a scatter plot (Figure B2). Some degree of correlation is expected, as 

both metrics reflect a feature’s influence on model output. Notable discrepancies were observed 

for, among others, FiO2 (low regression coefficient, high gain) and arterial alkali reserve (high 

regression coefficient, low gain), whereas the SpO2/FiO2 ratio and PEEP showed relatively high 

values for both the regression coefficient and gain.  

The inconsistencies can partially be explained by the substantial overlap in feature value 

distributions between event and control samples (Figure B3).  Where XGBoost may still exploit 

these features effectively by performing multiple splits and combining them with other features,  

logistic regression is limited by its assumption of a linear relationship with the log-odds of the event 

probability. In addition, the relatively large number of input features compared with the sample size 

likely resulted in overfitting in both models. This may have further contributed to discrepancies 

between the observed regression coefficients and XGBoost gain and the true influence of these 

features on event probability. 
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Figure B2. Scatterplot of the absolute logistic regression coefficient and the XGBoost feature importance (gain) for each 

feature, obtained by the fitted models in Section 5.4.2. 

 

 

Figure B4. Feature value distributions for control and event samples of mean FiO2, arterial alkali reserve, mean SpO2/FiO2 

ratio and mean PEEP.  
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2 Model 2 

 

Figure B5. The 25 features with the largest absolute regression coefficients resulting from the logistic regression model 

fitted in Section 5.5.3. 
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C Feature selection 

1 Model 1 

1.1 Feature set 1 

Mean, std, and trend over 1 hour, with a 1-hour observation window. 

 

Figure C1. Top 25 feature importance scores, calculated as the gain, from XGBoost Model 1 with feature set 1. 
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1.2 Feature set 2 

Mean over each 20-minute interval, with a 1-hour observation window. 

 

Figure C2. Top 25 feature importance scores, calculated as gain, from XGBoost Model 1 with feature set 2. 0 denotes minutes 

0-20, 1 denotes minutes 20-40, and 2 denotes minutes 40-60. 

 

 

Figure C3. Feature curve illustrating the backward feature elimination process for Model 1 with feature set 2. 0 denotes 

minutes 0-20, 1 denotes minutes 20-40, and 2 denotes minutes 40-60. The 5th, 25th, 50th, 75th and 95th percentiles are 

indicated. 
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1.3 Feature set 3 

Mean, std, and trend over 6 hours, with a 6-hour observation window. 

 

Figure C4. Top 25 feature importance scores, calculated as gain, from the XGBoost Model 1 with feature set 3. 

 

Figure C5. Feature curve illustrating the forward feature selection process for Model 1 with feature set 3. The 5th, 25th, 

50th, 75th and 95th percentiles, obtained using 10-fold cross-validation, are indicated. 
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1.4 Feature set 4 

Mean over each 2-hour interval, with 6-hour observation window. 

 

Figure C6. Top 25 feature importance scores, calculated as gain, from XGBoost Model 1 with feature set 4. 0 denotes hours 

0-2, 1 denotes hours 2-4, and 2 denotes hours 4-6. 

 

Figure C7. Feature curve illustrating the forward feature selection process for Model 1 with feature set 4. 0 denotes hours 

0-2, 1 denotes hours 2-4, and 2 denotes hours 4-6. The 5th, 25th, 50th, 75th and 95th percentiles are indicated. 
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2 Model 2 

2.1 Feature set 1 

Mean, std, and trend over 2 hours, with a 2-hour observation window. 

 

Figure C8. Top 25 feature importance scores, calculated as gain, from XGBoost Model 2 with feature set 1. 

 

Figure C9. Feature performance curve illustrating the backward feature elimination process for Model 2 with feature set 1. 

The 5th, 25th, 50th, 75th and 95th percentiles are indicated. 
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2.2 Feature set 2 

Mean over each 30-minute interval, with a 2-hour observation window. 

 

Figure C10. Top 25 feature importance scores, calculated as gain, from XGBoost Model 2 with feature set 2. 0 denotes 

minutes 0-30, denotes minutes 30-60, 2 denotes minutes 60-90, and 3 denotes minutes 90-120. 
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2.3 Feature set 3 

Mean, std, and trend over 4 hours, with a 4-hour observation window. 

 

Figure C11. Top 25 feature importance scores, calculated as gain, from XGBoost Model 2 with feature set 3. 

 

Figure C12. Feature performance curve illustrating the backward process for Model 2 with feature set 3. The 5th 25th, 50th, 

75th and 95th percentiles are indicated. 
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2.4 Feature set 4 

Mean over each 1-hour interval, with a 4-hour observation window. 

 

Figure C13. Top 25 feature importance scores, calculated as gain, from XGBoost Model 2 with feature set 4. 0 denotes hour 

0-1, 1 denotes hour 1-2, 2 denotes hour 2-3, and 3 denotes hour 3-4. 

 

Figure C12. Feature performance curve illustrating the backward feature elimination process for feature set 2 (mean over 

each 1 hour). 0 denotes hour 0-1, 1 denotes hour 1-2, 2 denotes hour 2-3, and 3 denotes hour 3-4. The 5th 25th, 50th, 75th and 

95th percentiles are indicated. 
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D Hyperparameter optimisation 

1 Definitions of XGBoost hyperparameters 

Table D1. Overview of the major hyperparameters for the XGBoost model. 

Hyperparameter Definition Class 

Learning rate Scaling factor for newly added leaf weights after 

each boosting iteration. Increasing this value 

reduces the influence of individual trees. 

Learning 

process 

Number of estimators Number boosting iterations, in each iteration one 

tree is added to the ensemble. The optimal number 

of estimators depends on the learning rate. 

Learning 

process 

Max depth Maximum depth of a tree. Increasing this value 

increases model complexity and the risk of 

overfitting. 

Complexity 

Minimum child weight Minimum required sum of instance weights (amount 

of information) in a leaf node to perform a split. 

Increasing this value, reduces tree complexity and 

thereby overfitting. 

Complexity 

Subsample Fraction of random samples used for each boosting 

iteration. Using subsampling prevents overfitting. 

Subsampling 

Column sample by tree Fraction of random features used for each boosting 

iteration. Using feature subsampling prevents 

overfitting. 

Subsampling 

Alpha (L1) Regularisation term which sets leaf weights to zero, 

resulting in a simpler model. Reduces overfitting. 

Regularisation 

Lamda (L2) Regularisation term which decreases leaf weights, 

resulting in a more stable model. Reduces 

overfitting. 

Regularisation 
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2 Grid search values 

Hyperparameter Values 

max_depth 3, 5, 7 

min_child_weight 1, 3, 5 

subsample 0.6, 0.8, 1.0 

colsample_bytree 0.6, 0.8, 1.0 

alpha 0, 0.01, 0.1, 1, 100 

lambda 0, 0.01, 0.1, 1, 100 

Learning rate 0.3, 0.1, 0.05, 0.01 

 

3 Optimised settings Model 1 

Hyperparameter Value 

n_estimators 20 

max_depth 3 

min_child_weight 1 

subsample 1 

colsample_bytree 0.6 

alpha 0 

lambda 1 

learning_rate 0.05 

 

4 Optimised settings Model 2 

Hyperparameter Value 

n_estimators 20 

max_depth 3 

min_child_weight 5 

subsample 0.6 

colsample_bytree 0.6 

alpha 0.01 

lambda 1 

learning_rate 0.1 
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4 Iterative learning curves Model 1 

 

Figure D1. Performance over iterations for Model 1 with prior to feature selection with default hyperparameter settings. 

 

Figure D2. Performance over iteration for Model 1 after feature selection with default hyperparameter settings. 

 

Figure D3. Performance over iterations for Model 1 after after feature selection and hyperparameter optimisation. 
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5 Iterative learning curves Model 2 

 

Figure D4. Performance over iterations for Model 2 with prior to feature selection with default hyperparameter settings. 

 

Figure D5. Performance over iteration for Model 2 after feature selection with default hyperparameter settings. 

 

Figure D3. Performance over iterations for Model 2 after after feature selection and hyperparameter optimisation. 
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E Model calibration 

1 Model 1 

 

Figure E1. Calibration curves for Model 1 for the COVID training set, COVID test set, and non-COVID test set before 

calibration. 

 

 

Figure E2. Calibration curves for Model 1 for the COVID training set, COVID test set, and non-COVID test set, after model 

calibration on each dataset. 
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2 Model 2 

 

Figure E3. Calibration curves for Model 2 for the COVID training set, COVID test set, and non-COVID test set before 

calibration. 

 

Figure E4. Calibration curves for Model 2 for the COVID training set, COVID test set, and non-COVID test set, after model 

calibration on each dataset. 
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F Case descriptions 

1 Model 1 

1.1 Event sample with a high predicted probability 

A 61-year-old female patient with COVID-19 pneumonia was intubated due to hypoxaemia and 

respiratory exhaustion. After 2.5 hours of controlled mechanical ventilation, she was transitioned to 

assisted ventilation. Controlled ventilation was reinitiated three hours later (Figure F2). During 

assisted ventilation preceding the event, the respiratory rate ranged from 20 to 30 breaths per 

minute, with an rapid shallow breating index (RSBI) of 40–60. The PaO2/FiO2 ratio during assisted 

ventilation was 14.7 kPa and decreased to 13.0 kPa after the event. The FiO₂ around the event was 

60 to 70%. The patient was sedated with propofol and sufentanil, with no dose adjustments made  

around the event. 

The combination of a high FiO2, a low SpO2/FiO2 ratio, a high propofol infusion rate, and a low SpO2 

resulted in a relatively high predicted event probability of 0.41 (uncalibrated) (Figure F1). 

 

Figure F1. Local SHAP explanation for an event sample with a high predicted probability (p=0.41), showing the feature 

values and their additive contributions to the model output (expressed as log odds). 
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1.2 Event sample with a low predicted probability 

A 67-year-old female patient with COVID-19 pneumonia was intubated due to respiratory 

insufficiency. On day 28 of mechanical ventilation, after four days of continuous assisted ventilation, 

she was transitioned to controlled ventilation, based on spontaneous respiratory rate, for four hours. 

She was subsequently switched back to assisted ventilation after which an event occurred five 

hours later (Figure F4).  

During assisted ventilation preceding the event, the respiratory rate ranged from 20 to 30 breaths 

per minute, with an RSBI of 45-75. The PaO2/FiO2 ratio shortly after the event was 22.5 kPa, and 

the FiO2 around the event ranged from 40 to 45%. One hour before the event, the clonidine infusion 

rate was increased. The patient was hypotensive, and the noradrenaline infusion rate was increased 

one hour after the event. Following this episode, the patient recovered and was successfully weaned 

from mechanical ventilation within 12 days. 

The combination of a relatively low FiO2, a high SpO2/FiO2 ratio, and the absence of propofol infusion 

resulted in a relatively low predicted event probability of 0.10 (uncalibrated) (Figure F3). 

 

Figure F3. Local SHAP explanation for an event sample with a low predicted probability (p=0.10), showing the feature values 

and their additive contributions to the model output (expressed as log odds). 



Supplementary Materials  78 

 

 

 

 

F
ig

u
re

 
F

4
. 

T
im

e
lin

e
 

o
f 

re
sp

ir
a
to

ry
 

ra
te

, 
ti

d
a

l 
vo

lu
m

e
, 

P
a
O

2
/F

iO
2
 

ra
ti

o
, 

F
iO

2
, 

a
n

d
 

ve
n

ti
la

ti
o
n

 
m

o
d

e
 

su
rr

o
u

n
d

in
g

 t
h

e
 e

ve
n

t,
 f

o
r 

a
n

 e
ve

n
t 

s
a
m

p
le

 w
it

h
 a

 l
o
w

 p
re

d
ic

te
d

 p
ro

b
a
b

il
it

y 
(p

=
0
.1

0
).

 



Supplementary Materials  79 

 

 

 

1.3 Control sample with a low predicted probability 

A 63-year-old female patient with COVID-19 pneumonia was intubated due to respiratory 

insufficiency. This control sample was drawn from week 7 of mechanical ventilation during a 2.5-

hour period of controlled ventilation, based on spontaneous respiratory rate (Figure F6). At that 

time, the patient had been on assisted ventilation since one week, alternated with multiple short 

periods of controlled ventilation similar to this control sample.  

PaO2/FiO2 ratio was approximately 30 kPa, and the FiO2 remained stable at 35%. Following this 

time point, periods of controlled ventilation became less frequent, and the patient was successfully 

weaned from mechanical ventilation within 12 days. 

The combination of a relatively low FiO2, a high SpO2/FiO2 ratio, and a low tidal volume per kg ideal 

body weight in a relatively low predicted event probability of 0.08 (uncalibrated) (Figure F5). 

 

Figure F5. Local SHAP explanation for a control sample with a low predicted probability (p=0.08), showing the feature values 

and their additive contributions to the model output (expressed as log odds). 
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1.4 Control sample with a high predicted probability 

A 70-year-old female patient with COVID-19 pneumonia was intubated due to respiratory 

insufficiency. She was switched to assisted ventilation on day 10 of mechanical ventilation and did 

not return to controlled ventilation for longer than three hours thereafter, but died 30 hours later. 

The PaO2/FiO2 ratio remained consistently around 10 kPa, with the FiO2 at 80% or higher throughout 

this period (Figure F8). The patient was ventilated in prone position; however, ventilation and 

oxygenation failed to improve, and treatment was subsequently withdrawn. 

The combination of a high FiO2, a low SpO2/FiO2 ratio, a high propofol infusion rate, and low SpO2  

resulted in a relatively high predicted event probability of 0.40 (uncalibrated) (Figure F7). 

 

Figure F7. Local SHAP explanation for a control sample with a high predicted probability (p=0.40), showing the feature 

values and their additive contributions to the model output (expressed as log odds). 
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2 Model 2 

2.1 Event sample with a high predicted probability 

Figure F9 shows an event sample characterised by relatively low SpO2/FiO2 ratios, a short total IMV 

duration, and a low tidal volume per kg ideal body weight, resulting in a relatively high predicted 

probability of 0.60. 

 

Figure F9. Local SHAP explanation for an event sample with a high predicted probability (p=0.60), showing the feature 

values and their additive contributions to the model output (expressed as log odds). 

2.2 Event sample with a low predicted probability 

Figure F10 shows an event sample with high SpO2/FiO2 ratios and a relatively long duration of 

assisted ventilation, which resulted in a relatively low predicted probability of 0.03. 

 

Figure F10. Local SHAP explanation for an event sample with a low predicted probability (p=0.03), showing the feature 

values and their additive contributions to the model output (expressed as log odds). 
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2.3 Control sample with a low predicted probability 

Figure F11 shows a control sample with high SpO2/FiO2 ratios and a long duration of assisted 

ventilation, which resulted in a relatively low predicted probability of 0.03. 

 

Figure F11. Local SHAP explanation for a control sample with a low predicted probability (p=0.03), showing the feature 

values and their additive contributions to the model output (expressed as log odds). 

2.4 Control sample with a high predicted probability 

Figure F12 shows a control sample characterised by relatively low SpO2/FiO2 ratios, a short total 

IMV duration, resulting in a relatively high predicted probability of 0.44, despite a relatively high 

tidal volume per kg ideal body weight. 

 

Figure F12. Local SHAP explanation for a control sample with a high predicted probability (p=0.44), showing the feature 

values and their additive contributions to the model output (expressed as log odds). 



 

 

 

G Decision tree visualisations 

1 Model 1 

 

Figure G1. Visualisation of the first decision tree from the XGBoost ensemble Model 1. 
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2 Model 2 

 

Figure G2. Visualisation of the first decision tree from the XGBoost ensemble Model 2. 
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H Model 1B 

1 Model design 

A variation on Model 1 was developed, with model input from one hour before and one hour after 

the switch from controlled to assisted ventilation (Figure G1).  

 

Figure G1. Overview of the observation window and prediction window aligned with ventilation modes and moment of 

switching from controlled to assisted ventilation. 

2 Model development 

Four different types of input features were used for ventilatory and haemodynamic parameters: 

• The mean over the last hour before the switch X0 

• The mean over the first hour after the switch X1 

• The absolute change: X1-X0 

• The relative change: 
𝑋1−𝑋0

𝑋0
 

Mean feature importance was determined via 10-fold cross-validation and forward feature selection 

in descending order of importance was employed (Figure 2). Eight features were selected, resulting 

in a median AUROC of 0.70 (IQR 0.63-0.75).  

 

Figure G2. Feature performance curve illustrating the backward feature elimination process. 0 denotes the hour before the 

switch and 1 denotes the hour after the switch. The 5th, 25th, 50th, 75th and 95th percentiles are indicated. 
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After hyperparameter optimisation the AUROC yielded 0.72 (IQR 0.63-0.79). Learning curves 

obtained after feature selection and hyperparameter optimisation are presented in Figures G3 and 

G4. 

 

Figure G3. Learning curve, illustrating the performance over the number of training samples, obtained after feature 

selection. The 5th, 25th, 50th, 75th and 95th percentiles are indicated. 

 

 

Figure G4. Learning curve, illustrating the performance over the number of training samples, obtained after feature 

selection and hyperparameter optimisation. The 5th, 25th, 50th, 75th and 95th percentiles are indicated. 
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3 Model validation 

Validation on the COVID and non-COVID test sets yielded an AUROC of 0.70 and 0.58 respectively 

(Figure G5). 

 

Figure G5. Receiver operating characteristic of validation on the COVID test dataset (AUC = 0.70) and non-COVID test 

dataset (AUC = 0.58). 

 

4 Model interpretation 

A global SHAP analysis is presented in Figure G6. This analysis indicates the relative change in 

propofol and the mean SpO2 after the switch influence model output most strongly. 

 

Figure G6. Global SHAP analysis showing the impact of feature values on the model output by aggregating local SHAP 

values across all training samples. 0 denotes the hour before the switch and 1 denotes the hour after the switch. 
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I Switch conditions 

1 Methods 

To gain insight into current practices regarding the first switch from controlled to assisted 

ventilation at the ICU of the LUMC, conditions during the hour preceding the first switch were 

analysed. All patients included in this study (COVID and non-COVID patients with ≥ 48 h of invasive 

mechanical ventilation and a PaO2/FiO2 ratio < 40 kPa) were included if invasive mechanical 

ventilation was started in a controlled ventilation mode. 

Time to the first switch, mean haemodynamic and ventilatory parameters over the final hour before 

the switch, and the most recent arterial blood gas values were reported as median (IQR). 

Comparison were made between patients who experienced an event of respiratory deterioration (as 

defined in Section 4.4) within six hours (failure) and those who did not (success), as well as for 

patients who experienced an events within 72 hours and those who did not. Differences between 

the success and failure groups were assessed using the Mann-Whitney U test with Holm-Bonferroni 

correction for multiple testing, applying a two-sided significance level of 0.05. 

 

2 Results 

In total, first switch attempts in 746 patients were analysed, of whom 121 (16.2%) experienced 

failure within six hours and 148 (19.8%) within 72 hours (Tables I1 and I2). The median time from 

initiation of mechanical ventilation to the first switch to assisted ventilation was 47.9 hours (IQR 

19.0-87.9). Time to switch was longer in the success groups (48.2 and 48.5 hours) than in the 

failure groups (43.0 and 42.9 hours), although these differences were not statistical significant.  

Small, but significant differences between the success and failure groups were observed for the 

FiO2, Ppeak, Pmean, PEEP, SpO2/FiO2 ratio, PaO2/FiO2 ratio, and arterial O2 saturation, for both six-

hour and 72-hour comparisons. In addition, minute volume and inspiratory flow were significantly 

lower for the success 72-h groups.  A complete overview of all analysed parameters is provided 

Tables I1 and I2. 
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3 Interpretation 

The timing of the first switch to assisted ventilation varied substantially between patients. The 

median time from the start of mechanical ventilation to the first switch was 47.9 hours, which is 

relatively late compared with the findings of Smit et al. (1.3-1.8 days) (6) and Haudebourg et al. (9 

hours) (8), but earlier than reported by Pérez et al. (3 days) (5). In addition, Smit et al. observed 

that failed switch attempts occurred earlier than successful ones, which is consistent with the 

trend observed in our analysis. 

A failure rate of 19.8% within 72 hours is remarkably low compared with previously reported rates 

of 30%-67% (5–8), three of which also included COVID-19 patients. A plausible explanation is the 

stricter event definition applied in the present analysis. Transitions back to controlled ventilation 

lasting less than three hours, or occurring with with an FiO2 below 40% were not classified as 

failure, which likely resulted in lower failure rates compared with similar studies. Furthermore, the 

seemingly different timing of switches may contribute to this low failure rate.  

Differences in pre-switch parameters between the success and failure groups were observed for 

FiO2,  Ppeak, Pmean, PEEP, SpO2/FiO2 ratio, PaO2/FiO2 ratio, and arterial O2 saturation. This is 

consistent with previous studies reporting associations between switch failure and FiO2, 

PaO2/FiO2 ratio, and ventilatory pressures (6–8). Other studies have also reported small 

differences gas exchange parameters (pH, PaO2, PaCO2, base excess, lactic acid) which were not 

observed in the present analysis  (6–8).  
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Table I1. Overview of clinical parameters in one hour before the first switch attempt to assisted ventilation. P values indicate 

the difference between the success group (no event within six hours) and failure group (event within six hours).  

 Overall Success (> 6h) Failure (≤ 6h) Succes vs. Failure 

n (%) 746 625 (83.8) 121 (16.2)   

            

 Median (IQR) Median (IQR) Median (IQR) p corrected p 

Time to switch (h) 47.9 (19.0 87.9) 48.2 (19.1 89.7) 43.0 (18.5 84.4) 0.575 1.000 
           

 

Heart rate (/min) 82.5 (70.2 96.8) 83.4 (70.6 97.1) 76.9 (69.2 90.3) 0.018 0.366 

MAP (mmHg) 77.0 (72.0 84.7) 76.9 (71.8 84.8) 77.8 (72.8 83.5) 0.556 1.000 

Noradrenaline (g/kg/min) 0.05 (0.00 0.14) 0.05 (0.00 0.15) 0.04 (0.01 0.10) 0.114 1.000 

            

FiO2 (%) 40.2 (34.7 49.9) 40.0 (32.5 49.3) 45.3 (40.0 51.0) <0.001 <0.001* 

SpO2 (%) 95.6 (93.8 97.3) 95.6 (93.9 97.4) 94.8 (93.1 96.9) 0.017 0.366 

Respiratory rate (/min) 17.6 (15.2 20.9) 17.5 (15.2 20.6) 18.8 (15.1 22.2) 0.049 0.923 
           

 

Pinsp (cmH2O)  12.8 (11.0 15.0) 12.8 (11.1 14.9) 12.8 (10.1 15.1) 0.896 1.000 

ΔP (cmH2O) 10.2 (8.4 12.1) 10.1 (8.4 12.0) 10.3 (8.4 12.6) 0.553 1.000 

Pplat (cmH2O) 20.4 (17.0 24.0) 20.0 (16.9 24.0) 22.0 (18.8 24.7) 0.014 0.309 

Ppeak (cmH2O) 22.2 (18.7 25.4) 21.9 (18.4 25.1) 23.5 (20.7 26.3) <0.001 0.014* 

Pmean (cmH2O) 13.2 (10.7 15.8) 13.1 (10.3 15.5) 14.9 (12.0 17.0) <0.001 0.001* 

PEEP (cmH2O) 8.7 (6.3 11.7) 8.3 (6.0 11.0) 10.0 (7.9 12.2) <0.001 0.002* 

Auto PEEP (cmH2O) 0.6 (0.3 1.2) 0.6 (0.3 1.2) 0.7 (0.3 1.3) 0.202 1.000 
           

 

VT (mL) 486 (412 561) 487 (413 557) 473 (411 592) 0.797 1.000 

VT/IBW (mL/kg) 7.0 (6.2 7.7) 7.0 (6.2 7.7) 7.1 (6.3 7.9) 0.580 1.000 

Minute ventilation (L/min) 8.5 (7.3 9.8) 8.5 (7.3 9.7) 8.9 (7.9 10.1) 0.013 0.297 
           

 

Inspiratory flow (mL/s) 40.8 (35.5 46.0) 40.6 (35.2 45.5) 41.8 (37.7 48.4) 0.003 0.085 

Expiratory flow (mL/s) 38.7 (34.0 43.4) 38.5 (33.8 43.2) 39.4 (35.4 43.9) 0.101 1.000 

Compliance (mL/cmH2O) 53.9 (40.1 71.8) 54.0 (40.3 72.0) 53.5 (38.1 69.8) 0.816 1.000 

Rinsp (cmH2O) 11.6 (9.0 14.4) 11.8 (9.2 14.5) 10.6 (8.3 12.9) 0.005 0.132 
           

 

ETCO2 (kPa) 5.0 (4.5 5.7) 5.1 (4.5 5.7) 5.0 (4.4 5.6) 0.318 1.000 

V'CO2 (mL/min) 182.0 (151.8 219.0) 180.4 (151.4 216.3) 186.7 (157.3 233.0) 0.316 1.000 
           

 

SpO2/FiO2 ratio 2.4 (2.0 2.8) 2.4 (2.0 3.0) 2.1 (1.8 2.4) <0.001 <0.001* 

PaO2/FiO2 ratio 25.4 (19.8 33.7) 26.5 (20.8 35.1) 21.8 (17.6 26.8) <0.001 <0.001* 
           

 

Art. PH 7.40 (7.35 7.44) 7.40 (7.35 7.44) 7.39 (7.35 7.44) 0.804 1.000 

PaCO2 (kPa) 5.6 (5.0 6.3) 5.6 (5.0 6.2) 5.9 (5.2 6.8) 0.003 0.083 

PaO2 (kPa) 10.2 (9.1 11.9) 10.3 (9.2 12.0) 10.0 (8.8 11.3) 0.006 0.149 

Art. O2 saturation (%) 95.0 (93.0 96.0) 95.0 (93.8 96.0) 94.0 (93.0 96.0) <0.001 0.010* 

Art. Alkali Reserve (mmol/L) 25.0 (22.0 30.0) 25.0 (22.0 29.0) 27.0 (22.0 31.5) 0.055 0.997 

Art. Base Excess (mmol/L) 0.0 (-3.0 5.0) 0.0 (-3.0 4.0) 2.0 (-3.0 6.0) 0.146 1.000 

Lactate (mmol/L) 1.5 (1.2 2.0) 1.5 (1.2 2.0) 1.5 (1.2 1.8) 0.433 1.000 

* statistically significant difference between groups (p < 0.05) after Holm-Bonferroni correction 
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Table I2. Overview of clinical parameters in one hour before the first switch attempt to assisted ventilation. P values indicate 

the difference between the success group (no event within 72 hours) and failure group (event within 72 hours).  

 Overall Success (> 72h) Failure (≤ 72h) Succes vs. Failure 

n (%) 746 598 (80.2) 148 (19.8)   

            

 Median (IQR) Median (IQR) Median (IQR) p corrected p 

Time to switch (h) 47.9 (19.0 87.9) 48.5 (19.3 89.5) 42.9 (17.6 84.5) 0.419 1.000 
           

 

Heart rate (/min) 82.5 (70.2 96.8) 83.3 (70.2 97.2) 79.8 (70.4 91.1) 0.087 1.000 

MAP (mmHg) 77.0 (72.0 84.7) 76.9 (71.9 84.7) 77.7 (72.3 83.6) 0.658 1.000 

Noradrenaline (g/kg/min) 0.05 (0.00 0.14) 0.05 (0.00 0.15) 0.04 (0.01 0.12) 0.471 1.000 

            

FiO2 (%) 40.2 (34.7 49.9) 40.0 (32.3 49.2) 45.0 (40.0 50.3) <0.001 <0.001* 

SpO2 (%) 95.6 (93.8 97.3) 95.7 (93.9 97.4) 95.0 (93.1 96.9) 0.015 0.335 

Respiratory rate (/min) 17.6 (15.2 20.9) 17.3 (15.1 20.4) 19.2 (15.4 22.2) 0.005 0.125 
           

 

Pinsp (cmH2O)  12.8 (11.0 15.0) 12.8 (11.0 14.8) 13.0 (10.2 15.4) 0.553 1.000 

ΔP (cmH2O) 10.2 (8.4 12.1) 10.1 (8.3 12.0) 10.5 (8.4 12.6) 0.342 1.000 

Pplat (cmH2O) 20.4 (17.0 24.0) 20.0 (16.9 24.0) 21.9 (17.8 23.4) 0.093 1.000 

Ppeak (cmH2O) 22.2 (18.7 25.4) 21.9 (18.3 25.0) 23.2 (20.2 26.2) 0.001 0.018* 

Pmean (cmH2O) 13.2 (10.7 15.8) 13.1 (10.4 15.5) 14.5 (11.7 16.6) <0.001 0.010* 

PEEP (cmH2O) 8.7 (6.3 11.7) 8.3 (6.0 11.1) 9.8 (7.7 12.0) 0.001 0.024* 

Auto PEEP (cmH2O) 0.6 (0.3 1.2) 0.6 (0.3 1.2) 0.8 (0.3 1.3) 0.083 1.000 
           

 

VT (mL) 486 (412 561) 487 (412 558) 477 (413 575) 0.885 1.000 

VT/IBW (mL/kg) 7.0 (6.2 7.7) 7.0 (6.2 7.7) 7.1 (6.3 7.9) 0.705 1.000 

Minute ventilation (L/min) 13.2 (10.7 15.8) 13.1 (10.4 15.5) 14.5 (11.7 16.6) <0.001 0.010* 
           

 

Inspiratory flow (mL/s) 40.8 (35.5 46.0) 40.5 (35.2 45.3) 41.8 (37.4 48.3) 0.001 0.033* 

Expiratory flow (mL/s) 38.7 (34.0 43.4) 38.4 (33.7 42.9) 39.5 (35.2 44.6) 0.033 0.662 

Compliance (mL/cmH2O) 53.9 (40.1 71.8) 54.1 (40.3 73.0) 53.3 (38.7 67.9) 0.484 1.000 

Rinsp (cmH2O) 11.6 (9.0 14.4) 11.8 (9.2 14.5) 10.9 (8.3 13.5) 0.020 0.428 
           

 

ETCO2 (kPa) 5.0 (4.5 5.7) 5.1 (4.5 5.7) 5.0 (4.3 5.6) 0.113 1.000 

V'CO2 (mL/min) 182.0 (151.8 219.0) 180.8 (151.4 217.0) 185.9 (156.1 224.1) 0.480 1.000 
           

 

SpO2/FiO2 ratio 2.4 (2.0 2.8) 2.4 (2.0 3.1) 2.1 (1.8 2.4) <0.001 <0.001* 

PaO2/FiO2 ratio 25.4 (19.8 33.7) 26.5 (21.0 35.2) 22.3 (17.6 27.7) <0.001 <0.001* 
           

 

Art. PH 7.40 (7.35 7.44) 7.40 (7.35 7.44) 7.39 (7.34 7.43) 0.406 1.000 

PaCO2 (kPa) 5.6 (5.0 6.3) 5.6 (5.0 6.2) 5.8 (5.2 6.6) 0.012 0.272 

PaO2 (kPa) 10.2 (9.1 11.9) 10.3 (9.2 12.0) 10.0 (8.8 11.5) 0.008 0.186 

Art. O2 saturation (%) 95.0 (93.0 96.0) 95.0 (94.0 96.0) 94.0 (93.0 96.0) 0.001 0.017* 

Art. Alkali Reserve (mmol/L) 25.0 (22.0 30.0) 25.0 (22.0 30.0) 26.0 (22.0 30.8) 0.399 1.000 

Art. Base Excess (mmol/L) 0.0 (-3.0 5.0) 0.0 (-3.0 4.0) 1.0 (-3.0 5.0) 0.633 1.000 

Lactate (mmol/L) 1.5 (1.2 2.0) 1.5 (1.2 2.0) 1.5 (1.2 2.0) 0.889 1.000 

* statistically significant difference between groups (p < 0.05) after Holm-Bonferroni correction  



Supplementary Materials  94 

 

 

J TRIPOD+AI Checklist 

 

 

 



Supplementary Materials  95 

 

 

 


