Developing a prediction model
for respiratory deterioration in

mechanically ventilated ICU patients

)

Emmelieve den Breejen

Master thesis Technical Medicine
February 2026






Developing a prediction model for respiratory

deterioration in mechanically ventilated ICU patients

Emmelieve den Breejen
Student number: 4996690

26 February 2026

Thesis in partial fulfillment of the requirements for the joint degree of Master in Science in

Technical Medicine

Leiden University ; Delft University of Technology ; Erasmus University Rotterdam

Master thesis project (TM30004 ; 35 ECTS)
Dept. of Intensive Care Medicine, LUMC
May 2025 — February 2026
Supervisors:

Dr. A. Schoe, LUMC

Dr. D.M.J. Tax, TU Delft

Drs. EE. Smits, LUMC
Thesis committee members:

Dr. A. Schoe, LUMC (chair)

Dr. D.M.J. Tax, TU Delft

Dr. Ir. H.J. Krijthe, TU Delft

Drs. EE. Smits, LUMC

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Universiteit

4 De ft
| Leiden TUDelft . (e

el no oygy
=~ LLRASMUS UNIVERSITEIT ROTTERDAM



http://repository.tudelft.nl/

Preface
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waar ik mee bezig was. Dat laatste is een van de dingen die ik het meest uitdagend en daarom ook

het leukste vond om te doen.

Dit project is mede tot stand gekomen dankzij een geweldig team van begeleiders. Floor, David en
Bram, heel erg bedankt voor jullie sturing, goede ideeén, vragen en discussies, en bemoedigende
woorden. |k reken me rijk met jullie. Jesse, dankjewel dat je de tijd neemt om mijn thesis te lezen

en deel van mijn afstudeercommissie wil zijn.

Tot slot ben ik familie en vrienden dankbaar voor jullie trouwe steun en aanmoediging tijdens mijn
hele studie. In het bijzonder mijn ouders, voor het rustige en liefdevolle thuis dat jullie mij geven.
Dat heeft er, meer dan ik me altijd heb doen beseffen, aan bijgedragen dat ik nu bijna Technisch

Geneeskundige geworden ben.

Ik wens je veel leesplezier!

Emmelieve
Sliedrecht, februari 2026
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1 Abstract

Objective

The primary aim of this study was to develop and validate a machine learning prediction model for
respiratory deterioration in mechanically ventilated Intensive Care Unit (ICU) patients. The
secondary aim was to identify physiological parameters associated with respiratory failure during

mechanical ventilation.

Methods

Two distinct prediction models were developed using data from ICU patients admitted to the Leiden
University Medical Centre (LUMC) between 2018 and 2023. Patients receiving invasive mechanical
ventilation (IMV) for at least 48 hours with a PaO,/FiO, ratio below 40 kPa were included and
allocated to COVID training, COVID test, or non-COVID test sets. Model 1 predicts respiratory
deterioration within six hours after switching from controlled to assisted ventilation. Model 2 is an
hourly updating model predicting respiratory deterioration occurring more than six hours after this
switch. XGBoost models were cross-validated on the COVID training set to identify the optimal
observation windows and prediction horizons, after which feature selection and hyperparameter
optimisation were performed. Model 1 was optimised for the area under the receiver operating
characteristic (AUROC) and Model 2 for the area under the precision-recall curve (AUPRC).
Discriminative performance, generalisability, and clinical utility were evaluated on the COVID and
non-COVID test sets.

Results

A total of 296 patients were included in the COVID training set, 78 in the COVID test set, and 755
to the non-COVID test set. For Model 1, a one-hour observation window was selected. The most
important features were the mean fraction of inspired oxygen (FiO,), propofol infusion rate, and
peripheral oxygen saturation (Sp0,). This model achieved an AUROC of 0.78 on the COVID test and
0.76 on the non-COVID test set. For model 2, a two-hour observation window and a six-hour
prediction horizon were selected, with the Sp0,/Fi0, ratio as the most important input feature. This
model achieved an AUPRC of 0.05 on the COVID test set and 0.03 on the non-COVID test set.

Conclusion

Model 1 demonstrated moderate discriminative performance but limited clinical utility at relevant
operating points. Model 2 showed very limited predictive value, primarily due to extreme class
imbalance. Consequently, neither model is currently suitable for clinical implementation. With larger
datasets and more advanced modelling techniques, Model 1 may have the potential to become a
clinically useful decision support tool to support decisions on switching from controlled to assisted

ventilation.
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2 Introduction

Patients with respiratory failure are mechanically ventilated in the Intensive Care Unit (ICU). Initially,
clinicians typically employ a controlled ventilation mode, without spontaneous respiratory activity
of the patient. Generally, after 24 to 48 hours of controlled ventilation, a switch to assisted
ventilation is attempted, allowing the patient to breathe spontaneously. Assisted ventilation is
considered beneficial due to reduced sedation requirements, no need for neuromuscular blockade,
less respiratory muscle atrophy, improved haemodynamic stability, better distal organ perfusion and
lung protection (1-3). Moreover, early switching to assisted ventilation has been associated with

shorter durations of invasive mechanical ventilation (IMV) and ICU stay (4).

However, in some cases, a deterioration in ventilatory parameters is observed during assisted
ventilation without a clearly identifiable cause. This deterioration may necessitate a return to
controlled ventilation, requiring neuromuscular blockade and increased sedation. These events
were frequently observed during the COVID-19 pandemic (5). These switch failures are associated

with worse outcomes, such as a higher 28-day mortality and less ventilator free days (5-8).

Potential causes for deterioration during assisted ventilation are both ventilator-induced lung injury
(VILI) and patient self-inflicted lung injury (P-SILI). VILI comprises four mechanisms of lung injury.
Barotrauma and volutrauma result from alveolar overdistension caused by high transpulmonary
pressures and tidal volumes, while atelectrauma arises from cyclic opening and closing of alveoli
due to insufficient positive end-expiratory pressure (PEEP). These mechanisms can trigger
biotrauma, characterised by the release and systemic dissemination of inflammatory mediators

from the alveolar space. Lung-protective ventilation strategies are effective in mitigating VILI (9).

More recently, P-SILI has been proposed, attributed to excessive patient breathing effort. The
pathophysiology likely mirrors that of VILI, involving alveolar overdistension and atelectrauma. In P-
SILI, avicious cycle may ensue: lung injury worsens gas exchange, which increases respiratory drive
and effort, thereby exacerbating the injury. In such cases, reinitiating controlled ventilation may

become necessary as a therapeutic intervention (10,11).

If respiratory deterioration that necessitates a return to controlled ventilation could be predicted,
clinicians could optimise the timing of initiating assisted ventilation, and, additionally, adapt

ventilation strategy earlier in patients receiving assisted ventilation treatment to prevent P-SILI.

ICU patients are continuously monitored, generating large volumes of physiological data that can
be harnessed to develop predictive models using machine learning. Such models have
demonstrated potential to detect clinical deterioration earlier than clinicians and could support
clinical decision-making (12-15). Additionally, identifying which physiological parameters are
predictive of failure in assisted ventilation could inform future research into the underlying

pathophysiology.
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Therefore, the primary aim of this study is to develop and validate a machine learning model to
predict transitions from assisted to controlled mechanical ventilation in ICU patients. The secondary
aim is to identify physiological parameters associated with respiratory failure in mechanically

ventilated ICU patients.
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3 Background

3.1 Pathophysiology of lung injury in mechanical ventilated

patients

3.1.1 Ventilator induced lung injury (VILI)

Positive-pressure mechanical ventilation differs substantially from physiological breathing, in which
negative pressure generated by the respiratory muscles initiates inspiration. This counter-
physiological mechanism may have several adverse effects, on both the lungs and peripheral organs
(9). VILI encompasses various types of injury, commonly classified as barotrauma, volutrauma,

atelectrauma, and biotrauma, as illustrated in Figure 1 (9,16).

ﬁ' \ P

*———Excessive gas
=P,

)
@ Prp=Palv'Ppl

< \®

Barotrauma

Hi

Volutrauma

Ime

/ Collapsed
lung

Inflammatory mediators

Atelectrauma Biotrauma

Figure 1. Types of injury induced by mechanical ventilation. P: pleural pressure, P,,: alveolar pressure, Py,: transpulmonary
pressure. Copied from Zou et al. 2024 (16)

Barotrauma and volutrauma are closely related phenomena. Barotrauma, primarily results from a
high transpulmonary pressure, whereas volutrauma is caused by the administration of a large tidal
volume. Despite these differences, both ultimately lead to excessive stress and strain within the
lungs, either locally or globally. Strain is defined as the ratio of tidal volume to end-expiratory lung
volume, while stress refers to the transpulmonary pressure, which is defined as the difference
between the alveolar and pleural pressure. During positive-pressure ventilation, tidal volume is
delivered by increasing airway pressure, creating compressive stress (9,10). High stress and strain

lead to alveolar overdistension, deforming cells and their supporting matrix into abnormal shapes.



Background 11

In severe cases, this may even cause alveolar rupture, allowing air to escape into surrounding

tissues (9,16). Additionally, high tidal volumes have shown to induce pulmonary oedema (10).

Atelectrauma is caused by cyclic opening and closing of small airways and alveoli due to low tidal

volumes and insufficient PEEP, resulting in abrasion of the epithelial lining (9,16).

Injured lung tissue and cyclic stretch trigger the release of injurious inflammatory mediators, a
phenomenon known as biotrauma. Unlike the other mechanisms, this proinflammatory response is

not confined to the lungs and may provoke a systemic inflammatory response (9,16).

3.1.2 Patient self-inflicted lung injury (P-SILI)

Assisted mechanical ventilation allows patients to breathe spontaneously using their respiratory
muscles, while still providing ventilatory support with positive pressure. During assisted mechanical
ventilation, lung injury may not only arise from the applied mechanical support, but also from the
patient’s increased spontaneous breathing effort, a phenomenon known as P-SILI. Similar to VILI,

P-SILI is largely caused by increased stress and strain (10).

In spontaneous breathing, tidal volume is generated by creating negative pleural pressure rather
than by increasing airway pressure, resulting in tensile stress. High inspiratory effort can lead to

elevated levels of stress and strain, potentially inducing barotrauma and volutrauma (10).

Moreover, high inspiratory effort in combination with inhomogeneous distribution of transpulmonary
pressure across the lung, can result in cyclic inflation in regions with high transpulmonary pressure
variations, reproducing the mechanism of atelectrauma. Increased regional inhomogeneity may also
cause pendelluft, in which gas shifts intrapulmonary from regions with low transpulmonary pressure
variations to regions with high pressure variations. This process can result in local volutrauma,
independent of the tidal volume (10,17).

During assisted ventilation, alveolar pressure can, in contrast to controlled ventilation, fall below
the PEEP level due to high inspiratory effort. Such decreases in alveolar pressure may increase
transvascular hydrostatic pressure, particularly in the presence of elevated airway resistance,

potentially causing pulmonary oedema (10).

In addition, in a spontaneously breathing patient, patient-ventilator interactions can contribute to
lung injury through several mechanisms. Over-assistance may increase transpulmonary pressure,
increasing the risk of alveolar overdistension, whereas under-assistance may increase inspiratory
effort, risking P-SILI. Besides, patient-ventilator asynchronies, such as double-triggering and

reverse triggering, can cause breath stacking and large tidal volumes (10,17).

P-SILI can initiate a vicious cycle: lung injury impairs gas exchange, which increases respiratory
drive and effort, further worsening the injury. In such cases, muscle relaxation and reinitiating

controlled ventilation may be required as a therapeutic intervention (10,11).
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3.2 Ventilatory parameters and modes

In mechanical ventilation, several ventilatory parameters are adjusted by the operator; these are
referred to as control parameters. Additionally, the Hamilton ventilator measures and computes
other parameters, referred to as output parameters. These, together with demographic,
haemodynamic, blood gas parameters, and medication infusion rates, are used as predictors in the
prediction models in this project. An overview of ventilatory parameters is provided in Figure 2 and
Table 1.

iInspiratory

E | hold

Pressure _,

_% Ppeak Peak pressure

™ .
PinSD Inspiratory pressure
P Plateau pressure

plat
AP Driving pressure

PEEP Positive end-expiratory pressure
| Inspiration time

T E Expiration time

g FEXD Expiratory peak flow
% Fmsp Inspiratory peak flow
= \,"T Tidal volume

Time —»

Figure 2. Pressure, flow and volume curves of pressure controlled ventilation, with ventilatory parameters indicated. During
an inspiratory hold, the flow is set to zero and the plateau pressure is reached.

At the Intensive Care Unit of the Leiden University Medical Centre (LUMC), three distinct ventilation
modes are used in clinical practice during IMV. For controlled ventilation, the Pressure-Controlled
Mechanical Ventilation (P-CMV) mode is employed. In P-CMV, the primary control parameters are
inspiratory pressure, PEEP, fraction of inspired oxygen (FiO,), respiratory rate, and the inspiration-

to-expiration time ratio (I:E ratio) (18).

For assisted ventilation, either the (Intellivent) Adaptive Support Ventilation (ASV) mode, or the
spontaneous (SPONT) ventilation mode is used. In ASVY, the main control parameters are target
minute volume, PEEP, FiO,, and expiratory trigger sensitivity (ETS). The expiratory trigger sensitivity
is the percentage of the inspiratory maximum flow at which expiration is initiated. The ventilator
determines the tidal volume and respiratory rate needed to achieve the target minute ventilation.
When the patient is passive, ASV functions as pressure controlled ventilation. When the patient is
active, the respiratory rate is controlled by the patient and the ventilator determines the inspiratory
pressure needed to achieve the target minute volume (19). In Intellivent-ASV mode, target values
for ventilation (end-tidal CO,) and oxygenation (SpQ,) are set by the clinician, after which the
ventilator automatically adjusts minute volume, PEEP, and FiO, to achieve these targets. All settings

can be readily overridden by the clinician (20).
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In spontaneous ventilation, the primary control parameters are inspiratory pressure, PEEP, FiO,, and

ETS, while the patient controls the respiratory rate and timing (18).

Table 1. Definitions of ventilatory parameters and type (control, output, adaptive) per ventilation mode.

Parameter

Definition

Control, output,

adaptive

FiO,
Respiratory rate (RR)

Tidal volume (V)

Minute ventilation

|:E ratio

insp
mean
peak

plat

PEEP

Auto PEEP
Driving pressure (AP)
Flow; e,

Flow
R

exp

insp

Compliance

RC

exp

V,/IBW
End-tidal CO, (EtCO,)

RSBI

Pa0,/FiO, (PF) ratio

Sp0,/Fi0, (SF) ratio

Fraction of oxygen in inspiration air

Number of ventilation cycles per minute

Difference between the end inspiratory volume and end
expiratory volume

Ventilated volume per minute, product of tidal volume and
respiratory rate

Ratio between the inspiration time and expiration time

Target airway pressure during inspiration
Mean airway pressure over one ventilation cycle

Maximum airway pressure during inspiration

Plateau pressure, airway pressure at the end of inspiration

when flow is zero, measured by Hamilton at the end of
inspiration when flow is close to zero and pressure is
stable.

Positive end expiratory pressure, the airway pressure at
the end of the expiration phase

PEEP generated by the patient itself

Driving pressure, the difference between P, and PEEP.
Peak flow during inspiration

Peak flow during expiration

Difference between the P, and P, pressure divided by
the inspiratory flow (21).

The elastic property of the respiratory system, ratio
between V; and AP (21).

Expiratory time constant, describing the speed of change
in volume after a change in pressure, the product of
compliance and resistance measured at expiration (21).
Ratio between tidal volume and ideal body weight
Partial pressure of CO, in the expiration air at the end of
expiration

Rapid shallow breathing index, the ratio between the
respiratory rate and tidal volume.

Ratio between the partial pressure of oxygen in arterial
blood (Pa0,) and the FiO,

Ratio between the oxygen saturation level in the blood
(Sp0,) and the FiO,

Control

P-CMV: control, SPONT:
output, ASV: adaptive
P-CMV, SPONT: output
ASV: adaptive

P-CMV, SPONT: output
ASV: control

P-CMV: control

ASV, SPONT: output
Control

Output

Output

Output

Control

Output

Output

Output

Output

Output

Output

Output

Output

Output

Output

Output

Output
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3.3 Machine learning models

3.3.1 Logistic regression

The logistic regression model is a linear model that describes the relationship between predictor
variables (X;) and a binary outcome variable (Y; event or no event), expressed as the probability of
the event P(Y = 1) using the odds ratio (22). The odds ratio is defined as the ratio of the probability

of an event occurring to the probability of an event not occurring:

P(Y=1|X1)

PT=1I%D) (Equation 1)

odds P(Y = 1|X;) =
P(Y = 1]X;): event probability given predictor variable X;

An event probability below 0.5 results in an odds ratio between 0 and 1, whereas an event probability
above 0.5 yields an odds ratio greater than 1, extending to infinity (Figure 3). To address this

imbalanced scale, the logarithm of the odds ratio is used (23).

100

75

S0 S S—— A— I ——]———————————— CARSR— O S

QOdds

ol I I S— I b

0

0.0 0.2 0.4 0.6 0.8 1.0

5.0

2.5 /

0.0 ; —

-5.0 T
0.0 0.2 0.4 0.6 0.8 1.0
Event probability

Log odds

Figure 3. Relationship between event probability and the odds ratio (upper panel), and between event probability and the
logarithm of the odds ratio (lower panel).

In logistic regression, it is assumed that the logarithmic odds ratio of the event probability is linearly

related to the predictor variables (22). This relationship can be expressed as:

P(Y=1|X,)
1-P(Y=1|Xy)

log odds(Y =1]X;) = log( ) = Bo+ B Xy (Equation 2)

Bo: intercept

By: regression coefficient

The regression coefficient B; determines the rate of change in the outcome associated with
predictor X;, and represents the strength of the relationship between predictor X; and the outcome.
The intercept B, represents the log-odds when X; equals zero. In models with multiple predictors,
Bo represents the log-odds when all predictors are zero, a situation that is usually not clinically

meaningful (22).
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From Equation 2, the logistic probability function can be written as:

eBot+B1X1
14eBo+B1X1

P(Y =1|X;) = (Equation 3)

The prediction probability function P(Y = 1]|X;) has an S-shaped form, in which the predictor
variable X; can range from -oo to 400, while the predicted probability P is constrained between 0
and 1 (Figure 4). In logistic regression, this S-shaped curve is fitted to map predictor values to event
probabilities.

5.0

0.0 —
-25 , : e s ................................

Log odds

-5.0

-10 -8 -6 -4 =2 0 2 4 6 8 10

1.00

0.75

0.50

0.25 e

0.00

Event probabililty

-10 -8 -6 -4 =2 0 2 4 6 8 10
Predictor variable X1

Figure 4. Linear relationship between the log-odds and predictor variable X; (upper panel), and the S-shaped relationship
between event probability and predictor variable X, (lower panel). With B, = 0 and B, = 0.5.

In a model with multiple predictor variables, additivity is assumed, meaning that no interaction

effects between predictors are included. The log-odds equation then becomes:

log odds(Y = 11Xy, ..., Xp) = Bo + 211 BiX; (Equation 4)



Background 16

3.3.2 Extreme gradient boosting (XGBoost)

The XGBoost machine learning model is a decision tree ensemble, similar to a random forest, in
which the prediction scores of individual trees are combined to produce the final prediction. The
key difference between a random forest and an XGBoost model lies in the way the models are
trained (24).

During XGBoost model training, trees are grown by optimising an objective function, which consists
of a training loss component and a regularisation term to reduce overfitting. For binary classification,
the loss function is typically logistic loss, measuring the difference between the predicted
probability and the true outcome. In gradient boosting, trees are grown iteratively. At each boosting
iteration, the previous tree is optimised by adding new splits to further reduce the loss (24,25). A

schematic overview of the XGBoost training process is presented in Figure 5.

Original data Weighted data Weighted data
EEREER [ | an ERENEN
EERRER mnd 1 L1101 mad | B4 11
EEEREN L] B (1111
l Tree ensemble

Tree 1 Tree 2 Tree 3

=

=

kE

p=]

Q

8
2 1111 B
EREER

Figure 5. Schematic overview of the XGBoost training process with three boosting iterations. First, a decision tree is fitted
to the original data and the training loss is computed, after which the data are reweighted. A new decision tree is then fitted,
and the final prediction is obtained by combining all trees in the ensemble.

Several hyperparameters can be adjusted to optimise the XGBoost model, including those

controlling the learning rate, model complexity, subsampling, and regularisation (25,26). An

overview including definitions of the key hyperparameters is presented in Supplement D.
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3.4 Evaluation methods in machine learning

3.4.1 Training quality

To evaluate the quality of model training, learning curves can be used. Similar to how humans
improve at solving a problem through repeated exposure, machine learning models improve as they
are trained on more data. A learning curve illustrates this behaviour by plotting model performance

against the number of training samples (Figure 6).

Learning curves are typically estimated using k-fold cross-validation. The dataset is divided into k
folds, and for each split a training and validation set are created. The size of the training set is
varied, and for each training size the model is trained and evaluated on the corresponding validation
set across all folds. This results in k performance estimates per training size, which are

subsequently averaged (27).

Learning curves are assumed to converge to an asymptotic performance level. The point at which
this level is reached is referred to as the saturation point. Before this point, models trained on
smaller datasets show inferior performance, whereas beyond this point, increasing the training set
size no longer yields performance gains. Observing a saturation point during model training

indicates that sufficient data were available to train the model adequately (28).

To assess overfitting and underfitting, training performance can be plotted alongside validation
performance. Similar to humans, memorisation performance decreases as the amount of training
data increases. Consequently, training performance typically declines and converges towards the
validation performance (27). When training performance remains high and validation performance
stays low, the model is overfitting and additional training data or stronger regularisation may be
required. Conversely, when both training and validation performance remain low, the model is

underfitting and a more complex model may be needed.

In addition to varying the size of the training set, performance can be plotted against the number of
optimisation iterations performed during model training (Figure 6). For XGBoost, this corresponds
to the number of boosting iterations. Such iterative learning curves are also assumed to converge
to a stable performance level (28). Identifying this saturation point allows the number of boosting

to be limited, thereby reducing model complexity and mitigating overfitting.

A third type of learning curve is the feature curve, which shows model performance as a function of
the number of features used for training (Figure 6). This curve can be used to assess the number
of features required. In some cases, a peaking phenomenon can be observed, indicating that adding

additional features may actually degrade model performance (27).
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Learning curve Iterative learning curve Feature curve

[ —

Nr of boosting iterations — Nr of features —

Performance —»
Performance —»
Performance —»

Nr of training samples —»
Training score

e Validation score

Figure 6. Examples of a learning curve based on the number of training samples (left), an iterative learning curve based on
the number of boosting iterations (middle), and a feature curve based on the number of features used for training (right).

3.4.2 Classification and discriminative performance

Classification performance reflects how accurately samples are assigned to the correct class.
Classification metrics are derived from the contingency table, or confusion matrix (Table 2). To
calculate these metrics, a decision threshold must be applied to the predicted event probability to
classify samples as low or high risk. Classification performance is optimal when all samples with an
event have predicted probabilities above the threshold, and all individuals without an event have
probabilities below it.

Table 2. Contingency table (confusion matrix) for a binary classification problem, showing true positives (TP), false negatives
(FN), false positives (FP), and true negatives (TN).

Predicted high risk Predicted low risk

Event True positives (TP) False negatives (FN)

Control False positives (FP) True negatives (TN)

Four basic classification measures can be distinguished: sensitivity (recall), specificity, positive
predictive value (PPV; precision), and negative predictive value (NPV) (Table 3). Each addresses a
different aspect of classification performance and is only relevant when reported together, as their

values depend on the chosen classification threshold.

Table 3. Definitions of classification metrics: sensitivity (recall), specificity, positive predictive value (PPV; precision), and
negative predictive value (NPV).

I L S [

Sensitivity or recall The proportion of event samples that are TP
classified as high risk. TP+ FN
Specificity The proportion of control samples that TN
_ are classified as low risk. TN + FP
Positive predictive The proportion of samples classified as
value (PPV) or high risk that are an event sample. L
iei TP + FP
precision
Negative predictive The proportion of samples classified as TN

value (NPV) low risk that are a control sample. TN + FN
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Discriminative performance without selecting a classification threshold is commonly evaluated by
using the area under the receiver operating characteristic curve (AUROC) (Figure 7). The receiver
operating characteristic (ROC) curve plots sensitivity against 1-specificity. The AUROC a priori level

is 0.5 and represents a model with no discriminative ability.

A precision-recall curve illustrates the trade-off between precision (PPV) and recall (sensitivity)
(Figure 7). This is particularly relevant when a prediction model is used as an online alarm system,
where both the predictive value of alarms (precision), and the ability to detect events (recall) are
essential. The area under the precision-recall curve (AUPRC) summarises this trade-off. The a priori
AUPRC depends on the ratio of event to control samples and equals the proportion of event samples

in the dataset.

ROC curve Precision-recall curve
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Figure 7. Receiver operating characteristic (ROC) curve (left) and precision-recall curve (right).

3.4.3 Clinical utility

To retrospectively assess whether a prediction model has the potential to improve current clinical
care, a net benefit analysis can be used (Figure 8) (29). This analysis evaluates the net benefit
across a range of threshold probabilities (P,). The threshold probability represents the predicted
risk at which a clinician would apply an intervention for an event. Net benefit quantifies the gain
from true positive decisions while accounting for the harm of false positives and is expressed in

units of true positives:
Net benefit = TP — FP X exchange rate (Equation 5)

The gain from true positives and the harm from false positives are weighted by a value ratio, referred
to as the exchange rate. This exchange rate depends on the chosen threshold probability and is

equal to the corresponding odds ratio:

Pt
1-P¢

Exchange rate = (Equation 6)
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When performing a net benefit analysis, it is important to define the clinically relevant range of
threshold probabilities in advance. At low threshold probabilities, clinicians prioritise avoiding
missed events over the risk of unnecessary intervention. For example, at a threshold probability of
0.2, the odds ratio is 1:4, meaning that the gain of detecting one true positive is considered to
outweigh the harm of four false positives. In contrast, at high threshold probabilities, clinicians place
greater emphasis on avoiding unnecessary intervention rather than on missing events. At a
threshold probability of 0.8, the odds ratio is 4:1, indicating that the harm of a false positive is
weighted four times more heavily than the benefit of detecting a true positive (29). As the threshold

probability can differ across patients and clinicians, a clinically relevant range should be defined.

In addition to the net benefit of the prediction model, the net benefits of an ‘intervention for all’ and
‘intervention for none’ strategy are shown in the graph (Figure 8). To evaluate whether a prediction
model could be clinically useful, its net benefit should be compared with current practice, over the
clinically relevant threshold range. In this study, current practice is best represented by the

‘intervention for none’ line, as no successful interventions were applied to prevent events in the

dataset.
Net Benefit Analysis
=
c
[4b]
o]
©
=
Model
—— Intervention for none
— Intervention for all
0 0.2 0.4 0.6 0.8 1
Threshold probability
1:4 2:3 3:2 4:1
Odds ratio

Figure 8. Net benefit analysis showing the net benefit across different threshold probabilities for a prediction model, an
‘intervention for all’ strategy, and an ‘intervention for none’ strategy, with corresponding odds ratios indicated.



Methods 21

4 Methods

The Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
+ Artificial Intelligence (TRIPOD+AI) guidelines (30) were used as a framework for model

development and reporting. The completed TRIPOD+AI checklist is provided in Supplement J.

4.1 Data

The dataset used for model development and validation comprises detailed clinical information
extracted from the Patient Data Management System (PDMS) MetaVision of ICU admissions at the
LUMC, recorded between December 2018 and May 2023 as part of routine clinical care. The
database includes ventilatory parameters and vital signs recorded at one-minute intervals, as well

as laboratory results, administered medication, and demographic details.

4.2 Participants

Patients with a positive Sars-CoV-2 Polymerase Chain Reaction (PCR) test were allocated to the
COVID group, and patients without a positive Sars-CoV-2 PCR test to the non-COVID group.
Patients were excluded if they 1) did not receive IMV treatment, 2) had an IMV duration shorter
than 48 hours, 3) were not ventilation with a Hamilton ventilator (C3 or C6), 4) did not have a
Pa0,/Fi0, (PF) ratio below 40 kPa, 5) received extracorporeal membrane oxygenation (ECMO)
therapy, 6) were enrolled in the ICONIC trial, receiving a different PaO, target strategy (31), 7) were

aged below eighteen, 8) or medication data was not available.

Inclusion and exclusion criteria were defined to obtain a homogeneous study population in which
respiratory failure was the primary clinical problem (the COVID group), as well as a more
heterogeneous non-COVID group with a major respiratory problem to serve as an external validation

set to assess the model’s generalisability.

Patient records in the COVID group were chronologically split into a training and test set based on
the date of ICU admission. Patients admitted before November 2021 were assigned to the training
set, whereas those admitted thereafter were assigned to the test set. Readmissions were allocated

to the same subset as their initial admission to prevent data leakage.

4.3 Data preprocessing

Preprocessing was done to clearly differentiate between segments of controlled and assisted
ventilation. First, time points with a spontaneous respiratory rate exceeding five breaths per minute
were classified as assisted ventilation (Figure 9). A threshold of five was selected to balance
between spontaneous irregular Cheyne-Stokes or opioid-induced breathing pattern and occasional
spontaneous breaths occurring during controlled ventilation. Second, a median filter with a 31-
minute window was applied to remove short segments of one ventilation mode lasting 15 minutes
or less within a longer segment of the opposite mode. Finally, segments with missing data shorter

than one hour were merged with the preceding ventilation mode.
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Figure 9. Data preprocessing steps for ventilation mode determination (controlled or assisted). 1) Time points with a
spontaneous respiratory rate (RR) exceeding five are classified as assisted ventilation, 2) a median filter with a 31-minute
window is applied, 3) segments with missing data shorter than one hour are merged with the preceding mode.

4.4 Event definition

The model outcome is the event probability. An event of respiratory deterioration, as defined by

experienced ventilation specialists, is characterised by:

1) a transition from assisted to controlled ventilation, where
2) controlled ventilation persists for at least three hours, and
3) the FiO, was set to 40% or higher at least once within the time span of one hour before to

one hour after the transition (Figure 10).

Event

assisted controlled

FiO2 = 40%

Figure 10. An event of respiratory deterioration is defined as a conversion from assisted to controlled ventilation, where
controlled ventilation lasts at least three hours, the FiO, is set to 40% or higher in one hour before and after transition.

This outcome is proposed because it is an actionable target (32) during the course of mechanical
ventilation treatment, rather than before intubation or during the weaning phase, contexts in which
prediction models already exist (33-35). The restrictions applied in the event definition (= 3 hours
of controlled ventilation and FiO, = 40%) were introduced to minimise false-positive events resulting
from sedation administered for procedural purposes. Transitions to controlled ventilation related to

tracheostomy insertion were excluded as events.

As FiO, settings are operator-depended, this parameter serves as an imperfect marker of respiratory
deterioration. To illustrate the influence of the FiO, threshold on the number of detected events, a
histogram was generated for the number of events for different threshold values, in the COVID

group. Events were automatically detected based on the event definition.
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4.5 Input features

Initial predictors were selected based on availability, literature, and expert knowledge. Variables
with less than 20% missing data and availability in at least 95% of records were included. A detailed

overview of the variables used for input features is presented in Suppl/ement A.

To capture temporal dependencies, summary statistics of ventilatory and haemodynamic
parameters, including the mean, standard deviation, and trend over multiple windows, were used
as input features (36). The trend is defined as the slope of the linear regression line. Additionally,
the most recent arterial blood gas results (routinely measured every six hours) at the time of
prediction, as well as age, sex, body mass index (BMI), total IMV duration, and duration of assisted
ventilation, were included as input features. To guarantee reliability of feature values, summary
statistics were only calculated if at least 50% of the datapoints in the selected window were

available, otherwise a missing value was given.

Because aggregate features are employed, missing values are scarce and imputation of missing
data is not required. Likewise, feature normalization is unnecessary for XGBoost, as decision trees

split nodes according to the relative ordering of feature values rather than their absolute scale.

To fit a logistic regression model, samples with four or more missing feature values were first
removed, after which features containing missing values were excluded. In addition, standard
scaling was applied for the logistic regression model by subtracting the mean and scaling it to unit

variance (Equation 7).
Z = IH (Equation 7)
o

Z:standard value, x: feature value, u: mean, o: standard deviation

4.6 Model design

4.6.1 Model 1 | Unreadiness for assisted ventilation

The first model is designed to predict the probability of an event within six hours after switching
from controlled to assisted ventilation. Therefore, the observation window is defined during the
controlled ventilation phase, with predictions made at the point of transition from controlled to
assisted ventilation (Figure 11). Events for this model are defined as occurrences within six hours
after switching and are considered indicative that the patient was not yet ready for assisted
ventilation. Control samples comprise cases in which patients did not fail or failed after a period

longer than six hours after switching. Control samples within 24 hours prior to death were excluded.

In clinical practice, this model could be used as a decision-support tool to evaluate at a certain

time-point whether a patient is ready to switch from controlled to assisted ventilation.

In addition, a variation to Model 1 with input features derived from both the last hour before
transition to assisted ventilation and the first hour after transition was developed, results from this

model are presented in Supplement H.
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Furthermore, the clinical conditions and timing of all first attempts to switch from controlled to
assisted ventilation were analysed and compared between patients who experienced an event
within six or 72 hours and those who did not. The results of this analysis are presented in

Supplement /.

4.6.2 Model 2 | Development of P-SILI

The second model is developed to predict the probability of an event over a 4-10-hour horizon during
assisted ventilation. Therefore, the observation window is defined during assisted ventilation and
predictions are made during assisted ventilation (Figure 11). Events for this model are defined as
occurrences after a minimum of six hours of assisted ventilation, representing failure following a

sustained period of assisted ventilation was attained, likely due to development of P-SILI.

The prediction window was set at 2 hours, therefore event samples were included three times (at
0, 1, and 2 hours after the prediction horizon). Control samples are drawn at a 1-hour interval from
segments preceding true events or from segments without failure. Control samples within 24 hours

before death were excluded.

This model could be used in clinical practice as a real-time alarm system, generating a prediction
score every hour during assisted ventilation, to alert clinicians when the predicted probability of an

event is high.

Problem definition 1

Prediction Event
‘ observation window prediction window |
controlled assisted controlled
1-6 h 6 h

Problem definition 2

Prediction Event
[ observation window horizon | prediction window |
assisted controlled
1-6 h 4-10 h 2h

Figure 11. Overview of the observation window, prediction horizon, and prediction window aligned with ventilation modes
for problem definition 1 (unreadiness) and problem definition 2 (P-SILI).
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4.7 Model development

XGBoost models were employed because of their demonstrated high performance in comparable
prediction tasks (35,37). During development, a series of experiments was conducted using
stratified 10-fold cross-validation, grouped by patient ID, to maintain class distribution over
different folds and prevent data leakage. First, the optimal observation window (1, 2, 4, or 6 hours)
and horizon (4, 6, 8 or 10 hours) (Model 2) were determined. Second, a logistic regression model
was trained to benchmark the performance of the XGBoost model. Subsequently, feature selection
and hyperparameter optimisation was performed. Finally, performance obtained with grouped
cross-validation was compared to ungrouped cross-validation, to assess the impact of learning
patient-specific characteristics. An overview of all experiments conducted in this study is presented
in Figure 12.

During model development, Model 1 was primarily optimised for the AUROC, reflecting the
importance of discrimination in a decision-support tool, whereas Model 2 was primarily optimised
for the AUPRC, reflecting the importance of predictive value in an alarm system. To compare the
AUPRC between models during development, control samples were random under sampled
obtaining a 1:3 ratio of event to control samples for Model 1 and 1:10 for Model 2. Differences in
performance between models were evaluated using a one-sided Wilcoxon signed-rank test, with a

significance level of 0.05.

Furthermore, learning curves were generated before and after feature selection and hyperparameter
optimisation to evaluate model stability and to assess whether the sample size of training data was

sufficient.

Development Validation Interpretation

1) Classification
performance

2) M T Ul 2) Tree visualisation
analysis

1) Window selection 1) SHAP analysis

2) Logistic regression

3) Feature selection

4) Hyperparameter
optimisation

5) Data leakage

Final model

Figure 12. Overview of the experiments and analyses conducted for model development, validation and interpretation
throughout the study.
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4.7.1 Feature engineering and selection

To reduce overfitting during feature selection the number of boosting iterations was reduced. The

optimal number of estimators was assessed by plotting performance over each boosting iteration.

For each model, two distinct feature sets were employed for the selected observation windows.
Feature set 1 comprised the mean, standard deviation, and trend of ventilatory and haemodynamic
parameters calculated over the entire observation window. Feature set 2 consisted of mean values
calculated over multiple shorter sub-intervals within the observation window. Both feature sets
were supplemented with the most recent arterial blood gas results, age, BMI, sex, IMV duration,

and assisted mechanical ventilation duration (Model 2).

For each feature set, mean feature importance was calculated across 10-fold cross-validation using
the gain, defined as the average loss reduction resulting from tree splits in which a given feature is
used. Subsequently, backward feature elimination was performed starting with the 25 features with
the highest importance. After each feature elimination step, feature importance was re-evaluated
and the least important feature was removed, until only a single feature remained. Feature curves
showing performance as a function of the number of included features were used to determine the
minimum number of features required to achieve a stable model performance, defined by high

performance with a small interquartile range (IQR).

4.7.2 Hyperparameter optimisation

A stepwise approach for hyperparameter optimisation was employed, as outlined in Figure 13
(25,38). First, the number of boosting was determined using the default learning rate by identifying
the number of iterations at which model performance stabilises. Subsequently, tree complexity,
subsampling and regularisation parameters were optimised using a 10-fold cross-validated grid
search. The parameter values yielding high validation and relatively low training performance were
selected to reduce overfitting. Finally, the learning rate was lowered, and the final number of
iterations was determined. The exact hyperparameter values used during the grid search are

provided in Supplement D.

Baseline model
(default parameters)

1) Boosting iterations
with high learning rate

2) Tree complexity

3) Subsampling

4) Regularisation

5) Boosting iterations

with low learning rate .
Figure 13. Stepwise hyperparameter optimisation approach. The number of boosting

iterations is first determined, followed by optimisation of tree complexity, subsampling,
Optimised model and regularisation parameters. Finally, the learning rate is reduced and the final number
of boosting iterations is selected.
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4.8 Model validation

The optimised models were subsequently validated on the hold-out COVID and non-COVID test
sets. Model performance was assessed using AUROC and AUPRC. In addition, the sensitivity,
specificity, PPV, and NPV were calculated. For this purpose, the target specificity for Model 1 was
set to 0.80, reflecting the importance of a highly specific test to prevent patients from unnecessarily
prolonged controlled ventilation due to falsely high predicted probabilities of failure after switching
to assisted ventilation. For Model 2, the target PPV was set to 0.80, reflecting the need for a highly

precise alarm system that minimises false-positive alerts.

In addition to classification metrics, a net-benefit analysis was performed to assess clinical utility
compared with the absence of a prediction model. To this end, the models were calibrated for each
test set using a sigmoid function. Finally, probability distribution plots, showing the predicted
probabilities for event and control samples, were generated to provide insight into overall model

performance and behaviour (39).

4.9 Model interpretation

Model interpretability was achieved using Shapley additive explanations (SHAP) to quantify the
contribution of individual features to model predictions and to interpret these contributions from a
clinical perspective (40). In addition, detailed case descriptions of event and control samples with
relatively high and low predicted probabilities were presented to explore the clinical conditions
under which the model performs well or poorly. These case descriptions were complemented by
local SHAP explanations to reveal the factors driving the model’s predictions for these individual
samples. Finally, the first decision tree of the XGBoost ensemble, which contributes most strongly

to the prediction scores, was visualised to illustrate the underlying split criteria.

4.10 Software

Data processing, model training, evaluation, and interpretation were performed using Python 3.12.4,
with the scikit-learn (v1.4.2), xgboost (v3.1.1), dcurves (v1.1.7), shap (v0.50.0), and dtreeviz (v2.2.2)
libraries. Python scripts are available in the GitHub repository: github.com/Emmelieve/TMS3.

4.11 Ethical approval

The study is approved by the Medical Ethics Committee Leiden The Hague Delft. Consent was
waived as the data consists of routinely collected clinical information and it was not considered

reasonable to request consent after an invasive ICU admission.


https://github.com/Emmelieve/TM3
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5 Results

5.1 Dataset characteristics

The LUMC ICU database comprises 11,922 records of patients admitted between December 2018
and May 2023. Of these, 640 tested positive for Sars-CoV2 by PCR. Of these, 266 records were
excluded: 138 did not receive IMV, 106 were ventilated for less than 48 hours, five were not
ventilated using a Hamilton ventilator, 14 received ECMO therapy, and three were enrolled in the
ICONIC study (Figure 14). A total of 374 records were included in the COVID group and
chronologically split into a training set (n = 296) and a test set (n = 78).

In the non-COVID group, 10,500 records were excluded: 4018 did not receive IMV, 5158 were
ventilated for less than 48 hours, 1107 were not ventilated using a Hamilton ventilator, 69 received
ECMO therapy, 131 were enrolled in the ICONIC study, three were aged under 18, and one record
was excluded because medication data was not available. This resulted in a non-COVID test set of
755 records.

The COVID training set comprised 294 unreadiness events (failure within six hours) and 269 P-SILI
events (failure after more than six hours). The COVID test set included 85 unreadiness events and
72 P-SILI events, while the non-COVID test set contained 483 unreadiness events and 317 P-SILI

events. Patient characteristics for each dataset are summarised in Table 4.

LUMC ICU database
n=11,922

¥ A
Positive COVID test No positive COVID test
n =640 n=11,282

Exclusions: Exclusions:
No IMV n =138 No IMV n = 4018
IMV duration < 48 h n = 106 IMV duration < 48 h n = 5185
No Hamilton C3/C6 n=>5 No Hamilton C3/C6 n=1107
No PF ratio < 40 kPa n=0 No PF ratio < 40 kPa n=13
ECMO therapy n=14 ECMO therapy n=69
ICONIC study n=3 ICONIC study n=131
Age < 18 n=0 Age < 18 n=3
No medication data n=0 No medication data n=1

v

COVID group
n =374

Training set
n =296

Test set non-COVID group
n=78 = 731z

Figure 14. Flow of records included in the study, based on inclusion and exclusion criteria. IMV = invasive mechanical
ventilation, PF = Pa0,/Fi0,, ECMO = extra-corporal membrane oxygenation
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Table 4. Characteristics of patients included in the COVID training set, COVID test set, and non-COVID test set, including
age, sex, BMI, ICU mortality, ICU length of stay, IMV duration, and the number of events.

| | coviDtraining set | COVID test set Non-COVID test set
296 78 755

Records n

Age median (IQR) 63.0 (56.8-70.0) 59.0 (49.0-66.8) 61.0 (50.0-70.0)
Male n (%) 210 (71.0) 55 (70.5) 492 (65.2)

BMI median (IQR) 29.31 (26.1-33.2) 27.15 (24.8-30.4) 25.95 (23.2-29.3)
ICU mortality n (%) 80 (27.0) 25 (32.0) 207 (27.4)

ICU length of stay (days) median (IQR) 13.75 (8.3-23.9]) 13.31 (7.8-24.2) 9.33 (5.6-18.00
IMV duration (days) median (IQR) 11.21 (6.0-20.4) 9.33 (5.5-17.8) 6.08 (3.6-11.9)
Unreadiness events n 294 85 483

Records with unreadiness  n (%) 144 (48.7) 37 (47.4) 253 (33.5)
P-SILI events n 269 72 317

Records with P-SILI events n (%) 146 (49.3) 38 (48.7) 204 (27.0)

BMI = body mass index, IMV = invasive mechanical ventilation, IQR = interquartile range

b.2 Effect of the FiO, threshold on the number of events

The relation between number of detected events and the FiO, threshold in the event definition is
shown in Figure 15. The number of detected events with FiO, threshold ranges from 30 to 80% is
436 to 54 for unreadiness events and 368 to 119 for P-SILI events in the COVID dataset.

Unreadiness events P-SILI events
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Figure 15. Relation between the number of detected unreadiness events and P-SILI events in the COVID dataset and the
FiO, threshold in the event definition.

5.3 |Input features

Summary statistics (mean, standard deviation, and trend) of six monitor parameters, 25 ventilatory
parameters, and eight sedative and inotropic medication infusion rates were used as input features,
together with the most recent value of 15 arterial blood gas parameter, as well as age, sex, and BMI.
Details of the specific parameters, including missing data and availability per record in the COVID

dataset, are provided in Supplement A.
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5.4 Model 1 | Unreadiness for assisted ventilation

5.4.1 Observation window

Different observation windows, defined as the timeframe from which features are derived, were
evaluated for Model 1, predicting unreadiness for assisted ventilation. The highest median AUROC
values were obtained with 1-hour (AUROC 0.60, IQR 0.58-0.63) and 6-hour observation windows
(AUROC 0.60, IQR 0.57-0.63). Models using 2-hour (AUROC 0.59, IQR 0.55-0.64) and 4-hour
observation windows (AUROC 0.58, IQR 0.56-0.62) showed comparable performance, with no
statistically significant differences (p > 0.05) (Table 5).

Table 5. Performance of Model 1 using different observation windows (1, 2, 4, and 6 hours), evaluated by the AUROC and
AUPRC, p-values indicate differences in performance compared with the 1-hour observation window.

Events

AUROC median (IQR) 0.60 (0.58-0.63) 0.59 (0.55-0.64) 0.58 (0.56-0.62) 0.60 (0.57-0.63)
p for AUROC - 0.385 0.278 0.216

AUPRC median (IQR)  0.34 (0.29-0.36) 0.37 (0.29-0.41) 0.35 (0.26-0.38) 0.35 (0.33-0.40)
p for AUPRC - 0.577 0.385 0.754

5.4.2 Logistic regression

The XGBoost model with a 1-hour observation window showed comparable performance (AUROC
0.63, IQR 0.57-0.66) compared with the logistic regression model (AUROC 0.61, IQR 0.57-0.66,
p=0.784)(Table 6).

As logistic regression models do not handle missing values, 4 of 294 event samples and 15 of 117
features containing missing data were excluded for this analysis. Regression coefficients per feature
and an analysis of the correlation between XGBoost feature importance and logistic regression
coefficients are provided in Supplement B.

Table 6. Performance of the XGBoost and logistic regression model, both using a 1-hour observation window, evaluated by
AUROC and AUPRC.

m XGBoost Logistic regression _

AUROC median (IQR) 0.63 (0.57-0.66) 0.61 (0.57-0.66) 0.784
AUPRC median (IQR) 0.35 (0.33-0.38)  0.35 (0.30-0.38) 0.688

5.4.3 Feature engineering and selection

To reduce overfitting during feature selection, the number of boosting iterations was set to 5;

performance per iteration is shown in Suppl/ement D. Four distinct feature sets were employed:

1. The mean, standard deviation, and trend over 1 hour, with a 1-hour observation window
2. The mean over each 20-minute interval, with a 1-hour observation window

3. The mean, standard deviation, and trend over 6 hours, with a 6-hour observation window
4

The mean over each 2-hour interval, with a 6-hour observation window
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For each feature set, feature selection was performed using backward feature elimination. For
feature set 1, nine features were selected, yielding a median AUROC of 0.68 (IQR 0.65-0.70) (Figure
16, Table 7). Feature set 2 selected 10 features, with AUROC 0.66 (IQR 0.63-0.68); feature set 3
selected 12 features, AUROC 0.64 (IQR 0.60-0.68); and feature set 4 selected nine features, AUROC
0.63 (IQR 0.60-0.66). Feature set 1 was selected for further optimisation based on the highest

median AUROC. Feature importance graphs and feature curves for each feature set are provided in

Supplement C.

Learning curves obtained before and after feature selection are shown in Figures 17 and 18.

Table 7. Overview of the different features sets, showing the selected features and performance as evaluated by AUROC

and AUPRC.

I Y S Y S T R TS

Observation window 1 hour 1 hour 6 hours 6 hours
Features Mean, std, trend  Mean over 20 min Mean, std, trend Mean over 2 hours
over 1 hour over 6 hours
Selected features Mean FiO, Mean FiO, 40-60 min Mean FiO, Mean FiO, 4-6 h
Mean SF Mean SF 40-60 min Std of MAP Mean suf. 0-2 h
Mean PEEP Mean PEEP 40-60 min Trend of MAP Mean SF 4-6 h
Mean mida. Mean SpO, 40-60 min Mean SF Mean sys. ABP 2-4 h
Mean SpO, Mean SF 20-40 min Trend of V1/IBW Mean Vs, 4-6 h
Mean V;/IBW Mean SpO, 20-40 min Std of Py, Mean MAP 4-6 h
Std of PFI Mean V;/IBW 20-40 min  Mean RC,,, Mean RC,,,2-4 h
Std of EtCO, Mean SF 0-20 min Std of dia. ABP Mean MAP 0-2 h
Mean prop. Mean compl. 40-60 min  Trend of SpO, Mean prop. 2-4 h
Mean mida. 0-20 min Trend of sys. ABP
Mean dia. ABP
Mean prop.

AUROC median (IQR)

0.68 (0.65-0.70)

0.66 (0.63-0.68)

0.64 (0.60-0.68)

0.63 (0.60-0.66)

p for AUROC - 0.216 0.065 0.024
AUPRC median (IQR)  0.43 (0.38-0.47) 0.39 (0.36-0.41) 0.37 (0.33-0.49)  0.38 (0.29-0.44)
p for AUPRC - 0.138 0.188 0.246

FiO, = fraction of inspired oxygen, SpO, = peripheral oxygen saturation level, SF = Sp02/FiO2 ratio, PEEP = positive end-
expiratory pressure, V; = tidal volume, IBW = ideal body weight, PFI = peripheral flow index, compl. = compliance, EtCO, =
end-tidal CO,, prop. = propofol infusion rate, compl. = compliance, mida. = midazolam infusion rate, MAP = mean arterial
blood pressure, Py, = inspiratory pressure, RC,,, = expiratory time constant, dia. ABP = diastolic arterial blood pressure,
sys. ABP = systolic arterial blood pressure, suf. = sufentanil infusion rate
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Figure 16. Feature curve illustrating the backward feature elimination process for Model 1 with feature set 1 (mean, standard
deviation, and trend over 1 hour). The 5%, 25, 50t 75t and 95 percentiles are indicated.

Learning curve after reduction of boosting iterations
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Figure 17. Learning curve, illustrating the performance over the number of training samples, after reduction of boosting
iterations, prior to feature selection. The 5%, 25!, 50t 75t and 95 percentiles are indicated.
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Learning curve after feature selection
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Figure 18. Learning curve of Model 1, illustrating the performance over the number of training samples, obtained after
feature selection. The 5%, 25, 50t 75" and 95 percentiles are indicated.

5.4.4 Hyperparameter optimisation

The AUROC and AUPRC after hyperparameter optimisation were respectively, 0.67 (IQR 0.64-0.69)
and AUPRC 0.41 (IQR 0.35-0.46). Details on optimised hyperparameter settings are provided in
Supplement D. A learning curve obtained after hyperparameter optimisation is presented in Figure
19.

Learning curve after hyperparameter optimisation
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Figure 19. Learning curve of Model 1, illustrating the performance over the number of training samples, obtained after
feature selection and hyperparameter optimisation. The 5%, 25t 50, 75% and 95t percentiles are indicated.
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5.4.5 Training with data leakage

Ten-fold cross-validation with data grouped by patient ID yielded a median AUROC of 0.67 (IQR
0.64-0.69), whereas cross-validation without grouping, which introduces data-leakage, showed
similar performance with a median AUROC of 0.66 (IQR 0.61-0.68, p=0.161) (Table 8).

Table 8. Performance of Model 1 evaluated using 10-fold cross-validation with and without grouping by patient ID, reported
as AUROC and AUPRC.

_ Grouped cross-validation | Ungrouped cross-validation _

AUROC median (IQR) 0.67 (0.64-0.69) 0.66 (0.61-0.68) 0.161
AUPRC median (IQR)  0.41 (0.35-0.46) 0.38 (0.33-0.42) 0.161

5.4.6 Model validation

Validation on the test sets yielded an AUROC of 0.78 and an AUPRC of 0.38 for the COVID test
set, and an AUROC of 0.76 and an AUPRC of 0.27 for the non-COVID test set. ROC and precision-
recall curves are shown in Figures 20 and 21. For the COVID test set, setting specificity at 0.80
resulted in a sensitivity of 0.56, PPV of 0.39, and NPV of 0.89 (Table 9). For the non-COVID test
set, setting specificity at 0.80 resulted in a sensitivity of 0.49, PPV of 0.25, and NPV of 0.92.
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Figure 20. Receiver operating characteristic curve of Figure 21. Precision-recall curve of validation on
validation on the COVID test dataset (AUC = 0.78) and the COVID test dataset (AUC = 0.38) and non-

non-COVID test dataset (AUC = 0.76). COVID test dataset (AUC = 0.27).
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Table 9. Overview of classification metrics for the COVID and non-COVID test set for Model 1.

Events 85 483

Controls 372 3483
AUROC 0.78 0.76
AUPRC 0.38 0.27
Sensitivity (recall) 0.56 0.49
Specificity 0.80 0.80
Positive predictive value (PPV) (precision) 0.39 0.25
Negative predictive value (NPV) 0.89 0.92

After calibrating the model on the test sets, net benefit analyses were performed (Figure 22). A
superior net benefit compared with a ‘treat all as unready’ or ‘treat all as ready’ strategy was
observed for threshold probabilities ranging from 0 to 0.5 for the COVID group and 0 to 0.3 for the
non-COVID group. Calibration curves are provided in Supplement E. The distribution of predicted

probabilities per event class after model calibration is shown in Figure 23.

0.20 Net-benefit analysis COVID test set 020 Net-benefit analysis Non-COVID test set
Model Model
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Figure 22. Net-benefit analysis for Model 1 on the COVID and non-COVID test sets, showing the threshold probability on
the X-axis and the net benefit on Y-axis.
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Probability distribution COVID test set
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Figure 23. Predicted probability distributions for the COVID and non-COVID test sets obtained with Model 1 after calibration,

shown as violin plots (top), boxplots (middle), and scatterplots (bottom).

5.4.7 Model interpretation

A global SHAP analysis is presented in Figure 24. This analysis shows that high FiO,, propofol

infusion rates, and PEEP values contribute most strongly to high predicted probabilities, whereas
low a FiO,, PEEP, and V;/IBW, together with a high Sp0O, and Sp0,/FiO, ratio, are associated with

low prediction scores.

Local SHAP explanations for samples with high or low predicted probabilities (Supplement F), as

well as visualisation of the first decision tree (Supplement G), further indicate that model output is

predominantly driven by FiO, and propofol infusion rate. Detailed clinical case descriptions are

provided in Supplement F.
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Figure 24. Global SHAP analysis of Model 1 showing the impact of feature values on the model output by aggregating local

SHAP values across all training samples.
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5.5 Model 2 | Development of P-SIL]

5.5.1 Observation window

Different observation windows were evaluated for Model 2, which predicts respiratory deterioration
due to P-SILI. The highest median AUPRC values were obtained with 2-hour (AUPRC 0.22, IQR
0.20-0.24) and 4-hour observation windows (AUPRC 0.22, IQR 0.20-0.24). Models using 1-hour
(AUPRC 0.21, IQR 0.19-0.23) and 6-hour observation windows (AUPRC 0.18, IQR 0.16-0.21) showed
comparable performance, with no statistically significant differences (p > 0.05) (Table 10).

Table 10. Performance of Model 2 using different observation windows (1, 2, 4, and 6 hours), evaluated by AUROC and
AUPRC, p-values indicate differences in performance compared with the 4-hour observation window.

718 681 621 571

Events

AUPRC median (IQR) 0.21 (0.19-0.23) 0.22 (0.20-0.24) 0.22 (0.20-0.24) 0.18 (0.16-0.25)
p for AUPRC 0.188 0.312 - 0.116

AUROC median (IQR) 0.69 (0.67-0.70) 0.70 (0.63-0.73) 0.70 (0.68-0.72) 0.67 (0.63-0.73)
p for AUROC 0.246 0.615 - 0.080

5.5.2 Prediction horizon

Varying prediction horizons, defined as the time between the prediction and the occurrence of an
event, were evaluated in combination with a 4-hour observation window. The model with a 4-hour
horizon obtained a median AUROC of 0.20 (IQR 0.17-0.27). A 6-hour horizon resulted in a median
AUROC 0.22 (IQR 0.20-0.24), an 8-hour horizon in 0.20 (IQR 0.18-0.23), and a 10-hour horizon in
0.23 (IQR 0.16-0.26). A 6-hour horizon was selected for further model optimisation because it
combines a relatively high median AUPRC with a narrow IQR (Table 11).

Table 11. Performance of Model 2 using different prediction horizons (4, 6, 8, and 10 hours), evaluated by AUROC and
AUPRC, p-values indicate differences in performance compared with the 6-hour horizon.

| Horizon _____J4h______J6h ______J8h______|l0h |
621 604 516

Events 127
AUPRC median (IQR) 0.20 (0.17-0.27) 0.22 (0.20-0.24) 0.20 (0.18-0.23) 0.23 (0.16-0.26)
p for AUPRC 0.216 - 0.116 0.313

AUROC median (IQR) 0.70 (0.66-0.74) 0.70 (0.68-0.72) 0.68 (0.66-0.69) 0.69 (0.63-0.71)
p for AUROC 0.385 = 0.097 0.161
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5.5.3 Logistic regression

The logistic regression model with a 4-hour observation window and a 6-hour horizon showed
comparable performance (AUPRC 0.23, IQR 0.18-0.26) compared with the XGBoost model (AUPRC
0.21, IQR 0.18-0.24, p=0.138) (Table 12).

As logistic regression models do not handle missing values, 24 of 621 event samples and 11 of 127
features containing missing data were excluded for this analysis. Regression coefficients per feature
are provided in Supplement B.

Table 12. Performance of XGBoost and logistic regression for Model 2, both using a 2-hour observation window and a 4-
hour horizon.

m XGBoost Logistic regression _
AUPRC median (IQR) 0.21 (0.18-0.24) 0.23 (0.18-0.26) 0.138
AUROC median (IQR) 0.71 (0.66-0.74) 0.71 (0.63-0.78) 0.784

5.5.4 Feature engineering and selection

To reduce overfitting during feature selection, the number of boosting iterations was set to 5;

performance per iteration is shown in Suppl/ement D. Four distinct feature sets were employed:

1. The mean, standard deviation, and trend over 2 hours, with a 2-hour observation window
2. The mean over each 30-minute interval, with a 2-hour observation window

3. The mean, standard deviation, and trend over 4 hours, with a 4-hour observation window
4

The mean over each 1-hour interval, with a 4-hour observation window

For each feature set, feature selection was performed using backward feature elimination. For
feature set 1, seven features were selected, yielding an AUPRC of 0.27 (IQR 0.25-0.35) (Table 13).
For feature set 2, nine features were selected, resulting in AUPRC 0.32 (IQR 0.26-0.35) (Figure 25).
For feature set 3 and 4, 10 features were selected, resulting in AUPRC 0.26 (IQR 0.23-0.27) and 0.27
(IOR 0.24-0.27), respectively. Feature set 2 was selected for further optimisation based on the
highest median AUPRC score. Feature importance graphs and feature curves for each feature set

are provided in Supplement C.

Learning curves obtained before and after feature selection are shown in Figures 26 and 27.
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Table 13. Overview of the different feature sets for Model 2, showing the selected features and performances as evaluated
by AUPRC and AUROC. P-values indicate differences in performance compared with feature set 2.

I Y S Y R T N Y S

Observation window
Features

Selected features

AUPRC median (IQR)

2 hour
Mean, std,
over 2 hours
Mean SF

IMV duration
Mean nor

Std of Py,
Assisted duration
Art. base excess

Mean V;/IBW

0.27 (0.25-0.35)

trend

2 hour

Mean over each 30 min

Mean SF 90-120 min
Mean SF 60-90 min
Mean nor 60-90 min
IMV duration

Art. base excess

Mean V./IBW 60-90 min
Mean SF 0-30 min

Glucose

0.32 (0.26-0.35)

4 hours

Mean, std, trend
over 4 hours
Mean SF

Mean prop.
Mean nor.

Mean Vr.,,

IMV duration
Art. base excess
Glucose
Chloride

PaCO,

Mean PEEP

0.26 (0.23-0.27)

4 hours

Mean over each 1
hour

Mean SF 3-4 h
Mean prop. 3-4 h
Mean nor. 3-4 h
Mean Vq,,

IMV duration

Art. base excess
Glucose

Chloride

PaCO,

Mean V;/IBW 3-4 h

0.27 (0.24-0.27)

p for AUPRC 0.539 - 0.065 0.042
AUROC median (IQR)  0.74 (0.68-0.79) 0.76 (0.68-0.78) 0.73 (0.71-0.80)  0.73 (0.68-0.76)
p for AUROC 0.348 - 0.652 0.461
SF = Sp0,/Fi0, ratio, V; = tidal volume, IWB = ideal body weight, nor = noradrenaline infusion rate, RC,,, = expiratory time
constant
Feature curve
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Figure 25. Feature performance curve illustrating the backward feature elimination process for Model 2 with feature set 2
(mean over each 30 minutes). 0 denotes minutes 0-30, 1 denotes minutes 30-60, 2 denotes minutes 60-90, and 3 denotes
minutes 90-120. The 5" 25, 50, 75% and 95 percentiles are indicated.
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Learning curve after reduction of boosting iterations
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Figure 26. Learning curve of Model 2, illustrating the performance over the number of training samples, after reduction of
boosting iterations, prior to feature selection. The, 5t, 25,50, 75" and 95 percentiles are indicated.

Learning curve after feature selection
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Figure 27. Learning curve of Model 2, illustrating the performance over the number of training samples, after feature

selection. The 5%, 25t 50t 75™ and 95 percentiles are indicated.
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5.5.5 Hyperparameter optimisation

The AUPRC and AUROC after hyperparameter optimisation were respectively, 0.29 (IQR 0.23-0.35)
and 0.76 (IQR 0.70-0.79). Details on optimised hyperparameter settings are provided in Supplement

D. A learning curve obtained after hyperparameter optimisation is presented in Figure 28.

Learning curve after hyperparameter optimisation

1.0 1
0.8 1
0.6 1
@]
4
o
>
<
S Validation score
Train score
0.0 T T ‘ T T T
2000 3000 4000 5000 6000 7000

Nr of training samples

Figure 28. Learning curve of Model 2, illustrating the performance over the number of training samples, obtained after
feature selection and hyperparameter optimisation. The 5, 25, 50, 75" and 95" percentiles are indicated.

5.5.6 Training with data leakage

Ten-fold cross-validation, grouped by patient ID, yielded a median AUPRC of 0.29 (IQR 0.23-0.35),
whereas cross-validation without grouping, which introduces data-leakage, resulted in a median
AUPRC of 0.24 (IQR 0.26-0.31, p=0.116) (Table 14).

Table 14. Performance of Model 2 evaluated using 10-fold cross-validation with and without grouping by patient ID, reported
as AUPRC and AUROC.

_ Grouped cross-validation | Ungrouped cross-validation _

AUPRC median (IQR) 0.29 (0.23-0.35) 0.24 (0.26-0.31) 0.116
AUROC median (IQR) 0.76 (0.70-0.79) 0.70 (0.66-0.77) 0.020
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5.5.7 Model validation

Validation on the test sets yielded an AUPRC of 0.05 and an AUROC of 0.69 for the COVID test set,
and an AUPRC of 0.03 and an AUROC of 0.66 for the non-COVID test set. Precision-recall and ROC

curves are shown in Figures 29 and 30. For both test sets the target PPV of 0.80 was not achieved,

42

and the sensitivity was extremely low (< 0.02) (Table 15). The distribution of predicted probabilities

per event class after model calibration is shown in Figure 31.
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Figure 29. Precision-recall curve of validation of Model 2
on the COVID test dataset (AUC = 0.05) and non-COVID
test dataset (AUC = 0.03).

Random classifier COVID --- Random classifier il
Random classifier non-COVID —— COVID test set (AUC = 0.69) ,”
= COVID test set (AUC = 0.05) Non-COVID test set (AUC = 0.66) /’,
Non-COVID test set (AUC = 0.03) »
-
0.8
;
.
/
.
/
-
0.6 1
z
2z
a
c
G
]
0.4 4
i 0.2 -
#
.
4
-
/
-
1&% [
A -
= .
[ -
g
T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

1 - specificity

Figure 30. Receiver operating characteristic of validation of
Model 2 on the COVID test dataset (AUC = 0.69) and non-
COVID test dataset (AUC = 0.66).

Table 15. Overview of the classification metrics for the COVID and non-COVID test set obtained with Model 2.

Events 169

Controls 8237
AUPRC 0.05
AUROC 0.69
Sensitivity (recall) 0.02
Specificity 1.00
Positive predictive value (PPV) (precision) 0.20
Negative predictive value (NPV) 0.98

1083
76619
0.03
0.66
0.00
1.00
0.60
0.99
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Probability distribution COVID test set
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Figure 31. Predicted probability distributions for the COVID and non-COVID test sets obtained with Model 2, shown as
violin plots (top), boxplots (middle), and scatterplots (bottom).

5.5.8 Model interpretation

A global SHAP analysis is presented in Figure 32. This analysis shows that low SpO,/FiO, ratios, a
long duration of assisted mechanical ventilation in most samples, a long total duration of IMV in a
subset of samples, and high noradrenaline infusion rates contribute most strongly to high predicted
probabilities. In contrast, a high SpO,/FiO, ratio and V;/IBW, are associated with low prediction

scores.

Local SHAP explanations for event samples with high and low predicted probabilities (Supplement
F), together with a visualisation of the first decision tree (Supplement G), further demonstrate that

model output is predominantly driven by the SpO,/FiO, ratio.
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Figure 32. Global SHAP analysis of Model 2 showing the impact of feature values on the model output by aggregating local
SHAP values across all training samples. 0 denotes minutes 0-30, 1 denotes minutes 30-60, 2 denotes minutes 60-90, and
3 denotes minutes 90-120.
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6 Discussion

In this study, two types of prediction models for mechanically ventilated ICU patients were
developed. The first model was aimed to predict early respiratory deterioration (< 6 hours) following
a premature switch from controlled to assisted ventilation. This model demonstrated moderate
discriminative performance, with an AUROC of 0.78 for COVID patients and 0.76 for non-COVID
patients. However, its clinical value appears limited, as performance was poor within clinically
relevant probability ranges. The most important predictors for unreadiness were the FiO, and

propofol infusion rate.

The second model was designed as a real-time alarm system to predict delayed respiratory
deterioration (> 6 hours after the switch to assisted ventilation) due to the development of P-SILI.
The Sp0,/FiO, ratio emerged as the most relevant predictor. Nevertheless, the selected features
were insufficient to capture the relatively rare respiratory deterioration events 6-8 hours in advance,
resulting in an extremely low AUPRC (< 0.05).

6.1 Event definition

A critical component of any prediction model is a well-defined event definition. In this retrospective
study, establishing such a definition was challenging because event labelling depended on historical
clinical decisions. The timing of recognition and intervention varied between clinicians and patients,

resulting in events that differed in both nature and severity.

The event definition used in this study was carefully discussed and established by experienced
ventilation specialist and subsequently refined through iterative review of detected and missed
events in a subsample of patients. However, due to time constraints, it was not feasible to assess
the sensitivity and specificity of this definition in a large validation sample. Consequently,
uncertainty remains regarding the accuracy of the event labels, which may have affected model

performance.

To improve specificity, additional restrictions were applied to reduce false-positive event labels. A
minimum duration of three hours of controlled ventilation following the event was required, thereby
excluding brief interventions, requiring sedation, not related to respiratory deterioration. In addition,
a minimum FiO, threshold of 40% in the hour before and after the transition was imposed, increasing
the likelihood that events reflected true respiratory deterioration demanding augmented oxygen
support. Nevertheless, FiO, settings are clinician dependent, and no clear threshold was identified

at which most events occurred (Figure 15).

Based on reviewed samples, the only events not adequately distinguished by these restrictions were
gastroscopies and bronchoscopies, which are typically accompanied by sedation and elevated FiO,
levels. Whereas bronchoscopies are often associated with respiratory deterioration, gastroscopies
are generally not, likely resulting in a small number of falsely labelled positive events. Furthermore,

control samples within 24 hours prior to death were excluded. However, this time window should



Discussion 45

likely have been extended. As illustrated by a control sample presented in Supplement F (1.4), a
patient in a severely deteriorated condition 30 hours before death was incorrectly labelled as a
control sample. Nevertheless, the model appropriately assigned a high predicted risk of respiratory

deterioration to this sample.

Despite these limitations, the event definition used in this study seems to be more specific than
those employed in comparable studies, for example by Smit et al. (6), where switch failure was

defined solely by a minimum duration of one hour of controlled ventilation following the event.

Furthermore, during review and discussion of detected events, two distinct event patterns emerged:
early failures occurring shortly after the switch to assisted ventilation, and delayed deteriorations
following a period of initial stability with spontaneous breathing. The first group likely reflects
patients who were not yet ready to resume spontaneous inspiratory effort, as the acute phase of
respiratory failure had not fully resolved. In contrast, the second group appears to represent
secondary deterioration during assisted ventilation, plausibly driven by P-SILI. Given the
fundamentally different underlying pathophysiology, supported by previously observed differences
in ventilatory parameters immediately prior to the transition to assisted ventilation (6), and the
distinct clinical implications of these event types, two separate prediction models were developed

to address them.

6.2 Model 1 | Predicting respiratory deterioration due to

unreadiness for assisted ventilation

For predicting readiness for assisted ventilation, the length of the observation window used to
derive aggregate features did not significantly influence model performance. Moreover, no specific
period within the 0-6 hour window was identified as containing substantially more predictive
information. Feature importance analyses and feature performance curves showed that only a
limited number of features contributed meaningfully to model performance (Supplement C). SHAP
analyses demonstrated that high FiO,, propofol infusion rate, and PEEP values were particularly
predictive for subsequent respiratory deterioration, whereas low FiO,, PEEP, and tidal volume per
kg ideal body weight, and high SpO, and Sp0,/Fi0, values were particularly predictive of the
absence of respiratory deterioration (Figure 24). These findings are consistent with clinical
experience, as most of these parameters are key indicators of a patient’s oxygenation status. In
addition, previous prediction models have also identified PEEP and FiO, as important predictors of
respiratory status in ICU patients (41-43). Together, this concordance with clinical knowledge and
existing literature supports the face validity of the model and reduces the likelihood that its

performance is driven by noise in the dataset.

The logistic regression model demonstrated performance comparable to that of the XGBoost model.
Notably, the regression coefficients of individual features did not fully align with the feature
importance scores derived from the XGBoost model, as detailed in Supp/ement B. This discrepancy
is likely attributable to differences in the underlying model assumptions, as well as to overfitting

effects in both models.
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Comparison of learning curves across different stages of model development shows that feature
reduction and hyperparameter optimisation, which substantially reduced model complexity,
markedly decreased overfitting and slightly improved overall performance (Figures 17-19). For the
final model, the training and validation curves converge to a stable plateau, suggesting that the

available sample size was adequate for training this low-complexity XGBoost model.

Introducing data leakage during model training did not result in improved performance (Table 6),
arguing against the notion that the model first has to ‘learn’ patient-specific characteristics during
training to make accurate predictions (44,45). In theory, this would allow data from the first hours
of ICU admission to be used to calibrate the model to individual patients. However, in this setting,

such an approach is unlikely to provide additional benefit.

The model achieved an AUROC of 0.76-0.78 on the test sets, indicating a moderate discriminative
and outperforming the AUROC of 0.58 reported by Smit et al. (6) for a similar task with a 72-hour
prediction window. However, inspection of the ROC curves shows that this performance is largely
driven by good discrimination at high sensitivity and low specificity, corresponding to low probability
thresholds (Figure 20). This observation is consistent with the probability distribution plots (Figure
23) and calibration curves (Supplement E), which demonstrate that the model is poorly capable of
identifying samples with a high event probability. As a result, the model only provides added value
in detecting events of respiratory deterioration when applied at low threshold probabilities (Figure
22). In clinical practice, however, this is undesirable, as it would likely lead to unnecessary
prolongation of controlled ventilation in many patients, exposing them to increased risks of
complications such as respiratory muscle weakness (1). At the clinically relevant operating point
with a target specificity of 0.80, sensitivity is very low (0.49-0.56), and comparable to a no-model
strategy. Consequently, in its current form and performance level, this model does not appear to

have clinical utility.

The model demonstrated comparable performance on the COVID and non-COVID test sets,
suggesting good generalisability to the broader ICU population at the LUMC with respiratory failure
(Pa0,/Fi0, ratio < 40).

6.3 Model 2 | Predicting respiratory deterioration due to
development of P-SILI

For predicting respiratory deterioration due to P-SILI, a real-time alarm system with hourly updates
was envisaged. Accordingly, hourly samples were extracted from periods of assisted ventilation and
labelled as control or event samples. This design, combined with the relatively low event incidence,
resulted in a highly imbalanced dataset, with an event-to-non-event ratio of approximately 1:400 in
COVID patients and even lower in non-COVID patients, yielding an extremely low a priori AUPRC.
During model development, under sampling was applied to facilitate model comparison and reduce
computational burden. However, during validation on the test sets, the original class proportions

were retained to reflect real-world performance.
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For this model, a two-hour observation window in combination with a six-hour horizon yielded the
best performance. Although shorter prediction horizons might have improved predictive
performance, this would offer limited clinical value, as clinicians are generally able to recognise
respiratory deterioration within four hours before escalation to controlled ventilation becomes

necessary.

Within the XGBoost model, the Sp0,/Fi0, ratio consistently emerged as the most relevant predictor.
This parameteris indeed a key marker of lung function and oxygenation and is included in the global
Acute Respiratory Distress Syndrome (ARDS) criteria (46,47). However, its value is strongly
influenced by FiO, settings, which are adjusted by clinicians. Consequently, increases in FiO,
initiated by clinicians in response to deterioration may have been captured by the model, suggesting
that clinical recognition of deterioration could have preceded model detection. SHAP analysis
indicates that a high predicted event probability was particularly influenced by a low SpO,/FiO, ratio
(especially during the last 30 minutes of the observation window), a high noradrenaline infusion
rate and a short duration of both assisted and total IMV duration, although these effects were not
entirely consistent (Figure 32). Conversely, a low predicted event probability was primarily driven
by high Sp0,/Fi0, ratios and tidal volume per kg ideal body weight.

Using these features, the model was able to achieve an AUPRC significantly higher than the a priori
baseline. Nevertheless, the absolute performance remained far below a level that would be clinically
useful, and the predefined target precision could not be reached. Given the extreme imbalance
between events and non-events and the hourly sampling design, achieving a clinically acceptable

precision appears infeasible in this population and model setup.

As observed for the first model, logistic regression showed similar performance as XGBoost. In

addition, introducing data leakage did not improve performance.

6.4 Strengths and limitations

This study has several limitations. First, the event definition was inherently imperfect, introducing
uncertainty into the prediction targets and, consequently, the model outputs. Second, the sample
size was limited. Although learning curves indicated that sufficient data were available to train an
XGBoost model, both prediction tasks ultimately showed limited predictive performance. This may
be attributable to high inter-patient variability, severe class imbalance, and the possibility that the
underlying events are intrinsically difficult to predict from routinely collected ICU data. This latter
explanation is supported by the low performance (AUROC 0.58-0.70) observed in a variation of
Model 1 that used data from the first hour after the switch to assisted ventilation to predict early
failure (Supplement H). Even with post-switch data, switch failure could not be reliably predicted.
Furthermore, it has been shown that pre-switch characteristics for successful and failed first switch
attempts are generally very similar (6), which was also the case in the LUMC dataset (Supplement
/). Third, no separate validation dataset was reserved for model development and optimisation.
Instead, 10-fold cross-validation was employed, which is a widely accepted and appropriate
alternative given the limited sample size (48). However, during feature selection, a small degree of

data leakage was introduced by determining the feature elimination order using information from
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all ten folds. Fourth, only two different types of machine learning models, XGBoost and logistic
regression, were evaluated. Although other machine learning techniques might have yielded
improved performance, previous studies suggest that other simple models, suitable for this amount

of data, often achieve comparable or lower performances than XGBoost (42,49,50).

Despite these limitations, the study also has notable strengths. First, the event definition was
carefully developed through expert consultation, and respiratory deterioration events were stratified
into two clinically distinct types. This distinction allowed for the development of separate models
tailored to their respective clinical implications. Second, the LUMC ICU dataset is a unique, highly
granular dataset with minimal missing data, providing access to a broad range of haemodynamic
and ventilatory parameters. Third, extensive feature exploration and selection, and stepwise
hyperparameter optimisation were performed. This approach effectively reduced overfitting. Finally,
comprehensive model evaluation was conducted using performance measures aligned with the
intended clinical applications. Validation on unseen data from distinct patient populations further

enabled a meaningful assessment of generalisability.

6.5 Clinical implications

With the current performance levels, neither model is suitable for clinical use. If future retrospective
performance improves to a clinically acceptable level, prospective validation would be required to
assess effects on treatment outcome and obtain user feedback. In addition, appropriate clinical

interventions corresponding to different predicted probability thresholds would need to be defined.

Careful consideration of implementation is essential, as key input variables such as FiO, and PEEP
are clinician-dependent and may change once clinicians are aware of the model’s use. Moreover,
users must be aware that the models were trained and validated exclusively on LUMC ICU patients
ventilated for at least 48 hours with a Pa0,/FiO, ratio < 40 kPa and are therefore not applicable to
all ICU patients. Finally, technical feasibility should be explored, ideally integrating the models into

the PDMS, where predictions could be accessed or activated at the clinician’s discretion.

6.6 Future directions

Future research should primarily focus on improving model performance. This may be achieved by
using larger datasets in combination with more advanced modelling approaches. In particular,
recurrent neural networks could directly leverage high-frequency ICU data rather than aggregated
features, enabling more effective capture of temporal dynamics in ventilatory and haemodynamic
parameters. Such models have demonstrated promising performance in related prediction tasks for
ICU patients (51).

For the hourly updated P-SILI prediction model, an alternative design should be considered. The
current approach inherently results in extreme class imbalance, making it unlikely to achieve
clinically useful performance. Potential solutions include increasing the update interval or focusing

on patient populations with a higher event density.
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In addition, given the limited number of predictive features, especially for P-SILI, more fundamental
research is needed to identify key pathophysiological drivers that could serve as meaningful

predictors.

Once satisfactory performance is achieved, retrospective validation on external hospital datasets
should be performed, followed by prospective validation to assess clinical impact and effects on

patient outcomes.
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7 Conclusion

In this study, two prediction models were developed to support clinical decision-making during the
transition from controlled to assisted ventilation, and to alert clinicians to respiratory deterioration
during assisted mechanical ventilation. The first model, aimed at predicting early respiratory
deterioration due to premature switching, demonstrated moderate discriminative performance but
lacked sufficient clinical utility at relevant operating points. The second model, designed as a real-
time alarm system to predict delayed deterioration due to P-SILI, showed very limited predictive

value, largely due to extreme class imbalance and the scarcity of informative predictors.

Although extensive exploration of optimal observation windows, prediction horizons, and predictive
features, as well as careful model optimisation, were performed, both models remain unsuitable for
clinical implementation in their current form. These findings highlight the complexity of predicting
respiratory deterioration in mechanically ventilated ICU patients and underscore the challenges

posed by retrospective event labelling, and clinician-dependent parameters.

Nevertheless, this study provides a careful and clinically relevant model design and establishes a
transparent and reproducible framework for future work. With larger datasets and advanced
modelling techniques capable of leveraging high-frequency ICU data, clinically useful prediction

models may become feasible.
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A Input variables

Table Al. Overview of variables used as input features specified for Model 1 and 2, with percentages of missing data and
availability per record in the COVID dataset.

Variable Type Metric % missing | Nr records | Model | Model
data available

Heartrate Monitor Mean, std, trend 0.9

Mean arterial blood Monitor Mean, std, trend v v
pressure 1.3 374

Systolic arterial blood Monitor Mean, std, trend v v
pressure 1.3 374

Diastolic arterial blood Monitor Mean, std, trend v v
pressure 1.4 374

Perfusion flow index Monitor Mean, std, trend 2.0 372 v v
SpO, Monitor Mean, std, trend 2.0 372 v v
FiO, Ventilator Mean, std, trend 4.3 374 v v
Respiratory rate Ventilator Mean, std, trend 4.3 374 v v
Spontaneous respiratory Ventilator Mean, std, trend v
rate 4.4 374

Expiratory tidal volume Ventilator Mean, std, trend 4.6 374 vi v
Inspiratory tidal volume Ventilator Mean, std, trend 4.6 374 vi v
I:E ratio Ventilator Mean 5.0 374 v v
End-tidal CO, Ventilator Mean, std, trend 4.5 373 vi v
Spontaneous minute Ventilator Mean, std, trend v
ventilation 5.1 374

Rinsp Ventilator Mean, std, trend 8.8 374 v v
V./I1BW Ventilator Mean, std, trend 5.0 374 v v
Pinsp Ventilator Mean, std, trend 5.4 374 vi v
Minute ventilation Ventilator Mean, std, trend 4.5 374 vi v
Pmean Ventilator Mean, std, trend 4.5 374 vi v
RCexp Ventilator Mean, std, trend 4.5 374 vi v
PEEP Ventilator Mean, std, trend 4.5 374 vi v
Auto PEEP Ventilator Mean, std, trend 4.7 374 vi v
Ppeak Ventilator Mean, std, trend 4.9 374 vi v
Flow;,s, Ventilator Mean, std, trend 4.9 374 v v
Flow,,, Ventilator Mean, std, trend 5.0 374 v v
Compliance Ventilator Mean, std, trend 5.7 374 v v
Delta P Ventilator Mean, std, trend 5.4 374 v v
PF ratio Ventilator Mean, std, trend 15.8 374 v v
RSBI Ventilator Mean, std, trend 4.6 374 v
SF ratio Ventilator Mean, std, trend 4.7 374 v v
IMV duration Ventilator 0 374 v
Assisted IMV duration Ventilator 0 374 v
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Variable Type Metric % missing | Nr records | Model | Model
data available

Sufentanil Medication Mean 0 v v
Noradrenaline Medication Mean 0 374 v v
Propofol Medication Mean 0 374 v v
Rocuronium Medication Mean 0 374 v v
Midazolam Medication Mean 0 374 v v
Dexmedetomidine Medication Mean 0 374 v v
Remifentanil Medication Mean 0 374 v v
Dobutamine Medication Mean 0 374 v v
Glucose Lab Last value 6.8 374 v v
Potassium Lab Last value 8.1 374 v v
Chloride Lab Last value 8.4 374 v v
Free calcium Lab Last value 10.0 374 v v
Sodium Lab Last value 8.8 374 v v
Arterial pCO, Lab Last value 8.8 374 v v
Arterial pH Lab Last value 8.9 374 v v
Arterial pO, Lab Last value 8.9 374 v v
Arterial Alkali Reserve Lab Last value 8.9 374 v v
Arterial Base Excess Lab Last value 8.9 374 v v
Lactate Lab Last value 9.1 374 v v
Arterial O, saturation Lab Last value 10.3 374 v v
Arterial Ht Lab Last value 10.4 374 v v
Age Other 0 374 v v
Sex Other 0 374 v v
BMI Other 0 374 v v
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B  Logistic regression coefficients

1 Model 1

Logistic regression coefficients
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Figure Bl. The 25 features with the largest absolute regression coefficients resulting from the logistic regression model
fitted in Section 5.4.2.

Correlation between logistic regression coefficients and XGBoost feature importance

The correlation between the logistic regression coefficients and the XGBoost gain metric for each
feature was explored using a scatter plot (Figure B2). Some degree of correlation is expected, as
both metrics reflect a feature’s influence on model output. Notable discrepancies were observed
for, among others, FiO, (low regression coefficient, high gain) and arterial alkali reserve (high
regression coefficient, low gain), whereas the Sp0,/FiO, ratio and PEEP showed relatively high

values for both the regression coefficient and gain.

The inconsistencies can partially be explained by the substantial overlap in feature value
distributions between event and control samples (Figure B3). Where XGBoost may still exploit
these features effectively by performing multiple splits and combining them with other features,
logistic regression is limited by its assumption of a linear relationship with the log-odds of the event
probability. In addition, the relatively large number of input features compared with the sample size
likely resulted in overfitting in both models. This may have further contributed to discrepancies
between the observed regression coefficients and XGBoost gain and the true influence of these

features on event probability.
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XGBoost feature importance vs logistic regression coefficient
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Figure B2. Scatterplot of the absolute logistic regression coefficient and the XGBoost feature importance (gain) for each

feature, obtained by the fitted models in Section 5.4.2.
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2 Model 2

Logistic regression coefficients
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Figure B5. The 25 features with the largest absolute regression coefficients resulting from the logistic regression model
fitted in Section 5.5.3.
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C Feature selection
1 Model 1
1.1 Feature set 1

Mean, std, and trend over 1 hour, with a 1-hour observation window.
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Figure C1. Top 25 feature importance scores, calculated as the gain, from XGBoost Model 1 with feature set 1.
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1.2 Feature set 2

Mean over each 20-minute interval, with a 1-hour observation window.

XGBoost feature importance

fio2_mean_2
sf_ratio_mean_2

peep_mean_2

spo2_mean_2
compliance_mean_2
propofol_mean_2
sf_ratio_mean_0
peep_mean_1
mv_duration
r_insp_mean_1
abp_mean_mean_0

vt_ibw_mean_1

spo2_mean_0

Feature

r_insp_mean_2

sufentanil_mean_2

vt_ibw_mean_0

pfi_mean_2

spo2_mean_1

abp_dia_mean_0

sf_ratio_mean_1

midazolam_mean_0

rcexp_mean_1

heartrate_mean_0

art_pco2

noradrenaline_mean_0

Gain

Figure C2. Top 25 feature importance scores, calculated as gain, from XGBoost Model 1 with feature set 2. 0 denotes minutes
0-20, 1 denotes minutes 20-40, and 2 denotes minutes 40-60.
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Figure C3. Feature curve illustrating the backward feature elimination process for Model 1 with feature set 2. 0 denotes
minutes 0-20, 1 denotes minutes 20-40, and 2 denotes minutes 40-60. The 5%, 25% 50, 75" and 95" percentiles are
indicated.
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1.3 Feature set 3

Mean, std, and trend over 6 hours, with a 6-hour observation window.

XGBoost feature importance

rcexp_mean

fio2_mean
delta_p_mean
sf_ratio_mean
abp_mean_trend
tidal_volume_exp_trend
delta_p_trend
ppeak_trend
abp_sys_trend
p_insp_std
abp_sys_std
rcexp_std

pf_ratio

Feature

etco2_std
spo2_mean
abp_mean_std
vt_ibw_trend

abp_dia_mean

propofol_mean
flow_insp_trend
r_insp_std
heartrate_mean
abp_dia_std
spo2_trend

pfi_std +

Gain

Figure C4. Top 25 feature importance scores, calculated as gain, from the XGBoost Model 1 with feature set 3.
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Figure C5. Feature curve illustrating the forward feature selection process for Model 1 with feature set 3. The 5%, 25,
50th, 75% and 95 percentiles, obtained using 10-fold cross-validation, are indicated.
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1.4 Feature set 4

Mean over each 2-hour interval, with 6-hour observation window.

XGBoost feature importance

sf_ratio_mean_2
fio2_mean_2
propofol_mean_1
delta_p_mean_0
tidal_volume_insp_mean_2
ppeak_mean_0
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abp_mean_mean_0

abp_mean_mean_2
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flow_insp_mean_1
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heartrate_mean_0
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abp_sys_mean_0
ppeak_mean_1
rcexp_mean_1
free_calcium

0 2 4 6 8 10 12

Figure C6. Top 25 feature importance scores, calculated as gain, from XGBoost Model 1 with feature set 4. 0 denotes hours
0-2, 1 denotes hours 2-4, and 2 denotes hours 4-6.
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Figure C7. Feature curve illustrating the forward feature selection process for Model 1 with feature set 4. 0 denotes hours
0-2, 1 denotes hours 2-4, and 2 denotes hours 4-6. The 5™, 25t 50", 75" and 95" percentiles are indicated.
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2 Model 2
2.1 Feature set 1

Mean, std, and trend over 2 hours, with a 2-hour observation window.

XGBoost feature importance
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Figure C8. Top 25 feature importance scores, calculated as gain, from XGBoost Model 2 with feature set 1.
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Figure C9. Feature performance curve illustrating the backward feature elimination process for Model 2 with feature set 1.
The 5, 25t 50t 75" and 95™ percentiles are indicated.
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2.2 Feature set 2

Mean over each 30-minute interval, with a 2-hour observation window.

XGBoost feature importance
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flow_insp_mean_2

sf_ratio_mean_0
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Figure C10. Top 25 feature importance scores, calculated as gain, from XGBoost Model 2 with feature set 2. 0 denotes
minutes 0-30, denotes minutes 30-60, 2 denotes minutes 60-90, and 3 denotes minutes 90-120.
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2.3 Feature set 3

Mean, std, and trend over 4 hours, with a 4-hour observation window.

XGBoost feature importance

sf_ratio_mean
tidal_volume_exp_mean

glucose

mv_duration

art_base_excess

spo2_mean

noradrenaline_mean

ie_ratio_mean
art_pco2

chloride

vt_ibw_mean
propofol_mean

bmi

Feature

spont_duration

peep_mean

art_alkali_reserve

sufentanil_mean

tidal_volume_insp_mean
rcexp_mean

p_insp_mean

flow_exp_mean
sodium
pfi_mean

hb

age

Gain

Figure C11. Top 25 feature importance scores, calculated as gain, from XGBoost Model 2 with feature set 3.
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Figure C12. Feature performance curve illustrating the backward process for Model 2 with feature set 3. The 5 25t 50t
75% and 95" percentiles are indicated.



Supplementary Materials 68

2.4 Feature set 4

Mean over each 1-hour interval, with a 4-hour observation window.

XGBoost feature importance

sf_ratio_mean_3
tidal_volume_exp_mean_3
chloride

mv_duration
noradrenaline_mean_3

glucose

vt_ibw_mean_3
art_pco2
sf_ratio_mean_2
propofol_mean_3
art_base_excess

spo2_mean_3

peep_mean_0

Feature

ie_ratio_mean_3
peep_mean_3

rcexp_mean_0

pmean_mean_3
sodium
sf_ratio_mean_1

spont_duration

ppeak_mean_0
peep_mean_1
pf_ratio

lactate

pfi_mean_0

Gain

Figure C13. Top 25 feature importance scores, calculated as gain, from XGBoost Model 2 with feature set 4. 0 denotes hour
0-1, 1 denotes hour 1-2, 2 denotes hour 2-3, and 3 denotes hour 3-4.
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Figure C12. Feature performance curve illustrating the backward feature elimination process for feature set 2 (mean over
each 1 hour). 0 denotes hour 0-1, 1 denotes hour 1-2, 2 denotes hour 2-3, and 3 denotes hour 3-4. The 5t 25t 50t 75t and
95t percentiles are indicated.
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D  Hyperparameter optimisation

1 Definitions of XGBoost hyperparameters

Table D1. Overview of the major hyperparameters for the XGBoost model.

Learning rate

Number of estimators

Max depth

Minimum child weight

Subsample

Column sample by tree

Alpha (L1)

Lamda (L2)

Scaling factor for newly added leaf weights after
each boosting iteration. Increasing this value
reduces the influence of individual trees.

Number boosting iterations, in each iteration one
tree is added to the ensemble. The optimal number
of estimators depends on the learning rate.
Maximum depth of a tree. Increasing this value
increases model complexity and the risk of
overfitting.

Minimum required sum of instance weights (amount
of information) in a leaf node to perform a split.
Increasing this value, reduces tree complexity and
thereby overfitting.

Fraction of random samples used for each boosting
iteration. Using subsampling prevents overfitting.
Fraction of random features used for each boosting
iteration. Using feature subsampling prevents
overfitting.

Regularisation term which sets leaf weights to zero,
resulting in a simpler model. Reduces overfitting.
Regularisation term which decreases leaf weights,
resulting in a more stable model. Reduces

overfitting.
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Learning

process

Learning

process

Complexity

Complexity

Subsampling

Subsampling

Regularisation

Regularisation
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2 Grid search values

max_depth 88, 7
min_child_weight 1,3,5

subsample 0.6, 0.8, 1.0
colsample_bytree 0.6,0.8,1.0

alpha 0,0.01,0.1, 1, 100
lambda 0, 0.01,0.1, 1, 100
Learning rate 0.3, 0.1, 0.05, 0.01

3 Optimised settings Model 1

n_estimators 20
max_depth 3
min_child_weight 1
subsample 1
colsample_bytree 0.6
alpha 0
lambda 1
learning_rate 0.05

4 Optimised settings Model 2

n_estimators 20
max_depth 3
min_child_weight 5
subsample 0.6
colsample_bytree 0.6
alpha 0.01
lambda 1

learning_rate 0.1
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4 Iterative learning curves Model 1

Performance over iterations
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Figure D1. Performance over iterations for Model 1 with prior to feature selection with default hyperparameter settings.
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Figure D2. Performance over iteration for Model 1 after feature selection with default hyperparameter settings.
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Figure D3. Performance over iterations for Model 1 after after feature selection and hyperparameter optimisation.
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5 Iterative learning curves Model 2
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Figure D4. Performance over iterations for Model 2 with prior to feature selection with default hyperparameter settings.
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Figure D5. Performance over iteration for Model 2 after feature selection with default hyperparameter settings.
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Figure D3. Performance over iterations for Model 2 after after feature selection and hyperparameter optimisation.
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E Model calibration

1 Model 1
Calibration curves
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Figure E1. Calibration curves for Model 1 for the COVID training set, COVID test set, and non-COVID test set before
calibration.

Calibration curves after model calibration
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Figure E2. Calibration curves for Model 1 for the COVID training set, COVID test set, and non-COVID test set, after model
calibration on each dataset.
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2 Model 2
Calibration curves
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Figure E3. Calibration curves for Model 2 for the COVID training set, COVID test set, and non-COVID test set before

calibration.
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Figure E4. Calibration curves for Model 2 for the COVID training set, COVID test set, and non-COVID test set, after model

calibration on each dataset.
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F Case descriptions
1 Model 1
1.1 Event sample with a high predicted probability

A 61-year-old female patient with COVID-19 pneumonia was intubated due to hypoxaemia and
respiratory exhaustion. After 2.5 hours of controlled mechanical ventilation, she was transitioned to
assisted ventilation. Controlled ventilation was reinitiated three hours later (Figure F2). During
assisted ventilation preceding the event, the respiratory rate ranged from 20 to 30 breaths per
minute, with an rapid shallow breating index (RSBI) of 40-60. The Pa0O,/FiO, ratio during assisted
ventilation was 14.7 kPa and decreased to 13.0 kPa after the event. The FiO, around the event was
60 to 70%. The patient was sedated with propofol and sufentanil, with no dose adjustments made

around the event.

The combination of a high FiO,, a low Sp0,/FiO, ratio, a high propofol infusion rate, and a low SpO,
resulted in a relatively high predicted event probability of 0.41 (uncalibrated) (Figure F1).

Event sample with a high predicted probability (p=0.41)
fix) = —0.383

80 = fio2_mean
1.12 = sf ratio_mean
552.459 = propofol_mean
89.572 = spo2_mean

9.941 = peep_mean ’ +0.03
7.756 = vt_ibw_mean ’ +0.02
0.775 = etco2_std ’ +0.02
1.507 = pfi_std ‘ +0.01
0 = midazolam_mean  —0.01 '
-16 -14 -12 -10 -08 -06 -04 -0.2

E[AX)] = —1.467

Figure F1. Local SHAP explanation for an event sample with a high predicted probability (p=0.41), showing the feature
values and their additive contributions to the model output (expressed as log odds).
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1.2 Event sample with a low predicted probability

A 67-year-old female patient with COVID-19 pneumonia was intubated due to respiratory
insufficiency. On day 28 of mechanical ventilation, after four days of continuous assisted ventilation,
she was transitioned to controlled ventilation, based on spontaneous respiratory rate, for four hours.
She was subsequently switched back to assisted ventilation after which an event occurred five
hours later (Figure F4).

During assisted ventilation preceding the event, the respiratory rate ranged from 20 to 30 breaths
per minute, with an RSBI of 45-75. The Pa0,/FiO, ratio shortly after the event was 22.5 kPa, and
the FiO, around the event ranged from 40 to 45%. One hour before the event, the clonidine infusion
rate was increased. The patient was hypotensive, and the noradrenaline infusion rate was increased
one hour after the event. Following this episode, the patient recovered and was successfully weaned

from mechanical ventilation within 12 days.
The combination of a relatively low FiO,, a high Sp0,/Fi0, ratio, and the absence of propofol infusion

resulted in a relatively low predicted event probability of 0.10 (uncalibrated) (Figure F3).

Event sample with a low predicted probability (p=0.10)
fix)=—2.212
1

2.736 = sf_ratio_mean
0 = propofol_mean m

5.87 = peep_mean —0.05 .
0 = midazolam_mean —-0.01 ‘

0.32 = etco2_std { +0.01
95.775 = spo2_mean —0.01 ’
6.192 = vt_ibw_mean I +0

0.569 = pfi_std I +0
—2.2 -2.0 -1.8 ~1.6 C-14

E[f(X)] = —1.467

Figure F3. Local SHAP explanation for an event sample with a low predicted probability (p=0.10), showing the feature values
and their additive contributions to the model output (expressed as log odds).
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1.3 Control sample with a low predicted probability

A 63-year-old female patient with COVID-19 pneumonia was intubated due to respiratory
insufficiency. This control sample was drawn from week 7 of mechanical ventilation during a 2.5-
hour period of controlled ventilation, based on spontaneous respiratory rate (Figure F6). At that
time, the patient had been on assisted ventilation since one week, alternated with multiple short

periods of controlled ventilation similar to this control sample.

Pa0,/FiO, ratio was approximately 30 kPa, and the FiO2 remained stable at 35%. Following this
time point, periods of controlled ventilation became less frequent, and the patient was successfully

weaned from mechanical ventilation within 12 days.

The combination of a relatively low FiO,, a high Sp0,/Fi0, ratio, and a low tidal volume per kg ideal

body weight in a relatively low predicted event probability of 0.08 (uncalibrated) (Figure F5).

Control sample with a low predicted probability (p=0.08)
filx) = —2.384

35 = fio2_mean
2.816 = sf ratio_mean
4.816 = vt_ibw_mean —-0.08 .
0 = propofol_mean -0.07 .
98.546 = spo2_mean ~0.07 .
0.18 = etco2_std —-0.06 .
0.11 = pfi_std ~0.06 .

5.513 = peep_mean —0.05 '

0 = midazolam_mean —0.02‘

2.4 2.2 2.0 -1.8 ~1.6
E[flX)] = —1.467

Figure F5. Local SHAP explanation for a control sample with a low predicted probability (p=0.08), showing the feature values
and their additive contributions to the model output (expressed as log odds).
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1.4 Control sample with a high predicted probability

A 70-year-old female patient with COVID-19 pneumonia was intubated due to respiratory
insufficiency. She was switched to assisted ventilation on day 10 of mechanical ventilation and did
not return to controlled ventilation for longer than three hours thereafter, but died 30 hours later.
The Pa0,/FiQ, ratio remained consistently around 10 kPa, with the FiO, at 80% or higher throughout
this period (Figure F8). The patient was ventilated in prone position; however, ventilation and

oxygenation failed to improve, and treatment was subsequently withdrawn.
The combination of a high FiO,, a low SpO,/FiO, ratio, a high propofol infusion rate, and low SpO,
resulted in a relatively high predicted event probability of 0.40 (uncalibrated) (Figure F7).

Control sample with a high predicted probability (p=0.40)
f(x) = —0.393

1.123 = sf ratio_mean
400 = propofol_mean

89.811 = spo2_mean . +0.09
15 = peep_mean ' +0.06
0.317 = etco2_std ’ +0.03

6.708 = vt_ibw_mean ’ +0.02

0.275 = pfi_std ‘ +0.01
0 = midazolam_mean  —0.01 '

-16 -14 -12 -1.0 -08 -0.6 —-0.4
E[f(X)] = —1.467

Figure F7. Local SHAP explanation for a control sample with a high predicted probability (p=0.40), showing the feature
values and their additive contributions to the model output (expressed as log odds).
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2 Model 2
2.1 Event sample with a high predicted probability

Figure F9 shows an event sample characterised by relatively low Sp0O,/FiO, ratios, a short total IMV
duration, and a low tidal volume per kg ideal body weight, resulting in a relatively high predicted
probability of 0.60.

Event sample with a high predicted probability (p=0.60)
fix) =0.387
]

1.407 = sf_ratio_mean_3
1.392 = sf_ratio_mean_2
413 = mv_duration

1.356 = sf_ratio_mean_0 . +0.28

3.329 = vt_ibw_mean_1 ' +0.23
—3 = art_base_excess ' +0.14
7.417 = spont_duration . +0.12

0 = noradrenaline_mean_3  —0.01 '

9 = glucose I +0.01
—25 -20 -15 -10 -05 00 0.5
E[fiX)] = —2.493

Figure F9. Local SHAP explanation for an event sample with a high predicted probability (p=0.60), showing the feature
values and their additive contributions to the model output (expressed as log odds).

2.2 Event sample with a low predicted probability

Figure F10 shows an event sample with high SpO,/FiO, ratios and a relatively long duration of

assisted ventilation, which resulted in a relatively low predicted probability of 0.03.

Event sample with a low predicted probability (p=0.03)
fix) = —3.423

2.686 = sf_ratio_mean_3
71.683 = spont_duration

2.755 = sf_ratio_mean_0 -0.1
2.706 = sf ratio_mean_2 -0.1
11161 = mv_duration -0.1
5 = art_base_excess -0.07 .
0 = noradrenaline_mean_3 —0.04 '

9.155 = vt_ibw_mean_1 —0.04 '

8.5 = glucose —0.02‘
—34 -32 -30 -28 26

6
EIAAX)] = —2.493

Figure F10. Local SHAP explanation for an event sample with a low predicted probability (p=0.03), showing the feature
values and their additive contributions to the model output (expressed as log odds).
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2.3 Control sample with a low predicted probability

Figure F11 shows a control sample with high SpO,/FiO, ratios and a long duration of assisted
ventilation, which resulted in a relatively low predicted probability of 0.03.

Control sample with a low predicted probability (p=0.03)
flx)

1,188 = sf_ratio_mean_3
1,212 = sf_ratio_mean_2
»3 = spont_duration
1.2 = sf_ratio_mean_0
19380 = mv_duration -0.09 .

0 = art_base_excess -0.08 .

0.019 = noradrenaline_mean_3 -0.05 .
12.6 = glucose —-0.04 .
9.19 = vt_ibw_mean_1 -0.04 .
-36 —3.4 -32 -3.0 -28 -2.6
E[fX)] = —2.493

Figure F11. Local SHAP explanation for a control sample with a low predicted probability (p=0.03), showing the feature
values and their additive contributions to the model output (expressed as log odds).

2.4 Control sample with a high predicted probability
Figure F12 shows a control sample characterised by relatively low SpO,/FiO, ratios, a short total

IMV duration, resulting in a relatively high predicted probability of 0.44, despite a relatively high
tidal volume per kg ideal body weight.

Control sample with a high predicted probability (p=0.44)
fix) = —0.261

4450 = mv_duration

1.377 = sf ratio_mean_2
1.399 = sf_ratio_mean_0 . +0.22

/.987 = vt_ibw_mean_1  —0.18 .

7.9 = glucose +0.06
4 = spont_duration ’ +0.04
4 = art_base_excess -0.01 '
0 = noradrenaline_mean_3 -0.01 '
-2.5 -2.0 -1.5 -1.0 -0.5

E[AX)] = —2.493

Figure F12. Local SHAP explanation for a control sample with a high predicted probability (p=0.44), showing the feature
values and their additive contributions to the model output (expressed as log odds).
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H Model 1B
1 Model design

A variation on Model 1 was developed, with model input from one hour before and one hour after

the switch from controlled to assisted ventilation (Figure G1).

Problem definition 1B

Switch Prediction Event
I
‘ observation window prediction window |
controlled | assisted controlled
1h 1h 5h

Figure G1. Overview of the observation window and prediction window aligned with ventilation modes and moment of
switching from controlled to assisted ventilation.

2 Model development
Four different types of input features were used for ventilatory and haemodynamic parameters:

e The mean over the last hour before the switch Xo
e The mean over the first hour after the switch X1
e The absolute change: X1-Xo

X1-Xo

e The relative change:
0

Mean feature importance was determined via 10-fold cross-validation and forward feature selection
in descending order of importance was employed (Figure 2). Eight features were selected, resulting
in a median AUROC of 0.70 (IQR 0.63-0.75).

Feature curve

1.0
—— Train score
—— Validation score
0.94
0.8 4
%}
207/ ™
=]
<
0.6 1
0.5
0.4 e ey
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Nr of features
IS - ST A S (I . A N PSS ST APO T SN RS SN S . |
P 2 2 @ & & & L AP & SN & 2
& & & & & Lo T S - A P " N
c;\.; G"l', ’sof:/ ,50"’ ‘z\’ 1:‘9‘,/ 's;ﬁ;/ ,5°$/ "’»‘ol zzq, '30[’/ ’;\q, (’,'W R‘?‘\/ +, r(\cr"/ eo, Rq‘\/ '50‘,/
& R o or R &S Qo &7 P ol o7 & & LF [Py
& Sq? ‘s\‘f\ < & F e O F Sl &7 & &P
h
\99  F & ¢ Q-ﬁ\ &
N N & W3 ¢
G o & &
& ®

Eliminated feature

Figure G2. Feature performance curve illustrating the backward feature elimination process. 0 denotes the hour before the
switch and 1 denotes the hour after the switch. The 5%, 25t 50", 75™ and 95 percentiles are indicated.
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After hyperparameter optimisation the AUROC yielded 0.72 (IQR 0.63-0.79). Learning curves
obtained after feature selection and hyperparameter optimisation are presented in Figures G3 and
G4.

Learning curve after feature selection

1.04

0.9 A

0.8

0.7 4

AUROC

0.6

0.5 1

—— Validation score
— Train score

0.4 . T T T ; T T T
200 300 400 500 600 700 800 900 1000

Nr of training samples

Figure G3. Learning curve, illustrating the performance over the number of training samples, obtained after feature
selection. The 5%, 25% 50, 75™ and 95" percentiles are indicated.

Learning curve after hyperparameter optimisation

1.04

0.9 A

0.8

0.7 4

AUROC

0.6

0.5 1

- Validation score
—— Train score

0.4 ; ; ; ; ; :
200 300 400 500 600 700 800 900 1000

Nr of training samples

Figure G4. Learning curve, illustrating the performance over the number of training samples, obtained after feature
selection and hyperparameter optimisation. The 5, 25t 50t 75" and 95" percentiles are indicated.
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3 Model validation

Validation on the COVID and non-COVID test sets yielded an AUROC of 0.70 and 0.58 respectively
(Figure G5).

Receiver operating characteristic

10

—=- Random classifier ¥
—— COVID test set (AUC = 0.7) o
— Non-COVID test set (AUC = 0.58) i
H L4
0.8
0.6 -
Frl
B
.E
c
O
w
0.4
o024
0.0 T T T T
0.0 02 0.4 0.6 08 1.0

1 - specificity

Figure G5. Receiver operating characteristic of validation on the COVID test dataset (AUC = 0.70) and non-COVID test
dataset (AUC = 0.58).

4 Model interpretation
A global SHAP analysis is presented in Figure G6. This analysis indicates the relative change in
propofol and the mean SpO, after the switch influence model output most strongly.
propofoLFeliehanga wolipdp-- .._......4.‘
e : M.‘.___
ofatio_mean.1 ','.-. S—— R
— ‘. B R R
NP i -
R — i : % R = = S
abp_sys_mean_1 H.....“
plinap.relichange |H...

Feature value

0.1 0.2 0.3
SHAP value (impact on model output)

Figure G6. Global SHAP analysis showing the impact of feature values on the model output by aggregating local SHAP
values across all training samples. 0 denotes the hour before the switch and 1 denotes the hour after the switch.
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I Switch conditions
1 Methods

To gain insight into current practices regarding the first switch from controlled to assisted
ventilation at the ICU of the LUMC, conditions during the hour preceding the first switch were
analysed. All patients included in this study (COVID and non-COVID patients with > 48 h of invasive
mechanical ventilation and a Pa0,/FiO, ratio < 40 kPa) were included if invasive mechanical

ventilation was started in a controlled ventilation mode.

Time to the first switch, mean haemodynamic and ventilatory parameters over the final hour before
the switch, and the most recent arterial blood gas values were reported as median (IQR).
Comparison were made between patients who experienced an event of respiratory deterioration (as
defined in Section 4.4) within six hours (failure) and those who did not (success), as well as for
patients who experienced an events within 72 hours and those who did not. Differences between
the success and failure groups were assessed using the Mann-Whitney U test with Holm-Bonferroni

correction for multiple testing, applying a two-sided significance level of 0.05.

2 Results

In total, first switch attempts in 746 patients were analysed, of whom 121 (16.2%) experienced
failure within six hours and 148 (19.8%) within 72 hours (Tables |11 and 12). The median time from
initiation of mechanical ventilation to the first switch to assisted ventilation was 47.9 hours (IQR
19.0-87.9). Time to switch was longer in the success groups (48.2 and 48.5 hours) than in the

failure groups (43.0 and 42.9 hours), although these differences were not statistical significant.

Small, but significant differences between the success and failure groups were observed for the
FiO,, Poeaks Preans PEEP, SpO,/Fi0, ratio, PaO,/FiO, ratio, and arterial O, saturation, for both six-
hour and 72-hour comparisons. In addition, minute volume and inspiratory flow were significantly
lower for the success 72-h groups. A complete overview of all analysed parameters is provided
Tables I1 and 12.
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3 Interpretation

The timing of the first switch to assisted ventilation varied substantially between patients. The
median time from the start of mechanical ventilation to the first switch was 47.9 hours, which is
relatively late compared with the findings of Smit et al. (1.3-1.8 days) (6) and Haudebourg et al. (9
hours) (8), but earlier than reported by Pérez et al. (3 days) (5). In addition, Smit et al. observed
that failed switch attempts occurred earlier than successful ones, which is consistent with the

trend observed in our analysis.

A failure rate of 19.8% within 72 hours is remarkably low compared with previously reported rates
of 30%-67% (5-8), three of which also included COVID-19 patients. A plausible explanation is the
stricter event definition applied in the present analysis. Transitions back to controlled ventilation
lasting less than three hours, or occurring with with an FiO, below 40% were not classified as
failure, which likely resulted in lower failure rates compared with similar studies. Furthermore, the

seemingly different timing of switches may contribute to this low failure rate.

Differences in pre-switch parameters between the success and failure groups were observed for
FiO, Poea Prmeans PEEP, SpO,/FiO, ratio, Pa0,/FiO, ratio, and arterial O, saturation. This is
consistent with previous studies reporting associations between switch failure and FiO,,
Pa0,/FiO, ratio, and ventilatory pressures (6-8). Other studies have also reported small
differences gas exchange parameters (pH, PaO, PaCO,, base excess, lactic acid) which were not

observed in the present analysis (6-8).
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Table I1. Overview of clinical parameters in one hour before the first switch attempt to assisted ventilation. P values indicate
the difference between the success group (no event within six hours) and failure group (event within six hours).

B ) T e

n (%) 625 (83.8) 121 (16.2)
Median (IQR) Median (IQR) Median (IQR) p corrected p
Time to switch (h) 47.9 (19.0 87.9) 48.2 (19.1 89.7) 43.0 (185 84.4) 0.575 1.000
Heart rate (/min) 82.5 (70.2  96.8) 83.4 (70.6 97.1) 769 (69.2 90.3) 0.018 0.366
MAP (mmHg) 77.0 (72.0 84.7) 769 (71.8 84.8) 778 (72.8 83.5) 0.556 1.000
Noradrenaline (ug/kg/min) 0.05 (0.00 0.14) 0.05 (0.00 0.15) 0.04 (0.01 0.10) 0.114 1.000
FiO, (%) 40.2 (34.7 49.9) 40.0 (325 49.3) 45.3  (40.0 51.0) <0.001 <0.001*
Sp0, (%) 95.6 (93.8 97.3) 95.6 (939 97.4) 94.8 (93.1 96.9) 0.017 0.366
Respiratory rate (/min) 17.6 (15.2  20.9) 175 (15.2 20.6) 18.8 (1561  22.2) 0.049 0.923
Pinsp (cmH,0) 12.8 (11.0 15.0) 12.8  (11.1  14.9) 12.8  (10.1 15.1) 0.896 1.000
AP (cmH,0) 10.2 (8.4 12.1) 10.1 (8.4 12.0) 10.3 (8.4 12.6) 0.553 1.000
Poiat (cmH,0) 20.4 (17.0 24.0) 20.0 (169 24.0) 22.0 (18.8 24.7) 0.014 0.309
Peak (cmH,0) 22.2 (18.7 25.4) 219 (184 25.1) 235  (20.7 26.3) <0.001 0.014*
P mean (cmH,0) 13.2 (10.7 15.8) 13.1  (10.3 15.5) 149 (12.0 17.0) <0.001 0.001*
PEEP (cmH,0) 8.7 (6.3 11.7) 8.3 (6.0 11.0) 10.0 (7.9 12.2) <0.001 0.002*
Auto PEEP (cmH,0) 0.6 0.3 1.2) 0.6 0.3 1.2) 0.7 0.3 1.3) 0.202 1.000
V; (mL) 486 (412 561) 487 (413 557) 473 (411 592) 0.797 1.000
V{/IBW (mL/kg) 7.0 6.2 7.7) 7.0 6.2 7.7) 7.1 6.3 7.9) 0.580 1.000
Minute ventilation (L/min) 8.5 (7.3 9.8) 8.5 (7.3 9.7) 8.9 (7.9 10.1) 0.013 0.297
Inspiratory flow (mL/s) 40.8 (35.5 46.0) 40.6 (35.2 45.5) 418 (37.7  48.4) 0.003 0.085
Expiratory flow (mL/s) 38.7 (34.0 43.4) 385 (33.8 43.2) 39.4 (35.4  43.9) 0.101 1.000
Compliance (mL/cmH,0) 53.9 (40.1 71.8) 54.0 (40.3 72.0) 535 (381  69.8) 0.816 1.000
Rinsp (cmH,0) 11.6 (9.0 14.4) 11.8 (9.2 145) 10.6 (8.3 12.9) 0.005 0.132
ETCO, (kPa) 5.0 (4.5 5.7) 5.1 (4.5 5.7) 5.0 (4.4 5.6) 0.318 1.000
V'CO2 (mL/min) 182.0 (151.8 219.0) 180.4 (151.4 216.3) 186.7 (157.3 233.0) 0.316 1.000
Sp0,/Fi0, ratio 2.4 (2.0 2.8) 2.4 (2.0 3.0) 2.1 (1.8 2.4) <0.001 <0.001*
Pa0,/FiO, ratio 25.4 (19.8 33.7) 26.5 (20.8 35.1) 21.8 (17.6 26.8) <0.001 <0.001*
Art. PH 7.40 (7.35  7.44) 7.40 (7.35 7.44) 739 (7.35 7.44) 0.804 1.000
PaCO, (kPa) 5.6 (5.0 6.3) 5.6 (5.0 6.2) 5.9 (5.2 6.8) 0.003 0.083
Pa0, (kPa) 10.2 (9.1 11.9 10.3 9.2 12.0) 10.0 (8.8 11.3) 0.006 0.149
Art. O, saturation (%) 95.0 (93.0 96.0) 95.0 (93.8 96.0) 94.0 (93.0 96.0) <0.001 0.010*
Art. Alkali Reserve (mmol/L) 25.0 (22.0  30.0) 25.0 (22.0 29.0) 27.0 (22.0 31.5) 0.055 0.997
Art. Base Excess (mmol/L) 0.0 (-3.0 5.0 0.0 (3.0 4.0 20 (3.0 6.0) 0.146 1.000
Lactate (mmol/L) 1.5 (1.2 2.0) 1.5 (1.2 2.0) 1.5 (1.2 1.8) 0.433 1.000

* statistically significant difference between groups (p < 0.05) after Holm-Bonferroni correction
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Table 12. Overview of clinical parameters in one hour before the first switch attempt to assisted ventilation. P values indicate
the difference between the success group (no event within 72 hours) and failure group (event within 72 hours).

O ) Y57 MY

n (%) 598 (80.2) 148 (19.8)
Median (IQR) Median (IQR) Median (IQR) p corrected p
Time to switch (h) 47.9 (19.0 87.9) 485 (19.3 89.5) 429 (17.6 84.5) 0.419 1.000
Heart rate (/min) 82.5 (70.2  96.8) 83.3 (70.2 97.2) 79.8 (70.4 91.1) 0.087 1.000
MAP (mmHg) 77.0 (72.0 84.7) 769 (719 84.7) 7717 (723 83.6) 0.658 1.000
Noradrenaline (ug/kg/min) 0.05 (0.00 0.14) 0.05 (0.00 0.15) 0.04 (0.01 0.12) 0.471 1.000
FiO, (%) 40.2 (34.7 49.9) 40.0 (323 49.2) 45.0 (40.0 50.3) <0.001 <0.001*
Sp0, (%) 95.6 (93.8 97.3) 95.7 (939 97.4) 95.0 (93.1 96.9) 0.015 0.335
Respiratory rate (/min) 17.6 (15.2  20.9) 17.3  (15.1 20.4) 19.2 (154  22.2) 0.005 0.125
Pinsp (cmH,0) 12.8 (11.0 15.0) 12.8 (11.0 14.8) 13.0 (10.2 15.4) 0.553 1.000
AP (cmH,0) 10.2 (8.4 12.1) 10.1 (8.3 12.0) 10.5 (8.4 12.6) 0.342 1.000
Poiat (cmH,0) 20.4 (17.0 24.0) 20.0 (169 24.0) 219 (17.8 23.4) 0.093 1.000
Peak (cmH,0) 22.2 (18.7 25.4) 219 (183 25.0) 23.2  (20.2 26.2) 0.001 0.018*
P mean (cmH,0) 13.2 (10.7 15.8) 13.1  (10.4 15.5) 145 (11.7 16.6) <0.001 0.010*
PEEP (cmH,0) 8.7 (6.3 11.7) 8.3 (6.0 11.1) 9.8 (7.7 12.0) 0.001 0.024*
Auto PEEP (cmH,0) 0.6 0.3 1.2) 0.6 0.3 1.2) 0.8 0.3 1.3) 0.083 1.000
V; (mL) 486 (412 561) 487 (412 558) 477 (413 575) 0.885 1.000
V{/IBW (mL/kg) 7.0 6.2 7.7) 7.0 6.2 7.7) 7.1 6.3 7.9) 0.705 1.000
Minute ventilation (L/min) 13.2 (10.7 15.8) 13.1  (10.4 15.5) 145 (11.7 16.6) <0.001 0.010*
Inspiratory flow (mL/s) 40.8 (35.5  46.0) 405 (35.2 45.3) 41.8 (37.4  48.3) 0.001 0.033*
Expiratory flow (mL/s) 38.7 (34.0 43.4) 38.4 (33.7 42.9) 395 (3.2  44.6) 0.033 0.662
Compliance (mL/cmH,0) 53.9 (40.1 71.8) 54.1 (40.3 73.0) 533 (38.7 67.9) 0.484 1.000
Rinsp (cmH,0) 11.6 (9.0 14.4) 11.8 (9.2 145) 10.9 (8.3 13.5) 0.020 0.428
ETCO, (kPa) 5.0 (4.5 5.7) 5.1 (4.5 5.7) 5.0 4.3 5.6) 0.113 1.000
V'CO2 (mL/min) 182.0 (151.8 219.0) 180.8 (151.4 217.0) 185.9 (156.1 224.1) 0.480 1.000
Sp0,/Fi0, ratio 2.4 (2.0 2.8) 2.4 (2.0 3.1) 2.1 (1.8 2.4) <0.001 <0.001*
Pa0,/FiO, ratio 25.4 (19.8 33.7) 265 (21.0 35.2) 223 (17.6 27.7) <0.001 <0.001*
Art. PH 7.40 (7.35  7.44) 7.40 (7.35 7.44) 739 (7.34 7.43) 0.406 1.000
PaCO, (kPa) 5.6 (5.0 6.3) 5.6 (5.0 6.2) 5.8 (5.2 6.6) 0.012 0.272
Pa0, (kPa) 10.2 (9.1 11.9 10.3 9.2 12.0) 10.0 (8.8 11.5) 0.008 0.186
Art. O, saturation (%) 95.0 (93.0 96.0) 95.0 (94.0 96.0) 94.0 (93.0 96.0) 0.001 0.017*
Art. Alkali Reserve (mmol/L) 25.0 (22.0  30.0) 25.0 (22.0 30.0) 26.0 (22.0 30.8) 0.399 1.000
Art. Base Excess (mmol/L) 0.0 (-3.0 5.0 0.0 (3.0 4.0 1.0 (3.0 5.0) 0.633 1.000
Lactate (mmol/L) 1.5 (1.2 2.0) 1.5 (1.2 2.0) 1.5 (1.2 2.0) 0.889 1.000

* statistically significant difference between groups (p < 0.05) after Holm-Bonferroni correction
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0 O:E key dates, key pn..‘din:ml.-. {includi 'sll.'n'u.'\gf.3|.1|1.u.':t:l. |ln:.3|:n|.|;nt.-. received, sample .-u..'n:. nurnber of 51
outcome events, follow-up time, and amount of missing data. A table may be helpful. Report any
__________________ y_demographic pRoURS. i iicieieeiieeeein )
206 E For I-UIJIjI.‘I.I:\ aluation, .-_.Im\l. a compar ison with the development data of the distribution of imporant £1
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Lzahiling of the e D Dreseribe how poor quality or unavailable input data (e.g., predictor values) should be assessed and _
muodel in the - handled when implementing the predietion medel
conlent af current b D Specify whether users will be required to interact in the handling of the input data or use of the model, 65
care I e A and what level of expertise is required ofwsers T
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