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Abstract

Continuum soft robots present significant opportunities for advancing robotics, but they
also introduce substantial technical challenges. These systems are highly nonlinear, infinite-
dimensional, and severely underactuated, making control particularly difficult. While recent
advancements in model-based control have addressed some of these issues for soft robotics,
numerical optimal control has shown strong potential, especially given its success in other
severely underactuated domains such as bipedal and quadrupedal locomotion.

However, the application of optimal control in soft robotics has largely relied on simplified
models, and its use with more accurate and geometrically consistent formulations remains un-
derexplored, particularly for explicitly tackling underactuation. This thesis investigates the
use of Differential Dynamic Programming (DDP) to control continuum soft robots modeled
using the Geometric Variable Strain (GVS) framework. The focus is on the Soft Inverted Pen-
dulum (SIP) as a template system to evaluate DDP’s feasibility, robustness, and performance
in underactuated settings, including low-stiffness regimes where collocated feedback strate-
gies break down. The implementation leverages the use of analytical gradients computed via
the Recursive Newton-Euler Algorithm (RNEA) to improve convergence and computational
efficiency.

The results show that DDP outperforms traditional Partial Feedback Linearization (PFL)
methods, both collocated and non-collocated, especially across challenging mass-stiffness com-
binations. This effectively extends control authority and stability into regimes previously con-
sidered difficult to handle. This thesis extends the method to more complex hybrid soft—rigid
systems, examining real-time feasibility and practical implementation, thereby laying the
foundation for a generalizable optimal control framework for soft robots.

Master of Science Thesis Nikhil Nair



Nikhil Nair Master of Science Thesis



Table of Contents

Acknowledgement ix

1 Introduction 1
1-1 Research Question . . . . . . . . . 2
1-2 Report Structure . . . . . . . .. 3

2 Soft Robotics — Modeling and Control 5
2-1 Soft Robotics: Motivation and Foundations . . . . . . . ... ... ... .... 5
2-1-1 Definition and Classification . . . . . . . ... . ... ... ... .... 6

2-1-2  Continuum Soft Robots . . . . . . . . . ... ... ... .. ....... 7

2-1-3 Materials, Actuation, and Sensing . . . . . . .. .. .. .. .. ..... 7

2-1-4 Applications . . . . . . 8

2-2  Modeling of Continuum Soft Robots . . . . . . .. ... ... .. ... ..... 9
2-2-1 Configuration of a Soft Robot . . . . . . .. ... .. ... ....... 12

2-2-2 Geometric Variable-Strain Approach . . . . . . ... ... ... .. ... 13

2-3 Model-Based Control of Soft Robots . . . . . .. ... ... ... ... ..... 18
2-3-1 Control Problem . . . . . . . . . ... 19

2-3-2  Fully actuated approximation . . . . . . . . ... ... ... 19

2-3-3 Dealing with Underactuation . . . . . . . . . ... ... ... ...... 20

2-4  Optimal Control For Soft Robots . . . . . . . . . ... ... ... ... ..... 27

3 Problem Formulation and Proposed Approach 35
3-1 Limitations of the State of the Art . . . . . . . . . . . . .. ... ... .. ... 35
3-2 Research Problem . . . . . . . . ... 36
3-3 Soft Inverted Pendulum System . . . . . . . . ... oL 36
3-4 Differential Dynamic Programming for NMPC . . . . . . . ... ... ... ... 41
3-5 Implementation of Nonlinear Model Predictive Control . . . . . . . .. ... .. 43
3-6 Analytical Derivatives of GVS Dynamics . . . . . . .. .. ... ... .. .... 45

Master of Science Thesis Nikhil Nair



iv Table of Contents

4 Results 49
4-1 Validation Strategy . . . . . . . . . 49
4-2 Simulation Studies . . . . . ... 51

4-2-1 Baseline Performance: DDP on the Soft Inverted Pendulum . . . . . .. 51
4-2-2  Comparison with Partial Feedback Linearization (PFL) Controllers . . . . 58
4-2-3 Scalability and Generalization . . . . . . . .. ... L 60
4-3 Hardware Setup . . . . . . .. 62
4-3-1 Inverse Kinematics . . . . . . . . . . ... ... 62
4-3-2  System ldentification . . . . .. .. ... 64
4-3-3 Control Framework . . . . . . . . . . ... .. 65
4-4 Implementation Details . . . . . . . . . ... 65
4-5 Hardware Results . . . . . . . . . ... 65
4-5-1 Inverse Kinematics . . . . . . . . . . . .. ... 65
4-5-2  System ldentification . . . . .. .. ..o 67
4-5-3  Control Experiments . . . . . . .. ... 68
4-6 Discussion of Results . . . . . . . ... 71

5 Conclusions and Future Work 73

A Analytical derivatives of Geometric Variable Strain Model 77

B Analytical Jacobian of the Inverse Kinematics Problem 79
Bibliography 81

Nikhil Nair Master of Science Thesis



List of Figures

2-1 The growth of soft robotics.[1] . . . . . ... ... .. ... ... ... ... 6
2-2  Classification of soft robots based on biological inspiration. [2] . . . . . ... .. 7
2-3  Early examples of continuum soft robots [3] . . . . . . ... .. ... L. 8
2-4 Examples of continuum soft robots based on actuation sources: (a) hydraulically
actuated FEA tail for a soft-robotic fish [4], (b) continuum soft robot arm driven
by 12 cables embedded within a silicone body [5], (c) dielectric elastomer gripper
lifting a wood beam [6], (d) octopus-like arm using an SMA-based actuation system
[T]. - 9
2-5 Overview of modeling techniques for continuum soft robots as described in [8].
Image from [9]. . . . . . .. 10
2-6 The six pure strains corresponding to £(X) € RS. Image from [10]. . . .. . .. 13
2-7 Taxonomy of soft robot control strategies, based on works in [10, 11, 12, 13].
Collocated control includes fully actuated and favorable underactuated cases, while
non-collocated control encompasses more complex scenarios with increased control
difficulty. . . . . . . 21
2-8 Soft Inverted Pendulum with Affine Curvature [13] . . . .. .. ... ... ... 25
2-9  Neural network-based model predictive control for a soft robot [14]. . . . . . .. 28
2-10 Koopman-based linear MPC on a lifted soft robot model [15]. . . . . . ... .. 29
2-11 Trajectory optimization pipeline with FEM condensed dynamics and DDP [16]. . 30
2-12 Overview of NMPC for underwater soft robot [17] . . . . . . . . ... ... ... 32
2-13 Dynamic grabbing via TO and ILC [18] . . . . . . . . . . ... ... ... .... 33
3-1 Soft Inverted Pendulum (SIP) system. . . . . . .. ... .. .. ... ... .. 37
4-1 Soft underactuated benchmarks used for validation. . . . . . .. ... ... ... 50
Master of Science Thesis Nikhil Nair



vi List of Figures
4-2  SIP nominal run under NMPC . . . . . . . . ..o 52
4-3  Stroboscopic plot of the SIP during swing-up and stabilization under NMPC. 53
4-4  Stroboscopic plots for disturbance-rejection Case 3 (Large Force at Tip, 15N)

and Case 4 (Medium Force at Middle, 8 N). Red SIP segments denote the interval
during which the disturbance is active. . . . . . . ... .o 55
4-5 State evolution for disturbance-rejection cases 1-6. . . . . . ... ... ... .. 55
4-6 State evolution for disturbance-rejection cases 7-10. . . . . . . .. ... ... .. 56
4-7 Equilibrium positions under parameter mismatch: scatter over all £ and p pertur-
bations; nominal equilibrium highlighted. The maximum deviation from nominal
is indicated in the plot. . . . . . . ... 57
4-8 Effect of model-plant mismatch on settling time and RMS control effort. Cat-
egories on the abscissa: mass increase/decrease and stiffness (Young's modulus)
increase/decrease. NMPC uses the nominal model (Table 4-1); plants vary p or E. 57
4-9 Feasibility regions over (m, k): open-loop stable , with analytic bounds from (3-11)
(blue) and (3-12) (red). The collocated PFL band lies strictly between the two
curves; non-collocated PFL and NMPC/DDP are evaluated outside/near these limits. 59
4-10 Collocated PFL ((3-13)): performance versus (m, k). Errors and effort are well
behaved inside the feasibility band ((3-11)—-(3-12)). . . . . . . . ... ... ... 59
4-11 Non-collocated PFL ((3-14)). . . . . . . . . . . 60
4-12 State trajectories: R-SIP (left) and Soft Furuta (right). . . . . .. ... .. ... 60
4-13 Stroboscopic comparisons: R-SIP (left) and Soft Furuta (right). . . . .. .. .. 61
4-14 Average solve time per NMPC step versus number of degrees of freedom (ndof). 61
4-15 Analytical vs. numerical (finite-difference) dynamics gradients in NMPC/DDP. An-
alytical derivatives yield lower per-step solve time. . . . . . . . .. ... ... .. 62
4-16 Hardware setup used in the experiments. . . . . . . . . . ... ... ... .. .. 63
4-17 Inverse-kinematics reconstructions from OptiTrack measurements. Each panel
shows the IK-estimated shape from the measured rigid-body pose and marker
positions (Section 4-3-1). . . . . . .. 66
4-18 Franka Emika Panda manipulating a deformable cable (experimental snapshots). 67
4-19 Cost convergence during stiffness identification. . . . . . . . ... ... ... .. 68
4-20 Statics solution with the identified stiffness E* The configuration is obtained by
solving the static equilibrium. . . . . . .. ..o 68
4-21 Franka—cable swing sequence at selected times. . . . . . . . ... ... ... .. 69
4-22 Visualization of the shapes obtained from the simulation of the system using the
NMPC controller, shown at the same timestamps as the real images in Fig. 4-18. 70
4-23 State trajectories (go—¢q3): comparison between the NMPC simulation output and
the OptiTrack measurements recorded during the real experiment. . . . . . . .. 70
Nikhil Nair Master of Science Thesis



4-4

4-5

46

Master of Science Thesis

List of Tables

Summary of Model-Based Optimal Controllers for Soft Robots . . . . . . . . ..

Baseline SIP model and OCP parameters for “Baseline Performance: DDP on the
Soft Inverted Pendulum™ . . . . . . . ... ..

Nominal SIP simulation results (corresponding to the setup in Table 4-1). . . . .

Disturbance test cases (location by Gauss point g,, type, magnitude, and activation

Disturbance rejection summary under NMPC/DDP (showing only recovery time
and peak control). . . . . ...

Model robustness to parameter mismatch (controller uses nominal model). Left:
mass density p variations; Right: Young's modulus E variations. Success = finite
settling time within horizon. . . . . . . . . . ...

Static identification summary (measured vs. identified). . . . . . . ... ... ..

34

52
93

54

54

o8
68

Nikhil Nair



viii List of Tables

Nikhil Nair Master of Science Thesis



Acknowledgement

I would like to express my deepest gratitude to my supervisors, Prof. Tamés Keviczky, Prof.
Cosimo Della Santina, and my daily supervisor Dr. Daniel Feliu Talegén, for their invaluable
support and guidance throughout my thesis.

First, I would like to thank Prof. Taméas Keviczky for giving me the opportunity to pursue
this project and for encouraging me to explore the field of soft robotics. His advice and
direction at the beginning of my thesis were instrumental in shaping this work.

I am especially grateful to Prof. Cosimo Della Santina for welcoming me into the Physical
Intelligence Lab within the Cognitive Robotics Department. Working in this environment has
been a truly rewarding experience. The bi-weekly meetings, the stimulating discussions, and
the exposure to the cutting-edge research in soft robotics have greatly enriched my academic
journey. I am also thankful for his inspiring review article in IEEE Control Systems Magazine,
which first introduced me to the field of soft robotics and sparked my interest in the control
of such systems.

My heartfelt thanks also go to Dr. Daniel Feliu Talegén, my daily supervisor, for his consistent
support, encouragement, and patience. His guidance in modeling approaches, his insights
during our weekly meetings, and his dedication to helping me refine my ideas have been
invaluable. His mentorship not only improved the quality of my thesis but also motivated me
to pursue my best work.

I would also like to thank my friends at DCSC for sharing this journey with me. The challenges
of the Master’s program were made easier and more enjoyable thanks to your companionship,
collaboration, and the diverse research we all pursued.

Most importantly, I wish to thank my family—my parents, Saji and Sangeetha, and my
sister, Navya—for being my unwavering foundation. Your constant encouragement, countless
sacrifices, and unconditional belief in me have carried me through every step of this journey.

Finally, I want to thank Varsha, my greatest source of strength and love. Thank you for
standing by me through every high and low, for being my most honest critic and my loudest
cheerleader, and for surrounding me with your endless patience, care, and encouragement.
None of this would have been possible without you, and I am endlessly grateful for the love
and support you have given me.

Master of Science Thesis Nikhil Nair



X Acknowledgement

Nikhil Nair Master of Science Thesis



Chapter 1

Introduction

Soft robotics has grown rapidly over the past decade, driven by advances in materials, fabri-
cation, and modeling [3]. Among these threads, control has seen major progress, yet remains
challenging due to pronounced compliance, distributed deformation, and sensing—actuation
constraints [10]. Model-based approaches typically yield superior performance to purely data-
driven baselines when accurate control-oriented models are available, but their adoption in
soft robotics has lagged because such models are difficult to derive and compute.

A distinctive feature of the field is its reversed trajectory of controller development: early
successes relied on learning and data-driven methods, whereas model-based controllers ma-
tured later as tractable continuum models and efficient solvers emerged. This thesis focuses
on continuum soft robots which are robotic analogues of invertebrate limbs (e.g., octopus
arms, elephant trunks) where compliance confers safety and the ability to store/release elas-
tic energy, enabling agile and energy-efficient behaviors that still elude rigid robots.

Optimal control techniques, although promising, have been relatively under explored in this
domain. This limited adoption can be largely attributed to the difficulty in modeling soft
robots and the preference for simpler controllers that are easier to implement on hardware.

This thesis investigates optimal control within a model based framework for soft robot con-
trol. It proposes and implements a nonlinear model predictive control and differential dynamic
programming framework that extends stabilizability in underactuated settings, targeting low
stiffness regimes where collocated methods fail. The work also develops an efficient formula-
tion that uses analytical dynamics gradients, warm starts, and few solver iterations to achieve
computation fast enough for real time closed loop control.

Challenges in the Control of Soft Robots

As highlighted in [10], soft robotic platforms have advanced rapidly in mechanical design and
robustness, yet widespread deployment remains limited by the difficulty of achieving precise
and reliable control. Unlike rigid robots, where control theory matured alongside accurate

Master of Science Thesis Nikhil Nair



2 Introduction

models, soft robotics initially faced a modeling bottleneck. This challenge led to early reliance
on machine learning and other model-free strategies.

The viewpoint has shifted for two reasons. First, empirical and theoretical results show that
feedback control can tolerate simplified or approximate models and often outperforms model-
free methods in closed loop. Second, a growing set of reduced-order models now provides
tractable and interpretable representations of soft-robot dynamics. Together these develop-
ments reopen the door to model-based control, including optimal control, for soft systems.

In practice, many implementations assume fully actuated approximations. This can work, but
underactuation is fundamental in soft robotics and must be addressed rather than avoided.
Not every equilibrium is attainable, and there may be no time-varying torque that reaches
an arbitrary state from any initial condition. The design objective is therefore to harness
underactuation, not to eliminate it, and to develop controllers that exploit elasticity and
distributed compliance.

In the underactuated case, a common strategy stabilizes the actuated coordinates while relying
on elasticity to stabilize the unactuated coordinates [10]. This coupling between actuation
and intrinsic elasticity is central to controller design for soft systems.

Handling underactuation in general remains challenging. Most model-based approaches target
specific subclasses where provable stability can be established, with collocated feedback as
a prominent example. These methods provide valuable guarantees but operate in restricted
parameter regions. This limitation motivates the exploration of optimal control with physics-
based models, which can leverage full-state predictions to extend stabilizability beyond the
regimes covered by collocated feedback.

1-1 Research Question

Building on the motivation outlined above, this report focuses on addressing the following
research question:

Research Question

How can soft robots in low-stiffness regimes be controlled accurately and efficiently
using optimal control?

Contributions

¢ A model-based NMPC formulation for continuum soft robots that exploits analytical
dynamics gradients for fast DDP iterations.

o A feasibility study against PFL baselines, highlighting stabilization in mass—stiffness
regions where zero-dynamics constraints preclude PFL.

e Robustness and disturbance-rejection evaluations, and generalization to additional soft-
/hybrid systems within the same modeling—control framework.

Nikhil Nair Master of Science Thesis



1-2 Report Structure 3

e A hardware pipeline combining OptiTrack-based shape reconstruction with offline tra-
jectory execution on a Franka Fmika Panda manipulating a deformable object.

1-2 Report Structure

The report is organized as follows. Chapter 2 introduces the foundational concepts and tools
for modeling and control of soft robots. Chapter 3 states the research problem, outlines
the proposed modeling and control approach, and highlights the gaps in the literature that
motivate the methodology. Chapter 4 presents the controller results and validation strategy.
Chapter 5 concludes the work and outlines directions for future research.
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Chapter 2

Soft Robotics — Modeling and Control

This chapter introduces the foundational concepts and tools necessary for understanding the
modeling and control of soft robots. The chapter begins with an overview of soft robotics,
highlighting key features such as compliance, continuum deformation, and the implications
these have on traditional control strategies.

The discussion then transitions into mathematical modeling frameworks for soft robots, pre-
senting a classification of common approaches with a focus on continuum mechanics. In
particular, the chapter emphasizes the Director-based modeling paradigm and introduces the
Geometric Variable Strain (GVS) approach as a physically consistent and control-oriented for-
mulation for slender soft bodies. To provide full context, alternative models such as Piecewise
Constant Curvature (PCC) and polynomial curvature models are also discussed, primarily to
motivate the modeling choices made in this work.

The chapter then delves into the control of soft robots, beginning with a discussion of model-
based control and an overview of the current state of the art. This is followed by a focused
exploration of optimal control methods used in the control of soft robots.

By the end of this chapter, the reader will be equipped with the theoretical background
necessary to understand the modeling assumptions, control formulations, and computational
methods employed in the remainder of this thesis.

2-1 Soft Robotics: Motivation and Foundations

Soft robotics has developed as a response to the limitations inherent in traditional rigid-
bodied robots, particularly in tasks involving unstructured environments, delicate interaction,
or physical adaptability. While rigid robots are effective in industrial settings that prioritize
precision and repeatability, they often lack the compliance and mechanical intelligence nec-
essary for safe and robust operation in dynamic conditions. In contrast, biological organisms
such as the octopus [19], cheetah [20], and elephant [21] display remarkable mobility and
manipulation capabilities. These are largely attributed to the compliant nature of their mus-
culoskeletal structures.

Master of Science Thesis Nikhil Nair



6 Soft Robotics — Modeling and Control

Biological softness, as exhibited by muscles, tendons, and ligaments, enables distributed com-
pliance, efficient energy storage, and impact resilience. Such mechanical properties allow
animals to traverse complex terrains, absorb shocks, and interact safely with their surround-
ings. Kim et al. [22] describe how the integration of soft tissues contributes to both robustness
and energy efficiency in nature, inspiring analogous principles in robotics. The field of soft
robotics, therefore, seeks to incorporate these advantages through the use of compliant ma-
terials and bioinspired designs.

The term “soft robot” was initially associated with pneumatic systems such as the McK-
ibben artificial muscle [23]. Historical contributions to the field include the development of a
wearable exoskeleton in 1957 [24], the Orm continuum manipulator in 1966 [25], and flexible
microactuators in the early 1990s [26]. During the 2000s, interest in bioinspired robotics in-
creased steadily, eventually leading to the formalization of soft robotics as a distinct subfield.
A notable rise in publications began around 2011, reaching over 100 annually by 2015 [1].
Figure 2-1 illustrates the historical development and rapid growth of the field.

Early discovery Growth phase: Define, inspire, explore Next decade
Robosoft Thriving field,
attendance high impact
Startups,e.g.  continues to /’—
Empire Robotics increase 7
S 1500- [10] l.
>
5 . [18,19] y /
» 9] Enabling tech, e.g. Workshop, _
S 1000- FDM patent expiration Monte Decreasing
® Verita interest, minimal
% impact
> Institutional [20] Robosoft
. [8] funding, e.g. conference
500- 6] - DARPA Chembots  [17]
5 | =
: | : ’_d_/-./l"—"‘"""/ SoRo journal
I I [ | [ / | | T /// -
1950 2000 2005 2010 2015 2020 2030
Time

Figure 2-1: The growth of soft robotics.[1]

Soft robots have demonstrated potential across diverse domains, including automated han-
dling in the food industry [27], marine exploration [28], and minimally invasive surgical pro-
cedures [29]. Their compliance allows for safe operation in human environments, adaptability
to uncertain conditions, and functionality in tasks that demand dexterous manipulation.

2-1-1 Definition and Classification

According to the description in [2], soft robots are characterized by the deliberate integration
of compliant components within their mechanical structure. These systems represent a shift
in design philosophy from the traditional principle of "design for precision, control for safety"
to "design for safety, control for performance."

Soft robots can be broadly categorized into two types. Articulated soft robots incorporate

Nikhil Nair Master of Science Thesis



2-1 Soft Robotics: Motivation and Foundations 7

flexible elements at joints or segments and are typically inspired by vertebrate structures [30],
including designs modeled after snakes, birds, and quadrupeds [31, 32, 33]. Continuum soft
robots, on the other hand, draw inspiration from invertebrates and feature continuously de-
formable bodies capable of bending and twisting in multiple directions [34, 35, 36].

Continuum Soft Robots Articulated Soft Robots

< O = >

2000 1000 500 200 100 50 20 10

Earth Birth Today

Figure 2-2: Classification of soft robots based on biological inspiration. [2]

2-1-2 Continuum Soft Robots

Continuum soft robots are defined by their ability to deform continuously along their bodies,
in contrast to rigid-link mechanisms. These systems are constructed using materials with
mechanical properties similar to biological tissues. As reported by Rus and Tolley [37], suitable
materials typically exhibit Young’s moduli in the range of 10* to 10? pascals. Examples
include the OctArm manipulator [38], designed for hyper-redundant manipulation tasks, and
the SoftBot [39], which emulates caterpillar-like crawling.

2-1-3 Materials, Actuation, and Sensing

Materials. Soft robots are typically composed of elastomers, hydrogels, or silicone-based
materials [22, 37], which provide both flexibility and resilience. These materials can be fabri-
cated using methods such as soft lithography [40], shape deposition manufacturing [41], and
multimaterial 3D printing [42].
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8 Soft Robotics — Modeling and Control

4 . > ‘.‘5& SMA springs

(a) OctArm [38] (b) SoftBot [39]

Figure 2-3: Early examples of continuum soft robots [3]

Actuation. Several actuation strategies are employed in soft robotic systems. Fluidic actu-
ators use pneumatic or hydraulic pressure to inflate chambers, producing deformation [43, 4].
Tendon-driven mechanisms incorporate cables routed through soft substrates, which are actu-
ated by external motors [5]. Electroactive polymers and dielectric elastomer actuators deform
in response to electric fields [6], while shape memory alloys deform thermally in response to
electrical current [7].

Sensing. The integration of sensing capabilities in soft robots remains a technical challenge
due to the lack of rigid frames. Conventional sensors often restrict deformation, motivating
the use of flexible alternatives. Resistive strain sensors [44], capacitive stretch sensors [45],
and optical waveguides [46] have been embedded into soft structures to provide proprioception
and tactile feedback. Advances in stretchable electronics have further enhanced the sensing
capabilities of soft robotic platforms [47].

2-1-4 Applications

Soft robots are particularly well-suited to applications requiring compliance and adaptability.
In manipulation tasks, they are able to conform to object shapes and modulate contact forces,
allowing safe interaction with fragile or irregular items [48, 49]. For exploration, soft-bodied
systems offer the ability to traverse narrow passages and withstand harsh environmental con-
ditions [50, 51]. In healthcare, soft robotics has enabled developments in assistive devices [52],
surgical instrumentation [53], and targeted drug delivery systems [54, 55].

This foundational overview establishes the context for the challenges addressed in this the-
sis. The next sections focus on the modeling and control of soft robots, particularly under
conditions of underactuation.

Nikhil Nair Master of Science Thesis



2-2 Modeling of Continuum Soft Robots 9

(b)

(c) (d)

Figure 2-4: Examples of continuum soft robots based on actuation sources: (a) hydraulically
actuated FEA tail for a soft-robotic fish [4], (b) continuum soft robot arm driven by 12 cables
embedded within a silicone body [5], (c) dielectric elastomer gripper lifting a wood beam [6], (d)
octopus-like arm using an SMA-based actuation system [7].

2-2 Modeling of Continuum Soft Robots

This section introduces the mathematical modeling of soft robots, a field that presents unique
challenges due to the highly flexible and deformable nature of these systems. However, recent
years have witnessed a surge in theoretical tools for modeling soft robots, leveraging on other
scientific disciplines such as continuum mechanics, computational mechanics, and computer
graphics.

The primary aim of this section is to provide an overview of the diverse theoretical approaches
for modeling soft robots, with a particular focus on methods that are relevant to the proposed
approach in the thesis. Specifically, the section highlights models relevant to continuum soft
robots that can be represented as slender rods with high length-to-width aspect ratios.

In their exact form, continuum soft robots are infinite-dimensional systems, governed by
highly nonlinear partial differential equations (PDEs) that are not analytically solvable [8].

Master of Science Thesis Nikhil Nair



10 Soft Robotics — Modeling and Control

Data-driven Discrete material Geometric Mechanical
(e.g. neural network) (e.g. pseudo-rigid) (e.g. PCC) (e.g. FEM, Rods)

Q 3D 1D

Link ]

J Joint J i

Figure 2-5: Overview of modeling techniques for continuum soft robots as described in [8].
Image from [9].

As emphasized in [8], a fundamental challenge in soft robot modeling is balancing accuracy
with computational tractability, especially for control and optimization applications. While
numerous reviews have addressed the mathematical modeling of soft robots, the comprehen-
sive literature survey in [8] forms the basis for this discussion. The classification framework
proposed in that paper, organized around mathematical techniques, is particularly insight-
ful. Here, however, the primary focus will be on models specifically designed for slender soft
robots. According to the classification scheme, soft robot models are categorized as follows:

Continuum Mechanics Models: These models are rooted in the classical theory of contin-
uum mechanics and aim to describe the behavior of soft bodies by treating them as continuous
deformable media. The underlying formulation involves defining strain measures, constitutive
laws, and balance equations, resulting in partial differential equations (PDEs) that capture
the system’s nonlinear and distributed dynamics.

A general-purpose approach to solving these PDEs involves discretizing the problem domain
using the Finite Element Method (FEM). FEM approximates the configuration field
over a mesh of finite elements and has been widely adopted in the soft robotics literature [56,
57]. While FEM provides a powerful simulation framework, its computational complexity
can become prohibitive for real-time control, unless combined with model order reduction
techniques [58].

For slender soft robots—systems with a high length-to-diameter ratio—a more specialized
and efficient modeling paradigm is the director-based approach. Here, the soft body is
modeled as a Cosserat rod: a spatial curve (the material axis) along which rigid cross-sections
are distributed. Each cross-section is equipped with an orthonormal frame (directors) that
tracks local orientation. The configuration of the rod is represented as a curve on the Lie
group SE(3):

g(): X €]0,L] — g(X) € SE(3), (2-1)

where g(X) encodes the pose of the cross-section at position X.

Nikhil Nair Master of Science Thesis



2-2 Modeling of Continuum Soft Robots 11

This formulation captures bending, twisting, shearing, and stretching within a geometrically
exact framework. Recent work has recast this theory using Lie group methods to derive
dynamic equations in a coordinate-invariant form. Omne of the most prominent methods in
this class is the Geometric Variable-Strain (GVS) approach [59, 60], which parameterizes
strain fields using modal basis functions and derives reduced-order Lagrangian dynamics.
GVS preserves physical structure, enables efficient computation, and is particularly amenable
to model-based control.

Geometrical Models: This category of models is based on the assumption that the deformed
shape of a soft robot conforms to a specific geometric pattern. These models typically fall
under the broader Cosserat rod framework, but unlike continuum mechanics models that
directly solve the governing PDEs, geometrical models adopt a reduced-order approach by
prescribing the system’s kinematics through generalized coordinates.

Rather than discretizing continuous equations, these methods postulate a shape—often in-
spired by observations of how actuators deform soft structures—and build the model from
geometric or variational principles such as the Euler-Lagrange equations. This makes them
computationally efficient and particularly attractive for real-time control and planning.

Geometrical models can be broadly classified into two subgroups: functional models and
piecewise-constant curvature (PCC) models.

1. Functional Approaches: These models describe the backbone of the robot using
smooth, parameterized curves. A common method is the modal approach [61], which
represents the shape through a set of basis functions weighted by time-varying coef-
ficients. This yields a compact set of generalized coordinates suitable for control and
planning.

2. PCC Models: PCC models approximate the soft body as a series of constant-curvature
segments, each bending in a fixed plane. This assumption holds in many practical actu-
ated systems and simplifies kinematic modeling. They are often used in a kinematics-
based form, where actuator inputs are directly mapped to curvature and length param-
eters. However, care must be taken near zero curvature due to singularities, which can
be resolved through improved parameterizations [62].

Discrete Models: These models represent soft robots using inherently discrete elements,
without discretizing a continuous model. They are typically categorized into three types [8]:

1. Lumped-Mass Models use discrete masses, springs, and dampers to capture dynam-
ics. They are flexible for modeling nonlinear effects but require many degrees of freedom
(DOFs), making control and identification challenging.

2. Pseudorigid Models approximate soft bodies as serial chains of rigid links and joints.
They leverage rigid-body theory but also demand high DOFs for fidelity.

3. Discrete Rods discretize a Cosserat rod into connected segments, capturing curvature
through node positions and angles. While inspired by FEM, they are simpler and well-
suited for simulation and control, especially in graphics and real-time applications.
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Surrogate Models: These models represent a class of physics-agnostic approaches that
rely on data-driven methods. In [8], they are classified into two categories: neural networks
and data-driven order reduction. The first category employs neural networks to model the
soft robot by learning its dynamics directly from data. The second approach uses data-
driven methods to efficiently approximate the physical model. For instance, in [63], Koopman
operator theory is used to enable the application of linear control methods to soft robots. This
theory identifies a globally linear representation of the system, facilitating fast and efficient
control design. Other methods include model order reduction of FEM models, where the
finite element equations of motion are projected onto low-dimensional subspaces to achieve
computational efficiency. Since this report focuses on physics-based modeling and control,
these models will not be discussed in detail.

The classification scheme presented above provides a comprehensive framework to understand
soft robot models from their theoretical foundations. This understanding offers valuable
insights into their accuracy and computational feasibility. In [8], the uses of models from each
category are summarized for simulation and control use cases. Some key insights include:

o Energetic approaches based on modal Ritz reduction, such as the GVS approach [59],
provide highly reduced models in standard forms that are well-suited for control.

e Although PCC approaches are valid only under the circular arc assumption, they are
ideal for kinematic control.

e Lumped mass and pseudorigid models are conceptually simple and allow the use of
theory from rigid-body dynamics. However, they require high DOF to accurately model
soft robots and need reduction techniques to be suitable for control.

o Although originally developed for fast interactive simulations, discrete rod approaches
can be adapted for real-time simulation and control.

o Physics-agnostic approaches can enable fast simulation and control but are not gener-
alizable and demand extensive data.

These insights motivate the modeling choice adopted in this thesis. While models such as
PCC and polynomial curvature have been widely used in the literature due to their simplicity
and computational efficiency, they rely on assumptions—such as constant curvature or planar
deformation—that limit their generality and physical consistency. As noted in [8], both can
be viewed as special cases of the more general GVS framework, obtained through specific
choices of the strain basis. In light of this, the GVS model is presented as the unifying and
physically consistent foundation for modeling slender soft robots in this work. It supports
both theoretical rigor and practical applicability, making it well-suited for the control and
optimization tasks addressed in the following chapters.

2-2-1 Configuration of a Soft Robot
Before proceeding to the models, it is worthwhile to establish how the configuration of a
slender soft robot can be defined. One parameterization is already described in (2-1), which

represents the configuration as a curve describing the full posture of the backbone of the soft
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Figure 2-6: The six pure strains corresponding to £(X) € RS. Image from [10].

robot at a given time. However, there is an alternative way to define the configuration of a
soft robot, which will be used in the sections that follow.

As clarified in [10], local strains can effectively represent the configuration of a soft robot.
These strains include curvature, twist, elongation, and shear. When considering the con-
figuration of the soft robot as described in (2-1), these strains correspond to variations in
g with respect to X. Consequently, the strain becomes a function of X, represented as
£(): X €]0,L] — £(X) € RS. The strains can be categorized into translational and rota-
tional components. Translational strains include the elongation strain, which acts along the
tangent to the backbone curve, and two shear strains, which act along axes orthogonal to the
backbone curve. Rotational strains include the torsional strain about the backbone axis and
two curvature or bending strains about axes perpendicular to the backbone.

2-2-2 Geometric Variable-Strain Approach

In this section, the GVS approach is discussed, which falls under the energetic methods
within the director approaches class of continuum mechanics models. As mentioned earlier,
this method relies on the Cosserat rod, a continuum mechanics object capable of modeling all
six deformation modes of a slender body. The GVS approach is strain-based, where the strain
field is parameterized along the length of the Cosserat rod. This methodology is introduced for
both statics and dynamics in [64, 59, 65, 60]. The modeling process using the GVS approach
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14 Soft Robotics — Modeling and Control

is detailed in this section.

The configuration of the system, similar to (2-1), is given as:

g(): Xe[0,L] - g(X)= <1§ :) € SE(3), (2-2)

where the transformation matrix g(X) maps a point in the body frame at X to the body
frame at X = 0, implying that g(0) = Iy.

Strain State Representation. Considering the Lie algebra se(3) of SE(3), the spatial
derivative of g can be expressed as:

29— g(X) = g(X) (23)

where £(-) : X — se(3) defines the strain state of the rod. This strain state is referenced
against a strain configuration £&*. The components are written as:

£x) = (’g g) € 5(3),

£X)=(k".p")" €R,

(2-4)

where k(X) € s0(3), k(X) € R?, and p(X) € R3 represent angular and linear strains,
respectively.

Temporal Derivative and Velocity Twist. The temporal derivative of g can similarly be

written as: 9
g R ~
= 9(X) = g(X)m, (2:5)

where 7(-) : X — se(3) defines the velocity twist relative to X = 0 in the current body frame.
This is expressed as:

7(x) = (ﬁ’ g) € 5e(3).

n(X)=(w',v")" RS

(2-6)

Computing g(X) from £(X). Equation (2-3) is a matrix differential equation that can be
integrated spatially to determine g(X). In the general case, this integration lacks a closed-
form solution. However, for constant strain £€(X) = &, the equation simplifies and can be
straightforwardly integrated as shown in [64]. For the general case, the equation is of the
form:

Y =YA(X), (2-7)
whose solution can be expressed using the Magnus expansion:

Y (X) = Y(0) exp(2(X)), (2-8)

where Q(X) is an integral series of Lie brackets of £(X) [66]. In [60], a fourth-order Zanna
quadrature approximation of the Magnus expansion is employed. The domain [0, L] is dis-
cretized into intervals of length h, and g(X) is evaluated recursively:

9(X +h) = g(X) exp($2(h)), (2-9)
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with the initial condition g(0) = I.

Strain Derivatives and Velocity Twist. The equality of mixed partial derivatives of g(X)

yields:
9 (3g> _9 <39)
ox \ot) ot\ox)’

W =€ aden, 210)
n=£€— adgé — adén.
The velocity and acceleration twists can be computed as:
X .
n(X) = Ad"! / Adyé ds,
0 (2-11)

7(X) = Ad; ! /OX (Adyé + Ady€) ds.

where ad .y and Ad.) represent the adjoint operator of s¢(3) and the adjoint map, respectively.

Strain Parameterization and Geometric Jacobian. The strain field is parameterized
using generalized coordinates and basis functions:

§(X) = 0¢(X)q + £(X), (2-12)

where g € R™ are the generalized coordinates, ®¢(X) € R6*"™ is a matrix of basis functions,
and &£*(X) represents reference strains. Substituting these into (2-11), the geometric Jacobian
can be obtained as:

X
n(X,q,49) = Ad;1/0 AdgPedsq. (2-13)

J(X.q)

Using the Magnus expansion, g(X ), n(X), and the geometric Jacobian can be recursively com-
puted as shown earlier. The dynamics of the soft body can be obtained using D’Alembert’s
principle. The free-body dynamic equation in the local frame, along with its boundary con-
dition, is given by the Cosserat equilibrium [60]:

M)+ adiMn =
(Fi— Fa) +adi(Fi — Fa) + Fe,

(Fi — Fa)(0) = —Fo,
(Fi— Fa)(L) = Fr,

(2-14)

where M (X) € R6%C is the screw inertia density matrix of the cross-section, given as:
M(X) = p diag(Jy, Jy, J2, A, A, A),

with p being the mass density, A(X) the cross-sectional area, and J, Jy, J, the second mo-
ments of area. The term F.(X) € RO is the distributed external load, while F;(X), Fo(X) €
RS represent the internal wrenches due to material elasticity and distributed actuation, re-
spectively.
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Internal Elastic Wrench. The internal elastic wrench is derived using a Hooke-like linear
elastic law: .
Fi(X) =%(§ - &) + T¢,

_ (2-15)
= D0¢q + T¢q,

where Y (X) € R6%6 is the screw elasticity matrix:
S(X) = diag(GJy, EJ,, EJ., EA,GA, GA),

with E being Young’s modulus, G the shear modulus, and Y(X) € R6%6 the screw damping
matrix:

T(X) = v diag(Jy, 3Jy,3J;,34, A, A).

Distributed Actuation Wrench. The actuation can represent any distributed actuation
wrench. In specific cases, it can be discretized using actuation bases (e.g., thread-like actuators
such as tendons or embedded pneumatic chambers):

FoX)=) ldg’“] u, = ®qu. (2-16)
k=1

Generalized Dynamics of the Rod. The dynamics of the entire rod in generalized coor-
dinates are obtained by integrating (2-14) over the length of the soft body and substituting
the elastic, damping, and actuation laws. The resulting equations take the following form (in
the case of independent bases):

M(q)G + C(q,q4)q + G(q) + Kq + Dq = B(q)u, (2-17)

where the only external force considered here is gravity. The coefficients are computed as:

L
M(q) = /0 JIMJTdX,

L .
Clq.4) = /0 J7(adi M + M) dX,

L
Glq) = / JTM (Ad}G) dX,
o (2-18)
K = / NP, dX,
0

L
T
D:/O DY De dX,
L
B(q):/o D, dX,

where G € RY is the gravitational acceleration twist expressed in the inertial frame. Other
terms are defined as previously described. The spatial integrals in equation (3-5) can be
evaluated using numerical integration schemes, such as Gaussian-Legendre quadrature. This
method evaluates the integrands at discrete points, providing an accurate numerical approx-
imation of the integrals. To derive the generalized equations, a two-level nested quadrature
scheme is employed, as outlined in [60]. Specifically, Zannah collocation is used to compute
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the approximate Magnus expansion of the strain twist, while the numerical scheme addresses
the integration in equation (3-5).

The previously introduced GVS formulation is not limited to individual soft elements; it
naturally extends to more complex morphologies, including serially connected soft links and
hybrid soft-rigid structures, as outlined in [60]. A particularly appealing feature of the GV'S
framework is its generality: depending on the choice of basis functions used to parametrize
the strain field, it can reproduce a variety of classical modeling approaches. These include
the widely used Piecewise-Constant Curvature (PCC) model, the Piecewise-Constant Strain
(PCS) model, and the Polynomial Curvature model.

Piecewise-Constant Curvature Model. The PCC model [62] can be recovered as a special
case of the GVS formulation by selecting a spatially invariant strain basis. For instance, the
following parametrization yields the classical planar PCC model with bending about the y-
and z-axes and an axial elongation term:

000 0
100 . 0
010 ! 0
00 0 \B 0
00 0/ a 0
———— ——

<I>§ £

This configuration assumes constant bending and axial strain over the entire segment, aligning
with the assumptions of the PCC model. More generally, including additional nonzero rows
in @, allows the model to capture shear and torsion, leading to the Piecewise-Constant Strain
(PCS) formulation. These constant-strain representations benefit from analytical expressions
for forward kinematics and do not require numerical integration techniques such as the Magnus
expansion. However, they are only accurate under restrictive assumptions and are less general
than the full GVS formulation.

Polynomial Curvature Model. Similarly, the Polynomial Curvature model proposed in
[67] and analyzed in [68] can also be expressed within the GVS framework by using a monomial
basis in the spatial variable X:

0 0 0 0

1 X xn-1 q1 0

0 0 0 q2 0

0 0 0 | \g/ |0

0 0 0 0
q ——

P (X) &

This basis captures planar bending about the y-axis, with the curvature defined as a polyno-
mial function of X. In the special case where n = 2, the curvature becomes affine, as used
in the Soft Inverted Pendulum model [13], allowing closed-form expressions for the shape via
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Fresnel integrals. However, these expressions are still numerically intensive and often require
approximation in practice.

In summary, while models like PCC, PCS, and Polynomial Curvature offer useful closed-form
expressions and simplified dynamics, they are all recoverable as specific instances of the GV'S
model with tailored strain basis functions. The GVS framework thus provides a unified and
extensible foundation for modeling a wide variety of soft robotic systems while being well
suited for model-based control.

2-3 Model-Based Control of Soft Robots

This section introduces the control challenges associated with continuum soft robots. As
highlighted in [10], while soft robotic platforms have seen significant advances in mechanical
design and robustness, their widespread deployment is still constrained by the difficulty of
achieving precise, reliable control. Unlike rigid robots, where control theory has evolved
in parallel with modeling capabilities, soft robotics initially faced a bottleneck in modeling
complexity, leading to the widespread adoption of machine learning and model-free strategies.

This viewpoint has shifted in recent years due to two key developments. First, empirical and
theoretical results have shown that feedback control can tolerate simplified or approximate
models, often outperforming model-free methods. Second, as discussed in the previous section
on the modeling, a number of reduced-order models have emerged—such as PCC, polynomial
curvature, and GVS—that offer tractable and interpretable representations of soft robot dy-
namics. These developments have laid the groundwork for reintroducing model-based control
methods into soft robotics, including geometric and optimal control.

Based on the unified perspective in [10], the control problem can now be formulated system-
atically. Assuming that the strain field £(X) is parameterized by a finite set of generalized
coordinates g € R", the governing dynamics of the soft robot can be written as:

M(q)G + C(q,4)d + G(q) + K(q) + D(q)q = A(q)T, (2-21)

where:

o M(q) € R™™" is the inertia matrix,

e C(q,q)q represents Coriolis and centrifugal effects,

e G(q) and K(q) denote gravitational and elastic forces,
e D(q)q accounts for damping,

o A(q) € R™™ is the actuation matrix, and 7 € R™ is the control input.

The remainder of this section examines control strategies formulated around this dynamic
structure. Beginning with fully actuated approximations and posture regulation, the dis-
cussion then addresses challenges in underactuation and a review of current methods and
opportunities where optimal control techniques may provide practical and scalable solutions.
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2-3 Model-Based Control of Soft Robots 19

2-3-1 Control Problem

The primary control objective in soft robotics is to regulate the shape of the system. This
involves controlling the strains, which are a function of the configuration vector g(t). The
goal of posture regulation is to stabilize the configuration g(¢) to a desired target g € R"”
using the control input 7 € R™, such that:

lim ¢(t) = q. (2-22)

t—o00

The desired configuration is chosen to be an equilibrium configuration of the system (stable
or unstable). The equilibrium configurations of the system in (2-21) for a given control input
Teq are the solutions to:

K(q) + G(q) = A(q)Teq- (2-23)

As noted in [10], at least one solution exists for any given 7, if K(q) is radially unbounded.
This existence of at least one equilibrium for constant actuation is a notable departure from
rigid robots, where constant actuation cannot result in equilibrium configurations unless grav-
ity is a factor.

2-3-2 Fully actuated approximation

Following [10], control design can begin with a simplified case where the soft robot is fully
actuated, i.e., A(q) = I. In this case, a feedforward input that balances internal elastic and
gravitational forces at a desired equilibrium q can be written as:

7(q) = K(q) + G(q), (2-24)

where K (q) and G(q) denote elastic and gravitational forces, respectively. This controller
leverages soft robots’ intrinsic dynamics and can stabilize configurations even with minimal

feedback.

Theorem 1. [10] Let (g,0) be an equilibrium of the system in (2-21) under (2-24). It is
asymptotically stable if there exists a neighborhood N (q) such that:

i. Ug(q) +Uc(q) > Uk(q) + Uc(q) + (K(q) + G(q)) " (g — q),
ii. K(q)+G(q)# K(q)+ G(q) for g € N(q) \ {g}-

These conditions reflect the self-stabilizing nature of soft robots due to their elastic fields.
Condition (ii) can be interpreted as a convexity check via:

K G
(8 + 8) > 0. (2-25)
dg  0q/lq—q
The feedforward law can be improved using feedback:
7(4.9,9) = K(q) + G(q) + a(q — q) — /4, (2-26)
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with gain matrices a, 5 € R™* ™. This introduces damping and enlarges the basin of attraction.
For stability, it suffices that 8 > 0 and:

(2%, 26)
oq oq

This control formulation demonstrates how soft robots’ elastic properties reduce the complex-
ity of the control problem and offer opportunities for stable, low-effort regulation.

+a > 0. (2-27)
a=q

2-3-3 Dealing with Underactuation

The system considered in the previous sections was based on fully actuated approximation
(A(q) = I). This works well in practice, but considering underactuation can be key to
increasing the performance and reliability of controllers for soft robots, while even avoiding
performance degradation and instability. The primary difficulty with underactuation lies in
the limitations on the attainable equilibrium. For a nonsquare actuation matrix A(q) € R™"*™
with m < n, for a given configuration q, there need not exist a 7., for which the equilibrium
equation (2-23) is satisfied because K(q) + G(q) ¢ Span(A(q)).

This also means that a time-varying torque may not exist such that an arbitrary state (q, q)
can be reached from any initial condition. However, for an attainable equilibrium, the equa-
tion can be solved using the left pseudo-inverse of A(q) as follows:

T =(ATA)'AT(K(q) + G(9)). (2-28)

For a configuration-independent actuation matrix, this can lead to the same closed-loop be-
havior as with (2-24), and it can be proved using Theorem 1 if

(I - AA")(K(q) + G(q)) =0, (2-29)
which makes the closed-loop system equivalent to the closed loop with the fully actuated

approximation, from which the proof follows.

The controller, similar to (2-26), can also be extended with « = Aa AT and f = ABAT. The
proof follows directly from the fully actuated case as shown earlier. The conditions mentioned
are specified under Corollary 2 in [10].

The modified condition (i) from Theorem 1 with the feedback controller (2-27) in this case

can be written as
(GK(q) N 0G(q)
dq 0q

= 0. (2—30)
q=q

+ AaAT>

Where AaAT = 0 if a = 0, but Rank(AaAT) < m. This means that the condition is
satisfied and q is stabilized only when actuation is colocated on the directions in which the
effective stiffness loses rank. As mentioned in [10], this can be interpreted as the controller
stabilizing the actuated coordinates A q while relying on the elasticity (K (q)) to stabilize the
unactuated coordinates. This interplay between actuation and inherent elasticity is a crucial
factor that must be carefully considered when designing controllers for the underactuated
case.
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However, addressing underactuation in the general case is highly challenging. The literature
on model-based controllers for underactuated systems primarily focuses on designing con-
trollers for specific classes of underactuated systems where provably stable controllers can be
formulated. The current body of work on model-based controllers using collocated feedback
for soft robots can be broadly categorized into two main cases: the Elastically Dominated
Case and the Elastically Decoupled Case.

Non fully actuated
Elastically

dominated Non-ED

Fully af:tuaFed e e Actuat%on col.h.)cated Elastically All the rest
approximation on instability decoupled
\/-/
Collocated control Non-collocated control

Figure 2-7: Taxonomy of soft robot control strategies, based on works in [10, 11, 12, 13].
Collocated control includes fully actuated and favorable underactuated cases, while non-collocated
control encompasses more complex scenarios with increased control difficulty.

Both of these cases represent reasonably general classes of systems. The assumptions and
control design methodologies for each of these cases are discussed as follows.

Elastically Dominated Case. In [11] a broad class of regulators are proposed to stabi-
lize soft robots with dominant elasticity via collocated feedback along with simple verifiable
conditions. In [11] the system dynamics is expressed in the Hamiltonian form as follows:

. OH (q,p)

q . 0 In ) 0

p| l—In —D] aHa(Z,p) tlal” (2-31)
p

Where g € R" are the generalized coordinates, and p € R™ are the generalized momenta as
defined in (2-21). The Hamiltonian H(q,p) = T(q,p) + V(q) is the total energy, where the
potential energy V' (q) depends only on the generalized coordinates, and the kinetic energy
T(q,p) = %pTM_l(q)p depends on both g and p. The damping matrix D, input mapping
matrix A, and other terms are as described in (2-21), with A € R™*", where m < n in the
underactuated case. The first term on the right-hand side describes the intrinsic dynamics of
the system, while the second term captures the influence of external inputs 7 via A.

This work assumes a constant actuation matrix A(q) with full column rank, ensuring that a
linear transformation exists to decouple the input. This allows a change of coordinates that
splits the generalized coordinates g into actuated and unactuated components (see Proposition
1in [11]). However, this approach has been generalized to the case of configuration-dependent
actuation matrices for which such a transformation still exists, as discussed in [69]. In this
section, the dynamics in (2-31) is considered to already be input-decoupled, implying that

T T
A= {Im 0} and g = [qa qu} , where g, € R™ are the actuated coordinates and g, €

R™™ ™ are the unactuated coordinates.
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Before stating the control law, the following two assumptions should be discussed.

Assumption 1: For a given desired equilibrium of the system q (as in (2-23)), the elastic

potential energy must satisfy:
0%V,
K < °
0q?

where K € R™" is a positive semi-definite matrix. This assumption holds for a large class
of soft robots and is typically satisfied in cases where the elasticity is linear, leading to a
potential energy of the form Ve = %qTI_{ g, with K being positive semi-definite. Additionally,
K can be written as:

: (2-32)

q9=q

7 [Kaa Kau] ’ (2_33)

K —
Kgu KUU

where the diagonal matrices Kgq € R™*™ and K, € R=m)*(0=m) a16 also positive semi-

definite. This structure will become important for the proof and the next assumption.

Assumption 2: Elasticity must dominate the forces resulting from gravity in the unactuated
coordinates: )
v,
Ky + < 9q2 )

This assumption is equivalent to assuming that the zero dynamics of (2-31) is asymptotically
stable, considering y = q, as the output. Minimum-phase systems will be discussed further
in the following sections. This assumption reinforces the idea that elasticity is relied upon to
stabilize the unactuated coordinates.

= 0. (2-34)

q9=q

In [11] the control design is expressed in Lemma 1 which is stated as follows:

Lemma 1. For the desired configuration q of (2-31) satisfying Assumptions 1 and 2, let
® : R™ — R be a C? function such that:

( ov. 09 )
+ =0,
8q(1 6qa q:q
X 2% (2-35)
(Bl (m) " H, - HL) < (93]
0q? _
a=q
where
2 2 2
H', = (%‘g) + Ko, H, = <68 gg >| +K), H., = (%?) + Ky
qa q:(j Qu qCL q:q qu q:(j
Hence, the controller
9®(qa)
= _ 2-36
T 0qa (2-36)

(locally) stabilizes the system at (g, 0).

Many controllers can be designed based on Lemma 1. The paper introduces 4 choices. Thus,

for the function ¢ : R™ — R such that %;1“) = (g;;) K= (g;i)‘ ~ »4a = 9qa — Ga,
qu=qu q=q

and gains K, Kq, o, p, g, pq, we have:
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(1) upp = Rk — Kp(ja - KDQa

(ii) upp, = 259 — K,Go — Kpda

(iii) wsqt = k — atanh(pq,) — agtanh(pgqq)

(i) teap = 250020 — K, (e — e~) — K,

The limitations of the controller arise primarily from Assumption 2, which is a direct conse-
quence of the system’s underactuation. If this assumption is not satisfied, the controller can
assign the desired equilibrium but may fail to stabilize the system.

Elastically Decoupled Case. In [12], a reasonably large class of underactuated soft robots is
considered, referred to as elastically decoupled systems. These are characterized by the absence
of direct elastic coupling between the actuated and unactuated variables. The considered class
of systems is modeled by ODEs as in (2-21). However, similar to the previous case, this work
assumes a constant actuation matrix A(q) with full column rank. This assumption allows
for the existence of a linear change of coordinates such that the dynamic equations can be
separated into actuated and unactuated variables (see Section II-A in [12]).

As previously mentioned, this approach can be generalized to the case of non-constant,
configuration-dependent actuation matrices, as explored in [69] under necessary and suffi-
cient conditions. Thus, in this section, the dynamics in (2-21) is considered to already be

T T
input-decoupled, implying that A = {Im 0] and g = {qa qu] , where q, € R™ are the

actuated coordinates and g, € R™"™"™ are the unactuated coordinates. After the coordinate
transformation, the system dynamics can be rewritten as:

M aa M au ija + Caa Cau (ja + Ga + K aa 0 da
M ua M un qu Cua Cuu qu Gu 0 K uu qu
—_— —_——— —_—— —

M(q) C(q,9) G(q9) K

+ D,, Dg, da T
Dyy Dyy du ~\o)’
—_—

D(q)

(2-37)

The terms in the equation are defined as before. Notably, the stiffness term is linear, ensuring
that the stiffness matrix takes an elastically decoupled form. Under a coordinate transforma-
tion, the transformed stiffness matrix should also retain this elastically decoupled structure.

In [12], the control design begins by analyzing the stability of the zero dynamics associated
with the controlled output:y = q, — qq,q¢ Where g, 4 is a constant reference. This is referred
to as the collocated case. The zero dynamics of a system represent the residual dynamics that
remain when the controlled output is constrained to be zero at all times. A nonlinear control
system is said to be minimum phase if the trajectories of its zero dynamics are bounded.

The zero dynamics of (2-37) can be obtained by setting y, ¥, and ¢ to zero, which implies
4o = 9a,d, 4o = 0, and g, = 0. Substituting these conditions into (2-37) yields:

Muu(qa,da Qu)Qu + Cuu(‘]a,da qu, 07 QU)QU + G(Qa,da QU) + KuuQu + Duu(qa,d7 QU)qu =0. (2'38)

Master of Science Thesis Nikhil Nair



24 Soft Robotics — Modeling and Control

The paper demonstrates that the above system is minimum phase. The intuition behind this
result is that the damping term dissipates the energy stored in the unactuated subsystem. It
is shown that for any initial state, the trajectories of (2-38) are bounded and converge to the
equilibrium:

KuuQu + Gu(qa,d7 qu) =0. (2'39)

This result is proved using LaSalle’s invariance principle by considering the Lyapunov candi-
date function:

. 1. . 1
V(Qua QU) = inguuQu + iquuuQu + U(Qa,d, qu)- (2'40)

Since the potential function is lower-bounded the function V' is lower-bounded as well. The
derivative V is shown to be negative semi-definite using the dynamics in (2-38) and the skew-
symmetric property of M, — 2C,,. According to LaSalle’s theorem, the trajectories will
converge to the largest invariant set where V = 0, which defines the set of equilibrium points
(qu,0), satisfying (2-39).

For this equilibrium to be unique, the condition:K,, > —%‘?q” must hold. This is
shown by considering a convex function: P(q,) = U(qad,qu) + %qg K ,q, whose gradient
corresponds to (2-39). The given condition ensures that the Hessian is positive definite,
making (gy,eq, 0) a unique minimum. This assumption on the stability of the zero dynamics
is equivalent to the assumption 2 used in the elastically dominated case. This highlights how
collocated control relies on the passive dynamics being stable because of the soft robot being
stiff enough.

The paper proposes a PD regulator similar to the one discussed previously for the underac-
tuated case in the beginning of the section. The controller takes the form:

T = KP(qa,d - qa) — Kpq, + Ga(Q) + Kaaqa,d (2'41)

Soft Inverted Pendulum

In [13], a novel underactuated template system called the soft inverted pendulum (SIP) with
affine curvature is introduced. The SIP is modeled here based on the polynomial curvature
approach from [67]. The purpose of this model, as outlined in [13], is to mirror the trajectory
taken by the control community in understanding the control challenges of underactuated
rigid robots, such as the cart-pole, pendubot, and acrobot. The SIP system is analogous to
the acrobot, featuring two degrees of freedom with the control input applied at the farthest
point from the base. This makes the SIP an important case study when investigating the
initial stages of the research problem, as focusing on a small yet meaningful system allows
for testing the proposed control strategies before extending them to higher-dimensional sys-
tems. Moreover, the SIP provides a controlled environment for isolating fundamental control
challenges.

The SIP consists of a soft segment of length L and thickness D, undergoing only planar
deformations and thus assumed to be inextensible. Following the modeling approach in [67],
the kinematics of the SIP are derived, specialized for two degrees of freedom. The curvature

can be written as )
v
a(v,t) = q1(t) + a2(t) 5 (2-42)
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The resulting integrals are evaluated by expanding the arguments inside the sine and cosine
functions, yielding

= (Gl () - (9
() (=) ()
o= () (2 [o(252) o (2]
con () 2 s () - ()]

where S(w) = [ sin (5¢?) dt and C(w) = [’ cos (5t*) dt are the Fresnel integrals. Addition-
ally, using the curvature function, the Cartesian coordinates of any generic point (s, d) can be
computed, where d € [—0.5,0.5] parameterizes points in the cross-section at a given position
s along the backbone curve. The SIP is illustrated in Figure 2-8.

(2-43)

The dynamics of the SIP are derived as in [67], leading to a system of equations in the form
of (2-21) with the state vector

T
q= (Lh QQ> . (2-44)
The stiffness and damping terms are defined as
K(q) =kHgq, D(q)q=pHq, (2-45)

where k, 8 € R represent the segment stiffness and damping coefficients, respectively, and H
is the Hankel matrix with elements H; ; = The actuation matrix, derived as in [67], is

1
itj—1°
given by

A=(1 2)T, (2-46)

confirming that the system is underactuated.
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Figure 2-8: Soft Inverted Pendulum with Affine Curvature [13]

Many control strategies have been proposed for controlling the SIP system [13, 11, 70]. These
control strategies include partial feedback linearization [71], energy based regulation and even
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a control law based on IDA-PBC [70]. These analytical controllers while simple to implement
are often based on assumptions that might be challenging to verify across systems. The focus
here will be on the partial feedback linearization controller derived in [13].

Partial Feedback Linearization

In [13] the author attempts to study the stabilization of the straight equilibrium using partial
feedback linearization (PFL). For the same, a change of coordinates is required to clearly
separate the system into an actuated portion and a completely under-actuated one, similar
to [71]. Using z to denote the input-decoupled coordinates, we get:

) <Q1> (2-47)
q2
———

Using this change of coordinates, the dynamics in (3-4) can be rewritten as:

Ol

M(2):+C(z,2)2+G(z) + Kz+ Dz = m (2-48)

Here, M, C, etc., are the transformed system matrices via H ! as detailed in [13].

In the next two sections, two control strategies will be discussed as in [13, 71]. In the first
case, the output y = 21 is considered. This output is collocated with the input 7 and is
called collocated linearization. In the next case, the output y = 2o is considered and is not
collocated with the input. This strategy is called non-collocated linearization.

Collocated Linearization. In (2-48), Z; can be extracted from the second row and substi-
tuted into the first to obtain a single input-single output (SISO) system in z;:

- M?2 . Mo~
(Mn - M12> 4 <h1 - M12 hg) = (2-49)

22 22

where h =C2+ G + Kz + Dz.

This expression allows exact feedback linearization using the following control law:

- Mis- - M?
7= — =2ho | + [ M1 — =2 | u (2-50)
My Mss
where u is a new virtual input for linearized dynamics. A simple PD law u = —kpz1 — kpZ;

achieves exponential convergence to the upright configuration.
To justify the use of this control law, two conditions must be satisfied:

1. The origin must be unstable in open loop, which corresponds to the composite stiffness
and gravity term not being positive definite at the origin:

dG
kH + — 0 2-51
94 oo s (2-51)
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2. The zero dynamics must be locally stable, which is ensured if:

. oG
Ko+ =2 >0 (2-52)
622 z2=0

These conditions together imply that the system is underactuated and unstable in open loop
(making control meaningful), while still admitting a locally stabilizable zero dynamics under
collocated PFL.

Non-Collocated Linearization. For the non-collocated case, the output is y = z2. The
system is again rewritten to isolate Zs:

. My, M. - N 5
(Mgl — 1}22> Zo + (Muhg — M12h1> = MjoT (2—53)
Mo

This yields a feedback linearizing controller:

- M- . My, M
T= <h1 - M”h2> + <M21 - 13”) u (2-54)

12 Mo

Here, the requirement My # 0 must be satisfied, ensuring inertial coupling. The closed-loop
system becomes: .
Zo=u, M2+ ho+ Mou=20 (2-55)

Since the zero dynamics have a marginally stable or even unstable mode (e.g., 2; = 0), a
local linearization around the equilibrium is considered and use pole placement or LQR to
design u such that all eigenvalues of the linearized system lie in the left half-plane. The
reachability condition is shown to hold under mild assumptions on the system parameters,
ensuring controllability.

The non-collocated strategy successfully stabilizes the pendulum even for significantly lower
stiffness values compared to the collocated strategy. However, beyond a certain stiffness
threshold, even the non-collocated approach fails, despite the local equilibrium being attrac-
tive.

2-4 Optimal Control For Soft Robots

Optimal control offers a principled framework to govern complex dynamics by minimizing
task-relevant objectives while respecting system constraints. In the context of soft robotics,
it is particularly attractive due to its ability to harness elastic dynamics rather than override
them, as some feedback strategies do [72, 73].

This section reviews the use of optimal control methods for soft robots. The focus is on
identifying;:

i the types of optimal control methods used (e.g., LQR, MPC, trajectory optimization),

ii the modeling approaches employed, and

Master of Science Thesis Nikhil Nair



28 Soft Robotics — Modeling and Control

iii the extent to which underactuation is explicitly addressed.

Classical and modern techniques such as LQR, MPC, and nonlinear trajectory optimization
have shown success in high-DOF and underactuated systems [74, 75, 76, 77, 78, 79]. These
methods also support task-space control via embedded objectives [80].

Recent work applies optimal control to soft robots using data-driven models [63], reduced-
order FEM models [81], and geometric representations such as PCC, polynomial curvature,
and GVS-based parameterizations. This review emphasizes the latter category, which offers
control-oriented formulations with tractable dynamics.

The section is organized as follows: first, learned and FEM-based model approaches are
briefly introduced. Then, literature on model-based optimal control is presented in order of
increasing complexity—from LQR to linear MPC, and finally nonlinear MPC and trajectory
optimization. A critical discussion of their limitations follows.

Optimal Control Using Learned Models

Surrogate models such as neural networks, Koopman operators, and reduced-order data-
driven representations have been increasingly used in conjunction with optimal control meth-
ods for soft robots. These approaches bypass analytical modeling by learning system dynamics
from data.

Neural networks are used in [14, 82] to model soft robot kinematics and dynamics, enabling
control via nonlinear MPC. AutoMPC [82] further automates controller design using Bayesian
optimization and task-specific tuning. However, generalization remains a key challenge.
Koopman operator theory provides linear embeddings of nonlinear dynamics, enabling the
use of LQR and MPC in a lifted space [15]. K-MPC methods strike a balance between per-
formance and real-time feasibility, while nonlinear Koopman NMPC achieves better accuracy
at the cost of computational load. Other methods such as evolutionary NMPC [83] combine
neural models with parallelized optimization to achieve real-time control on high-dimensional
soft robots.

Data-Driven MPC

1 1

1

1 :@
! ANN Model

1

)
T
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#| Control (MPC)

\fx

Soft Continuum Robot

Figure 2-9: Neural network-based model predictive control for a soft robot [14].
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Figure 2-10: Koopman-based linear MPC on a lifted soft robot model [15].

Optimal Control Using Reduced-Order FEM Models

Finite Element Method (FEM) models offer high-fidelity, physics-based representations of soft
robots, in contrast to data-driven methods. However, their high dimensionality hinders real-
time control. Recent works [84, 16, 85] employ model-order reduction techniques to enable
optimal control.

In [84], a ROM is derived for a soft elastomer robot using Proper Orthogonal Decomposition
(POD). The full-order FEM model is projected onto a lower-dimensional subspace using
data-driven snapshots. Further, to reduce computation, a piecewise affine ROM is created
by linearizing around multiple operating points. A model predictive control (MPC) problem
is formulated using this ROM and solved via Sequential Convex Programming (SCP). The
approach supports real-time execution with local LQR feedback and outperforms Koopman-
based methods in flexibility and frequency.

The work in [16] introduces an FEM-based trajectory optimization pipeline using Differential
Dynamic Programming (DDP). The internal dynamics are condensed using implicit Euler in-
tegration and projected into task space. DDP solves the optimal control problem by backward
and forward passes, iteratively updating control inputs. The method is applied in simulation
to various soft robots, including the Stiff-Flop, and highlights DDP’s advantage in producing
feedback gains, although real-time MPC with DDP remains a challenge.

These works demonstrate that reduced-order FEM models can support advanced control
strategies, bridging high-fidelity modeling with computational efficiency. The next sections
examine optimal control with simplified models like PCC, polynomial curvature, and GVS-
based representations.

Linear Quadratic Regulators (LQR)

LQR is a classical optimal control method used to regulate linear dynamical systems by
minimizing a quadratic cost function over the system states and control inputs. Several
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Figure 2-11: Trajectory optimization pipeline with FEM condensed dynamics and DDP [16].

works have explored its application to soft robotic systems [86, 87, 88].

In [86], a linear model of a soft pneumatic actuator and a syringe pump is developed, where the
actuator is approximated as a cantilever beam undergoing small deformations, parameterized
by a single bending angle 6. The system is modeled in state-space form, and an LQR controller
is designed by solving the continuous-time Riccati equation:

ATY 4+ YA-YBR'BTY + Q =0, (2-56)

where A, B represent the system matrices, and ), R are weighting matrices. The optimal
state-feedback law is then
u=—-R'BTyzx. (2-57)

In [87], LQR is applied following a feedback linearization of the soft actuator’s second-order
dynamics coupled with pressure dynamics. The linearized system is controlled using LQR
with integral action, and Unscented Kalman Filtering (UKF) is used for state estimation.
Comparative evaluation with PI and pole-placement controllers shows that the LQR-UKF
combination yields superior performance.

n [88], an energy-based swing-up and stabilization strategy is proposed for a planar soft
pendulum modeled using a variant of the polynomial curvature method. The swing-up is
achieved by regulating the system to a target energy level using a Lyapunov-based approach.
Once near the upright configuration, the dynamics are linearized, and an LQR controller is
employed for stabilization.

These studies highlight the utility of LQR in soft robotics for both trajectory stabilization
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and regulation tasks, particularly when paired with state estimation or energy-based control
strategies.

Linear Model Predictive Control (MPC)

Linear MPC extends the LQR framework by solving a finite-horizon optimal control problem
at each sampling instant using the current system state as the initial condition. The resulting
control input sequence optimizes a cost over state and input trajectories, with only the first
input applied to the system. When the dynamics are linear and constraints are convex, the
problem becomes a tractable convex optimization task [89, 90, 91, 92, 93, 94].

In [89, 90], linear MPC is applied to a 14-DoF soft humanoid robot ("King Louie") and a single-
DoF soft joint ("grub"). Each joint is modeled as an independent inverted pendulum with
simplified pressure dynamics, yielding a linear state-space model. The MPC is formulated
with position, pressure, and rate constraints and executed at 300 Hz. Including pressure
states led to improved tracking compared to earlier controllers.

In [91], the model is extended to include joint stiffness. Linearization is performed at each
step, and MPC outperforms a sliding mode controller (SMC) in both position and stiffness
tracking, particularly when priorities are weighted equally. MPC is also noted for easier
tuning and generalization across multiple links.

Other linear MPC applications include beam-theoretic models for locomotion planning. In [92],
a fish-like robot is modeled using the Euler—Bernoulli beam equation with a reduced linear
model enabling task-level control. In [93], a segmented soft arm is modeled using central finite
differences, and an H,, control problem is formulated for robust state feedback synthesis.

In [94], a linear MPC framework is implemented for a pneumatically actuated soft arm mod-
eled using the Augmented Rigid Body formulation of PCC. A task-space controller is con-
structed via forward kinematics and validated in real hardware, running at 15 Hz. Robustness
is enhanced via gain scheduling and offline-constrained MPC design [95].

These studies demonstrate that linear MPC, despite its reliance on simplifying assumptions,
offers a powerful framework for real-time control of soft robots, particularly when paired with
model reduction and real-time linearization strategies.

Nonlinear MPC and Trajectory Optimization

Soft robotic systems are inherently nonlinear, making linear control approximations insuffi-
cient for complex tasks. Nonlinear MPC (NMPC) and trajectory optimization (TO) provide
more accurate frameworks, enabling dynamic behaviors and improved robustness. However,
these approaches often come with significant computational demands and practical limita-
tions.

Nonlinear MPC (NMPC)

Several works have implemented NMPC using physics-based models of soft robots. One exam-
ple involves a quasi-static Cosserat rod model applied to a tendon-driven catheter, enabling
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hybrid position-force control but relying on precomputed trajectories, which limits adapt-
ability [96]. A similar approach using the constant curvature (CC) assumption was used for
visual servoing of an ablation catheter [97].

Robustness to uncertainty has been addressed through tube-based NMPC formulations that
incorporate ancillary feedback terms, improving stability at the cost of implementation com-
plexity [98]. An alternative method optimizes feedback gains directly using evolutionary
strategies, offering resilience to model mismatch in lumped-parameter soft arms [99].
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Figure 2-12: Overview of NMPC for underwater soft robot [17]

In underwater settings, NMPC has been used for disturbance rejection in multi-segment
continuum robots, demonstrating robustness to actuator failure and wave-induced noise (Fig-
ure 2-12) [17]. More expressive models such as the polynomial curvature model have been
employed to control a thrust-generating tentacle, though the resulting non-convex optimiza-
tion problem required a heuristic genetic algorithm for real-time feasibility [100].

Trajectory Optimization (TO)

TO has proven effective for generating feasible trajectories in highly dynamic tasks. A promi-
nent example uses a constant curvature model with direct collocation to enable dynamic
grabbing motions. The trajectory is iteratively refined using an ILC framework to improve
repeatability and performance [18].

Cosserat rod-based models have been used to control octopus-inspired arms, with optimized
trajectories producing wave-like actuation patterns during reaching tasks [101]. Other ap-
proaches use discrete elastic rods to track reference paths for thermally actuated manipula-
tors [102], while lumped-parameter models have been leveraged to track end-effector trajec-
tories using nonlinear optimization [103].

Overall, NMPC offers real-time feedback and robustness but often faces challenges in model
complexity and solver efficiency. TO enables highly dynamic open-loop behaviors but may
suffer from sensitivity to model errors and lack of feedback. Both remain promising tools for
addressing the challenges of soft robot control, especially under underactuation.
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Figure 2-13: Dynamic grabbing via TO and ILC [18]

Research Gaps in Model-Based Optimal Control for Soft Robots

A wide range of model-based optimal control methods have been proposed for soft robots,
spanning learned models, reduced-order FEM models, and simplified physics-based repre-
sentations. Table 2-1 summarizes these contributions, organizing them by control strategy,
modeling approach, and experimental validation.

Across the literature, two dominant modeling trends emerge. On one end, highly simplified
models particularly those using the piecewise constant curvature (PCC) assumption enable
tractable control formulations but neglect important dynamics. On the other end, complex
models like discrete elastic rods (DER) or lumped-parameter rigid-body analogs offer richer
dynamics but often introduce computational challenges. Only a few recent efforts, such
as [100], attempt to bridge this gap by exploring intermediate representations like affine or
polynomial curvature.

Another persistent issue is the treatment of underactuation. Although soft robots are often
underactuated by nature, many studies either assume full actuation or fail to clearly specify
the mapping between control inputs and generalized coordinates. Even when models appear
underactuated, this is not always stated explicitly, making it difficult to assess the generality
or robustness of the proposed controllers. For example, while [94] discusses task-space MPC
and mentions handling underactuation, it remains unclear whether an underactuated model
was actually employed.

Clear demonstrations of optimal control methods handling underactuation are rare. However,
some notable exceptions do exist. The grabbing motions in [18] showcase the potential of
trajectory optimization to exploit system compliance and inertia to achieve dynamic tasks
beyond the quasi-static regime despite significant underactuation. Such examples highlight
the promise of dynamics-aware optimal control formulations, especially when leveraging soft
robots’ natural compliance.

Ultimately, while the field has made significant progress in applying optimal control to soft
robotic systems, major gaps remain in:

e Consistently modeling and stating underactuation.
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o Balancing model expressiveness with computational feasibility.

o Exploiting compliance for dynamic behaviors through optimal control.

These gaps offer fertile ground for future work that aims to unify control theory with soft
robot mechanics more rigorously.

Reference Control Method Model Used Underactuated Control Task Validation
Yang et al. (2023)86] LQR EBRT No Bending Angle Tracking Experimental
Xavier et al. (2022)[87] LQR Lumped Parameter Model No Bending Angle Tracking Experimental
Weerakoon et al. (2021)[88] LQR PCC Yes Shape Regulation Simulation
Best et al. (2016,2021) [89, 90, 91] MPC Inverted Pendulum Model No Joint Angle Tracking Experimental
Spinelli et al. (2022) [94] MPC PCC - Tip Pose Tracking Experimental
Doroudchi et al. (2018) [93] Hy EBRT No Decentralized State Feedback Control — Simulation
Barbosa et al. (2023) [92] MPC EBRT No Position Tracking Simulation
Soltani et al. (2017) [96] NMPC CRT - Hybrid Position/Force Control Experimental
Norouzi et al. (2021) [97] NMPC PCC No Visual Servoing Experimental
Bastos et al. (2023) 98] NMPC PCC Yes Shape Tracking Simulation
Jensen et al. (2024) [99] NMPC Lumped Parameter Model - Trajectory Tracking Experimental
Walker et al. (2024) [17] NMPC PCC No Tip Pose Tracking Simulation
Hachen et al. (2025) [104] NMPC PCC No Tip Pose Tracking Experimental
Stella et al. (2022) [100] NMPC Affine Curvature Model Yes Thrust Generation Experimental
Sanders et al. (2023) [103] TrajOpt Lumped Parameter Model No Tip Pose Tracking Experimental
Marchese et al. (2015) [18] TrajOpt PCC Yes Grabbing Experimental
Wang et al. (2021) [101] TrajOpt CRT Yes Reaching Numerical
Wertz et al. (2022) [102] TrajOpt DER Yes Reaching Experimental

Table 2-1: Summary of Model-Based Optimal Controllers for Soft Robots
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Chapter 3

Problem Formulation and Proposed
Approach

In this chapter, the research problem is formally stated, and the proposed approach to mod-
eling and control is outlined. Before presenting the formulation, a concise discussion of the
specific gaps in the literature that this work aims to address is provided, establishing the
motivation and context for the proposed methodology.

3-1 Limitations of the State of the Art

Underactuation remains a fundamental challenge in the control of soft robots. Most model-
based controllers in the literature rely on a collocated control paradigm, where actuators are
placed to directly counteract the primary modes of instability. These methods assume that
the robot possesses sufficiently high stiffness to passively stabilize its unactuated degrees of
freedom. While such strategies effectively leverage the robot’s natural impedance for control,
they impose an inherent limitation: the robot must be stiff enough for the controller to work,
thereby restricting operation in more compliant, low-stiffness regimes.

This thesis aims to address this limitation by investigating whether optimal control methods
can extend the control of soft robots into these low-stiffness regimes, where traditional model-
based controllers fail. In particular, the goal is to design controllers that explicitly stabilize the
unactuated dynamics using the full system model, rather than relying on passive mechanical
properties alone.

A second gap in the literature lies in the modeling choices used for optimal control. Existing
works often either employ highly simplified models such as the Piecewise Constant Curvature
(PCC) approximation or rely on computationally expensive high-dimensional models like
reduced-order finite element models (FEM). In both cases, achieving real-time closed-loop
control remains a significant challenge.

The objective of this thesis is thus twofold: first, to develop an optimal control framework
capable of explicitly addressing underactuation; and second, to do so using reduced-order
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models that balance physical fidelity with computational efficiency. The long-term goal is to
enable a generalizable framework that can be applied in real time across a broad range of soft
robotic platforms.

3-2 Research Problem

The objective of this research is to develop a real-time feasible control strategy for underac-
tuated soft robots by formulating a discrete-time nonlinear model predictive control (NMPC)
problem. The goal is to stabilize the robot around unstable equilibria, particularly in low-
stiffness regimes where traditional collocated control strategies fail.

Consider a slender soft robot modeled using a more accurate formulation (e.g., Polynomial
Curvature or GVS-based models), resulting in a discretized dynamic system of the form:

Try1 = fa(xr, k)
where x;, € R?" is the state vector (positions and velocities), uj, € R™ is the control input,
and f; represents the discretized system dynamics, with m < n (underactuation).

The NMPC problem is formulated as:

subject to:
Th+1 :fd(a:k,uk), szO,...,N—l

To = Tinit, Uk €U, TR EX
Here, ¢ is the stage cost penalizing deviation from the target state and control effort, and

Uy is a terminal cost. The goal is to regulate the robot to a desired unstable equilibrium

T
xr = [(j O} , where q satisfies the static equilibrium condition.

The resulting optimal control policy wu is applied in a receding horizon fashion, and the
process is repeated at each timestep. Emphasis is placed on designing the controller to be
computationally efficient to enable real-time execution.

This formulation enables the exploration of explicit unactuated DOF regulation, extending the
operating envelope of model-based control into low-stiffness, dynamically unstable regimes.

3-3 Soft Inverted Pendulum System

To formulate the control problem properly, it is essential to define the system under consider-
ation. As mentioned in Section 2-3-3, the soft inverted pendulum (SIP) [13] was introduced
as a benchmark for studying control of soft robotic systems in a low-dimensional setting that
nevertheless captures key challenges such as underactuation and compliance. In this work,
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Figure 3-1: Soft Inverted Pendulum (SIP) system.

the SIP is modeled using the geometric variable strain (GVS) approach [60] rather than the
polynomial curvature approach.

This choice is motivated by three reasons. First, GVS generalizes the polynomial curvature
model in the planar case by using a polynomial strain basis, and therefore it is equivalent
to modeling the SIP with polynomial curvature. Second, GVS provides a more flexible and
unified mathematical framework: it allows the use of different strain bases, supports more
strain modes and degrees of freedom, and also enables modeling of hybrid soft-rigid systems
under the same formulation. While polynomial curvature can also handle the planar case,
GVS is more systematic and extensible. Third, the proposed control approach (DDP) ben-
efits from efficient computation of analytical gradients of the dynamics. Recent work [105]
has demonstrated how such gradients can be computed for GVS models using the recursive
Newton—Euler algorithm (RNEA). This makes GVS particularly suitable for implementing
the control algorithm efficiently.

The next aspect to consider is the definition of the low-stiffness regime. As discussed in
the previous chapter, many model-based soft robot control methods rely on assumptions
ensuring that the zero dynamics are stable. This condition holds in elastically dominated
cases, as captured in Assumption 2 ((2-34)). Even in elastically decoupled cases, uniqueness
of the equilibrium requires the same condition to hold. The SIP provides a simple platform
to investigate this assumption.

The SIP model is derived using the GVS approach using the paper [60] as a reference. The
soft inverted pendulum is described just as in [13] but modeled using the GVS approach with
an equivalent strain basis.

Strain Parameterization. The SIP is modeled with affine curvature with bending only
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about the y—axis. Thus the strain field is parameterized as follows:

0 0 0

1 X 0

o o (a 0

0 ‘T’ 0

0 0 0
—— ~——

‘Pg &*

Where €,£&* € RS, g € R%2. This monomial basis models linear bending about the y—axis.

Kinematics. As discussed in [60] the forward kinematics of the soft link is obtained by
employing the Magnus expansion of the strain field £ at X after which the exponential map
can be applied as the matrix differential equation of the kinematics dg(X)/0X = g&(X) can
be solved using the approximation.

9(X) = exp(Q(X)) (3-2)

A fourth-order Zannah quadrature approximation of Magnus expansion is used. As the Mag-
nus expansion degrades for larger values of X the soft link is divided into smaller segments of
lengths h and g(X) is evaluated recursively.

9(X +h) = g(X)exp(Q(h)) (3-3)

Therefore for the forward kinematics the following steps are performed

i For a given q the strains £(X + (1/2 F v/3/6)h) are evaluated at the first and second
collocation points.

ii Q(h) is evaluated using the Fourth-order Zannah quadrature approximation of Magnus
expansion

iii g(X 4+ h) = g(X)exp(Q(h)) is used to compute the g(X + h) that maps a point in
the body-frame at X + h to the body-frame at X = 0 using g(X) computed from the
previous iteration

Generalized Dynamics of the Rod. The dynamics of the entire rod in generalized coor-
dinates are obtained by integrating free-body dynamic equations obtained from the Cosserat
equilibrium, and projecting it on to the space of the generalized coordinates using the Jaco-
bian, over the length of the soft body and substituting the elastic, damping, and actuation
laws. The resulting equations take the following form:

M(q)§+C(q,49)q + G(q) + Kq + Dq = A(q)u, (3-4)
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3-3 Soft Inverted Pendulum System 39

Where the SIP is subjected to gravity and an external torque at the tip. The terms are
computed as:

M(q) = /0 YT ax,
Clq.4) = /0 " T (ad MJ + M) dX,
Glq) = /0 " ITm (Ad,'G) dx, (3-5)
K = /OL ¢ Nde dX,

L
D= /0 BT T, X,

where G € RS is the gravitational acceleration twist expressed in the inertial frame. Other
terms are defined as given below:

M = p-diag(Jy, Jy, J., A, A A)
G=(0000009.)
S = diag(GJ,, EJ,, EJ., EA,GA,GA)
T = v - diag(Jy,3Jy,3J,,34, A, A)

Jy =2rt Jo= Ay, T =J,+ J

Input Matrix A(q). Since an external torque(about the y—axis)is applied it needs to be
transformed to the local frame in order to calculate the integral for the input matrix. The
external torque in the spatial frame is

T
Jrglobal:<0 1 0000 O) u (3-6)

Where 7 € R. To evaluate the effect of this external torque in the dynamics the force needs
to be mapped to the local frame. Since the point of application of the force is same in the
local and global frame only the rotation with respect to the body frame at X = 0 is required.
Thus it is obtained as follows:

R r R O
The force is mapped to the local frame using the Coadjoint map of SFE(3):
T
Flocal = Ad;g’l global — Adzgl (0 100 00 0) u (3-8)
Finally the integral for the external force applied in the generalized coordinates is given as :

L T * T
A(q)u:/o T Froeat(X) dX = JE_1AdZ 1 (00100 0 0 0) u (39)

A(q)
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The spatial integrals in equation (3-5) are evaluated using Gaussian-Legendre quadrature
scheme. This method evaluates the integrands at discrete points, providing an accurate
numerical approximation of the integrals.

[ 00 = 3 wer(x) (3-10)
k=1

Where n,, is the number of integration points on the backbone curve and wy, are their respective
weights.

For the SIP, two conditions must be satisfied for collocated control via partial feedback lin-
earization (PFL):

1. The origin must be unstable in open loop, which corresponds to the composite stiffness
and gravity term not being positive definite at the origin:
0G

kH + —
+ q

) %0 (3-11)
=

2. The zero dynamics must be locally stable, which is ensured if:

f(22—|-7

-12
975 >0 (3-12)

z=0

Together, these conditions imply that the system is underactuated and unstable in open
loop (making the control problem meaningful), while still admitting locally stabilizable zero
dynamics under collocated PFL.

These conditions also allow the definition of feasible regions in terms of the mass parameter
m and stiffness parameter k, for which collocated PFL works. The goal of this work is then
to compare the proposed NMPC approach with PFL, particularly in regions where collocated
and non-collocated PFL fail to provide stability.

The collocated PFL law used is:

N, B
T=1|h — ~712h2 + | My — 12 )y (3—13)
Moo Moo
where u is a virtual input for the linearized dynamics. A simple PD control law u = —kpz; —

kp#1 achieves exponential convergence to the upright configuration. The gains kp and kp are
chosen to match the closed-loop performance of the NMPC controller for a nominal mass and
stiffness value, by shaping the second-order dynamics of the output variable. Specifically, we
compare the linearized dynamics

21+ kpi +kpz1 =0
to the standard second-order form
514 20wn#1 +wiz =0
and tune the gains to achieve the same settling time as the nominal NMPC case.
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Similarly, the non-collocated PFL law is:

- My - - My, M-
T = <h1 — ~11 h2> + <M21 — 1}22> u (3—14)
Mo Mo

Since the zero dynamics in this case have a marginally stable or even unstable mode (e.g.,
%1 = 0), a local linearization around the equilibrium is considered. Pole placement or LQR
design is then used for u, ensuring that all eigenvalues of the linearized system lie in the left
half-plane. Under mild assumptions on the system parameters, the reachability condition
holds, guaranteeing controllability.

3-4 Differential Dynamic Programming for NMPC

Differential Dynamic Programming (DDP) [106, 107] is a widely used trajectory optimization
method for nonlinear systems. Originally introduced by Mayne, DDP iteratively improves a
nominal state-control trajectory using a backward pass based on Riccati-like recursions and a
forward rollout of the system dynamics. The algorithm exhibits two key features that make
it attractive for nonlinear model predictive control (NMPC): (i) linear complexity in the pre-
diction horizon due to stagewise Riccati recursions, and (ii) local quadratic convergence when
second-order information is retained. When only first-order approximations are considered,
the method reduces to the iterative Linear Quadratic Regulator (iLQR) [108].

As a shooting-based method, DDP ensures that the system dynamics are satisfied at every
iteration of the forward rollout. This contrasts with direct transcription approaches where
dynamics are imposed as constraints and may be violated between collocation points. In
addition, the backward pass of DDP yields, at no extra cost, a time-varying local state-
feedback policy rather than a purely open-loop trajectory. This policy improves robustness
to disturbances and model mismatch, and can be used to execute precomputed trajectories
when online computation is limited. These properties have led to its widespread adoption
in robotics, where fast NMPC solvers are required to operate under real-time constraints
[109, 110].

In the broader landscape of optimization-based control, DDP belongs to a family of algo-
rithms that exploit the time-induced sparsity of optimal control problems. Recent work
has shown that multiple-shooting Sequential Quadratic Programming (SQP) solvers can also
exploit this sparsity and achieve state-of-the-art performance in constrained MPC [111]. Nev-
ertheless, DDP remains highly attractive for soft robotics applications due to its efficiency in
unconstrained or softly constrained settings, its ability to generate stabilizing feedback, and
its natural integration with existing dynamics libraries.

First, the shape regulation problem is considered with a quadratic cost. Therefore, the OCP
in the problem statement is discretized as follows:

N-1
. 1 ~T ~ Z 1~T ~ 1 T
u1,u2r71'1}171u1\771 ia:NWNwN + el <2wk Wka:k + iuk Rkuk)
s.t. (3-15)

wk+1:fd(wkauk)7 Vk:172,,N—1

Lflk = (cck — ch)
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where fy(-) represents the discretized system dynamics. The discrete-time OCP is solved
using the DDP algorithm. The cost weighting matrices W, and R are, respectively, positive-
semidefinite and positive-definite. The DDP algorithm requires defining the optimal cost-to-go
V¥ () which is the total cost that will be accumulated between time steps k& and NN, starting
in state x, if the optimal policy is followed. Using Bellman’s principle of optimality the
following recurrence relation can be realized:

Lpo
Vi(@) = ;& Wya

1 1
Vi (@) = min <25:TWk:i + U Ry 4 Vi (fule, u))> (3-16)

= min Qi (x,u)

This is the classical dynamic programming update procedure. The cost-to-go function at a k is
nonlinear due to the dynamics of the system and is difficult to solve in general. DDP overcomes
this by starting with an initial guess trajectory and taking a second order approximation of the
cost-to-go function near that trajectory. The algorithm proceeds by calculating the following
approximate cost-to-go at each time step.

T
Qu( + 6, u + 0u) ~ Qy(w, ) + = M lg”: guw:] [gj;Hg;j [gﬂ (3-17)

Where the Hessian block matrices and gradient vectors are:

Qe = ka+( fd) k41

T
Quir = Rru + ) Gk+1

(5
(

Quuk = Ry + (T)THI@—I—I 87{5’) + (%ifgd) “Gk+1

wa,k = Wk +

S
=

2
Quak = ( fd) Hy 4 (%) + (gu£i> Gk41
Minimize Q) with respect to du:
duy, = _Q;i,k(Quw,kéiU + Qui) = —Kpox — I, (3-18)

o I = Q;}L’kQu,k (feedforward term)

« Ki = Q, xQua (feedback term)
Update Hy, and gg:

1 —1
o AVi = _QQz,kQuu,kquk
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—1
® Hk = Qmm,k - ng,kQuu,kQum,k

T —1
® gk = Qm,k - Qum’kQuu’kQu,k

This recurrence relation and the second-order approximation are continued backward until
k = 1. After that a forward pass is performed with the new corrected control law wuy(x)
from (3-18) to compute a new trajectory {cck}{gvzl. The backward and forward pass steps
are repeated until convergence. The classical DDP algorithm is summarized in 1. Two more
things are generally performed in practice to ensure good convergence properties. First, a
regularization term must sometimes be added to Qi in equation (3-18) to ensure positive-
definiteness. Second, a line search must be performed during the forward pass of the algorithm
to ensure a sufficient decrease in cost is achieved.

Algorithm 1 Differential Dynamic Programming

1: procedure DDP(x, u,¢€)

2 repeat

3 K, 1,0V + backward pass to compute new corrected control law wy ()
4: x,u,dJ < FORWARDPASS(z,u, K,1,6V)

5: until |§J] < €

6 return z,u

7: end procedure

8: function FORWARDPASS(x, u, K, 1,5V)

9

a=1
10: repeat
11: for k=1...N do
12: Tyl < fd(sck,uk — ol — Kkécck)
13: end for
14: J « calculate cost from OCP
15: a < reduce according to line search update
16: until line search conditions are satisfied
17: return x,u,dJ

18: end function

3-5 Implementation of Nonlinear Model Predictive Control

The DDP algorithm described in the previous section can be embedded into a receding-
horizon control framework to implement Nonlinear Model Predictive Control (NMPC). At
each sampling time ¢, the following finite-horizon OCP is solved:

k+N—-1

. 1. . 1. 1
{ gr}gr}lv_l §w;—+NWN:Bk+N + Z <2$;|—vlel + QU;I—Riui> (3-19)
Wisi=k i=k

st xip1 = fa(xs,w), & =x— Zg.

Unlike offline trajectory optimization, NMPC must run in real time. Therefore, instead
of iterating DDP to convergence, only a small number of backward—forward passes (1-3)
are executed at each time step. To accelerate convergence, the solver is warm-started with
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Algorithm 2 NMPC with Differential Dynamic Programming

Require: horizon N, short DDP iterations niter € {1,2, 3}, weights {Wy, Ry}, goal &4, dynamics fq, initial
state o, warm starts {wgo)}, {ugo)}7 flag USE_FB € {true, false}
1: for k=0,1,2,... do

2: x ), < current state
3: Warm start: initialize trajectories
k4N 0 k+N—1 0
{2}, {3« (W)
4: Short DDP solve: run njt, backward—forward passes

obtain {l;, K; fikN*l and updated {z},u}}
Apply control:
if USE_FB then
uzpply +—uy — Ki(x, — xf)
else
uzpply — ul
end if
Plant update:

,_.
HOo L XA

[

Tit1  fa(@e, ui™PY)

12: ‘Warm start shift:
13: fori=k,....k+ N —2do

14: wio —xi, ugo) — Ui
15: end for

16: mg)) — Tpt1, ngN — TN
17wy, 0

18: end for

the shifted solution from the previous NMPC iteration. That is, the nominal trajectories

{:1:50), uZ(O)} are updated by inserting the measured state xj at the front, discarding the oldest

element, and appending a fresh terminal guess.

The DDP backward pass produces feedforward and feedback terms (1;, K;), yielding a local
affine control law

Juj = —l; — Kidw;,  i=kh,....,k+N -1 (3-20)

At each NMPC step, only the first input uy, is applied to the system, either in open-loop form

apply __ _ x
uy = Uy,

or in closed-loop form using the local feedback gain
uzpply = uj — Ki(xp, — xf).

The plant evolves forward according to g1 = fy(xy, u%pply), after which the warm start is

updated and the process repeats.

This procedure ensures that NMPC retains the predictive and optimizing nature of DDP
while remaining computationally tractable under real-time constraints. A summary is given
in Algorithm 2.
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3-6 Analytical Derivatives of GVS Dynamics

The backward pass of the DDP algorithm requires first- and second-order derivatives of the
discretized dynamics
Tpi1 = fa(xp, uk). (3-21)

In principle, these derivatives can be computed using finite differences or automatic differ-
entiation. However, such approaches quickly become computationally expensive for high-
dimensional soft-robot models, making them unsuitable for real-time NMPC. For DDP, it is
therefore essential to obtain analytical gradients of the dynamics that are both accurate and
fast to evaluate.

Consider the continuous-time dynamics of the soft robot written in strain coordinates:

- q
v = [qu, g uﬂ ’ (3-22)

where q are the generalized strain coordinates, g their velocities, and F'D denotes the accel-
eration term obtained from the equations of motion.

Applying explicit Euler integration with time step At yields the discrete-time dynamics

Falmp,wp) = |T] + At

qr
. . 3-23
FD(qy, 4. Uk)] (3-23)

The Jacobians of f; with respect to the state and control are then

I At T 0

Ofa _ Ofa _

e = | At OFD I+ At an , T At |OFD | . (3-24)
0q oq ou

Thus, the problem of obtaining the DDP gradients reduces to computing the partial deriva-
tives of the continuous dynamics function F' D with respect to q, ¢, and wu.

M(q)§ = Alg)r —Kq—-Dg + (-C(q,4)4-Gl(q)) = 7+ F.
7(9.4,7) F(q,q)

Thus the forward dynamics map is § = FD(q,q,T) with M(q) FD =71 + F.
Differentiate w.r.t. g (treating ¢ as FD):

oM OFD o0t OF

¢ Mo T oq T aq
Introduce the inverse-dynamics residual

oID OM . OF
ID(0. 6.8 e M\ — Fla.d _ . _OF
(g,4,4) (9)4 — F(q,q), = 9a ~ 0¢ 9 9q

Rearranging gives the FD Jacobian:

OFD _ M_l(ar 8ID)

g dq  9q

-2
90~ Oq (3-25)
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Similarly, differentiating w.r.t. g yields

OFD _or OF  0ID _ OF
¢ 9G04’ g 94’

henee OFD or O0ID
T M (T. -T2 ) (3-26)
oq 9q  9q
Following [112], [105] uses The Recursive Newton Euler Algorithm (RNEA) which is the most
efficient algorithm for the computation of inverse dynamics. It is a two-pass algorithm with
a forward pass that calculates link kinematics and a backward pass that determines the joint
wrench needed to produce this motion. This RNEA strategy is applied to the GVS rod in
[105]: a forward pass recursively propagates poses and twists along the discretized pseudo-
joint chain, and a backward pass accumulates spatial wrenches from the tip to the base and

projects them onto the generalized coordinates.

For a soft body discretized into n, computational points, the inverse dynamics is
np—1 np—1

ID = Y ID, = Y S,F¢, (3-27)
a=1 a=1

with the cumulative wrench at point « given by the coadjoint-transported sum of distal point
wrenches,

Tp
FC = > Ad;  Fi, (3-28)
k=a+1
and each local point wrench
F, = Myn;, + adj, Myn, — M, Ad,' G. (3-29)

Here S, is the joint motion subspace at a;, g.r is the transform from « to k, gi is the world-
to-k transform, n; and 7 are the local twist and twist-rate, M}, is the spatial (screw) inertia
at k, G = [0 a,]" encodes gravity, Ad(-) / Ad*(-) are adjoint/coadjoint maps on SE(3),
and adf,) is the coadjoint operator.

For point a (with n, computational points), the partial derivatives of the local inverse-
dynamics contribution are

oID, 08!
P e S (NSRE + MSQE +US + PY), (3-30)
OID,
T SL(NSSE+ MOYP +vE). (3-31)

The total derivatives follow by summation:

aID ””Zl oID,  9ID ”pzl dID,,
dqg oq ’ dg oq

a=1 a=1

(3-32)
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The partial derivative of the forward dynamics with respect to the input can be computed as

follows: 5 P
e -1 77- = -1 -
u M (8u> M~ A(q), (3-33)

The recursive update formulas for the forward- and backward-pass quantities, together with
the derivatives of the motion-subspace (projection) matrix S, follow [105] and are briefly
summarized in Appendix A.
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Chapter 4

Results

This chapter evaluates the proposed NMPC/DDP framework on the Soft Inverted Pendu-
lum (SIP) and two underactuated benchmarks (R-SIP and soft Furuta), across simulation
and hardware studies. The simulation part examines: (i) nominal closed-loop behavior
(regulation/swing-up), (ii) robustness to external disturbances and model mismatch, (iii)
comparisons against baseline controllers (e.g., collocated and non-collocated PFL), and (iv)
scalability and numerical aspects, including per-step solve time versus ndof and the impact of
analytical versus numerical dynamics gradients. The hardware part reports inverse-kinematics
reconstruction, system identification outcomes, and control experiments.

4-1 Validation Strategy

The proposed modeling and control framework is validated through numerical simulations.
First, a nominal study verifies that the NMPC/DDP controller solves the swing up problem
on the nominal plant with feasible runtimes. Next, robustness is assessed (i) to external dis-
turbances by applying bounded forces at multiple locations along the length of the rod and (ii)
to model mismatch by running the nominally tuned controller on plants with perturbed mass
and stiffness parameters, thereby quantifying tolerance to mismatch. Finally, a comparative
study evaluates NMPC in operating regimes where baseline strategies are known to work and
in regimes where their assumptions fail; these regions are defined by the relative influence of
gravitational and elastic effects as parameterized in (3-11) and (3-12).

For the comparison, the following compact scalars are used.

Elastic parameter.
L L1 L1 X
_ T _ _
K —/0 Qe X PedX —/0 [X]Ejy [1 X} dX—EJy/O [X XQ} dX.

L £

_ 2
= K=EJ, [LQ le
2 3
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(a) R-Soft Inverted Pendulum (R-SIP). (b) Soft Furuta pendulum.

Figure 4-1: Soft underactuated benchmarks used for validation.

For L =1,
1 1 1 4
2 2
K:Ejyll 1] :kll 1], k= EJ,.
3 3 3 3

Inertial parameter. The total mass of the rod is
L=1
m=pAL —= m=pA,
with A the cross-sectional area (for a circular rod A = 77?).

Thus, k collects the bending material/geometry (£, J, ), while m collects inertia (p, A). These
two scalars are used to index operating regimes and to report performance in the comparison
section.

Beyond the SIP, the approach is validated on two underactuated soft systems: (i) an R-Soft
Inverted Pendulum (R-SIP), consisting of a base revolute joint with a soft link attached; its
behavior parallels the SIP with a rigid base joint, and (ii) a Soft Furuta pendulum, a soft
analogue of the rigid Furuta in which the horizontal driving link is rigid with a base revolute
joint and a soft link attached at the distal end. A comparison of computation time versus the
number of degrees of freedom (ndof) is also reported for the SIP model, together with the
computation time difference between analytical versus numerical dynamics gradients.

For bending about the y-axis, the GVS strain basis is chosen :
len

Ce(X) = |P(2)"|,  (x) ER™
O4xn

Two choices for ¥ (X):
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(i) Polynomial (monomial) basis

(ii) Shifted Legendre basis on [0, 1] Let {py(X)}r>0 be the shifted Legendre polynomials,
defined by
(2X — 1)(2n + 1)pn(X) — npnfl(X)

Po(X) ) p1(X) ) Pn+1(X) n+1 (n>1)

(equivalently, p,(X) = P,(2X — 1) with P, the standard Legendre on [—1,1]). Then

po(X)
X
TPleg(X): Pl(. )

pnfl.(X )

4-2 Simulation Studies

This section evaluates the NMPC/DDP controller in simulation. Experiments use the SIP
dynamics and cost from Section 3-5 with explicit—FEuler discretization and short DDP itera-
tions (1-3) per NMPC step with warm starts. Unless stated otherwise, the control applied is
the time—varying feedback

wpP = wf — Ky — ).

Performance is reported via: root-mean—square (RMS) and peak state error,

T
RMS(e) = J%ZH%—%HQ emax:m]?XHa:k_ngom
k=1
control effort 37, ||ux||3, settling time, and per-step solve time.

4-2-1 Baseline Performance: DDP on the Soft Inverted Pendulum

Using the physical model and NMPC parameters in Table 4-1, a 20 s NMPC run (step
h =0.01 s, 2000 steps) achieves precise swing-up and regulation on the SIP. As summarized
in Table 4-2, terminal state errors are numerically zero at the solver tolerance, with a settling
time of 1.70 s (5% band). Control remains moderate (||ullcc ~ 9.77, RMS 0.93), and the
final cost vanishes. The average per-step solve time is 20.53 ms, consistent with short-iterate,
warm-started DDP in NMPC. The accompanying plots (state and input evolution in Fig. 4-2,
stroboscopic phase view in Fig. 4-3) illustrate rapid convergence to the upright equilibrium
and bounded actuation throughout the maneuver.
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Table 4-1: Baseline SIP model and OCP parameters for “Baseline Performance: DDP on the
Soft Inverted Pendulum”.

SIP model
Length L 1m
Radius r 0.03 m
Mass density p 103 kgm—3
Material damping v 10* Pa-s
Poisson’s ratio v 0.5
Young’s modulus F 1 x 108 Pa

NMPC horizon & simulation

Time step dt 0.01 s
Horizon length N 100 steps (1.00 s)
Total simulation T' 2000 steps (20.00 s)

Cost weights

Running state weight W 0.114
Running control weight R diag(1)
Terminal state weight Wy diag(10%, 102, 10!, 10%)

Initialization
Initial state x [8.5879, —11.5744, 0, 0]"
Target state x, 0
State Evolution 0 Control Input
—_—q —Position
— 3 £ 100 — Velocity
0 \ — .92 B
S 00 2 =
< =1 =
- =
-20
0 10 20 0 10 20 0 5
t [s] t [s] t [s]
«106 Total Cost Solver Performance Phase Portrait
4 . 0 % —Trajectory
g o Start
~.30 e End
: 9 qé - -10 x Target
8 525 S
O )
5 20
0 \ @ 20 )
0 10 20 0 10 20 0 5 10 15
t [s] t [s] @

Figure 4-2: SIP nominal run under NMPC
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Table 4-2: Nominal SIP simulation results (corresponding to the setup in Table 4-1).

Simulation duration 19.99 s
Number of time steps 2000
Time step 0.0100 s
Final position error 0.000000
Final velocity error 0.000000
Settling time (5% band)  1.70 s
Final cost 0.000
RMS control effort 0.931

Average solve time / step  20.53 ms

Nominal Simulation - Soft Link NMPC

1;:2Ost:1S

0.5
2
0
¥
N
0
0.5 )
0.2 0
-0.2 0 o
Y-axis -axis

Figure 4-3: Stroboscopic plot of the SIP during swing-up and stabilization under NMPC.

Disturbance Rejection This section evaluates closed-loop robustness under exogenous wrenches
applied at selected arclength grid points of the SIP (same setup as in Table 4-1). Ten cases are
considered, varying disturbance type (force, moment, combined), location (base/middle/tip),
magnitude, and duration. The disturbance program used in the simulations is summarized in
Table 4-3. Disturbances are activated over the time window [ton, toff] and applied at Gauss
point index g, of the soft link representing a point along the length of the soft link. A per-case
performance table is provided in Table 4-4.
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Table 4-3: Disturbance test cases (location by Gauss point g, type, magnitude, and activation

window).
ID Name Location (gp) Type & Magnitude Window [ton, tof] [8]

1  Small Force Tip 9 Force 3 N [5.0, 5.5]

2 Medium_ Force_Tip 9 Force 8 N [5.0, 5.5]

3 Large_Force_ Tip 9 Force 15 N [5.0, 5.5]

4  Medium_ Force_Middle 5 Force 8 N [5.0, 5.5]

5 Medium_ Force_Base 1 Force 8 N [5.0, 5.5]

6 Moment_Tip 9 Moment 5 N - m [5.0, 5.5]

7 Combined_ Force_ Moment_ Tip 9 Force 6 N + Moment  [5.0, 5.5]

8 Long_Duration_ Force 7 Force 10 N [5.0, 6.0]

9  Multiple_ Pulses 8 Force 12 N [4.0, 4.2] (+ pulses)
10 Late_ Disturbance 6 Force 8 N [12.0, 12.5]

The disturbance-rejection results in Table 4-4, with state traces in Figures 4-5-4-6, show
consistent robustness across all cases. Tip-applied forces induce the largest excursions (e.g.,
8N at the tip vs. base), while the same force at the base leads to much smaller deviations,
reflecting leverage about the base joint. A mid-span application (case “Medium Force at
Middle”) produces the largest excursion among the 8 N cases, consistent with its effective
moment arm. Recovery times are tightly clustered around 1.1—1.4s despite large transients
(e.g., 15N at the tip), and remain brief for long-duration forcing (0.82s) once the input ceases.
Multiple pulses extend recovery slightly due to repeated excitation. Control peaks scale with
disturbance magnitude, while RMS effort increases with disturbance energy, yet final errors
return to (numerical) zero in all cases and the overall settling time remains at 1.70 s, matching
the nominal regime.

Table 4-4: Disturbance rejection summary under NMPC/DDP (showing only recovery time and
peak control).

Case RecTime [s] MaxCtrl
Small Force at Tip (3N) 1.20 9.77
Medium Force at Tip (8N) 1.19 10.91
Large Force at Tip (15N) 1.38 15.22
Medium Force at Middle (8N) 1.15 9.77
Medium Force at Base (8N) 1.09 9.77
Moment at Tip (5Nm) 0.51 9.77
Combined Force+Moment 1.18 9.77
Long Duration (1s) 0.82 11.70
Multiple Pulses 1.26 9.77
Late Disturbance 1.18 10.10

RecTime: recovery time to 10% of the peak error after disturbance; MaxCtrl: max; |u(t)|.
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Case 3: Large Force at Tip (15N) Case 4: Medium Force at Middle (8N)
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Figure 4-4: Stroboscopic plots for disturbance-rejection Case 3 (Large Force at Tip, 15N) and
Case 4 (Medium Force at Middle, 8 N). Red SIP segments denote the interval during which the
disturbance is active.
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Figure 4-5: State evolution for disturbance-rejection cases 1-6.
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Disturbance Rejection Tests Cases 7 to 10
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Figure 4-6: State evolution for disturbance-rejection cases 7-10.

Robustness to Model Mismatch The NMPC/DDP controller is kept nominal (parameters
as in Table 4-1), and its closed-loop performance is evaluated on plants whose material prop-
erties are perturbed. The two perturbed parameters are the Young’s modulus E and the mass
density p. For each trial, one of {E, p} is scaled while the other remains nominal. Let the
plant parameters be

Ep:<1+5E>E7 pp:(1+5p)p7

with 0g,0, € {£1%, £2%, £5%, £10%, +£15%, £25%, +50%}. Two one-parameter sweeps
are considered: (i) E-sweep: dp # 0, 6, = 0; (ii) p-sweep: ¢, # 0, og = 0. For each
perturbed plant, the static equilibrium geq (zero velocity and input) is computed numerically
and plotted against the nominal equilibrium. Figure 4-7 shows the distribution of equilibria
over all (E, p) perturbations as well as the maximum deviation from the nominal case.

Figure 4-8 highlights a clear pattern consistent with the robustness table (Table 4-5): mass
decrease (p |) and stiffness increase (E 1) make the plant easier to regulate both settling
time and RMS control effort remain small or even drop below nominal. Conversely, mass
increase (p 1) and stiffness decrease (E ]) render the plant harder to control with the nom-
inal controller, leading to longer settling times and larger RMS effort, with extreme cases
approaching failure within the fixed horizon.
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Equilibrium Position Analysis for Model Robustness Testing

A8II Equilibrium Positions
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Figure 4-7: Equilibrium positions under parameter mismatch: scatter over all E and p pertur-
bations; nominal equilibrium highlighted. The maximum deviation from nominal is indicated in

the plot.
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Figure 4-8: Effect of model-plant mismatch on settling time and RMS control effort. Cate-
gories on the abscissa: mass increase/decrease and stiffness (Young's modulus) increase/decrease.
NMPC uses the nominal model (Table 4-1); plants vary p or E.
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Table 4-5: Model robustness to parameter mismatch (controller uses nominal model). Left:
mass density p variations; Right: Young's modulus E variations. Success = finite settling time
within horizon.

(a) Mass density p (b) Young’s modulus F

Case RMSCtrl Settle [s] Success
] Case RMSCtrl  Settle [s] Success
Nominal (no error 0.931 1.70  Success
( ) Stiffness +1% 0.929 1.66 Success
Mass +1% 0.943 1.78 Success .
Stiffness +2% 0.926 1.62 Success
Mass +2% 0.954 1.85 Success .
Stiffness +5% 0.918 1.50 Success
Mass +5% 0.991 2.12  Success .
Stiffness +10% 0.905 1.35 Success
Mass +10% 1.056 2.69 Success .
Stiffness +15% 0.892 1.24  Success
Mass +15% 1.132 3.55 Success .
Stiffness +25% 0.866 1.08 Success
Mass +25% 1.356 8.15 Success .
. Stiffness +50% 0.811 1.36 Success
Mass +50% 5.551 NaN Fail .
Stiffness —1% 0.934 1.75 Success
Mass —1% 0.920 1.64 Success i
Stiffness —2% 0.937 1.81 Success
Mass —2% 0.909 1.57 Success )
Stiffness —5% 0.945 1.99 Success
Mass —5% 0.877 1.41 Success )
Stiffness —10% 0.960 2.40 Success
Mass —10% 0.826 1.21 Success i
Stiffness —15% 0.977 3.05 Success
Mass —15% 0.779 1.06 Success .
Stiffness —25% 1.045 7.21  Success
Mass —25% 0.692 1.34 Success Stiffness —50% 3,603 NaN  Fail
5 — 0 .
Mass —50% 0.524 0.91 Success

4-2-2 Comparison with Partial Feedback Linearization (PFL) Controllers

This section compares the NMPC/DDP controller against two PFL baselines: the collocated
PFL in (3-13) and the non-collocated PFL in (3-14). The objective is to demonstrate that
NMPC can stabilize operating points in regions where these PFL controllers are not feasible.

The collocated PFL feasibility is characterized by the open-loop stability condition (3-11)
and the zero-dynamics stability condition (3-12). The former demarcates regimes where the
upright equilibrium becomes unstable (very high stiffness must exceed this threshold), while
the latter specifies where the zero dynamics of the collocated output are stable. These two
conditions define the collocated PFL region used in the feasibility plots.

The plant is swept over a 2-D grid of mass and stiffness values (m, k) previously defined:
me{l,...,9}, o :=logo(1/k) € {0,1,...,100},

to emphasize low-stiffness regimes.

Figure 4-9 summarizes control feasibility across mass—stiffness pairs (m, k). The plot is seg-
mented into regions where open-loop behavior is stable and where feedback is required; within
the latter, the analytically derived bounds (3-11) (blue curve) and (3-12) (red curve) are over-
laid. The band between these two curves is the collocated PFL feasible region implied by (3-13)
together with the zero-dynamics requirement. As m increases, both thresholds shift down-
ward, enlarging the band of admissible controller choices. Outside this band, non-collocated
PFL (3-14) may still succeed, and the NMPC/DDP controller is evaluated precisely in those
more challenging regimes.
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Control Feasibility Regions for the SIP
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Figure 4-9: Feasibility regions over (m, k): open-loop stable , with analytic bounds from (3-11)
(blue) and (3-12) (red). The collocated PFL band lies strictly between the two curves; non-
collocated PFL and NMPC/DDP are evaluated outside/near these limits.

DDP vs PFL — Matched Success Cases
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Figure 4-10: Collocated PFL ((3-13)): performance versus (m, k). Errors and effort are well
behaved inside the feasibility band ((3-11)-(3-12)).

Figures 4-10—4-11 confirm the theoretical picture: collocated PFL performs well only inside
the band delimited by (3-11) and (3-12), while non-collocated PFL stabilizes a broader slice
of the plane at the cost of higher effort. In the subsequent plots, NMPC/DDP maintains
regulation even beyond both PFL regions, particularly in low-stiffness/high-mass settings
where the zero dynamics are unfavorable, illustrating its advantage in regimes that violate
the PFL feasibility conditions.

Master of Science Thesis Nikhil Nair



60 Results

DDP vs NPFL — Matched Success Cases
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Figure 4-11: Non-collocated PFL ((3-14)).

4-2-3 Scalability and Generalization

Other Soft Underactuated Systems The NMPC/DDP framework transfers directly to
other soft, underactuated robots without structural changes to the solver or cost design. Only
the dynamics module and its analytical derivatives (GVS-based) are swapped to match the
target system. The results below illustrate stabilization on two distinct platforms, confirming
that the NMPC yields fast convergence and bounded effort beyond the SIP.

The R-SIP consists of a rigid revolute base joint driving a single soft link modeled with the
GVS formulation. The soft segment is parameterized by a second-order shifted Legendre basis
for the excited bending strain, i.e., ¥(z) = [Py(x), Pi(x), Ps(x)]", which provides a low-order
yet expressive shape space for swing-up and regulation. The Soft Furuta comprises a planar
rigid driving arm with a distal soft appendage; its hybrid soft-rigid dynamics are likewise
captured within the same GVS approach.

6 State Evolution %ontrol Input Over Time
—a State Evolution Caontrol Input Over Time
4 —a 10 5
A ® 0 ﬁ —a
3 2| a = 5 @
N = = 0
=5 T = % -5
s 6 i 5
=4 S
= = -10
S 8 S-10
8 10 -15 -15
0 10 20 0 10 20 0 5 10 15 0 5 10 15
t(s) t(s) t (s) t(s)
(a) R-SIP: states vs. time. (b) Soft Furuta: states vs. time.

Figure 4-12: State trajectories: R-SIP (left) and Soft Furuta (right).

Figure 4-12 reports state trajectories for both systems. In each case, the controller performs
swing-up and stabilizes the upright equilibrium with smooth transients and bounded input,
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despite low stiffness and underactuation. The complementary stroboscopic views in Fig. 4-13
show rapid convergence of the phase portrait to the upright fixed point.

t=5s

1.
t=0.7s l=55[=25
0.5. 1 t=1s
o 0.5
w D
5 O X
N N
0.
'0-5 t=0.5s
-0.5 P
-1 ///\1 0.5 \ Pl |
> 5. .~ 05
0.2 /\/\ti‘gss ~— 05 g 5 5\y 0 '
% 2 0 . Y-axis X-axis
Y-axis ' X-axis
(b) Soft Furuta stroboscopic
(a) R-SIP stroboscopic plot. plot.

Figure 4-13: Stroboscopic comparisons: R-SIP (left) and Soft Furuta (right).

Real-time Feasibility vs Degrees of Freedom Average per—step solve time grows moderately
with the number of shape DOFs (ndof), while accuracy and closed-loop success remain high
across all cases . The 2-DOF model attains the fastest runtime. Figure 4-14 show that average
per—step solve time grows moderately with the number of shape DOFs: 7.05 ms (ndof= 2),
17.19 ms (ndof= 3), 25.53 ms (ndof= 4), and 27.61 ms (ndof= 5). The NMPC loop therefore
sustains control rates from ~ 140 Hz (ndof 2) down to ~36-40 Hz (ndof 5).
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Figure 4-14: Average solve time per NMPC step versus number of degrees of freedom (ndof).
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Analytical vs Numerical Gradients Analytical dynamics derivatives are decisively faster
than numerical finite differences in the NMPC/DDP setupabout 4.4x lower per—step solve
time (roughly 10.2 ms vs. 45.2 ms), enabling higher control rates (98 Hz vs. 22 Hz) with
comparable final accuracy.
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Figure 4-15: Analytical vs. numerical (finite-difference) dynamics gradients in NMPC/DDP.
Analytical derivatives yield lower per-step solve time.

4-3 Hardware Setup

This section outlines the experimental platform used to validate the control framework for
deformable-object manipulation. The setup consists of a 7-DoF Franka Emika Panda arm
grasping a deformable cable at a single point along its length. The cable—gripper pair is
modeled as a Revolute-Soft Inverted Pendulum (R-SIP): a rigid revolute joint at the gripper
followed by a soft link representing the cable. The control objective is a swing-up from the
downward stable equilibrium to the upright unstable equilibrium. A multi-camera OptiTrack
motion-capture system provides state estimates of the cable, which are used by a closed-loop
NMPC controller that commands the revolute attachment joint through the Panda. Imple-
mentation details are provided in the subsequent subsections: Inverse Kinematics, System
Identification, and Control Framework.

4-3-1 Inverse Kinematics

This section formulates how the inverse kinematics problem is solved using the measurements
from the OptiTrack system.
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OptiTrack measurements. The motion-capture system provides:
Marker positions in the global frame {G} : mJg e R3, j=1,...,4, (4-1)

g g
Ryp prp

o e SE(3), (4-2)

Rigid-body pose at the attachment joint: 91%]3 = l

where R%B € SO(3) and p%B € R3 denote orientation and position, respectively.

~ 3 » - o~ 7
(a) Franka Emika Panda with deformable ca- (b) Optical tracking setup (OptiTrack) to
ble. record marker positions

Figure 4-16: Hardware setup used in the experiments.

Marker position from a fixed local offset (with base calibration). Let g¥, € SE(3) be the
measured rigid-body pose at the attachment, and let ggB € SE(3) be the fixed calibration
from the rigid—body marker to the SIP base. The base pose is

RB
g8 = gip 95",

For a given shape g, the GVS forward kinematics in the base frame is g?_—(Xj, q) € SE(3);
hence the centerline pose in the global frame is

9%(X;.q) = g% 92(X;,q).

Assume each marker is located at the same fixed offset 73, € R? from the centerline frame. In
homogeneous coordinates 7ys := [T‘R—/[ 1 ]T, the predicted global position of marker j (placed
at arclength X;) is

~ G _ g . = — G _B(y. = R
m](q) - [gF(XJ,q)TM]l;Q} - [ngf(Xjuq)rM]lzsa ]_17"'747

where []1.3 extracts the translational part (entries 1-3 of the resulting 4-vector).

Inverse-kinematics estimation (least squares). Define residuals between predicted and
measured marker positions

ri(q) = mi(q) — myeR®  j=1,. 4
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and stack them as r(q) = [r{,...,7/]" € R'2. The IK problem is the unweighted nonlinear
least-squares
2 1 2
q = arg;relﬁg}t — Z |7;(q ||2 = argmin 5 Hr(q)“2 (4-3)
0
Let J(q) := g(q) € R2*" be the stacked Jacobian (with 3 x n blocks J;(q) = 87Anjg»/ﬁq).
q

The gradient of @ is
Vo(q) = J(g) r(q).

A (unconstrained) gradient-descent solver updates
T
gt = ¢ _— aV@(q(k)) = q® — aJ(q(k)) r(q(k)),

where o > 0 is a fixed stepsize. A practical stopping criterion is |[V®(¢®)||lc < € or
[r(g®)|ls < e for a tolerance ¢ > 0. The analytical Jacobians from the GVS forward
kinematics yield a closed-form Jacobian for the IK least-squares problem; the derivation and
final expressions are provided in Appendix B.

4-3-2 System ldentification

Building on the IK formulation above (same OptiTrack markers and base-pose calibration),
the goal is to identify the material stiffness E of the soft link from a static (downward)
configuration. All geometric and inertial quantities (L, r, p,...) are taken as measured; only
FE is estimated.

Static equilibrium for a given E. At rest (¢ =0, ¢ = 0), the GVS dynamics reduce to
Fo(¢ E) == K(E)q+G(q) = 0. (4-4)
For a candidate F, the static shape is obtained by

(4-5)

qeq(E) = argmqin %HK( )a + G(q H27

solved numerically (e.g., fmincon/fsolve) with the same base pose and FK as in the IK
section.

Marker cost. Using geq(E), the predicted marker positions m (qeq(E)) are computed ex-

actly as in the IK mapping. The residuals r; = m]g — m]g deﬁne the outer objective
. 2
= %Z |m Geq(E m?”g’ (4-6)
and the stiffness estimate is
E* = arg min J(E), (4-7)

Ee [Emin7 Emax]

solved with a 1D constrained optimizer (e.g., fmincon on E > 0).
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4-3-3 Control Framework

The proposed NMPC framework is evaluated on a setup where a Franka Emika Panda ma-
nipulates a deformable cable attached at the last joint. The primary objective is to assess
real-time feasibility on hardware. In the current iteration, two practical limitations prevented
deploying the full closed-loop NMPC on the robot: (i) limited integration time for on-board
implementation, and (ii) a velocity bound on the last Franka joint that would be frequently
saturated by the aggressive inputs produced during swing-up to the upright equilibrium.

To nevertheless test the core control idea on the physical system, trajectories are generated
offtine using the same NMPC formulation and the RSIP model. Instead of the upright
equilibrium, two lateral target equilibria are selected one on each side of the plane chosen to
be challenging yet more attainable than the upright configuration. For each target, the NMPC
computes an optimal state—control sequence that performs swing-up, local stabilization and
swithcing to the other equilibrium so that the cable is swung to the first equilibrium, stabilized,
and subsequently redirected to the second equilibrium.

Because the NMPC outputs an actuator torque signal, while the Franka is operated in a
safety-minded joint impedance mode, execution proceeds via a reference-tracking layer: the
optimized actuator coordinate trajectory (the joint to which the cable is attached) is extracted
from the NMPC solution and used as the reference to the Franka’s low-level joint controller.
To satisfy the joint-speed limit, the reference is uniformly retimed (time-scaled) so that the
commanded joint velocity remains within bounds, after which the joint-impedance loop tracks
the reference.

In summary, the hardware validation consists of: (1) offline NMPC trajectory generation to
lateral equilibria, (2) time-scaling of the actuator reference to respect joint limits, and (3)
safe execution via the Franka’s joint-impedance controller.

4-4 Implementation Details

The control framework was first prototyped and validated in simulation in MATLAB, where
the DDP/NMPC pipeline, cost shaping, and model verification were developed. For real-time
execution on hardware, the controller and the dynamics were reimplemented in C++ using
the Crocoddyl library [110] for shooting-based optimal control and Figen for linear algebra.
The same GVS soft-link model was used in both stacks to ensure consistency. All nominal,
disturbance-rejection, and mismatch studies were run in MATLAB with vectorized dynamics
and cost routines. Numerical differentiation was used initially for debugging, then replaced
by analytical derivatives to match the C+- pipeline.

4-5 Hardware Results

4-5-1 Inverse Kinematics

The IK formulation and mapping from OptiTrack measurements to shape coordinates were
detailed in the previous chapter; here the goal is simply to verify that the pipeline works on
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hardware data. As shown in Fig. 4-17, the predicted marker locations from the GVS for-
ward kinematics (using the identified base pose and fixed local offsets) align closely with the
measured markers across multiple trials. Qualitatively, the overlays exhibit negligible repro-
jection error and no systematic bias along the rod, indicating that the base calibration and
centerline-to-marker transformations are consistent. Convergence is reliable from nominal ini-
tializations, and the recovered shapes are physically plausible for the static poses considered.
In summary the IK pipeline behaves as expected on real measurements and is suitable for
downstream tasks (e.g., NMPC state estimation and stiffness identification). The IK solver
exploits analytical Jacobians from the GVS kinematics (Appendix B), so each iteration re-
duces to lightweight matrix-vector operations without finite-difference passes. This markedly
lowers computational overhead and improves numerical robustness, making the IK pipeline
suitable for real-time use alongside the NMPC controller.
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(a) IK solution (trial 1).
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(c) IK solution (trial 3).

(d) IK solution (trial 4).

Figure 4-17: Inverse-kinematics reconstructions from OptiTrack measurements. Each panel
shows the IK-estimated shape from the measured rigid-body pose and marker positions (Section 4-

3.1).
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Figure 4-18 shows the real snapshots (poses 1-4) of the Franka—cable setup, while Figure 4-
17 shows the IK reconstructions for the same poses obtained from the OptiTrack rigid-body
pose and marker measurements (using the same base calibration and fixed marker offsets as
in Section 4-3-1). The reconstructed centerline and predicted marker locations visually match
the images, indicating small error and confirming the fidelity of the IK pipeline on hardware
data.

(c) Pose 3. (d) Pose 4.

Figure 4-18: Franka Emika Panda manipulating a deformable cable (experimental snapshots).

4-5-2 System ldentification

The estimation procedure is already detailed in Section 4-3-2; here only the outcomes are
reported. All geometric/inertial quantities are measured (or derived), while the material
stiffness F is identified by minimizing the marker reprojection error in the static configuration.
The cable is highly damped; a sufficiently large material damping is fized to match the
observed decay and is not identified.
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Table 4-6: Static identification summary (measured vs. identified).

Quantity Value Note
Length L 0.6 m measured
Radius r 0.009 m measured
Mass density p 3546.6 kgm—3 measured
Material Damping 2 x 106 matched to decay
Young’s modulus E*  2.2069 x 107 Pa Identified

System ldentification — Convergence
Stiffness E from static configuration

100} ——J(E)

0 10 20 30 50 60

Iteration

40

Figure 4-19: Cost convergence during stiffness identification.
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Figure 4-20: Statics solution with the identified stiffness E* The configuration is obtained by

solving the static equilibrium.

4-5-3 Control Experiments

The proposed control pipeline was evaluated on hardware by offline computing NMPC tra-
jectories and streaming the base—joint reference to the Franka’s low—level joint—impedance

Nikhil Nair Master of Science Thesis



4-5 Hardware Results 69

controller. As illustrated in Fig. 4-18, the robot executes a swing—up and switching maneuver
between two lateral equilibria (chosen for practicality over the upright). The corresponding
simulated shapes from the offline NMPC solution, rendered at the same timestamps, are
shown in Fig. 4-22; the visual agreement confirms that the commanded motion reproduces
the planned sequence.

For quantitative comparison, Fig. 4-23 reports the four configuration coordinates go—gs (base
joint plus a second-order Legendre GVS shape model, totaling 4 coordinates) from (i) NMPC
simulation and (ii) OptiTrack reconstruction during the experiment. The trajectories are
close but not identical small biases appear due to modeling mismatch and cable hysteresis
(left /right asymmetry). Nevertheless, the reference is tracked well enough to complete the
task within hardware limits, demonstrating that the offline NMPC plans are feasible when
executed via the Franka’s impedance controller.

Figure 4-21: Franka—cable swing sequence at selected times.

To respect the velocity limit of the last joint, the NMPC reference was uniformly time—scaled
prior to execution. Despite this retiming, the swing—up proceeds as intended: around t~4s
the cable settles near the first lateral equilibrium, and between t~4-13s it transitions toward
the opposite side, consistent with the snapshot sequence.
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Figure 4-22: Visualization of the shapes obtained from the simulation of the system using the
NMPC controller, shown at the same timestamps as the real images in Fig. 4-18.
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Figure 4-23: State trajectories (go—¢3): comparison between the NMPC simulation output and
the OptiTrack measurements recorded during the real experiment.
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4-6 Discussion of Results

The simulation studies establish baseline validity of the NMPC framework. On the nominal
SIP model (Table 4-1), the controller regulates to the target with short settling time and
modest control effort, indicating that the discretization, cost shaping, and DDP-based short
solves are sufficient for accurate tracking. Disturbance-rejection tests (Figures 4-5-4-6) show
bounded errors during force and moment pulses and rapid recovery after the disturbance
interval. Robustness to parameter mismatch confirms the expected trend: plants that are
lighter or stiffer than the nominal model remain easy to stabilize and often yield smaller
settling times and reduced RMS effort. Heavier or softer plants become progressively harder
to control, evidenced by longer settling times and higher effort, with failures appearing for very
large deviations (about 50% or more), consistent with the physical intuition that increased
inertia and reduced stiffness degrade controllability.

The comparison with partial feedback linearization highlights a qualitative advantage. Within
the feasibility region defined by the open-loop stability and zero-dynamics stability conditions
(Section 4-2-2), collocated PFL performs as expected while non-collocated PFL enlarges the
stabilizable set. NMPC extends stabilization beyond both PFL variants for mass—stiffness
combinations that violate the zero-dynamics stability requirement. This supports the view
that model-based optimal control with full nonlinear dynamics can unlock performance in
regimes where structure-based linearization controllers are not applicable.

Generality was examined by applying the same NMPC stack to other underactuated soft
systems modeled with GVS. Both the R-SIP and the soft Furuta pendulum are stabilized
(Figures 4-13a—4-13), with the R-SIP using a second-order Legendre basis for the soft link.
This suggests that the formulation, together with the analytical dynamics derivatives, trans-
fers across architectures without algorithmic changes.

Computational performance indicates practical real-time potential. Average per-iteration
solve time is about 7ms for n =2 and increases to about 17-28 ms for n =3-5 (Fig. 4-14),
which is compatible with control loops in the 30—100 Hz range depending on model order and
available compute. Using analytical derivatives accelerates solves by roughly 4.4x relative
to numerical differentiation while achieving comparable final accuracy (Fig. 4-15), which is
important for NMPC where only a few DDP iterations are executed per step.

Hardware experiments demonstrate feasibility of the sensing and planning pipeline. Marker-
based IK with analytical Jacobians reconstructs the cable shape in real time, and a static-
identification procedure estimates the effective stiffness from equilibrium fits while choosing a
high damping ratio to match observed transients. Due to joint-velocity limits and the decision
to operate the last joint in impedance mode rather than torque mode, the closed-loop NMPC
was not executed on the robot within the available time. Instead, time-scaled trajectories
computed offline were sent as joint references. The resulting motions match the planned
swing-up to two lateral equilibria and the subsequent switching between them (Figures 4-18,
4-22 and 4-23). Small discrepancies are attributable to model mismatch and cable hysteresis,
yet the task is completed reliably.

Overall, the results support three conclusions. First, NMPC with DDP and analytical deriva-
tives is effective and fast enough for soft systems of moderate order. Second, the approach
offers a wider stabilizable region than PFL-based baselines in mass—stiffness regimes that
violate zero-dynamics stability. Third, the GVS-based modeling and derivative machinery
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provides a portable backbone across different soft and hybrid soft-rigid platforms. Future
work should integrate closed-loop NMPC on hardware, relax the actuation limits by using
torque control or a dedicated joint drive, and refine material models to capture hysteresis and
rate effects.

Nikhil Nair Master of Science Thesis



Chapter 5

Conclusions and Future Work

This thesis has explored the main research question outlined in Chapter 1: the use of op-
timal control for soft robots, with a particular focus on their effectiveness in underactuated
cases within low mass—stiffness regimes. To address this, an optimal control framework was
developed based on Differential Dynamic Programming (DDP) for the implementation of a
Nonlinear Model Predictive Controller (NMPC), where the soft robot dynamics are described
using the Geometric Variable Strain (GVS) approach.

The results demonstrate the validity of the proposed framework. The combination of the
modelling and control architecture is both generalizable and computationally efficient, par-
ticularly with the implementation of analytical gradients. Nonetheless, the framework can be
further refined and extended in future work.

The proposed controller successfully addresses the problem of shape regulation in underac-
tuated soft robotic systems, including the SIP, R-SIP, and soft Furuta pendulum. It exhibits
robustness to disturbances and model mismatch. Most importantly, the controller is shown
to stabilize systems in low-stiffness regimes regions beyond the applicability of collocated con-
trol. This finding highlights that stability of the zero dynamics is not a strict prerequisite for
designing stabilizing controllers. Optimal control methods that exploit the complete system
model therefore show strong promise for regulating a wide range of soft robotic systems that
can be described with the GVS framework.

The use of analytical gradients has significantly improved the computational efficiency of the
controller. Although real-time implementation was not achieved within the timeline of this
thesis due to computational constraints, the results indicate that practical control rates of
50-100 Hz are achievable, provided that the dimensionality of the soft robot model is kept
sufficiently low. The offline trajectory generation further supports the viability of deploying
the controller on real systems.

Master of Science Thesis Nikhil Nair



74 Conclusions and Future Work

Limitations of the Current Work

While the proposed framework demonstrates strong potential for controlling underactuated
soft robotic systems, several limitations remain that must be acknowledged.

Limited validation on high-dimensional systems

The framework has not yet been evaluated on systems with very high DoFs, i.e. n > 10. Al-
though the GVS modelling approach is scalable in principle, its computational burden grows
rapidly with model dimension. The current validation focused on relatively low-dimensional
systems such as the SIP, R-SIP, and soft Furuta pendulum. Extending the method to very
complex high DoF models remains an open challenge, both in terms of computational feasi-
bility and solver convergence.

Lack of hardware experiments in real time

All evaluations presented in this thesis were carried out in simulation, with offline trajectory
generation used to assess feasibility. Real-time implementation on physical hardware was not
achieved within the timeline of the thesis. Although the results indicate that practical control
rates between 50-100 Hz may be possible for sufficiently low-dimensional models, this was
not experimentally validated. Hardware implementation would introduce additional sources
of uncertainty such as sensing noise, actuation delays, and unmodeled dynamics, which have
not yet been addressed.

Absence of formal stability guarantees

The proposed controller demonstrates strong empirical performance, including robustness to
disturbances and parameter mismatch. However, no formal stability proof has been derived.
In particular, while the results show that stabilization can be achieved in regimes beyond
the applicability of collocated PFL, the lack of rigorous guarantees means that the method
must still be considered heuristic in nature. Future work should seek to provide theoretical
analysis of stability, potentially through Lyapunov-based arguments or contraction analysis
[113] adapted to the GVS formulation.

Recommendations for future work

Implicit Differential Dynamic Programming

One promising direction for future research is the integration of Implicit Differential Dynamic
Programming (IDDP) [114] into the proposed control framework. Unlike classical DDP, which
relies on explicit forward integration of the system dynamics, IDDP reformulates the optimal
control problem using implicit integrators, including variational integrators. This formulation
has two key advantages. First, implicit and variational integrators provide superior numerical
stability and energy preservation properties, making them particularly well-suited for stiff or
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highly nonlinear systems such as soft robots. Second, IDDP allows for larger integration time
steps without sacrificing stability, which directly reduces the number of shooting intervals
required for trajectory optimization, thereby lowering computational cost.

The primal-dual proximal Lagrangian approach proposed in the IDDP framework enables
handling both dynamical and path constraints in a unified and numerically stable manner.
Importantly, the method relaxes the need to solve dynamics exactly at each iteration. Instead,
the dynamics can be enforced inexactly and progressively refined as the solver converges,
improving robustness and scalability to higher-dimensional systems. For soft robots modeled
via the GVS approach, this could significantly extend the applicability of NMPC by enabling
real-time control at practical rates even for more complex models.

Incorporating IDDP into soft robotic control therefore holds promise for achieving both faster
and more robust online trajectory optimization, potentially overcoming current limitations
related to real-time feasibility and scalability. Future work should explore the use of IDDP
with variational integrators for soft continuum models, benchmark its performance against
classical DDP-based NMPC, and evaluate its potential for experimental deployment on phys-
ical soft robotic platforms. The work in the paper the derives the analytical gradients [105]
demonstrates the use of the derived gradients using implicit integration schemes.

Contact-Implicit Trajectory Optimization

Another promising research direction is the use of contact-implicit trajectory optimization
methods, such as Hybrid iLQR (HiLQR) [115, 116], to extend the control framework to sys-
tems with frequent and complex contact interactions. Traditional NMPC approaches for soft
robots often rely on fixed or predefined contact sequences, which can limit robustness and
adaptability when unexpected perturbations or environmental changes occur. HiLQR ad-
dresses this by incorporating contact events directly into the trajectory optimization process,
using the saltation matrix to accurately propagate gradients through mode transitions and
allowing contact sequences to vary dynamically during optimization.

The key advantage of this approach is that it eliminates the need to prespecify contact tim-
ings, enabling the controller to seamlessly add, remove, or shift contacts in response to dis-
turbances. By leveraging parallelized simulations and efficient analytical derivatives of the
dynamics, HILQR MPC has been demonstrated to replan whole-body motions in real time
while maintaining dynamic feasibility. For soft robots, which inherently operate under hybrid
dynamics due to interactions with their environment, this capability could be transformative.

Integrating contact-implicit optimization into the proposed framework would allow future con-
trollers to not only stabilize soft robotic systems in low-stiffness regimes but also to robustly
manage environmental contacts, collisions, or support changes. This could be particularly
relevant for tasks such as locomotion, manipulation, and human-robot interaction, where
adaptability to unplanned contacts is critical.
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Conclusions and Future Work
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Appendix A

Analytical derivatives of Geometric
Variable Strain Model

Inverse dynamics (ID) on the discretized chain. For n, computational points,

np—1 np—1 np
ID = Y ID, = Y S,FS, FS = Y Ad, F, (A-1)
a=1 a=1 k=a+1

where S, is the motion subspace at point o, Ad* is the coadjoint map on SFE(3), and Fy, is
the local point wrench.

A.1 0ID/0q (Sec. 4.1)

For each «,
oID 08T
= o FC + SL(NSRE + MEQE +US + PY), (A-2)
D "2 arp
and the total derivative is 9 = Z 0 <.
o9 = Oq

Forward- /backward-pass recursions (needed in (A-2)).

RE=Ad,! | (Rai +RE,), QF=Ad;l, (Qu1+QEy),  (A)
FO=Ady, . (Fu + FS), NS = Ady, o (Nawi + NG ) Adg!
(A-4)
Mg = Ad;a,a+1 (Ma+1 + Mg+1> Ad;o},or‘-l’ Ug = NSRO‘ + MgQCM + Ad;a,or‘-l Ug'f'l’
(A-5)
P] =adyo Sa+Ady . Py (A-6)
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Moreover,
N, = adjy, p,, +ady, My — My ady,, (A-7)
Ry =ad, Sp + aa‘iﬂq, (A-8)
Qs = adys Sp+ad,r Ry +ady, aai Bg+ aai g+ 8;:1 B —ad adyt6Ss (A-9)

All formulas above are exactly those in Egs. (21)—(27) and (24a—c), with the forward/back-
ward accumulation in (26a-g) from [105].

A.2 0ID/0q (Sec. 4.2)

For each «,
1D,
Do _ g (NSSE+MSYP +vE), (A-10)
oq
np—1
oID e- 0ID,
and —— = -
oq a; oq
Recursions (Sec. 4.2).
8% =AdyL, (a1 +85,). YP=Adl, (Yo +¥2)), (A1)
s c c * s
Vo =Ny Sa+ M Yo +Ady, . Vi, (A-12)
with ‘
Yg = Rg + adm} Sg + SB‘ (A—13)

These are Eqs. (28)—(33) in the [105].

Remarks. Superscripts B denote forward-pass kinematic accumulations, while C'/S denote
backward-pass wrench/inertia accumulations; all have size 6 X nqgof, and the projection by Sg
yields ngof X ngof blocks. Full derivations and operator identities (Magnus/adjoint derivatives)
are given in Appendices C-D of [105].
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Appendix B

Analytical Jacobian of the Inverse
Kinematics Problem

Kinematics of a marker pose. Let the marker pose be
R r L w v

with @z = w x x. Using the right—trivialized (body) twist,

R +| |R& Rv
o' of |o" o}

g=gn — [

hence

R = R, 7 = Rv.

GVS twist—-to—position Jacobian. From GVS kinematics the marker body twist satisfies

n=[ﬂ=aﬂmq:khwﬂq

v
Using » = Rv and 7 = (0r/0q)q,

or

aiq = RJv(Q)

(i.e., the translational Jacobian in the global frame equals the rotation R times the lower
3 x n block of the body-twist Jacobian).
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Jacobian of the IK residuals and gradient. For marker j with predicted position mf(q)
and residual r;(q) = rhjg(q) - m]g-,
amjg 3xn
g Ji(q) = R;(q) Jvj(q) € R*".
Stacking four markers gives
71 RyJ,
T2 12 or Ry J 2 12xn
r(q) = e R, J(g)=— = “1 eR .
(@) =1,. (@) =73 7" | Rodys
r4 RyJ, 4

For the least-squares cost ®(g) = |[7(g)||3, the gradient used by the solver is

(e.g., for gradient-descent updates g* = g — a V®(q)).

Marker offset via adjoint mapping. If the physical marker is at a fixed local offset from
the centerline at arclength X, encode it by gr—ar € SE(3) (pure translation). With the

centerline-frame body Jacobian J J(f) = [Ju(}’f]-); Jé?] € R%*" the marker-frame body Jacobian
is obtained by the adjoint:

(M) _

(F)
i J] (q>7

M

and the IK position Jacobian uses its translational block,

om9

i _ p. g -
Tq—RijJ (q), _]—1,,4
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