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Preface

I have been staring at this blank page for the past week, promising myself I would not wait until the night
before the deadline to write it. And yet, here I am, on the night before the deadline, trying to capture
the learning, the growth, and the emotions of this extraordinary journey in just a few paragraphs.

This work marks an important milestone: the end of my student era and the beginning of adulthood. It
may sound dramatic, but until today, I have more or less followed the path I was expected to take: be a
good student, earn a bachelor’s degree with high grades, begin a master’s program and prepare for a
future career. This is the point where that path ends, and where I can finally choose what the future
will look like. And that is terrifying because, despite all the learning I have done inside and outside
the classroom in these past twenty-four years, I have realized I will never truly feel ready for such big
responsibilities. I have carried this feeling with me for a long time now, trying to convince myself that I
was prepared. But eventually I had to accept that I was not, that I never will be, and that this is okay.

If there is one thing I have learned through this master’s program and thesis project, it is that you never
feel ready to take on the difficult challenge, to embark on the big project, to face the obstacle you’ve
been avoiding. And yet, here you are, doing it anyway at the best of your abilities. You do not need to
feel ready, you just do it. Because, as one of my favorite quotes always reminds me, the only way out is
through. And before you know it, it is over, and you look back and think: “Wow, we made it”.

I say we, not I, because no one takes on this journey alone. There are the people who sit beside us every
day, carrying part of our weight when it feels too heavy; the people who live far away, yet feel as if they
were right next to us; the people you rarely talk to, but who will always be there when you need them.
There are those who shared a part of the journey and then left, as it was meant to be; those who would
have loved to see this moment but cannot; and even those with whom things did not click, but who still
taught you valuable lessons. There are also the people of the future — the ones I hope will stay forever,
the ones who will slowly find their way into my life, the ones who will make me feel at home even when
I am not, the ones who will surprise me unexpectedly.

To all of these people, I am deeply grateful. In their own ways, at their own times, they supported me
through this journey, and I know they will continue to support me in whatever lies ahead.

Finally, I want to thank the long-braided little girl who used to sit on the balcony with her grandfather,
inventing stories about planets and stars, for not getting lost in the seriousness of life. I want to thank
the girl who faced the challenges of these past two years, for standing her ground and growing through
them. And I want to thank the woman she will become, for never giving up on her dreams, whatever
shape they might take.

Alessandra Marzolini
Delft, September 2025
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Summary

This thesis presents a comprehensive methodology to characterize the interior structure of Ganymede,
Jupiter’s largest moon, through a joint Bayesian inversion framework that integrates gravity, magnetic
induction, tidal, and libration observations. The motivation behind this work comes from the increasing
scientific interest in icy moons, which offer insights into the origins and potential habitability of the
Solar System. These celestial bodies, such as Europa, Enceladus, and Ganymede, are characterized by
vast subsurface oceans beneath their icy crusts, making them prime candidates for hosting life beyond
Farth. In particular, Ganymede stands out as the largest moon in the Solar System and the only
one known to possess its own intrinsic magnetic field. It is also believed to host a subsurface ocean
beneath its icy crust, making it an interesting target for scientific exploration. Despite these findings,
much about Ganymede’s internal structure is still unknown. The upcoming ESA’s Juice mission will
carry out detailed observations of the moon through a series of flybys followed by an extended orbital
tour, delivering high-precision data that will help constrain Ganymede’s structure and improve our
understanding of its interior.

This work addresses the challenge of constraining Ganymede’s interior structure using multiple datasets
— gravity, magnetic induction, tidal, and libration observations — each sensitive to different interior
parameters and affected by parameter degeneracies. To tackle this, we first perform a global sensitivity
analysis to understand how each observation relates to specific interior parameters. We then carry out a
Bayesian inversion to combine the datasets into a single probabilistic model. Our analysis is based on a
five-layer spherical model of Ganymede, consisting of a metallic core, a silicate mantle, a high-pressure
ice layer, a liquid salty ocean, and an outer ice shell.

The sensitivity analysis reveals that magnetic induction is most sensitive to ocean thickness and
composition, tidal displacement to the ice shell thickness and rigidity, and libration amplitude to shell
rigidity. Degeneracies also become evident: for instance, the interplay between shell thickness, ocean
density, and shear modulus makes it challenging to constrain all three parameters using tidal observations
alone. However, other observables may help resolve these ambiguities. For example, libration data can
better constrain the shell’s shear modulus, while magnetic measurements can inform ocean thickness.
This highlights the need for a joint inversion approach.

The Bayesian inversion is performed in successive steps, progressively incorporating additional observa-
tions. We begin with a simple inversion using Ganymede’s moment of inertia as the only observable,
which provides constraints on the core and mantle parameters, but leaves the hydrosphere parameters
largely unconstrained. Next, we include magnetic induction data, which significantly improves the
constraints on the ice shell and ocean thicknesses, and, to a lesser extent, on the ocean density. Adding
the real part of the tidal Love number ko further refines the estimates of the ice shell and ocean densities,
allowing to infer the ocean composition. It also provides constraints on the rigidity of the high-pressure
ice and the compressibility of the layers. Finally, the inversion moment of inertia, magnetic induction
amplitude and both the real and imaginary parts of ko provides additional constraints on the viscosities
of the ice layers, related to the tidal dissipation within Ganymede.

Beyond advancing our understanding of Ganymede, this study demonstrates the effectiveness of joint
Bayesian inference for the characterization of planetary interior. This framework contributes to the
scientific preparation for the ESA’s Juice mission, identifies the most critical measurements to break
degeneracies in interior model parameters, and can be extended to other icy moons, such as Europa and
Enceladus, where spacecraft data will provide similar observational constraints.
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Introduction

Space missions to icy satellites are of great scientific significance, offering insights into the origins and
potential habitability of our Solar System. These celestial bodies, such as Europa, Enceladus, and
Ganymede, are characterized by vast subsurface oceans beneath their icy crusts, making them prime
candidates for hosting life beyond Earth.

This project aims to develop a methodology to characterize the interior structure of icy moons, with
a focus on Ganymede, through joint inversion of gravity, magnetic induction, tidal, and libration
measurements. This chapter is outlined as follows: the relevance of the project is explained in section 1.1,
followed by a description of the current knowledge of Ganymede in section 1.2. The Bayesian framework
for the joint inversion of different data sets is introduced in section 1.3, and the research questions are
formulated in section 1.4. The chapter concludes with section 1.5, which provides an overview of the
report’s structure.

1.1. Relevance of the Project

The current interest in studying icy moons is driven by the discovery that several of these bodies in the
outer Solar System harbor subsurface water oceans. Observations from the Galileo and Cassini missions
revealed evidence of liquid water beneath the icy shells of Europa, Ganymede, Callisto, Enceladus, and
Titan, making them prime candidates for astrobiological studies (Nimmo et al., 2016).

Icy moons are considered potential habitats for life because their subsurface oceans may provide favorable
conditions for habitability. Liquid water, together with energy and nutrients, is a key ingredient for life
as we know it, and interactions between the ocean and the rocky mantle could supply essential chemical
elements and energy sources for biological activity (Hand et al., 2020).

Recognizing the scientific potential of these worlds, space agencies have prioritized their exploration.
The search for habitable environments and the study of planetary system dynamics are key themes in
long-term strategic road maps, such as NASA’s Decadal Survey, ESA’s Cosmic Vision, and ESA’s Voyage
2050 (European Space Agency, 2005; European Space Agency, 2021; National Academies of Sciences
et al., 2023). The first two themes in ESA’s Cosmic Vision are (European Space Agency, 2005):

1. Theme 1: What are the conditions for planet formation and the emergence of life?

2. Theme 2: How does the Solar System work?

This framework emphasizes the need for in-situ investigations of icy moons and their subsurface oceans
to advance our understanding of planetary habitability and Solar System evolution. In line with these
priorities, several missions are planned or already on the way to explore these moons in greater detail.
NASA’s Europa Clipper, launched in October 2024, will conduct a detailed exploration of Europa’s
ice shell and subsurface ocean. Similarly, ESA’s Juice mission, launched in April 2023, will investigate



Ganymede, Europa, and Callisto to better understand their internal structure, composition, and potential
habitability.

In the context of this project, the focus is on Ganymede, the largest moon in the Solar System, and
the only one known to have its own magnetic field (Grasset et al., 2013). Not only does its magnetic
environment interact with Jupiter’s magnetosphere in complex ways (Grasset et al., 2013; Kivelson et al.,
2002), but Ganymede is also expected to harbor a liquid ocean beneath its icy crust (Kivelson et al.,
2002; Vance et al., 2014), which makes it an interesting target for scientific exploration.

Previous missions have already contributed significantly to our understanding of these complex worlds.
In particular, the Galileo mission detected an induced magnetic field at Ganymede, suggesting the
existence of a subsurface ocean beneath the icy crust (Kivelson et al., 2002). This evidence is supported
by acquired images of Ganymede’s surface (Pappalardo et al., 2004) and thermal modeling of its evolution
(Grasset et al., 2013; Spohn et al., 2003). However, many aspects of Ganymede’s interior composition
and magnetic field still remain poorly understood, which motivates further investigation.

The upcoming Juice mission will conduct detailed observations of Ganymede through a series of flybys
and an extended orbital tour (Grasset et al., 2013). Equipped with a suite of advanced instruments,
Juice is expected to provide valuable constraints for theoretical models, significantly improving our
understanding of the structure, composition, and magnetic field of the moon. As new data of unprece-
dented precision become available, more accurate modeling methodologies will be essential to further
investigate Ganymede’s interior structure and its magnetic interactions.

1.2. Ganymede

Ganymede is the third and largest moon of Jupiter and the largest satellite in the Solar System. With a
radius of Rg = 2631.2 + 1.7 km, Ganymede is larger than Mercury but has a significantly lower density,
indicating a composition rich in water ice and silicate rock. It is the only known moon to possess a
significant intrinsic magnetic field, suggesting a dynamo action occurring in a partially liquid metallic
core.

Gravitational field measurements, particularly the determination of the gravitational parameter GM
and the quadrupole moment J5 from spacecraft flybys, have provided crucial insights into Ganymede’s
internal mass distribution. The moment of inertia derived from these observations, under the assumption
of hydrostatic equilibrium, confirms that the moon is highly differentiated, with a dense core, a silicate
mantle, and an outer hydrosphere composed of multiple ice phases and a liquid ocean (Anderson et al.,
1996; Kivelson et al., 2002; Vance et al., 2014). Evidence for a subsurface ocean comes from the detection
of an induced magnetic field and auroral oscillations in Ganymede’s magnetosphere, consistent with the
presence of a conductive liquid layer beneath the icy shell (Kivelson et al., 2002; Saur et al., 2015), as
illustrated in Figure 1.1.

Figure 1.1: Schematic representation of Ganymede’s interior model. Image credit: Vance et al. (2018, Figure 4).



1.2.1. Current View of Ganymede’s Interior Structure

The understanding of Ganymede’s interior structure has evolved significantly over the past several
decades. From the analysis of gravitational data obtained with the Galileo mission, it was possible
to infer a differentiated structure with a metallic core, a silicate mantle and an outer ice-liquid shell
(Schubert et al., 2004). The detection of a magnetic field by the Galileo spacecraft supported the
hypothesis of a subsurface ocean at a depth of about 150 km (Kivelson et al., 2002). Different models
have been proposed to explain Ganymede’s interior structure, from simple three-layer models (e. g.,
Anderson et al., 1996) to more complex ones, accounting for the presence of multiple ice phases and a
liquid ocean (e.g., Vance et al., 2014).

Table 1.1 presents Ganymede’s fundamental physical parameters, either measured or directly derived
from spacecraft measurements, that are commonly used in studies to constrain interior structure models.
Table 1.2 contains Ganymede’s orbital parameters.

Table 1.1: Ganymede’s physical parameters.

Symbol  Value Uncertainty  Unit Reference

Mg 1.48167  0.00020 1022 kg  Anderson et al. (1996)
I/MR? 0.3115  0.0028 - Schubert et al. (2004)
Rg 2631.2 1.7 km Schubert et al. (2004)
p 1942.0 4.8 kgm™3  Schubert et al. (2004)
Ja 127.53 2.9 10-6 Schubert et al. (2004)

Table 1.2: Ganymede’s orbital parameters. The values are taken from Rovira-Navarro et al. (2023).

P, e ) P
7.16d 1.3e—3 0.177° 0.033°

The lower moment of inertia factor for Ganymede compared to the other bodies in the Solar System
suggests that the moon has a differentiated interior structure, with a stronger concentration of mass
towards its center (Anderson et al., 1996). Comparison between the computed J; and calculations
based on three-layer models suggests an essentially complete separation of ice, rock, and metal. This
is supported by the detection of a magnetosphere and magnetic field at Ganymede, which implies the
presence of a three-layer structure (Schubert et al., 2004; Schubert et al., 1996).

Anderson et al. (1996) used gravitational constraints to infer the internal structure of Ganymede. For
the most likely three-layer structures, two analyses were performed for two different core densities:
5150 kg m 3 and 8000 kg m~3, corresponding to core compositions of Fe-FeS and pure Fe, respectively.
The density of the silicate mantle was set to 3300 kg m 3. For a Fe-FeS core composition, the radius of
the core could vary between 0.2Rg and 0.5Rg, ice density ranged between 1000 kg m~2 and 1300 kg m 3,
and the radius of the mantle-shell interface varied between 0.6R¢ and 0.73Rg (Anderson et al., 1996).
If an Fe core was considered, the ranges changed to 0.15Rg to 0.4Rq for the core radius, 0.53Rg to
0.73R¢ for the mantle-shell interface, and 1000 to 1350 kgm~2 for the ice shell density (Anderson et al.,
1996)

This study served as the foundation for future investigations, such as those of Sohl et al. (2002) and
Schubert et al. (2004). After refining their analysis, they concluded that plausible core radii ranged
from about 0.25R¢g to 0.35R¢g, mantle thicknesses varied from 900 km to 1100 km, and that the ice shell,
likely around 900 km thick, was further divided into phase transitions involving ice I, ice III, ice V, ice
VI, and, most probably, a liquid ocean (Schubert et al., 2004; Sohl et al., 2002).

Vance et al. (2014) investigated the interior structure of Ganymede assuming a magnesium sulfate
ocean with different concentrations and accounting for its thermodynamics, which allowed the authors
to estimate the thickness of the ice shell, the ocean and the high pressure ice layers that form below
the liquid layer. Their model assumed a core composition of Fe-FeS, with 25 wt% sulfur, and a liquid
water containing MgSO,. Assuming a spherical model with a surface temperature of T,y = 110K,



they calculated the density profiles and the corresponding depths of each ice layer from the equation of
state of MgSO, and temperature profiles. By prescribing the density values of the core an mantle to
7030kg m~3 and 3250kg m ™3 respectively, the total mass and moment of inertia were used to constrain
the radii of the iron core and silicate mantle.

Different models were generated by varying the concentration of MgSO, and the bottom melting
temperature of the ice I shell, leading to variations in the heat flux. The results showed the presence of
a liquid ocean with thicknesses varying from 31 km to 753 km. The presence of high-pressure ice layers
depends on both salinity and heat flux. For instance, the ice III phase forms only in models with low
heat flow and salinity above 3 wt%, whereas for higher salinity levels, ice IIT and VI phases may become
buoyant. Total ice shell thicknesses (including the different ice phases and the liquid layer) ranged from
798 km to 1402 km, mantle thicknesses from 939 km to 1178 km, while core radii varied from 658 km to
799km (Vance et al., 2014).

1.2.2. Magnetic Field

Ganymede is the only moon in the Solar System known to have its own magnetic field. Analysis of
Galileo’s radio emissions and plasma waves measurements suggests a strong intrinsic magnetic field
(Gurnett et al., 1996; Kivelson et al., 1996) dominated by a dipole moment of 719nT and tilted about
176° with respect to the rotation axis (Kivelson et al., 2002). Different scenarios can explain the presence
of this magnetic field, such as dynamo action in a partially liquid core, a magneto-convection mechanism,
or remanent magnetization.

Schubert et al. (1996) argued that the most likely explanation is dynamo action in a liquid or partially
liquid metallic core. Remanent magnetization would imply the presence of a rock shell layer below the
ice-rock interface. To obtain the required level of magnetization, the parameters that characterize this
layer would exceed reasonable values. Dynamo action is more likely than magneto-convection because
Ganymede’s magnetic field is about six times larger than the ambient field caused by Jupiter. Since a
magnetic field generated by magneto-convection would be of the same order of magnitude as the driving
field and could not sustain without it, this mechanism is unlikely. Lastly, a dynamo action in a salty
water ocean would require improbably large values of velocities, which leaves a liquid or partially liquid
metallic core as the most probable explanation for Ganymede’s permanent magnetic field (Schubert
et al., 1996).

Kivelson et al. (2002) proposed two models to represent Ganymede’s internal magnetic field. The first
model included dipole and quadrupole components, while the second accounted for an induced magnetic
dipole superimposed on the intrinsic dipole field. Although both models were consistent with the data
acquired during multiple Galileo passes, Kivelson et al. (2002) favored the second, as it provided an
equally good fit with fewer parameters. The presence of an induced dipole, reaching approximately 84 %
of the theoretical maximum for a perfect conductor, suggests a conductive layer beneath the ice shell,
likely a salty subsurface ocean within the first few hundred kilometers beneath the surface (Kivelson
et al., 2002). Additionally, the weak quadrupole field implies that Ganymede’s internal dynamo is deeply
buried within its metallic core (Kivelson et al., 2002).

A recent study by Jia et al. (2024) presented an improved model of Ganymede’s magnetic field by
using magnetohydrodynamic simulations to subtract plasma and ionospheric current contributions
from spacecraft measurements. Compared to the earlier analysis by Kivelson et al. (2002), they also
incorporated data from two additional flybys of Ganymede — one by Galileo and one by Juno. Their
refined analysis estimated an induction efficiency of ~ 72% (Jia et al., 2024), much lower than the value
of 84% reported by Kivelson et al. (2002). This reduction could be explained by a deeper ocean, a lower
ocean conductivity, or a combination of the two (Jia et al., 2024). However, since we were not aware of
this updated estimate at the beginning of the project, we will use the older value in our analysis.

Studies of the moon’s induction response, such as those of Vance et al. (2021), which will be further
discussed in subsection 2.1.2, provide insight into ocean properties, including depth, conductivity, and
composition. In this context, Ganymede’s intrinsic magnetic field does not influence the induction
response or the retrieval of ocean properties, as it remains static in its own reference frame and does not
induce additional currents. Instead, it acts as a constant offset in magnetic field measurements. Therefore,
given the significant scientific interest in the hydrosphere of icy moons and their properties, this work
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will focus exclusively on modeling Ganymede’s magnetic induction response, as further described in
subsection 2.1.2.

The induced response is sensitive to the depth and conductivity of the ocean, as well as to the thickness
of the overlying ice shell (Biersteker et al., 2023). Therefore, measurements at a single frequency can
lead to degeneracies in interior parameters because they do not provide enough information to uniquely
constrain the different properties of the interior. Continuous measurements of the magnetic field at
multiple frequencies are thus required to investigate the liquid ocean layer and to constrain its thickness
(Grasset et al., 2013).

The upcoming Juice mission will provide improved observations at multiple frequencies, allowing a
more precise characterization of the induced response (Grasset et al., 2013). The Juice magnetometer
(J-MAG) magnetometer on board Juice will measure the three-axis components of the magnetic field at
frequencies ranging from 32 Hz to 128 Hz, enabling the characterization of Ganymede’s magnetic field to
an accuracy of less than 0.1nT (European Space Agency, 2014). This approach will enable the study of
both the regions near the moon and the boundaries of its magnetosphere.

1.2.3. Tides

Tidal forces cause a body to deform in response to gravitational interactions with other celestial bodies.
Since no body is perfectly rigid, tides cause a distortion in the shape of the body, leading to the formation
of tidal bulges. This process is not adiabatic and energy is dissipated as heat, driving the long-term
evolution of planetary systems and influencing their internal structure, surface features, and orbital
dynamics (Murray et al., 2000).

Ganymede experiences complex tidal effects as a result of Jupiter’s gravitational influence and interactions
with other moons. These tides can be divided into static and periodic tides. Static tidal bulges on
Ganymede arise from the long-term forcing of Jupiter’s gravitational pull, where the force is stronger on
the side facing the planet and weaker on the opposite side, and they are characterized by the fluid Love
number k¢. The resulting deformation aligns approximately with the axis connecting the two bodies,
and its magnitude depends on the moon’s interior properties, such as its density distribution (Murray
et al., 2000).

The static tidal bulge generated by the planet not only deforms the satellite, but also alters its
gravitational field. The deformation creates an asymmetry in the distribution of the moon’s mass,
which perturbs the gravitational potential. The non-central part of the potential can be expressed using
spherical harmonics. In particular, the second-degree harmonic, linked to the quadrupole moment, is
the primary contributor to the change in the moon’s gravitational field due to the tidal bulge (Murray
et al., 2000).

In contrast, periodic tides result from the short-term forcing of Jupiter on Ganymede caused by the
relative motion of the satellite and planet. Ganymede’s slightly eccentric orbit around Jupiter causes
variations in the tidal forces it experiences throughout its orbit, while its inclination affects the symmetry
of the tidal bulge relative to the equator. These periodic changes lead to oscillations in the tidal bulges
and generate additional deformations that occur on much shorter timescales compared to the static
tide. These time-dependent deformations continuously reshape the Ganymede’s interior and surface,
contributing to tidal heating and driving the long-term stability of the system (Murray et al., 2000).

Diurnal tides occur at the orbital frequency of Ganymede and they induce the largest deformations in the
moon, which can be characterized by the potential and displacement Love numbers, respectively ks and
ho. Measurements of these numbers can provide estimates of the ice shell thickness but not the ocean
thickness, due to the weak dependence of diurnal tides on ocean depth (Hay et al., 2022). In addition to
Jupiter’s gravitational influence, Ganymede also interacts with the other Galilean moons, particularly
with Io and Europa through their Laplace resonance. These resonance-driven interactions cause the
moons to induce high-frequency tides on one another. This type of tidal response is particularly sensitive
to ocean thickness, with resonance effects occurring when the natural frequencies of the ocean align with
the external tidal forcing (Hay et al., 2022).

Studies have investigated the sensitivity of Ganymede’s tidal response to variations in interior parameters.
Moore et al. (2003) hypothesized that the existence of a liquid ocean beneath the ice shell significantly



increases the tidal amplitude, decoupling the surface ice from the interior. The study used different
viscoelastic models of Ganymede, incorporating parameters like ice shell thickness, rigidity, and viscosity,
to compute the Love numbers ko and he. Both models with and without subsurface oceans were
considered to compare the tidal responses. Results showed that the tidal amplitude in Ganymede can
exceed 7 m if a subsurface ocean is present, while it drops to less than 0.5 m in models without an ocean
(Moore et al., 2003). In addition, the presence of a subsurface ocean can be inferred through spacecraft
altimetry and Doppler tracking if measurements of the tidal amplitude are accurate to approximately 1
m (Moore et al., 2003).

Kamata et al. (2016) employed a 1D viscoelastic model of Ganymede’s interior and computed the
Love numbers ks and hs under different scenarios, both with and without a subsurface ocean. The
results showed that models without a subsurface ocean exhibit a wide range of Love number amplitudes,
overlapping with those predicted by models that include an ocean. In contrast, smaller phase lags
are observed only in models with a subsurface ocean. Therefore, the phase lag is a key indicator of
the presence of a subsurface ocean, which cannot be inferred based solely on the amplitude of tidal
deformation (Kamata et al., 2016). Furthermore, if a subsurface ocean exists, the thickness of the ice
shell mainly influences the Love numbers, and accurate measurements of both ks and ho are necessary
to reduce uncertainties in estimating the ice shell thickness.

Hussmann et al. (2016) used the tidal phase lag to investigate Ganymede’s dissipation and better
constrain the interior structure, while maintaining consistency with gravitational data from Galileo.
Three nominal models were defined, each consisting of a liquid iron core of density 6500 kg m~3, a silicate
mantle, a high-pressure ice layer of density 1400 kg m—2, and a liquid ocean and a ice I layer both with
a density of 1000 kg m~3. These models were used to investigate the sensitivity of the tidal phase lag to
the interior structure of the satellite. The results highlighted that the phase lag difference is dominated
by dissipation in the high-pressure ice layer rather than the ice I shell.

1.2.4. Libration

Librations refer to oscillations in the rotational motion of a celestial body around its equilibrium spin
state. As explained in subsection 1.2.3, tidal forces induce deformations in Ganymede’s shape, leading
to a tidal bulge oriented in the direction of Jupiter. Due to the moon’s slightly eccentric orbit, this
deformation is not always exactly aligned with the planet-moon line, leading to variations in the tidal
forces that generate tidal torques, which affect the moon’s rotation (Baland et al., 2010).

Physical libration can occur both in latitude and longitude. However, since Ganymede’s obliquity
is expected to be small, studies have mainly focused on the libration in longitude (Rambaux et al.,
2011; Van Hoolst et al., 2013), which represents oscillations in the equatorial plane. This motion is
characterized by a libration angle that depends on the satellite’s rotation and mean anomaly.

Rambaux et al. (2011) analyzed the frequencies and amplitudes of the Galilean moons’ librations. The
primary libration occurs at the orbital frequency under the assumption of a Keplerian orbit. Additional
librations at lower frequencies arise from orbital perturbations, with amplitudes equal to or greater
than the primary libration (Rambaux et al., 2011). However, these long-period librations cannot be
used to infer the interior structure of Ganymede, as they are mainly independent of the moon’s interior
properties (Rambaux et al., 2011).

Baland et al. (2010) investigated the influence of liquid layers on the Galilean moons’ librations, and
how libration observations can be used to infer interior properties. The study developed a methodology
to analyze longitudinal librations of satellites with up to two liquid layers. The authors showed that the
presence of a subsurface ocean significantly affects the libration amplitude of the ice shell, which mostly
depends on the shell thickness and on the shell-ocean density contrast (Baland et al., 2010). On the
other hand, the presence of a deeper liquid layer in Ganymede does not influence the libration amplitude.

Due to the coupling between tides and librations, Van Hoolst et al. (2013) developed a framework
to include their mutual influence in the analysis of longitudinal librations, an aspect that had been
neglected in earlier studies. As explained in subsection 1.2.3, two types of tides can be distinguished.
Short-period tides, with timescales comparable to Ganymede’s rotation period, are characterized by
the dynamical Love number ko, while long-period tides, with timescales on the order of the moon’s



orbital evolution, are characterized by the fluid Love number k¢. Due to this distinction, the total tidal
deformation does not point exactly towards Jupiter, leading to a net torque that influences libration
(Van Hoolst et al., 2013). Additionally, Van Hoolst et al. (2013) showed that zonal tides modify the
polar moment of inertia, further affecting rotational variations.

In a purely solid moon, periodic tidal deformations alter the gravitational torque exerted by Jupiter,
causing changes in the orientation and amplitude of the tidal bulge and variations in the polar moment
of inertia, thus influencing rotational dynamics. However, if Ganymede possesses a subsurface ocean, the
tidal response becomes more complex, since each layer deforms differently under Jupiter’s gravitational
pull (Van Hoolst et al., 2013).

Further effects arise in the presence of an internal ocean. Inter-layer gravitational torques arise when
different layers become misaligned. Pressure torques act at the interface between solid and fluid layers,
and in the presence of an elastic shell, additional pressure torques emerge at its lower boundary due to
periodic tidal deformations (Van Hoolst et al., 2013). Other torques may also arise if the static tidal
bulge of one layer is misaligned with the periodic tidal bulge of another.

Van Hoolst et al. (2013) showed that periodic tidal deformations reduce libration amplitudes compared
to rigid models. In addition, the presence of oceans amplifies libration amplitudes in rigid models, but
elastic deformations counteract this effect, resulting in amplitudes similar to those of entirely solid
satellites. Therefore, libration observations alone are not sufficient to confirm the presence of a subsurface
ocean, but they can be used to constrain properties like ice shell density and rigidity (Van Hoolst et al.,
2013).

1.2.5. Obliquity

Obliquity refers to the angle between a satellite’s rotational axis and the normal to its orbital plane. For
the Galilean satellites, this angle is generally small and is often neglected, but studies have shown that
it can provide insights into their internal structure, especially in the case of Ganymede and Callisto
(e.g., Baland et al., 2012).

A satellite experiences different types of precession due to the torques exerted by the planet and other
perturbing bodies. Its spin axis precesses around the orbit normal because of the triaxial shape of the
satellite, while the orbital plane precesses due to the planet’s oblateness and other perturbing bodies
(Downey et al., 2025). The satellite’s mean orbital plane is defined as the Laplace plane. The spin
geometry is characterized by three main angles: the obliquity (0), between the spin axis and the orbit
normal, the inclination (i), between the orbital plane and the Laplace plane, and the longitude of the
ascending node (¢) of the equator on the orbit plane. Due to the orbital plane precession around the
Laplace plane, the spin axis also undergoes a net precession about this plane (Downey et al., 2025).
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Figure 1.2: Schematic representation of the Cassini plane and its angles. s is the spin vector, n is the normal to the
orbital plane, and k is the normal to the Laplace plane. The gray vectors and angles lie on the Cassini plane, which is the
zz plane formed by n and k. 6 is the obliquity, 7 is the inclination, and ¢ is the longitude of the ascending node. A¢ is

the constant offset of the spin axis relative to the Cassini plane when dissipation occurs. Image credit: Downey et al.

(2025, Figure 1).

The Cassini states represent the equilibrium states of the satellite’s rotational evolution. They describe
the equilibrium configurations of a satellite’s spin axis relative to its orbit and the normal to the Laplace



plane. In a Cassini state, the spin axis and orbit normal precess synchronously around the Laplace
plane normal, with the same or opposite phase (Downey et al., 2025). This precession prevents the spin
axis from aligning with the orbital normal, resulting in a non-zero obliquity. In addition, during the
precession cycle, the spin axis, orbit normal, and Laplace plane normal all lie within the same plane, the
so-called Cassini plane.

Dissipation effects cause the system to evolve toward a Cassini state, but at the same time prevent the
spin axis from aligning perfectly with the Cassini plane. This deviation from the Cassini plane is known
as the Cassini plane offset and is directly related to the total amount of internal dissipation, including
tidal effects and dissipation at the fluid-solid interface (Downey et al., 2025). Downey et al. (2025)
showed that the Cassini plane offset can be expressed as a function of the satellite’s tidal dissipation
factor ko/Q, which depends on the material properties of the different layers. Being able to measure the
Cassini plane offset would allow the determination of the dissipation factor, which would otherwise be
difficult to measure directly (Downey et al., 2025).

Baland et al. (2012) studied possible obliquity values for the Galilean satellites depending on their
interior structure. For a solid Ganymede, obliquity values are expected to be in the range of 0.0085° to
0.0320°. When taking into account a subsurface ocean, resonant amplifications can occur, leading to
higher values of obliquity, possibly reaching a few degrees (Baland et al., 2012). However, some interior
models with an ocean predicted obliquity values that are consistent with a completely solid Ganymede.
Therefore, multiple measurements over long periods of time are necessary to differentiate between the
two cases (Baland et al., 2012).

Given the mutual influence of responses such as tidal deformation and libration, and the fact that different
observables are sensitive to different interior properties, no single measurement can uniquely constrain
Ganymede’s internal structure. Therefore, a Bayesian framework that combines these complementary
observations, as introduced in section 1.3, is necessary for a more comprehensive characterization of the
moon’s interior.

1.3. Bayesian Framework to Constrain Ganymede’s Interior

Modeling the interior structure of a planetary body is intrinsically a non-unique process. Observations
and satellite measurements can be used to constrain the parameters that characterize the interior. As
an example, gravity measurements provide constraints on Ganymede’s mass and moment of inertia,
which can be linked to the distribution of mass within the body and, consequently, to its density profile.
However, a similar density of ice and water leads to ambiguities in the inversions based solely on gravity
data. On the other hand, analysis of magnetic induction data can provide insights into the hydrosphere
properties of the satellite. However, the induction response depends on both the ocean’s salinity and
thickness, as well as the thickness of the overlying shell (Biersteker et al., 2023). Since Galileo’s flybys
were limited in number and timing, they could only measure magnetic responses at a single frequency,
tied to Ganymede’s synodic period. This results in degeneracies in the data, leaving the moon’s interior
structure poorly constrained.

So far, the different types of measurements have been mainly analyzed independently (e. g., Kamata et al.
(2016), Kivelson et al. (2002), Schubert et al. (2004), and Sohl et al. (2002)). Studies typically assess the
sensitivity of a single data set — such as magnetic induction data or tidal responses — to variations in
interior parameters. Alternatively, existing measurements are used to constrain the interior structure
of the satellite. For instance, Schubert et al. (2004) investigated Ganymede’s interior structure using
solely gravity data, while Kamata et al. (2016) analyzed the sensitivity of the satellite’s tidal response
to variations in interior parameters.

However, these analyses still present many uncertainties, since different measurements are sensitive to
different interior model characteristics, and one data set alone is not enough to break the degeneracies
between interior parameters. To overcome these limitations, a Bayesian inversion framework can be
employed to improve estimates of the interior model parameters given the available observational data.
For example, it has been used to constrain the Moon’s interior structure using Lunar Laser Ranging
(LLR) observations and data from Gravity Recovery and Interior Laboratory (GRAIL) and Lunar Orbiter
Laser Altimeter (LOLA) missions (Matsuyama et al., 2016). Building on this foundation, Biersteker



et al. (2023) introduced a Bayesian approach to characterize the interiors of icy moons using magnetic
induction data. Extending this work, Petricca et al. (2023) proposed a joint inversion of multiple data
sets and applied it to Europa, combining gravity and magnetic field measurements within a Bayesian
framework. They used a Markov-chain Monte Carlo (MCMC) algorithm to sample the parameter space
of relevant interior properties and generate models consistent with both gravity and magnetic induction
observations. The joint inversion allowed to simultaneously constrain the ice shell and ocean thickness.
Petricca et al. (2023) showed that the combination of the data sets provided more robust estimates of
Europa’s hydrosphere properties with smaller uncertainties compared to previous studies, in which a
single data type was considered.

The advantages of this approach are that it incorporates prior information and recovers the associated
parameter uncertainties (Biersteker et al., 2023). Another advantage is the possibility to marginalize
over nuisance parameters, which are parameters that are of no interest but are necessary in the model
to generate the data. Marginalization consists of integrating the probability distribution over all the
values of the nuisance parameters, so that the uncertainty about its value is propagated into the final
result (Foreman-Mackey et al., 2013). This allows to focus only on the parameters of interest and to
simplify the interpretation of the results. For more details on the theoretical background of Bayesian
inference, the reader is referred to section B.3.

1.3.1. Measurement Uncertainties

In the context of Bayesian inversion, uncertainties are essential to quantify the reliability of the results:
the uncertainties of the observations, which are given by measurement errors, are propagated through
the model to estimate the uncertainties of the inferred parameters. In this work, we consider two distinct
sources of observational uncertainties: existing measurements from the past Galileo mission and expected
uncertainties from the upcoming Juice mission.

The moment of inertia and the magnetic induction amplitude have been derived from Galileo data, as
explained in subsection 1.2.1 and subsection 1.2.2. These quantities, together with their associated
uncertainties, are used in the analyses presented in chapter 4. Other quantities of interest, such as the
tidal Love numbers and rotational parameters, have not yet been measured. For these, we rely on the
expected performance of Juice, which has been quantified in several studies.

The spacecraft carries ten scientific instruments dedicated to remote sensing, geophysical studies,
and in situ investigations, complemented by the radiation monitor (RADEM) and Planetary Radio
Interferometer and Doppler Experiment (PRIDE) experiments (Van Hoolst et al., 2024). Among these,
3GM will provide range and Doppler data to investigate Ganymede’s gravity field and constrain the
presence and extent of subsurface oceans, while RIME will probe the subsurface structure of the moon
down to depths of about 9km (European Space Agency, 2023). GALA will measure topography and
tidal deformation, while J-MAG will characterize the Jovian magnetic field and its interaction with
Ganymede’s intrinsic field (European Space Agency, 2023).

The expected uncertainties of Juice’s gravity, tides, and rotational parameters have been estimated by
Cappuccio et al. (2020) through a dedicated simulation of the 3GM radio science experiment, including
dynamical models of Ganymede’s interior response, its exosphere, and non-gravitational perturbations
such as propellant sloshing. For further details on the simulation setup we refer to the original work.
Table 1.3 summarizes the expected uncertainties for the tidal Love number k5 and the rotational state
parameters. For completeness, we also report the uncertainties in the gravity field coefficients in Table 1.4,
although they are not used in this study.

Table 1.3: Expected uncertainties (1o) of Ganymede’s tidal Love number kg and rotational parameters from Juice radio
science simulations (Cappuccio et al., 2020). ¥ denotes the libration amplitude and 1 the obliquity angle.
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1.0x107* 6.8x107° 2.5purad l.4prad 8.0 x 107rads™! 2.1prad 1.0prad

In addition to the uncertainties reported by Cappuccio et al. (2020), Steinbriigge et al. (2015) showed
that GALA will measure the real part of Ganymede’s hs with an absolute accuracy of approximately



Table 1.4: Expected uncertainties (1) of Ganymede’s GM and quadrupole coefficients from Juice radio science
simulations (Cappuccio et al., 2020). These are reported here for completeness, although not used in this study.
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2.6 x 1072, considering an average height measurement error of 6-7 m, which includes uncertainties in
pointing and orbit determination. In addition, GALA will measure the libration amplitude of the outer
shell with an accuracy between 2.5 urad and 6.6 prad, which corresponds to a shell libration amplitude
of 6.6m to 17.5m at the equator (Steinbriigge et al., 2019).

Finally, Juice will characterize the magnetic field continuously at multiple frequencies (Grasset et al.,
2013). Specifically, it will measure the magnetic field with an accuracy of better than 0.1nT at three
characteristic timescales: Ganymede’s orbital period (171h), the rotation of Jupiter’s magnetosphere
rotation (10.5h), and the solar rotation period (27d) (European Space Agency, 2014).

1.4. Research Questions

From the background information provided in section 1.1, section 1.2 and section 1.3, the following
research question is formulated:

How can the joint inversion of gravity, magnetic induction, tidal and libration observations
improve the characterization of the interior structure of Ganymede?

The main research question can be further divided into four sub-questions that will guide the research
process.

1. [SQ1.1] What is the sensitivity of the different observations to variations in Ganymede’s
interior structure?
Before investigating the Bayesian inversion of combined data sets, it is important to conduct a
sensitivity analysis to evaluate how variations in the model parameters influence the different
measurements. By examining the impact of parameters such as the ice shell thickness, ocean
salinity, and ocean thickness, one can identify which parameters most influence the observations.
This understanding helps to define the parameters of interest and the range of values that should
be considered in the inversion. This ensures that the inversion process captures the most relevant
parameters and is robust to variations in input data.

2. [SQ1.2] To what extent can the joint inversion of available data — static gravity and
magnetic induction — constrain Ganymede’s interior structure?
Following the promising results obtained by Petricca et al. (2023) for Europa, the methodology
is applied here to Ganymede. A first inversion of gravity and magnetic data will be performed
to constrain Ganymede’s interior parameters. This sub-question aims to assess the impact of
combining these two data sets and compare the results to previous studies.

3. [SQ1.3] How can the addition of tidal and libration observations to the inversion
improve the characterization of Ganymede’s interior structure?
Tidal and libration measurements provide additional constraints on Ganymede’s interior structure,
specifically on the hydrosphere properties. This sub-question aims to evaluate the performance of
the inversion process when additional observations are included.

4. [SQ1.4] To what extent do the uncertainties in the input data affect the reliability of
the inversion results?
Parameter uncertainties play a crucial role in the Bayesian inversion process, as they directly impact
the posterior distributions of model parameters. This sub-question aims to identify thresholds in
observation uncertainties beyond which the credible intervals of the inferred parameters become
too wide to be scientifically useful. Understanding these thresholds helps define acceptable bounds
for data precision to maintain valuable inversion results.

10



1.5. Report Outline

The structure of the report is as follows. Chapter 2 describes the methodology used in this project,
including the interior modeling of Ganymede, the computation of the observables, the sensitivity analysis
of the model parameters, and the Bayesian inversion framework. Chapter 3 presents the results of
the Monte Carlo (MC) analysis, in which parameters are varied simultaneously and the corresponding
observables are computed for each interior model. This analysis provides insight into the sensitivity
of the observables to different parameters and helps identify which parameters can be constrained by
the available data. Chapter 4 describes the setup and results of the Bayesian inversion used to retrieve
the interior parameters of Ganymede. Multiple inversions are performed, each using a different set
of observations. Chapter 5 concludes the main body of the report by summarizing the results and
suggesting possible future research directions.

Appendix A presents the planning of the project; Appendix B provides the theoretical background on
some of the observables considered in the project and on the Bayesian inversion framework; Appendix C
describes the validation and verification process; Appendix D and Appendix E contain additional results
from the sensitivity analysis and Bayesian inversion, respectively.
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Methodology

The main research objective of this project is to improve the understanding of Ganymede’s interior
structure by combining different observational datasets to better constrain the moon’s interior properties.
To achieve this goal, the project is divided into two main parts: a sensitivity analysis and a Bayesian
inversion. The sensitivity analysis provides insights into how the different parameters affect the
observables, while the Bayesian inversion is used to retrieve a set of interior models that best fit the data.
This chapter outlines the methodology used to address the research questions and its sub-questions
presented in section 1.4.

This work employs the scientific color maps vik and batlow (Crameri, 2023) for the visualization of
the results, avoiding visual distortion of the data for individuals with color-vision deficiencies (Crameri
et al., 2020).

2.1. Sensitivity Analysis

Sensitivity analysis is a technique used to assess how variations in model parameters influence the
resulting observables. By systematically varying interior parameters within a defined range, we can
determine which factors have the strongest impact on modeled responses. This process helps to identify
the most influential parameters and define plausible ranges of values for each parameter, refining our
understanding of the moon’s interior structure. In the context of this project, performing a sensitivity
analysis will allow us to evaluate how changes in physical properties, such as layer thicknesses, densities,
and composition, affect the gravity, magnetic induction, tidal, and libration response.

To perform this analysis, several steps are required. First, we must define Ganymede’s interior model,
specifying the number of layers, the relevant parameters for each layer, and their plausible ranges. Next,
we generate synthetic data by computing the expected observables for the different interior models
obtained by varying the parameters within their defined ranges. This requires building a forward model
for each observable to describe how Ganymede’s interior structure influences the measured signals.
Finally, we analyze the sensitivity of the observables to variations in model parameters, identifying the
most influential factors and assessing their impact on the data.

The key observables for this analysis are the gravity field, magnetic induction response, tidal deformation,
and libration. Obliquity measurements are not considered because they are expected to be small,
as mentioned in subsection 1.2.5. The gravitational field measured by the Galileo spacecraft yields
Ganymede’s mass and moment of inertia. These quantities are well constrained and have been extensively
used to model the moon’s interior structure, as discussed in subsection 1.2.1. For this reason, instead
of generating synthetic gravity data, we use the observed values as constraints to ensure that our
models remain consistent with existing gravity measurements. This approach is further detailed in
subsection 2.1.1.
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2.1.1. Ganymede’s Interior Model

Ganymede’s interior structure is characterized by a metallic core, a rocky mantle, and an ice shell,
as described in subsection 1.2.1. The shell is likely to be composed of an ocean layer sandwiched
between an ice I shell on top and a high-pressure (HP) ice layer on the bottom. Therefore, we consider
a five-layer model of Ganymede’s interior. Each layer is characterized by homogeneous density and
mechanical properties, and no lateral variations are considered. The moon is assumed to be in hydrostatic
equilibrium.

The parameters that define the interior model and that are varied in the sensitivity analysis are
summarized in Table 2.1. The parameter ranges are based on values from the literature, although in
some cases, broader ranges are considered to explore a wider parameter space. The ocean is assumed
to be composed of water and magnesium sulfate (MgSQOy,), since icy satellite oceans are generally
believed to be rich in this compound. This assumption is based on equilibrium chemical models of
water-rock interactions and is supported by infrared spectra obtained from Galileo’s Near-Infrared
Mapping Spectrometer (Vance et al., 2014).

Since only models that include an ocean layer are considered, the upper limit of the ice shell thickness
is constrained by MgSO, phase diagrams. In fact, a liquid ocean can exist only if the pressure at the
ice-ocean boundary does not exceed the triple point pressure. By computing the pressure profile within
the ice shell, we determine the maximum thickness of the ice shell that allows for the existence of an
ocean layer. Taking into account various ocean compositions and ice shell densities, the ocean depth is
constrained to lie within 0-160 km, a range that includes the value of approximately 150 km inferred
from magnetic observations (Kivelson et al., 2002). This scenario corresponds to the lowest ice density
considered, while the composition does not affect the results. For the analysis, tabulated data of the
phase diagrams are taken from the PlanetProfile software (Styczinski et al., 2023), an open-source
software to model the interior structure of rocky and icy bodies. It derives radial profiles of mechanical,
thermodynamic, and electrical properties in a self-consistent manner, integrating observed and measured
properties with assumptions about material composition and laboratory equation-of-state data, using
geophysical and thermodynamic models (Styczinski et al., 2023).

Table 2.1: Ganymede’s interior parameters explored in the sensitivity analysis. For some of the variables, wider ranges
are considered compared to the reported values in the literature.

Parameter Units Range Reference

Core radius 7 km 500 - 1000 Schubert et al. (2004) and Sohl et
al. (2002)

Mantle radius ry, km 1550 - 2050 Schubert et al. (2004) and Sohl et
al. (2002)

Mantle shear modulus fis,ma GPa 50 - 100 Hussmann et al. (2016) and Moore
et al. (2003)

Mantle viscosity 7ma Pas 1 x 10 -1 x 10*2  Hussmann et al. (2016) and Moore
et al. (2003)

HP ice density pnp kgm™3 1100 - 1400 Hussmann et al. (2016) and Sohl
et al. (2002)

HP ice shear modulus ps np GPa 1-10 Moore et al. (2003)

HP ice viscosity nnp Pas 1 x 102 -1 x 10*®  Hussmann et al. (2016)

Weight percent of MgSOy4 in the % 0-10 Vance et al. (2014)

ocean wt

Ice shell thickness Djce km 1-160 Kivelson et al. (2002)

Ice shell density pice kgm=2 900 - 1300 Anderson et al. (1996) and Vance
et al. (2014)

Ice shell shear modulus ps ice GPa 0.1-10 Kamata et al. (2016)

Ice shell viscosity njce Pas 1x 102 -1x10%° Hussmann et al. (2016)

Poisson’s ratio v

0.3 -0.49

Beuthe (2015)
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Each layer is generally characterized by its thickness (or external radius) and density. However, not all of
these parameters are listed in Table 2.1, since some interior properties can be derived directly from the
sampled parameters, based on constraints such as Ganymede’s total mass, Moment of Inertia (Mol), and
Equation-Of-State (EOS) of MgSO, solutions. Once these constrained parameters are computed, the
physical validity of an interior model is assessed by checking the conditions listed in Table 2.2. Models
that do not meet these criteria are discarded.

Table 2.2: Constraints imposed on Ganymede’s interior parameters derived from the free parameters.

Parameter Units Constraint Rationale

Core density pc kgm™2 5150 - 8000 Range of densities consistent with Fe—
FeS to Fe compositions (Anderson et
al., 1996)

Mantle density pma kgm™2 3000 - 4000 Range of densities representative of an
olivine-rich silicate mantle (Sohl et al.,
2002)

Hydrosphere densities pice, o, prp kg m=3  pice < po < pnp  Condition for a gravitationally stable
hydrosphere

Dice7 Pices
Hs.ices Tice Kice
wt% Dy, po, ko

Phps Hs,hps Thp Thp, Knp

Tmay Ms,mas Tlma Pma; Kma

Figure 2.1: Schematic of Ganymede’s interior model, illustrating the parameters that characterize each layer. The free
parameters are listed on the left, while the constrained ones are on the right. An additional free parameter, the Poisson’s
ratio v, is not shown in the figure.

The adopted interior model and its parameters are shown in Figure 2.1. In the following, we describe
how the different interior parameters are computed.

Hydrosphere

Two key ocean parameters affecting the observations are the density and electrical conductivity, which
can be derived from the ocean composition. The ocean conductivity is related to the concentration of
dissolved MgSO, by (Hand et al., 2007):

C = c;-,rig + czkag + c1ko + Co (2.1)

where C' = wt x 10 is the concentration converted to gkg™ .

Table 2.3.

The coefficients cg to ¢z are listed in

The density of the MgSO4-water solution is evaluated using parameterized data from PlanetProfile
(Styczinski et al., 2023). Given pressure, temperature and salinity values, the EOS measurements can be
interpolated to determine the ocean density. The valid ranges for these input parameters are provided in

14



Table 2.3: Constants values of Equation 2.1 (Hand et al., 2007).

Co C1 C2 C3

-0.0129 15.2108 12.0161 -1.7268

Styczinski et al. (2023, Table 1). Specifically, the temperature must be within 253 K to 373 K. However,
considering the possible thicknesses of the ice shell and salinity values of the ocean presented in Table 2.1,
temperatures as low as 250 K can occur. Therefore, density values for temperatures below the lower
limit are extrapolated from the available data. The pressure is assumed to be the mean pressure of the
ocean layer.

Another key constraint comes from the phase diagram of water ice, which determines the depth at which
the HP ice forms. A liquid ocean can exist due to the anomalous behavior of the melting temperature of
ice I, which decreases with increasing pressure until it reaches a minimum at the triple point. For pure
water, the triple point is located at Tiyiple = 251.15 K and piyiple = 207 MPa (Chizhov, 1993). Although
the overall behavior remains the same, the triple point values vary depending on the composition of the
ice.

As discussed in subsection 1.2.2, the presence of an induced magnetic field in Ganymede suggests
the existence of a salty subsurface ocean. Following the study by Vance et al. (2014), we therefore
consider a contamination of magnesium sulfate in the ocean. The authors used phase-equilibrium
data and thermodynamic properties of MgSO, solutions to model the freezing behavior of water ice
in Ganymede’s subsurface ocean. Through least square fitting of experimental data, they obtained
the Margules coefficients to reconstruct the phase diagram of MgSO, solutions. For more details on
the methodology, the reader is referred to the original paper (Vance et al., 2014). The obtained phase
diagrams for different aqueous MgSO, solutions are shown in Figure 2.2.
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Figure 2.2: Water phase diagram for different (aq)MgSO4 solutions. Image credit: Vance et al. (2014, Figure 1).

We use tabulated data from the PlanetProfile software (Styczinski et al., 2023) for the EOS of MgSOy,
solutions, derived from the work of Vance et al. (2014). The ice liquidus curves for different MgSQO4
concentrations are used to determine the depth of the ocean-HP ice boundary.

To compute the temperature at the bottom of Ganymede’s ice shell, we first need to determine the
pressure at the ice-ocean boundary. This requires calculating the radial profiles of mass and pressure
in Ganymede’s interior, which can be done using the principles of mass conservation and hydrostatic
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equilibrium:
dM = 4mpridr dp = pg(r)dr (2.2)

Here, g(r) is the local gravitational acceleration at radius r, given by:

g(r) = —3—= (2.3)

By discretizing these equations, we compute the radial profiles of mass and pressure.

Typically, the mass profile is computed from the center outwards, integrating from the core to the
surface. However, not all the layer boundaries and densities are yet defined, making it difficult to follow
this approach for the entire interior structure. Since we are specifically interested in the pressure profile
within the ice shell, we take a different approach:

o We integrate downward from the surface, where the total mass of Ganymede is known.
e The ice shell is divided into N layers, each with a thickness Ar.

e The mass profile of the ice shell is computed as:

MN—i = MN—i+1 — ddiMAT (24)
r

Here,i=1...N, My = Mg and the density corresponds to the ice shell density.

With the mass profile determined, we can calculate the gravity profile using Equation 2.3 and then
integrate the hydrostatic equilibrium equation to obtain the pressure profile within the ice shell as:

PN—i =PN—it1 + ZEAT (2.5)
r
where i =1... N and py = 0. We therefore obtain the pressure at the bottom of the ice shell pice , = po.
Finally, to determine the temperature at the ice-ocean boundary, we use the EOS of MgSO, solutions.
Since the pressure at this boundary has been computed, we interpolate the temperature from the liquidus
curves provided by the PlanetProfile software (Styczinski et al., 2023).

We assume a fully convective ocean. Thus, its temperature remains constant throughout this layer,
while the pressure increases with depth. With the ocean temperature known, we use the phase diagram
to identify the pressure at which the transition to HP ice occurs, again interpolating data from the
PlanetProfile software (Styczinski et al., 2023). To determine the depth of the ocean-HP ice boundary,
we compute the mass and pressure profiles within the ocean layer in the same way as for the outer shell.
However, unlike the ice layer, whose thickness is known, the ocean thickness is not predefined. Therefore,
we start from the base of the ice shell, where the pressure is pjce,b, and we integrate downward in discrete
radial steps Ar, updating the mass and pressure at each step using Equation 2.4 and Equation 2.5. The
integration continues until the pressure reaches the phase transition value at which HP ice forms, and the
corresponding depth gives the location of the ocean-HP ice boundary. This defines the external radius
of the HP ice layer, while the thickness of the ocean layer follows from the total radius of Ganymede
and the radii of the other layers.

Deep Interior

Two additional constraints are derived from Ganymede’s total mass and Mol, which depend on the
interior parameters as described in Equation 2.6 and Equation 2.7:

4 5
Mg = gw;pi (rf = i) (2:6)
1 8 <
2 = — (r5 0
I/MR* = Mofg =T ;21 pi (r) —r5_y) (2.7)
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where 79 = 0 and layers indices 1 to 5 correspond to the core, mantle, HP ice, ocean and ice shell,
respectively. Rather than independently varying the thickness and density of each layer to compute
these quantities, we use the total mass and Mol values obtained from the Galileo mission as constraints.
This approach ensures that the generated models are consistent with gravitational observations. As a
result, once the other interior parameters are defined, the remaining two parameters can be determined
consistently with the gravity data. We choose to constrain the densities of the core and the mantle,
which are therefore not explicitly listed in Table 2.1.

Each time a model is generated, the values of total mass and Mol are randomly sampled from a
normal distribution centered in the expected value with a standard deviation equal to the corresponding
uncertainty, as listed in Table 1.1. The values are then used to compute the core and mantle densities
according to Equation 2.6 and Equation 2.7.

Compressibility

The ice shell, HP ice and mantle layers are considered to be compressible. Their bulk modulus is related
to the shear modulus and Poisson’s ratio by (Weijermars, 1997):

s  3(1-2

s _ 30— 2v) (2.8)
K 2(1+w)

From Equation 2.8, we can compute the bulk modulus of the ice shell, HP ice and mantle layers using

their shear modulus and Poisson’s ratio. For each model, v is randomly sampled from a uniform

distribution in the range specified in Table 2.1 and is considered equal for all layers.

By varying the free parameters within the ranges specified in Table 2.1, Ganymede’s interior models are
generated and the responses are computed according to the methodologies described in subsection 2.1.2,
subsection 2.1.3, and subsection 2.1.4. A schematic of this process is presented in the flowchart shown in
Figure 2.3.

2.1.2. Magnetic Induction Response Model

To investigate Ganymede’s magnetic induction response, we adopt the methodology outlined by Petricca
et al. (2023), who build upon the work of Vance et al. (2021). We remind the reader that the focus of
this study is on the induced magnetic field response, and the intrinsic magnetic field of Ganymede is not
considered in the inversion process, as explained in subsection 1.2.2. The induced response results from
time-dependent variations in Jupiter’s magnetospheric field, which interacts with Ganymede’s conductive
layers. Since Jupiter’s magnetic dipole is tilted by 9.6° relative to its rotation axis and Ganymede’s
orbit is closely aligned with the planet’s equatorial plane, periodic fluctuations in Jupiter’s field drive
the induction response (Vance et al., 2021).

Additional factors influencing the induced response include the depth-dependent electrical conductivity
of the ocean, orbital perturbations from other Galilean moons, and motion-induced fields generated
by ocean dynamics. All of these sources, characterized by different time scales, induce magnetic fields
oscillating at their same frequencies.

Figure 2.4 shows the time series spectra of the induced magnetic field oscillations (Vance et al., 2021).
Three main periods are visible: Ganymede’s orbital period (171.57h) and the Jovian synodic and
half-synodic periods (10.53h and 5.27h, respectively). The plot was obtained by computing the time
series spectra of the magnetic field variations experienced by Ganymede under specific assumptions. For
more details, the reader is referred to Vance et al. (2021).

The frequency-dependent response to the excitation field AS is a normalized, complex amplitude that
indicates how well a body behaves as a perfect conductor (Vance et al., 2021, Supporting information),
and it is characterized by an amplitude A = |A¢| and a phase delay v = — arg(AS). It is a dimensionless
quantity whose amplitude ranges from 0 to 1, where 1 indicates a perfect conductor and 0 indicates no
induction response.

Since Jupiter’s magnetic field is almost uniform across Ganymede (Vance et al., 2021), for the purpose
of this study, only degree n = 1 will be considered, and therefore the response will be noted as A°€.
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Figure 2.3: Flowchart showing the steps involved in generating Ganymede’s interior models.
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Figure 2.4: Time series spectra of the magnetic field fluctuations experienced by Ganymede. The three main periods and
the corresponding peak values are reported. Image credit: Vance et al. (2021).

This assumption implies that the magnetic field is described only by the lowest degree of the spherical
harmonic expansion, which represents a dipole field, and its strength is constant over the surface of the
moon.

Following the work of Petricca et al. (2023), the complex amplitude of the induced magnetic field is
defined as:

A¢ = Ae~ Y = (7"70)3 J2 (k”rhp) Y2 (kro) —J2 (kro) Y2 (krhp)
R/ jo(kro)yz (krnp) — jo (kKrnp) y2 (k7o)

k= \i0mn (2.10)

A detailed derivation of this expression can be found in Vance et al. (2021, Supporting Information, Text
S1). jm and y,, are the spherical Bessel functions of the first and second kind, respectively, of order
m. The wave number k depends on the ocean electrical conductivity x, the magnetic permeability uo,
and the driving field’s angular frequency of oscillation 8. r, is the radius of the ocean-ice shell interface,
while 7y, is the radius of the HP ice-ocean interface. Even though magnetic field oscillations occur
at multiple frequencies, including components from the synodic and orbital periods, along with their
harmonics and beat frequencies, we focus solely on Jupiter’s synodic period (10.53h) to compute the
induction response, as it provides the dominant contribution, as shown in Figure 2.4.

(2.9)

where

The expression in Equation 2.9 is valid only for a body with a single, uniform conducting layer. As
discussed in subsection 1.2.2, Ganymede’s intrinsic magnetic field is likely generated by dynamo action in
a partially molten core. Due to its high electrical conductivity, the core could contribute to the induction
response of the moon. Seufert et al. (2011) investigated the electromagnetic induction response of the
Galilean moons to deduce information about their subsurface oceans and core layers. Their results
showed that, although the core induces magnetic signals and interacts with the ocean through mutual
induction effects, these contributions are expected to be significantly weaker than the strength of the
ocean’s response. We can therefore assume that the ocean is the only uniformly conducting layer in
Ganymede and neglect the core’s contribution to the induction response.

2.1.3. Tidal Response Model

To generate the tidal response of Ganymede, the LOV3D Matlab software (Rovira-Navarro et al., 2024)
is used. This software implements a spectral method to compute the tidal response of bodies with a
stratified interior, allowing for the inclusion of lateral variations. The output includes the Love number
spectra and the corresponding radial functions.

The Love numbers h,, and k,, describe the body’s response to tidal forces. These dimensionless quantities
relate the external tidal potential to the radial displacement and gravitational potential perturbations at
the surface:

o Uy, Gsurf _ ‘I)p,n

hn = =00

(2.11)
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where u, ,, is the radial displacement, ®, ,, is the perturbation in the gravitational potential, and o7, is
the imposed tidal potential of degree n.

The governing equations that determine the tidal response of a self-gravitating body are the mass and
momentum conservation equations and Poisson’s equation. These equations are linearized around a
state of hydrostatic equilibrium, characterized by gravitational potential @, pressure pg, and density pg
(Rovira-Navarro et al., 2024). Given the displacement vector u and local perturbations in the stress

tensor o, density p’, and gravitational potential @’ the linearized equations are (Rovira-Navarro et al.,
2024):

p'=—=po(V-u)—u-Vpg (2.12)
V-o' —poV(gu-ey)+ gpo(V-u)e, — poVP =0 (2.13)
V20 = 4nGp/ (2.14)

where e, is the radial vector.

By expanding the relevant fields in the spectral domain, the original three-dimensional system of equations
is reduced to a set of equations that depend only on the radial coordinate. The system of differential
equations is integrated numerically from the core-mantle boundary to the surface using a Runge-Kutta
scheme, and the solution is obtained by applying specific boundary conditions (Rovira-Navarro et al.,
2024).

The inputs to the software are:

e Ganymede’s interior model, including the number of layers, their radii, densities, and mechanical
properties.

e The tidal potential, described by its period, amplitude, degree and order.

o Numeric parameters to define, e. g., radial discretization and code parallelization settings.

For the purpose of this study, we are interested in the real and imaginary parts of the ko and ho
Love numbers. The real part represents the elastic response of Ganymede to tidal forces in terms
of gravitational potential (k3) and surface deformation (hg). The imaginary parts account for the
dissipative effects due to the viscoelastic properties of the layers, which cause internal friction and heat
dissipation. For spherically symmetric bodies with no lateral variations, the response of the body to
tidal forces is at the same degree as the tidal potential, and does not depend on its order (for more
details, see section B.2). Therefore, we only consider a forcing of degree n = 2 and order m = 0, with a
period of P, = 7.16d and an amplitude of 1.

2.1.4. Libration Model

To compute Ganymede’s librations, the work of Van Hoolst et al. (2013) is used. This study includes
the effects of periodic tidal deformations on the libration of satellites with a subsurface ocean. They
consider the gravitational torque exerted by the central planet, the torques between the periodic tidal
bulges of different layers, and the zonal tides that periodically change the polar moment of inertia to
compute the amplitudes of the longitudinal librations.

The governing equations are derived by considering the torques and changes in the polar moment
of inertia due to periodic tidal deformations, and they include coupling terms that account for the
interactions between the ice shell and the solid interior, as well as the effects of zonal tides (Van Hoolst
et al., 2013). The equations account for both the free and forced librations of the satellite. The former
describe the natural oscillation frequency of the satellite and are determined by the internal structure,
while the latter is influenced by the periodic tidal deformations. For more details, the reader is referred
to the methodology described by Van Hoolst et al. (2013, Section 3.4).

The longitudinal librations of an icy satellite with a subsurface ocean are governed by the following
system of equations (Van Hoolst et al., 2013):

Iés + Kqcs + Koc; = 4eK5sin M (2.15)
jiéi + K4CS + K5Ci = 4€K6 sin M (216)
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where M is the mean anomaly of Ganymede’s orbit, ¢s and ¢; are the libration angles of the shell and solid
interior, respectively, and Ig and I; are their polar moments of inertia. The coefficients Ky, Ko, ..., Kg
describe the interaction between the ice shell and the solid interior.

At the orbital period, the amplitudes of the forced longitudinal librations are (Van Hoolst et al., 2013):

. 46(K3K5 — KQKG — 712K3fi)

Uy = —= , 2.17
LiIs(n?2 —r?)(n?2 —r3) (2.17)
de(K K¢ — KsKy — n’Kgl,
= 6(_1_ 6 324 n 26>)7 (2.18)
Lils(n? — r{)(n* —r3)
where n is the mean motion and the free libration frequencies f; and fy are given by:
o K I + K5I, £ \/4(KoKy — K\ K5) L, + (K1 T; + K51,)2

fia= . (2.19)

211
These equations describe how the periodic tidal deformation of Ganymede influences its libration
amplitude.

The inputs to the model are an interior model of Ganymede, characterized by the radii of the layers, their
densities and mechanical properties, the orbital eccentricity and the forcing characteristics, analogous
to the tidal forcing described in subsection 2.1.3. The outputs are the amplitude and frequency of the
longitudinal libration, as expressed by Equation 2.17, Equation 2.18, and Equation 2.19.

2.2. Bayesian Inversion

Bayesian inversion is a probabilistic approach for estimating parameters that allows to integrate multiple
datasets while accounting for uncertainties in both observations and model parameters. In this project,
it is employed to characterize the interior structure of Ganymede given constraints from magnetic
induction, tidal, and libration observations. As explained in section 1.3, this approach provides a robust
framework for incorporating independent datasets and generating interior models of Ganymede that are
consistent with all available observations.

The sensitivity analysis outlined in section 2.1 identifies the interior model parameters with the greatest
influence on the different datasets. Estimates of these model parameters are now retrieved through the
Bayesian inversion process, which consists of different steps:

e Prior distribution: Each parameter of interest is assigned a prior distribution, based on previous
studies or physical constraints.

o Likelihood function: The likelihood function is defined as the probability of observing the data
given the model parameters. It is used to update the prior distribution.

e Posterior distribution: The posterior distribution is obtained by combining the prior distribution
and the likelihood function using Bayes’ theorem.

e MCMC sampling: The posterior distribution is sampled using the MCMC algorithm, which
generates models that are consistent with the different observables.

e Uncertainty estimation: A measure of the uncertainty for the estimated parameters is obtained
from the posterior distribution.

To achieve this, retrieval models for magnetic induction, tidal response, and libration are fitted to
spacecraft observations. Since some of these data are not yet available, we define a benchmark interior
model and use it to generate synthetic observations with the forward models described in subsection 2.1.3
and subsection 2.1.4.

In Bayesian probability theory, the plausibility of certain hypotheses or model parameters is expressed
as the probability of these quantities given observed data and prior information. The likelihood function
is defined as the probability of observing the data given the model parameters (Gregory, 2005). With
the assumption of uncorrelated observations @, i.e., independent, additive Gaussian uncertainties, and
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given a certain model M ;, the model parameters X and any prior information I, the likelihood function
is computed as (Matsuyama et al., 2016, Supporting Information):

7 2
_ 1 (e,-0eM
p(OIX, M, I) ocexp | =5 > () (2.20)

o
i=1 v

where o; is the uncertainty associated with the i-th observation. On the other hand, the prior probability
distribution p(X|M ;, I) represents the information available about the model parameters before observing
the data. The model parameters are assumed to have a uniform prior distribution.

Bayes’ theorem relates the likelihood function to the prior probability distribution of the model parameters
to obtain the posterior probability distribution, which represents our knowledge about the model
parameters after observing the data (Gregory, 2005):

p(X|®7Mj7[):Cxp(g‘vajv-[) Xp(X|MjaI) (221)

where C is a normalization constant (see section B.3 for more details). The posterior probability
distribution is sampled using a MCMC algorithm to explore the parameter space and estimate the model
parameters that best fit the data.

The emcee Python implementation of the MCMC algorithm (Foreman-Mackey et al., 2013) is used
to sample the parameter space. It is an affine-invariant ensemble sampler that has the advantage of
requiring hand-tuning of only one or two parameters. In addition, it allows for parallelization, which is
useful when dealing with computationally expensive models.

The probability distributions of the model parameters are explored using an ensemble sampler with
random walkers, following the Affine Invariant Stretch Move algorithm (Goodman et al., 2010). The
process begins by selecting initial parameter values, assigned to different walkers, which are then updated
at each iteration. At each step j, a walker proposes a new position by scaling its distance relative to
another randomly chosen walker in the ensemble. The retrieval models compute the magnetic induction
amplitude, Love numbers, and shell libration amplitude for the proposed model and the likelihood
function of the new solution is evaluated using Equation 2.20. The new solution j + 1 is accepted if the
ratio p;y1/pj, multiplied by a scaling factor, is greater than a random number drawn uniformly between
0 and 1. Otherwise, the walker stays at the previous position and a new solution is proposed. This
qualitative description of the algorithm is based on the explanation provided in Foreman-Mackey et al.
(2013).

The Bayesian inversion process yields a posterior distribution for each model parameter. Statistical
quantities, such as the posterior mean and posterior mode, can then be used to report parameter
estimates in terms of best-fit values and associated uncertainties (Gregory, 2005).
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Sensitivity Analysis

This chapter presents the results of the sensitivity analysis performed on the interior model parameters.
We first perform a one-at-a-time (OAT) sensitivity analysis, where we vary one parameter at a time
while keeping the others fixed. This allows us not only to understand how each parameter influences the
different observations, but also how the applied constraints on the interior model influence the feasible
ranges of the constrained parameters.

We then perform a full MC analysis, where we vary all the parameters simultaneously. This analysis
shows the combined effects of all parameters on the model’s response, and reveals the degeneracies
between the interior parameters. Since the OAT analysis serves to illustrate simple underlying trends and
produces results consistent with those of the full MC analysis, it is included in the appendix (section D.1)
for completeness. In this chapter, we focus on the results of the MC analysis.

The general setup is described in section 2.1 and the parameters are sampled in the ranges defined in
Table 2.1 from log-uniform distributions for the shear moduli and viscosities, and uniform distributions
for the other parameters. The responses are computed for each valid interior model. Section 3.1 discusses
the choice of sample size, section 3.2 examines the effect of the imposed constraints on Ganymede’s
interior model, and section 3.3 analyzes the influence of all parameters on the different observables.

3.1. Sample Size Analysis

In this section, we determine an appropriate sample size for the MC analysis. This is necessary to ensure
that the simulation includes enough samples to capture the trends and properly explore the parameter
space. The selection is performed in two steps. First, we analyze the number of samples needed to
achieve a good sampling of each parameter if they were varied independently. Second, we analyze the
discrepancy  of the sampling, which is an indication of how well the samples fill the design space, when
all parameters are varied concurrently.

The first step involves sampling the different parameters within their prescribed ranges. We vary the
number of samples between 1 x 10® and 4 x 10°, as illustrated on the x-axis of Figure 3.1. For each
parameter and each sample size, we compute the mean 7 and standard deviation ¢ of the sampled
values. Since the parameters are assumed to follow uniform distributions, these distributions have known
theoretical mean 7, and standard deviation oy,. The sample size is considered sufficient when the
computed mean and standard deviation for each parameter approach their respective theoretical values.

For the parameters sampled from a log-uniform distribution, the sampling is performed uniformly
over the range [log;, (a),log;y (b)]. Instead of converting the sampled values back to the original scale,
we compute the mean and standard deviation of the sampled values, and then compare them to the
theoretical mean and standard deviation of a uniform distribution in the logarithmic scale.

We define the acceptance interval as Al, = |0.01lz — x|, where x is either ny, or oy, We consider the
number of samples to be sufficient if 7 and o converge to the theoretical values within +AI. Since we
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are not interested in the behavior of each decision variable specifically, n and o are normalized according
to Equation 3.1 and plotted together with the same color in Figure 3.1.

o =

1T TAT, Al

71 — Tth 0 — Oth (3 1)

From Figure 3.1, all the values enter the Al at around 1 x 10* samples, which we consider sufficient to
achieve a good sampling of the design space for each parameter independently.
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—— Parameters’ n
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Figure 3.1: Normalized n and o for all the sampled parameters. The values are normalized according to Equation 3.1.

The second step is performed by analyzing the discrepancy ¢ of the sampling. To achieve this, the
scipy.stats Python package is used (Virtanen et al., 2020). 40 x 10* samples are generated. Then, for
different numbers of samples, the discrepancy is computed. The results are shown in Figure 3.2. The
lower the discrepancy is, the better the variables sample the design space. Since we have 13 decision
variables, we consider the discrepancy of 1 x 10%, 13 x 10%, 26 x 10* and 39 x 10* samples, and the
values of § for specific sizes are reported in Table 3.1.
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Figure 3.2: Discrepancy values for different sample sizes. The markers indicate the values of § for the sample sizes of
interest.

Table 3.1: Discrepancy values and variation in percent for different sample sizes.

(51 (513 626 (539 ‘6136% x 100 % x 100 % x 100
1.3147 x 1073 1.1314 x 10~* 5.7473 x 10~° 3.9326 x 10~®> 256.36 % 49.20 % 31.57 %
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The value obtained with 1 x 10% samples can be significantly improved with a sample size of 13 x 10%.
Further increasing it to 26 x 10* reduces the discrepancy by 49.20 %, and to 39 x 10* by an additional
31.57%. However, the CPU time increases substantially with the number of samples. Therefore, we
consider a sample size of 13 x 10* to be sufficient to achieve a good sampling of the design space. This
number only includes the valid models for which the responses are computed.

3.2. Constrained Parameters

Due to the high number of parameters involved, it is important to analyze the interdependencies
between variables to better understand their impact on the responses. This analysis ensures that the
interior model behaves as expected and is internally consistent. A statistical correlation analysis is
performed using the pandas.DataFrame Python package (The pandas development team, 2025). It
allows to compute the correlation between different variables according to one of the available methods,
which include the Pearson, Kendall and Spearman correlation methods. The Pearson method measures
linear correlation between two variables, while the Kendall and Spearman methods are non-parametric
methods that relate the rank values of the variables. The rank of a value refers to its position in the
ordered list of all values of that variable, from smallest to largest. Specifically, the Spearman correlation
measures how well two parameters follow a monotonic relationship. It is equivalent to using the Pearson
correlation on the rank values of the variables. The Kendall method assesses the agreement between
the rankings of variables by considering concordant and discordant pairs. A concordant (discordant)
pair is a pair of observations where the ranks for both variables are in the same (different) order (The
pandas development team, 2025). The Spearman and Kendall coefficients show the same behavior, but
Spearman has usually higher values than Kendall for the same data set. In the following analysis, the
Kendall method is used.

Figure 3.3 shows the correlation matrix between the free and constrained parameters. The Mol factor is
added to the list of parameters even though it is not explicitly a free parameter because, in order to
compute p. and pn, from Equation 2.6 and Equation 2.7, the mass and Mol of Ganymede are sampled
from a Gaussian distribution. Therefore, different values of the Mol are used for each model, affecting
the constrained parameters as well. The mass is not included in the matrix because it was seen to not
have an influence on the parameters.

Values close to 1 or —1 indicate a strong correlation: positive values imply that the two parameters
tend to increase or decrease together, while negative values suggest that one parameter increases as the
other decreases. Values close to 0 indicate a weak correlation, meaning that the behavior of the two
parameters is largely independent. It is important to note that correlation does not imply causation.
Even if two parameters are correlated, this does not necessarily mean that one causes the other to change.
These results should be interpreted alongside the imposed constraints described in subsection 2.1.1. For
example, we know from Equation 2.1 that k, is directly derived from wt, which explains the coefficient
of 1 between them. In contrast, it is not related to ry,, even though they show a correlation of —0.22.
This negative correlation can instead be interpreted as a tendency for models with a larger mantle radius
to have a lower ocean density to satisfy Ganymede’s mass and Mol constraints, which in turn leads to a
lower ocean conductivity. This example highlights the hidden dependencies among the parameters, all
of which contribute to the model responses.

We now analyze how the constrained parameters, computed according to subsection 2.1.1, vary with
changes in the free parameters. As shown in Figure 3.3, the Mol factor affects the innermost layers,
while the total mass has no significant influence, highlighting the importance of accounting for the Mol
value. Figure 3.4 shows one-dimensional histograms of the deep interior parameters on the diagonal
and two-dimensional joint distributions off-diagonal, with the Mol included to illustrate its influence.
The two-dimensional histograms reflect the trends observed in the OAT sensitivity analysis (Figure D.1,
Figure D.2). The most evident trends are the negative correlations between core radius and core density,
core radius and mantle density, and mantle radius and mantle density, where one decreases as the
other increases to satisfy the Mol constraint. In contrast, the positive correlation between core density
and mantle radius is less pronounced than in the OAT analysis: for a given mantle radius, nearly
all core density values remain plausible, as indicated by the uniform distribution of models along the
corresponding vertical line.
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Correlation Matrix of the Interior Model Parameters
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Figure 3.3: Kendall correlation coefficients between the free and constrained parameters. The Mol factor is added to
visualize its effect of this constraint on the parameters.
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Compared to the OAT sensitivity analysis, where the dependencies appeared as one-to-one correspon-
dences between parameters, introducing Mol variations and varying all parameters simultaneously
broadens the parameter distribution. This widens the range of valid models and reveals preferred
parameter values. For instance, models with Mol values close to the nominal value typically have mantle
radii in the range of approximately 1700 km to 1900 km. This highlights how observational constraints
can help in the estimation of certain parameters. Thus, the Mol factor will be incorporated as an
observational constraint in the Bayesian inversion.

Figure 3.5 shows the two-dimensional histograms of the hydrosphere parameters. The trends observed
in the OAT sensitivity analysis are overall maintained, and the same considerations regarding the
simultaneous variation of parameters apply here and explain the broad distributions. For example, for a
given ice shell thickness, a wide range of ocean densities is possible depending on the composition. The
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Figure 3.5: Two-dimensional histograms of the hydrosphere parameters. On the x axis the variables that show
correlation are reported.

ocean thickness is determined from the phase diagram, and from Figure 2.2 it is clear that it decreases
with increasing ice shell thickness (e.g., with increasing pressure at the ice-ocean interface). Since the
ice shell thickness also defines the ocean’s pressure profile, it influences the ocean density. However,
the dominant factor controlling the ocean density is its composition, which directly affects the phase
diagrams and, consequently, the ocean parameters.
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Figure 3.6: Ocean density as a function of the ocean thickness with wt = 0% for the two approaches: using the mean
pressure and using the depth-dependent density.

The ocean density is defined by the EOS of the ocean, which depends on its composition, pressure and
temperature. In this study, the temperature is assumed to remain constant within the ocean, while
pressure varies with depth. However, we assume that each layer has a constant density, and we use
the average pressure of the ocean to compute it. A more accurate approach would involve computing
the ocean density as a function of depth, then using this depth-dependent density to compute the
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mass and pressure profiles within the layer, and iterating the procedure until convergence. Figure 3.6
shows the ocean density as a function of ocean thickness for both approaches, using a composition of
pure water, which yields the largest density difference between the two methods. The results indicate
that the two approaches can differ by up to approximately 8 kg m~—3, corresponding to about 0.7 % of
the ocean density currently computed using the mean pressure. Although this difference is relatively
small, ocean density is expected to influence the real part of the tidal Love numbers. Thus, even a
minor change in density may lead to noticeable changes in the tidal response. However, computing the
depth-dependent density requires interpolating pressure, temperature, and composition at each depth,
which is computationally expensive. Additionally, we expect a thick ice shell from magnetic induction
measurements (Kivelson et al., 2002), where the discrepancy between the two methods is less significant.
Therefore, we choose to compute the ocean density using the mean pressure, as it is a good balance
between accuracy and computational efficiency.

Figure 3.7 shows the two-dimensional histograms of the mechanical properties of the layers. These trends
are expected, as their dependence is defined by Equation 2.8, and they are similar to those obtained in
the OAT sensitivity analysis (Figure D.5).
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Figure 3.7: Two-dimensional histograms of the bulk moduli. On the x axis the variables that show correlation are
reported.

All of the above-mentioned dependencies are important for interpreting the behavior of the resulting
observations, as one trend may hide the influence of another parameter. Recognizing them can serve as
a guide for better understanding how the responses change with interior parameters.

3.3. Observations

In this section, we analyze the magnetic induction, tidal and libration responses of the valid interior
models. As explained in section 3.2, a correlation matrix between the model parameters and the responses
is used to analyze the major contributors to the different observables. Figure 3.8 shows the Kendall
correlation coefficients between the model parameters and the responses. This table is useful to identify
the parameters that have the strongest influence on the responses and select the most relevant ones for
further analysis.

3.3.1. Magnetic Induction Response

The magnetic induction amplitude is the most straightforward response to analyze, since it is defined
by the analytical expression in Equation 2.9. In this study, we assume a uniform excitation field from
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Correlation Matrix of the Responses
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Figure 3.8: Kendall correlation coefficients between the model parameters and the responses. The responses that are
shown on the horizontal axis are, from the left to the right: the amplitude and phase lag of the magnetic induction
response, the real and imaginary parts of k2 and hg, a linear combination of kg and hs, the difference of the tidal phase
lag, and the libration amplitude of the shell.
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Jupiter, a single, uniform, and spherically symmetric conducting layer inside Ganymede, and an inducing
period of 10.53 h, corresponding to Jupiter’s synodic period (Vance et al., 2021). The complex magnetic
induction response can be analyzed in terms of amplitude and phase lag. Specifically, the normalized
amplitude ranges from 0 to 1, with 0 indicating no induction and 1 indicating a perfectly conducting
sphere. This parameter can then be used to obtain the internally induced magnetic field due to a
time-varying external magnetic field (Vance et al., 2021, Supporting Information).

In the following analysis, only the magnetic induction amplitude is considered. The analysis of Galileo
flybys performed by Kivelson et al. (2002) did not include the phase lag, as it was expected to be small
and therefore undetectable with the available data. Additionally, according to Seufert et al. (2011)
and Vance et al. (2021), the phase lag provides information similar to that of the amplitude. However,
Seufert et al. (2011) analyzed the magnetic induction response of the Galilean moons using a more
comprehensive model that incorporated not only Jupiter’s magnetic field, but also the current sheet and
magnetopause fields. Their model also accounted for mutual induction between different conducting
layers, such as the ocean and the core. In this context, Seufert et al. (2011) showed that the phase lag
can reveal interactions between the conducting layers, highlighting the importance of future phase lag
measurements.

From the analytical formulation (Equation 2.9) and the OAT sensitivity analysis (subsection D.1.3),
we expect it to vary with the ocean thickness and composition, which is indeed seen in Figure 3.8,
with a stronger contribution from the ocean thickness. Vance et al. (2021) showed that the role of
ocean conductivity becomes more significant at longer induction periods. Additionally, other parameters
show a correlation with the magnetic induction response. Although the ice shell density is not directly
involved in the analytical formulation, it influences ocean thickness through Equation 2.2. Instead, the
correlation with the ocean density can be traced back to both the ocean composition and the ice shell
thickness, which determines the pressure profile within the ocean and, consequently, its mean pressure
used to compute the density. The magnetic induction response could therefore help constrain the ocean
density.
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Figure 3.9: Amplitude of the magnetic induction response as a function of the ocean thickness and composition. The
range of wt of MgSOy4 in the ocean is indicated for the models within the area bounded by the dashed lines.

Figure 3.9 shows the magnetic induction response as a function of the ocean thickness for different ocean
compositions. The general trend is in agreement with the OAT analysis shown in Figure D.6, but for
a fixed ice shell thickness, the magnetic induction amplitude increases with increasing wt of MgSO,
in the ocean, due to a higher ocean conductivity. Thin oceans can have a strong magnetic induction
response if they contain a high wt of MgSQO,, which leads to high ocean conductivities. On the other
hand, the same induction response can be achieved with a thicker ocean if the wt is low, highlighting the
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trade-off between these two parameters. As shown in the highlighted region of Figure 3.9, low induction
amplitudes at high ocean thicknesses correspond to ocean compositions close to pure water, where wt
falls within the annotated range.

Figure 3.10 illustrates the number of models sampled for each ice shell thickness that results in a given
magnetic induction amplitude. A higher model count indicates that the corresponding combination of
ice shell thickness and induction amplitude is more frequently represented in the design space, suggesting
a greater likelihood of occurrence. According to Figure 3.10, Ganymede’s magnetic induction amplitude
is most likely between 0.8 and 1.0, a range that includes the value of 0.84 reported by Kivelson et al.
(2002) from the analysis of magnetic induction data.

Magnetic Induction Amplitude - Full Monte Carlo Analysis
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Figure 3.10: Two-dimensional histogram of the magnetic induction amplitude as a function of the ice shell thickness (left)
and ocean composition (right). The black dotted line indicates the value of |A¢| = 0.84 found by Kivelson et al. (2002).
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Figure 3.11: Corner plot showing the parameter distributions (diagonal panels) and correlations (off-diagonal panels) for

the models consistent with a magnetic induction amplitude of 0.84 £+ 0.018 (Kivelson et al., 2002). The distributions do

not represent posterior probabilities, since no likelihood function or Bayesian inversion is applied. The color scale in the
2D plots reflects the density of the samples, with lighter colors indicating higher density regions.

Figure 3.11 shows two-dimensional histograms of the ice shell thickness and ocean composition for the
models that are consistent with the magnetic induction response from Kivelson et al. (2002). Among all
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the models, those consistent with the induction response tend to have a thicker ice shell. However, no
particular trend is observed for the ocean composition. This suggests that a Bayesian inversion using the
magnetic induction response could help constrain the ice shell thickness, but not the ocean composition.

3.3.2. Tidal Response

The tidal response is analyzed in terms of the Love numbers ko and ho, and specifically their real and
imaginary parts, which can provide constraints on Ganymede’s hydrosphere (Van Hoolst et al., 2024).
The real part of the Love numbers is related to elastic effects, while the imaginary part mirrors the
viscous response of the body and its tidal dissipation. Therefore, the mechanical properties of the layers,
such as rigidity and viscosity, play a crucial role in determining the tidal response.

The tidal response of Ganymede, which is expected to be stronger in the presence of a subsurface
ocean, is primarily influenced by the ice shell thickness, ocean density, and ice shell density, and to a
lesser extent by the deep interior parameters (Van Hoolst et al., 2024). Additionally, the rigidities and
viscosities of the ice layers play a significant role in the tidal response, as the Love numbers are mostly
sensitive to the viscoelastic properties of the external layers.

Figure 3.12 shows the two-dimensional histograms of the real part of k9. Similar trends are observed for
the real part of hy, shown in Figure D.11, and the discussion applies to both Love numbers. The figures
illustrate the sensitivity of the tidal Love numbers to key structural and rheological parameters. Overall,
the trends are in agreement with the ones observed in the OAT sensitivity analysis, but this analysis
offers a more comprehensive view of the interactions and degeneracies between the parameters.

The real part of ko is sensitive to the presence of a subsurface ocean and its properties (Jara-Orué et al.,
2016; Moore et al., 2003), as well as to the thickness and mechanical properties of the overlying ice shell
(Kamata et al., 2016; Moore et al., 2003). One of the most evident trends is the negative correlation
between ice shell thickness and Re(ks). Thicker shells lead to smaller deformations, and thus to lower
values of ko, as the shell becomes more resistant to tidal deformations and reduces the moon’s ability to
respond to tidal forces. This trend has already been confirmed by previous studies (Jara-Orué et al.,
2016; Kamata et al., 2016; Steinbriigge et al., 2015; Wahr et al., 2006).

However, this dependence is not isolated from other parameters. Low values of Re(kz) are observed
only for thick ice shells, but high values can be found for both thin and thick shells, highlighting the
influence of other parameters. As previous studies have pointed out, the tidal response of a decoupled
ice shell is not governed by its thickness alone, but rather by the product of thickness and shear modulus
(Steinbriigge et al., 2015; Wahr et al., 2006). This coupling introduces a significant degeneracy: a thin
but rigid shell can produce a similar Re(ks) as a thick but soft one. As a result, it is difficult to constrain
ice thickness or rigidity independently based on ks alone.

To break these degeneracies, a promising approach is to combine measurements of ko with those of the
radial displacement Love number ho. In the case of a fully fluid response, the difference hy — ko equals
1, while in viscoelastic regimes this value decreases (Moore et al., 2000). Moreover, according to Moore
et al. (2000), the amplitude of tidal deformations scales linearly with the thickness of the ice shells, with
the slope of this relationship governed by its rigidity. However, Wahr et al. (2006) highlighted that due
to uncertainties in the physical properties of the ocean and mantle, it is challenging to isolate this linear
trend using measurements of ko or ho alone. Wahr et al. (2006) investigated Europa’s tidal deformation
and found that 1 + |ko| — |hz| varies linearly with the product of ice shell thickness and rigidity, a
relationship later confirmed for Ganymede by Steinbriigge et al. (2015). This linear combination is
particularly informative because it approaches zero as the ice shell tends to zero, while the Love numbers
ko and hg considered individually do not (Wahr et al., 2006).

Kamata et al. (2016) also showed that 1+ |k2| — |he| varies linearly with the thickness of the ice shells,
with the slope of this relationship governed by its rigidity. This behavior can also be seen in Figure 3.13,
which shows that varying the rigidity alters the value of 1 + |k2| — |he| for a fixed value of the ice shell
thickness. Therefore, the linear combination 1+ |ko| — |ha| might constrain the product of shell thickness
and shear modulus (Steinbriigge et al., 2015; Wahr et al., 2006). Additionally, constraining the ice shell
rigidity could help to narrow the uncertainty in the ice shell thickness through measurements of the
Love numbers.
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Figure 3.12: Two-dimensional histogram of the real part of k2 as a function of the selected free parameters.
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Figure 3.13: 1+ |ka| — |h2| as a function of the ice shell thickness and shear modulus.

Another key trend is the dependence of the Re(kz) on the ice shell viscosity, which resembles the
transition from a fluid-like regime at low viscosities to an elastic regime at high viscosities (Moore et al.,
2003), as also seen in the OAT sensitivity analysis. It is also worth highlighting the dependence of
the Love numbers on the Poisson’s ratio, and therefore on the bulk moduli of the layers. Figure 3.12
shows that Re(kz) decreases with decreasing compressibility of the layers. In the majority of studies,
compressibility is neglected (e.g., Hussmann et al. (2016), Jara-Orué et al. (2016), and Moore et al.
(2003)). However, Dobrovolskis (1990) showed that including compressibility in the computation of the
stress tensor of a homogeneous and elastic sphere changes the internal stress distribution by several
percent compared to incompressible models. Beuthe (2015) developed a “massive membrane approach”
to include crust compressibility when modeling the tidal response of icy moons. The results showed
that compressible models yield larger Love numbers than incompressible models, with the difference
increasing with the ice shell thickness (Beuthe, 2015).

Lastly, ocean properties also play a noticeable role. Higher ocean densities, which result from higher
salinity values, increase the density contrast between the ice shell and the ocean. When the body
deforms, a larger density contrast leads to a more significant mass redistribution, which in turn produces
a greater change in the gravitational field, and consequently a higher value of Re(k3).

Figure 3.14 shows the two-dimensional histograms of the imaginary part of ks. Due to the similar
behavior of the Love numbers, we will comment on k5 only, but analogous conclusions can be drawn for
hg (see Figure D.12). Similarly to Re(k2), the trends are in agreement with the ones observed in the OAT
sensitivity analysis. The sensitivity of the imaginary part of ko to ice shell viscosity provides valuable
insight into Ganymede’s viscoelastic behavior, as illustrated in the bottom-left subplot of Figure 3.14.
This behavior resembles the one observed in Figure D.9 and can be explained by the Maxwell rheological
model, in which the material is idealized as a purely elastic spring with shear modulus s and a purely
viscous dashpot with viscosity 7 connected in series (Tobie et al., 2025). The characteristic timescale
separating viscous and elastic behavior is the Maxwell time, defined as:

Hs

TM " . (32)
When the tidal forcing period is much longer than the Maxwell time, the dashpot dominates and the
shell deforms viscously. When the tidal forcing period is much smaller than the Maxwell time, the
spring dominates and the response is elastic. For forcing periods comparable to the Maxwell time, the
imaginary part of the Love numbers reaches a maximum, indicating peak energy dissipation (Tobie
et al., 2025). The location and amplitude of this dissipation peak depend on both ps and 7, and here
occurs between nic. = 102 Pas and .. = 10'° Pas.

Figure 3.15 shows the tidal phase lag difference as a function of the HP ice and ice shell viscosities.
The phase lag is defined as vy, = tan™!(Im(k2)/Re(k2)). Hussmann et al. (2016) used this quantity to
investigate Ganymede’s dissipation and showed that the phase lag difference is dominated by dissipation
in the HP ice layer rather than the ice I shell (Hussmann et al., 2016, Figure 2(c) and Figure 3).

36
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Figure 3.14: Two-dimensional histogram of the imaginary part of k2 as a function of selected free parameters. A
negative sign is applied to Im(k2) to allow plotting on a logarithmic scale.

Depending on the model parameters, the phase lag difference peaks at a certain value of HP ice viscosity,
which occurs here at below 1 x 10'* Pas. The dependence on the ice shell viscosity is weaker, and two
distinct regions can be identified: one for negative phase lag values, which are associated with very low
Nice values, and the other for ny, > 10'% Pas, where an area of Nice values around 10'® Pas is visible in
dark green. Phase lag measurements could therefore help constrain the viscosity of the HP ice layer.

101 101 107 10"
Thp [Pa S]

Figure 3.15: Tidal phase lag difference as a function of the high-pressure ice. The color scale indicates the ice shell
viscosity.

3.3.3. Libration Response

The libration response is computed using the method described in subsection 2.1.4 and analyzed in
terms of the libration amplitude of the ice shell, as it is expected to be the most significant (Baland
et al., 2010; Van Hoolst et al., 2013). Additionally, the shell’s libration is more easily observable, using
instruments such as cameras, radar or laser altimeters, while the libration of interior could be inferred
from measurements of the time-variable component of the Cyy gravitational coefficient (Van Hoolst
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et al., 2013).

The libration amplitude computed following the approach of Van Hoolst et al. (2013) is independent of
the bulk moduli of the layers, and therefore the Poisson’s ratio, since the method assumes incompressible
layers. Additionally, this method assumes elastic layers and models the tidal response using frequency-
independent Love numbers (Van Hoolst et al., 2013). Therefore, the libration amplitude is independent
of the viscosity of the layers as well.

Shell Libration Amplitude - Full Monte Carlo Analysis
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Figure 3.16: Two-dimensional histogram of the libration amplitude of the ice shell as a function of the ice shell shear
modulus.

Figure 3.16 shows the two-dimensional histogram of the libration amplitude of the ice shell as a function
of the ice shell shear modulus. This interior parameter is the major contributor to the libration response,
as seen in the OAT sensitivity analysis, and no other parameter shows significant correlation with
this observable. For low rigidities, the ice behaves like a fluid and is more easily deformed, decreasing
the libration amplitude, while highly rigid shells increase the libration (Van Hoolst et al., 2013). The
reduction in libration amplitude with increasing deformation can be explained considering how energy is
stored in the body. Gravitational interactions cause Ganymede to both deform and wobble, resulting in
energy being stored in two ways: as elastic energy due to the deformation of the shell, and as gravitational
energy due to the change in orientation during libration (Van Hoolst et al., 2020). When the shell is
flexible rather than rigid, it can deform in response to gravitational forces, storing more elastic energy
and reducing the amount available for libration motion (Van Hoolst et al., 2020).

Measuring Ganymede’s libration could provide a strong constraint on the ice shell rigidity. Constraining
this parameter could, in turn, help to narrow the uncertainty in the ice shell thickness through
measurements of both ko and hso, as previously discussed. Pairing libration measurements with those of
the tidal Love numbers could therefore provide constraints on two largely unconstrained parameters of
Ganymede’s interior.

However, Ganymede’s libration amplitude is expected to be small (Van Hoolst et al., 2013), as shown in
Figure 3.16. Additionally, the GALA instrument on board of Juice is expected to measure the shell
libration amplitude with an uncertainty between 6.6 m and 17.5m at the equator (Steinbriigge et al.,
2019). Since the uncertainty is on the same order of magnitude as the libration amplitude itself, a high
error in the measurements would hinder the ability to constrain the ice shell’s rigidity. This highlights
the importance of high-precision libration measurements to obtain meaningful constraints on both the
rigidity and thickness of the ice shell.
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Bayesian Inversion

Now that we understand the sensitivity of the observations to the model parameters, we perform a
Bayesian inversion to retrieve the interior parameters of Ganymede. The general methodology and the
theoretical background on Bayesian inversion are described in section 2.2 and section B.3, respectively.
Here, we focus on the specific setup of the inversions, the parameters to be retrieved, and the results
obtained.

We carry out four inversions, each using a different set of observations. These will be referred to as
“Inversion 1” through “Inversion 4”. The inversions progressively incorporate additional observational
constraints. The first two use currently available spacecraft data — the Mol factor and the magnetic
induction amplitude — while the last two include synthetic observations to improve the characterization
of the moon’s interior structure. Such measurements will be provided by the ESA’s Juice mission. In
addition to considering different observables, each inversion also involves different retrieved parameters
and prior ranges. The rationale behind these choices is discussed in the respective section presenting
each inversion. A summary of the characteristics and results of each inversion is provided in Table 4.1.

The chapter is structured as follows: section 4.1 describes the general setup of the Bayesian inversion,
including the definition of the prior distributions and the likelihood function, as well as specific details
on the sampling of the parameters; section 4.2 presents the results of the inversion using gravity and
magnetic induction data, highlighting the current knowledge about Ganymede’s interior structure;
section 4.3 analyzes the potential impact of future measurements of Ganymede’s tidal response on the
inversion results, and how these measurements could improve our understanding of Ganymede’s interior.

4.1. Bayesian Inversion Setup

We perform the Bayesian inversion using the emcee package for Python (Foreman-Mackey et al., 2013),
which implements the affine-invariant MCMC ensemble sampler by Goodman et al. (2010), described in
section 2.2. In addition to the standard “stretch move”, the emcee sampler also implements different
types of moves. Two of these are the Differential Evolution (DE) move (Nelson et al., 2013) and the DE
snooker move (ter Braak et al., 2008), which are particularly useful in combination for high-dimensional
problems. In the inversions described in section 4.2, we employ 32 walkers and a combination of the
DE and snooker moves, with relative fractions of 0.8 and 0.2, respectively (Foreman-Mackey, 2022).
This ensures an efficient exploration of the high-dimensional parameter space, while maintaining a good
acceptance rate of the proposed samples.

In the inversions described in section 4.3, we instead use the standard Metropolis-Hastings (M-H) move.
Due to the very small predicted uncertainty of future ko measurements, the acceptance rate of the
sampler is significantly lower when using the DE and snooker moves. Foreman-Mackey et al. (2013)
note that an acceptance fraction between 0.2 to 0.5 typically indicates proper sampler performance,
while results from inversions with acceptance fractions outside this range might not reliably represent
effective posterior distributions. Using the M-H move with a low-variance proposal distribution allows
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Table 4.1: Summary of the different inversions performed. For each inversion, the table reports the corresponding section where it is
described, the observables considered, the prior ranges of each variable, and the ranges of the constraint variables. The posterior estimates
are listed as the median value (50th percentile) with uncertainties corresponding to the 16th and 84th percentiles. Empty cells indicate
that the corresponding parameter is not retrieved in that inversion. Lightly shaded cells highlight parameters for which different ranges

are considered across the various inversions.

Inversion 1

Inversion 2

Inversion 3

Inversion 4

Corresponding section

Subsection 4.2.1

Subsection 4.2.2

Subsection 4.3.1

Subsection 4.3.2

Observations Mol Mol + induction = Mol + induction Mol + induction +
+ Re(k2) Re(k2) + Im(ks)
re [km] [200, 2100] 200, 2100] [200, 1500] [200, 1500]
Tma [km] [1000, 2100] [1000, 2100] [1400, 2000] [1400, 2000]
Dice [km] [1,160] [1,160] [1,160] [1,160]
Prma [kgm ™3] [2000, 8000] [3000, 4000] [3000, 4000] [3000, 4000]
Php [kgm™3] [1100, 1600] [1100, 1400] [1100, 1400] [1100, 1400]
Prior Pice [kgm ™3] [900, 1300] [900, 1300] [900, 1300] [900, 1300]
wt [%)] [0, 10] [0, 10] [0, 10] [0, 10]
log(#s,np) [log(Pa)] [9,10] [9,10]
1Og(/~"s,1ce) [IOg(Pa)] [87 10] [87 10]
log(np) [log(Pas)] [12,20]
log(nice) [log(Pas)] (12, 20] [12,20]
v 1] [0.3,0.49] [0.3,0.49]
Constraints  pe [kgm™3] [2000, 8000] (5150, 8000] [5150, 8000] [5150, 8000]
re [km] 1255.591256-89 770.731156-52 753.691 15984 746.75158-18
Tma [km] 1676.171155-53 1756.67 553 1775.6053-52 1787.72772 12
pe [kgm—3] 4747.03T 135151 6060.49T 5501512 6058.99T ;12786 6082.711 115,26
Prma [kgm 3] 3091.091535-98 3350.94+397:21 3323.687 31118 3308.34 130493
Dice [km] 70.48745-43 110.4711721 106.88721-46 102.81+23:08
Thp [km] 2339.10758-50 2398.92+51-32 2387.47+55-62 2382.79151-57
7o [km] 2560.72155-29 2520.73179-23 25243213032 2528.39152-28
Posterior Php [kgm ™3 1432.78711595 1315.34755°5 13117375560 1294.00178:22,
estimates 7o kem ™ 1159.77155-92 1149.90751-99 1133.7973955 1132.8574%%2
pice [kgm™3] 1025.21784-56 1031.11+7401 1004.44169-53 1008.23+89-42
wt [%] 5.437507 5.02152 317530 2.987579
Ko [Sm™1] 1751072 1.6510 17 1.18%5:5¢ 112709
log(#s,np) [log(Pa)] 9.6370:35 9.6370 33
10g (415 jice) [log(Pa)] 8.91%0 % 8.78%0733
log(mp) [log(Pas)] 15.927745
log(7ice) [log(Pas)] 15.94*3 79 16481353

0.05
0.42150>

0.05
0.421005

Posterior distributions

Figure 4.3,
Figure 4.4

Figure 4.5,
Figure E.3

Figure 4.8,
Figure E.4

Figure 4.9,
Figure E.5,
Figure E.6
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the proposed samples to remain closer to the current state, increasing the likelihood of acceptance and
achieving an acceptance fraction of around 0.2. Although this approach is less efficient and requires
longer chains to ensure convergence, thorough exploration of the parameter space is still achieved thanks
to the large number of samples and an increased number of walkers, set to 64. This setup provides
more robust performance in the presence of likelihood functions dominated by observables with very low
uncertainties.

The walkers start from a different point in the parameter space randomly selected from the prior
distribution. The length of each chain is chosen to ensure convergence and depends on the inversion
case. According to the emcee documentation (Foreman-Mackey, 2022), a chain has converged when its
length is at least 50 times the autocorrelation time, N > 507. Additionally, to avoid dependence on
the initial conditions, a “burn-in” period of a few autocorrelation times is applied. Following the emcee
documentation (Foreman-Mackey, 2022), we discard the first 27 samples of each chain when analyzing
the results.

We adopt uninformative priors for the interior parameters, meaning that their prior distribution is
uniform within selected ranges, and zero outside. In general, we require:

Pec € [5100 kg m_?’, 8000 kg m_3]

Pice < Po < Php (4.1)
Pma < Pc

Te < Tma < Thp

However, some analyses allow for a wider range of the core density, as explained in section 4.2. The
specific prior ranges used in each inversion are detailed in the corresponding sections. The log-prior
distribution of a model M ; is thus defined as:

0 if the interior model complies with Equation 4.1 (4.2)
—inf otherwise .

log{p(X|M;,I)} = {
Assuming independent, additive Gaussian uncertainties for the observations, the log-likelihood function
is defined as follows:

Nobs L Mj 2
log {p(O1X, M5, 1)} =3 <M> (43)

N ag;
=1
Lastly, the log-probability of the model is computed as the sum of the log-prior and the log-likelihood:
IOg{p(X‘gv Mj’ I)} = log{p(®|X, Mja I)} + log{p(X|ij I)} (44)

Due to the large number of parameters and the diverse ranges of the physical values, we sample the free
parameters in a unit hypercube. Before computing the constrained parameters and the observables, the
samples are transformed from the unit hypercube to the physical values. For each variable X, given the
lower and upper bounds X,,;;, and X ., the transformation from the unit variable u is performed as
follows:

X=u (Xmax - Xmin) + Xmin (45)

4.1.1. Observables and Uncertainties

The observables and their uncertainties are listed in Table 4.2, along with the inversions in which they
are considered. Unlike in the sensitivity analysis presented in chapter 3, the Mol factor is included
here as an observation. The uncertainties in Mol and magnetic induction amplitude correspond to the
current uncertainties in the measurements from Galileo and they are taken from Schubert et al. (2004)
and Kivelson et al. (2002), respectively. The uncertainties in the tidal Love numbers and in the ice shell
libration are the expected uncertainties of the future Juice mission (Cappuccio et al., 2020; Van Hoolst
et al., 2024).

We currently lack measurements for the tidal Love numbers ks and ho, as well as for the libration
amplitude of Ganymede’s ice shell. Therefore, we compute the response of a specific interior model of
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Table 4.2: Observables and their uncertainties used in the Bayesian inversion. If “Synthetic” is specified in the
“Reference” column, the observable is synthetic and computed from the interior model parameters listed in Table 4.3. The
last column indicates in which inversion(s) the corresponding observable is used.

Observable Central Value Uncertainty Unit Reference Inversion number
I/MR? 0.3115 0.0028 - Schubert et al. (2004) 1,2, 3, 4

| A€ 0.84 0.018 - Kivelson et al. (2002) 2, 3, 4

Re{k2} 0.5215 1x1074 - Synthetic 3,4

Im{ko} -0.0002 6.8 x107° - Synthetic 4

Re{ha} 1.4847 2.6 x 1072 - Synthetic

|Wicel 3.0774 6.6 —17.4 m Synthetic

Table 4.3: Interior model parameters used to compute the nominal values of the observables.

Parameter Value Unit Parameter Value Unit

Teo 693.1291  km log(ps,ma) 11.8751 log(Pa)
Tma 1697.3503 km log(ts np) 96990  log(Pa)
Dice 114.6500  km log (s ice) 9 log(Pa)
Prma 3630.4849 kgm™3  log(ma) 20 log(Pas)
Php 1353.7375  kgm™  log(nnp) 16 log(Pas)
Dice 1026.7033  kgm™3  log(Mice) 16 log(Pas)
wt 4.3695 % v 0.3950 -

Ganymede and use the resulting values as the nominal values of the observables. The interior model
used to generate these synthetic observations is selected as follows. The radii and densities of each layer
are taken from the inversion constrained by gravity and magnetic induction data to ensure consistency
with current observations. The mechanical properties of the layers are set to the central values of the
parameter ranges considered in the inversion, following the approach adopted by Ermakov et al. (2021).
The selected interior model parameters are listed in Table 4.3.

In our work, we assume Ganymede to be in hydrostatic equilibrium, and we use the Mol estimate
from Schubert et al. (2004) obtained with the Darwin-Radau approximation. Gomez Casajus et al.
(2022) more recently presented a refined gravity field model of Ganymede using Doppler tracking data
from both the Galileo and Juno spacecraft flybys. The authors derived a gravity field solution up
to degree and order 5 and revealed localized anomalies not previously resolved. The study confirms
that Ganymede’s degree-2 gravity field is consistent with hydrostatic equilibrium, but also identifies
significant non-hydrostatic contributions. Taking into account these anomalies, the inferred Mol and its
related uncertainty are slightly higher than earlier estimates (I/M R? = 0.3159 £ 0.0052), implying a
less differentiated interior structure (Gomez Casajus et al., 2022).

Gao et al. (2013) evaluated the reliability of the Darwin-Radau approximation for icy satellites under
the assumption of hydrostatic equilibrium, which implies that their shape and gravity field are governed
by rotation and self-gravity only. The authors showed that non-hydrostaticity — manifested as deviations
from equipotential surfaces — can introduce significant errors in Mol estimates, particularly for slowly
rotating and/or small bodies like Titan and Callisto (Gao et al., 2013). However, Ganymede’s relatively
rapid rotation and larger size reduce its sensitivity to such effects, indicating that the hydrostatic
assumption is a reasonable approximation and supporting our use of the Mol derived by Schubert et al.
(2004) with the Darwin-Radau approximation.

4.2. Current Knowledge on Ganymede’s Interior Structure

This section analyzes how the current measurements of Ganymede’s gravity and magnetic induction can
be used to retrieve information about its interior structure. Two inversions are performed, one using
only static gravity data (Inversion 1) and the other using both static gravity and magnetic induction
data (Inversion 2). The results are presented in subsection 4.2.1 and subsection 4.2.2, respectively.
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In the sensitivity analysis presented in chapter 3, Ganymede’s mass and moment of inertia were treated
as constraints to generate interior models consistent with gravity data. As illustrated in Figure 3.3,
the Mol factor is correlated with the size and densities of the core and mantle, while the mass, not
included in the figure, shows no significant correlation with any parameter. Additionally, the uncertainty
in the moment of inertia is significantly larger than that of the mass, as indicated in Table 1.1. Since
the moment of inertia provides insights into the deep interior of Ganymede and its differentiation, and
considering its higher uncertainty, it will be included as an observable in the Bayesian inversion. This
change removes one constraint from the model and introduces an additional free parameter. Therefore,
the mantle density will be treated as a free parameter, while the core density will be computed from the
mass and the other parameters. Preliminary analysis reveal that incorporating the moment of inertia
into the likelihood function, rather than treating it as a constraint, changes the posterior distributions
of the parameters, especially those of the core and mantle radii.

A second difference with respect to the sensitivity analysis concerns the ranges of the free parameters. In
fact, some histograms from the MC analysis (e. g., Figure 3.4) indicate that certain variables, especially
those related to the deep interior, are pushed toward the boundaries of their ranges. Therefore, multiple
inversion setups are considered to explore a broader parameter space. Additionally, depending on the
observables included in the inversion, different sets of parameters are sampled as free variables. The
setup of each inversion is detailed in the corresponding subsection.

4.2.1. Bayesian Inversion with Static Gravity Data (Inversion 1)

A first inversion is performed using only Ganymede’s moment of inertia factor as an observable to
analyze the effect of static gravity data alone on the interior model. The sampled parameters and the
ranges considered in this setup are listed in Table 4.4a, while the applied constraints are reported in
Table 4.4b. The constrained parameters are computed with the procedure described in subsection 2.1.1,
except for the core and mantle densities. If a model does not satisfy these constraints, it is discarded.
Since the tidal and libration observations are not included in this inversion, the mechanical properties of
the layers do not influence the response of the model and therefore are not sampled as free parameters.

Table 4.4: Free and constrained parameters considered in “Inversion 1.

(a) Sampling ranges of the free parameters. (b) Constrained parameters and corresponding constraints.
Parameter Range Unit Constrained parameter Constraint

re [200,2100]  km Core density p. [2000, 8000] kgm—3
Tma [1000,2100] km Deep interior densities  pma < pe

Dice [1,160] km Deep interior radii Te < Tma < Thp

Pma [2000,8000] kgm~—? Hydrosphere densities  pice < po < Php

Php [1100,1600] kgm~—3

Dice [900, 1300] kgm™3

wt [0,10] %

A differentiated interior structure with an iron core and a silicate mantle is supported by the presence of
Ganymede’s intrinsic magnetic field, which suggests the existence of a dynamo action in a partially liquid
core (Schubert et al., 1996). However, Anderson et al. (1996) showed that two-layer models consisting
of a rocky core and an ice mantle can also be consistent with the measured Mol factor. We perform
a preliminary analysis of a simple two-layer model with an external radius of Rg = 2631.2km and we
vary the ice shell density between 900 kg m~2 and 1400 kg m~3. We compute the core radius and density
from the ice shell density and the nominal values of mass and Mol listed in Table 1.1. The resulting
core radius and density are shown in Figure 4.1 with a black dotted line, confirming the possibility of an
undifferentiated core, either smaller and composed of Fe-FeS or larger and composed of silicate rock.

The first inversion is thus performed with broad parameter ranges for the innermost layers to remain
agnostic about their compositions and to allow for undifferentiated models. The prior range of the HP
ice density is also broadened to allow for a more comprehensive exploration of the parameter space. This
choice was motivated by preliminary inversion results, which showed that the posterior distribution was
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Figure 4.1: Size and density of the innermost layer of Ganymede, here referred to as “core”, as obtained from “Inversion
1”. Only undifferentiated models are shown, in which the core and mantle densities differ by less than 10kgm—3. The
black dotted line represents the core size and density of a simple two-layer model, obtained by varying the outer layer

density between 900 kg m~3 and 1400 kg m 3, while constraining the core using the nominal mass and Mol values.

pushed toward the upper bound of 1400 kg m~2. To assess whether this behavior was constrained by the
prior limit, we extended the upper bound beyond physically plausible values. Although some of the
resulting densities may not be realistic, this approach helps assess the sensitivity of the inversion to the
prior assumptions.

The length of each chain is set to 100 000 samples, which is sufficient to ensure convergence of the chains.
Figure 4.2 shows the estimated autocorrelation time 7 as a function of the number of samples N for
two different methods. The first one, originally used in emcee, is based on Goodman et al. (2010) and
involves averaging the samples across all walkers to form a single, combined chain (Foreman-Mackey,
2022). The autocorrelation function is then computed for this mean chain. The second method, currently
used in emcee, computes the autocorrelation time separately for each walker’s chain and then averages
these individual estimates (Foreman-Mackey, 2022). This method helps to reduce the variance of the
final estimate. From Figure 4.2, we can confirm that the chains have converged.

10?1 4
—o— G&W (2010)

emcee
-== 7= N/50

T estimates

101 -

10? 10 10 10°
Number of samples N

Figure 4.2: Autocorrelation time 7 as a function of the number of samples N for the method suggested by Goodman
et al. (2010) and the current method used in emcee (Foreman-Mackey, 2022). A black dashed line indicates the threshold
for convergence, T = N/50.
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Figure 4.3: Posterior probability distributions of the core and mantle radii, rc and rma, and their densities, pc and pma,

retrieved from “Inversion 1”. The vertical dashed black lines and the annotations above the subplots indicate the 16th,

50th, and 84th percentiles. The full orange square and the orange dashed line indicate the parameters corresponding to
the best-fitting sample, while the orange empty squares indicate the next nine best-fitting samples.

The posterior distributions of the core and mantle parameters retrieved from the inversion are shown
in Figure 4.3 and the hydrosphere parameters are illustrated in Figure 4.4 using the Python package
corner.py (Foreman-Mackey, 2016). These plots show the marginalized distributions of the parameters
on the diagonal and the correlations between parameters on the off-diagonal with 2D contour plots. The
value of the moment of inertia mainly constrains the innermost layers of Ganymede, as expected from
the sensitivity analysis in chapter 3, and favors larger core and mantle radii, but lower densities for both
layers (Figure 4.3).

Since the ranges of the core and mantle densities overlap, the results suggest the possibility of undiffer-
entiated interior structures that are still consistent with the Mol value. We define a model to have an
undifferentiated interior if the density difference between the core and the mantle is less than 10kg m=3.
Models that satisfy this condition are shown in Figure 4.1. The trend agrees with that of the two-layer
model (black dotted line), with differences arising from considering a single ice layer and using only the
nominal Mol value to constrain the interior. Core sizes range from less than 1200 km to nearly 1900 km,

with corresponding densities spanning from over 7000 kg m~2 down to below 4000 kg m—3.

Regarding the hydrosphere parameters, the only one showing a trend in the posterior distribution is
the HP ice density, which tends toward the upper end of the prior range. Additionally, the thickness of
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the ocean shows a drop in probability for thicknesses below 100 km. As discussed in subsection D.1.2,
this region corresponds to the formation of ice III instead of ice V. For the remaining parameters, the
distributions are relatively flat, confirming that the Mol alone can inform the deep interior structure,
but does not constrain the outer layers’ parameters of Ganymede. Including additional observations will
help to better constrain some of these parameters.

This inversion is performed with fixed nominal values of the mass and radius of Ganymede, corresponding
to their central values listed in Table 1.1. To assess the potential influence of these quantities on the
posterior distributions of the parameters, two additional inversions are performed. In the first, the mass
is allowed to vary within Mg 4 o but it is not included in the likelihood function. In the second
inversion, both the mass and total radius vary, and the mass is included in the likelihood function.
Detailed plots are shown in Appendix E, and the parameter estimates of these inversions are reported in
Table E.1 under “Additional Inversions”. In both cases, the posterior distributions show no significant
differences compared to the first inversion. Therefore, the mass and radius of Ganymede are kept fixed
to their nominal values in all the following inversions.

4.2.2. Bayesian Inversion with Static Gravity and Magnetic Induction Data
(Inversion 2)

Bayesian inversion with gravity data enables the estimation of core and mantle radii and densities.
However, the hydrosphere parameters remain largely unconstrained. The sensitivity analysis revealed
that different observables are sensitive to different interior parameters and highlighted the presence of
parameter degeneracies. Specifically, the Mol factor is most sensitive to the core and mantle densities,
magnetic induction to the ocean’s thickness and conductivity, tidal displacement to the thickness and
rigidity of the ice shell, and libration amplitude to shell’s rigidity. Relying on a single observable is
insufficient to break these degeneracies and constrain the full interior structure.

In this section, we therefore analyze the joint inversion of gravity and magnetic induction data. This
approach has already proven successful in the case of Europa (Petricca et al., 2023), where magnetic
induction data improved constraints on both the thickness of the ice shell and the ocean depth. We
expect to achieve similar results for Ganymede, as the sensitivity analysis showed that the magnetic
induction amplitude is strongly influenced by both the ice shell and ocean thickness.

In the previous inversion, we did not assume a specific composition for the core and mantle, leaving the
densities of these layers largely unconstrained. However, given that intrinsic magnetic field observations
support a differentiated interior structure, in this and the following inversions we assume a fully
differentiated body. The core and mantle densities are therefore restricted to ranges consistent with
plausible compositions — specifically, a metallic (Fe or Fe-FeS) core and a silicate mantle. Similarly, the
HP ice density is limited to physically realistic values.

In this inversion, we use both the moment of inertia and the magnetic induction amplitude as observational
constraints, and we adopt the parameter ranges reported in Table 4.5. The length of each chain is set to
100 000 samples, ensuring convergence according to the same approach described in subsection 4.2.1.
Figure 4.5 shows the posterior probability distributions of the hydrosphere parameters.

Table 4.5: Free and constrained parameters considered in “Inversion 2”.

(a) Sampling ranges of the free parameters. (b) Constrained parameters and corresponding constraints.
Parameter Range Unit Constrained parameter Constraint

Te [200,2100]  km Core density p [5150, 8000] kgm~—3
Tma [1000,2100] km Deep interior radii Te < Tma < Thp

Dice [1,160] km Hydrosphere densities Pice < Po < Php

Pma [3000,4000] kgm™3

Php [1100,1400] kgm™3

PDice [900, 1300] kgm™3

wt [0, 10] %
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Figure 4.5: Posterior probability distributions of the hydrosphere parameters retrieved from “Inversion 2”. The details are the same as described in
Figure 4.3.
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The inclusion of magnetic induction data has a clear impact on the posterior distributions of the ice
shell thickness and the ocean thickness, computed as the difference between the outer radius of the
ocean and that of the HP ice layer. While these parameters were previously largely unconstrained, their
posteriors now show well-defined peaks around 110 km and 120 km, respectively. Our estimate of the ice
shell thickness differs from the value of 150 km proposed by Kivelson et al. (2002) to match the observed
magnetic induction amplitude. In their study, Kivelson et al. (2002) assumed that the strength of the
magnetic induction amplitude decreases with the cube of the distance from the conducting surface and

therefore used the simplified relation r, ~ (1 — (0.84)1/ 3) Rg to estimate the depth of the conductive

layer. This estimate should be considered as an order-of-magnitude indication of the ocean depth. The
difference from our results likely arises from the more comprehensive model that we use to calculate the
magnetic induction amplitude of a spherical conducting layer buried beneath the surface (Equation 2.9).

The distributions of the ice shell and ocean densities also exhibit changes. Even though they remain
somewhat broad and less peaked compared to the layers’ sizes, the 1-o credible interval for the ice
shell has narrowed, indicating a tighter constraint. Additionally, the posterior distribution of the ocean
density has shifted toward lower values, suggesting that models with a less dense ocean are favored by
the observables. The ocean composition, quantified by wt, is not constrained by the inversion. This
outcome was expected based on the sensitivity analysis, which showed that all compositions within the
range considered can produce a magnetic induction amplitude consistent with the observations (see
Figure 3.11).
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Figure 4.6: Posterior probability distributions of the core and mantle radii and densities retrieved from “Inversion 1” and
“Inversion 2”. The vertical dashed lines indicate the 50th percentile of the posterior distributions, while the horizontal bars
show the 1-0 credible region.

Figure 4.6 and Figure 4.7 compare the marginalized posterior distributions of the Ganymede’s interior
structure parameters for “Inversion 1”7, using only the moment of inertia, and “Inversion 2”, using both
the moment of inertia and magnetic induction data. Figure 4.6 shows that the inversion results are
strongly influenced by the choice of the prior ranges of the densities. When physical constraints are
applied, the inversion favors smaller core radii and larger mantle radii. Additionally, both core and
mantle densities are shifted toward the lower end of their prior range, suggesting a Fe-FeS composition
for the core and an olivine silicate mantle (Sohl et al., 2002). The 1-o credible intervals, indicated
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by the horizontal bars, are narrower in this inversion, showing improved parameter constraints when
assumptions on the layers’ composition are included. Another inversion was performed using the same
parameter settings as in “Inversion 17, but including the magnetic induction amplitude. The results are
reported in Table E.1 in the column labeled “Mol + induction, Undifferentiated” and show that this
observable has almost no effect on the parameters of the two innermost layers. Therefore, the moment
of inertia is the most informative observation for constraining the structure of Ganymede’s deep interior.
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Figure 4.7: Posterior probability distributions of the hydrosphere parameters retrieved from “Inversion 1” and “Inversion
2”. The vertical dashed lines indicate the 50th percentile of the posterior distributions, while the horizontal bars show the
1-0 credible region.

Figure 4.7 shows the posterior distributions of the hydrosphere parameters. In contrast with the deep
interior parameters, introducing the magnetic induction amplitude as an observable significantly improves
the constraints on several hydrosphere parameters, particularly the ice shell and ocean thicknesses, as
discussed above. Similarly to the core and mantle densities, introducing a tighter constraint on the
density of the HP ice narrows the posterior distribution and shifts it toward the upper end of the prior

range, with a peak at 1400 kgm™3.

As mentioned in subsection 1.2.2; Jia et al. (2024) more recently estimated a magnetic induction
amplitude of 0.72 £ 0.03 using an improved model of Ganymede’s magnetic field. This value is lower
than the one reported by Kivelson et al. (2002), but has a higher uncertainty. The inversion results
would likely change if the updated estimate were used. A reduced induction amplitude would imply a
deeper ocean, a lower ocean conductivity, or a combination of the two (Jia et al., 2024), while the larger
uncertainty would broaden the posterior distributions and weaken the constraints on interior parameters.
Future work should incorporate the updated estimate of the magnetic induction amplitude from Jia
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et al. (2024) into the Bayesian inversion framework.

Table 4.1 summarizes the 50th percentile and the 1-o credible intervals of Ganymede’s interior structure
parameters retrieved from the various inversions. In particular, the results of “Inversion 2” represent the
current best estimate of Ganymede’s interior structure, as it incorporates all available observational and
theoretical constraints. In fact, this inversion combines both the Mol factor and magnetic induction
data, and imposes physical constraints on the layers’ densities based on plausible compositions. These
compositions are consistent with a differentiated interior, a hypothesis supported by the observation of
Ganymede’s intrinsic magnetic field (Schubert et al., 1996).

In the next section, we analyze how future observations from the Juice mission could improve our
understanding of Ganymede’s interior structure. To this end, we consider the expected uncertainties of
Juice’s measurements and generate synthetic data based on the current best estimate of Ganymede’s
interior. The interior model used to generate the synthetic data is selected from the results of “Inversion
2”. Among the 10 best-fitting models, we choose the one whose parameters are closest to the median
values of the posterior distributions. The nominal parameters of this model are listed in Table 4.3, and
the corresponding synthetic observations are reported in Table 4.2.

4.3. Future Measurements

In this section, we analyze how future measurements of Ganymede’s tidal response and libration
could help constrain its interior structure. Petricca et al. (2023) suggested that, while magnetic
induction measurements are crucial for constraining the ocean’s thickness, they are insufficient to infer
its composition. Instead, tidal observations may provide this information, as the real part of the Love
numbers depends on the ocean’s density (Jara-Orué et al., 2016). Additionally, Hussmann et al. (2016)
showed that the phase lag of the Love numbers (i. e., their imaginary part) is sensitive to the viscosity
and rigidity of the ice shell, while the phase lag difference is mainly influenced by the properties of the HP
ice layer. Lastly, although measurements of the shell’s libration amplitude alone cannot fully constrain
Ganymede’s interior structure, they could still provide valuable information on the ice shell density
and rigidity (Van Hoolst et al., 2013), and help to resolve the degeneracy between these parameters, as
explained in section 3.3. Progressively incorporating these observations in the inversion process will
refine our understanding of Ganymede’s interior structure.

First, we perform a Bayesian inversion using the real part of ko (“Inversion 3”), since this observable
might provide information on the ice shell and subsurface ocean (Van Hoolst et al., 2024). The Juice
mission is expected to deliver high-accuracy measurements of the real part of ko. It is thus of significant
scientific interest to understand how this measurement can constrain interior parameters, such as
the ocean density and the rigidities of the ice layers, and improve the current understanding of the
Ganymede’s interior structure. Then, we perform a second inversion using both the real and imaginary
parts of ko (“Inversion 4”) to retrieve information on the ice layers’ viscosities, related to the dissipation
in the moon.

Libration measurements carry large uncertainties and are therefore not expected to provide a useful
constraint on the ice shell rigidity, as discussed in section 3.3. Since the induction signal already provides
a strong constraint on the ice shell thickness, combining the tidal Love number ks with the displacement
Love number hy could, in principle, allow the rigidity to be constrained through their relation with the
ice shell thickness (Wahr et al., 2006, Equation 11). Exploring this possibility is left for future work,
while here we perform two inversions using the real and imaginary parts of ko, excluding ho and the
shell libration amplitude.

4.3.1. Bayesian Inversion with Static Gravity, Magnetic Induction, and Real
ky Tidal Love Number (Inversion 3)

The inversion described in this section is performed using Ganymede’s moment of inertia, magnetic
induction amplitude, and the real part of the ky tidal Love number as observables. To compute
Ganymede’s tidal response, the mechanical properties of the layers are required. From the results of
the sensitivity analysis presented in section 3.3, among the mechanical properties of the layers, only
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the ice shell and HP ice rigidities, the ice shell viscosity, and the Poisson’s ratio are considered as free
parameters, since they significantly influence the real part of the Love number. The other mechanical
properties are considered fixed and set to the values listed in Table 4.3. This reduces the dimensionality
of the parameter space, therefore decreasing the number of samples required for the chains to reach
convergence.

The ranges and the constraints considered in this inversion are summarized in Table 4.6. The ranges of
the core and mantle radii have been reduced compared to the previous inversions to exclude values that
lie outside the bounds of the obtained posterior distribution. This adjustment reduces the number of
discarded models and improves convergence by avoiding sampling in regions where no solutions were
found with the previous inversion, which is particularly important given the large parameter space.

Table 4.6: Free and constrained parameters considered in “Inversion 3”.

(a) Sampling ranges of the free parameters. The symbol log (b) Constrained parameters and corresponding constraints.
indicates the logarithm in base 10.

Constrained parameter Constraint

Parameter Range Unit
Core density pc [5150, 8000] kgm—3
Te 32801288]0] im Deep interior radii Te < Tma < Thp
Tma m eps )
Do 11, 160] T Hydrosphere densities Pice < Po < Php
Pma [3000,4000] kgm™3
Php [1100,1400] kgm™3
Pice [900 1300  kgm™3
wt [0,10] %
log(pts,np)  [9,10] log(Pa)
log(is ice)  [8,10] log(Pa)
log(Nice) [12, 20] log(Pas)
v [0.3,0.49] -

For this inversion, the emcee.moves.GaussianMove sampler is used, which implements a standard M-H
algorithm where new proposals are drawn from a multivariate Gaussian distribution centered on the
current state (Foreman-Mackey, 2022). Since the sampling is performed in an 11-dimensional unit
hypercube, we provide the covariance of the proposal distribution as a vector with 11 elements, each set
to 1 x 107°. This defines an axis-aligned Gaussian proposal distribution, without correlations between
parameters. Each element specifies the variance (i. e., the square of the standard deviation) along the
corresponding dimension. In this case, setting all elements to 1 x 10~° means that the sampler proposes
small steps in each parameter direction, which allows for a fine exploration of the parameter space and
avoids overly large jumps that would result in low acceptance rates. 64 walkers are used, each with a
chain length of 7 x 10%. This ensures that the inversion has converged and that the acceptance rate is
around 0.2.

Figure 4.8 shows the posterior probability distributions of the hydrosphere and the mechanical properties
of the layers. The distributions of the core and mantle parameters are not shown, as they closely resemble
those previously obtained. The distribution of the ice shell thickness also remains qualitatively similar
to the one obtained in the previous inversion, but the median shifts slightly toward lower values, and the
credible interval broadens toward the lower end of the prior range. Including the real part of ko as an
observable thus favors models with thinner ice shells and, consequently, thicker oceans. A thicker ocean
increases the magnetic induction signal of the body, which can be compensated for by a less conductive
ocean (i.e., a lower ocean salinity). This effect is reflected in the posterior distribution of the ocean
composition, which shifts toward and peaks at the lower end of the prior range, indicating a preference
for a less saline ocean. It is also interesting to note the correlation between ice shell thickness and ocean
composition: models with thinner ice shells allow for a wider range of possible ocean compositions, while
increasing ice shell thickness constrains the composition to higher values. This is because a thicker ice
shell leaves a thinner ocean layer, which must be more conductive to produce the observed magnetic
induction signal.

A similar trend to that of the ocean composition is observed for the ocean density (Figure E.4). This
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Figure 4.8: Posterior probability distributions of the hydrosphere parameters and mechanical properties retrieved from “Inversion 3”. The vertical
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behavior can be explained in two ways. First, since the density is derived from the composition, a lower
salinity directly translates into a lower density. Second, models with thinner ice shells yield higher
Re(kz) values, which can be balanced by a lower ocean density, as this has the opposite effect on the
Love number. The real part of ko can thus provide information on the ocean composition, as suggested
by Petricca et al. (2023), while the magnetic induction amplitude remains more sensitive to the ocean
thickness. However, it is important to note that as discussed in section 3.2 and shown in Figure 3.6, the
computation of ocean density becomes less accurate for thin ice shells. This could accentuate the spike
observed in the posterior distribution of the ocean density at low values. A more accurate computation
of ocean density may therefore modify the posterior distribution and should be considered in future
work, but we expect the overall behavior to remain qualitatively similar. Lastly, the median value of the
ice shell density is also shifted toward lower values, with a slightly narrower credible interval, showing
an improvement in the constraint of this parameter when introducing tidal observations.

Regarding the mechanical properties of the layers, models with a rigid HP ice layer and incompressible
layers are favored, as indicated by the distributions of ps np and v, which peak at the upper ends of
their prior ranges. The distribution of the ice shell viscosity is overall flat, except for a local increase in
probability density just above 1 x 104 Pas. According to Figure 3.12, this viscosity range corresponds
to the transition between fluid-like and elastic behavior of the ice shell. Interestingly, this parameter
also correlates with the ocean composition: models with low ocean salinity tend to favor a low-viscosity
ice shell to increase Re(kz), whereas at higher salinities, this preference disappears and the whole range
of viscosities becomes equally likely. Lastly, the models show a preference for ice shell rigidity values in
the middle of the prior range, around 1 GPa, with relatively high probability density also at the lower
end, but with a strong decrease at higher rigidities.

4.3.2. Bayesian Inversion with Static Gravity, Magnetic Induction, Real and
Imaginary k,; Tidal Love Number (Inversion 4)

The inversion described in this section is performed using Ganymede’s moment of inertia, magnetic
induction amplitude, and both the real and the imaginary parts of the ko Love number as observables.
Compared to “Inversion 3” (subsection 4.3.1), the viscosity of the HP ice layer is also included as a free
parameter, since Figure 3.14 shows the dependence of the imaginary part of the Love number on this
parameter. The ranges and constrained considered in this inversion are listed in Table 4.7.

Table 4.7: Free and constrained parameters considered in “Inversion 4”.

(a) Sampling ranges of the free parameters. The symbol log (b) Constrained parameters and corresponding constraints.
indicates the logarithm in base 10.

Constrained parameter Constraint

Parameter Range Unit
Core density pe [5150, 8000] kgm~—3
Te ﬁggblggg]()] im Deep interior radii Te < Tma < Thp
Tma s 1m i3 .
Do 11, 160] T Hydrosphere densities Pice < Po < Php
Pma [3000,4000] kgm™3
Php [1100,1400] kgm—3
Dice [900, 1300] kgm™3
wt [0,10] %
log(fts np) [9,10] log(Pa)
log(ps,ice)  [8,10] log(Pa)
log(nhp) [12, 20] log(Pas)
IOg(nice) [12’ 20] log(Pas)
v [0.3,0.49] -

Similarly to the previous inversion, the emcee.moves.GaussianMove sampler is used, with a covariance
of 1 x 1072 for each parameter. 64 walkers are used, each with a chain length of 1 x 107 to ensure
convergence and an acceptance rate of around 0.2.

Figure 4.9 shows the posterior probability distributions of the hydrosphere parameters and the mechanical
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Figure 4.9: Posterior probability distributions of the hydrosphere parameters and mechanical properties retrieved from “Inversion 4”. The vertical
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properties of the layers. Overall, the hydrosphere parameters show distributions similar to those obtained
in the previous inversion. A notable difference arises in the HP ice density, which now presents a region
of higher probability density at lower values, while the previous inversion yielded a linearly increasing
distribution. The ocean composition and density distributions present higher peaks at the same values as
before, while the conductivity distribution now shifts toward the lower end of the prior range, indicating
a preference for a less saline ocean.
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Figure 4.10: Posterior probability distributions of the mechanical properties retrieved from “Inversion 3” and “Inversion
4”. The black vertical dotted lines indicate the true values of the parameters used to generate the synthetic data. The
vertical dashed lines indicate the 50th percentile of the posterior distributions, while the horizontal bars show the 1-o

credible region. The HP viscosity is not shown, as it is not included in “Inversion 3”.

Including Im(k2) does not significantly affect the posterior distributions of the HP ice shear modulus
and Poisson’s ratio, but it does impact the viscosities of both ice layers and the shear modulus of
the ice shell, as shown in Figure 4.10, which compares the posterior probability distributions of the
mechanical properties retrieved from “Inversion 3” and “Inversion 4”. ps jce shifts its median toward
lower values, with a slightly narrower credible interval, indicating a preference for a low-rigidity ice
shell when the dissipation in the moon is taken into account. The viscosities of both ice layers are
now well constrained: the ice shell viscosity shows a bimodal distribution with peaks at approximately
1 x 102 and 1 x 10'® Pas, while the HP ice viscosity presents a single peak at around 1 x 10'® Pas.
The bimodal distribution of the ice shell viscosity can be confirmed with the two-dimensional histogram
from the sensitivity analysis (Figure 3.14), given that the nominal value of Im(ks) is —2 x 10~%. For
this value, two regions with a higher concentration of models can be identified: one at low viscosities,
around 1 x 10'3, and another at higher viscosities, around 1 x 10'¢, which correspond to the peaks of
the posterior distribution. This behavior can be explained by Maxwell rheology and the bell-shaped
dependence of Im(k2) on ice viscosity: for a given value of Im(ks), two viscosity solutions exist, one on
each side of the peak, except at the maximum of Im(k2), which corresponds to the maximum dissipation
and occurs when the Maxwell time equals the tidal period. However, Hussmann et al. (2016) reported
that reasonable values for ice viscosity are above 1 x 10'3 Pas, which corresponds to the viscosity at
melting point. Therefore, very low viscosities can be considered physically unrealistic, and this should
be taken into account when interpreting the results.

The joint distribution of the viscosities of the two ice layers reveals a trade-off. Since both layers
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contribute to the total dissipation in the moon, strong dissipation in one layer reduces the contribution
of the other. For instance, the peak in the HP ice viscosity corresponds to a high dissipation within
this layer. At these values, the viscosity of the ice shell spans a wide range in the upper end of the
prior. In this regime, the ice shell behaves as a rigid layer, thus producing little dissipation, while the
total dissipation of the moon remains consistent. The same reasoning applies in the opposite case:
when the ice shell viscosity peaks, most of the dissipation is concentrated in this layer, allowing the
high-pressure ice viscosity to vary over the upper end of the range without significantly affecting the
total. Measurements of the phase lag difference between ko and ho might help to resolve this degeneracy
by constraining the viscosity of the HP ice layer, as illustrated in section 3.3.

4.3.3. Summary of the Different Inversions

In this section, we summarize the main findings of the Bayesian inversion approach, highlight the
differences between the various inversions performed, and conclude with the key takeaways of our work.
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Figure 4.11: Posterior probability distributions of the interior parameters retrieved from the four different inversions, as detailed in Table 4.1.
The black vertical dotted lines indicate the true values of the parameters used to generate the synthetic data. The vertical dashed lines indicate
the 50th percentile of the posterior distributions, while the horizontal bars show the 1-o credible region.

Figure 4.11 compares the posterior probability distributions of the interior parameters retrieved from four
different inversions. Differences are evident in both the median values and the widths of the 1-o credible
intervals, especially for some parameters. The inversion using the Mol alone provides constraints on the
deep interior layers, which can be improved by adopting narrower prior ranges. For other parameters,
however, it yields broad and, in some cases, nearly flat distributions, indicating that several hydrosphere
properties remain largely unconstrained when relying solely on this observable. Including magnetic
induction data significantly improves the results, as discussed in subsection 4.2.2, providing estimates of
the ocean depth and thickness. Yet, the distribution of the ocean composition remains flat, highlighting
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the trade-off between these parameters. Adding the real part of ks further improves the results, while
including its imaginary part mainly affects the estimates of the mechanical properties of the ice layers,
as shown in Figure 4.10.

When including the Love number in the inversion, the credible intervals of the ice shell and ocean
thicknesses become larger, while their medians remain overall similar. Compared to the magnetic
induction amplitude, the Re(k2) observation is consistent with a wider range of ice shell thicknesses.
Because the real ks measurement has a much lower uncertainty than the induction amplitude, it is more
constraining and it results in a “higher weight” in the inference. This means that the sampler tends to
satisfy the Re(ky) observation more often than the induction amplitude, which effectively broadens the
posterior distribution of the ice shell thickness.

For the densities, the most notable effect is on the ocean density, whose distribution shifts towards lower
values and becomes more sharply peaked, confirming the role of Re(ks) in constraining this parameter.
Since the ocean density is determined by its composition, the posterior distribution of wt also changes,
shifting the median toward lower values and peaking at the lower end of the prior range, suggesting a
preference for a less saline ocean. As suggested by Petricca et al. (2023), the real part of ko can thus be
used to infer the ocean composition, while the magnetic induction amplitude is more sensitive to the
ocean thickness. Since the ocean salinity is directly related to its composition, the posterior distribution
of ko also shifts toward lower values, while its credible interval remains similar. Magnetic induction
and ko observations therefore have opposite effects on the inferred ocean salinity: the former favors a
more saline ocean, while the latter prefers a less saline one. When both observations are considered, the
effect of the real part of ks dominates due to its lower uncertainty, resulting in a posterior distribution
consistent with a low-salinity ocean. In the interpretation of the results, it is important to keep in mind
the selected values for the synthetic observations, as different measurements of ks would likely lead to
different parameter estimates.

Lastly, the median density of the ice shell layer is also shifted toward lower values, with a slightly
narrower credible interval, showing an improvement in the constraint of this parameter when introducing
tidal observations. The distribution of the HP ice density, on the other hand, remains overall similar
when including Re(k2), but it changes when also considering Im(k2), as discussed in subsection 4.3.2.

For some parameters, the true values used to generate the synthetic observations were well retrieved
by the final (and most complete) inversion. This is particularly the case, with some exceptions, for
the innermost layers, where the Mol factor provides a relatively strong constraint, and for the ice shell
thickness. In this case, the retrieved value is slightly lower than the true one, and it deviates further from
the fiducial value when tidal observations are included in the inversion. The most uncertain parameters
remain those related to the ocean composition and, in some cases, the mechanical properties, which
are also the most physically uncertain. The inability to recover the true values for certain parameters
indicates that degeneracies remain, and that additional constraints will be needed to improve parameter
estimates.

Overall, Figure 4.11 illustrates the new information provided by each dataset and highlights the benefit of
constraining the interior parameters using multiple observations, as each dataset brings complementary
information that together provide a more comprehensive view of Ganymede’s internal structure.
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Conclusions and Recommendations

This chapter presents the conclusions of the thesis and outlines the recommendations for future work.
The aim of this project was to investigate how the joint inversion of gravity, magnetic induction, tidal
and libration observations can improve the characterization of Ganymede’s interior structure, from which
the main research question was formulated:

How can the joint inversion of gravity, magnetic induction, tidal and libration observations
improve the characterization of the interior structure of Ganymede?

The research question was further divided into four sub-questions:

1. [SQ1.1] What is the sensitivity of the different observations to variations in Ganymede’s
interior structure?

2. [SQ1.2] To what extent can the joint inversion of available data — static gravity and
magnetic induction — constrain Ganymede’s interior structure?

3. [SQ1.3] How can the addition of tidal and libration observations to the inversion
improve the characterization of Ganymede’s interior structure?

4. [SQ1.4] To what extent do the uncertainties in the input data affect the reliability of
the inversion results?

The work was divided into two main parts: a sensitivity analysis to evaluate the influence of the model
parameters on the observables, which answered the first sub-question, and a Bayesian inversion to
retrieve the interior parameters of Ganymede, which answered the second and third sub-questions. The
fourth sub-question was not addressed in this project due to time constraints, but it could be explored
in future work.

5.1. Conclusions

This work presents a comprehensive framework for characterizing Ganymede’s interior structure through
joint Bayesian inversion of gravity, magnetic induction, tidal, and libration observations. The results
demonstrate that combining multiple observables is crucial to constrain the internal structure of icy
moons, and that a joint inversion approach significantly improves parameter estimates compared to the
use of a single-dataset.

The sensitivity analysis provided a preliminary understanding of how each observable changes with
variations in interior parameters. The magnetic induction amplitude was found to be most sensitive to
the thickness and conductivity of the subsurface ocean. Tidal displacement, particularly the real part
of the Love number ks, showed high sensitivity to the ice shell thickness and rigidity, while libration
amplitude was primarily influenced by the shell’s shear modulus. The analysis indicated that Ganymede’s
shell libration amplitude is small, in the same order of magnitude as the expected uncertainty from
the Juice mission. Therefore, high measurements errors would hinder the ability to constrain the ice
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shell’s rigidity, highlighting the importance of high-precision libration observations to obtain meaningful
constraints. The study also revealed several parameter degeneracies, such as the one between shell
thickness, ocean density, and shear modulus in the tidal response. These findings highlight the need for
a joint inversion approach to integrate multiple datasets and break such degeneracies.

The Bayesian inversion was performed in successive steps, progressively incorporating additional observ-
ables. The initial inversion using only Ganymede’s moment of inertia provided broad constraints on the
deep interior: the core radius was estimated at 12561 555 km, with the mantle radius at 16767155 km. The
densities estimates of these layers overlapped, leaving open the possibility of undifferentiated interiors if
other constraints are not taken into account. In this inversion, the hydrosphere parameters were largely
unconstrained, with almost flat posterior distributions and only a trend in the high-pressure ice density
toward the prior upper bound.

The assumption of a differentiated structure, with density priors restricted to physically plausible Fe-FeS
cores and silicate mantles, further narrowed the estimates of the deep interior structure parameters.
In this case, the core radius shifted to smaller values, around 7717157 km, and the mantle radius to
larger values, 1757f;; km, while both densities were shifted toward the lower ends of their prior ranges,

supporting a Fe-FeS core and an olivine-rich mantle.

Including magnetic induction data significantly improved the estimates of the outer layers. In particular,
the ice shell thickness was constrained around 110km, and the ocean thickness peaked near ~ 125 km.
The external radius of the high-pressure ice was also estimated to be ~ 2400 km. While this observables
sharpened the distributions of layer thicknesses, they did not constrain the ocean composition, confirming
the degeneracy between ocean salinity and thickness.

The inclusion of the tidal Love number ko improved the parameter estimates, although the results in
this study strongly depend on the synthetic observations generated by the fiducial model, and different
values of ko would likely yield different parameter estimates. In particular, the real part of the ks Love
number helped refine the constraints on both the ice shell density and the ocean composition. The
median ice shell density shifted downward to ~ 1000kg/m?, while the ocean density peaked at values
around 1100 kg/m?, consistent with a low-salinity ocean. This value is lower than that assumed in
the fiducial model used to generate the synthetic observations, highlighting that degeneracies between
parameters are still present. Nevertheless, Re(ks) allowed high-density oceans, and thus oceans with
high MgSO, concentrations, to be ruled out. This inversion also provided constraints on mechanical
properties: the rigidity of the high-pressure ice layer was pushed toward the upper end of the prior
(s np ~ 1019 Pa), while incompressible layers (v ~ 0.49) were favored.

Finally, the inversion incorporating moment of inertia, magnetic induction amplitude, and both the real
and imaginary parts of ko, yielded the most comprehensive characterization of Ganymede’s structure.
The bimodal distribution of the ice shell viscosity revealed two possible dissipation regimes at ~ 10'2
and ~ 10'6 Pas, while the viscosity of the high-pressure ice peaked at ~ 10'® Pas. The inclusion of tidal
observations therefore not only constrains some of the mechanical properties of the ice layers, but also
supports a low-density, low-salinity ocean.

Overall, the results demonstrate that a joint Bayesian inversion is a powerful tool for the characterization
of planetary interiors. Starting from static gravity data alone, which constrain only the deep interior,
the progressive inclusion of magnetic induction and tidal observations reduces parameter degeneracies,
leading to a more comprehensive picture of Ganymede’s structure. The framework developed here is
not only applicable to Ganymede and the upcoming ESA’s Juice mission data, but can be extended to
other icy moons such as Europa and Enceladus, where spacecraft data will provide similar observational
constraints.

5.2. Recommendations for Future Work

The results obtained in this thesis are promising, but several aspects could be refined or further investi-
gated in future work. We divide the recommendations into two parts: the first concerns improvements of
the interior modeling framework, while the second addresses possible extensions to aspects not considered
in this study.
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With respect to the interior modeling, several elements could be improved. First, the ocean density
was computed from the mean pressure of the layer. However, we showed that this approach differs
from calculating the density at each depth and then averaging the values, especially for thicker oceans.
Future studies could adopt this more precise method to improve ocean density estimates. Second, we
assumed a constant temperature profile in the convective ocean. A more realistic approach would be
to consider an adiabatic temperature profile, where the temperature varies with depth depending on
the thermal expansivity and the specific heat of the ocean. This would shift the intersection point
of the pressure-temperature profile with the ice-liquidus curve, thus increasing the ocean thickness.
Third, alternative ocean compositions could be explored. In particular, a water-NaCl solution could be
considered, since the assumed composition in this study is itself a simplification.

Additionally, the modeling of Ganymede’s interior structure could be improved by adopting self-consistent
approaches; such as the method proposed by Kamata et al. (2016) or the framework implemented in
PlanetProfile (Styczinski et al., 2023). These models derive radial profiles of mechanical, thermodynamic,
and electrical properties by combining observed constraints with assumptions about composition and
laboratory-based equations of state. Such an approach would, for example, yield depth-dependent
conductivities that vary with the density and temperature of the ocean, which would influence the
moon’s magnetic induction response (Styczinski et al., 2022). At the same time, adopting a self-consistent
framework introduces additional uncertainties, since some of the parameters rely on (semi-)empirical
parameterizations. For example, the viscosity profile in the ice shell is usually described by a scaling law
that depends on the assumed activation energy of ice, which itself remains uncertain. As a result, while
these models offer a more realistic representation of the interior structure, they also strongly depend
on the assumed rheological and thermodynamic parameters, which introduce an additional degree of
uncertainty.

Lastly, to compute the tidal response we assumed a Maxwell rheological model to describe the viscoelastic
behavior of Ganymede. While the Maxwell model is appropriate for capturing relaxation properties
when the forcing period is close to the Maxwell time, it cannot represent attenuation across a wide range
of frequencies (Tobie et al., 2025). More advanced rheological descriptions exist, including the Burgers,
Andrade, Sundberg—Cooper, and Cole models. The Burgers model accounts for viscous creep and
transient anelasticity, while the Andrade model provides a more accurate transient response, but both
rely on empirical parameters that are largely unconstrained (Tobie et al., 2025). The Sundberg—Cooper
model combines features of Andrade and Burgers to reproduce laboratory data at high frequencies, and
the Cole model, developed for water ice, links dissipation to microscopic processes (Tobie et al., 2025).
Future work could employ more advanced rheological models to improve the accuracy of Ganymede’s
viscoelastic response. Such approaches, however, introduce additional uncertainties due to the empirical
parameters involved. For instance, adopting an Andrade model would require treating its two rheological
parameters as free variables, therefore expanding the parameter space and increasing computational
cost.

We now discuss possible extensions of this work, focusing in particular on the inclusion of additional
observations in the Bayesian inversion. In this work, we considered the moment of inertia factor, the
magnetic induction amplitude, and the real and imaginary parts of the ks tidal Love number. Future
studies could incorporate the ho tidal Love number and the shell libration amplitude, which would
provide additional constraints, particularly on the ice shell thickness and rigidity, and potentially on
the viscosity of the HP ice. Additionally, the fourth sub-question could be addressed to investigate how
uncertainties in the observations affect the retrieval of the interior parameters. A notable example is the
libration measurement, which is expected to have large uncertainties. Given the expected magnitude of
the shell libration, these uncertainties would lead to a very broad range of possible ice shell rigidities.
In contrast, reducing the measurement uncertainty would significantly narrow this range, improve the
estimation of this parameter, and reduce its degeneracy with the ice shell thickness.

In this work, we assume Ganymede to be in hydrostatic equilibrium. However, as discussed in subsec-
tion 4.1.1, this simplification may not fully capture the moon’s interior state. Future studies could relax
this assumption by accounting for deviations from hydrostaticity and considering the more recent Mol
estimate of Casajus et al. (2021), which incorporates non-hydrostatic contributions. Additionally, as
mentioned in subsection 1.2.2, Jia et al. (2024) reported an updated estimate of Ganymede’s magnetic
induction response, which was obtained by using magnetohydrodynamic simulations to subtract plasma

61



and ionospheric current contributions from spacecraft measurements. This refined analysis revealed an
induction efficiency of ~ 0.72 +0.03 (Jia et al., 2024), significantly lower than that reported by Kivelson
et al. (2002). Future work should therefore update the value currently used in this study with the
latest estimate obtained by Jia et al. (2024). Lastly, our results depend on the synthetic observations
derived from the chosen fiducial model parameters. Future work could explore how variations in these
measurements influence the parameter estimates.

In modeling Ganymede’s magnetic induction response, we performed several simplifications, such as
assuming a uniform excitation field from Jupiter, a single, uniform, and spherically symmetric conducting
layer inside Ganymede, and an inducing period corresponding to Jupiter’s synodic period. However,
Van Hoolst et al. (2024) highlighted that electromagnetic induction responses at multiple frequencies
are necessary to break the degeneracy between the ice shell thickness, ocean thickness, and ocean
conductivity, since responses at a single frequency are insufficient to uniquely determine the parameters.
While available Galileo and Juno data only allowed measurements of the induced magnetic field at
the main inducing frequency (Jupiter’s synodic period), Juice will perform measurements at secondary
induction frequencies. Future studies could therefore incorporate multi-frequency induction modeling.
Moreover, in addition to the magnetic induction amplitude, the phase lag of the magnetic induction
response could also be included in the inversion. Seufert et al. (2011) showed that, with a more
comprehensive magnetic field model, the phase lag can reveal interactions between the conducting layers.

In this study, we only considered the degree-two tidal response of a 1D, spherically symmetric Ganymede
forced at its orbital period. While the degree-two tidal potential dominates because of the strong
decrease of the tidal forcing with the distance from Jupiter, very accurate data from 3GM may allow
the detection of higher-order terms in Ganymede’s tidal response (Van Hoolst et al., 2024). For example,
a measurement of the degree-three tide could introduce constraints on lateral variations in ice shell
thickness, density and rheology (Van Hoolst et al., 2024). In addition, tides raised by other moons may
also play a role, even though they are much weaker than those induced by Jupiter. Moon—moon tides
are expected to generate vertical displacements of less than a millimeter, but resonances between the
forcing frequencies of Io, Europa, and Callisto and Ganymede’s ocean eigenmodes could amplify the
response (Van Hoolst et al., 2024). If such resonances occur, their effect on the tidal Love numbers could
allow the detectability of moon—moon tides. Measuring these tides at multiple frequencies with 3GM
could then provide constraints on the viscoelastic behavior of the ice shell and on the ocean thickness
to within about 10km (Van Hoolst et al., 2024). Future work could therefore extend the analysis to
include lateral variations and moon—moon tides.
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Planning

The following work packages are identified and planned to be carried out in the next 8 months.

1. [WP1] Literature Research: This work package involves the review of the existing literature
on Ganymede’s interior structure, magnetic field, tidal response, and librations, as well as on the
Bayesian inversion methodology. The review will be used to develop a comprehensive understanding
of the problem and to identify the gaps in the existing knowledge.

2. [WP2] Ganymede’s Interior Model: This work package involves the development of an interior
model of Ganymede according to subsection 2.1.1. It can be further divided into the following
sub-packages.

2.1 [WP2.1] Definition of the different layers.

2.2 [WP2.2] Definition of the parameters of interest for each layer.
2.3 [WP2.3]

2.4 [WP2.4] Computation of the constrained parameters.

2.5 [WP2.5] Verification.

3. [WP3] Forward Model: This work package involves building the forward model used to generate
synthetic data for magnetic induction, tidal response and librations of Ganymede. It can be further
divided into the following sub-packages. The procedure follows the methodology described in
chapter 2.

3.1 [WP3.1] Magnetic Induction Data (subsection 2.1.2).
3.2 [WP3.2] Tidal Response (subsection 2.1.3).
3.3 [WP3.3] Librations (subsection 2.1.4).

3.4 [WP3.4] Validation.

4. [WP4] Sensitivity analysis: This work package involves the sensitivity analysis of the different
observations to variations in the interior parameters. The following sub-packages are identified.

Definition of plausible ranges for each parameter value.

4.1 [WP4.1] Impact of parameters variations on the constrained parameters: This package
focuses on how the constrained parameters vary with changes in the interior parameters. This
step is useful for a preliminary analysis of plausible interior models of Ganymede.

4.2 [WP4.2] Impact of parameters variations on Ganymede’s responses: This package analyzes
how the different observations change with variations in the interior parameters. This step is
useful for understanding the sensitivity of the data to the interior properties and for identifying
the most influential parameters.

4.3 [WP4.3] Definition of model parameters: Identification of the parameters to be retrieved in
the Bayesian inversion and their ranges. These parameters will be the ones that have the
highest influence on the expected measurements.
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5. [WP5]: Bayesian Inversion: This work package involves the application of Bayesian inversion
to the combined data sets. It can be divided into the following sub-packages.

5.1 [WP5.1] Problem Formulation.

5.1.1 [WP5.1.1] Definition of the prior distributions and likelihood functions.

5.1.2 [WP5.1.2] Definition of the sampling method and setup of the sampler: This includes
the definition of settings such as the number of walkers, the length of the chains, the
moves to use, and the burn-in period.

5.2 [WP5.2] Inversion with currently available observations.

5.2.1 [WP5.2.1] Inversion with gravity data.
5.2.2 [WP5.2.2] Inversion with gravity and magnetic induction data.

5.3 [WP5.3] Inversion with future Juice observations.

5.3.1 [WP5.3.1] Benchmark interior model: Definition of a benchmark interior model, which
will be used to generate synthetic data for Ganymede’s tidal response and libration.

5.3.2 [WP5.3.2] Synthetic data generation: Generation of synthetic data for Ganymede’s
tidal response and libration using the forward model developed in [WP3].

5.3.3 [WP5.3.3] Inversion with gravity, magnetic induction and tidal observations.
5.3.4 [WP5.3.4] Inversion with gravity, magnetic induction, tidal and libration observations

(not achieved).

6. Thesis Reporting: This task is not identified as a work package itself since it will be carried out
in parallel with the other work packages. However, a significant amount of time will be allocated
to the writing of the thesis towards the end of the project.

A Work Breakdown Structure (WBS) of the work packages is shown in Figure A.1. An estimated
timeline for the completion of the project is shown in the Gantt chart in Figure A.2. In the planning,
buffer time, holidays and other contingencies are included. With the described planning, the project is
expected to be completed by October 2025.
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Background Knowledge

B.1. Gravitational Field

The gravity field of a celestial body can be described by the Legendre expansion in spherical harmonics
of its gravitational potential function ®:

O(r,¢,\) = —GTM (f) Z [Crm cos (MA) + Sy sin (MA)] Pryy, (sin @) (B.1)

n=0 m=0

The resulting gravitational force can be expressed as the opposite of the gradient of the potential function.
In the reference frame of the body, r, ¢, and X are the spherical coordinates of the point at which
the potential is evaluated. P,,, are the associated Legendre polynomials, while C,,, and S,,, are the
gravitational coefficients. These coefficients represent mass properties of the body, and they can be
divided in three subsets, each with a specific name (Eckman et al., 2016):

e J, = —C,o are the zonal coefficients
e Cppn and Sy, (n = m) are the sectorial coefficients

o Cpm and Sy, (n # m) are the tesseral coefficients

This terminology reflects the geometrical representation of the corresponding spherical harmonic.
Depending on how the sign of the harmonic changes, different patterns are formed on the spherical
surface, as shown in Figure B.1: zones, sectors, and tesserae (i.e., “tiles”), from which the corresponding
names are derived. For more details on the Legendre expansion and spherical harmonics, refer to
Hofmann-Wellenhof et al. (2006).

Due to the presence of the term (R/r)", the gravitational potential is dominated by the lowest-degree
terms. In addition, the coefficients up to degree and order two have an easily interpretable physical
meaning. Clyg represents the monopole, and it corresponds to the gravitational potential of a point
mass. The higher degree and order coefficients are related to the distribution of mass within the body,
and they describe the deviations of the body’s gravity field from that of a homogeneous sphere. The
first-degree terms describe the offset of the center of mass from the chosen frame origin. If the origin of
the coordinate system coincides with the center of mass of the body, the coefficients of degree n =1
are zero. The second-degree terms describe the gravitational quadrupole moment and give information
about the shape and mass distribution of the body. The coefficient Jo = —Cyg describes the effect of the
equatorial bulge, C'5; and S5; describe the tilt of the body’s rotation axis with respect to the principal
axis of inertia, while C'ao and Syo represent equatorial asymmetries and mass variations.

The gravitational field of a body affects trajectories of spacecrafts, which are deflected as the body is
approached. Thus, by measuring these deflections, the gravitational field can be inferred. The Galileo
spacecraft’s radio communication system, from which the Deep Space Network (DSN) produced Doppler
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Figure B.1: Representation of different spherical harmonics: (a) zonal, (b) tesseral, and (c) sectorial.
Image credit: Hofmann-Wellenhof et al. (2006, Chapter 1, page 18).

data, has been used to calculate the mass and gravitational quadrupole moments of the four Galilean
satellites (Schubert et al., 2004).

For the purpose of this study, the only gravitational parameters of interest are the monopole GM, and
the two quadrupole coefficients Jo and Cag, which are determined through weighted least-squares fits to
the Galileo Doppler data. These terms can be linked to the principal moments of inertia of the body as
follows:
o B4 o _B-A
T T 2MR? 2  AMR?
where I is the axial or polar moment of inertia, A and B are the equatorial moments of inertia, and
I > B > A (Schubert et al., 2004).

(B.2)

However, these two coefficients are not independent. The extent to which they are linked is indicated by
a statistical correlation coefficient p. If this value is close to unity, the body can be considered to be in
(or close to) hydrostatic equilibrium and the relation between the two coefficients is:

10
Jo = 3022 (B3)

This correlation can be explained in the light of the moon’s rotational and tidal response, which can
be described by the fluid Love number k¢ multiplied by a rotational and a tidal parameter, ¢, and g
respectively (Schubert et al., 2004).

k‘f qr = —3(2022 — Jg) k}f gy = —12022 (B.4)
gy is computed as:
Ww?R3
- GM
From these quantities, under the assumption of a body in rotational and tidal equilibrium, the Caqy
coefficient can be obtained as (Schubert et al., 2004):

& (B.5)

1
022 = Zqur (B.G)

The Radau relationship links the moment of inertia factor I/M R? to the fluid love number k¢, which
can be obtained from Csy and ¢, (Kaula, 1968):

2 2 (4 — k2
2—_ —_—
I/MR® = 3 [1 - (ka) (B.7)
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Therefore, from the gravitational parameters GM and Cso, the total mass of the body and its moment
of inertia factor can be computed and used as constraints for the interior models.

B.2. Tides

The gravitational pull from a planet varies across the interior of its satellite, creating a forcing field that
causes the satellite to deform. This tidal forcing field creates an elongation in the satellite along the
direction of the planet, forming a tidal bulge. If the satellite always presented the same face to the
planet, the bulge would remain fixed. Due to non-synchronous rotation, elliptical orbits, and non-zero
obliquities, the bulge moves relative to the planet, leading to periodic deformations and internal heating.

The tidal energy is mostly converted into heat through viscous friction within the satellite’s viscoelastic
interior. The efficiency of this process depends on the satellite’s internal thermal state and it is quantified
by the tidal quality factor @. In the case of Ganymede, two opposite effects influence the satellite’s
orbit. On one hand, tidal dissipation acts to circularize its orbit and synchronize its rotation with its
revolution. On the other hand, the 1:2:4 Laplace resonance with Io and Europa increases the eccentricity
of its orbit, allowing for a non-zero eccentricity despite the presence of the tidal dissipation.

The tidal potential at a certain point on the surface of the satellite can be expressed as a series of
spherical harmonics (Sabadini et al., 2016):

o7 = _GoM i (L)l P, (cos U) (B.8)

d* d*
1=0

The resulting tidal forces can be expressed as the opposite of the gradient of the tidal potential. Note
that, due to character limitation, the symbols in this section differ from those used in the rest of the
document and are defined as follows:

e M: Mass of the tide-raising body

e d*: Distance between the bodies’ center of mass

« r: Radial distance from the center of the satellite

e P;: Legendre polynomial of spherical harmonic degree [

e U: Angle between the satellite’s position vector and the position vector of a point on the surface
of the satellite

Expressing ¥ in terms of latitude and longitude of the end points of the position vectors, and using the
addition theorem, the tidal potential can be written as (Kaula, 1964):

[e%e) l
or = S (Y s mQ—ammm(cos 0°) P05 6) [cos(mis™) cos(mep)+-sin(mg”) sin(mep)]
=2 m=0 !

(B.9)
where:
e 0*: Co-latitude of the tide-raising body
e ©*: Longitude of the tide-raising body
e 0: Co-latitude of the point on the satellite’s surface

e ¢: Longitude of the point on the satellite’s surface

The tidal potential can be expressed in terms of Keplerian elements of the satellite’s orbit (Kaula, 1964):

l

1\ 1\t > cos vy [ —m even
() Py(cos ") cos(mep”) = () Z Flmp(i*) Z Gipg(€¥) cos mp { Impq’
p=0

d* a* sin vy, | —m odd
(B.10)

g=-00
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e a*: Semi-major axis

o ¢e*: Eccentricity

e *: Obliquity

e [: Degree

e m: Order

o Gipg(e*): Eccentricity functions

o Finp(7*): Inclination functions

o Vpg = (= 2p)w" + (I = 2p + @) M* + my* — myg (Tidal angle)
e ~: Longitude of the ascending node
e w: Argument of pericenter

e M*: Mean anomaly

e 4 Longitude reference meridian

e n*: Orbital frequency

Similarly to the gravitational potential, due to the term (r/ a*)l, the tidal potential is dominated by the
second-degree harmonic. With the assumption that eccentricity and inclination are small, the expression
can be simplified, and static and time-varying components can be identified.

The static tidal potential represents the potential acting on the satellite if its orbit was circular, its
rotation synchronous, and its obliquity zero (Sabadini et al., 2016):

_GMT2

1 1
Q)g = GT {—QPQO (COS 0) + ZP22 (COS 0) €os (QSD)} (B12)

The time-varying tidal potential resulting from non-zero eccentricity and obliquity are respectively given
by (Jara Orue, 2016):

T GMr? 3 . 1 « e
O (t) = 3¢ 7§P20 (cosB) cos (n*t) + ZPQQ (cos ) [3 cos (n*t) cos (2¢) + 4sin (n*t) sin (2¢)]
(B.13)
2
or(t) = — G]\*/Igr sin i* Py (cos 6) cos () sin (w + n*t) (B.14)
a

These different tidal perturbations cause displacements and stresses in the body, which lead to tidal
dissipation. The tidal Love numbers describe the body’s viscoelastic response to an external forcing
caused by the primary body. In the case of a spherically symmetric body, the Love numbers do not
depend on the order m, and the response of the body will be of the same degree [ as the forcing
(Rovira-Navarro et al., 2024). Therefore, we can denote the Love numbers as k; (gravitational), hy
(radial), and [; (poloidal).

The different tidal potentials give rise to responses at different time scales, and therefore different Love
numbers are used. Over long time scales, the static tidal potential causes a static deformation in the
body, which is close to that of a body in hydrostatic equilibrium. In this case, the deformation is
described by the so-called fluid Love numbers, which only depend on the density distribution of the body.
Considering only the second-degree harmonic, the perturbed potential ®,, at the surface is expressed in
terms of the fluid Love number k¢ as (Padovan et al., 2018):

®, = —kedl (B.15)
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The displacement w, at the surface is described by the fluid Love number h; as (Padovan et al., 2018):
hg

ol B.16
Gsurf 0 ( )

u,,.:—

Since the body is in hydrostatic equilibrium and can be approximated as a fluid, the surface is an
equipotential surface, which is defined by the sum of the external potential ®" and the perturbed
potential ®, (Padovan et al., 2018):

1+k
by = — T (B.17)
Gsurf
Therefore, the fluid Love numbers satisfy the relation:
hy =14 ke (B.18)

On the other hand, the time-varying tidal potential caused by the eccentricity and inclination of the
satellite’s orbit leads to periodic deformations in the body at much shorter time scales. In this case,
the Love numbers that describe the body’s response are frequency-dependent complex numbers that
depend on the body’s interior structure, rehology and period of the exerted force. Mass displacements
in the interior of the satellite cause variations in the tidal potential, described by k;, while the surface
displacements are described by h; and ;, respectively in the radial and lateral directions (Hussmann
et al., 2016).

In case of a purely elastic body, the imaginary parts of the Love numbers, i.e., the phase lags, are zero,
while for viscoelastic responses the phase lag of the tidal potential vy, and of the radial deformation
vy, describe the time delay between the tidal potential and the body’s response.

Considering the second-degree harmonic, the perturbed potential ®, and the radial deformation u, are
related to the tidal potential by the Love numbers ks and ho as:

h
P, = —kodT uy, = ——=— @7 (B.19)
b Gsurf

B.3. Bayesian Inference

The scientific method is an iterative process that aims to infer the laws of nature through observation,
hypothesis formulation, and experimental testing, as schematically represented in Figure B.2. However,
real-world data are inherently incomplete, and experimental results rarely provide definitive yes-or-
no answers. This uncertainty requires statistical inference, which allows scientists to make reasoned
conclusions based on limited information.

Deductive Inferencg

Predictions

Testable
Hypothesis
(theory)

Observations
Data

Hypothesis testing
Parameter estimation

Stas; .. e
’af/st,Ca, (plausible) Infere™®

Figure B.2: Scientific method. Image credit: Gregory (2005, Chapter 1, page 2).

Traditional statistical approaches, often referred to as frequentist methods, define probability as the
long-run relative frequency of an event occurring in identical experimental repeats (Gregory, 2005).
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While useful for handling random errors in measurements, this framework struggles with addressing the
probability of hypotheses or model parameters.

A more general framework for statistical inference, the Bayesian probability theory, has gained increasingly
more importance in modern science. Unlike frequentist statistics, Bayesian inference treats probability
as a measure of plausibility based on prior knowledge and observed data. This approach allows for a
direct computation of the probability of a hypothesis or parameter value, offering a consistent method
to update our beliefs taking new evidence into consideration (Gregory, 2005).

In Bayesian analysis, probability distributions represent uncertainty, and inference is conducted through
Bayes’ theorem, which updates prior beliefs with new data to produce posterior probabilities. This
method aligns with the logic of scientific reasoning, where theories evolve as new observations improve
our understanding. Bayesian inference thus provides a natural extension of deductive and inductive
reasoning, integrating prior knowledge with empirical data in a coherent manner.

In Bayesian probability theory, the plausibility of certain hypotheses or model parameters is expressed
as the probability of these quantities given observed data and prior information. In many scientific
applications, the aim is not to compare different hypotheses but rather to estimate the parameters of a
given model. Bayesian inference provides a framework for this process by treating the parameters as
continuous random variables with associated probability distributions.

In the following, we denote a model as M, its parameters as X, the observed data as ® and any prior
information as I. We identify different quantities:

« The prior probability p(X|M, I), which represents our knowledge about the model parameters
before observing the data.

e The likelihood function p(®|X, M, I), which quantifies the probability of observing the data given
the model parameters.

o The posterior probability p(X|®, M, I), which represents our knowledge about the model parame-
ters after observing the data.

« The global likelihood p(®|M, I), which quantifies the overall probability of observing the data.

Bayes’ theorem relates these quantities as follows:

p(O|X, M, I) x p(X|M,T)
p(®|M,I)

As shown in Gregory (2005, Chapter 3, Equation 3.7), the global likelihood acts as a normalization
constant. We can therefore define C' = 1/p(®|M, I) and rewrite Equation B.20 as:

p(X|©, M, 1) = C x p(®|X, I, I) x p(X|IL,I) (B21)

The posterior probability is also referred to as the joint posterior probability and concerns the entire
parameter space. For any subset of parameters X;, the marginal posterior probability is obtained by
integrating over the remaining parameters:

p(X,»|®,M,I):/p(x|®,M,I)de for j=1,2,...,N and j#i (B.22)

where N is the total number of parameters.

Unlike frequentist methods, which provide single best-fit estimates, Bayesian inference yields the entire
posterior distribution. Statistical quantities, such as the posterior mean and posterior mode, can then
be used to report parameter estimates in terms of best-fit values and associated uncertainties. Another
key concept in Bayesian parameter estimation is the credible interval, which represents the range within
which the true parameter value is likely to fall with a given probability.

In many cases, models include parameters that influence the observed data but are not of primary
interest. These are referred to as nuisance parameters. Bayesian inference allows to handle nuisance
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parameters through a process known as marginalization. This involves integrating out the unwanted
parameters to obtain a marginalized posterior distribution for the parameters of interest:

p(X|©, M, T) = / (X, X,|@, 11, T) dX, (B.23)

where X, represents the nuisance parameters and X the parameters of interest. This ensures that the
final inference about X accounts for all possible values of X,,, weighted by their probability.
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Verification and Validation

Verification and validation are crucial steps in the development of any software, as they ensure that the
software meets its requirements and performs as expected. According to the ECSS standard, verification
is the “process to confirm that adequate specifications and inputs exist for any activity, and that
the outputs of the activities are correct and consistent with the specifications and input” (European
Cooperation for Space Standardization, 2009), while validation is the “process to confirm that the
requirements baseline functions and performances are correctly and completely implemented in the final
product” (European Cooperation for Space Standardization, 2009). In short, verification means “solving
the equations right”, while validation means “solving the right equations” (Roache, 1997).

Code verification involves the use of tests and benchmarks to ensure the correctness and reliability of
numerical models (van Zelst et al., 2022). Tests are typically designed to evaluate specific parts of
the code, particularly under extreme or limiting conditions, and are used to verify both the numerical
implementation and overall functionality. Unit tests are especially useful for validating the correctness
of individual subroutines. When analytical solutions are available, they provide a reliable reference for
comparison. In cases where analytical solutions are not possible, “community benchmarks” offer an
alternative approach (van Zelst et al., 2022). These benchmarks involve different codes developed to
solve the same model setup, allowing for direct comparison and cross-verification of results.

The code verification process is described in section C.1. This include verifying the implementation of
the interior model described in subsection 2.1.1 to ensure that all the subroutines and modules work
as intended. Section C.2 presents the validation of the forward models described in subsection 2.1.2,
subsection 2.1.3 and subsection 2.1.4 by comparing the obtained output with benchmark cases from
literature.

C.1. Verification

The process to build the interior model of Ganymede is described in subsection 2.1.1 and is summarized
in Figure 2.3. It mainly consists of six functions:

e a function to compute the interior profiles of mass, gravity and pressure;

 a function to interpolate tabulated phase diagrams and determine the intersections of the pressure
profile with the ice-ocean interface and ocean floor;

 a function to compute the ocean density;
¢ a function to compute the ocean conductivity;
e a function to compute the core and mantle densities based on Ganymede’s mass and Mol;

e a function to compute the bulk moduli of the layers from the shear moduli and Poisson’s ratio.

The verification process includes testing the correctness of these functions, ensuring they produce the
expected results and handle edge cases correctly.
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C.1.1. Core and mantle densities

Given the thicknesses and densities of the layers, the mass and Mol of Ganymede are computed with
Equation 2.6 and Equation 2.7, respectively. When constructing the interior model, we invert these
equations to compute the core and mantle densities based on Ganymede’s total mass and Mol. This
function is verified using the analytical expressions for mass and Mol. We use the nominal parameters
listed in Table D.1a and the constrained parameters from Table D.1b, which are computed numerically, to
analytically evaluate the mass and Mol of Ganymede’s layers and verify that they match the numerically
computed values.

Equation 2.6 and Equation 2.7 can be written for a single spherical layer as:

Mlayer = gﬂ'ﬂlayer (Tguter - T?nner) (Cl)

- 8
Ilayer = ﬁ”player (Tguter - r?nner) (02)

Note that the polar moment of inertia I is reported without normalization, as it refers to a single layer.
Both the numerical and analytical results for Ganymede’s mass and Mol are summarized in Table C.1.

Table C.1: Mass and Mol of Ganymede’s layers computed using the nominal parameters listed in Table D.1a and the
corresponding constrained parameters in Table D.1b. Here, the polar moment of inertia I is reported without
normalization. The total analytical values are computed by summing the contributions of all layers.

Layer Numerical M  Analytical M Numerical I  Analytical T

[10% kg] [10% kg] [10%° kgm—2] [10%° kgm—?]
Core 0.0690 0.0690 0.0107 0.0107
Mantle  0.8362 0.8362 1.1799 1.1799
HP ice 0.3712 0.3712 1.1416 1.1416
Ocean 0.1136 0.1136 0.4577 0.4577
Ice shell 0.0916 0.0916 0.4056 0.4056
Total 1.4816 1.4816 3.1955 3.1955

The results show that the numerical and analytical values for both mass and Mol match, which verifies
the correctness of the implementation.

C.1.2. Interior profiles

To find the ocean boundaries from interpolation of the phase diagram, the mass, gravity and pressure
profiles of Ganymede are computed as explained in subsection 2.1.1. The computation of the mass
profile is verified by comparing the mass at each layer’s boundary with the analytical mass computed
using Equation C.1.

The results are summarized in Table C.2. Since the mass profile is computed iteratively, the mass
at each boundary takes into account the mass of all layers below it, not just the mass of the layer
itself. Therefore, the reported values are the cumulative mass of all layers up to that boundary, and the
analytical values are computed by summing the contributions of all layers below that boundary. The
results show that the errors in the numerical values, compared to the analytical ones, are below 0.15 %
for all layers, and even smaller for the upper layers, which are of interest when interpolating the phase
diagram. Therefore, we can consider the numerical implementation of the mass profile to be verified.

The pressure and gravity profiles are shown in Figure C.1la. At the center of Ganymede, according
to Equation 2.3, the gravitational acceleration is zero. At the surface, using the values reported in
Table 1.1, the gravitational acceleration is gsu.f = 1.4280 ms~2. The gravity profile gives a gravitational
acceleration at the surface of geus = 1.4285 ms™2, which is within 0.0350 % of the expected value.

The interior profiles obtained in this work are compared to those computed by Sohl et al. (2002), shown
in Figure C.1b for three different core compositions. The nominal parameters used here result in a core
density of approximately 6860 kg m~2, which lies between the densities of a core composed of 50 % Fe

80



Table C.2: Masses of Ganymede’s internal layers, obtained from the numerical computation of the interior profile, and
from analytical calculations using the nominal parameters in Table D.la and the corresponding constrained parameters in
Table D.1b. The variation between the numerical and analytical values is reported in percentage of the analytical value.

Layer Numerical M [10%3 kg] ~ Analytical M [10%® kg] M“%;M“ x 100 [%]
Core 0.0691 0.0690 0.1449
Mantle  0.9056 0.9052 0.0442
HP ice 1.2769 1.2764 0.0392
Ocean 1.3906 1.3901 0.0360
Ice shell  1.4822 1.4817 0.0337

and 50 % FeS, and a core composed of 100 % Fe. However, Sohl et al. (2002) do not provide the exact
thicknesses and densities of each layer, which prevents a direct quantitative comparison. Additionally,
their model includes multiple HP phases, while we only consider a single HP phase of 1200 kg m~3
density. Therefore, the profiles shown in Figure C.1a and Figure C.1b are not directly equivalent, but
they are qualitatively similar, showing the same trends across the different layers. Taking this into
account, along with the checks at the interfaces performed previously, we consider the implementation
of the interior profiles to be verified.

12.5 T T T 25
hydrostatic pressure p,
10 + local gravity g,
- 2N F1.75
91 \ AN 10.0 = 2.0
./ \v
81 \ 7 ~< 1150
7 | — I A9 i
1 / © N d &
! ’ 1255, O o5l s 115 %
= A [\ -/‘ o O ' ,:/ \ :
& 67 i £ Y Ny 3
% 5 / \ — Pressure | +00 % ; i _I _I./_/ i 2
= / —---- Gravity a 1/ P
Z 4 / Y o & @ 50 N —41.0 ®
5 i \ Z a diy >
. 0.50 & 157
/ Bl
21 / \ 25— .{/_," —0.5
/ Wi 1
01 T 0.00 0.0 ! | ! | L | | | | 0.0
00 02 04 06 08 10 00 02 04 06 08 10

Relative radius r/R¢ relative radius R/Rp

(b) Pressure and gravity profiles within Ganymede’s interior for
(a) Pressure and gravity profiles within Ganymede’s interior for three different core compositions (bold curve: 100 % Fe; normal
the nominal parameters’ values listed in Table D.1la and the  curve: 50 % Fe and 50 % FeS; light curve: 100 % FeS). Image
corresponding constrained parameters. credit: Sohl et al. (2002, Fig. 10).

C.1.3. Phase diagram interpolation

To compute the ocean boundaries, tabulated phase diagrams of MgSQO,4 solutions are used. Given certain
ice density and thickness, the pressure profile within the ice layer is computed and the value at the
bottom of the layer is used to interpolate the phase diagram to obtain the temperature at the ice-ocean
interface. This value is then used to compute the pressure at the ocean floor, which is assumed to be at
the same temperature as the ice-ocean interface for a fully convective ocean.

A test function is implemented to verify the correctness of the interpolation function. The test function
selects a profile with a certain wt% from the dataset and chooses a pressure value from the dataset as
the interpolation input. This pressure represents the pressure at the bottom of the ice shell and is used
in the interpolation function, which returns the temperature at the ice-ocean interface and the pressure
at the ocean floor. The interpolated temperature is compared against the tabulated temperature at
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the chosen pressure. This temperature value has two pressure values associated with it, one for the
ice-ocean interface and one for the ocean floor. The latter is used to verify the interpolated pressure
value. The test confirms that the interpolated values match the original dataset. Figure C.2 is used
visually confirm the alignment.

MgSO4 Phase Diagram Interpolation

07 —— Data, wt = 5.26%
X Expected Point
500 A Interpolated T

X Expected Point
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Pressure [MPa]
=
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Figure C.2: Verification of the phase diagram interpolation function.
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Figure C.3: Verification of the phase diagram interpolation function outside of the tabulated domain.

Since the dataset consists of discrete points, special attention must be paid to edge cases, particularly
near the triple point. As shown in Figure C.3, the available data points do not span the entire range of
pressures and temperatures up to the triple point. Therefore, values outside the tabulated domain are

extrapolated.

Although the extrapolation provides results for any input value, the interpolation function returns an
error if the pressure at the bottom of the ocean is lower than the pressure at the ice-ocean interface (i.e.,
the triple point has been exceeded). Figure C.3 shows the verification of the extrapolation behavior of
the interpolation function. The test procedure selects pressure values beyond the maximum pressure
available in the upper branch of the phase diagram and evaluates the interpolation function at these
points. The resulting temperatures and pressures follow the expected trend of the phase diagram. As
expected, the function returns an error once the triple point is exceeded.

82



C.1.4. Ocean density computation

The density of the ocean layer is computed using a function that interpolates MgSO, equation-of-state
spline data (Styczinski et al., 2023) over molality, pressure, and temperature.

To verify its correctness, a test function selects known values of molality, pressure, and temperature
from the EOS dataset. The corresponding weight percentage is computed using the molality and MgSO,
molar mass. The function is then called with this weight percentage, and the interpolated density is
compared with the directly tabulated density value. The test confirms that the interpolated result
matches the tabulated value.

C.1.5. Ocean conductivity computation

The ocean conductivity is computed from Equation 2.1 (Hand et al., 2007). Since it is an equation of
degree three, it has three roots, out of which one is negative and two are positive. The negative root
is discarded, and comparing it with Hand et al. (2007, Fig. 1), the lower positive root is the one that
corresponds to the ocean conductivity.

The verification is performed by visually comparing the computed conductivity with the trend and values
shown in Hand et al. (2007). Figure C.4 shows the computed conductivity as a function of concentration
of MgSOy in the ocean, which agrees with the values reported in Hand et al. (2007, Fig. 1).
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Figure C.4: Conductivity of the ocean as a function of the concentration of MgSO4 obtained from Equation 2.1. The
concentration is computed as C' = wt x 10. The plotted values correspond to the lower positive root of the cubic equation.

C.1.6. Bulk moduli computation

The bulk moduli of the compressible layers are computed from the shear moduli and Poisson’s ratio
using Equation 2.8. Comparing the results with the analytical values, we verify the correctness of the
implementation.

Table C.3: Bulk moduli of Ganymede’s layers computed using the nominal parameters listed in Table D.1la and the

corresponding constrained parameters in Table D.1b. The analytical values are computed using Equation 2.8 with the
same parameters.

Numerical value [GPa]  Analytical value [GPa]

Kna 182.5490 182.5490
Ky, 8.6059 8.6059
Kice 8.6059 8.6059
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C.2. Validation

After code verification, the next step is to validate the models against literature data. Specifically,
we validate the forward models described in subsection 2.1.2; subsection 2.1.3 and subsection 2.1.4 by
comparing the obtained output with benchmark cases from the literature.

C.2.1. Magnetic Induction Response

To validate the magnetic induction implementation, we apply the model to the benchmark case of Vance
et al. (2021). The interior model parameters of interest and their values are listed in Table C.4. From
these parameters, the ones needed in Equation 2.9 are directly computed.

Table C.4: Interior model parameters from Vance et al. (2021).
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Figure C.5: Magnetic induction amplitude and phase delay of the maximum induced field By at the three periods with
strongest induction (Vance et al., 2021), computed with the parameters listed in Table C.4 and the model described in
subsection 2.1.2.

The magnetic induction amplitude and phase delay are shown in Figure C.5 for the three periods with
the strongest induction. Comparing these plots with Figure 4 in Vance et al. (2021), we can confirm that
the results of our model are in good agreement with the ones of Vance et al. (2021). We can therefore
conclude that the implementation of the magnetic induction model is validated.

C.2.2. Tidal Response

To validate the model used to compute the tidal response, we compare the results with the benchmark
cases of Jara-Orué et al. (2016) and Hussmann et al. (2016) for the real and imaginary parts of the tidal

Love numbers, respectively.
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Table C.5 lists the interior model parameters used to compute the tidal response. The values of the fixed
parameters are taken from Table 1 in Jara-Orué et al. (2016), while the ranges of the variable parameters
are selected from Table 2 in Jara-Orué et al. (2016). Here, a six-layer model is used, with a ductile ice
shell and an elastic crust. The obtained Love numbers are shown in Figure C.6. By comparing the
results with Figures 1 and 2 in Jara-Orué et al. (2016), we can confirm that the real part of the tidal
Love numbers hy and ks is correctly computed.

Table C.5: Interior model parameters from Jara-Orué et al. (2016). The outer ice shell is divided into a ductile ice shell
and an elastic crust. The outer radius of Ganymede is 2634 km. The core and mantle densities are computed to satisfy the
mass and moment of inertia constraints.

Parameter Values Unit
Te 720 km
Tma 1840 km
THP 2284 km

To [2484,2496.22,2508.44, . .. 2581.78,2594] km

Tice 2614 km
Terust 2634 km
Php 1346 kgm™3
Po 1100 kgm—3
Pice 937 kgm™3
Hs ma 65 GPa
s hp 6.6 GPa
s ice [1,3.5,10] GPa
s, crust 3.5 GPa
Mma 1 x 1020 Pas
Thp 1 x 1017 Pas
Dice [1x10M, 1 x10'7, 1 x 10'] Pas
Tlcrust 1x 1021 Pas

1.5 1
1.44
1.3 1
e
&
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Figure C.6: Real part of the tidal Love numbers ha and ko as a function of the ice shell thickness for different values of
ice shell rigidity and viscosity, as listed in Table C.5.

Table C.6 lists the interior model parameters used in Hussmann et al. (2016) to compute the tidal
response. The results are analyzed in terms of phase lag v of the tidal Love numbers ko and hs, as well
as the difference Av = vy, — vp,. Figure C.7, Figure C.8 and Figure C.9 are equivalent to Figures 2(a),
2(b) and 2(c) in Hussmann et al. (2016), respectively, while Figure C.10 is equivalent to Figure 3 in
Hussmann et al. (2016). Comparing the obtained results with the ones of Hussmann et al. (2016), we
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Table C.6: Interior model parameters from Hussmann et al. (2016). The elastic crust was not considered here for the
tidal response, and a single ice shell was modelled.

Parameter Values Unit
Model
1 2 3

Te 689 716.4 782.1 km

Pe 6500 6500 6500 kgm™3
Tma 1800 1750 1700 km
Pma 3263.2 3345.5 3383 kgm™3
Hs,ma 50 50 50 GPa
Tma 10 x 10 10 x 102° 10 x 10*®  Pas
Thp 2350 2400 2450 km
Php 1400 1400 1400 kgm™3
s, hp 6.6 6.6 6.6 GPa
Nhp 5x 10  5x10%  5x 102  Pas

Po 1000 1000 1000 kgm™3
Diceo 140 140 140 km
Pice 1000 1000 1000 kgm™3
s ice 3.3 3.3 3.3 GPa
Tice 1x10" 1x10% 1x10" Pas

can confirm that the imaginary part of the Love numbers is correctly computed. Therefore, we can
conclude that the implementation of the tidal response model is validated.

Models from Hussmann et al. (2016)
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Figure C.7: hg phase lag as a function of the ice shell viscosity for model 2 described in Table C.6. Different values for
the shear modulus and thickness of the ice shell are considered, as shown in the legend.
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Models from Hussmann et al. (2016)
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Figure C.8: ko phase lag as a function of the ice shell viscosity for model 2 described in Table C.6. Different values for
the shear modulus and thickness of the ice shell are considered, as shown in the legend.
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Figure C.9: Av = vy, — vy, as a function of the ice shell viscosity for model 2 described in Table C.6. Different values
for the shear modulus and thickness of the ice shell are considered, as shown in the legend.
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Figure C.10: Av = vy, — vy, as a function of the HP ice viscosity for the three models described in Table C.6.
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C.2.3. Libration Response

To validate the libration response model, we compare the results with the benchmark cases of Van Hoolst
et al. (2013). The interior model parameters listed in Table C.7 are selected to be closely in alignment
with the ones used in Van Hoolst et al. (2013). Here, we consider a signle core layer instead of a
distinguishing between a solid and a liquid core. Core and mantle densities are computed to satisfy the
mass and moment of inertia constraints, while the ocean thickness is calculated from the total radius of
Ganymede. Only valid models are selected to compute the libration response. The libration amplitude
of the ice shell is shown in Figure C.11 as a function of the ice shell density for the different interior
models. Comparing Figure C.11 with Figure 12 in Van Hoolst et al. (2013), we can confirm that the
libration amplitude is correctly computed, which validates the libration response model.

Table C.7: Interior model parameters from Van Hoolst et al. (2013).

Parameter

Values

Unit

Te
Tma
rap
Dice
php
Po
pice
Hs,ma
Hs hp

Hs ice

[200, 400, 600, 800, 1000, 1200]
1500, 1625, 1750, 1875, 2000]
1900, 2100, 2300, 2500]

1000, 1200, 1400]

[
[
[25,50,75, 100, 150, 200, 300, 400, 500]
[
[

800, 900, 1000, 1100, 1200]
[800, 900, 1000, 1100, 1200]
100
4.6
3.3

km

km

km

km
kgm™3
kgm™3
kgm™3
GPa
GPa
GPa

9.0 1

Libration amplitude [m]

6.5 1

Models from Van Hoolst et al. (2013)

8.0 1

7.54

7.0 1

800
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Figure C.11: Ice shell libration amplitude as a function of the ice shell density for different Ganymede’s interior models

from Van Hoolst et al. (2013).
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Sensitivity Analysis

This chapter presents the results obtained from the OAT sensitivity analysis and includes additional
plots from the MC analysis.

D.1. One-at-a-Time Sensitivity Analysis

D.1.1. Setup

The general setup of the OAT sensitivity analysis is described in section 2.1, where the parameter space
defined in Table 2.1 is explored by increasing each variable by a certain step size, while keeping the other
parameters fixed at their nominal values, listed in Table D.1la together with the step sizes or number
of parameters considered for the sampling. When the number of parameters is specified, the variable
is sampled in logarithmic space. Since this preliminary analysis has the goal of understanding general

Table D.1: Free and constrained parameters considered in the OAT sensitivity analysis.

(a) Nominal parameters and corresponding step sizes or (b) Constrained parameters and corresponding constraints.
number of parameters considered for the OAT sampling.
- Constrained  Constraint Nominal value
Free Pa- Nominal Value Step Number parameter
rameter of Param-
oters Pe Equation 2.6  6864.3902kgm 3
and 2.7
re 621.5 km 1km P Equation 2.6 3299.2076 kg m >
Tma 1846 km 1km and 2.7
Dice 109.8km Lkm Thp Phase  dia- 2391.3259 km
Php 1200kgm—3 lkgm™3 gram
-3 -3

Pice 1000 kgm lkgm To Total radius ~ 2521.4km
L 70 GPE;O 100 Do EOS 1152.7547kgm =3
Tma 1 x 107" Pas 500 Ko Equation 2.1  1.6490 Sm™!
s, hp 3.3 GP& 100 Ko Equation 2.8  182.5490 GPa
Nhp 1 x 107" Pas 500 Kup Equation 2.8  8.6059 GPa
s ice 3.3GPa 100 Kice Equation 2.8  8.6059 GPa
Mice 1 x 10%° Pas 500
wt 5% 0.5%
v 0.33 0.01

behaviors of parameters and main trends in the response instead of obtaining accurate results, when
applying the mass and Mol constraints shown in Equation 2.6 and Equation 2.7, we do not sample their
values from a Gaussian distribution but rather use the expected values reported in Table 1.1.

The nominal values of the layer thicknesses are based on the default model of Ganymede provided by
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the PlanetProfile software (Styczinski et al., 2023). The other default values are based on the literature
reported in Table 2.1 or selected within the allowable ranges. Interior models are generated according to
subsection 2.1.1 and Figure 2.3. For the models that respect the constraints in Table 2.2, the magnetic
induction, tidal and libration responses are computed according to subsection 2.1.2, subsection 2.1.3 and
subsection 2.1.4 respectively.

D.1.2. Constrained Parameters

In this section, the constrained parameters are analyzed. Figure D.1 to Figure D.5 show the major
trends of the constrained parameters as a function of the free parameters.

pe Constrained Parameter
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Figure D.1: Density of the core as function of relevant free parameters. The invalid models are shown in gray, while the
vertical dashed line indicates the nominal value of the free parameter.

Figure D.1 and Figure D.2 illustrate the core and mantle densities, respectively. Models that violate
the imposed constraints are shown in gray, while vertical dashed lines mark the nominal value of each
free parameter. These trends are driven by the mass and Mol constraints: when changing the thickness
or density of one layer, another parameter must be adjusted to maintain the total mass and Mol of
Ganymede.

Figure D.3 shows the ocean thickness and density as a function of the ocean composition and ice shell
thickness and density. The ocean thickness is defined from the phase diagram, and from Figure 2.2
it is clear that it decreases with increasing ice shell thickness (e.g., with increasing pressure at the
ice-ocean interface). The ocean composition directly effects the phase diagrams, and therefore the ocean
parameters, while the ice shell density affects the ocean properties through Equation 2.2. For a fixed
shell thickness, increasing the ice shell density results in an increase in the slope of the pressure profile,
leading to a higher pressure at the bottom of the ice, and consequently a lower ocean thickness.

Figure D.4 shows the phase diagram of a MgSO4-water solution, along with the mean ocean pressure,
calculated as the average of the pressures at the top and bottom of the ocean. The change in slope
in the trends of the ocean thickness and density is due to the change in slope of the ice-liquid phase
boundary in the phase diagram. Specifically, ice III forms at lower temperatures, while ice V forms at
higher temperatures, as shown in Figure 2.2.

Figure D.5 shows the bulk moduli of the mantle, HP ice and ice shell as a function of the layer’s rigidity
and Poisson’s ratio. These trends are expected, as their dependence is defined by Equation 2.8.
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Figure D.2: Density of the mantle as function of relevant free parameters. The invalid models are shown in gray, while
the vertical dashed line indicates the nominal value of the free parameter.
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Figure D.3: Ocean thickness (left y axis) and density (right y axis) as a function of the hydrosphere free parameters. All
models are shown, and a vertical dashed line indicates the nominal value of the free parameter.

Ice Liquidus Phase Diagram - wt = 5.26 %

07 Mean Pressure
—— Phase diagram
E 200 1
=)
I
z
iﬁ 400 4
a9}
600 4
250 255 260 265 270

Temperature [K]

Figure D.4: Portion of the phase diagram of a MgSOg4-water solution with wt = 5.26%. The mean pressure used to
compute the ocean density is shown in the plot.
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Bulk Moduli Constrained Parameters
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Figure D.5: Bulk moduli of the mantle, HP ice and ice shell as function of the shear moduli and Poisson’s ratio. Vertical
dashed lines with the same color as the curves indicate the nominal values of the free parameters.

D.1.3. Observations

In this section, we analyze the responses computed for the valid models and their dependence on the
free and constrained parameters.

Magnetic Induction Response

Figure D.6 shows the magnetic induction amplitude as a function of the ice shell thickness and ocean
composition. The color scales indicate the ocean thickness and conductivity, which are directly defined
from the free parameters and are the main contributors to the induction response. For a given ocean
composition, the induction response decreases as the ocean gets thinner, while the response amplitude
increases with increasing ocean conductivity, with a dominant effect of the ocean thickness. These
findings are expected and consistent with Vance et al. (2021), who reported that warmer and thicker
oceans yield larger induction responses.

Magnetic Induction Amplitude
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Figure D.6: Magnetic induction amplitude as a function of the ice shell thickness and ocean composition. The subplot
on the left shows the corresponding values of the Do, while the subplot on the right the values of the k.

Figure D.7 shows the variation of the induction amplitude in percentage with respect to the value
obtained with the nominal parameters of |A¢| = 0.8427. Although the ice shell density is not directly
involved in the induction response formulation, its effect is included because it influences ocean thickness
through Equation 2.2. These plots indicate that the ocean thickness, controlled by the ice shell thickness,
has the largest effect on the induction response, even though Vance et al. (2021) showed that the role of
ocean conductivity becomes more significant at longer induction periods.
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Difference in Magnetic Induction Amplitude from Nominal Parameters

—101

—20 1

AlA°| [%]

100 125

Dice [km]

16

AlA°| %]

0.2

0.1 1

0.0 1

—0.1+

=== nominal

1000
Pice [kg/ mg]

950

1050

0.5

0.0

]

%

= 0.5

A|A¢

—1.01

—1.51

—2.01

5.0
wt [%)]

Figure D.7: Variation of the induction amplitude in percentage with respect to the nominal value of |A¢| = 0.8427. In
the subplot on the right, the first point, corresponding to wt = 0% is discarded to better visualize the variation of the
induction amplitude with wt corresponding to salty oceans.
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Figure D.8: Variation of the real part of the tidal response in percentage with respect to the nominal values, shown with
a vertical dashed line. kg is plotted on the left y axis and hg on the right y axis, and the nominal values are
Re(k2) = 0.5099 and Re(hg) = 1.4122.
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Difference in Imaginary Part of ks and hs from Nominal Parameters
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Figure D.9: Variation of the imaginary part of the tidal response in percentage with respect to the nominal values. kg is
shown on the left y axis and ho on the right y axis.
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Tidal Response

Figure D.8 and Figure D.9 show the variation of the real and imaginary part of the tidal response in
percentage with respect to the response obtained with the nominal parameters. As shown in Figure D.§,
both ko and hs decrease linearly with increasing ice shell thickness, since a thicker shell is more resistant
to deformation (Jara-Orué et al., 2016; Van Hoolst et al., 2024). In contrast, higher ocean densities
result in larger Love numbers (the effect of the ocean density can be observed through the effect of wt),
which is consistent with the trends summarized in Van Hoolst et al. (2024, Figure 4) and the results of
Kamata et al. (2016).

Similarly, the Love numbers decrease with increasing ice rigidity, as also reported by Jara-Orué et al.
(2016) and Moore et al. (2003). This behavior can be explained by noting that higher shear moduli
correspond to more rigid materials, which deform less easily and therefore exhibit smaller elastic responses.
The trend of the real Love numbers with the ice viscosities shows the transition from fluid-like behavior
at low viscosities to elastic behavior at high viscosities (Moore et al., 2003). Lastly, Figure D.8 and
Figure D.9 show that ko and hy decrease with decreasing compressibility of the layers.

The imaginary components of the Love numbers, shown in Figure D.9, are related to the tidal dissipation
within the moon and are therefore most sensitive to the mechanical properties of the outer ice layers. In
particular, they depend strongly on viscosity, exhibiting a peak at a specific value. This behavior is well
captured by the Maxwell rheological model, which defines a characteristic timescale, the Maxwell time.
When the tidal forcing period approaches this timescale, energy dissipation reaches a maximum, which
here occurs for viscosity values between 1 x 10'# and 1 x 10'® Pas.

Libration Response

Figure D.10 shows the variation of the libration amplitude in percentage with respect to the nominal
value of |¥.| = 7.1480m. The main contributor to the libration amplitude is the rigidity of the ice

Difference in Shell Libration Amplitude from Nominal Parameters
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Figure D.10: Variation of the shell libration amplitude in percentage with respect to the nominal value of
|¥ice| = 7.1480 m.

shell. For low rigidities, the ice behaves like a fluid and is more easily deformed, decreasing the libration
amplitude, while highly rigid shells increase the libration (Van Hoolst et al., 2013). Additionally, the
rigidities of the layers below the ocean have a minor effect on the libration amplitude, which is consistent
with the findings of Van Hoolst et al. (2013). Another factor influencing the libration amplitude is the
ice shell density: higher densities result in smaller amplitudes, as expected from Van Hoolst et al. (2013).
Although the variation is limited to approximately —2.5 % to 5% relative to the nominal value, the ice
shell density is here limited to a maximum of 1050 kg m~2 due to imposed constraints.
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Shell thickness also has a weak impact on the libration amplitude, with thinner shells leading to larger
amplitudes, as shown by Van Hoolst et al. (2013). Finally, ocean composition has an effect of similar
magnitude to that of shell thickness. The ocean composition directly affects the ocean’s density, and
Baland et al. (2010) showed how the libration amplitude depends on the density contrast between the

ocean and the ice shell, which explains the observed trend.

D.2. Full Monte Carlo Analysis
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Figure D.11: Two-dimensional histogram of the real part of ha.
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Imaginary hy - Full Monte Carlo Analysis
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Figure D.12: Two-dimensional histogram of the imaginary part of ha.
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Bayesian Inversion

This chapter includes additional plots from the different Bayesian inversions performed, as well as a
table summarizing all the obtained results.

E.1. Inversion with Static Gravity
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Figure E.1: Posterior probability distributions of the core and mantle radii and densities retrieved from three different
inversions using Ganymede’s moment of inertia as observation. The first inversion, labeled as “Mol” and corresponding to
“Inversion 17, considers a fixed mass of Ganymede, Mg = 1.48167 x 1023 kg, and a fixed total radius, Rg = 2631.2 km.
The second inversion, labeled as “Mol, variable M”; allows the mass of Ganymede to vary within its uncertainty, M ¢ +oas,
but does not include it in the likelihood function. The third inversion, labeled as “Mol + M in likelihood”, allows both the
mass and total radius of Ganymede to vary, and includes the mass in the likelihood function. The vertical dashed lines
indicate the 50th percentile of the posterior distributions, while the horizontal bars show the 1-o credible region.
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Figure E.2: Posterior probability distributions of the hydrosphere parameters retrieved from three different inversions
using Ganymede’s moment of inertia as observation. The three inversions are the same as described in Figure E.1. The
vertical dashed lines indicate the 50th percentile of the posterior distributions, while the horizontal bars show the 1-o
credible region.
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E.2. Inversion 2
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Figure E.3: Posterior probability distributions of the core and mantle radii and densities retrieved from “Inversion 2”.
The vertical dashed black lines indicate the 16th, 50th, and 84th percentiles. The full orange square and the orange
dashed line indicate the parameters corresponding to the best-fitting sample, while the orange empty squares indicate the
next nine best-fitting samples.
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E.3. Inversion 3
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Figure E.4: Posterior probability distributions of the hydrosphere parameters retrieved from “Inversion 3”. The vertical

dashed black lines and the annotations above the subplots indicate the 16th, 50th, and 84th percentiles. The full orange

squares and the orange dashed lines indicate the parameters corresponding to the best-fitting sample, while the orange

empty squares indicate the next nine best-fitting samples. The full green squares and dotted lines indicate the true values
of the parameters used to generate the synthetic data.
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E.4. Inversion 4
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Figure E.5: Posterior probability distributions of the hydrosphere parameters retrieved from “Inversion 4”. The vertical

dashed black lines and the annotations above the subplots indicate the 16th, 50th, and 84th percentiles. The full orange

squares and the orange dashed lines indicate the parameters corresponding to the best-fitting sample, while the orange

empty squares indicate the next nine best-fitting samples. The full green squares and dotted lines indicate the true values
of the parameters used to generate the synthetic data.
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Figure E.6: Posterior probability distributions of the mechanical properties retrieved from “Inversion 4”. The vertical
dashed black lines and the annotations above the subplots indicate the 16th, 50th, and 84th percentiles. The full orange
squares and the orange dashed lines indicate the parameters corresponding to the best-fitting sample, while the orange
empty squares indicate the next nine best-fitting samples. The full green squares and dotted lines indicate the true values
of the parameters used to generate the synthetic data.
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E.5. Summary of the Inversion Results

Table E.1: Posterior estimates of the interior parameters retrieved from the different inversions, listed as the median value (50th percentile) with uncertainties corresponding to the 16th and 84th percentiles. Empty
cells indicate that the corresponding parameter is not retrieved in that inversion. Results from additional inversions, mentioned in the main body and used to motivate choices or support the reasoning, are reported

here below “Additional Inversions”.

Parameters

Nominal Inversions

Additional Inversions

Inversion 1

Inversion 2

Inversion 3

Inversion 4

Mol, variable M Mol + M in likelihood

Mol + induction,
Undifferentiated
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0.427003

746.757 154 &5
1787.72172:12
6082.711 115,26
3308.34130%-93
102.81733-9%
2382.79154-27
2528.39 13308
1294.001 7572,
1132.8513%-92
1008.23169-42
2.987579

+0.95
1127 5%

9.63055
8.7810:25
15.927341
16.4817-03
0424003

1250.971357-93
1671.487158-99
4760.861133%0"
3097.907 24280
70.88195-39
2339.73755:83
2560.42745-55
143511115504
1159.8873255
1025.63155-17
54330

0.72
1.751585

1253.301355:72
1677.427755-98
4753.751 137531
3086.77+536.18
70.5519542
2339.10+67-76
2560.6442-54
143218111258
1160.30 3274
1025.9178530
54775393

0.71
1.76 7581

1233.911352-2
1656.527 35506
4854.44T 139511
3119.201910-82
110.3015538
2394.8918-29
2520.90173-17
1436.737 15038
1148.1975%59
1013.7277542
4.81753%

0.79
1.6075 &2




	Preface
	Acknowledgments
	Summary
	Nomenclature
	Introduction
	Relevance of the Project
	Ganymede
	Current View of Ganymede's Interior Structure
	Magnetic Field
	Tides
	Libration
	Obliquity

	Bayesian Framework to Constrain Ganymede's Interior
	Measurement Uncertainties

	Research Questions
	Report Outline

	Methodology
	Sensitivity Analysis
	Ganymede's Interior Model
	Magnetic Induction Response Model
	Tidal Response Model
	Libration Model

	Bayesian Inversion

	Sensitivity Analysis
	Sample Size Analysis
	Constrained Parameters
	Observations
	Magnetic Induction Response
	Tidal Response
	Libration Response


	Bayesian Inversion
	Bayesian Inversion Setup
	Observables and Uncertainties

	Current Knowledge on Ganymede's Interior Structure
	Bayesian Inversion with Static Gravity Data (Inversion 1)
	Bayesian Inversion with Static Gravity and Magnetic Induction Data (Inversion 2)

	Future Measurements
	Bayesian Inversion with Static Gravity, Magnetic Induction, and Real k2 Tidal Love Number (Inversion 3)
	Bayesian Inversion with Static Gravity, Magnetic Induction, Real and Imaginary k2 Tidal Love Number (Inversion 4)
	Summary of the Different Inversions


	Conclusions and Recommendations
	Conclusions
	Recommendations for Future Work

	References
	Planning
	Background Knowledge
	Gravitational Field
	Tides
	Bayesian Inference

	Verification and Validation
	Verification
	Core and mantle densities
	Interior profiles
	Phase diagram interpolation
	Ocean density computation
	Ocean conductivity computation
	Bulk moduli computation

	Validation
	Magnetic Induction Response
	Tidal Response
	Libration Response


	Sensitivity Analysis
	One-at-a-Time Sensitivity Analysis
	Setup
	Constrained Parameters
	Observations

	Full Monte Carlo Analysis

	Bayesian Inversion
	Inversion with Static Gravity
	Inversion 2
	Inversion 3
	Inversion 4
	Summary of the Inversion Results


