

Delft University of Technology

Test-Driven Code Review
An Empirical Study
Spadini, Davide; Palomba, Fabio; Baum, Tobias; Hanenberg, Stefan; Bruntink, Magiel; Bacchelli, Alberto

DOI
10.1109/ICSE.2019.00110
Publication date
2019

Published in
Proceedings - 2019 IEEE/ACM 41st International Conference on Software Engineering, ICSE 2019

Citation (APA)
Spadini, D., Palomba, F., Baum, T., Hanenberg, S., Bruntink, M., & Bacchelli, A. (2019). Test-Driven Code
Review: An Empirical Study. In Proceedings - 2019 IEEE/ACM 41st International Conference on Software
Engineering, ICSE 2019 (pp. 1061-1072). Article 8811911 (Proceedings - International Conference on
Software Engineering; Vol. 2019-May). IEEE. https://doi.org/10.1109/ICSE.2019.00110
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSE.2019.00110
https://doi.org/10.1109/ICSE.2019.00110

Test-Driven Code Review: An Empirical Study

Davide Spadini,∗† Fabio Palomba,‡ Tobias Baum,§ Stefan Hanenberg,¶ Magiel Bruntink,† Alberto Bacchelli‡
∗Delft University of Technology, The Netherlands †Software Improvement Group, The Netherlands

‡University of Zurich, Switzerland §Leibniz Universitat Hannover, Germany ¶Paluno, University of Duisburg-Essen, Germany

Abstract—Test-Driven Code Review (TDR) is a code review
practice in which a reviewer inspects a patch by examining the
changed test code before the changed production code. Although
this practice has been mentioned positively by practitioners
in informal literature and interviews, there is no systematic
knowledge of its effects, prevalence, problems, and advantages.

In this paper, we aim at empirically understanding whether
this practice has an effect on code review effectiveness and how
developers’ perceive TDR. We conduct (i) a controlled experiment
with 93 developers that perform more than 150 reviews, and (ii)
9 semi-structured interviews and a survey with 103 respondents
to gather information on how TDR is perceived. Key results from
the experiment show that developers adopting TDR find the same
proportion of defects in production code, but more in test code, at
the expenses of fewer maintainability issues in production code.
Furthermore, we found that most developers prefer to review
production code as they deem it more critical and tests should
follow from it. Moreover, general poor test code quality and no
tool support hinder the adoption of TDR. Public preprint: [https:
//doi.org/10.5281/zenodo.2551217], data and materials: [https://
doi.org/10.5281/zenodo.2553139].

I. INTRODUCTION

Peer code review is a well-established and widely adopted
practice aimed at maintaining and promoting software qual-
ity [4]. In a code review, developers other than the code change
author manually inspect a code change to find as many issues
as possible and provide feedbacks that need to be addressed
before accepting the code in production [8].

The academic research community is conducting empirical
studies to better understand the code review process [42], [41],
[4], [27], [43], as well as to obtain empirical evidence on
aspects and practices that are related to more efficient and
effective reviews [49], [32].

A code review practice that has only been touched upon
in academic literature [47], but has been described in gray
literature almost ten years ago [56] is that of test-driven
code review (TDR, henceforth). By following TDR, a reviewer
inspects a patch by examining the changed test code before
the changed production code.

To motivate TDR, P. Zembrod—Senior Software Engineer
in Test at Google—explained in the Google Blog [56]: “When
I look at new code or a code change, I ask: What is this about?
What is it supposed to do? Questions that tests often have a
good answer for. They expose interfaces and state use cases”.
Among the comments, also S. Freeman—one of the ideators
of Mocks [46] and TDD [11]—commented how he covered
similar ground [22]. Recently, in a popular online forum for
programmers, another article supported TDR (collecting more

than 1,200 likes): “By looking at the requirements and check-
ing them against the test cases, the developer can have a pretty
good understanding of what the implementation should be
like, what functionality it covers and if the developer omitted
any use cases.” Interviewed developers reported preferring to
review test code first to better understanding the code change
before looking for defects in production [47].

Despite these compelling arguments in favor of TDR, we
have no systematic knowledge on this practice: its effective-
ness in finding defects during code review, its prominence
in practice, and what are its potential problems/advantages.
This knowledge can provide insights for both practitioners
and researchers. Developers and project stakeholders can use
empirical evidence about TDR effects, problems, and advan-
tages to make informed decisions about when to adopt it.
Researchers can focus their attention on the novel aspects of
TDR and challenges reviewers face to inform future research.

In this paper, our goal is to obtain a deeper understanding
of TDR. We do this by conducting an empirical study set up
in two phases: An experiment, followed by an investigation of
developers’ practices and perceptions.

In the first phase, we study the effects of TDR in terms of
the proportion of defects and maintainability issues found in
a review. To this aim, we devise and analyze the results of
an online experiment in which 92 developers (77 with at least
two years of professional development experience) complete
154 reviews, using TDR or two alternative strategies (i.e.,
production first or only production). Two external developers
rated the quality of the review comments. In the second
phase, we investigate problems, advantages, and frequency of
adoption of TDR – valuable aspects that could not be studied in
the experiment. To this aim, we conduct nine interviews with
experiment participants and deploy an online survey with 103
respondents.

Key findings of our study include: With TDR, the proportion
of functional defects (bugs henceforth) found in production
code and maintainability issues (issues henceforth) found
in test code does not change. However, TDR leads to the
discovery of more bugs in test code, at the expenses of fewer
issues found in production code. The external raters judged
the quality of the review comments as comparable across
all review strategies. Furthermore, most developers seem to
be reluctant to devote much attention to tests, as they deem
production code more important; moreover applying TDR is
problematic, due to widespread poor test quality (reducing
TDR’s applicability) and no tool support (not easing TDR).

https://doi.org/10.5281/zenodo.2551217
https://doi.org/10.5281/zenodo.2551217
https://doi.org/10.5281/zenodo.2553139
https://doi.org/10.5281/zenodo.2553139

II. RELATED WORK

To some extent, TDR can be considered as an evolution of
classical reading techniques [6], as it shares the general idea to
guide code inspectors with software artifacts (i.e., test cases)
and help them with the code review task.

Scenario-based inspections. Among reading techniques,
Porter & Votta [37] defined the scenario-based approach,
based on scenarios that provide inspectors with more specific
instructions than a typical checklist and focus on a wider
variety of defects. They discovered that such technique is
significantly more useful for requirements inspectors. Later
on, Porter et al. [38], [36] and Miller et al. [33] replicated
the original study confirming the results. Other studies by
Fusaro et al. [23] and Sandahl et al. [44] reported contra-
dictory results, however without providing explanations on
the circumstances leading scenario-based code inspection to
fail. A significant advance in this field was then provided by
Basili et al. [7], who re-visited the original scenario-based
as a technique that needs to be specialized for the specific
issues to be analyzed. They also defined a new scenario-
based technique called perspective-based reading: The basic
idea is that different aspects of the source code should be
inspected by inspectors having different skills [7]. All in
all, the papers mentioned above, provided evidence of the
usefulness of reading techniques; their similarities with TDR,
give an interesting rationale on why TDR could bring benefits.

Ordering of code changes. Research on the ordering of code
changes is also related to TDR. In particular, Baum et al.
argued that an optimal ordering of code changes would help
reviewers by reducing the cognitive load and improving the
alignment with their cognitive processes [10], even though
they made no explicit reference to ordering tests. This may
give theoretical value to the TDR practice. Code ordering and
its relation to understanding, yet without explicit reference to
tests or reviews, has also been the subject of studies [25], [12].

Reviewing test code. Many articles on classical inspection
(e.g., [29], [54]) underline the importance of reviewing tests;
however, they do not leave any specific recommendation. The
benefits of reviewing tests are also highlighted in two case
studies [30], [35]. Already in Fagan’s seminal paper [17], the
inspection of tests is discussed, in this case noting fewer bene-
fits compared to the inspection of production code. Winkler et
al. [55] experimented with writing tests during inspection and
found neither large gains nor losses in efficiency and effec-
tiveness. Elberzhager et al. [16], [15] proposed to use results
from code reviews to focus testing efforts. To our knowledge,
in academic literature TDR has been explicitly referred to only
by Spadini et al. [47]. In a more general investigation on
how test files are reviewed, the authors reported that some
practitioners indeed prefer to review test code first as to get
a better understanding of a code change before looking for
defects in production code. Our work builds upon the research
on reviewing test code, by investigating how reviewing test
code can(not) be beneficial for the whole reviewing process.

III. METHODOLOGY

In this section we describe the research questions and the
methodology we follow to conduct our study.

A. Research Questions

This study has two parts corresponding to two research
questions. In the first part, we design and run an experiment
to investigate the effects of TDR on code review effectiveness.
We measure the effectiveness as the ability to find bugs and
maintainability issues during a code review (i.e., the main
reported goal of code review [4]). Hence, our first research
question:

RQ1. Does the order of presenting test code to the
reviewer influence the code review’s effectiveness?

More formally, the goal of the experiment is to test the
following null hypotheses:

H0pc mi: For production code, there is no difference in the
proportion of found maintainability issues between the
different review practices (TF and PF).

H0pc bugs: For production code, there is no difference in the
proportion of found bugs between the different review
practices (TF and PF).

H0tc mi: For test code, there is no difference in the proportion
of found maintainability issues between the different
review practices (TF and PF).

H0tc bugs: For test code, there is no difference in the propor-
tion of the number of bugs found between the different
review practices (TF and PF).

H0review time: There is no difference in time required for a
review between the review practices (TF and PF).

H0review quality: There is no difference in the review quali-
ties between TF, PF, and OP.

Subsequently, we investigate the prominence of TDR and
developers’ perception toward this practice, also focusing
on problems and advantages. To do so, we conduct semi-
structured interviews and deploy an online survey. Hence, our
second research question:

RQ2. How do developers perceive the practice of Test-
Driven Code Review?

B. Method – RQ1: Design Overview

Figure 1 depicts the flow of our experiment. We follow
a partially counter-balanced repeated measures design [19],
augmented with some additional phases.

1) We use a browser-based tool to conduct the experiment
and answer RQ1. The tool allows to (i) visualize and perform
code reviews, and (ii) collect data from demographic-like ques-
tions and the interactions that participants have with the tool.
The welcome page provides information on the experiment to
perform and requires informed consent.

2) After the welcome page, an interface is shown to collect
demographics as well as information about some confounding

92 valid
participants

61 participants
completed

both reviews

Welcome
participant!

review

32 participants
completed only the

1st review

2nd review
with randomized

change & ordering

review

1st review
with randomized

change & ordering

access to the
controlled software

environment
for the experiment

demographics
& confounders

Figure 1. Experiment steps, flow, and participation

factors such as: (i) the main role of the participant in software
development, (ii) Java programming experience, (iii) current
practice in programming and reviewing, and (iv) the hours
already worked in the day of the experiment to approximate
the current mental freshness. These questions are asked with
the aim of measuring real, relevant, and recent experience of
participants, as recommended by previous work [18]. Once
filled in this information, the participant receives more details
on the reviews to be performed.

3) Each participant is then asked to perform two reviews
(the first is mandatory, the second is optional), randomly
selected from the following three treatments1 that correspond
to the TDR practice and its two opposite strategies:
• TF (test-first) – The participant must review the changes

in both test code and production code, and is shown the
changed test code first.

• PF (production-first) – The participant must review both
production and test, and is shown the production code first.

• OP (only-production) – The participant is shown and must
review only the changes to the production code.
For the treatments TF and PF, the tool shows a ‘Toggle

Shown Code’ button that allows the participant to see and
review the other part of the change (e.g., the production code

1We propose two of the three treatments to keep the experiment as short
as possible, thus stimulating a higher response rate, as also recommended by
Flanigan et al. [20]. This choice does not influence our observations, as the
random selection balances the treatments (see Table IV).

Figure 2. Example of the review view in the browser-based experiment UI,
showing the code change. In this case, the treatment is PF, thus to see the
test code, the participant must click on the ‘Toggle Shown Code’ button.

change if the treatment is TF). We do not limit the number
of times the ‘Toggle Shown Code’ button can be clicked, thus
allowing the participant to go back and forth. The participant
can annotate review remarks directly from the GUI of our tool.

4) Before submitting the experiment, we ask the participants
if they would like to be further contacted for a semi-structured
interview; if so, they fill in a text field with their email address.
Further comments/impressions on the study can be reported
using a text block.

C. Method – RQ1: Browser-Based Experiment Platform

As previously mentioned, we adapt and use a browser-
based experiment platform to run the experiment. This has
two main advantages: On the one hand, participants can
conveniently perform code reviews; on the other hand, the
tool assists us when gathering data from the demographic
questions, conducting the different treatments, and collecting
information for the analysis of co-factors. To reduce the risk
of data loss and corruption, almost no data processing is done
on the server: instead, participants’ data is recorded as log
records and analyzed offline.

The tool implements a GUI similar to other browser-based
code review tools (e.g., GITHUB pull requests): It presents a
code change in the form of two-pane diffs. An example of the
implemented GUI is reported in Figure 2: Review remarks can
be added and changed by clicking on the margin beneath the
code. The tool logs many user interactions, such as mouse
clicks and pressed keys, which we use to ensure that the
participants are actively performing the tasks.

D. Method – RQ1: Objects

The objects of the study are represented by the code changes
(or patch, for brevity) to review, which need to be properly
selected and eventually modified to have a sufficient number
of defects to be discovered by participants.

Patches. To avoid giving some developers an advantage, we
use a code base that is not known to all the participants of
the experiment. This increases the difficulty of performing
the reviews. To keep the task manageable, we ensure that
(i) the functional domain and requirements are well-known
to the participants and (ii) there is little reliance on special
technologies or libraries. To satisfy these goals, we select an
open-source project, JPACMAN-FRAMEWORK: The project
consists of 42 production classes (≈2k LOC) as well as 13
test classes (≈600 LOC), it received 103 pull requests in his
history, and has a total of 17 contributors.

To select suitable patches, we screen the commits of the
project and manually select changes that (1) are self-contained,
(2) involve both test and production code, (3) are neither too
complicated nor too trivial, and (4) have a minimum quality,
e.g., not containing dubious changes.

The selected patches are those of commits 6d7c14d and
698ac7d. In the first one, a new feature is added along with
the tests that cover it. In the second one, a refactoring in the
production code is applied and a new test is added.

Seeding of bugs and maintainability issues. Code review is
employed by many software development teams to reach dif-
ferent goals, but mainly (1) detecting bugs (functional defects)
and (2) improving code quality (e.g., finding maintainability
issues), (3) spreading knowledge [9], [31], [49], [4].

Since the online experiment is done by single developers,
we measure code review effectiveness by considering only
the first two points, detecting bugs (functional defects) and
maintainability issues. To this aim, we seed in the code
bugs and maintainability issues. Examples of injected bugs
are a wrong copy-paste and wrong boundary checking. For
maintainability issues, we mainly mean “smells that do not
fail the tests” [21], e.g., a function that does more than what it
was supposed to do, wrong documentation or variable naming.
Concerning the nature of faults, one bug was real and identified
some commits later. The other six were manually injected,
based on standard errors such as handling corner cases and
null pointer exceptions.

In the end, the two patches contain a total of 4 bugs and 2
issues (Patch 1) and 5 bugs and 3 issues (Patch 2). The total
number of bugs per file (4 and 5) is higher than in the real-
world code: indeed, in our experiment, we opted for a higher
density of errors to ensure an attainable number of participants,
and reduce confounding factors in the experiment. The reason
is that if the number of errors in the code is too low, the
statistical power decreases, and many more participants are
needed to measure an effect. Moreover, if subjects must read
too much correct code, the effects such as ”reading speed,”
become stronger confounding factors.

Table I
VARIABLES USED IN THE STATISTICAL MODEL

Metric Description
Dependent Variables

ProdBugsProp Proportion of functional defects
found in the production code

ProdMaintIssuesProp Proportion of maintainability issues
found in the production code

TestBugsProp Proportion of functional defects
found in the test code

TestMaintIssuesProp Proportion of maintainability issues
found in the test code

Independent Variable
Treatment Type of the treatment (TF, PF, or OP)

Control Variables
Review Details
TotalDuration Time spent in reviewing the code

IsFirstReview Boolean representing whether the
review is the first or the second

Patch Patch 1 or 2
Profile
Role Role(†) of the participant
ReviewPractice How often(†) they perform code review
ProgramPractice How often(†) they program

ProfDevExp Years of experience(†)
as professional developer

JavaExp Years of experience(†) in Java

WorkedHours Hours the participant worked before
performing the experiment

(†) see Table III for the scale

E. Method – RQ1: Variables and analysis
We investigate whether the proportion of defects found in

a review is influenced by the review being done under a TF,
PF, or OP treatment, controlling for other characteristics.

The first author of this paper manually analyzed all the re-
marks added by the participants. Our tool explicitly asked and
continuously highlighted to the participants that the primary
goal is to find both bugs and maintainability issues; therefore,
each participant’s remark is classified as identifying either a
bug or an issue, or as being outside of the study’s scope. A
remark is counted only if in the right position and correctly
pinpointing the problem.2

By employing values at defect level, we could compute the
dependent variables at review level, namely proportions given
by the ratio between the number of defects found and the total
number of defects in the code (dependent vars in Table I). The
dependent variables are then given by the average of nj binary
variables yi, assuming a value 1 if the defect is found and 0
if not, where nj is the total number of defects present in the
change j, so that the proportion πj results from nj independent
events of defect finding and yj are binary variables that can
be modeled through a logistic regression.

πj =

nj∑
1

yj
nj

(1)

2To validate this coding process, a second author independently re-coded
the remarks and compared his classification with the original one. In case of
disagreements, the two authors opened a discussion and reached a consensus.
We compute the Cohen’s kappa coefficient [13] to measure the inter-rater
agreement between the two authors before discussion: we find it to reach 0.9,
considerably higher than the recommended threshold of 0.7 [13].

The main independent variable of our experiment is the
review strategy (or treatment). We consider the other variables
as control variables, which include the time spent on the
review, the review and programming practice, the participant’s
role, the reviewed patch (i.e., P1 or P2), and whether the
review is the first or the second being performed. In fact,
previous research suggests the presence of a trade-off between
speed and quality in code reviews [26]; following this line, we
expect longer reviews to find more defects; to check this, we
do not fix any time for review, allowing participants to perform
the task as long as needed. Moreover, it is reasonable to
assume that participants who perform reviews more frequently
to also find a higher share of defects.

We run logistic regressions of proportions, where Logit(πj)
represents the explained proportion of found defects in review
j, β0 represents the log odds of being a defect found for
a review adopting PF (or OP) and of mean TotalDuration,
IsFirstReview, etc., while parameters β1 · Treatmentj , β2 ·
TotalDurationj , β3 · IsF irstReviewj , β4 · Patchj , etc.
represent the differentials in the log odds of being a defect
found for a change reviewed with TF, for a review with char-
acteristics TotalDurationj−mean, IsF irstReviewj−mean,
Patchj−mean, etc..

Logit(πj) = β0 + β1 · Treatmentj + β2 · TotalDurationj+
+β3 · IsF irstReviewj + β4 · Patchj+
+...(other vars and β omitted)

(2)

F. Method – RQ2: Data Collection And Analysis

While through the experiment we are able to collect data
on the effectiveness of TDR, we cannot collect the perception
of the developers on the prevalence of TDR as well as the
motivations for applying it or not. Hence, to answer RQ2,
we proceed with two parallel analyses: We (i) perform semi-
structured interviews with participants of the experiment who
are available to further discuss on TDR and (ii) run an online
survey with the aim of receiving opinions from the broader
audience of developers external to the experiment.

Semi-structured interviews. We design an interview whose
goal is to collect developers’ points of view on TDR. They
are conducted by the first author of this paper and are semi-
structured, a form of interview often used in exploratory
investigations to understand phenomena and seek new insights
on the problem of interest [53].

Each interview starts with general questions about code
reviews, with the aim of understanding why the interviewee
performs code reviews, whether they consider it an important
practice, and how they perform them. Then, we ask partic-
ipants what are the main steps they take when reviewing,
starting from reading the commit message to the final decision
of merging/rejecting a patch, focusing especially on the order
of reviewing files. Up to this point, the interviewees are not
aware of the main goal of the experiment they participated
in and our study: We do not reveal them to mitigate biases
in their responses. After these general questions, we reveal

the goal of the experiment and we ask their personal opinions
regarding TDR. The interview protocol is available [2].

During each interview, the researcher summarizes the an-
swers and, before finalizing the meeting, these summaries
are presented to the interviewee to validate our interpretation
of their opinions. We conduct all interviews via SKYPE.
With the participants’ consent, the interviews are recorded
and transcribed. Later, we analyze the interviews applying a
Grounded Theory approach [14]: we use Descriptive Coding as
first cycle coding, and Pattern coding as second cycle. We first
summarize in a short phrase the essential topic of each passage
from the interviews; then we identify explanatory codes to
create emergent themes that we discussed among the authors.
Overall, we conduct nine 20/30-minute interviews; Table II
summarizes the demographics of the participants.

Table II
INTERVIEWEES’ EXPERIENCE (IN YEARS) AND WORKING CONTEXT

ID Developer Reviewer Working context Applying TDR
P1 8 8 OSS Almost never
P2 3 3 Company A Almost Always
P3 15 15 Company A Almost Always
P4 10 10 Company B Almost Never
P5 10 5 Company C Always
P6 3 2 Company D Sometimes
P7 16 16 Company E Always
P8 4 4 Company F / OSS Sometimes
P9 3 3 Company G / OSS Never

Online survey. We create an anonymous, 4-minute, online
survey with two sections. In the first one, we ask demographic
information of the participants, including gender, program-
ming/reviewing experience, policies regarding code reviews in
their team (e.g., if all changes are subject of review or just a
part of them), and whether they actually review test files (the
respondents who answer “no” are disqualified). In the second
section, we ask respondents (i) how often they start reviewing
from tests vs. production files and (ii) to fill out a text box
explaining the reasons why they start from test/production
files. The questionnaire is created using a professional tool [1]
and is spread out through practitioners blogs (e.g., REDDIT)
and through direct contacts in the professional network of the
study authors, as well as the authors’ social media accounts
on Twitter and Facebook. Furthermore, we neither revealed the
aim of the experiment nor provided incentives to participate.

We collected 103 valid answers, which complement the
semi-structured interviews. Among the respondents, 5% have
one year or less of development experience, 44% have 2 to 5
years, 28% have 6 to 10 years, and 23% more than 10 years.

IV. RESULTS – RQ1: ON THE EFFECTS OF TDR

A total of 232 people accessed our experiment environment
following the provided link. From their reviews (if any), we
exclude all the instances in which the code change is skipped
or skimmed, by demanding either at least one entered remark
or more than 5 minutes spent on the review. We also remove
an outlier review that lasted more than 4 standard deviations
from the mean review time, without entering any comments.

Table III
PARTICIPANTS’ CHARACTERISTICS – DESCRIPTIVE STATISTICS - N. 92

Dev Student Researcher Architect Analyst Other
Current
role 61% (56) 16% (15) 12% (11) 5% (5) 3% (3) 2% (2)

Experience
(years) with None <= 1 2 3-5 6-10 >10

- Java prog. 13% (12) 5% (5) 7% (6) 21% (19) 34% (31) 21% (19)
- Profess. dev. 5% (5) 11% (10) 13% (12) 18% (17) 28% (26) 24% (22)
Current
frequency of Never Yearly Monthly Weekly Daily

- Programming 0% (0) 0% (0) 3% (3) 17% (16) 79% (73)
- Reviewing 15% (14) 7% (6) 16% (15) 22% (20) 40% (37)

Table IV
DISTRIBUTION OF PARTICIPANTS’ REVIEWS ACROSS TREATMENTS

TF PF OP total
Patch1 31 32 29 92
Patch2 28 29 34 91

total 59 60 63

After applying the exclusion criteria, a total of 92 participants
stay for the subsequent analyses. Table III presents what the
participants reported in terms of role, experience, and practice.
Only 5 of the participants reported to have no experience
in professional software development; most program daily
(79%) and review code at least weekly (62%). Table IV
shows how the participants’ reviews are distributed across the
considered treatments and patches. Despite some participants
completed only one review and the aforementioned exclusions,
the automated assignment algorithm allowed us to obtain a
rather balanced number of reviews per treatment and by patch.

A. Experiment results

Table V shows the average values achieved by the reviews
for the dependent variables (e.g., ‘ProdBugsProp’) and the
average review time, by treatment. The most evident differ-
ences between the treatments are in: (d1) the proportion of
maintainability issues found in production code (PF and OP
have an average of .21 and .18, respectively, while TF of 0.08),
and (d2) the proportion of bugs found in test code (TF has an
average of 0.40, while PF of 0.17).

By applying a Wilcoxon Signed Rank Test [28] we tested
and rejected H0pc mi (p < 0.01) and rejected H0tc bugs

(p < 0.01). 3 On the contrary, based on the same test, we
accept H0pc bugs and H0tc mi (the minimum p is higher than
0.38). 4 Applying again a Wilcoxon Signed Rank Test rejects
H0review time (p > .05 in all cases).

Overall, the comparison of the averages highlights that,
within the same time, developers who started reviewing from
tests (TF) spot a similar number of bugs in production, while
discovering more defects in the tests but fewer maintainability
issues in the production code. Thus, there seems to be a
compromise between reviewing test or production code first
when considering defects and maintainability issues.

With regression modeling, we investigate whether these
differences are confirmed when taking into account the char-

3In the first case, Cliff’s delta is medium, in the latter case, it is small
4It is arguable whether there is a need to apply a Bonferroni correction,

because we tested the variable tc more than once. But even applying a
correction necessarily leads to a p still < .05

Table V
AVERAGE PROPORTION OF BUGS AND ISSUES FOUND, BY TREATMENT,
AND REVIEW TIME. COLORED COLUMNS INDICATE A STATISTICALLY

SIGNIFICANT DIFFERENCE BETWEEN THE TREATMENTS (p < 0.01), WITH
THE COLOR INTENSITY INDICATING THE DIRECTION.

Proportion of found
production test

bugs maintIssues bugs maintIssues
Time

TF 0.28 0.08 0.40 0.18 7m11s
PF 0.33 0.21 0.17 0.13 6m27s
OP 0.28 0.18 5m29s

Table VI
REGRESSIONS FOR ‘PRODMAINTISSUESPROP’ AND ‘TESTBUGSPROP’

TestBugsProp ProdMaintIssuesProp
Estimate S.E. Sig. Estimate S.E. Sig.

Intercept -0.7314 1.9242 -0.0471 1.2191
TotalDuration 0.1664 0.0618 ** 0.0462 0.0259 .
IsFirstReview ‘TRUE’ -0.9213 0.5344 . -0.1554 0.2241
Patch ‘P2’ 1.9296 0.5688 *** -2.8474 0.4579 ***
Treatment ‘PF’ 0.0975 0.2386
Treatment ‘TF’ 1.1792 0.4639 ** -1.2468 0.3908 **
ReviewPractice 0.0675 0.2082 0.2598 0.1389 .
ProgramPractice -0.6608 0.4685 -0.2180 0.2938
ProfDevExp -0.0982 0.1951 -0.2953 0.1211 *
JavaExp -0.0182 0.1512 0.0366 0.0631
WorkedHours -0.0225 0.0817 0.0403 0.0405
... (†)

significance codes: ’***’p <0.001, ’**’p <0.01, ’*’p <0.05, ’.’p <0.1
(†) Role is not significant and omitted for space reason

acteristics of participants and reviews (variables in Table I).
In Section VI we describe the steps we take to verify that the
selected regression model is appropriate for the available data.

We build the four models corresponding to the four depen-
dent variables, independently. Confirming the results shown in
Table V, the treatment is statistically significant exclusively for
the models with ‘ProdMaintIssuesProp’ and ‘TestBugsProp’ as
dependent variables; Table VI reports the results.5 We observe
that—also considering the other factors—TF is confirmed a
statistically significant variable in both ‘ProdMaintIssuesProp’
and ‘TestBugsProp’, with negative and positive directions,
respectively. To calculate the odds of being a maintainability
issue found in a review with TF compared to the baseline
OP, we exponentiate the differential logit, thus: exp(−1.25) =
0.29, which means 71% fewer chances to find the issue in case
of TF than OP (or PF). Instead, the odds of being a test bug
found in a review with TF is 3.49, thus almost 250% more
chances to find the test bug than with PF. Also, we see that
the specific patch under review has a very strong significance
for both models, thus confirming that differences in the code
are an essential factor in the final outcome. The review time
plays a significant role for ‘TestBugsProp’ and (to a lesser
degree) for ‘ProdMaintIssuesProp’, in the expected direction.
Unexpectedly, the professional experience plays a negative role
for ‘ProdMaintIssuesProp’; we hypothesize that professionals
focus more on functional defects than maintainability issues.

5For space reasons, we omit the other two models, in which no variable is
significant, but these models are available in our online appendix [2].

Finding 1. In reviews in which tests are presented first,
participants found significantly more bugs in test code,
yet fewer maintainability issues in production code. The
production bugs and test maintainability issues found
is stable across the treatments.

B. Assessing code review quality

After having found differences in bugs/issues found with
TF, we check whether the different treatments (TF, PF, OP)
influence the quality of the review, i.e., we intend to test
H0review quality. To this aim two external validators manually
classify each review, rating each comment. These validators
have more than 5 years of industrial experience in code
review and have collaborated in many open-source projects.
We request them to go through each of the code reviews
done by the developers involved in the experiment and rate
each comment aimed at fixing a defect or maintainability
issue in the production or test code using a Likert scale
ranging between ‘1’ (very poor comment) and ‘5’ (very useful
comment). They also give a score to each comment that is
outside the scope (i.e., a comment that does not fix any of
our manually injected defects), plus a final overall score for
the review. Each validator performs the task independently,
and then their assessments are sent back to the authors of this
paper. The validators are unaware of the treatment used in each
review. A set of 33 reviews is classified by both authors, so
that we can measure their inter-rater agreement using Cohen’s
kappa [13]. To mitigate the personal variability of the raters,
we cluster their ratings into three categories: ‘below average
review comment’, ‘average review comment’ and ‘good review
comment’. Then, we check the raters’ agreement. The result
shows that in all ratings there is at least a substantial agreement
between the validators: production issues (κ = .69), test issues
(κ = .78), production bugs (κ = 1), test bugs (κ = .77).

To test H0review quality, we apply an ANOVA on the
independent variables score (e.g., productivity issues) and the
dependent variable review practice (for each independent vari-
able in separation). We find that for no score the independent
variable is a significant factor (productivity issues p=.62; test
issues p=.30; productivity bugs p=.25; test bugs p=.37). Hence,
we accept H0review quality and conclude that raters do not see
a difference in the quality of the reviews across treatments.

Finding 2. There is no statistically significant differ-
ence between the quality of the reviews made under the
three considered treatments, according to two external
raters blinded to the underlying treatments.

V. RESULTS – RQ2: ON THE PERCEPTION OF TDR

We interview some of the participants of the experiment on
what they perceive as advantages and disadvantages of TDR.
We also survey 103 developers to enrich the data collection
with people that do not participate in the experiment and can

provide a complementary view on TDR. In this section, we
report the answers obtained during our interviews and surveys.
We summarize them in topics, covering both advantages and
disadvantages of this practice. We refer to the interviewees by
their ID shown in Table II.

A. Adoption of TDR in practice

The majority of the respondents applies TDR only occasion-
ally: 5% (5) reported that they always start from test code,
13% (13) almost always, 42% (43) occasionally/sometimes,
27% (28) almost never, 13% (13) never.

B. Perceived problems with TDR

When analyzing data coming from surveys and interviews,
we discover a set of blocking points for the adoption of TDR.
They can be grouped around four main themes, i.e., perceived
importance of tests, knowledge gained by starting reviewing
from tests, test code quality, and code review tool ordering,
that we further discuss in the following. Themes are discussed
based on the frequency of appearance in the survey.
Tests are perceived as less important. From the comments
left by the participants of the survey, it seems clear that test
code is considered much less important than production code
and that, as stated by one participant, they “want to see the
real change first”. This strong opinion is confirmed by other
15 participants;6 for example, a participant explains that s/he
starts “looking at production files in order to understand what
is being changed about the behavior of the system. [S/he]
views tests as checks that the system is behaving correctly, so it
does not seem possible to evaluate the quality of the tests until
I have a clear understanding of the behavior”. While the semi-
structured interviews confirmed this general perception around
tests, they also add a more practical point to the discussion:
P1,2−5,7 state that they need to prioritize tasks because of time,
and often higher priority is given to the production code.

A closely related factor contributing to this aspect is the
tiredness associated with reviewing code for a long time. As
reported by one of the survey participants, “the longer you
are reviewing, the more sloppy you get [...]. I would rather
have a carefully reviewed production file with sloppy test than
vice versa”. In other words, when performing multiple code
review at once, developers often prefer to pay more attention
to the production code than test files.

13 participants also report that is the production code to
drive tests rather than the opposite. A clear example of this
concept is enclosed in the following participant’s quote: “To
me, tests are about checking that a piece of software is
behaving correctly, so it doesn’t make sense to me to try to
understand if the tests are testing the right conditions if I do
not understand what the code is supposed to do first.” Finally,
another aspect influencing the perception that developers have
of tests is the lack of testing experience. One of the participants
affirms that “not everyone in my team has lots of experience

6It should be noted that in the survey we gave the possibility to leave open
comments; having 15 or more participants agreeing on exactly the same theme
indicates a noteworthy trend.

with testing, so usually just looking at the production code will
tell me if there will be problems with the tests.” Thus, having
poor experience in testing practice might bias the perception
of the advantages given by tests in the context of code review.

Tests give less knowledge on the production behavior.
Both interviewees and survey respondents report that the main
advantage of starting with production code is that they can
immediately see the feature and how it is changed, and only
later they will check if it is properly tested. For example,
a survey respondent says: “I want to understand what the
production code does, form my own opinion of what should
be tested, and then look at the tests afterward.” From the
interviews, P9 also adds that it is hard to capture all the
possible behaviors with tests, while looking to production code
first helps him/her figuring out the failure modes before seeing
what the tests the developer proposed are.

Nevertheless, an interesting trend emerges from our results.
Despite most developers claim that tests cannot give enough
knowledge to review a change, six of them declare that the
decision of start reviewing from test code basically depends
on the degree of knowledge they have of the production code
under test. As explained by a survey participant, “If I am
familiar with the topic and the code, I will start with the
production files. Otherwise I will choose the test files”. In
other words, tests only seem to be useful in time of need, i.e.,
when a developer does not have any other instrument to figure
out the context of the proposed code change.

Tests have low code quality. 4 participants mention poor test
code quality as a reason to not apply TDR in practice. The use
of tests in a code review has the prerequisite that such tests
can properly exercise the behavior of the production code.
One of the participants, when explaining why s/he prefers
starting from production code, reports that “sometimes the
tests are bad and it is easier to understand how the code
behave by looking at the feature code”. This is also confirmed
by the semi-structured interviews: the main obstacle when
reviewing tests first is the assumption that the test code is
well written [P1−3,5,6,9]. Both P1 and P9 said that most of
the times they prefer to start from production because they
assume developers do not write good tests. P1 says “Usually,
I start from production and maybe the reason is that many
of the projects where I worked do not have that many tests”.
Even if the tests are present, sometimes reviewers find them
difficult to understand: According to P6, “. . . the test needs
to be written in a clear way to actually understand what’s
going on.” The solution to this problem—according to our
interviewees—is to impose test rules, e.g., all the changes to
the production code should be accompanied by tests [P2,3,5].
P5 says that “if [tests] are not good, I will ask to modify them.
If they are not even present, I will ask to add them and only
after I will review the patch”.

Code review tool ordering. The final disadvantage is related
to a practical problem: current code review tools present code
changes following an alphabetic order, meaning that most of
the times developers review following such order. This is

highlighted by 15 survey participants and confirmed by the
interviewees. For example, P3 says: “If there is a front-end, we
do not have integration tests for all the features, so sometimes
I do manual testing. In this case, I would stick with the order
of GitLab. I think GitLab present tests later than production,
so I generally start from that”. Interestingly, this point came
up also from 35% of the survey respondents who do not apply
TDR, that indicated they start from production code because
they simply follow the order given by the code review tool.
According to interviewees P3 and P4, they follow the order of
GitHub because in this way they are sure to have reviewed all
the files in the patch, while going back and forth from file to
file may result in skipping some files.

Finding 3. Perceived problems with TDR: Developers
report to (1) consider tests as less important than pro-
duction, (2) not being able to extract enough knowledge
from tests, (3) not being able to start a review from tests
of poor quality, and (4) being comfortably used to read
the patch as presented by their code review tool.

C. Perceived advantages of TDR

We identify two main themes representing the major per-
ceived advantages of adopting TDR, i.e., the concise, high-level
overview tests give on the functionalities of production code
and the ability of naturally improving test code quality. We
discuss those aspects based on the frequency in the survey.
TDR provides a black-box view of production code. 18
of the respondents explain that the main advantage they
envision from the application of TDR is the ability of tests
to provide a concise, high-level overview of the functional-
ities implemented in the production code. In particular, one
participant reports: “If I read the test first without looking
at the production implementation, I can be sure that the
test describes the interface clearly enough that it can serve
as documentation.” Moreover, developers appreciate that few
lines of test code allow them to contextualize the change. Most
interviewees agreed that starting reviewing tests allows them
to understand better the code change context [P2−8]. P3 says:
“I think starting from tests helps you in understanding the
context first, the design, the “what are we building here?”
before actually looking at “how they implemented it”. The
common feeling between the interviewees is that tests better
explain what the code is supposed to do, while the production
code shows how the developer implemented it [P1−4,6,7]. P1

says: “When you are reviewing complex algorithms it is nice
to immediately see what type of outputs it produces in response
to specific types of input.”

TDR improves test code quality. Three of the survey par-
ticipants explicitly report that tests must be of good quality
and a practice like TDR would enable a continuous test code
quality improvement; as one put it: “Tests are often the best
documentation for how the production code is expected to
function. Getting tests right first also contributes to good TDD

practices and the architectural values that come with that”.
In other words, the developers report that, in situations where
reviewers inspect tests first, the improvement of test code
quality have to necessarily happen, otherwise reviewers could
not properly use tests as documentation to spot problems in
production code. As a natural consequence, TDR would also
enforce tests to be updated, thus producing overall benefits to
the system reliability.

Furthermore, one participant reports TDR to be efficient
“because it captures and should capture all the bugs”: even
if we obtain this kind of feedback by a small number of
developers, it is still interesting to remark how some of them
perceive the potential benefits of TDR, which we empirically
found (RQ1), as being more effective in terms of test bugs
discovered—while spotting the same proportion of production
bugs. The semi-structured interviews confirm all the aspects
discussed so far. Most of the interviewees agreed that TDR
somehow helps reviewers to be more focused on testing.
According to P9: “I think it would encourage the development
of good tests, and I think better tests mean more bugs captured.
So yes, in the end, you may capture more bugs”. P6 and P8

also say that when reviewing the production code the reviewer
already knows what the code is tested for, so it could be easier
to catch not covered paths. For example, P3 refers to happy
vs. bad paths: “starting from the tests you think a little bit on
the cases that apply, so for example if they only test the happy
path and not the bad path“.

Finding 4. Perceived advantages of TDR: Developers
report that TDR (1) allows them to have a concise,
high-level overview of the code under test and (2) helps
them in being more testing-oriented, hence improving
the overall test code quality.

VI. THREATS TO VALIDITY

Construct validity. Threats to construct validity concern our
research instruments. Most constructs we use are defined in
previous publications, and we reuse existing instruments as
much as possible: The tool employed for the online experiment
is based on a similar tool used in an earlier work [2].

To avoid problems with the experimental materials, we
employed a multi-stage process: After tests among the authors,
we performed three pre-tests with external participants, and
only afterward we started the release phase.

One of the central measures in our study is the number
of defects and maintainability issues found. The first author
seeded the defects, and later checked by the other authors.
Nevertheless, we cannot rule out implicit bias in seeding the
defects as well as in selecting the code changes.

We asked the participants to review test and production
code separately, using a “Toggle shown code” button to
switch between them. However, we cannot ensure that all the
participants used this button correctly (or used it at all). To
mitigate this, we analyzed the results mining only the shown

code (e.g., the second part of the review would not exist),
obtaining very similar results: Hence we can conclude that
this threat is not affecting the final results.

A major threat is that the artificial experiment created by us
could differ from a real-world scenario. We mitigated this issue
in multiple ways: (1) we used real changes, (2) we reminded
the participant to review the files as they would typically do
in their daily life, and (3) we used an interface very similar
to the common Code Review Tools GUIs.

Furthermore, to validate the reviews done by the partici-
pants, we involved two external validators. The only informa-
tion they had at their disposal when rating the reviews was the
patch and the comments of the participants, i.e., they did not
know what treatment it was, the duration of the review, and
all the other information we collected. Thus, the rate given
by the validators was based on their personal judge and past
experience in code review. To mitigate this issue, we involved
two validators that have strong experience in Java and MCR:
one had worked for many years in a large Russian-based SE
company, and the other validator holds a Ph.D. in SE and has
worked in many OSS.
Internal validity - Credibility. Threats to internal validity
concern factors we did not consider that could affect the
variables and the relations being investigated. In an online
setting, a possible threat is the missing control over partici-
pants, which is amplified by their full anonymity. To mitigate
this threat, we included questions to characterize our sample
(e.g., experience, role, screen size). To identify and exclude
duplicate participation, we logged hashes of participant’s local
and remote IP addresses and set cookies in the browser.
Furthermore, to exclude participants who did not take the
experiment seriously, we excluded experiments without any
comments in the review and manually classified the comments
to delete the inappropriate ones.

We do not know the nature of the population that did our
experiment, hence it might suffer from self-selection bias.
Indeed, it could be possible that the sample contains better
and more motivated reviewers than the population of all
software developers. However, we do not believe this poses
a significant risk to the validity of our main findings since
we would expect stronger effects with a more representative
sample. Furthermore, as depicted in Table IV, the participants’
experience is quite various, with a 30% lower than 2 years and
50% with more than 6.

External validity - Transferability. Threats to external va-
lidity concern the generalization of results. A sample of 93
professional software developers is quite large in comparison
to many experiments in software engineering [45]. However,
it is still small compared to the overall population of software
developers that employ MCR. We reduce this issue by inter-
viewing and collecting the opinions of other developers 103
who did not participate in the experiment.

Statistical conclusion validity. A failure to reach statistically
significant results is problematic because it can have multiple
causes, e.g., a non-existent or too small effect or a too small

sample size. Even though we reached a quite large sample of
participants, our sample is not large enough to detect smaller
effects for RQ1.

A major threat to our RQ1 results is to employ the wrong
statistical model. To ensure that the selected logistic regres-
sion model is appropriate for the available data, we first
(1) compute the Variance Inflation Factors (VIF) as a standard
test for multicollinearity, finding all the values to be below
1.5 (values should be below 10), thus indicating little or no
multicollinearity among the independent variables, (2) run a
multilevel regression model [40] to check whether there is
a significant variance among reviewers, but we found little
to none, thus indicating that a single level regression model
is appropriate, (3) ascertain the linearity (assumed by logistic
regression) of our independent continuous variable (the review
time) and log odds using the Box-Tidwell test [24], and
(4) build the models by adding the independent variables step-
by-step and found that the coefficients remained stable, thus
further indicating little to no interference among the variables.

Finally, in our statistical model, we control for the type of
the patch, namely Patch 1 or 2. However, we do not control for
Product or Process metrics of the code (i.e., size, complexity,
churn, etc.): we control only for the patch as it encloses all the
characteristics that previous literature already demonstrated as
related to review effectiveness [31], [4].

VII. DISCUSSION AND IMPLICATIONS

Our findings provide two key observations to be further
discussed and that lead to implications for practitioners, edu-
cators, tool vendors, and research community.
Ordering of files within the code review. Interviewees and
survey respondents indicated that they often review the files as
presented by their code review tool. While this process has the
advantage that at the end a reviewer is sure to have reviewed
all files, it may be problematic. For instance, our experiment
(RQ1) showed that simply presenting test first allows a re-
viewer to capture more test bugs, which have been shown to be
extremely harmful to the overall reliability of software systems
[34], [48], [52]. At the same time, TDR still allows catching
the same amount of bugs in production code, thus being
nearly equivalent to the case of reviewing production files
first. However, the drawback consists of finding fewer issues in
production. A study could be designed and conducted to verify
whether and to what extent using static analyzers could help to
mitigate this drawback, as they can spot several maintainability
issues automatically [5]. Furthermore, this finding can inform
both next-generation review tools makers, which could base
the order of files within the code review on the context, or
allow the reviewers to make this choice.

We also found that developers decide on whether to start
reviewing from test or production based on different factors
such as familiarity with the code or type of modification
applied. This suggests that to improve productivity and code
review performance, tool vendors might enable the option to
let developers decide on the code review ordering. At the
same time, the research community is called to the definition

of novel techniques that can exploit a set of metrics (e.g.,
change type or past modifications of the developer on the
code under review) to automatically recommend the order that
would allow the reviewer to be more effective: this would lead
to new adaptive mechanisms that take into account developer-
related factors to improve the reviewability of code [39].

Test code quality. A critical enemy of TDR seems to be
the poor quality of test code [3], [51]. Many interviewees
and survey respondents indicated this as the main reasons
to not apply TDR. If tests are poorly written or incomplete,
it becomes almost impossible (or even dangerous) to start
reviewing from test code, as it is harder to spot errors in
production code. However, this would create a vicious cycle,
in which tests are reviewed less and less carefully, thus
gradually losing quality. Furthermore, we believe that the
programming language can potentially influence TDR: in fact,
the availability of testing frameworks (e.g., JUnit) affects this
practice, and the readability of tests (which may also depend
on the framework and language) can also do it. A possible
solution consists of enforcing the introduction of code of
conducts that explicitly indicate rules on how to review tests
[50].

The development of a good team culture in which test
code is considered as important as production code should
be a must for educators. Indeed, as previous work already
pointed out [4], [31], [47], good reviewing effectiveness is
found mostly within teams that value the time spent on code
review; hence, practitioners should set aside sufficient time for
reviewing all the files present in the patch, including test code.

VIII. CONCLUSION

In this paper, we empirically investigated a code re-
view practice mentioned among practitioners’ blogs and only
touched upon in academia: Test-Driven Code Review. We
performed a study set up in two phases: an experiment
with 92 developers and two external raters, followed by a
qualitative investigation with nine semi-structured interviews
and a survey with 103 respondents. Among our results, we
found that with TDR the quality of the review comments does
not change and neither does the time spent and the proportion
of found production bugs and test issues. TDR leads to the
discovery of more bugs in test code, at the expenses of fewer
maintainability issues found in production. We report that
developers see the application of TDR as problematic because
of the perceived low importance of reviewing tests, poor test
quality, and no tool support. However, test first review is also
deemed to offer a concise, high-level overview of a patch
that is considered helpful for developers not familiar with the
changed production code.

IX. ACKNOWLEDGMENT

This project has received funding from the European Union’s
H2020 programme under the Marie Sklodowska-Curie grant
agreement No 642954. A. Bacchelli and F. Palomba grate-
fully acknowledge the support of the Swiss National Science
Foundation through the SNF Project No. PP00P2 170529.

REFERENCES

[1] SurveyGizmo. https://www.surveygizmo.com, 2019.
[2] Test-Driven Code Review: An Empirical Study - Data and Material.

https://doi.org/10.5281/zenodo.2553139, 2019.
[3] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman. Test code quality

and its relation to issue handling performance. IEEE Transactions on
Software Engineering, 40(11):1100–1125, 2014.

[4] A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of
modern code review. In 35th International Conference on Software
Engineering, ICSE 2013a, pages 710–719, 2013.

[5] V. Balachandran. Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion. In Proceedings of the 2013 International Conference on Software
Engineering, pages 931–940. IEEE Press, 2013.

[6] V. Basili, G. Caldiera, F. Lanubile, and F. Shull. Studies on reading
techniques. In Proc. of the Twenty-First Annual Software Engineering
Workshop, volume 96, page 002, 1996.

[7] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull,
S. Sørumgård, and M. V. Zelkowitz. The empirical investigation of
perspective-based reading. Empirical Software Engineering, 1(2):133–
164, 1996.

[8] T. Baum, O. Liskin, K. Niklas, and K. Schneider. A faceted classification
scheme for change-based industrial code review processes. In Software
Quality, Reliability and Security (QRS), 2016 IEEE International Con-
ference on, Vienna, Austria, 2016. IEEE.

[9] T. Baum, O. Liskin, K. Niklas, and K. Schneider. Factors influencing
code review processes in industry. In Proceedings of the ACM SIG-
SOFT 24th International Symposium on the Foundations of Software
Engineering, Seattle, WA, USA, 2016. ACM.

[10] T. Baum, K. Schneider, and A. Bacchelli. On the optimal order of
reading source code changes for review. In 33rd IEEE International
Conference on Software Maintenance and Evolution (ICSME), Proceed-
ings, 2017.

[11] K. Beck. Test-driven development: by example. Addison-Wesley
Professional, 2003.

[12] B. Biegel, F. Beck, W. Hornig, and S. Diehl. The order of things: How
developers sort fields and methods. In Software Maintenance (ICSM),
2012 28th IEEE International Conference on, pages 88–97. IEEE, 2012.

[13] J. Cohen. A coefficient of agreement for nominal scales. Educational
and psychological measurement, 20(1):37–46, 1960.

[14] G. Coleman and R. O’Connor. Using grounded theory to understand
software process improvement: A study of irish software product com-
panies. Information and Software Technology, 49(6):654–667, 2007.

[15] F. Elberzhager, J. Münch, and D. Assmann. Analyzing the relationships
between inspections and testing to provide a software testing focus.
Information and Software Technology, 56(7):793–806, 2014.

[16] F. Elberzhager, A. Rosbach, J. Münch, and R. Eschbach. Inspection and
test process integration based on explicit test prioritization strategies. In
Software Quality. Process Automation in Software Development, pages
181–192. Springer, 2012.

[17] M. E. Fagan. Design and code inspections to reduce errors in program
development. IBM Systems Journal, 15(3):182–211, 1976.

[18] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka,
and M. Oivo. Empirical software engineering experts on the use
of students and professionals in experiments. Empirical Software
Engineering, pages 1–38, 2017.

[19] A. Field and G. Hole. How to design and report experiments. Sage,
2002.

[20] T. S. Flanigan, E. McFarlane, and S. Cook. Conducting survey research
among physicians and other medical professionals: a review of current
literature. In Proceedings of the Survey Research Methods Section,
American Statistical Association, volume 1, pages 4136–47, 2008.

[21] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
improving the design of existing code. Addison-Wesley Professional,
1999.

[22] S. Freeman. Sustainable Test-Driven Development. https://www.infoq.
com/presentations/Sustainable-Test-Driven-Development, May 2010.

[23] P. Fusaro, F. Lanubile, and G. Visaggio. A replicated experiment to
assess requirements inspection techniques. Empirical Software Engi-
neering, 2(1):39–57, 1997.

[24] G. Garson. Logistic regression: binary & multinomial: 2016 edition
(statistical associates “blue book” series). Asheboro, NC: Statistical
Associates Publishers, 2016.

[25] Y. Geffen and S. Maoz. On method ordering. In Program Comprehen-
sion (ICPC), 2016 IEEE 24th International Conference on, 2016.

[26] T. Gilb and D. Graham. Software Inspection. Addison-Wesley, 1993.
[27] G. Gousios, M. Pinzger, and A. v. Deursen. An exploratory study

of the pull-based software development model. In Proceedings of the
36th International Conference on Software Engineering, pages 345–355,
Hyderabad, India, 2014. ACM.

[28] M. R. Hess and J. D. Kromrey. Robust Confidence Intervals for Effect
Sizes: A Comparative Study of Cohen’s and Cliff’s Delta Unter Non-
normality and Heterogeneous Variances. PhD Proposal, 1:1–30, 2015.

[29] O. Laitenberger and J.-M. DeBaud. An encompassing life cycle centric
survey of software inspection. Journal of Systems and Software, 50(1):5–
31, 2000.

[30] F. Lanubile and T. Mallardo. Inspecting automated test code: a
preliminary study. In Agile Processes in Software Engineering and
Extreme Programming, pages 115–122. Springer, 2007.

[31] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects. In Proceedings of the 11th
Working Conference on Mining Software Repositories, pages 192–201.
ACM, 2014.

[32] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. An empirical
study of the impact of modern code review practices on software quality.
21(5):2146–2189, 2016.

[33] J. Miller, M. Wood, and M. Roper. Further experiences with scenarios
and checklists. Empirical Software Engineering, 3(1):37–64, 1998.

[34] F. Palomba and A. Zaidman. Does refactoring of test smells induce
fixing flaky tests? In Software Maintenance and Evolution (ICSME),
2017 IEEE International Conference on, pages 1–12. IEEE, 2017.

[35] O. Petunova and S. Bērziša. Test case review processes in software
testing. Information Technology and Management Science, 20(1):48–
53, 2017.

[36] A. Porter and L. Votta. Comparing detection methods for software
requirements inspections: A replication using professional subjects.
Empirical software engineering, 3(4):355–379, 1998.

[37] A. A. Porter and L. G. Votta. An experiment to assess different defect
detection methods for software requirements inspections. In Proceedings
of the 16th international conference on Software engineering, pages
103–112. IEEE Computer Society Press, 1994.

[38] A. A. Porter, L. G. Votta, and V. R. Basili. Comparing detection methods
for software requirements inspections: A replicated experiment. IEEE
Transactions on software Engineering, 21(6):563–575, 1995.

[39] A. Ram, A. A. Sawant, M. Castelluccio, and A. Bacchelli. What makes
a code change easier to review? an empirical investigation on code
change reviewability. In 26th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
FSE 2018, Lake Buena Vista, Florida, November 4-9, 2018, page in
press, 2018.

[40] S. W. Raudenbush and A. S. Bryk. Hierarchical linear models:
Applications and data analysis methods, volume 1. Sage, 2002.

[41] P. C. Rigby and C. Bird. Convergent contemporary software peer review
practices. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, pages 202–212, Saint Petersburg, Russia, 2013.
ACM.

[42] P. C. Rigby, B. Cleary, F. Painchaud, M. Storey, and D. M. German.
Contemporary peer review in action: Lessons from open source devel-
opment. Software, IEEE, 29(6):56–61, 2012.

[43] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli.
Modern code review: a case study at google. In Proceedings of
the 40th International Conference on Software Engineering: Software
Engineering in Practice, pages 181–190. ACM, 2018.

[44] K. Sandahl, O. Blomkvist, J. Karlsson, C. Krysander, M. Lindvall, and
N. Ohlsson. An extended replication of an experiment for assessing
methods for software requirements inspections. Empirical Software
Engineering, 3(4):327–354, 1998.

[45] D. I. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Kara-
hasanovic, N.-K. Liborg, and A. C. Rekdal. A survey of controlled
experiments in software engineering. Software Engineering, IEEE
Transactions on, 31(9):733–753, 2005.

[46] D. Spadini, M. Aniche, M. Bruntink, and A. Bacchelli. To mock or not
to mock? an empirical study on mocking practices. In Mining Software
Repositories (MSR), 2017 IEEE/ACM 14th International Conference on,
pages 402–412. IEEE, 2017.

https://www.surveygizmo.com
https://doi.org/10.5281/zenodo.2553139
https://www.infoq.com/presentations/Sustainable-Test-Driven-Development
https://www.infoq.com/presentations/Sustainable-Test-Driven-Development

[47] D. Spadini, M. Aniche, M.-A. Storey, M. Bruntink, and A. Bacchelli.
When testing meets code review: Why and how developers review tests.
In Software Engineering (ICSE), 2018 IEEE/ACM 40th International
Conference on, page to appear, 2018.

[48] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli.
On the relation of test smells to software code quality. In Proceedings
of the International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2018.

[49] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Investigating
code review practices in defective files: An empirical study of the qt
system. In MSR ’15 Proceedings of the 12th Working Conference on
Mining Software Repositories, 2015.

[50] P. Tourani, B. Adams, and A. Serebrenik. Code of conduct in open
source projects. In Software Analysis, Evolution and Reengineering
(SANER), 2017 IEEE 24th International Conference on, pages 24–33.
IEEE, 2017.

[51] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,

and D. Poshyvanyk. An empirical investigation into the nature of test
smells. In Automated Software Engineering (ASE), 2016 31st IEEE/ACM
International Conference on, pages 4–15. IEEE, 2016.

[52] A. Vahabzadeh, A. M. Fard, and A. Mesbah. An empirical study of
bugs in test code. In Software Maintenance and Evolution (ICSME),
2015 IEEE International Conference on, pages 101–110. IEEE, 2015.

[53] R. S. Weiss. Learning from Strangers: The Art and Method of
Qualitative Interview Studies. 1995.

[54] E. F. Weller. Lessons from three years of inspection data (software
development). Software, IEEE, 10(5):38–45, 1993.

[55] D. Winkler, S. Biffl, and K. Faderl. Investigating the temporal behavior
of defect detection in software inspection and inspection-based testing.
In International Conference on Product Focused Software Process
Improvement, pages 17–31. Springer, 2010.

[56] P. Zembrod. Test-Driven Code Review. https://testing.googleblog.com/
2010/08/test-driven-code-review.html, 2010.

https://testing.googleblog.com/2010/08/test-driven-code-review.html
https://testing.googleblog.com/2010/08/test-driven-code-review.html

