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Synchronization of Pulse-Coupled Oscillators and

Clocks under Minimal Connectivity Assumptions
Anton V. Proskurnikov, Member, IEEE, Ming Cao, Senior Member, IEEE

Abstract—Populations of flashing fireflies, claps of applaud-

ing audience, cells of cardiac and circadian pacemakers reach

synchrony via event-triggered interactions, referred to as pulse
couplings. Synchronization via pulse coupling is widely used in

wireless sensor networks, providing clock synchronization with

parsimonious packet exchanges. In spite of serious attention paid

to networks of pulse coupled oscillators, there is a lack of mathe-

matical results, addressing networks with general communication

topologies and general phase-response curves of the oscillators.

The most general results of this type (Wang et al., 2012, 2015)

establish synchronization of oscillators with a delay-advance

phase-response curve over strongly connected networks. In this

paper we extend this result by relaxing the connectivity condition

to the existence of a root node (or a directed spanning tree) in

the graph. This condition is also necessary for synchronization.

Index Terms—Pulse-coupled oscillators, complex networks,

synchronization, event-triggered control, hybrid systems.

I. INTRODUCTION

Recent development of hardware and software for compu-

tation and communication has opened up the possibility of

large scale control systems, whose components are spatially

distributed over large areas. The necessity to use communica-

tion and energy-supply resources “parsimoniously” has given

rise to rapidly growing theories of control under limited data-

rate [1] and event-triggered control [2], [3]. Many control and

coordination algorithms, facing communication and computa-

tional constraints, have been inspired by natural phenomena,

discovered long before the “network boom” in control. Early

studies of the phenomenon of synchronous flashing in large

populations of male fireflies in the dark [4] have disclosed a

vision-based distributed protocol, enabling fireflies to synchro-

nize their internal clocks: “each individual apparently took his

cue to flash from his more immediate neighbors, so that the

mass flash took the form of a very rapid chain of overlapping

flashes...” [4, p. 310]. In a similar way the claps of many hands

synchronize into rhythmic applause [5]. Later works revealed

the role of such event-based interactions, referred to as the

pulse coupling, in synchronization of neural networks [6], in

particular, the cells of cardiac [7] and circadian [8] pacemak-

ers. Self-synchronizing networks of biological pulse-coupled
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oscillators (PCO) have inspired efficient algorithms for clock

synchronization in wireless networks [9]–[13], substantially

reducing communication between the nodes.

The influential papers [14], [15], addressing the dynamics

of PCO networks, attracted extensive attention from applied

mathematicians, physicists and engineers, since ensembles of

PCO give an instructive model of self-organization in complex

systems, composed of very simple units. Each unit of the

ensemble is a system, which operates in a small vicinity of

a stable limit cycle and is naturally represented by a scalar

phase variable [16]. An oscillator’s phase varies in a bounded

interval; upon achieving its maximum, the phase is reset to

the minimal value. At this time the oscillator fires an event,

e.g. emitting electric pulse or other stimulus. The length of

these pulses is usually neglected since they are very short,

compared to the oscillators’ periods. Unlike Kuramoto net-

works and other diffusively coupled oscillator ensembles [17],

[18], the interactions of PCO are event-triggered. The effect

of a stimulus from a neighboring oscillator on an oscillator’s

trajectory is modeled by a phase shift, characterized by the

nonlinear phase response curve (PRC) mapping [16], [19].

In spite of significant interest in dynamics of PCO networks,

the relevant mathematical results are very limited. Assuming

that the oscillators are weakly coupled, the hybrid dynamics

of PCO networks can be approximated by the Kuramoto

model [11], [13], [15] that has been thoroughly studied [17].

The analytic results for general couplings are mostly confined

to networks with special graphs [14], [20]–[22], providing a

fixed order of the oscillators’ firing. In recent papers [12],

[23] synchronization criteria over general strongly connected

graphs have been obtained, assuming that oscillators’ PRC

maps are delay-advance [6] and the deviations between the

initial phases are less than a half of the oscillators’ period.

The main idea of the proof in [12], [23] is the contracting

property of the network dynamics under the assumption of

delay-advance PRC, enabling one to use the maximal distance

between the phases (the ensemble’s “diameter”) as a Lyapunov

function; this approach is widely used in the analysis of

Kuramoto networks [24], [25].

In this paper, we further develop the approach from [12],

[23], relaxing the strong connectivity assumption to the ex-

istence of a directed spanning tree (or root node) in the

interaction graph, which is also necessary for synchronization.

Also, unlike [11], [13] the delay-advance PRC maps are not

restricted to be piecewise-linear and can be heterogeneous.

Both extensions are important. Biological oscillator networks

are usually “densely” connected (so the strong connectivity

assumption is not very restrictive), but the piecewise linearity

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of 
any copyrighted component of this work in other works. 
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of PRC maps is an impractical condition. In clock synchro-

nization problems the PRC map can be chosen piecewise-

linear, but the requirement of strong connectivity excludes

many natural communication graphs (e.g. the star-shaped

graph with the single “master” clock and several “slaves”). The

results have been partly reported in the conference paper [26].

The paper is organized as follows. Preliminary Section II

introduces technical concepts and notation. The mathematical

model of PCO networks is introduced in Section III. Main re-

sults are formulated in Section IV and confirmed in Section V

by numerical simulations. Section VI concludes the paper.

II. PRELIMINARIES AND NOTATION

Given t0 ∈ R and a function f(·), defined at least on

the interval (t0 − ε0; t0) for ε0 > 0 sufficiently small, let

f(t0−)
∆
= lim

t→t0,t<t0
f(t). If f(t0−) = f(t0), we say f(·) is

left-continuous at t0. The limit f(t0+) and right-continuity are

defined similarly. A function f : [0; +∞) → R is piecewise

continuous, if it is continuous at any t ≥ 0 except for a

sequence {tn}∞n=1, such that tn → ∞ and at each of the

points tn the left and right limits f(tn−), f(tn+) exist.

We denote the unit circle on the complex plane by S1 =
{z ∈ C : |z| = 1}. Given ϕ ∈ R, eiϕ = cosϕ + i sinϕ ∈ S1.

Here i stands for the imaginary unit, i2 = −1.

A (directed) graph is a pair (V,E), where V and E ⊆ V ×V
are finite sets, whose elements are referred to as the nodes and

arcs respectively. A walk in the graph is a sequence of nodes

v1, v2, . . . , vk, where consecutive nodes are connected by arcs

(vi, vi+1) ∈ E. A root is a node, from which the walks to all

other nodes exist. A graph having a root is called rooted (this

is equivalent to the existence of a directed spanning tree); a

graph in which any node is a root is called strongly connected.

III. THE PROBLEM SETUP

An oscillator with frequency ω > 0 (or, equivalently, period

T = 2π/ω) is a dynamical system ẋ(t) = f(x(t)) with an

exponentially stable T -periodic limit cycle x0(t) = x0(t+T ).
Any solution x(t), staying in the cycle’s basin of attraction,

converges as t → ∞ to the function x0(θ(t)/ω). Here θ(t) ∈
[0; 2π) is a piecewise-linear function, referred to as phase and

treated as “a normalized time, evolving on the unit circle” [16].

The phase grows linearly until it reaches 2π and then is reset:

θ̇(t) = ω while θ(t−) < 2π, (1)

θ(t+) = 0 if θ(t−) = 2π. (2)

In this paper we deal with ensembles of multiple oscilla-

tors (1), whose interactions are event triggered. Upon resetting,

an oscillator fires an event by sending out some stimulus such

as a short electric pulse or message. If an oscillator receives

a stimulus from one of its neighbors, its phase jumps

θ(t+) = Ψ(θ(t−)) mod 2π, Ψ(θ)
∆
= θ + cΦ(θ), (3)

after which the “free run” (1) continues. Typically it is

assumed that Φ(0) = Φ(2π) = 0 so that if an oscillator

is triggering an event at time t, then the stimuli received

from the remaining oscillators do not violate (2). The map

Ψ : [0; 2π] → R is referred to as the oscillator’s phase

transition curve (PTC) [6]. The PTC is determined as in (3) by

the map Φ : [0; 2π] → R, referred to as the phase response (or

resetting) curve (PRC) [6], [19], and the scalar coupling gain

c > 0. In networks of biological oscillators, the PRC maps

depend on the stimuli waveforms and the gain c depends on the

stimulus’ intensity [6], [16], [19], [27]. In time synchronization

problems [9], [12], [13] the PRC map Φ and the coupling gain

c are the parameters to be designed.

Henceforth we assume1, following [21], that k > 1 simul-

taneous events, affecting an oscillator, superpose as follows

θ(t+) = Ψk(θ(t−)) mod 2π, Ψk ∆
= Ψ ◦Ψ ◦ . . . ◦Ψ

︸ ︷︷ ︸

k times

. (4)

Taking Ψ0(θ)
∆
= θ, (4) holds for k = 0: if the neighbors fire

no events, the phase is continuous unless it has reached 2π.

Note that θ(t+) < 2π at any point; in particular, the oscillator

cannot be forced to fire due to its neighbors’ stimuli.

At the points of discontinuity one can define θ(t) arbitrarily;

for definiteness, we suppose that θ(t) = θ(t−) ∈ [0; 2π]. We

also allow the initial phase θ(0) = 2π: the oscillator fires an

event and is immediately reset to 0.

A. Mathematical model of the PCO network

Consider a group of N > 1 oscillators of the same period

T = 2π/ω and PTC mappings Ψ1(θ), . . . ,ΨN (θ), correspond-

ing to PRC maps Φi and coupling gains ci > 0. The vector of

oscillators’ phases is denoted by θ̄(t)
∆
= (θi(t))

N
i=1 ∈ [0; 2π]N .

The interactions among the oscillators are encoded by a

graph G = (V,E), whose nodes are in one-to-one correspon-

dence with oscillators V = {1, . . . , N}. The arc (j, i) exists

if and only if oscillator j influences oscillator i; we denote

Ni
∆
= {j : (j, i) ∈ E} to denote the set of oscillators, affecting

oscillator i; it is convenient to assume that i ∈ Ni ∀i.
The dynamics of the PCO network is as follows

˙̄θ(t) = (ω, . . . , ω) when I(θ̄(t)) = ∅, (5)

θ̄(t+) = Ψ̄(θ̄(t)) mod 2π if I(θ̄(t)) 6= ∅, (6)

Ψ̄(θ1, . . . , θN )
∆
=

(

Ψk1

1 (θ1), . . . ,Ψ
kN

N (θN )
)

, (7)

I(θ̄)
∆
= {j : θj = 2π}, ki = ki(θ̄)

∆
=

∣
∣I(θ̄) ∩Ni

∣
∣ . (8)

Here | · | denotes the cardinality of a set. The phases obey (1)

until some oscillators fire; I(θ̄(t)) 6= ∅ stands for the set of

their indices. Oscillator i is affected by ki ≥ 0 firing neighbors,

and its phase jumps in accordance with (4). If ki = 0 then

θi(t) < 2π (since i ∈ Ni) and θi(·) is continuous at t.
Definition 1: A function θ̄ : ∆ → [0; 2π]N is said to be a

solution to the system (5), (6) on the interval ∆ ⊆ [0;∞) if

the following conditions hold

1) on any compact interval ∆′ ⊆ ∆ only a finite number of

events are fired
∣
∣∆′ ∩

{
t : I(θ̄(t)) 6= ∅

}∣
∣ < ∞;

1Dealing with “weakly coupled” PCO networks (c ≈ 0) (4) is often
replaced by the additive rule θ(t+) = θ(t) + kcΦ(θ(t)) mod 2π, enabling
one to approximate the PCO network by the Kuramoto model [15].
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θi(t)

θi(t+)

2π = θj(t)

θi(t)

θi(t+)

2π = θj(t)

Fig. 1: Illustration to Assumption 1: the jump (3) decreases

the distance between the oscillator i and its firing neighbor j.

2) the function θ̄(t) is left-continuous and obeys (5) at any

t ≥ 0 except for the points where some oscillators fire;

at such points θ̄(t) switches in accordance with (6).

Remark 1: Our definition of a solution is more restrictive

than the definitions in [22], [23], which replace the discontin-

uous mapping Ψ̄ in (6) by an outer-semicontinuous [28] multi-

valued map. Unlike the “generalized” solutions from [22],

[23], the solution from Definition 1 is uniquely determined

by its initial condition θ̄(0) and depends continuously on it.

Our goal is to establish conditions, under which the solution

θ̄(t) to the system (5), (6) exists on [0;∞) and the oscillators’

phases become synchronous in the following sense.

Definition 2: The phases θi(·) (i ∈ 1 : N ) synchronize if

ei(θi(t)−θj(t)) −−−→
t→∞

1 ⇐⇒ eiθi(t) − eiθj(t) −−−→
t→∞

0. (9)

B. Assumptions

In this subsection, we formulate two assumptions adopted

throughout the paper. The first of these assumptions implies an

important contraction property of the hybrid dynamics (5),(6).

Assumption 1: The mappings Ψi are continuous on [0; 2π]\
{π}, satisfying the conditions Ψi(0) = 0, Ψi(2π) = 2π and

Ψi(θ) ∈ (0; θ)∀θ ∈ (0;π), Ψi(θ) ∈ (θ; 2π)∀θ ∈ (π; 2π).

Assumption 1 is illustrated by Fig. 1. The ith “clock” is de-

layed by the phase jump (4) if it is ahead of its firing neighbors

(Fig. 1, left part) and advanced if it is behind them (Fig. 1,

right part). Such operations do not lead to “overshoots”: a

“retarding” oscillator cannot overrun its neighbors and become

“advancing”, and vice versa. A firing oscillator is not influ-

enced by the others’ events since Ψki

i (2π) mod 2π = 0.

Assumption 1 holds, in particular, for PCOs with coupling

gains ci ∈ (0; 1) and piecewise-linear PRC maps

Φ1(θ) = . . . = ΦN (θ) =







−θ, θ ∈ [0;π)

2π − θ, θ ∈ (π; 2π]

any, θ = π.

(10)

Such a choice of the PRC map appears to be the most natural

in time synchronization problems [11], [13], [22], [23]. More

generally, the PRC map Φ(θ) is called delay-advance [12]

if Φ(θ) < 0 for θ ∈ (0;π) and Φ(θ) > 0 when θ ∈ (π; 2π).
Mathematical models of natural oscillators with delay-advance

PRC include, but are not limited to, “isochron clocks” [20]

and the Andronov-Hopf oscillator [6]. Assumption 1 holds

θ1 θ2

θ3

Fig. 2: θ̄ = (π/4, 3π/4, 3π/2), d(θ̄) = 5π/4

for sufficiently small ci > 0 if Φi are delay-advance and

inf
θ∈(0;π)

Φi(θ)

θ
> −∞ and sup

θ∈(π;2π)

Φi(θ)

2π − θ
< ∞ ∀i.

To introduce our second assumption, restricting oscillators

to be “partially synchronous”, we need a technical definition.

Definition 3: An arc of S1 is a closed connected subset L ⊆
S1. Given a vector of phases θ̄ = (θi)

N
i=1, its diameter d(θ̄) is

the length of the shortest arc, containing the set {eiθi}Ni=1.

The definition of diameter is illustrated by Fig. 2: one of

the two shortest arcs, containing the phases, is drawn in red.

Assumption 2: The initial phases of the oscillators are “par-

tially synchronized”, satisfying the inequality

d(θ̄(0)) < π. (11)

Remark 2: The “partial synchronization” Assumption 2 can

be relaxed in some special situations [14], [20], but generally

cannot be fully discarded. The simplest example is a network

of N = 2 coupled oscillators, whose PRC maps Φ1,Φ2 satisfy

the condition Φ1(π) = Φ2(π) = 0. Then the solution, starting

at (θ1(0), θ2(0)) = (0;π), is T -periodic and d(θ̄(t)) ≡ π.

Conditions similar to (11) are often adopted to prove the

synchronization of diffusively coupled oscillators [17].

IV. MAIN RESULT

We start with establishing basic properties of the dynamical

network (5), (6) (Subsect. IV-A) and then prove the the main

result of the paper, ensuring synchronization (Subsect. IV-B).

Our method extends the idea of the diameter Lyapunov

function, used to prove stability of multi-agent coordination

protocols [29], to the hybrid system (5), (6). We show that the

diameter d(θ̄(t)) of the oscillator ensemble is non-increasing

and, furthermore, there exists a period TN , independent of the

initial condition, such that d(θ̄(TN )) − d(θ̄(0)) < 0 unless

d(θ̄(0)) = 0. The key idea is to establish the LaSalle-type

result for the hybrid system (5), (6) and the Lyapunov function

d(·), stating that any solution converges to the synchronous

manifold {θ̄ ∈ [0; 2π]N : d(θ̄) = 0}. In the existing litera-

ture [12], [23], this is done via a straightforward estimation of

the diameter’s decrease d(θ̄(TN )) − d(θ̄(0)), employing the

special structure of PRC maps and the strong connectivity

of the graph. We extend these results to the case of rooted

graphs and general delay-advanced PRC maps, deriving the

mentioned LaSalle-type result from the continuity of the

trajectory with respect to the initial condition.
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A. Basic properties of the solutions

We first show existence and uniqueness of solutions to the

system (5), (6) and establish their basic properties.

Theorem 1: Under Assumption 1, for any initial condition

θ̄(0) ∈ [0; 2π]N the following statements hold:

1) the solution to (5), (6) exists on [0;∞) and is unique;

2) if some oscillator fires two consecutive events at instants

t′ > 0 and t′′ > t′ respectively, then t′′ − t′ > T/2;

If the initial condition satisfies the inequality (11), then

3) the diameter function d(t)
∆
= d(θ̄(t)) is non-increasing;

4) let L(t) = L(θ̄(t)) be the arc of the minimal length,

containing {eiθj(t)}Nj=1, then L(t) ⊆ eiω(t−t0)L(t0) and

L(t0+) ⊆ L(t0) whenever t > t0 ≥ 0;

5) for any s ≥ 0 each oscillator fires on (s; s+ 3T/2).

Remark 3: The problem of solution existence has been

studied in [22] (Proposition 4) and [23] (Proposition 1),

using the general framework of hybrid systems theory [28].

However, as discussed in Remark 1, these results do not imply

the existence of solutions in the sense of Definition 1. The

proofs of Theorem 1 in [12] and Theorem 1 in [23] contain in

fact statements 3) and 4) for special PRC maps (10). However,

the proof of Theorem 1 for general delay-advance oscillators

seems not to be available in the literature.

The proof of Theorem 1 relies on the following proposition,

proved in Appendix A.

Proposition 1: For a vector ξ̄ ∈ [0; 2π]N , denote

ξ̄+
∆
= Ψ̄(ξ̄) mod 2π, δ0

∆
= T − ω−1 max

i
ξ+i > 0.

Then on the interval ∆0 = [0; δ0) the system (5), (6) has a

unique solution with the initial condition θ̄(0) = ξ̄. On (0; δ0)
no events are fired (events at time t = 0 are possible).

Proof of Theorem 1: We start with proving the implica-

tion: if the system has a solution (defined on some interval)

then for this solution statement 2) holds. We are going to prove

a more general fact: if a solution θ̄(·) exists on [t′; t], where

t′ < t and 0 ≤ θi(t
′+) ≤ π − ω(t− t′) for some i, then

0 < θi(t) ≤ θi(t
′+) + ω(t− t′) ≤ π. (12)

In particular, if θi(t
′+) = 0 and t− t′ ≤ T/2, then θi(t) ≤ π

and thus oscillator i cannot fire at time t. To prove (12), recall

that by Definition 1 only a finite number of events are fired

between t′ and t. Denote the corresponding instants t1 < . . . <
tn. Since θi(t1) = θi(t

′+) + ω(t1 − t′) ∈ [0;π) and thus

0 ≤ θi(t1+) ≤ θi(t1). Iterating this procedure for t2, . . . , tn,

one shows that 0 ≤ θi(tn+) ≤ ω(tn − t′) + θi(t
′+) ≤ π,

which entails (12) since θi(t) = θi(tn+) + ω(t− tn).
To prove statement 1), we invoke Proposition 1, showing

that the solution exists and is unique on ∆ = [0; δ) for δ >
0 is sufficiently small. Consider the maximal interval ∆ =
[0; δ) with this property. We are going to show that δ = ∞.

Suppose on the contrary that δ < ∞. Statement 2) shows

that each oscillator fires a finite number of events (at most

⌈2δ/T ⌉) on ∆. Denoting the last event instant by t∗ < δ, the

phases obey (5) on (t∗, δ) and hence the limit θ̄(δ)
∆
= θ̄(δ−) ∈

[0; 2π]N is defined. Applying Proposition 1 to ξ̄
∆
= θ̄(δ), the

θ1(s)

θ2(s)

θ3(s)

L(s) eiωτL(s), τ ∈ (0; T )

Fig. 3: Illustration to the proof of statement 4): rotation by

some angle ωτ ∈ (0; 2π) brings L(s) to the lower half-plane.

solution is prolonged uniquely to [δ; δ + ε) for small ε > 0
and one arrives at a contradiction. Statement 1) is proved.

Statements 3) and 4) are proved analogously to the inequal-

ity (12). If d(t) < π at the instant when some oscillators

fire, then L(t+) ⊆ L(t) and thus d(t+) ≤ d(t) thanks to

Assumption 1 since the new phases θi(t+) belongs to L(t)
(see Fig. 1). Considering any interval [t′; t] (where t′ < t) and

the instants of events t1 < . . . < tn ≤ t, one has

L(t) = eiω(t−tn)L(tn+) ⊆ eiω(t−tn)L(tn) ⊆

⊆ eiω(t−tn−1)L(tn−1) ⊆ . . . ⊆ eiω(t−t1)L(t1) ⊆

⊆ eiω(t−t′)L(t′).

(13)

It remains to prove statement 5). Retracing the proof of (12),

one proves that if θi(s) ∈ (π; 2π)∀s ∈ [t′, t) then

θi(t) ≥ θi(t
′) + ω(t− t′). (14)

Hence if θi(t
′) ∈ (π; 2π), oscillator i fires on (t′; t′ + T/2).

For any s ≥ 0 there exists such τ ∈ [0;T ) that L(s + τ) =
eiωτL(s+) ⊆ {eiθ : θ ∈ (π; 2π)} (Fig. 3). Thus θi(s + τ) ∈
(π; 2π) for any i, and therefore each oscillator fires during the

interval (s+ τ ; s+ τ + T/2) ⊆ (s; s+ 3T/2).
Remark 4: Statements 2) and 5) of Theorem 1 show that

under Assumptions 1 and 2 the time elapsed between two

consecutive events, fired by the same oscillator, lies strictly

between T/2 and 3T/2. Both bounds are tight and cannot be

relaxed, as demonstrated by the following example.

Example 1: Consider a network of two oscillators (N = 2)

with T = 2π, PRC map (10) and gain c ∈ (0; 1), whose

graph contains the only arc 2 7→ 1. Starting at θ1(0) = 0 and

θ2(0) = θ∗ > π, oscillator 2 fires at time t∗
∆
= 2π − θ∗ < π

and θ1(t∗+) = (1 − c)t∗. Hence the next event is fired by

oscillator 1 at time t∗ + 2π − (1 − c)t∗ = 2π + c(2π − θ∗).
If θ∗ < π, then t∗ > π and θ1(t∗+) = (1 − c)t∗ + c2π. Thus

oscillator 1 fires the next event at t = t∗+(1−c)θ∗ = 2π−cθ∗.

When c ≈ 1 and θ∗ ≈ π the time elapsed between two events

of oscillator 1 can be arbitrarily close to both T/2 and 3T/2.

Henceforth we confine ourselves to the trajectories satisfy-

ing Assumption 2. It appears that such trajectories continu-

ously depend on the initial conditions in the following sense.

For a given solution θ̄(t), let tik = tik[θ̄(0)] stand for the time

instant when oscillator i fires its kth event.

Lemma 1: Suppose that Assumption 1 holds. Consider a

sequence of solutions θ̄(n)(t) such that θ̄(n)(0) −−−−→
n→∞

θ̄(0),

where d[θ̄(0)] < π. Then t
(n)
ik

∆
= tik[θ̄

(n)(0)] −−−−→
n→∞

tik.

Furthermore, θ̄(n)(t) −−−−→
n→∞

θ̄(t) whenever t 6= tik ∀i, k.
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To prove Lemma 1, we use a technical proposition, which

is based on Assumption 1 and proved in Appendix.

Proposition 2: For any d∗ < π and δ > 0 there exists

τ = τ(d∗, δ) > 0 such that if θi(0) ≤ 2π−δ and d(θ̄(0)) < d∗,

then oscillator i fires at no earlier than t = τ (i.e. ti1 ≥ τ ).

Proposition 2 has the following corollary, entailing that the

“leading” oscillators, whose initial phases are sufficiently close

to the maximal one, fire earlier than the remaining oscillators.

Corollary 1: For any d∗ < π, δ > 0 there exists ε =
ε(δ, d∗) > 0 with the following property: for the phases

satisfying the condition θ1(0) ≥ . . . ≥ θm(0) > θ1(0) − ε
and θm+1(0), . . . , θN(0) ≤ θ1(0) − δ, oscillators 1, . . . ,m
fire earlier than the remaining ones; moreover, t∗ ≤ ti1 <
t∗ + ω−1ε < tj1 whenever 1 ≤ i ≤ m < j ≤ N . Here

t∗
∆
= T − ω−1θ1(0) stands for the instant of first event.

Proof: Obviously, oscillator 1 fires at time t11 = t∗, and

the phases obey (5) until its event. Since θj(t∗) ≤ 2π − δ for

j > m, one has tj1 > t∗ + τ , where τ = τ(δ, d∗) is defined

in Proposition 2. Choosing ε < min(ωτ, π), one notices that

θj(t∗) ≥ 2π−ε for i = 1, . . . ,m. Using (14), oscillator i fires

at time ti1 ≤ t∗ + ω−1ε < tj1, which ends the proof.

We are now ready to prove Lemma 1.

Proof of Lemma 1: For the solution θ̄(t), let τ1 < τ2 <

. . . < τn be the instants when some oscillators fire, i.e. Ij
∆
=

I(θ̄(τj)) 6= ∅. Without loss of generality, one may assume

that I1 = {1, . . . ,m}, i.e. θ1(0) = . . . = θm(0) > θj(0)
for any j > m. Notice first that θ̄(n)(t) −−−−→

n→∞
θ̄(t) for any

t ∈ [0; τ1). Indeed, τ1 = T − ω−1θ1(0) > t implies that

T − ω−1 maxi θ
(n)
i (0) > t for large n, and hence θ

(n)
i (t) =

θ
(n)
i (0) + ωt → θi(0) + ωt = θi(t) for any i.

Applying Corollary 1, one proves that t
(n)
i1 → τ1 for any i ≤

m and t
(n)
∗

∆
= maxi≤m t

(n)
i1 < minj>m t

(n)
j1 . Using (12), one

shows that 0 ≤ θ
(n)
i (t

(n)
∗ +) ≤ ω(t

(n)
∗ − t

(n)
i1 ) → 0 = θi(τ1+)

for any i ≤ m. The same holds for the remaining phases

θ
(n)
j (t

(n)
∗ +) → θj(τ1+) (where j > m) since the cumulative

effect of m events, separated by infinitesimally small time

periods, is the same as that of m simultaneous events. Thus

we have proved that θ̄(n)(t
(n)
∗ +) −−−−→

n→∞
θ̄(τ1+).

We now can iterate this procedure, replacing θ̄(0) and

θ̄(n)(0) with, respectively, θ̄(τ1+) and θ̄(n)(t
(n)
∗ +). One shows

that θ̄(n)(t) −−−−→
n→∞

θ̄(t) for any t ∈ (τ1, τ2) and for large n

the group of oscillators with indices from I2 fires their events

at times converging to τ2. The value of the nth state θ̄(n) after

the last of these events converges to θ̄(τ2+), and so on.

B. Synchronization criterion

Up to now, we have not assumed any connectivity proper-

ties, required to provide the oscillators’ synchronization. The

minimal assumption of this type is the existence of a root (or,

equivalently, a directed spanning tree) in the interaction graph

G. In a graph without roots there exist two non-empty subsets

of nodes, which have no incoming arcs and thus are “isolated”

from each other and the remaining graph [29, Theorem 5].

Obviously, the corresponding two groups of oscillators are

totally independent of each other and thus do not synchronize.

The following theorem shows that under Assumptions 1

and 2 rootedness is sufficient for the synchronization (9).

Theorem 2: Suppose that Assumptions 1 and 2 hold, and

the interaction graph G is rooted. Then the phases get syn-

chronous (9).

For strongly connected interaction graphs and special PRC

maps Theorem 2 has been established in [12], [23]. The

fundamental property of the dynamics (5), (6) (see the proofs

of Theorem 1 in [12] and Theorem 1 in [23]) is “contraction”

of the minimal arc, containing the phases, after each “full

round” of the oscillators’ firing. As soon as each of the N
oscillators has fired (some of them can fire twice), the diameter

of the ensemble is decreased. This property, however, does not

hold for a general rooted graph, as shown by the following.

Example 2. Consider N = 3 oscillators with the period

T = 2πrad/s that are connected in a chain 1 7→ 2 7→ 3;

thus 1 is a root node, yet the graph is not strongly connected.

Suppose that the oscillators start with θ1(0) = 0, θ2(0) =
θ3(0) = θ0 < π. The events fired by oscillators 2 and 3 at

the instant t1 = 2π − θ0 do not affect oscillator 1, and hence

θ1(t1+) = θ1(t1) = 2π− θ0. The latter oscillator fires at time

t2 = 2π after which one has θ1(t2+) = 0, θ2(t2+) = Ψ(θ0) ∈
(0; θ0) and θ3(t2+) = θ0. Thus after the full round of firing the

diameter remains equal to θ0. Considering a similar chain of

N > 3 oscillators, its diameter in fact may remain unchanged

even after (N − 2) full rounds of firing (each oscillator has

fired at least N − 2 times).

It appears, however, that after N − 1 “full rounds” of firing

the diameter always decreases, which is the key idea of the

proof of Theorem 2.

Lemma 2: Under the assumptions of Theorem 2, let TN
∆
=

3T (N − 1)/2 and thus on [0;TN ] each oscillator fires at least

(N−1) events. Then d(θ̄(TN )) < d(θ̄(0)) unless d(θ̄(0)) = 0.

Proof: Introducing the shortest arc L(t) from Theorem 1,

consider the sets of its endpoints {eiθj(t) : j ∈ J−(t)} and

{eiθj(t) : j ∈ J+(t)}. The shortest turn from the phases,

indexed by J−(t), to those indexed by J+(t) is counterclock-

wise, see Fig.4. A closer look at the proof of statements 2

and 3 in Theorem 1 reveals that at any time t∗, when some

oscillators fire, the following alternatives are possible:

A) none of the “extremal” oscillators from J−(t∗) ∪ J+(t∗)
is affected by the events; in this case J−(t∗+) = J−(t∗),
J+(t∗+) = J+(t∗) and d(t∗+) = d(t∗);

B) some of the “extremal” oscillators are affected, however

d(t∗+) = d(t∗); this implies that J−(t∗+) ⊆ J−(t∗),
J+(t∗+) ⊆ J+(t∗) and one of these inclusions is strict;

C) some of the “extremal” oscillators are affected, and the

diameter is decreased: d(t∗+) < d(t∗−).

Notice that during the “full round” of events (each oscillator

fires at least once) the second or third must take place. Indeed,

suppose that J− and J+ remain constant during such a round.

The graph’s rootedness implies [29, Theorem 5] that at least

one of the corresponding sets of nodes has an arc, coming

from outside. That is, a node j ∈ J− (or j ∈ J+) exists,

having a neighbor i ∈ Nj beyond J− (respectively, beyond

J+). At the instant t when oscillator i fires θi(t) = 2π and

thus θj(t) 6∈ {0; 2π} since otherwise θi(t) would also be an
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θ2(t); θ4(t); θ6(t)

θ3(t); θ5(t)

θ1(t)

Fig. 4: Example: L is drawn red, J− = {3, 5}, J+ = {2, 4, 6}

endpoint. Thus either L(t+) ( L(t) and d(t+) < d(t), or

θj(t+) is not an endpoint of L(t+). On each interval of length

3T/2 all oscillators fire. Assuming that d(TN ) = d(0) > 0, we

have |J−(TN )|+ |J+(TN )| ≤ |J−(0)|+ |J+(0)|−(N−1) ≤ 1
arriving thus at the contradiction. Lemma is proved.

Corollary 2: For any constants d1, d2 > 0 such that 0 <
d1 < d2 < π there exists ε = ε(d1, d2) > 0 that d(θ̄(TN )) −
d(θ̄(0)) ≤ −ε for any solution with d1 ≤ d(θ̄(0)) ≤ d2.

Proof: Assume, on the contrary, that a sequence of

solutions θ̄(n)(t) exists such that d1 ≤ d(θ̄(n)(0)) ≤ d2,

however d(θ̄(n)(TN)) − d(θ̄(n)(0)) ≥ −1/n. Since the set

{θ̄ ∈ [0; 2π]N : d1 ≤ d(θ̄) ≤ d2} is compact, one may assume,

without loss of generality, that the limit θ̄0
∆
= limn→∞ θ̄(n)(0)

exists. Consider the solution θ̄(t) with the initial condition

θ̄(0) = θ0. Arbitrarily close to TN there exists a time instant

t0, such that none of the oscillators fires at t0 and d(θ̄(t0)) =
d(θ̄(TN )). Thanks to Lemma 1, one has θ̄(n)(t0) → θ̄(t0) as

n → ∞ and thus d(θ̄(TN )) = d(θ̄(t0)) ≥ d(θ̄(0)) ≥ d1 > 0,

arriving thus at a contradiction with Lemma 2.

The proof of Theorem 2 is now immediate.

Proof of Theorem 2: Since the diameter is non-

increasing, the limit d1
∆
= limt→∞ d(θ̄(t)) exists. It suffices

to prove that d1 = 0. Suppose, on the contrary, that d1 > 0.

Denoting d2
∆
= d(θ̄(0)), one has d1 ≤ d(θ̄(t)) ≤ d2 for any t

due to Theorem 1. Corollary 2 implies that 0 ≤ d(θ̄(kTN )) ≤
d2 − kε for any k ≥ 1, where ε > 0 is constant, arriving at a

contradiction. Hence the oscillators synchronize (9).

V. NUMERICAL SIMULATIONS

In this section, we confirm the result of Theorem 2 by a

numerical test. We simulate a network of N = 4 identical

oscillators, whose natural frequency is ω = 1rad/s (and the

period T = 2π s), starting with phases θ1 = π/2, θ2 = 0.3π,

θ3 = 0.03π and θ4 = 0.9π, thus d(θ̄(0)) = 0.87π < π.

We have simulated the dynamics of the oscillators under

the interaction graph, shown in Fig. 5. Notice that the graph

in Fig.5 is rooted but not strongly connected because the phase

of the “leading” oscillator 1 is unaffected by the others.

Two numerical tests have been carried out.

Test 1 deals with identical oscillators, having the delay-

advanced PRC Φ(θ) = − sin θ (Fig.6a) and the gain c = 0.4.

Test 2 deals with a heterogeneous network, where oscilla-

tors 2-3 have identical PRC maps Φ2(θ) = Φ3(θ) = Φ4(θ) =
− sin θ yet different gains c2 = 0.4, c3 = 0.5, c4 = 0.6.

Furthermore, the leading oscillator 1 has the gain c1 = 0.6

1

2

3

4

e1
e2

e3

e4e5

Fig. 5: The network topology

and the following piecewise-linear PRC map (Fig. 6b)

Φ1(θ) =







−θ, θ ∈ [0;π/2)

θ − π, θ ∈ [π/2; 3π/2]

2π − θ, θ ∈ (3π/2; 2π].

(15)

(a) Φ(θ) = − sin θ (b) Piecewise-linear PRC (15)

Fig. 6: Two delay-advanced PRC maps

In both numerical examples the oscillators synchronize,

i.e. (9) holds. The corresponding dynamics of oscillators’

phases θ1 (blue), θ2 (orange), θ3 (green) and θ4 (red) are

shown in Fig. 7. Fig. 8 illustrates the corresponding event

diagrams: the point (t, i) on the plot in Fig. 8 (where t ≥ 0
and i ∈ 1 : 4) indicates that the ith oscillator fires an event

at time t. Finally, Fig. 9 illustrates synchronization of phases

(a) Test 1

10 20 30 40
t, sec

π

2

π

3π

2

2π

θ,rad

(b) Test 2

Fig. 7: Dynamics of the phases θi(t)

(a) Test 1

5 10 15 20 25 30 35
t, sec

1

2

3

4

Events

(b) Test 2

Fig. 8: The diagrams of events.

on the unit circle S1: plots (a)-(d) correspond to Test 1, and

(e)-(h) illustrate the solutions obtained in Test 2.
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(a) t = 0s (b) t = 22s (c) t = 42s (d) t = 100s

(e) t = 0s (f) t = 22s (g) t = 42s (h) t = 100s

Fig. 9: Phases on S1 at four time instants: the plots on top are

for Test 1 and the plots on the bottom are for Test 2.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have examined the dynamics of networks

of pulse-coupled oscillators of the delay-advance type. The

models, studied in this paper, describe some biological net-

works [6], [20] and naturally arise in problems of synchroniza-

tion of networked clocks [11], [12]. We have proved that the

oscillators get synchronized if the maximal distance between

the initial phases is less than π and the interaction graph

is static and rooted (has a directed spanning tree), which is

the minimal possible connectivity assumption. An extension

to time-varying repeatedly rooted graphs is also possible.

An important problem, which is beyond the scope of this

paper and remains open even for strongly connected graphs, is

synchronization under general initial conditions. The existing

results deal mainly with all-to-all or cyclic graphs [14], [20]–

[22], [30] which guarantee some ordering of the oscillators’

events and global contraction of the return map. For instance,

as was noticed in [23], for the PRC map (10), the coupling gain

0.5 ≤ c ≤ 1 and the complete interaction graph, the diameter

of ensemble becomes less than π after the first event indepen-

dent of the initial condition. Another result, reported in [23],

ensures synchronization over “strongly rooted” (star-shaped)

and connected bidirectional graphs. However, as noticed in

Remark 2, in general the phases of pulse-coupled oscillators

do not synchronize and can e.g. split into several clusters [21];

similar effects may occur due to communication delays and

negative (repulsive) couplings [31]. Even more complicated is

the problem of synchronization between oscillators of different

periods. One of the first results in this direction has been

obtained in the recent paper [32].
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Networks. Birkhäuser Boston, 2009.

[2] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1680–1685, 2007.

[3] M. Mazo and M. Cao, “Asynchronous decentralized event-triggered
control,” Automatica, vol. 50, no. 12, pp. 3197–3203, 2014.

[4] J. Buck, “Synchronous rhythmic flashing of fireflies,” The Quarterly
Review of Biology, vol. 13, no. 3, pp. 301–314, 1938.
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APPENDIX A

PROOF OF PROPOSITION 1

Let θ̄(0)
∆
= ξ and θi(t)

∆
= ξ+i + tω ∀t ∈ (0; δ0)∀i. We are

going to show that θ̄(t) is a solution to the system (5), (6) on

[0; δ0) with the initial condition θ̄(0) = ξ. Indeed, on (0; δ0)
one has θi(t) < 2π ∀i, therefore, I(θ̄(t)) = ∅ and (5) holds.

If I(ξ̄) = ∅, one has ξ+ = ξ and hence (5) holds also for

t = 0. Otherwise, at t = 0 the function θ̄ jumps in accordance

with (6): θ̄(0+) = ξ̄+ = Ψ̄(θ̄(0)).
To prove the uniqueness, notice that for arbitrary solution

with θ̄(0) = ξ̄, defined on ∆0, one has θ̄(0+) = ξ+. Indeed,

if I(ξ̄) = ∅ then ξ+ = ξ = θ̄(0) = θ̄(0+), otherwise θ̄(0+) =
ξ+ due to (6). Notice now that on (0; δ0) no oscillator can fire.

Indeed, were some events fired on this interval, the first event

instant τ ∈ (0; δ0) would be well defined due to condition 1)

in Definition 1. Since (5) holds on (0; τ), θi(τ) = ξ+i + τω <
2π ∀i, arriving thus at the contradiction with the definition of

τ . Therefore, (5) holds on (0; δ0) and θi(t)
∆
= ξ+i + tω ∀t ∈

(0; δ0)∀i, which ends the proof of uniqueness. �

APPENDIX B

PROOF OF PROPOSITION 2

In the case where δ > d∗ oscillator i with θi(0) < 2π−δ one

can take τ
∆
= min(T/2;ω−1(δ− d∗)): if θi(0) < π, oscillator

i cannot fire earlier than at t = T/2 due to statement 2

of Theorem 1, otherwise the initial phases of all oscillators

belong to [θi(0)−d∗; θi(0)+d∗] ⊆ [0; 2π−(δ−d∗)] and hence

no event is fired on [0; τ). We assume thus that 0 < δ ≤ d∗.

We first prove the following weaker statement via induction

on m ≥ 1. For any d∗ < π and δ ≤ d∗ there exists τm =
τm(d∗, δ) > 0 such that if θi(0) ≤ 2π − δ and d(θ̄(0)) < d∗,

then either oscillator i does not fire on [0; τm), unless before

its event at least m other events are fired. For m = 1 the claim

is obvious: if no event is fired, oscillator i fires no earlier than

at τ0 = ω−1δ. Suppose that m ≥ 2 and the claim has been

proved for m − 1. Let ϕm(δ, d∗)
∆
= min{2π − Ψk(θ) : θ ∈

[2π − d∗; 2π − δ/2], 1 ≤ k ≤ m} > 0. Then one can put

τm
∆
= min(T/2, ω−1δ/2, τm−1(ϕm(δ))). Consider the instant

t0 of the first event. At this time one either has θi(t0) ≤
d∗ (and thus ti1 > t0 + T/2) or θi(t0) ≥ 2π − d∗. In the

latter case, there are two possibilities: θi(t0) ≥ 2π − δ/2 or

θi(t0) ∈ [2π − d∗; 2π − δ/2]. The first of these possibilities

implies that ti1 ≥ t0 ≥ ω−1δ/2, and the second one implies

that θi(t0+) ≤ 2π−ϕm(δ, d∗). Since on [t0; ti1) less than m
events are fired, one has ti1 ≥ t0 + τm−1

(
ϕm(δ, d∗)

)
≥ τm.

It remains to notice that, due to statements 5) and 2) of The-

orem 1 at most 2(N−1) events may occur until the oscillator

fires for the first time. Thus one can put τ
∆
= τ2(N−1). �


