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Abstract
This paper describes an electromagnetic field analogue of the classical Brayton–
Moser formulation. It is shown that Maxwell’s curl equations constitute
a pseudo-gradient system with respect to a single electromagnetic mixed-
potential functional and a metric defined by the constitutive relations of the
fields. Besides its use for the generation of power-based Lyapunov functionals
for stability analysis and Poynting-like flow balances, the electromagnetic
mixed-potential formulation suggests a family of alternative variational
principles. This yields a novel Lagrangian boundary control system formulation
admitting nonzero energy flow through the boundary. The corresponding
symplectic Hamiltonian system is still associated with the total electromagnetic
field energy.

PACS numbers: 03.50.De, 11.10.Ef

1. Introduction and motivation

In the early 1960s, Moser developed a mathematical analysis to study the stability of electrical
networks containing tunnel diodes [19]. His method is based on the introduction of a scalar
function of which the gradient leads to the equations of motion for the nonlinear network.
Four years later, Moser generalized the method together with Brayton in the centennial paper
[5] and showed that the dynamics of a broad class of (possibly nonlinear) RLC networks can
be written in the form

M(u)u̇ = Pu(u), (1)

where u = col(i,v) ∈ R
n is a vector containing the inductor currents i ∈ R

nL and the capacitor
voltages v ∈ R

nC , respectively, with n = nL + nC the number of inductors and capacitors
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in the network, and the matrix M : R
n → R

n×n defining an indefinite (pseudo-Riemannian)
metric containing the incremental inductances and capacitances of the form

M(i,v) =
(−L(i) 0

0 C(v)

)
. (2)

The scalar function P : R
n → R represents the so-called mixed-potential function describing

the resistive and the topological structure of the network. The subscript notation (·)u denotes
partial differentiation with respect to u. In case of a topologically complete3 network the
mixed-potential function takes the form

P(i,v) = N (i,v) + R(i) − G(v), (3)

where N (i,v) = i · γv, with constant matrix γ ∈ R
nL×nC , is determined by the

interconnection of the inductors and capacitors. The functions R(i) = ∫
vr (i) · di and

G(v) = ∫
ig(v) · dv denote the current and voltage potentials (or content and co-content

[15]) which are related to the current-controlled resistors and voltage sources, and the voltage-
controlled resistors and current sources, respectively. Equations of the form (1), together with
(2) and (3), are known as the Brayton–Moser (BM) equations and constitute Kirchhoff’s loop
and node equations for the network. Observe that (3) has units akin to power.

1.1. Application of the BM framework

The principal application of the concept of mixed potential-concerns its use in determining
(Lyapunov-based) stability criteria for nonlinear networks. This is motivated by the fact that
the time derivative of (3) along the trajectories of (1) is a quadratic form in u̇, i.e.,

Ṗ(u) = u̇ · M(u)u̇. (4)

If the network only contains resistors, inductors and sources (RL network), then u = i and
M(u) = −L(i), with L(i) > 0 as is the case usually. Hence, the mixed-potential P(i) = R(i)
is non-increasing since Ṗ(i) � 0, which implies that the network is stable.

However, in general, the right-hand side of (4) is indefinite. To circumvent this problem,
Brayton and Moser proposed a family of alternative pairs, say P̃ and M̃, that preserve the
network dynamics (1), i.e., M̃−1(u)P̃u(u) = M−1(u)Pu(u), and such that

˙̃P(u) = u̇ · M̃(u)u̇ � 0. (5)

This observation has led to the construction of several stability theorems, each depending on
different specific properties of the network [5, 14].

1.2. Contribution and outline

During the last four decades several notable extensions and generalizations of the Brayton–
Moser formulation have been presented in the literature. However, to our knowledge, all these
contributions consider lumped-parameter networks only (see, e.g., [12] and the references
therein) except for the work contained in [4]. The latter paper presents a mixed-potential-
based stability theory of a single transmission line system connected to a nonlinear load.
Instead of a mixed-potential function (3), the analysis involves the construction of a mixed-
potential functional which is defined along the spatial domain and at both the end points
(boundaries) of the transmission line.

3 A network is said to be topologically complete if Kirchhoff’s laws are expressible solely in terms of the inductor
currents and the capacitor voltages.
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In this paper, we introduce an electromagnetic analogue of the results presented in
[4, 5]. This allows us to formulate Maxwell’s curl equations (i.e., the Ampère–Maxwell
and Faraday’s law) in a manner analogous to (1). Apart from providing an elegant canonical
form or the generation of (power-like) Lyapunov functions for stability analysis, this opens
up a way for the application of power-based passivity and control techniques [13, 23] in the
realm of electromagnetic field systems, or distributed-parameter systems in general.

Furthermore, the construction of an electromagnetic mixed-potential also gives rise
to some alternative variational principles that imply the existence of a family of novel
Lagrangian functionals. In contrast to the existing methods in mathematical physics, these
Lagrangian functionals explicitly yield both Maxwell’s curl equations explicitly without the
usual restriction to systems with infinite spatial domain, where the dynamic variables go to
zero for the spatial variables tending to infinity, and without imposing the usual assumption
that the energy exchange through the boundary is zero [3, 22]. This leads to the definition
of an infinite-dimensional Lagrangian boundary control system, as originally introduced for
mechanical systems in [6] (see also [21] for a summary and further developments on the
topic). Although the new Lagrangians do not possess the usual electric minus magnetic
energy structure (like kinetic minus potential energy in the mechanical case), the associated
(symplectic) Hamiltonian counter part is shown to coincide with the total energy stored by the
fields. Additionally, the framework avoids the introduction of the usual vector magnetic and
scalar electric potentials. Hence, the construction of a Lagrangian or Hamiltonian functional
in situations where it is desirable to incorporate the magnetic charge densities [9, 16] implying
div B �= 0 is straightforward.

The remainder of the paper is organized as follows. Section 2 briefly reviews the
Maxwell equations and some of its properties. The main result is presented in section 3.
First, in subsection 3.1, an electromagnetic mixed-potential formulation is constructed for
lossless systems with zero boundary energy flow. The formulation is generalized to lossy
electromagnetic systems with nonzero boundary energy flow in subsections 3.2 and 3.3.
Section 4 presents a brief outline on how the electromagnetic mixed-potential can be
used for stability analysis and the construction of Poynting-like flow balances. A set of
alternative Lagrangian and associated Hamiltonian functionals is proposed in section 5. In
subsection 5.1, the framework is again first constructed for lossless systems with zero boundary
energy flow. The Hamiltonian counterpart is treated in subsection 5.2. The result is generalized
to lossy electromagnetic systems with nonzero boundary energy flow in subsection 5.3. Finally,
in subsection 5.4, the new formulations are compared to the classical approach. The paper is
concluded with some final remarks and topics for future research.

2. Maxwell’s equations

The equations governing the electromagnetic behaviour in a medium V can be split into two
subsets [11]: Maxwell’s ‘curl’ equations

curl E = −Bt (6)

curl H = Dt + J (7)

and Maxwell’s ‘divergence’ equations

div D = ρ (8)

div B = 0, (9)
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in which the flux densities B and D are often related to the field intensities H and E through
the constitutive relationships depending on the medium. The vector J denotes the current
density and ρ denotes the electric charge density. Furthermore, if Hext and Eext represent some
external fields and if Js represents a current sheet along the surface of the medium, then the
associated boundary conditions for the tangential magnetic fields are given by

n̂ × (H − Hext) = Js, (10)

where n̂ is the inward normal, while for the tangential we have the electric fields

n̂ × (E − Eext) = 0. (11)

The boundary conditions of the normal components of the fields read n̂ · (D − Dext) = ρs,
where ρs represents a surface charge and n̂ · (B − Bext) = 0.

A very important property in the study of electromagnetic fields is Poynting’s theorem:∫
V

(H · Bt + E · Dt ) dv =
∫

∂V

S · n̂ ds −
∫

V

J · E dv, (12)

with S = E × H denoting the Poynting vector. Often it is convenient to associate the left-
hand side with the time derivative of the electromagnetic energy density Ēt = H · Bt + E · Dt .
However, the explicit expression for Ē depends on the constitutive relationships between B, D
and H, E (see, e.g., [10, 20]).

3. Electromagnetic mixed-potential

This section shows how to cast Maxwell’s curl equations (6) and (7) into a form similar to
(1). The network concepts as presented in section 1 will be used as the guiding thoughts
of the discussion. The first analogy we pose is the selection of the field intensities H and
E to play a role similar to the currents and voltages in (1). For the ease of presentation we
will first assume that the medium is linear, time- and space-invariant, such that B = µH and
D = εE, where the scalars µ and ε represent the permeability and the permitivity of the
medium, respectively. (This assumption will be relaxed in remark 2.) Hence, we will focus
on developing a Brayton–Moser (BM) analogue of

µHt = −curl E (13)

εEt = curl H − J. (14)

The next main step in completing the analogy concerns the construction of a functional
in which we can identify similar terms as in (3), that is, we want to identify with (13) and (14)
a functional of the form

P(E, H) = N (H, E) + R(H) − G(E). (15)

The derivatives of the latter with respect to the field intensities are determined by invoking the
functional (or variational) derivative playing a role analogous to the gradient of a function.
Let us first consider the case in which the medium is loss- and sourceless, i.e., J = 0, and the
energy through the boundary is zero.

3.1. Zero boundary energy flow

Let Q(v) be a functional of a smooth vector field v(r, t) ∈ R
3, with r = (x, y, z). The

functional derivative, denoted by δvQ(v), is uniquely defined from [7]∫
V

δvQ(v) · w dv = d

dη
Q(v + ηw)|η=0, (16)
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for any η ∈ R and any smooth test field w(r, t) ∈ R
3 such that v + ηw satisfies the same

boundary conditions as v. As will be shown, under certain boundary conditions, for Maxwell’s
curl equations (13) and (14) it suffices to consider functionals of the form

Q(v) =
∫

V

Q̄(v, curl v) dv, (17)

with density Q̄(v, curl v). By Taylor’s theorem

Q(v + ηw) = Q(v) + ηQ′(v, w) + O(η2)

= Q(v) + η

∫
V

(Q̄v · w + Q̄curl v · curl w) dv + O(η2)

= Q(v) + η

∫
V

(Q̄v + curl Q̄curl v) · w dv

− η

∫
V

div(Q̄curl v × w) dv + O(η2),

where we have used the vector identity div(v × w) = w · curl v − v · curl w. Furthermore,
using Gauss’ divergence theorem, we can write∫

V

div(Q̄curl v × w) dv =
∫

∂V

(n̂ × Q̄curl v) · w ds,

which, under the assumption that at the boundary surface n̂ × Q̄curl v = 0, finally yields that

δvQ(v) = Q̄v + curl(Q̄curl v). (18)

For the case that Q(v) has an extremal, i.e., when δvQ(v) = 0, the latter equation coincides
with the well-known Euler differential equation [7].

Returning to our goal of finding the electromagnetic analogue of (1), we are now in a
position to postulate the following. The assumption that the medium is loss- and sourceless
implies that both R(H) and G(E) are zero. This means it suffices to consider only a mixed-
potential functional of the form P(H, E) = N (H, E), with

N (H, E) =
∫

V

N̄ (•) dv. (19)

Depending on the boundary conditions, we are left with two possible choices for N̄ (•), which
we denote as follows:

N̄ (•) =
{
N̄m(H, curl E) = H · curl E
N̄ e(curl H, E) = curl H · E.

(20)

Indeed, the selection

P(H, E) =
∫

V

N̄m(H, curl E) dv (21)

imposes the condition that the magnetic field intensity at the boundary is continuous, i.e.,
n̂ × H = 0, and in turn ensures the set of well-defined functional derivatives

δHP(H, E) = curl E, δEP(H, E) = curl H,

as desired. Hence, letting u = col(H, E) represent the field intensity vector, Maxwell’s curl
equations (13) and (14) define a pseudo-gradient system of the form (cf (1))

Mut = δuP(u), (22)

with respect to the indefinite (pseudo-Riemannian) metric

M =
(−µI3 0

0 εI3

)
, (23)

where I3 denotes the 3 × 3 identity matrix.
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On the other hand, precisely the same result can be obtained by selecting

P(H, E) =
∫

V

N̄ e(curl H, E) dv (24)

accompanied by the assumption that now the tangential electric field intensity at the boundary
is continuous, i.e., n̂ × E = 0. If the boundary is a perfect conductor the latter condition
seems natural but the former condition that n̂ × H = 0 implies a rather unphysical boundary
condition. This can be explained as follows. Assuming n̂ × E = 0 naturally implies by (11)
that the external electric field Eext = 0. The condition that the tangential component of H
vanishes at the boundary surface also implies that there is no external field influence at the
boundary surface of the medium Hext = 0. However, the tangential component of H should,
in general, be discontinuous by an amount whose magnitude is equal to the magnitude of
a surface current sheet Js (cf (10)) and whose direction is parallel to n̂ × Js [11]. Another
possibility could be that the surface current is precisely ‘compensated’ by an external field
according to Js = −(n̂ × Hext). Furthermore, it is clear from Poynting’s theorem (12) that the
energy flow across the boundary depends on both the tangential electric field and the tangential
magnetic field. Specification of either n̂ × E = 0, n̂ × H = 0, or n̂ × H = Js implies that the
net energy flow across the boundary is zero, i.e.,∫

∂V

S · n̂ ds = 0, (25)

meaning that the system is isolated.
The continuity restrictions, n̂ × H = 0 or n̂ × E = 0, are necessary to guarantee well-

defined functional derivatives. As suggested in [7], such situations can be remedied by adding
appropriate boundary terms to the respective functionals. For the mixed-potential functional
this will be illustrated in subsection 3.3. Next, we first consider the case that J �= 0 which
implies the existence of an electromagnetic co-content functional.

3.2. Electromagnetic co-content

If the media are lossy, or contain sources, we may associate with the Ampère–Maxwell law
(14) a functional

G(E) =
∫

V

Ḡ(E, r) dv, (26)

with the possibly nonlinear and nonhomogeneous density function

Ḡ(E, r) =
∫

J(E, r) · dE. (27)

The existence of (27) is guaranteed as long as JE(E, r) = JT
E(E, r), i.e., the resistive structure

should be reciprocal. Hence, the mixed-potential functional can be extended to (cf (3))

P(H, E) = N (H, E) − G(E), (28)

where N (H, E) is selected from (20). The functional G(E) clearly plays a role similar to
the co-content function in (3). For this reason, we refer to (26) as the total electromagnetic
co-content. Observe that if J represents an independent field of sources the co-content density
reduces to Ḡ(E) = J · E. Linear Ohmic losses are included by selecting Ḡ(E) = 1

2σ‖E‖2,
where σ represents the specific conductivity.

Remark 1. In the electromagnetic field setting considered in this paper there does not exist
an electromagnetic content functional (analogously to R(i) in (3)). However, sometimes it
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can be useful to consider, next to the electric current density J, a magnetic current density Jm

together with its associated magnetic charge density ρm such that div B = ρm [9]. In such a
case the electromagnetic content reads

R(H) =
∫

V

Jm · H dv. (29)

The introduction of these quantities puts the field equations in a symmetrical form due to the
duality between the electric and magnetic properties of the fields.

3.3. Nonzero boundary energy flow

In order to accommodate our framework for nonzero boundary energy flow and to avoid
nonphysical boundary conditions we need to extend the definition of the functional derivative
(18). Borrowing inspiration from [4, 7], we define an extended vector field

[v] =
(

v
vb

)
,

and consider instead of (17) a functional

Q[v] =
∫

V

Q̄(v, curl v) dv + Qb(vb).

Here vb represents a boundary vector, and Qb(vb) represents a boundary functional

Qb(vb) =
∫

∂V

Q̄b(v) ds.

This means that the functional derivative (18) can be accommodated to deal with nonzero
tangential boundary field terms as follows:

δ[v]Q[v] =
(
Q̄v + curl(Q̄curl v)

Q̄b
v − n̂ × Q̄curl v

)
. (30)

The second term represents the system’s natural boundary conditions and, together with the
first term, vanishes at the extremals of Q.

For our purpose here, this suggests that (22) can be extended to

[M][ut ] = δ[u]P[u], (31)

where [M] = diag(M, Mb). To make this explicit, we proceed as follows. Suppose that we
start from N̄ = N̄m, then

P[H, E] =
∫

V

H · curl E dv −
∫

V

J · E dv + Pb(•). (32)

Then, recalling u = col(H, E), we obtain

δ[u]P =


curl E

curl H − J

P̄b
H

P̄b
E − n̂ × H

 . (33)

For the electromagnetic mixed-potential (32) the BM formulation can be readily completed
by selecting the boundary potential

Pb(Eb) =
∫

∂V

Js · E ds, (34)
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yielding the boundary condition n̂×H = Js. However, with this choice we again have that the
system is isolated from the rest of space implying that the net energy flow across the boundary
is zero (25). A more general setting is obtained by replacing the integrand in (34) with a term
(Js + n̂×Hext) ·E. Observe that since Pb depends on the electric field intensity at the boundary
surface only it belongs to the category of co-content functionals.

On the other hand, starting from N̄ = N̄ e gives

P[H, E] =
∫

V

E · curl H dv −
∫

V

J · E dv + Pb(•), (35)

with Pb(•) to be defined and yields the natural boundary conditions:

0 = P̄b
H − n̂ × E (36)

0 = P̄b
E. (37)

Clearly, the latter conditions are satisfied by selecting either a boundary (content) potential
Pb(Hb) = 0, yielding the physically admissible condition n̂ × E = 0, or

Pb(Hb) =
∫

∂V

(n̂ × Eext) · H ds, (38)

which provides the more general boundary condition (11).
We refer to (31), together with either the mixed-potential functional of the form (32) or

(35), as the electromagnetic BM equations.

Remark 2. So far we have considered only linear, time- and space-invariant media.
However, in general, the constitutive relationships between the flux densities and the field
intensities are given by B(r, t) = B̂(H, E, r, t) and D(r, t) = D̂(H, E, r, t). Apart
from explicit time dependence, the scope of systems that can be described in the present
framework extends naturally by noting that Bt = B̂H(H, E, r)Ht + B̂E(H, E, r)Et and Dt =
D̂H(H, E, r)Ht + D̂E(H, E, r)Et . Hence, for nonlinear, nonhomogeneous and bianisotropic
media the pseudo-Riemannian metric (23) is to be replaced by

M(H, E, r) =
(−B̂H(H, E, r) −B̂E(H, E, r)

D̂H(H, E, r) D̂E(H, E, r)

)
, (39)

which in general loses its interpretation of a (pseudo-Riemannian) metric. The closest analogy
with respect to the original metric (2) is the case of nonlinear homogeneous anisotropic media,
i.e.,

M(H, E) =
(−µ(H) 0

0 ε(E)

)
, (40)

where µ(H) = B̂H(H) and ε(E) = D̂E(E) are both symmetric and positive definite.

4. A stability argument

As briefly outlined in the introduction, the principal application of the concept of the mixed-
potential is its use in stability theory. To show how the technique of Brayton and Moser
can be adapted for electromagnetic systems, let us consider the simplest case in which
B = µH, D = εE and J = σE. Furthermore, the boundary conditions are assumed to
be zero. In this case, the mixed-potential functional takes the form

P(H, E) = N (H, E) −
∫

V

1

2
σ‖E‖2 dv, (41)
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where N (H, E) is chosen from (19) and (20). Now, taking the time derivative along the
trajectories of (22) yields the indefinite quadratic form

Ṗ(H, E) = −
∫

V

(µ‖Ht‖2 − ε‖Et‖2) dv. (42)

In the quasi-static case the displacement current εEt is negligible [10]. This implies
E = 1

σ
curl H, so that the mixed-potential (41) can be rewritten as

P(H, E) =
∫

V

1

2σ
‖curl H‖2 dv, (43)

and the quadratic form (42) becomes negative definite. This, in turn, implies that (43) is
non-increasing which might be used to indicate the system is stable.

In the more general case, however, we need to invoke alternative pairs, P̃ and M̃, such that
the dynamics of (22) are preserved, and such that the symmetric part of M̃ is at least negative
semi-definite. This is accomplished as follows. Let λ be an arbitrary constant and K be a (not
necessarily constant) symmetric 6 × 6 matrix, then the construction of an admissible family
of pairs starts from

P̃(u) = λP(u) +
∫

V

1

2
δuP(u) · KδuP(u) dv. (44)

Indeed, from the latter we have

˙̃P(u) =
∫

V

ut · λMut dv +
d

dt

∫
V

1

2
δuP(u) · KδuP(u) dv.

Now, letting N = ( 0 I3

I3 0

)
and T = (curl 0

0 curl

)
, we may write

d

dt

∫
V

1

2
δuP(u) · KδuP(u) dv = d

dt

∫
V

1

2
(NTu − Ḡu) · K(NTu − Ḡu) dv

=
∫

V

(NTut − Ḡuuut ) · KMut dv.

Since NKM is constant by assumption, we obtain

˙̃P(u) =
∫

V

ut · (λM + NKMT − ḠuuKM)︸ ︷︷ ︸
M̃

ut dv.

The final step is to find among the allowable values for λ and K a choice which ensures

˙̃P(u) =
∫

V

ut · M̃ut dv � 0. (45)

As an example, let us consider the selection λ = 1 and K = diag(0, 2σ−1I3). This yields
a new mixed-potential functional of the form (cf (43))

P̃(H, E) =
∫

V

1

2σ
‖curl H − σE‖2 dv +

∫
V

1

2σ
‖curl H‖2 dv (46)

and an (operator) matrix

M̃ =
(

−µI3
2ε
σ

curl

0 −εI3

)
. (47)

(Note that the latter does not qualify as a metric since it is not symmetric.) However, if the
symmetric part of M̃ is negative semi-definite, the mixed-potential (46) will be non-increasing
along the trajectories. This is accomplished if σ−1

√
εµ−1‖curl‖ � 1.
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Another interesting choice is the selection λ = 0 and K = diag(µI3, εI3)
−1. This yields

the mixed-potential

P̃(H, E) =
∫

V

1

2µ
‖curl E‖2 dv +

∫
V

1

2ε
‖curl H − σE‖2 dv

=
∫

V

1

2
(µ‖Ht‖2 + ε‖Et‖2) dv (48)

and the (operator) matrix

M̃ =
(

0 curl
−curl −σ I3

)
, (49)

which in turn implies

˙̃P(H, E) = −
∫

V

σ‖Et‖2 dv � 0. (50)

Observe the resemblance with Poynting’s theorem by noting that for the case considered here
the total electromagnetic (co-)energy equals

E∗(H, E) =
∫

V

1

2
(µ‖H‖2 + ε‖E‖2) dv (51)

and (12) reduces to

Ė∗(H, E) = −
∫

V

σ‖E‖2 dv � 0. (52)

The main difference is that in (12) we start from the electromagnetic energy, whereas the
electromagnetic mixed-potential is associated with the power in the system. Since nonzero
boundary conditions are easily included by replacing in (44) δuP by δ[u]P , the procedure
outlined above can be used to derive a collection of Poynting-like theorems along the lines of
[13].

5. Lagrangian boundary control system formulation

In this section, a family of variational principles is proposed which, in contrast to the classical
Lagrangian and Hamiltonian formulation, yields both Maxwell’s curl equations explicitly.
The construction is directly motivated by the form of the electromagnetic mixed-potential
functional as defined in section 3. The resulting equation sets can be considered as the
infinite-dimensional analogues of the so-called affine Lagrangian and Hamiltonian control
systems [6, 21]. The introduction of an appropriate set of conjugate momenta ensures that
the corresponding symplectic Hamiltonian still coincides with the total stored electromagnetic
field energy for which its time derivative precisely coincides with Poynting’s theorem. An
additional advantage of these new formulations is that there is no need to introduce the usual
magnetic vector and electric scalar potentials. This widens the range of applications in which
it is, for example, desirable to include fictitious magnetic charges.

5.1. Alternative Lagrangians

For the ease of presentation, we assume that all fields are null at t � 0, and again first consider
the situation that J = 0. As shown in section 3, for zero boundary conditions Faraday’s law
can be expressed as

µHt + δH

∫
V

H · curl E dv = 0.
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The key idea now is to introduce an integrated magnetic ‘displacement’ vector

Q(r, t) =
∫

T

H(r, τ ) dτ, (53)

with T = [0, t] for t � 0, and an integrated electric ‘flux’ density vector

P(r, t) =
∫

T

E(r, τ ) dτ. (54)

Since H = Qt and E = Pt , we then may also write

µQt t + δQ

∫
V

Q · curl Pt dv = µQt t +

(
δQt

∫
V

Qt · curl P dv

)
t

= 0, (55)

where we exploited the fact that (curl P)t = curl Pt (Clairaut’s theorem). In a similar way, we
deduce from

εEt − δE

∫
V

H · curl E dv = 0,

the following alternative expressions for Ampère–Maxwell’s law:

εPt t −
(

δPt

∫
V

Q · curl Pt dv

)
t

= εPt t − δP

∫
V

Qt · curl P dv = 0. (56)

These observations put us in a position to define a Lagrangian functional of the form

L(•, Qt , Pt ) =
∫

V

(
1

2
µ‖Qt‖2 +

1

2
ε‖Pt‖2

)
dv + Lc(•), (57)

where

Lc(•) =
∫

V

L̄c(•) dv (58)

is denoted as the coupling Lagrangian, which is the Lagrangian counterpart of (19). However,
instead of the two choices in (20), we now have four possibilities, each accompanied with its
particular condition on the boundary, i.e.,

L̄c(•) =


Qt · curl P
−curl Q · Pt

curl Qt · P
−Q · curl Pt .

(59)

Indeed, the first variation of (57) for all four possibilities of L̄c(•) yields the Euler–Lagrange
equations

µQt t + curl Pt = 0, εPt t − curl Qt = 0, (60)

which upon substitution of Qt = H and Pt = E explicitly restores to Maxwell’s curl
equations (13) and (14), respectively. Again explicit use is made of the fact that all variations
vanish at the boundary. This condition will be relaxed in subsection 5.3.

Remark 3. Note that it is also possible to construct suitable combinations of the coupling
densities (59). For instance, variation of (57), together with the coupling Lagrangian

Lc(Q, P, Qt , Pt ) = 1

2

∫
V

Qt · curl P dv − 1

2

∫
V

Pt · curl Q dv (61)

also yields (60). Interestingly, Lagrangians of this type are closely related to the formalism
proposed in [24] for lumped electrical RLC circuits.

Before we continue, let us introduce the generalized displacement vector, q = col(Q, P),
and its associated generalized velocity vector, qt = col(Qt , Pt ). Hence, the Euler–Lagrange
equations (60) can be compactly and generally written as(

δqt
L(q, qt )

)
t
− δqL(q, qt ) = 0. (62)
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5.2. Some physical arguments

As argued in [17], there should be a distinction between a so-called mathematical and a
physical Lagrangian. In contrast to the former, a physical Lagrangian for a (non-relativistic)
system should not only yield the Euler–Lagrange equations leading to the correct equations of
motion, but it should also be expressible as the difference between the kinetic (co-)energy and
the potential energy. Although the proposed Lagrangian (57) yields the correct equations of
motion its form does not equal the usual difference between the magnetic (co-)energy and the
electric energy, or vice versa. Instead, it consists of the total stored electromagnetic co-energy
plus a coupling term that captures the interaction between the electric and the magnetic field.
Interestingly, the coupling Lagrangian (58), with its possible densities (59), corresponds to the
class of so-called non-energic Lagrangians [2]. A non-energic Lagrangian is characterized by
the fact that it describes neither energy storage nor energy dissipation, which is evident from
the observation that the Hamiltonian associated with (58) equals

Hc(•) =
∫

V

qt · δqt
Lc(•) dv − Lc(•) ≡ 0. (63)

Moreover, the coupling Lagrangian (58) is precisely the electromagnetic analogue of a traditor
of the second degree [8]. This, in turn, suggests that the coupling Lagrangian (58) describes
the effect of an electromagnetic transformer or gyrator having the curl operator as ‘turns ratio’
or ‘gyration ratio’, respectively. We also note that a general traditor of the kth degree admits
2k possible Lagrangians. This directly relates to the four possible densities in (59).

In passing on to the full Hamiltonian counterpart, the four Lagrangian coupling densities
(59) provide two possible choices for the conjugate momenta. Starting, for example, from

L(P, Qt , Pt ) = E∗(Qt , Pt ) +


∫

V

Qt · curl P dv∫
V

curl Qt · P dv,

(64)

with

E∗(Qt , Pt ) =
∫

V

(
1

2
µ‖Qt‖2 +

1

2
ε‖Pt‖2

)
dv (65)

provides the following set of conjugate momenta:

p = δqt
L(q, qt ) =

(
Λ
Γ

)
=

(
µQt + curl P

εPt

)
. (66)

Hence, the Legendre transformation of (64) yields the Hamiltonian

H(q, p) =
∫

V

(
1

2µ
‖Λ − curl P‖2 +

1

2ε
‖Γ‖2

)
dv, (67)

which clearly coincides with the total electromagnetic (co-)energy (65) since Λ−curl P = µQt

and Γ = εPt . Furthermore, the Hamiltonian is conserved since along the trajectories of

qt = δpH(q, p) =


1

µ
(Λ − curl P)

1

ε
Γ

 (68)

and

pt = −δqH(q, p) =
 0

1

µ
(curl Λ − curl(curl P))

 , (69)

its time derivative satisfies Ḣ(q, p) = 0.
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Similarly, starting from

L(Q, Qt , Pt ) = E∗(Qt , Pt ) −


∫

V

curl Q · Pt dv∫
V

Q · curl Pt dv

(70)

yields

p = δqt
L(q, qt ) =

(
Λ
Γ

)
=

(
µQt

εPt − curl Q

)
, (71)

and

H(q, p) =
∫

V

(
1

2µ
‖Λ‖2 +

1

2ε
‖Γ + curl Q‖2

)
dv, (72)

which also coincides with (65) and satisfies Ḣ(q, p) = 0.

5.3. Free boundary Lagrangian

In the previous subsections, we have explicitly assumed that the variations vanish at the
boundary, which, recalling the discussion in section 3, may lead to rather unphysical boundary
conditions. In a similar fashion as before, such situations can be avoided by extending the
Lagrangian functional with additional boundary terms. For that, let [q] = col(q, qb) and
[qt ] = col

(
qt , qb

t

)
, where qb and qb

t represent the field ‘displacements’ and ‘velocities’ at the
boundary surface, respectively. The total Lagrangian then takes the form

L[q, qt , e] = Lo(q, qt ) + Lj(q, e) + Lb(qb, eb), (73)

with internal Lagrangian Lo(q, qt ) (i.e., the Lagrangian (57)), interaction-source Lagrangian

Lj(q, e) =
∫

V

L̄j(q, e) dv (74)

and the interaction-boundary Lagrangian

Lb(qb, eb) =
∫

∂V

L̄b(qb, eb) ds. (75)

The vector [e] = col(e, eb) represents the independent sources and external fields. This leads
to the Euler–Lagrange equations

(δ[qt ]L[q, qt , e])t − δ[q]L[q, qt , e] = 0, (76)

which is the infinite-dimensional analogue of an affine Lagrangian boundary control system as
originally introduced in [6]. Note that the corresponding total Hamiltonian is followed from
taking the Legendre transformation of (73).

As with the definition of the boundary potentials in section 3, the interaction-boundary
Lagrangian depends on the choice of the coupling Lagrangian Lc(•) and can be determined
by considering the equations explicitly.

Suppose we start from L̄c = Qt · curl P, then the internal Lagrangian takes the form

Lo(P, Qt , Pt ) = E∗(Qt , Pt ) +
∫

V

Qt · curl P dv, (77)

where E∗(Qt , Pt ) represents the electromagnetic (co-)energy defined in (65). If the current
density J is assumed to be defined by independent sources it can be treated as an external
quantity, i.e., e = −J, which enables us to define

Lj(P, J) = −
∫

V

P · J dv. (78)
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Table 1. Interaction-boundary Lagrangians versus possible coupling Lagrangians.

L̄c L̄b

Qt · curl P P · (Js + n̂ × Hext)

−curl Q · Pt Q · Eext

curl Qt · P Q · Eext

−Q · curl Pt P · (Js + n̂ × Hext)

Hence, the Lagrangian boundary control system (76) takes the form
µQt t + curl Pt

εPt t

0
0

 −


0

curl Qt − J

L̄b
Q

L̄b
P − n̂ × Qt

 =


0
0
0
0

 , (79)

from which we deduce that eb = Hext such that

Lb(P, Hext) =
∫

∂V

P · (Js + n̂ × Hext) ds. (80)

The interaction-boundary Lagrangians associated with the three remaining choices for L̄c(•)

are summarized in table 1.
Furthermore, the Hamiltonian associated with (79) reads

H(P,Λ,Γ, J, Hext) = Ho(P,Λ,Γ) +
∫

V

P · J dv −
∫

∂V

P · (Js + n̂ × Hext) ds, (81)

where the internal Hamiltonian Ho(P,Λ,Γ) is given by (67). Finally, the time derivative of
the internal Hamiltonian yields the energy flow balance

Ḣo = −
∫

∂V

(
Pt × 1

µ
(Λ − curl P)

)
· n̂ ds −

∫
V

J · Pt dv, (82)

which, after substitution of Pt = E and 1
µ
(Λ − curl P) = H, constitutes Poynting’s theorem

(12).
Let us next carry over our findings to the classical Lagrangian and Hamiltonian approach

and compare the results.

5.4. Classical approach

Classically the Euler–Lagrange equations associated with an electromagnetic Lagrangian are
obtained by invoking a magnetic vector potential A such that B = curl A, which requires that
div B = 0 (see, e.g. [3, 11, 18]). Substitution of the latter into (6) suggests that the electric
field intensity can be written as E = −At − grad φ, where φ represents the electric scalar
potential. Indeed, the variation of the Lagrangian functional

L(φ, A, At ) =
∫

V

(
1

2
ε‖E‖2 − 1

2µ
‖B‖2

)
dv +

∫
V

(J · A − ρφ) dv, (83)

with respect to the magnetic vector potential A yields, under the condition that

n̂ × 1

µ
curl A = n̂ × H = 0, (84)
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the Ampère–Maxwell law (cf (7)):

ε(At + grad φ)t +
1

µ
curl(curl A) + J = 0.

Similarly, variation of the electric potential φ yields Gauss’ law (cf (8))

εdiv(At + grad φ) + ρ = 0,

together with the boundary condition

−ε(At + grad φ) · n̂ = n̂ · D = 0.

The Hamiltonian counterpart is then obtained by defining the momentum conjugate

Π = δAt
L(φ, A, At ) = ε(At + grad φ) = −D,

and considering the Legendre transform H(φ, A,Π) of L(φ, A, At ) as

H(φ, A,Π) =
∫

V

Π · At dv − L(φ, A, At )

=
∫

V

(
1

2ε
‖Π‖2 +

1

2µ
‖curl A‖2

)
dv

−
∫

V

(J · A − ρφ + Π · grad φ) dv. (85)

Imposing the same boundary condition as before then gives the Hamiltonian equations of
motion:

At = δΠH(φ, A,Π) = 1

ε
Π − grad φ

−Πt = δAH(φ, A,Π) = 1

µ
curl(curl A) − J,

(86)

together with

0 = δφH(φ, A,Π) = ρ + div Π. (87)

The vanishing of the latter term (implying Gauss’law) is due to the fact that the conjugate
momentum associated with the electric scalar potential is not defined since δφt

L(φ, A, At ) = 0.
Consequently, there is also no Hamiltonian equation for φt . Furthermore, we observe that
the second equation represents the Ampère–Maxwell’s law, while Faraday’s law follows by
taking the curl of the first equation. The remaining Maxwell equation (9) was a necessary
condition for the construction of an electromagnetic Lagrangian and Hamiltonian functional
in the first place, and therefore is implicitly included in the formulation.

The above formulation can considerably be simplified exploiting the gauge freedom to
specify φ = 0 (see [1, 18]). In this case, the Hamiltonian (85) reduces to

H(A,Π) =
∫

V

(
1

2ε
‖Π‖2 +

1

2µ
‖curl A‖2 − J · A

)
dv, (88)

providing the equations of motion:

At = δΠH(A,Π) = 1

ε
Π

−Πt = δAH(A,Π) = 1

µ
curl(curl A) − J.

(89)
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Since the boundary conditions of the form (84) are rather unphysical we follow
the approach outlined in the previous subsection and consider an interaction-boundary
Hamiltonian

Hb(A, Hext) = −
∫

∂V

A · (Js + n̂ × Hext) ds. (90)

Further decomposition of (85) into an internal Hamiltonian,

Ho(A,Π) =
∫

V

(
1

2ε
‖Π‖2 +

1

2µ
‖curl A‖2

)
dv, (91)

and an interaction-source Hamiltonian,

Hj(A, J) = −
∫

V

J · A dv, (92)

now yields for the time derivative of Ho along the trajectories of (89):

Ḣo(A,Π) =
∫

∂V

(
At × 1

µ
curl A

)
· n̂ ds +

∫
V

J · At dv. (93)

Clearly, the latter energy flow balance coincides with Poynting’s theorem (12) since At = −E.
However, for a gauge other than φ = 0 the interpretation of the latter energy flow balance
seems far from trivial. This problem does not occur in the Lagrangian framework proposed in
the previous sections since the formulation is independent of A and φ.

6. Final remarks and outlook

In this paper, we have developed an electromagnetic analogue of the Brayton–Moser
formulation by defining an electromagnetic mixed-potential from which Maxwell’s curl
equations can be derived. Additionally, the form of the electromagnetic mixed-potential
gives rise to alternative variational principles that imply the existence of a family of novel
Lagrangian functionals without invoking the usual electric and magnetic potentials. This
framework might especially be of interest in cases where it is desirable to consider a set of
symmetric Maxwell equations, i.e., in cases where Jm �= 0 and div B �= 0.

As argued in [3], Maxwell’s equations can be partitioned into kinematical equations,
Faraday’s law (6) and (9), and dynamical equations, the Ampère–Maxwell law (7) and Gauss’
law (8). On the other hand, storage of energy is associated with the dynamics of a system.
Hence, from a system-theoretic point of view it seems more natural to consider both Maxwell’s
curl equations (6) and (7) as the dynamical equations since they produce or affect the storage
of energy (as is also underscored by Poynting’s theorem). The remaining two laws, (8) and
(9), are then to be considered as algebraic constraints on the fields, whereas the constitutive
relationships between the field intensities and the flux densities reflect the kinematics.

For the ease of presentation we have mainly considered linear electromagnetic systems.
A very strong feature of the Brayton–Moser formulation that deserves further exploration is
its use in finding Lyapunov functions for electromagnetic systems with nonlinear constitutive
relations. The fact that nonlinear dissipation is included in the framework in an intrinsic
manner can be considered as an advantage in contrast to the Hamiltonian-based stability theory.
Another, but closely related, feature to investigate further is the construction of alternative
Poynting-like flow balances along the lines of [13]. This opens up a way to consider passivity,
and possibly stabilization, of electromagnetic systems from a fairly different perspective.
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