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Preface 
Ever since the start of my study in civil engineering, I have had a great interest in the mechanics 

of civil structures. Civil structures are masterpieces in their combination of structural 

performance with architecture and functionality; the most world-famous structures conquer the 

forces of nature with an elegant and light structural design, incorporated in daring architectural 

creativity. Unfortunately, these structures seem to be rare, and the practical field of civil 

engineering appears to be dominated by building guidelines, budgetary limitations and 

replication of older designs. A structural engineer should not focus on these aspects, but 

should be allowed to use his engineering knowledge to the best. Therefore, my goal is to ease 

the structural design process, so that the focus of the structural engineer can be on the 

fundamental mechanics of a design. While nowadays, a civil engineer heavily relies on his 

personal design experience for generating ideas, the future civil engineer should use his 

experience as a guide on generative design tools. The development of these tools requires 

high expertise, not only in the field of structural design, but also in applied physics, 

mathematics and computer science. 

In this thesis I took the opportunity of diving into the tools of generative design. It started 

as a research project in an, for me, unfamiliar field of science. Nonetheless, I received much 

knowledge, joy and satisfaction from this process. In the end, this thesis led to the developed 

of a new generative design tool, which generates both buildable and optimum designs in terms 

of weight, costs and sustainability. I hope that this tool is of valuable use and an inspiration for 

further research. 

I would like to thank my thesis committee for their support. Thank you, Simon Cox, for your 

enthusiasm and our discussions at the coffee table. Frans van der Meer, you were a very 

pleasant chairman of the committee, providing me with practical guidance and asking decisive 

and critical questions. Roy Crielaard and Jeroen Coenders were my experts on optimisation; 

your inspirational ideas brought me to the thesis’ topic, and the in-depth reviewing of many 

draft versions steered me into the right direction. Lambert Houben, thank you for your flexibility 

and the coordination of the administrative parts of my thesis. 

Furthermore, I would like to thank all my colleagues and fellow interns at Royal 

HaskoningDHV for the great experience I had at the office, although my internship ended 

prematurely because of the coronavirus. In particular, I would like to thank Erik, Tianxiang, 

Robin, Harm, Tijl, Thomas, Geert, Geerte and Robin. Finally, I would like to thank my family 

and friends, especially my girlfriend Saskia and friends Fleur, Annelies and Wouter, for their 

feedback on the report and their support and encouragement throughout the process. 

 

Tom van Woudenberg 

June 2020  
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Summary 
In the design of steel structures, optimisation methods promise cheap, light and sustainable 

structures. However, the resulting designs tend to have a high diversity of profiles, making 

them unbuildable. Furthermore, the optimisation problem is mathematically complex, leading 

to a long and potentially unsolvable optimisation process. Grouping methods solve both issues 

by finding the optimum solution, for which the number of distinct profiles is limited.  

Multiple grouping methods exist in literature, and it is not known which is the best: the 

methods have not been applied on the same problems, and the computational effort has not 

been compared. This gap in literature leads to the following question: “Which method for 

grouping can find the lightest and cheapest steel structure with minimal computational effort?” 

To answer this question, a comparison of the existing grouping methods is made on their 

theoretical and numerical performance. The theoretical comparison comprises the size and 

properties of the search space, and the number of additional calculations. The numerical 

comparison consists of weight optimisation of eight benchmark problems. For each structure 

and method, the weight of the solution and corresponding computational effort is evaluated. 

Manually grouping of members, which is the most popular grouping method, relies on the 

engineer’s expertise and rules of thumb. This method requires no additional calculations but 

in general fails to find the optimum grouping for a light or cheap structure. Other existing 

methods include the geometry, axial force distribution or an ungrouped result in their grouping 

process, or adapt the optimisation problem. Of these methods, only the cardinality constraints 

method is guaranteed to potentially find the lightest grouped design, while reducing the search 

space for a small number of groups. However, it creates many local optima, which increases 

the complexity of the search space. 

In the aim of finding a grouping method which creates a simple and small search space 

and has low computational effort, the fully stressed combinatorial search method is proposed. 

In this method, the grouping is found by a combinatorial search, which evaluates the estimated 

weight or costs of a restricted set of groupings based on the weight per unit length of the 

members of a fully stressed design. Then, optimisation of a small and simple search space 

finds the corresponding optimum profiles. These steps are repeated, in which the fully stressed 

design uses the result of the previous optimisation as its reference design. The loop repeats 

until the grouping is unchanged, or the result diverges. 

In all numerical experiments, the new method gave results with a low weight, while it kept 

the computational effort to an acceptable level. It gave the lightest design for four out of eight 

problems and showed high certainty for converging to the lightest design in two problems. For 

the other two problems it performed second best. Conclusively, this method is the best 

available grouping method for steel structural optimisation. 

In case of cost optimisation, the new grouping method can efficiently find the optimum 

design including the optimum number of groups; the new method converges to cheaper design 

with less computations than in the case no grouping is applied. For a real-life case-study, the 

costs of a design were reduced with 7.3% compared to a manually grouped design and with 

19.6% compared to the conventional design process. 

I suggest that further research focusses on further development of the new grouping 

method as proposed improvements can be made on the initial design, and the number of 

computations in the combinatorial search and fully stressed design. Moreover, the 

effectiveness of a suggested simplification of the new method should be investigated. This 

would allow application for engineers who are not able to apply a mathematical optimisation 

method. For practical application, incorporation of building codes and cost functions with a 

well-defined scope are desired. Finally, utilisation of the grouping methods in other applications 

is possible, but the performance of the methods should be evaluated per application. 
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1 Introduction 
The design of steel structures is everyday work for the civil engineer, but it has room for 

improvement. In a structural design, an engineer aims at making the lightest, cheapest or most 

sustainable design. This task can be performed and improved by an optimisation method. 

However, this is rarely done in practice, because optimisation has some practical drawbacks: 

the high diversity of the solution and the inability to limit this diversity. This issue must be solved 

to allow the design of buildable structure. 

To do so, the basics of optimisation are introduced first. This chapter explains the 

functioning and added value of optimisation, starting from its history. Subsequently, its 

application to steel structures is introduced, and the relation between weight, costs and 

diversity is analysed. Then, the research question and subquestions are presented, together 

with the scope of the research project. Finally, an outline of this report is given. 

1.1 Background 
Optimisation is a large field of research, of which this chapter only covers the relevant aspects. 

For a more in-depth introduction, I would recommend the course ME46060 Engineering 

Optimization, given by M. Langelaar, and the book Introduction to optimum design, written by 

J.S. Arora (2017). 

1.1.1 History 

Optimisation is the mathematical process of finding the best solution of a problem, in which 

the definition of best solution can be, for example, minimum weight or costs. It is an active field 

of research, and well-established methods have been developed. Nonetheless, the application 

to the industry of civil engineering is limited. This is a pity, as this design process has high 

potential for a more optimal design of both simple and complex civil structures. Other design 

sectors have incorporated optimisation into their design process, with impressive results. 

Applications have ranged from weight savings on an aircraft wing to the reduction of material 

use of packaging products (Langelaar and van Keulen 2019). The industry of civil engineering 

should aim for optimality too, as the structural performance of civil structures is closely linked 

to safety and global well-being. This close link demands for the best possible design and 

thereby the application of optimisation. Yang et al. (2016) stated this demand as follows:  

“In civil engineering, …, the best possible balance between security and 

economy must be found without risking lives. …” 
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Until now, optimisation in civil structures has primarily been restricted to research. Optimisation 

of structures started in 1960 with the famous research by Schmit (1960). He took the three-

bar truss structure shown in Figure 2, subjected to two independent load cases. The thinking 

at the time was (and nowadays still is to some extent) that the best structure would be a 

structure in which each bar is loaded to its limit in at least one load case. Using optimisation 

concepts, he showed that in the lightest possible structure, the vertical bar is not fully stressed 

in any of the two load cases (Schmit 1960; Salajegheh and Vanderplaats 1993). 

 

F1 F2

 
Figure 2 – Three-bar truss Schmit subjected to two independent load cases. 

Adaptation of original figure in literature (Vanderplaats 1993). 

 

Optimisation has been present in the science of engineering since then. These methods have 

found impressive structures and design concepts too, which would not have been thought of 

by an engineer. An example is the split-pylon concept bridge, as shown in Figure 3. This new 

type of bridge design was discovered with the use of an optimisation method. The bridge 

design can span much greater distances than conventional bridges, compared to their weight 

(Fairclough et al. 2018) 

 

 
Figure 3 - Example optimised weight structure, split-pylon concept bridge which can span high 

distances relative to its weight. 

Figure taken from literature (Fairclough et al. 2018). 
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1.1.2 Conventional and optimisation design process 

Optimisation methods change the conventional design process by incorporating mathematical 

procedures, which reduces the required input of an engineer. In the conventional design 

process, the experience of a structural engineer is vital: after an engineer defines his problem, 

he estimates an initial design, performs a structural analysis and checks the results on his 

demands. If the engineer thinks the design can be improved, he adapts the design based on 

heuristics. The engineer repeats this until he is satisfied. This process is shown in Figure 4. 

The blue-shaded blocks show in which phase an engineer provides input based on his 

experience. 

It should be noted that more sophisticated design models exist for the conventional design 

process. These models show, for example, the interaction between multiple phases of design 

and interaction between different stakeholders. However, the experience of the engineer is 

crucial in all conventional models. 

For the optimisation design process, the repetitive tasks of the engineer are automated: 

mathematical optimisation methods replace the engineer in altering the design. As a result, 

the influence of the engineer shifts to defining the optimisation problem. Mathematics takes 

over the iterative task of finding the best solution, and this process is stopped when 

mathematical convergence criteria are met. As the optimisation design process requires no 

input from an engineer during the iterations, many solutions can be evaluated. The optimisation 

design process is shown in Figure 4 as well. Again, the steps in which the experience of the 

engineer is needed are shaded blue. 

For simple problems, the conventional design process can be good enough and might 

results in a proper design. However, for more complex problems, an engineer cannot oversee 

all possible solutions, or his engineering heuristics fall short. Therefore, he cannot give a 

guarantee for finding the optimum result. 

It should be noted that all optimisation methods require a mathematical description which 

describes optimality. As a result, some problems might not be well suited for this optimisation 

design process as mathematics cannot formulate all aspects of a design. For instance, the 

beauty of a building is difficult to express in a mathematical format. Other design criteria are 

more suitable for optimisation, like weight, costs or environmental impact.  
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Figure 4 - Conventional design process versus optimisation design process: the repetitive tasks are 

automated. Blue shading shows the need for experience of an engineer. 

Adaptation of original figure in literature (Arora 2017). 
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1.1.3 Basics of optimisation 

A few basics of optimisation are required to understand the functioning and added value of 

optimisation methods: the standard design optimisation model, local and global minima, and 

search method (Papalambros and Wilde 2000; Arora 2017). 

Standard design optimisation model 

The first essential tool is the standard design optimisation model. This model is the 

mathematical description of optimisation problems in design. It is shown in equation (1.1) to 

(1.3): 

 

Minimise the objective function: 

 ( )if x  (1.1) 

With design variables: 

 = 1 2, ,...,i nx x x x  

And equality and inequality constraints: 

 ( )  =0 for 1...j ig x j m  (1.2) 

 ( ) = =0 for 1...l ih x l p  (1.3) 

 

The standard design optimisation model includes an objective function f which has to be 

minimised. This objective function can be everything expressible in a mathematical formula: 

weight, cost, embodied energy, environmental impact and many more. This function is 

dependent on design variables xi, which are the options available for all n parts of the design 

like material, geometry or size. The set of possible solutions of all design variables is called 

the design space or search space. The equality g (1.2) and inequality constraints h (1.3) are 

defined to be equal to zero or negative. These constraints bound possible designs to demands 

on the design, like maximum weight, strength limits or minimum dimensions. The set of solution 

of design variables which meet all constraints is called the feasible set, which is a subset of 

the search space. An infeasible solution lies outside this set and is not a valid solution to the 

optimisation problem. 
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Local and global minima 

The second important concept of optimisation is the definition of a minimum. A global minimum 

is the solution of design variables which evaluates to the minimum value for the objective 

function while meeting the constraint conditions. On the other hand, a local minimum is a 

solution of design variables for which only the objective function values in a small 

neighbourhood are equal or bigger. Figure 5 shows an example of a local and global minimum 

for one design variable. 

 

Design variable

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Local minimum

Global minimum

 
Figure 5 - Example of local and global minima, and iterative search by search methods. Individual 

searches can find a different minimum. 

Search methods 

The final basic concept of optimisation is the search method. As the search space is in general 

too big to evaluate for all options, search methods iteratively explore the search space by 

searching in the neighbourhood of their best-known solutions. The solution gradually become 

better and better during the process, and minima can be found without evaluating all options. 

However, many search methods rely on stochastics. This causes search methods to show 

inconsistent results when applied multiple times on the same problem. Figure 5 shows the 

iterative behaviour of search methods and the possibility of converging to different minima 

depending on a random start point. 

Many different strategies and variations are available for search methods, which are case-

specific and not generally applicable. However, all these methods have one thing in common: 

the characteristics of the search space influences the ability to find the global minimum. In 

general, the bigger the search space and the more local minima there are, the harder the 

problem is to solve. 
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1.1.4 Optimisation problem steel structural design 

The standard design optimisation model is written in a specific form for steel structural design 

(Arora 2017). In most applications, the objective function is defined as the weight or cost of the 

structure. The design variables control sizing of the members, influencing both weight and 

costs. The available member sizes are not free, but in most cases this choice is limited to a 

set of standard steel profiles. Finally, design constraints are set by inequality constraints on 

stresses and displacements, while equality constraints are not used. The stress constraints 

can include, for example, yield constraints and buckling constraints. Maximum displacements 

at midspan might be a possible displacement constraint. These stresses and displacement are 

calculated with a structural analysis. 

Weight optimisation 

In weight optimisation, the objective function is the weight of the structure. In general, it has 

few local optima, which is best explained with a simplified representation of the search space, 

as is shown in Figure 6. The plot shows both the weight of a structure and the constraint 

function as a function of the design variable. 

The design variable represents the choice of profiles for the members: a low value 

indicates light members, and a high value indicates heavy members. The weight of the total 

structure gradually increases with heavier members, as indicated with graph of the weight of 

the structure. 

The constraint function is shown with the green line, of which the side with the thin line 

represents the feasible and negative domain, so the top right part of the graph with heavy 

profiles. For the bottom left part of the graph the designs correspond to a constraint function 

which is bigger than zero; for infeasible design the structure fails the beams are sized too light. 

The line represents the case in which the constraint function is zero, and the design is on the 

limit of feasibility. 

The yellow cross indicates the global optimum. This solution is a local optimum because 

moving to left or right makes the design infeasible or heavier, and it is a global optimum 

because it is the only optimum. As only one local optimum exists, this problem is easy to solve. 

 

Design variable
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Constraint function

Weight of structure

 
Figure 6 - Example search space weight optimisation. Yellow cross indicates global optimum, no local 

optima are present. 
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Cost optimisation 

In the case of the objective function being a cost function, the problem converts in a cost 

minimisation problem. This cost function expresses the total building costs of the structure as 

a function of the structural design. The weight is one of the variables in this cost function, but 

other factors like fabrication, transport and erection costs can be included in this cost function 

as well. 

Now, the choice for a heavier profile, might reduce the final costs, as it might result in a 

solution with less distinct profiles. Therefore, these cost functions result in a complex search 

space with many local optima, which causes struggles for an optimisation method (Adeli and 

Sarma 2006). This complexity is shown in Figure 7, in which multiple local optima appear; each 

local optima is in a local minimum of the cost function, or at a border with the constraint 

function. 

 

Design variable
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e

Constraint function

Cost of structure

 
Figure 7 - Example search space cost optimisation. Yellow crosses indicate multiple local optima. 

 

The cost function should contain all aspects which contribute to the costs of a structure. These 

factors are depending on for example, place, time and economy (Tizani et al. 1996). Because 

these cost factors are hard to quantify, the perfect cost function does not exist. However, 

attempts have been made to find it, as the minimum cost structure is the primary goal in 

industry (Pavlovčič et al. 2004; Haapio 2012; Ajouz 2018). 
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Difference in solution 

In general, the optimum minimum weight solution of a structural has a different profile for every 

bar, as each bar is loaded differently. Some bars might have the same profile, because the 

diversity of the profile database is not big enough to provide each individual bar with the exact 

required resistance. The solution of the weight optimisation problem for a cantilever truss beam 

is shown in Figure 8. The thickness of each member stands for the weight of the profile. 

 

 
Figure 8 – Example minimum weight design: almost every member has a different profile. 

 

The minimum cost design can be different than the minimum weight design. For the cantilever 

truss beam, one of the local cost optima might be the design shown in Figure 9. In this design, 

the number of distinct profiles reduces, which reduces costs. 
 

 
Figure 9 – Example minimum cost design: few unique profiles. 

  



 

10 

1.1.5 Principle of commonality 

Both the optimum weight and optimum cost solution are used to evaluate a design. However, 

as shown by the cantilever truss beam, the optimal design of both procedures is different. A 

popular assumption is that the main difference is caused by the diversity of profiles in the 

optimum weight design. This observation is known as the principle of commonality: The fewer 

distinct components a structure has, the lower the costs are. This principle has been referred 

to in literature with different names: cardinality, location-allocation problems, standardisation 

theory, and minimisation of wasted material from overdesign (Templeman 1988; Reitman and 

Brent Hall 1990; Chan 1992; Biedermann and Grierson 1996; Gutkowski 1997). 

The principle of commonality is true because limiting the number of distinct profiles results 

in a decrease in the costs of purchasing, storing, fabrication and detailing. Some examples of 

origins of the decrease in costs are:  

 

• Bulk discounts 

• Easier administration of stock 

• Easier fabrication 

• Reduce of chance on errors  

• Easier quality control 

• Less unique connections 

 

The principle of commonality does not hold for very few distinct components; in the limit case 

that one profile is chosen, it is a heavy and expensive profile. Consequently, an optimum exists 

for a certain number of distinct profiles for which light profiles can be chosen, but the diversity 

is low enough to prevent high costs. Figure 10 shows conceptually the raw material costs, the 

additional costs for a high diversity and the sum of these two for a range of distinct sizes. For 

the total costs, an optimum number of groups is visible. 

 

Number of distinct profiles

c
o
s
ts

Raw material costs

Diversity costs

Total costs

 
Figure 10 - Comparison of costs, adaptation of original figure (Gutkowski 1997). Total costs are sum of 

diversity and raw material costs, which creates an optimum for a limited number of distinct profiles. 

 

Although the principle of commonality is logical, it is hard to model; diversity costs are hard to 

specify explicitly. This complication was acknowledged by Templeman (1988) too: 

 “…whereas material costs are easy to calculate accurately, the savings 

afforded by bulk purchasing and the simplified fabrication of a restricted set 

of sizes are far more difficult to quantify with the same accuracy. …” 
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1.1.6 Grouping methods 

As it is hard to model the exact costs which obey the principle of commonality, but another 

possibility is to force the solution to a specific number of distinct profiles. This is called a 

grouping problem, which aims at grouping individual members and profiles to a specified 

number of groups. It consists of two strongly linked subproblems. The first subproblem is to 

select a distinct number of profiles to use, and the second subproblem is to define which groups 

of members share the same profile. These two problems are shown in Figure 11. The top 

figure indicates the possible profiles, of which the colours beams represent a selection of 4 out 

of 25 problems. In the bottom figure, the members are grouped with corresponding colours. 

 

1. Which profiles to use

2. Which groups of members share 

the same profile

 
Figure 11 – Two subproblems of the grouping problem. These problems are strongly linked. 

 

In design practice, these problems are treated separately and by hand: an engineer first uses 

his engineering experience to solve the second subproblem. After doing so, he selects the 

best profile for those groups. The ability to do this optimally is strongly influenced by the 

experience of the engineer, as restricting the number of options in solving the first subquestion 

might rule out the possibility to find the optimal result. Furthermore, the complexity of this 

problem is immense; the number of possible options can be very high. 

Grouping methods are methods which can solve the grouping problem (Barbosa and 

Lemonge 2005; Walls and Elvin 2010a). Multiple methods have been proposed in literature, 

but as far as I am aware, no comparison is performed on all available methods. Furthermore, 

the computational effort of these methods should be part of this comparison, as some methods 

might be easy to apply but lead to a poor result, while other methods find a better result but 

require more computations. 

Besides the ability to limit the number of distinct profiles, grouping methods have an 

additional benefit: the mathematical complexity of the optimisation problem can be simplified, 

reducing the necessary computational effort. That is because grouping methods may reduce 

the search space, which is beneficial or even necessary for search methods to converge to a 

global minimum (Templeman, 1988; Krishnamoorthy, Prasanna Venkatesh and Sudarshan, 

2002; Toǧan and Daloǧlu, 2006; Mashayekhi et al., 2012). 

In most design problems, an elementary grouping is applied, which should not be confused 

with the grouping of the grouping problem. In elementary grouping, beams are grouped based 

on geometrical considerations, like symmetry, continuous beams, or architectural demands. 

These beams are no longer treated independently in the problem description. It should be 

noted that according to Stolpe (2010), a symmetric problem might have an asymmetric optimal 

result; symmetry should only be enforced if there is proof that the optimal design should be 

symmetric. 
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1.1.7 Implicit and explicit optimisation 

But why to apply grouping methods if normal cost optimisation anyway leads to a grouped 

solution? The answer is in the complication of defining a complete cost function and the 

possibility to reduce the mathematical complexity. Therefore, a distinction can be made 

between implicit cost, explicit cost and weight optimisation. Implicit optimisation does not 

include a grouping method, but explicit cost and weight optimisation do. 

 

Complex cost 

optimisation of 

ungrouped problem

Number of distinct profiles

c
o
s
ts

 

Figure 12 – Implicit cost 

optimisation. One optimum 

defines both costs and the 

number of distinct profiles. 

Implicit cost optimisation 

For implicit cost optimisation, no grouping method is applied, 

but as the cost function has a low value for solutions that have 

few distinct profiles the optimisation method finds the optimum 

number of groups and the corresponding design; the number 

of groups is not fixed but a result of the optimisation. 

As no grouping method is used to simplify the 

mathematical complexity, the search space is big. 

Furthermore, the unknown cost function has to be defined, but 

will probably contain many local optima. 

However, if these problems are solved, the global cost 

optimum can be identified in one analysis, represented by the 

single cross in Figure 12. However, this process is expected to 

be too complicated with the currently available optimisation 

methods, computational resources and cost functions. 

Furthermore, the questionable existence of the perfect cost 

function reduces the value of this solution. 

Moderately complex 

cost optimisation of 

grouped problem

Grouping method

Define number of 

groups

c
o
s
ts

Number of distinct profiles  

Figure 13 – Explicit cost 

optimisation. For each 

number of distinct profiles, a 

cost optimum is found. 

1BExplicit cost optimisation 

For explicit cost optimisation, a grouping method is applied. 

This grouping method reduces and simplifies the complex 

search space. This procedure is repeated for all possible 

number of groups, which are optimised for every number of 

groups separately. From the minimum value of all grouped 

optimisations, the global grouped optimum can be identified, 

as shown in Figure 13. 

Although the problem is simplified by a grouping method, 

a cost function is needed anyhow. Again, this cost function has 

a complex search space and is hard to define. 

Nevertheless, I expect the total computational effort to be 

reduced compared to implicit cost optimisation. The same 

global optimum as the implicit cost optimum can be found. As 

with implicit cost optimisation, the value of this solution is 

questionable. 
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Simple weight 

optimisation of 

grouped problem

Grouping method

Define number of 

groups

w
e

ig
h
t

Number of distinct profiles

 

Figure 14 – Weight 

optimisation. For each 

number of distinct profiles, a 

weight optimum is found. 

2BWeight optimisation 

Finally, weight optimisation does not include the costs of the 

structure. Therefore, a grouping method is required to reduce 

the diversity of the solution. The optimisation would converge 

in the solution with high diversity otherwise. By repeatedly 

applying a grouping method for all possible number of groups, 

a descending optimum weight curve is found, as shown in 

Figure 14. 

This optimisation problem is simple compared to implicit 

and explicit cost optimisation as it does not use a cost function 

and small subproblems are solved. 

However, the final graph gives no information on which 

number of groups is desired. An engineer now has to make 

that choice. Nonetheless, the graph provides useful 

information to make a fair trade-off between weight and 

diversity. 

 

 

 

 

Because of the simplification of the optimisation problem and the non-existence of the perfect 

cost function, I regard weight optimisation as most advantageous in the design of structures. 
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1.2 Research question 
The research question of this thesis is defined as: 

Which method for grouping can find the lightest and cheapest steel 

structure with minimal computational effort? 

1.3 Subquestions 
The main research question is solved by answering five subquestions: 

1. Which methods exist for grouping in steel frame optimisation in 

literature? 

 

2. How do the grouping methods perform theoretically on weight and cost 

optimisation? 

 

3. How do the grouping methods perform on benchmark problems for 

minimum weight? 

 

4. Do the currently available grouping methods perform well enough for 

application in research and practice? If not, can a new method be 

developed, outperforming current methods? 

 

5. How do grouping methods improve the minimum cost design of a real-

life case-study? 
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1.4 Scope 
The scope of this research project is set to the following six boundary conditions: 

 

• Steel truss and frame structures are considered with a fixed geometry. The analysis of 

a fixed geometry is representative; in many steel structures the geometry is fixed by 

demands like storey-height and fire safety.  

 

• Members are chosen from sets of standard steel profiles. This assumption is close to 

reality in which most steel constructions are built with standard available profiles, which 

allows for economical bulk production. The use of custom members is possible as well, 

but these are only used for special applications in which normal beams cannot be 

applied.  

 

• The structural analyses are evaluated on basic constraints which provide similar design 

constraints as the design codes. The expansion of constraint functions to these design 

codes is an elaborate task, more useful for industrial application than for science. 

 

• The structural design is on a global level; the detailed design, including the design of 

connections, is not considered. This approach is similar with the process in practice, in 

which the detailed design is made after a first global design. Usually, some margin is 

taken on the unity check of the global design to allow flexibility in the detailed. As this 

margin is case-specific, it is not taken into account in this study. 

 

• The structural analysis is a linear elastic analysis. This is chosen because nonlinear 

analyses are rarely applied in practice for the design of regular buildings, and are not 

required by most building codes. 

 

• Grouping methods are compared on their performance in weight optimisation 

problems. Because of the complication and variability in defining a generally valid cost 

function, the performance of each individual grouping methods on cost models is not 

evaluated. However, the applicability to cost optimisation is demonstrated for the best 

method. 

 

  



 

16 

1.5 Thesis outline 
This thesis answers the subquestions chapter by chapter. For sake of compactness, the new 

method, which was found in this study, is introduced together with existing methods. This 

allows comparing both the existing methods and the new method in one overview. 

Chapter 2 introduces the grouping methods present in literature, answering the first 

subquestion. Next, Chapter 3 presents the new method. Chapter 4 compares all methods on 

their theoretical performance, answering the second subquestion. Based on this comparison, 

a selection of the most promising methods is presented. This selection is analysed numerically 

in Chapter 5, answering the third subquestion. Both Chapter 4 and 5 evaluate the need and 

requirements of a new method, and the proposed new method is matched with these 

requirements, as part of the fourth subquestion. Chapter 6 treats the last subquestion on cost 

optimisation of a real-life case. Subsequently, Chapter 7 discusses various limitations of the 

research. Conclusively, Chapter 8 answers the main research question and Chapter 9 provides 

recommendations for further research and applications. In the Appendices, examples and 

detailed descriptions of elements of the research project are given.  
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2 Overview grouping methods 
Grouping methods are essential for effective optimisation of steel structures. These methods 

reduce the number of distinct profiles in the final solution of an optimisation problem. This 

chapter shows the grouping methods available in literature, thereby answering the first 

subquestion: 

1. Which methods exist for grouping in steel frame optimisation in 

literature? 

The methods for grouping present in literature are listed in Figure 15 and are explained in 

detail in this chapter. The grouping methods are arranged by the moment at which the groups 

are formed: before, during or after the optimisation process. This chapter describes each 

method in detail with an example. 

 

 
Figure 15 - Overview grouping methods which categorisation on moment at which the groups are 

formed. 

 
  

•Rules of thumb (ROT)

•Neural network (NN)

•Member length (ML)

•Profile selection (PS)

A priori based on the geometry

•Axial force (AF)

•Axial force and slenderness (AF+S)

•Axial force and weakening (AF+W)

A priori based on an additional 
analysis

•Cardinality constraints (CC)

•Additional constraints (AC)

•Multi-objective (MO)

During optimisation process

•Rounding to selection (RS)

•Ungrouped combinatorial search (UCS)

After ungrouped optimisation
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A reference case for all methods is the case in which no grouping is applied (NG). In this case 

the optimisation method finds the profiles for individual members, and all available profiles are 

available to do so; no profiles are selected, and no groups are assigned to the members. 

An example of no grouping is shown in Figure 16. It shows the 18-bar cantilever truss 

benchmark problem, of which its properties are attached in Appendix F. The colours in this 

figure represent different groups.  

Appendix C.1 shows how optimisation for an ungrouped problem converges to the optimal 

design. 

 

 
Figure 16 – Example NG with for each member the choice for all profiles. 
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2.1 A priori based on geometry 
This category incorporates all methods which involve grouping before the start of the 

optimisation problem without relying on an additional analysis; in these methods, the grouping 

is solely based on the geometry of the structure. An exception is the profile selection method. 

Nonetheless, this method is regarded as part of this category because it is applied before the 

optimisation starts, and it does not use a structural analysis. 

2.1.1 Rules of thumb 

A popular choice is to group members manually, based on experience, personal preferences 

and rules of thumb. By doing so, an engineer (implicitly) applies the rules of thumb method 

(ROT). Examples of rules of thumb for storey buildings are that interior beams of similar span 

and diagonals are each grouped per storey, and exterior columns are grouped over two 

adjacent storeys. For truss beams, top and bottom chords are grouped in the middle and outer 

bays, as well as verticals near the supports. These rules of thumb can be applied in regular 

structures like storey buildings and truss beams. However, for more complex structures, rules 

of thumb might not be applicable. 

In most steel frame optimisation problems in literature, this method has been used (Arora 

and Govil 1977; Templeman 1988; Chan 1992; Biedermann and Grierson 1996; Walls and 

Elvin 2010a, b). As it has been the most used method in practice as well, engineers are 

experienced with this procedure. However, for complex structures and multiple loading 

conditions this procedure can be complicated and requires professional engineering expertise. 

Therefore, this method does not guarantee an optimal result. 

An example of the rules of thumb method is shown in Figure 17. According to the rules of 

thumb, this method groups members for top and bottom chords, diagonals, and verticals.  

 

 
Figure 17 – Example ROT, grouping of diagonals, vertical, upper and lower truss. 
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2.1.2 Neural network 

The neural network method (NN), prescribed by Biedermann and Grierson (1996), aims at 

using artificial intelligence for the grouping process. Neural networks can model knowledge 

which is difficult to represent algorithmically. By doing so, the rules of thumb are not explicitly 

specified, but these follow from the neural network. The neural network is trained by the result 

of grouping using existing designs. Furthermore, an engineer can set up this neural network 

in many ways by defining the input variables and neural network lay-out. For example, the 

engineer can choose from multiple input variables: the relative location of members, 

irregularities, the number of members, and many more.  

A limitation of this procedure is that a neural network is only able to mimic the input 

knowledge on a new model. To do that properly, the new model should be similar to the training 

model. This desired similarity cannot guarantee an optimal result for the wide range of types 

of steel structures. Furthermore, this method heavily depends on the quality of the input 

knowledge; if poor grouped design are used for training the neural network, new design are 

poor as well. Finally, high expertise in neural network design is required to design and train 

these neural networks. 

For the example problem, the result of the neural network method depends on the input 

data on which it has been trained. If the input data would be the grouping of Figure 17, the 

result of this method has the same grouping. 

2.1.3 Member length 

Biedermann and Grierson (1995) proposed another method in which members with similar 

member lengths (ML) are grouped. As the span of members is only one of many variables 

influencing the grouping procedure, this approach cannot guarantee an optimal result. 

An example of the member length method is shown in Figure 18. As the diagonals are 

different in length than the other elements, these are grouped separately. Grouping to more 

than two groups is not possible in this case. 

 

 
Figure 18 - Example ML, grouping of members with similar length. 
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2.1.4 Profile Selection 

The profile selection method (PS) was proposed by Templeman (1988), and it is fundamentally 

different from other methods: instead of a selection of members to be grouped, an engineer 

selects a reduced set of profiles. The number of selected profiles is equal to the number of 

desired groups. The limitation of profiles reduces the search space and leaves the optimisation 

algorithm the task of finding the optimal steel profile of this reduced set for each design 

variable. 

However, no guidelines exist on selecting the optimum set of profiles. An optimal result is 

thus not guaranteed. 

For the example of the 18-bar structure, this method could select four possible profiles as 

shown in Figure 19. Now, the optimisation process must determine for each member which of 

these four profiles is optimal. The result has maximum four groups. 

 

 
Figure 19 – Example PS, selection of four possible profiles. 
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2.2 A priori based on an additional analysis 
This category consists of all methods which involve grouping before the start of the 

optimisation problem by relying on an additional analysis.  

2.2.1 Axial force 

Many authors have used the axial force method (AF) for truss structures (Krishnamoorthy et 

al. 2002; Toğan and Daloğlu 2006, 2008; Yang et al. 2016). In this method, members are 

grouped based on the axial force from one preliminary analysis. This preliminary structural 

analysis is performed with an initial design in which all members have the same cross-section. 

As long as all members have the same cross-section, the choice of this profile does not 

influence the force distribution. Based on this analysis, each member is placed in a group 

according to their axial force. For problems with multiple load cases, a choice must be made 

which internal forces are used. The maximum absolute force was used as the maximum value 

in this study. A suggestion for repeating this procedure after several iterations in the 

optimisation process was suggested by Krishnamoorthy et al. (2002). However, the paper 

stated that only very few members jump groups during this process, so this suggestion was 

not applied in this study. 

Once the axial force range is known, an automatic division can be performed by one of 

four procedures. This division finds a bandwidth of axial range for each group. These 

procedures are referred to as axial force method 1, 2, 3 and 4. A manual division is possible 

as well, but as this requires additional input, it was regarded as not suitable for optimisation in 

this study. The four procedures are as follows: 

 

1. The full range of internal forces is divided into equally spaced intervals. 

 

2. Both the compressive and tensile range of internal forces are divided into equally 

spaced intervals. The number of groups for the compressive and tensile range is 

linearly related to the absolute size of these two intervals.  

 

3. Both the compressive and tensile range of internal forces are divided into equally 

spaced intervals, and a separate group is created for an interval around zero internal 

force. The engineer must choose the size of this last interval. I took it as 10% of the 

total range in this study. The number of groups for the compressive and tensile range 

is dependent on the relative absolute size of these intervals. This procedure can be 

useful for structures in which some members are only required for stability reasons and 

do not carry much load. 

 

4. The range of absolute values of the element internal forces is divided into equally 

spaced intervals. This method allows for a grouping of both members in tension and 

compression in one group, as opposed to axial force method 1, 2 and 3. However, the 

absolute values of the axial force cannot represent the feasibility of both compressive 

and tensile members; members in compression show buckling behaviour, so the 

absolutes values cannot guarantee an optimal result. 
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Figure 20 shows the results of these procedures for the example problem. In each subfigure 

the internal axial forces for all members is shown. The red lines represent the division limits. 

The colours of the bars represent the grouping. The resulting geometric groups is shown as 

well. 

 

 

 

(a) - AF1 

 

 

 

(b) - AF2 

 

 

 

(c) - AF3 

 

 

(d) - AF4 

Figure 20 - Comparison axial force distribution and grouping procedures AF. 
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2.2.2 Axial force and slenderness 

The axial force and slenderness method (AF+S) is an adaption of the axial force method 

(Toğan and Daloğlu 2008; Yang et al. 2016). The difference is that for a compressive member, 

the slenderness ratio is used to determine member groups. As the slenderness is dependent 

on the design, its value is estimated before the optimisation starts. Therefore, this method 

takes the slenderness from the lightest possible profile which satisfies the buckling stress 

criterion with a given initial design for the other members. This estimated slenderness is 

dependent on this initial design for statically indeterminate structures because the force 

distribution is changed in case another initial design is chosen. 

The grouping is performed by one of two procedures 1 and 2, similar to the methods axial 

force method 2 and 3. The first procedure divides both the range of axial force and radius of 

gyration into separate groups. In the second procedure, a separate group is created for zero 

force members.  

Figure 21 shows the results of these procedures for the 18-bar truss problem. For 

members in tension and low internal force, the left vertical axis shows the internal axial force 

in blue.  For members in compression which are not part of the low internal force group, the 

right vertical axis shows the radius of gyration. The horizontal lines show the limits of division. 

 

 

 

(a) - AF+S1 

 

 

(b) - AF+S2 

 

Figure 21 - Comparison axial force and radius of gyration distribution, and grouping procedures AF+S. 
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2.2.3 Axial force and weakening 

Mashayekhi et al. (2016) used the axial force method, but propose to assign a slightly weaker 

profile after optimisation to the members which are loaded the least in a member group, 

thereby weakening the design (AF+W). The method assumes that these profiles are 

overdesigned in their initial group and the resulting design is still feasible after weakening. 

Thereby two specific percentages of the members in each group are treated separately: a 

small percentage of the least loaded beams is given a profile one steps weaker than the 

optimised solution, and another percentage is assigned a profile two steps weaker. The 

percentages and definition of weakness have to be defined by an engineer.  

This method is not applicable to the example problem because the desired number of 

groups is too low to add two groups for both the compressive and tensile range. Therefore, the 

example shown in Figure 22 adds only one subgroup per group. For both the nine compressive 

and nine tensile members separately, the two members which are loaded the least are grouped 

separately. 

 

 

 

Figure 22 - Axial force distribution AF+W and weakening of two least-loaded members in each group. 
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2.3 During the optimisation process 
The methods of this category vary both the optimal steel profiles as the distribution of groups 

during the optimisation process, as opposed to all former methods which vary only one of both.  

2.3.1 Cardinality constraints 

The method of cardinality constraints (CC) limits the search space to solution in which the 

number of groups is equal or smaller than the desired number of groups. To do so, the 

encoding of the problem is altered. This concept was claimed to be introduced by Barbosa and 

Lemonge (2008), but shows close resemblance with the research performed by Reitman and 

Hall (1990). 

The original encoding points directly each member to a profile type. The encoding of the 

problem is changed by introducing two parts, a type and pointer part. The type part selects the 

profiles to use for the number of desired groups, solving the first subproblem of the grouping 

problem introduced in Chapter 1.1.6 and shown in Figure 23. The pointer part assigns for every 

independent beam one of the groups of the type part, solving the second subproblem shown 

in Figure 23. 

 

1. Which profiles to use

2. Which groups of members share 

the same profile

 
Figure 23 – Two subproblems of the grouping problem 
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To illustrate both mappings, Figure 24a shows a standard encoding and Figure 24b shows the 

adapted encoding for the 18-bar example problem. The solution of both encodings is shown 

in Figure 24c. The first beam is represented by the first cell of the normal encoding and the 

first pointer cell of the CC encoding. In normal encoding it directly maps to the 6th (thin) profile, 

while in CC the pointer maps to the 1st (dark blue) group of the type part, which has the 6th 

(thin) profile. Similarly, the last beam is represented by the last yellow cell of the type part in 

the CC encoding. This value maps to the 4th (yellow) group of the type part, which is the 22nd 

(thick) profile, while the normal encoding points directly to the 22nd profile. In essence, the 

pointer part of the CC encoding varies the indices to groups or colours, while the type part 

varies the profile indices or thicknesses. 

 

    6 10 6 6 6 10 10 6 6 14 14 6 6 22 14 10 6 22 

(a) - Normal encoding 

Type part

 

Pointer part

 

6 10 14 22 1 2 1 1 1 2 2 1 1 3 3 1 1 4 3 2 1 4 

(b) – Encoding CC 

 

(c) – Grouping CC 

Figure 24 – Example normal encoding and encoding CC for same grouping. 

 

Although this method adapts the encoding so that the number of groups is maximum to the 

desired number of groups, this method can give a solution with less number of groups. This 

can happen in two ways. The first possibility is if two of the indices in the type part are equal, 

as shown in Figure 25a. The second possibility is that one of the group indices in the pointer 

part is missing, as it is in Figure 25b. 

 

6 10 22 22 1 2 1 1 1 2 2 1 1 3 3 1 1 4 3 2 1 4 

(a) – Double indices in type part  

6 10 14 22 1 2 1 1 1 2 2 1 1 4 4 1 1 4 4 2 1 4 

(b) – missing indices in pointer part 

 

(c) – Grouping to three groups 

Figure 25 – Encoding CC to less than the desired number of groups. 

 

Appendix C.2 shows how optimisation with the cardinality constraints method converges to the 

optimal design method for the 18-bar cantilever truss. 

CC has been applied often in literature by the research group of Barbosa and Lemonge 

(Barbosa and Lemonge, 2005; Barbosa, Lemonge and Borges, 2008; Liu et al., 2012), but I 

do not know applications of this method in practice. 



 

28 

2.3.2 Additional constraints 

Another option to limit the number of different profile sections during optimisation is by setting 

additional constraints (AC) in the standard design optimisation model. Barbosa et al. (2008) 

proposed this in the form of the following inequality constraint g(xi): 
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 (2.1) 

 

In which m is the number of distinct steel profiles in a design, which is a function of the design 

xi, and k is the desired number of profiles. This constraint is added to the standard design 

optimisation model shown in Chapter 1.1.3. As it introduces a maximum on the number of 

groups, a solution with less than the desired number of groups is feasible as well. An equality 

condition can also be applied, as was done by Kanno (2016) for truss topology optimisation. 

However, optimisation methods struggle with equality constraints (Langelaar and van Keulen 

2019), so only inequality constraints were applied in this study. 

In application of this method in literature, the final solution did not satisfy this constraint 

(Barbosa et al. 2008). However, this might be caused by the method of constraint handling.  

In this study, a constraint handling technique was used in which a feasible solution can be 

found more easily. Nonetheless, the optimisation method struggled with finding the optimum 

because of the large search space and small feasible part of it. In the preliminary phase of this 

research project, experiments showed that the optimisation method converges to design with 

a high weight. Furthermore, many different solutions were found when repeating the analysis.  
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2.3.3 Multi-objective 

One of the first published methods for grouping members changes the type of optimisation: 

from a minimum weight problem to a multi-objective problem (MO) for both minimum weight 

and minimum number of distinct profiles (Galante and Oñate 1996). Shea et al. (1997) used 

this method in combined size and shape optimisation of truss structures. For application of a 

multi-objective optimisation problem, a weighted objective function f is proposed (Arora 2017): 
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In which λ1 and λ2 are weight parameters which are adjusted to control the number of groups 

in the final design indirectly. xi are the design variables, which enter the objective function in 

the weight of the design 
=


1

n

i i i

i

A L  and the number of profiles in the design m. The weight and 

number of groups are normalised to have values between 0 and 1. Therefore, WNG is the 

minimum weight of the ungrouped result, and Wmax is the weight of the structure if the 

heaviest profile is chosen for all profiles. The minimum number of profiles is 1. Nvars is the 

maximum number of profiles, which is equal to the number of design variables. This objective 

function replaces the original objective function shown in Chapter 1.1.3. 

By using the weighted objective function, the number of member groups is indirectly 

altered in this method and cannot be specified a priori. To find a specific number of groups, 

the optimisation must run multiple times until the desired number of groups is found. Instead 

of using a weighted objective function as equation (2.2), other methods are available as well. 

These other methods were not treated in this study.  

Multi-objective problems do not have a unique global solution. Instead, a set of solutions 

is found, of which each solution is Pareto optimal. Pareto optimality is defined for the solution 

set for which no other design exist which satisfies all the objectives better. The Pareto optimal 

set is typically plotted in the criterion space, in which the axes represent objective functions 

(Arora 2017). In theory, the Pareto set shows for all number of groups the grouped optimum. 

However, the grouped optima are hard to find in practice. 
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As an example, this method was applied in a preliminary phase of this study for the 18-bar 

cantilever truss. In 40 optimisation analyses, the multi-objective problem was solved. In these 

analyses, the weight factors were varied and 40 different solutions were found. Figure 26 

shows the criterion space of these results. The horizontal axis shows the number of groups in 

the final solution and the vertical axis the corresponding weight. The colouring of the dots 

shows the corresponding weight factors. It should be noted that the weight parameters do not 

guarantee a specific number of groups in the final solution. The blue line represents the 

approximation of the Pareto optimal set.  

 

 
Figure 26 - Example result MO in criterion space for different weight values. 

 

From these 40 solutions, 20 solution contained four groups. For these solutions, the method 

gave diverse results in both the distribution of groups and weights of the solutions as well. 

Comparison of these results with results from other methods showed that the global optimum 

for four groups was not part of these solutions. The 20 results which contain four groups in 

their final solution are shown in Figure 27. In this figure, all 20 solutions for each beam are 

plotted as part of their length. The thickness of a beam segment represents the unit weight of 

the profile. The colour of the beam segment represents the group. 

 

 
Figure 27 – Example MO, 20 diverse solutions plotted as part of each beam’s length. 

 

As a result of altering the objective function, this method converts the explicit optimisation 

problem into an implicit optimisation problem. As stated in Chapter 1.1.7 and demonstrated by 

the example, this leads to a highly complex optimisation problem. Furthermore, the best result 

per group might not be the grouped optimum.  
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2.4 After ungrouped optimisation 
The methods of this category group members based on the ungrouped optimal result. This 

need comes at a cost, as finding the ungrouped optimum requires an additional optimisation 

analysis. 

2.4.1 Rounding to selection 

This method performs grouping according to their cross-sectional area or weight per unit length 

of the ungrouped optimal result, by rounding this result to a selection of profiles (RS). However, 

no guidelines are available on the division of the groups and whether profiles are rounded up 

or down. Templeman (1988) proposed a procedure in which on the result of continuous 

ungrouped optimisation a local search is performed. This local search should evaluate local 

rounding options to find the optimal rounding. Still, the definition of local and rounding is not 

generalised. Provatidis and Venetsanos (2006) grouped members based on their mean value 

and standard deviation of their unit weight per length. This procedure requires a user-defined 

tolerance. Adeli and Sarma (2006) proposed a similar procedure using a fuzzy discrete multi-

criteria cost optimisation model. 

For all implementation of this method, the result of this is strongly dependent on the user 

input and the optimal grouped structure might not be similar to the ungrouped optimum design. 

Consequently, rounding of the ungrouped design does not guarantee to find the grouped 

optimum. 

An example of the solution of the cross-section area for the ungrouped problem is shown 

in Figure 28. No grouping is shown for this example as no decisive guidelines are available to 

do so. 

 

 

 
Figure 28 - Solution cross-sectional area ungrouped solution, no grouping is shown as no decisive 

guidelines are available to do so. 
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2.4.2 Ungrouped combinatorial search 

The final method which has been proposed in literature is the ungrouped combinatorial search 

(UCS) method (Walls and Elvin 2010a). This method uses a combinatorial search for grouping 

of the ungrouped result of the minimum weight problem. The combinatorial search evaluates 

all possible grouping obeying certain assumptions. Furthermore, the design from the 

combinatorial search is in general overdesigned and forces may be redistributed due to the 

grouping. Therefore, the structure is optimised once more in an optimisation in which the 

members are grouped. 

Combinatorial search 

The combinatorial search groups members according to their weight per unit length, and finds 

the optimum weight limits for each group. This technique is taken from the optimum 

standardisation problem, also known as catalogue optimisation or location-allocation problems 

(Reitman 1989; Reitman and Brent Hall 1990).  

The combinatorial search evaluates the weight of a restricted set of combinations based 

on the weight per unit length of the members of the ungrouped optimum result. This restricted 

set included all possible combinations with as many limit profiles as the desired number of 

groups. In these combinations the profiles are replaced by the nearest heavier limit profile. 

Subsequently, the grouping of the combination with the lowest objective function is regarded 

as optimal. Following this procedure, the number of combinations to be evaluated for the 

combinatorial search NCS is: 
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N

k k k
 (2.3) 

 

In which m is the number of profiles in the design and k the number of groups. This formula 

originates from the binomial coefficient 
 
 
 

m

k
. The binomial coefficient gives the number of 

possibilities for selecting m items from a set of k items without repetition. In the combinatorial 

search, profiles are only allowed to be made heavier. Therefore, the heaviest profile represents 

the upper limit for first group, reducing both k and m by one. Subsequently, k - 1 profiles must 

be selected out of m - 1 profiles, representing the upper limit for the remaining m - k profiles. 

The algorithm for defining the resulting grouping is shown in Appendix A. The real number of 

possible combinations, without the restriction of increase the weight to the nearest limit profile, 

is more: 
   

=   
   

exact

m n
N

k k
, which is explained in detail in Chapter 4.1. 

In the case of statically determinate structure without displacement constraints, the upper 

limits are the optimal values for all the beams in that group. That is because the forces are not 

redistributed, and the applied constraints are always met with a heavier beam. In that case, no 

grouped optimisation in the second step is needed. 
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Example bridge problem 

As the standardisation problems were studied extensively in the former USSR, an illustrative 

example of the combinatorial search is the construction of bridges in the former USSR. Imagine 

seven bridges to be built. These bridges have to be of minimum length: 10, 30, 40, 55, 100, 

120 and 150m. The USSR-governments would like to build all necessary bridges as cheap as 

possible. However, the government has resources to design and build only four distinct 

bridges. The combinatorial search solves this problem. It groups the 7 bridges to 4 distinct 

bridges with as little extra bridge length as possible. In this case, bridges are allowed to be 

lengthened, but shortening is not permitted. 

The combinatorial search reduces the number of possible grouping reduces from 

   
= =  
   

7 7
12250

4 4
exactN  to 

− 
= = 

− 

7 1
20

4 1
CSN , when obeying the principle of ‘a bigger bridge 

satisfies’. Table 1 shows these 20 combinations. The last row shows the added bridge length 

for each combination. The biggest length in each group can be used for all bridges in that 

group. Combination 5 with bridge lengths of 150, 120, 55 and 40 proves to be optimal in this 

case, as only 50 m of unnecessary bridge length has to be constructed. 

 

Table 1 – Resulting bridge length of all combinations in the combinatorial search for the USSR-bridges 

example problem. The bottom row shows the total added length per combination, and the shaded 

column shows the optimum grouping. 
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Assumptions 

In the USSR-bridge problem, the length of one bridge does not influence the length required 

of another bridge. However, in structural design problems, the force distribution is changed by 

a modification in the design of statically indeterminate structures. Therefore, if one beam is 

made bigger, another one could be made smaller than initially assumed. This characteristic 

makes the problem of grouping in structures a unique standardisation problem. Nonetheless, 

the combinatorial search of the standardisation problem is used as an approximation. 

To do this, instead of the assumption ‘a bigger bridge satisfies’, three other assumptions 

are made: 

 

1. Members with a similar mass per unit length have comparable properties 

 

2. A heavier member than the ungrouped solution will always satisfy the design 

constraints 

 

3. A lighter member than the ungrouped solution will never satisfy the design constraints 

 

These assumptions are only generally valid for statically determinate structures without 

displacement constraints, which prevents this method of finding the true global grouped 

optimum in other structures. In other structures, a force redistribution might disprove the 

second and third assumption. If a profile database is used consisting of multiple different kind 

of profiles, like both I-shaped and angle-shaped profiles, the first assumption might not be true. 

In practice, it could be the case that multiple parts of structures are grouped separately in 

a subset; for example, the grouping of columns and beams to other profile types. In that case, 

each of the subsets is grouped separately with the combinatorial search and it assumed the 

optimum is the sum of the subset’s optima. This is not necessarily true, as each alteration of 

the design of one of the subsets changes the force distribution in the total structure. 
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Example steel structure 

A graphical representation provides further insight into the procedure of the combinatorial 

search. Figure 29a shows the results of the combinatorial search on the ungrouped 18-bar 

truss structure. The mass per unit length of the ungrouped solution is plotted for all beams. 

The combinatorial search finds a grouping of this ungrouped solution, shown by the height of 

the red lines, for which the added total mass is minimal. The added mass is equal to the white 

area, between the ungrouped solution and the red limits, multiplied with the corresponding 

member length. The resulting groups are shown with coloured bars. 

 

 

 

 

 

(a) – General case (b) – Statically determinate structures without 

displacement constraints 

Figure 29 - Example weight distribution and grouping ungrouped result UCS  

 

The 18-bar cantilever truss is a statically determinate structure without displacement 

constraint. In this case, the force distribution does not change by altering the profiles, and 

assumption two and three are guaranteed to be true. Therefore, the upper limits represent the 

optimal weight of all beams in that group. Therefore, the result can directly be obtained, and 

no grouped optimisation is needed. The result is shown in Figure 29b. 

As a further explanation, an animated example of the combinatorial search is shown in 

Appendix C.4. 
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2.5 Conclusion 
This chapter has presented the twelve grouping methods proposed in literature, thereby 

answering the first subquestion: 

1. Which methods exist for grouping in steel frame optimisation? 

The grouping methods which have been proposed in literature are: 

 

1. Rules of thumb (ROT), in which an engineer manually groups members. 

 

2. Neural network (NN), in which the engineer’s rules of thumb are automatised in a neural 

network. 

 

3. Member length (ML), which groups members based on their length. 

 

4. Profile selection (PS), in which an engineer selects a number of profiles, equal to the 

desired number of groups. 

 

5. Axial force (AF), which groups members based on their axial force. 

 

6. Axial force and slenderness (AF+S), which is similar to axial force, but compressive 

members are grouped on slenderness 

 

7. Axial force and weakening (AF+W), which is similar as axial force, but it treats the least-

loaded members of a group as a separate group. 

 

8. Cardinality constraints (CC), which reduces the search space to all possible grouping 

in which the number of groups is equal or less than desired. 

 

9. Additional constraints (AC), which adds an inequality constraint on the number of 

groups in the constraint function. 

 

10. Multi-objective (MO), which adds the number of groups in the objective function. 

 

11. Rounding to selection (RS), which rounds the result of an ungrouped optimisation to a 

result with the desired number of groups. 

 

12. Ungrouped combinatorial search (UCS), which find the lightest combination of the 

ungrouped solution, in which members can only be combined with a member of equal 

or heavier weight. 

 

These methods differ in the amount of user input needed and generality to different problems. 
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User input 

User input is needed from an engineer when choosing group layout, number of groups, group 

bandwidth, initial design, reduction of profile library and on additional calculations. The group 

layout is the choice of which members should share the same profile. The group bandwidth 

includes the choice for one of the procedures proposed for AF and AF+S, or a manual selection 

of the normal force bandwidth per group. Table 2 shows the input required in the grouping 

process for all methods. 

The methods which include grouping before the optimisation process starts, require more 

input. For the neural networks and rounding to selection method, the additional calculations 

demand high expertise. The additional constraints and multi-objective methods require 

adaptation of the optimisation problem. This requires knowledge and choices on how these 

adaptations can be made, for which many options are possible.  
 

Table 2 - Comparison user input 

Methods Group 

Layout 

Number 

of 

groups 

Reduction 

of profile 

library 

Group 

bandwidth 

Initial 

design 

Additional 

calculations 

A priori 

based on 

geometry 

ROT Yes Yes No No No  

NN Yes, in 

training 

phase 

Yes, in 

training 

phase 

No No No Neural 

network 

design 

ML No Yes No Yes No  

PS No Yes Yes No No  

A priori 

based on an 

additional 

analysis 

AF No Yes No Yes No 

influence 

 

AF+S No Yes No Yes Yes  

AF+W No Yes No Yes No 

influence 

 

During 

optimisation 

process 

CC No Yes No No No  

AC No Yes No No No Constraint 

handling 

technique 

MO No No No No No Multi-

objective 

optimisation 

technique 

After 

ungrouped 

optimisation 

RS No Yes Yes Yes No Rounding of 

ungrouped 

solution 

UCS No Yes No No No  
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Generality 

Not all methods are applicable to all types of structures: statically determinate, truss and frame 

structures. Besides the structure-type, some methods allow optimisation to a cost function, 

while others can only be used for weight optimisation. For cost optimisation, methods are 

regarded as applicable if they adapt their grouping to the cost function. Table 3 shows the input 

required in the grouping process for all methods. 

All methods can be applied to statically determinate and truss structures. Furthermore, for 

statically determinate structures without displacements constraints, the UCS method simplifies 

because the grouped optimisation can be dropped. 

The methods which rely on an axial force distribution are not applicable to frame structures. 

As in frame structures bending moments and shear forces can be dominant in the design, 

evaluation of only axial force is not enough. 

CC, AC, MO and UCS are applicable to both cost and weight objective function as these 

methods evaluate the objective function in the grouping process. The objective function can 

be both a weight and cost function. However, the assumptions in UCS are not always satisfied 

in cost optimisation and the effectiveness of this method depends on the characteristics of a 

specific cost function. The methods ROT and NN rely on the experience of the engineering to 

consider cost considerations. The other methods do not include costs in their grouping 

process. 

 

Table 3 - Comparison applicability 

Methods Statically 

determinate 

structures 

without 

displacement 

constraints 

Truss 

structures 

Frame 

structures 

Weight 

optimisation 

Cost 

optimisation 

A priori 

based on 

geometry 

ROT Yes Yes Yes Yes Yes 

NN Yes Yes Yes Yes Yes 

ML Yes Yes Yes Yes No 

PS Yes Yes Yes Yes No 

A priori 

based on an 

additional 

analysis 

AF Yes Yes No Yes No 

AF+S Yes Yes No Yes No 

AF+W Yes Yes No Yes No 

During 

optimisation 

process 

CC Yes Yes Yes Yes Yes 

AC Yes Yes Yes Yes Yes 

MO Yes Yes Yes Yes Yes 

After 

ungrouped 

optimisation 

RS Yes Yes Yes Yes No 

UCS Yes, no 

grouped 

optimisation 

needed 

Yes Yes Yes Yes 
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3 New grouping method 
In this chapter, a new grouping method is introduced: the fully stressed combinatorial search 

(FSCS). This method is most familiar with UCS, as it groups members based on their weight 

per unit length. However, this grouping is repeated multiple times in FSCS and is based on the 

fully stressed design instead of the ungrouped optimum. The loop repeats until the grouping 

of the combinatorial search is unchanged, or the solution diverges. This framework is shown 

in Figure 30. 

 

Estimate initial design

Fully stressed design

Is grouping unchanged?

Grouped optimisation

Stop
yes

Combinatorial search

Is converged solution 

worse than previous?
Stop

yes

no

no
 

Figure 30 – Framework FSCS, grouping is based on weight per unit length of the fully stressed design, 

of which the limit values are found in a combinatorial search. The reference design of the fully 

stressed design changes during iterations. 

 
The individual components of FSCS are prescribed in this chapter. An in-depth example of the 

new method on the 117-bar benchmark problem is given in Appendix A. 
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3.1 Fully stressed design 
The fully stressed structure is the design with for each member individually the lowest weight, 

while still complying with the design constraints. The procedure of the fully stressed design is 

the same in cost and weight optimisation; the objective function has no influence on the fully 

stressed design. It should be noted that the fully stressed design has a high diversity of profiles, 

and the solution is not suitable as a final design because of its dependency on a reference 

design.  

The fully stressed design is found by performing maximum m∙n constraint evaluations, with 

m the number of independent beams and n the number of profiles. In each evaluation, one 

member is changed, starting from the lightest profile, while keeping the other members equal 

to an initial reference design. As soon as the constraint functions are met, the analysis 

continues with the next beam. The fully stressed design takes the lightest feasible result per 

beam and combines these into one design.  

For statically determinate structures, the force distribution does not change by altering the 

design. Therefore, only one finite element evaluation for all m∙n constraint evaluations is 

needed. However, the displacements do vary by a change in the design and this requires a 

new finite element calculation for problems with displacement constraints, just like for statically 

indeterminate structures. 

An example is shown in Figure 31a, b and c. The figures show the design in blue in which 

the thickness of members represent the cross-sectional areas. In this figure, the green beam 

is analysed. It shows the reference design and two options. For each option, the thickness of 

the green beam is changed, while keeping the rest of the structure equal to the reference 

design. As the beam in option 1 is lighter, this option is preferred, but only if it does not violate 

the stress and displacement constraints. This procedure is repeated for all beams. 

 

 

(a) - Reference design 

 

  

(b) - Option 1 (c) - Option 2 

Figure 31 – Example fully stressed design, repeatedly one member of reference designs is altered, for 

which the lightest feasible member is preferred. 

 

As a further explanation, an animated example of the fully stressed design is shown in 

Appendix C.1. 
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As the reference design represents all, except for one, beams in each structural analysis of 

the fully stressed design, it has a high influence on the force distribution and global 

displacement. If the reference design is infeasible, no fully stressed design can be found. Then, 

another reference design must be chosen. A safe choice is to select the heaviest profiles for 

all members. In that case, constraints are met. 

An example of the influence of the reference design is shown in Figure 32a and b. These 

figures show two possible reference design of the 18-bar cantilever truss. If for all beams a 

heavy profile is chosen as a reference design, the structure deforms little as shown in Figure 

32a. On the contrary, the light reference design shown in Figure 32b gives high global 

displacements. For the fully stressed design based on the second reference design, the 

displacements are strongly governed by the reference design. Therefore, the solution of the 

fully stressed design is different for both cases. 

 

 

 

(a) - Heavy reference design (b) - Light reference design 

Figure 32 – Example influence reference design. The global displacement is strongly influences by the 

references design, thereby influence the result of the fully stressed design. 

 

In the FSCS method, the reference design changes during the repetitions of the framework: in 

the first iteration, the reference design is set manually, and in the following iterations, the 

reference design is equal to the result of the grouped optimisation. The influence of the initial 

manual reference design was investigated in a preliminary phase of the study. This analysis 

showed that no universal guideline can be given on which initial design leads to the optimal 

grouped structure. Therefore, three procedures were proposed, FSCS1, FSCS2 and FSCS3: 

 

1. The first procedure is only applicable to statically determinate structures without 

displacement constraints, as the choice of initial design does not influence these 

problems.  

 

2. In the second procedure, the heaviest profiles are chosen as an initial design. This 

initial design will always be feasible. 

 

3. For the third procedure, the choice for the initial design is up to the engineer. This might 

result in a more optimal design than FSCS2. In this study, all feasible uniform initial 

designs were tried, requiring multiple analyses. 

 

Of these options, FSCS1 should be applied if the problem is a statically determinate structure 

without displacement constraints. FSCS2 and FSCS3 can be applied to other problems. FSCS3 

might find a better solution than FSCS2, but it requires than an engineer specifies an initial 

design. 
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3.2 Combinatorial search 
The combinatorial search takes the result of the fully stressed design and groups the members 

based on their unit weight per length, based on the procedure shown in Chapter 2.4.2. The 

result of the combinatorial search is shown in Figure 33a. The mass per unit length of the fully 

stressed design is plotted for all beams. The red lines represent the unit weight limits for each 

group. As the fully stressed design is the same as the ungrouped optimum for the this static 

determinate structures without displacement constraints, the result is identical to UCS. 

 

 

 

 

 

(a) – General case (b) – Statically determinate structures without 

displacement constraints 

Figure 33 - Example weight distribution fully stressed design FSCS.   

 

As a further explanation, an animated example of the combinatorial search is shown in 

Appendix C.4. 

In the case of FSCS1, the upper limits are the optimum values for all the beams in that 

group as shown in Figure 33b. In that case no optimisation is needed as the combinatorial 

search solves the entire grouping problem; both a selection of profiles is made, and the 

members are grouped. As a result, the framework reduces to the framework shown in Figure 

34. 

Estimate initial design

Fully stressed design

Combinatorial search

 
Figure 34 – Framework FSCS1 for static determinate structures without displacement constraints 
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The combinatorial search adopted in FSCS is slightly changed with respect to the 

combinatorial search in UCS to allow grouping in cost optimisation. For weight optimisation, 

the approach of the combinatorial search in both methods is the same. 

The first change for cost optimisation is that the combinations are not evaluated on total 

weight, but on total costs. However, the order of beams is unchanged and is based on unit 

weight per length. This implies the assumption that a heavier member has higher costs. The 

feasibility of this assumption depends on the cost function.  

The second change is that additional combinations are added. This is strongly dependent 

on the cost function which is used. More details on which combinations should be added are 

provided in Chapter 6.2, in which an example is given with a cost function from literature. 

3.3 Grouped optimisation 
The grouping of members which follows from the combinatorial search is taken as input for the 

optimisation. Because the number of independent variables is reduced, the optimisation is 

easy to perform. It would also be possible to take the upper limits from the combinatorial 

search, and use these profiles in a similar way as the PS method. 

For the 18-bar cantilever truss problem, the number of independent variables reduces from 

18 to 4. The optimisation method now finds the optimal profiles for these 4 groups. It should 

be noted that finding the global optimum is not necessary as the grouped optimisation does 

only supply an estimation of a proper reference design for the fully stressed design. Still, at the 

final iteration, the global optimum should be found. 

Figure 35 shows how the grouped optimisation assigns profiles to each group of members 

for the 18-bar cantilever truss structure.  

 

Grouped optimisation

 
Figure 35 – Grouped optimisation on result combinatorial search in which for each member group the 

optimal profiles are searched for. 
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3.4 Loop on reference design 
The result of the grouped optimisation is optimal for the grouping provided by the combinatorial 

search. However, that combinatorial search is based on the fully stressed design which uses 

an estimated reference design. To reduce the impact of the initial estimation, the process is 

repeated with the result of the grouped optimisation as a reference design. In most cases, this 

results in a more optimal design. An example of how the method converges to an optimum is 

given in Appendix A. 

The loop steers the design in a certain direction of handling the global stiffness and global 

distribution of forces. Because this is an evolutionary process, the optimal way of handling the 

global behaviour of the structures might not be found; as the global constraints and force 

distribution are most influenced by the reference design of the fully stressed design, the 

change of individual members might not lead to a better global behaviour. The ability to solve 

problems with global constraints is analysed in Chapter 5. 

The convergence criteria in the FSCS method, not to be confused with the convergence 

criteria of an optimisation method, dictate when to stop the analysis. In each iteration, starting 

from the second iteration, two convergence criteria are checked: 

 

1. The grouping which results from the combinatorial search is unchanged compared to 

the previous iteration. If the grouping is the same, the grouped optimisation problem 

and its optimum are unchanged as well. In that case, the grouped result of the previous 

optimisation is taken as the grouped optimum. 

 

2. The result of the grouped optimisation has a higher weight or cost than the previous 

optimum result. In that case, the result of the previous iteration is regarded as the 

optimum result. This divergence arises from a grouping which is less effective than a 

previous grouping in handling the global behaviour of the structure. 
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3.5 Conclusion 
This chapter has presented the new grouping method: the fully stressed combinatorial search 

(FSCS). In this method, the grouping is found by a combinatorial search, which evaluates the 

estimated weight or costs of a restricted set of groupings based on the weight per unit length 

of the members of a fully stressed design. An optimisation on a reduced search space finds 

the corresponding best profiles. A loop is introduced to alter the reference design of the fully 

stressed design, allowing convergence to the optimal structure. 

Three procedures are possible: FSCS1, FSCS1 and FSCS3. For statically determinate 

structures without displacement constraints FSCS1 should be applied, which avoids the use of 

a computationally demanding optimisation method. For other structures FSCS2 is needed to 

find an optimal result, while FSCS3 might find an even better result, depending on its additional 

user input. The added value of FSCS3 is investigated with numerical experiments in Chapter 

5. 

Few user input is needed compared to other methods, as shown in Table 4: the number 

of groups is required for all procedures and a choice on the initial design for FSCS3. 

 

Table 4 – Comparison user input FSCS 

Methods Group 

Layout 

Number of 

groups 

Profile 

library 

Group 

bandwidth 

Initial 

design 

Additional 

calculations 

FSCS1 No Yes No No No 

influence 

n/a 

FSCS2 No Yes No No No n/a 

FSCS3 No Yes No No Yes n/a 

 

This method is widely applicable to all considered problem types: statically determinate and 

statically indeterminate structures, truss and frame structures, and weight and cost 

optimisation. This is shown in Table 5. For statically determinate structures without 

displacement constraints, FSCS1 guarantees to find the global grouped optimum without the 

need for optimisation. For other structures, this guarantee is not given. 

 

Table 5 – Comparison user input FSCS 

Methods Statically 

determinate 

structures 

without 

displacement 

constraints 

Truss 

structures 

Frame 

structures 

Weight 

optimisation 

Cost 

optimisation 

FSCS1 Yes No No Yes Yes 

FSCS2 Yes, but apply 

FSCS1 

Yes Yes Yes Yes 

FSCS3 Yes, but apply 

FSCS1 

Yes Yes Yes Yes 

 

For problems with displacement constraints or static indeterminate structures, this method 

might not be able to find an proper grouping, which is investigated in the numerical experiments 

of Chapter 5. 
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4 Theoretical comparison  
In this chapter, the grouping methods listed in Chapter 2, together with the new method 

proposed in Chapter 3, are compared on their theoretical performance. Although the new 

method is a result of this comparison, this chapter includes it as well to provide a complete 

overview. With this comparison, the second and fourth subquestion are treated:  

2. How do the grouping methods perform theoretically on weight and cost 

optimisation? 

 

4. Do the currently available grouping methods perform well enough for 

application in research and practice? If not, can a new method be 

developed, outperforming current methods? 

This chapter evaluates the grouping methods on their effect on the efficiency and accuracy of 

optimisation. This includes the size and complexity of the search space, potential exclusion of 

the global grouped optimum, and the computational effort of additional calculations. Based on 

this comparison, a selection of the most promising grouping methods is made. Chapter 5 

compares this selection in numerical experiments. 
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4.1 Size search space 
The search space of the problem is altered by the grouping. This influences the optimisation 

process; the smaller the search space, the faster the optimisation process proceeds. 

Furthermore, for a large search space, an optimisation algorithm may not be able to find the 

global optimum (Templeman 1988). The perfect method limits the search space to speed up 

optimisation.  

For methods in which optimisation is performed on the ungrouped problem, each of the n 

beams has m available profiles, leading to a total search space of mn options. If the beams are 

grouped to k groups, the number of options for each beam group is the same, but the total 

number of independent beams reduces. Therefore, the search space reduces to mk options. 

For the PS method, the number of available profiles for each member reduces to the number 

of groups, thus leading to the search space of kn options. The method CC, which groups both 

beams and profiles, has for each group m available profiles available. Simultaneously, each 

beam can be part of one of the k groups, leading to a search space of mk ∙ kn options. 

For all methods, the search space includes solutions which have less than the k groups. 

Therefore, all methods, including CC, might converge to a solution which does not have the 

desired number of groups. The actual number of solutions for a certain number of groups is 

Nexact: 
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Furthermore, 
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Table 6 shows how the grouping methods influence the size of the search space for each of 

the eight benchmark problems. Details of the benchmark problems can be found in Appendix 

E. 

 

Table 6 – Search space benchmark problems in powers of 10 

 Ungrouped Grouped 

beams 

 

Grouped 

profiles 

Grouped 

beams and 

profiles 

Grouped 

optimum 

 

NG, 

RS (step 1) 

UCS (step 1), 

total AC, 

total MO, 

ROT, NN, ML, 

AF, AF+S, 

AF+W, FSCS 

UCS (step 2) 

PS CC  

feasible AC  

desired MO 

Theoretical mn mk kn mk ∙ kn    
  

   

m n

k k
 

18-bar truss 25 5 10 16 13 

65-bar truss 53 6 19 26 23 

72-bar truss 22 5 9 15 12 

112-bar truss 26 4 7 12 10 

160-bar truss 61 9 29 39 33 

15-bar frame 14 4 1 6 6 

117-bar 

frame 

42 7 17 25 21 

147-bar 

frame 

50 8 28 36 30 

 

Table 6 shows that the ungrouped search space is much bigger than the grouped search space 

for the benchmark problems, while PS and CC result in a search space size in between those 

two. However, if the number of groups is high, the size of the search space of CC might exceed 

the ungrouped search space. That is the case for 

 
  

 


log( )
W

log( )

m m
n

n
k

m
, with W the Lambert-

W-function (Wolfram Research 2020). For the 18-bar truss, this is for k > 8. Nonetheless, it is 

assumed a low number of groups is desired in the final design. In that case, the search space 

of CC is smaller than the ungrouped search space. The search space of PS has a maximum 

size equal to the ungrouped search space when as much profiles are selected as there are 

members in the structure, that is when k is equal to m.  

It should be noted that for AC, only a small part of the total search space is feasible; a 

large portion of the search space of AC has more than the maximum number of groups. 

For MO, the entire ungrouped search space is explored by the optimisation method, but 

only solution which have the specified number of groups are desired. As with AC, this leads to 

evaluating many undesired options. 

Furthermore, for UCS, the search space of the first step is very high, while the second step 

has a reduced search space. The same holds for the first step of RS. The second step of RS 

is not shown as no general guideline is given for this step. 

 
  



 

49 

As an example of the size of the search spaces, Figure 36 shows the relative size of the search 

spaces when applying grouping methods. The areas of the circles represent the size of the 

search space. However, the picture is not to scale with the values shown in Table 6. If, for the 

18-bar truss problem, the biggest circle would be the size of the earth’s surface, the CC-circle 

would be the size of TU Delft Campus, the blue shaded circle would be the size of two tennis 

courts, the PS-circle would be the size of 8 A4-papers, and each of the smallest circles would 

be the size of the head of a pin. The optimum solution has the size of the cross-sectional area 

of a corona virus. For the 160-bar truss problem, the search space of the ungrouped problem 

exceeds the surface area of the observable universe if the same coronavirus represents the 

optimal solution. 

In Figure 36, FSCS is shown as multiple circles because it performs multiple grouped 

optimisations. Futhermore, the full, feasible and desired search spaces of AC and MO are 

shown as well. Similarly, for UCS the first and second step are indicated separately. The 

search space of ROT and NN might partly overlap, as NN is an automatisation of ROT. Other 

search space might overlap as well, depending on the problem. 

 

Desired MO

ROT

NG, AC, MO, 

RS (step 1),

UCS (step 1)

CC

Feasible AC

NN

ML

AF

AF+S

PS

UCS

(step 2)

AF+W

FSCS

 
Figure 36 – Relative size and relation search space, blue shading shows potential location of grouped 

optimum. 
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4.2 Exclusion global optimum 
By altering the search space, grouping methods not only alter its size, but they might exclude 

the global grouped optimum in doing so. In the case of exclusion of the global optimum, the 

optimisation method has no other possibility than to converge to a suboptimal result. However, 

a suboptimal result might be close to the optimal result, as is investigated in the numerical 

experiments of Chapter 5. Therefore, the ideal grouping method should include the global or 

a near-global optimum in its search space. 

Figure 36 not only shows the relative size, but also the relation of the search spaces of all 

grouping methods. The global grouped optimum is located somewhere in the blue shaded 

circle. Each method is represented by a circle to show its potential of finding the grouped 

optimum. 

AC and MO have a search space which includes the global optimum, but their search 

space is large. Similarly, the search space of CC guarantees to include the global grouped 

optimum. However, this search space can exceed the ungrouped search space. 

The first step of RS and UCS does not search for the grouped optimum directly, but first 

for the ungrouped solution which might be located anywhere in in the ungrouped search space. 

Subsequently, this result is adapted to find the grouped solution. However, the ungrouped 

solution might not be similar to the grouped optimum, so the second step of these methods 

does not guarantee to include the global grouped optimum. 

All other grouping methods search a small portion of the search space and might exclude 

the global grouped optimum in doing so. FSCS iteratively searches a small portion of the blue 

shaded area, which increases the possibility of including the global optimum. 

As it has been shown, all grouping methods might lead to a search space in which some 

solution, which can be their local optima, are not part of the blue shaded area; these solutions 

have less groups than specified. However, in weight optimisation, more distinct profiles are in 

general beneficial for the weight, which increases the chance of finding a solution in the blue 

shaded area. 

It is not known beforehand whether the resulting grouped solutions approach the real 

grouped optimum. Neither is it known whether the number of groups is equal or less than 

desired. Both aspects are investigated in Chapter 5 with numerical experiments. 

Furthermore, the global optima for cost and weight are not necessarily the same but both 

optima are surely located in the blue shaded area of Figure 36. As a result of this unknown 

location, a grouping method may exclude the global grouped optimum in cost optimisation but 

include it in weight optimisation, or the other way around. For UCS and FSCS, the search 

space shifts in the case of cost optimisation because the search space is changed. For UCS 

this is the case for the second step, as it performs a combinatorial search of the cost optimum. 

For FSCS the cost influences the adapted combinatorial search, and influences the result of 

the optimisation in each loop. Therefore, the chance to include the cost optimum, as with the 

weight optimum, is higher for these methods than for the grouping methods which group 

members before the optimisation starts.  
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For statically determinate structures without displacement constraints, the location of the 

solution for the global grouped optimum is known because it is the solution of FSCS1 and UCS 

and no optimisation is required to find it. This is shown in Figure 37 in a similar way as in Figure 

36. The smallest circle represents the optimum grouped solution for a specified number of 

groups. 
 

Desired MO

ROT

NG, AC, MO, 

RS (step 1),

UCS (step 1)

CC

Feasible AC

NN

ML

AF

AF+S

PS

UCS

(step 2)

AF+W

FSCS1

 
Figure 37 –Relation search space for statically determinate structures without displacement 

constraints, blue shading shows location of grouped optimum. 
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4.3 Complexity search space 
Besides changing the size and potential exclusion of the global optimum, the format of the 

search space can be changed. This can cause a more complex search space if more local 

optima are introduced. Conceptual graphs illustrate this change. In these graphs, the design 

variable on the horizontal axis represents all design variables: a low value indicates light 

members, and a high value indicates heavy members. The objective function shows the 

corresponding weight or cost of the structure and constraint function the yield, buckling and 

displacement limits. In reality, the design variables cannot be shown along one dimension, and 

the objective and constraints functions are a function of all design variables; the graphs in this 

chapter are a two-dimensional simplification of the multi-dimensional search space.  
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Figure 38 - Example simple search space: only 

one minimum is present. 

 

 

Simple search space 

To understand the complex search space, 

the representation of a simple search 

space is shown in Figure 38. This figure 

represents the search space of an 

ungrouped weight optimisation problem. 

The graph shows the objective function in 

blue and the constraint function in green. 

The constraint function is an inequality 

constraint for which the side of the thin 

green line is valid, so the top right part of 

the graph. The optimum solution is shown 

as a yellow cross. This point is optimal 

because a lower design variable gives an 

infeasible result, and a higher design 

variable a higher weight. As it is the only 

local optimum, it is the global optimum. 

Therefore, an optimisation method can 

easily solve this problem. 
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Figure 39 - Example search space grouping a priori 

a selection of the design variables reduces the 

search space but does not create more minima. 

Grouping a priori 

All methods which apply grouping before 

the optimisation starts, reduce the options 

for the design variables, without changing 

their order. This is the case for ROT, NN, 

ML, PS, AF, AF+S, AF+W and FSCS, as 

these methods reduce or the profile, or the 

geometric diversity. This is shown in 

Figure 39. As clearly visible, the 

complexity of the search space is not 

altered as the number of optima is still one. 

In this case the global optimum is 

included. But it might be excluded, if the 

bounds move left or right. 
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Figure 40 - Example altered constraint function in 

search space AC: creation of additional local 

optima. 

Changing constraint function 

AC adapts the constraint function, by 

adding a term for the number of groups. 

This is represented by Figure 40. By 

adapting the constraint function, new 

local optima appear; for both yellow 

crosses, a small change in the design 

variable leads to a worse or infeasible 

design. The addition of these local optima 

complicates the process of finding the 

global optimum for an optimisation 

algorithm. 
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Figure 41 - Example altered objective function in 

search space MO: creation of additional local 

optima. 

 

Changing objective function 

MO adapts the objective function, in a 

similar way as AC influences the 

constraint functions. This is represented 

by Figure 41. Now, local optima not only 

appear at the edge of the feasible domain, 

but also in the feasible domain, as 

indicated by the two right yellow crosses. 

Again, the process of finding the global 

optimum is difficult due to the presence of 

many local optima.  

It should be noted that in the case of 

implicit cost optimisation, the objective 

function is adapted in a similar manner.  
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Figure 42 - Original and rearranged search space 

CC: creation of additional local optima. 

Changing coding design variable 

Finally, CC does not adapt the constraint 

or objective function, but the encoding of 

the design variables. This influences the 

search space too, as shown in Figure 42. 

The objective and constraint functions 

have similar values, but the design 

variable encoding for those value is 

changed. This leads to a reordering of 

parts of the design variable and creation 

of local optima. 

 

 

 

Conclusively, the search space is only kept to the same complexity if a grouping is applied 

before the optimisation starts. On the other hand, it is made more complex by all methods 

which simultaneously determine which profiles to use and where those profiles should be 

located. Chapter 5 investigates the impact of the complexity on the optimisation process in 

numerical experiments.  
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4.4 Additional calculations 
While the optimisation procedure takes a lot of computational effort, the calculation of the 

grouping methods cannot be neglected. The computational effort needed for additional 

calculations with NN, RS, AC, MO, FSCS, UCS is significant. On the other hand, the structural 

analysis needed for AF, AF+S, AF+W has neglectable computational impact: these grouping 

methods require one structural analysis evaluation, while the optimisation process itself 

requires many thousands of structural analysis evaluations.  

The efficiency of NN is strongly dependent on the design of the neural network. 

Nonetheless, the training of a neural network requires extensive training with optimised 

solutions, which might not be available either. 

For RS, the computational effort of the rounding procedure of the ungrouped result is 

unknown, as no general guidelines are available. UCS provides a method of handling with the 

ungrouped result by its combinatorial search. This search does not include any structural 

evaluations for UCS, but for large problems this search can require significant computational 

effort. Table 7 shows how many objective function evaluations are needed for the benchmark 

problems described in Chapter 5.2. 

FSCS requires a similar combinatorial search as UCS, performs a fully stressed design, 

and it does both in multiple iterations. The fully stressed design is found by evaluating the 

constraints function, including a structural analysis, for maximum m∙n options in the search 

space until the constraint functions are satisfied. For statically determinate structures without 

global constraints, this only requires one structural analysis. Table 7 shows the total number 

of finite element and constraint function evaluations per iterations. Chapter 5 evaluates the 

relative influence of these calculations on the total computational effort in numerical 

experiments. This influence is expected to be marginal as the optimisation methods itself uses 

many more finite element evaluations. 

 

Table 7 – Computational effort additional calculations UCS and FSCS 

 Combinatorial search 

UCS and FSCS 

Fully stressed design FSCS 

 

Number of objective 

function evaluations 

Maximum number of 

FEM evaluations 

Maximum number of 

constraint function 

evaluations 

Theoretical − 
 

− 

1

1

m

k
 

Statically determinate 

without global 

constraints: 1 

Other: max(m∙n) 

max(m∙n) 

18-bar truss 680 1 450 

65-bar truss 4960 1386 1386 

72-bar truss 455 400 400 

112-bar truss 105 688 688 

160-bar truss 435897 1596 1596 

15-bar frame 6 552 552 

117-bar frame 353 515 515 

147 bar frame 324632 900 900 
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4.5 Conclusion  
This chapter has presented the theoretical comparison of the existing grouping methods and 

potential for a new grouping method, thereby answering subquestion 2 and 4. 

2. How do the grouping methods perform theoretically on weight and cost 

optimisation? 

The size and simplicity of the optimisation problem, possible inclusion of the global optimum, 

and the ease of additional calculations have been compared. The relative performance of all 

methods is shown in Figure 43. This figure conceptually summarises the theoretical 

comparison. If a bar is filled completely, its performance is good, while a poor performance is 

represented by a partly filled. Furthermore, the green bars represent an acceptable, yellow a 

questionable and red a poor performance. The perfect method would have all bars filled 

completely in green. For the methods RS, UCS, FSCS2 and FSCS3, the properties of the 

search space are shown for each step or iteration separately. However, for FSCS2 and FSCS3 

the number of iterations is not known beforehand. For RS, the procedure for the second step 

is unknown, as no general applicable procedure has been proposed in literature. For PS and 

CC, the search space is strongly dependent on the number of groups, which is shown with the 

light yellow bars. 
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Figure 43 – Overview theoretical comparison grouping methods 
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The comparison shows that CC is the only method which reduces the search space while 

guaranteeing the inclusion of the global grouped optimum for all kind of structures. On the 

contrary, this is only true for a reduced number of groups. Furthermore, the search space is 

altered which makes it harder to find this optimum. The methods MO and AC include the global 

grouped optimum in their search space as well, but are ineffective in doing so because the 

search space is big. As with CC, the search space is made more complex by these methods. 

Finally, FSCS1 includes the global optimum in its grouping too. Moreover, it finds the optimum 

grouped solution without the need for optimisation. However, this method is only applicable to 

statically determinate structures without displacement constraints. 

All other methods do not guarantee the inclusion of the global grouped optimum in 

reducing the search space. Nonetheless, if the solution of these methods is close to the global 

grouped optimum, these methods are of highly practical use. However, this cannot be proven 

theoretically and is investigated in Chapter 5 with numerical experiments. Still, FSCS2 and 

FSCS3 search the search space iteratively, so these methods have a higher chance of 

including the global optimum in the search space. Similarly, the grouping performed by UCS 

on the ungrouped solution might be close to the grouped solution. For the other methods, the 

optima of their reduced search spaces have a low chance of being close to the global optimum. 

This is the result of assumptions made in their grouping process. 

The number of computations needed in additional calculations is insignificant for most 

methods. Exceptions are UCS and RS, of which the required ungrouped search makes these 

methods impractical, as well as the high complexity of NN. 

Finally, I expect the number of computations of the combinatorial search and fully stressed 

design of FSCS to be insignificant, but this is verified in the numerical experiments of Chapter 

5. If a lot of iterations are required, the total computational effort of these methods might 

become high. Furthermore, for problems in which the combinatorial includes many 

combinations, the total computational effort of this computationally cheap individual analyses 

can become high. 

4. Do the currently available grouping methods perform well enough for 

application in research and practice? If not, can a new method be 

developed, outperforming current methods? 

From the theoretical comparison it can be concluded that potential is available for a new 

method. This new method should be able to reduce the search space significantly. In doing 

so, it should include the global optimum or a local optimum close to this value. Furthermore, it 

should not vary both profiles and groups of members at the same time, or alter the objective 

and constraint functions; these adaptations make the search space more complex. Finally, 

additional calculations are allowed, as long as the number of computations is insignificant 

compared to the optimisation itself. 

The new FSCS method obeys these demands. It searches multiple smaller search spaces 

to approach the global grouped optimum. Although it does not theoretically enclose the global 

grouped optimum, the iterative behaviour allows convergence to the global grouped optimum. 

In doing so, this method only varies profiles during the optimisation, thereby not making the 

search space more complex. The required computations of the additional calculations, the 

number of required iterations, and the ability to find the (global) optimum, are investigated in 

the numerical experiments of Chapter 5. 
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Selection for numerical experiments 

Not all grouping methods were compared in the numerical experiments, as the theoretical 

performance of some methods was judged poorly. Therefore, the methods NN, ML, PS, AF+W, 

MO, AC and RS were excluded. Furthermore, the methods AF and AF+S were only applied 

for truss-structures, as these methods are based on the axial force distribution, which is the 

only internal force for truss-structures. 

NN was excluded because this grouping method automates ROT by using a neural 

network. It was expected that the results from ROT are not optimal, so an automatisation would 

be unnecessary. I expected ROT to perform poorly because the complexity of the grouping 

problems is too high to be optimally solved by an engineer. 

ML was excluded because it relies on the assumption that member length is the main 

factor influencing the structural behaviour of a structure. This assumption was regarded as too 

simplistic to cover a wide range of structures.  

PS was excluded because selecting the optimum set of profiles, independent of their 

location in the structure, was regarded as very difficult. No examples and rules of thumb are 

available in literature to do so. 

AF+W was excluded because it is an adaption of AF with additional user input needed, for 

which no general guidelines are available. The use of an automatic procedure for grouping 

was preferred in this study. 

AC was excluded because the feasible search space is much smaller than the total search 

space, which makes the search space highly complex. In literature and in a preliminary 

analysis on the 18-bar truss, it was concluded that its highly infeasible search space prevents 

the optimisation algorithm of finding the global optimum. 

MO was excluded because the it gives many solutions which do not have the right amount 

of groups. In essence, this method generates an implicit cost optimisation problem, with an 

artificial cost function. Such a problem is hard to solve, as demonstrated in a preliminary 

analysis of the 18-bar truss. 

Finally, RS was excluded because it does not provide general guidelines to round the 

ungrouped solution. UCS does have a procedure of adapting the ungrouped solution, therefore 

that method was preferred. 

Conclusively, the methods ROT, AF, AF+S, CC, UCS and FSCS were investigated in the 

numerical experiments. 
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5 Numerical comparison 
In this chapter, the numerical experiments are presented, thereby answering the third and 

fourth subquestion. Although the new method is a result of this comparison, it is included as 

well. 

3. How do the grouping methods perform on benchmark problems for 

minimum weight? 

 

4. Do the currently available grouping methods perform well enough for 

application in research and practice? If not, can a new method be 

developed, outperforming current methods? 

As an introduction, it is explained how the numerical experiments were performed. Then, an 

overview is given of the benchmark problems and the genetic algorithm, which was chosen as 

the optimisation method. Subsequently, the results of the experiments are shown and 

discussed.  
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5.1 Method 
For each benchmark problem, all grouping methods were applied multiple times. This was 

done because of the stochastic behaviour of the genetic algorithm. If multiple analyses found 

the same solution, that solution was regarded as the optimum solution for that method. 

Furthermore, the options of the optimisation method were varied in these analyses. This was 

done to find the lightest design, for every case individually; for each case, a custom set of 

options showed to be effective. The final weight and a selection of performance criteria were 

extracted from the full set of solutions per grouping method and benchmark problem. A flow-

chart of this procedure is shown in Figure 44. 

 

Optimisation

Grouping method

Set options

optimisation

operators

Found same

optimum?
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Performance 

optimisation
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yes

 
Figure 44 – Flow chart numerical experiments. For every grouping method and benchmark problem, 

the optimisation parameters are altered. 

 

The truss and frames were modelled using the matrix stiffness method, an implementation of 

the finite element method. A code by H. Rahami (2019) was used, but it was adapted it to 

maximise efficiency in optimisation. Therefore, the element stiffness matrix was defined in 

terms of the stiffness properties of the profiles per member. This allowed to alter only the 

stiffness properties during the optimisation, without defining new element stiffness matrices. 

This implementation was validated with results from MatrixFrame in a preliminary phase of the 

study. 
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5.2 Benchmark problems 
The performance of the grouping methods was evaluated on eight benchmark problems. The 

benchmark problems were taken from literature on optimisation methods. However, diversity 

in these problems is large, especially in the field of frame structures. Therefore, a selection 

was made to cover a wide range of structures in terms of statically determinacy, truss and 

frame structures, 2D and 3D structures, application of stress and displacement constraints, 

and number of beams. An overview of the chosen benchmark problems is given in Table 8. 

Appendix E describes the benchmark problems in detail. 

 

Table 8 - Overview benchmark problems 

Benchmark 

problems 

Statical 

determinacy 

Structure Dimensions Constraints 

Deter-

minant 

Inde-

termi-

nant 

Truss Frame 2D 3D Stress Displa-

ce-

ment 

18-bar cantilever 

truss 

X  X  X  X  

65-bar truss beam X  X  X  X X 

72-bar truss tower  X X   X X X 

112-bar truss 

dome 

X  X   X X X 

160-bar truss 

tower 

 X X   X X X 

15-bar 3-storey 

frame 

 X  X X  X  

147-bar 3-storey 

frame 

 X  X  X X X 

117-bar 9-storey 

frame 

 X  X X  X X 

 

The problems were adapted from the original problem in literature, so that similar constraints 

functions and profile databases were used. Therefore, results from optimisation in this study 

differed from results for the same geometries in literature. 

For all except for the 18-bar cantilever truss, elementary grouping was applied; some bars 

were grouped as part of the problem description.  
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5.3 Genetic algorithm 
The genetic algorithm, developed by J.  Holland (1975), was chosen as the optimisation 

method for multiple reasons: 

 

1. The genetic algorithm can consider discrete variables and can incorporate all grouping 

methods. 

 

2. The genetic algorithm has been known to be little influenced by local optima in finding 

the global optimum (Arora 2017). 

 

3. The genetic algorithm has been the most well-known nature-inspired search method 

and has been used often as a reference case for comparison with new optimisation 

methods in structural engineering (Saka and Geem 2013; Stolpe 2016). 

 

The genetic algorithm is based on the evolutionary theory of Darwin and is best explained 

using biological populations, for example, a herd of cows. These cows should be healthy to 

survive. As this herd of cows mate and get calves, parts of their DNA are mixed, and small 

mutations arise in the copying of this DNA. These variations alter the calves slightly compared 

to their parents, and some variations may give more healthy calves than their parents. Survival 

of the fittest dictates that the healthiest animals survive and are more likely to get offspring. 

Consequently, in each generation the herd of cows become healthier. 

The genetic algorithm mimics this evolutionary process and applies it to mathematical 

problems (Holland 1975; Goldberg and Samtani 1986). The cow’s DNA is replaced by a 

collection of number for each design. These numbers encode for the profile of the members in 

the design, just like DNA encodes for the health of cows. The amount of designs, equivalent 

to the number of cows in a herd, is set by a parameter, the population size. Mathematical 

procedures mimic the mating and mutating behaviour by mixing the sets of numbers and 

creating random variations. Moreover, some of the best designs, of which the number of 

designs is set by a ratio of the total population size, are regarded as elite solutions. These 

designs are unaffected by mixing and mutating but are directly copied to the next generation. 

This prevents the population from losing its best solution. In the new generation of design, the 

heaviest designs do not survive, while the lightest design get a lot of offspring with the same 

procedure. This continues until a stopping criterion is reached. Frequently, this is chosen to be 

a certain number of generations with an unchanging best solution. 

Various mathematical implementations exist for the genetic algorithm. The genetic 

algorithm implementation from the Global Optimization Toolbox of MATLAB was used in this 

study, which is based on the work of Deep and Deb (Deb 2000; Deep et al. 2009).  

The mathematical implementation of the genetic algorithm is explained in more detail in 

Appendix D. Appendix E gives an example for the steps of the genetic algorithm in the 18-bar 

cantilever truss problem, while Appendix C.1 shows the result in an animation. 
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5.4 Results 
For each benchmark problem and grouping method, this chapter shows the following weight 

and performance criteria in tables: 

 

1. Minimum weight of the optimised structures. The weight is rounded to an integer value. 

This value shows the ability to find or approach the global grouped optimum. 

 

2. Dominant constraint for the final solution. Which is the constraint function which has 

the maximum value in the final design. It can either be a strength constraint in the case 

of stress constraint of an individual member, or displacement in the case a global 

displacement constraint. This criterium is included because FSCS and UCS might not 

be able to correctly group displacement dominated problems. 

 

3. Number of groups in optimum solution. As the grouping methods allow for maximum 

the desired number of groups, this number shows the certainty on finding the desired 

number of groups. 

 

4. Percentage of feasible analyses that found the same minimum optimum. The 

percentage is shown in two significant digits and shows the certainty of finding the 

grouped optimum of the corresponding method. If this percentage is high, the 

optimisation problem is easy to solve. For FSCS3, this percentage includes all feasible 

uniform initial designs for the fully stressed design. For UCS, the percentage does only 

show the certainty of the second step of this method, but not the certainty of the 

required ungrouped optimisation. If the percentage of the optimisations in which the 

global optimum is found is low, the estimated density function of the final weights is 

plotted using a kernel estimation (Peter D. 1985). In that case, a narrow distribution 

indicates a simple optimisation problem and a wide distribution marks a complex 

search space with many local optima. 

 

5. Mean computational time of optimisation. The time is shown in two significant digits. 

This value shows the ease of finding the grouped optimum, just like the former 

criterium. A short computational time is preferred. For UCS, the mean computational 

time of NG is included, as UCS uses the result of NG in its analysis. 

 

6. Mean computational time of additional calculations. The time is shown in two significant 

digits. This value shows the computational time of the additional calculations of AF, 

AF+S, FSCS and UCS. For FSCS, this computational time is the total calculation time 

of additional calculations in all iterations. 

 

7. Mean number of finite element method evaluations (FEM). This number is rounded to 

an integer value. It is closely related to the computational time, but this number gives 

an indication of the required resources for optimisation. It includes both the FEM 

evaluations during optimisation and during the additional calculations. For UCS, the 

mean number of FEM evaluations of NG is included as well. For the fully stressed 

design, it includes the maximum amount of FEM evaluations for all iterations. 

 

8. Mean number of iterations required for FSCS2 and FSCS3. This number is rounded to 

two significant numbers. As the number of required iterations of FSCS2 and FSCS3 is 

not known beforehand, the computational effort may be high. 
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Furthermore, the resulting groupings are discussed in this chapter. Therefore, the best 

grouped solution is graphically shown for every grouping method and benchmark problem. 

The colours in these graphical representations represent groups in the final solution, while the 

thickness of the member represents the relative weight per unit length for the profile solution. 

The ungrouped solution shows grouping as well, following from elementary linking and as the 

ungrouped optimisation might find members with the same profile. 

It should be noted that the order of colours and thickness of different figures have a 

different scale. As a result, a thin beam in one figure might have a higher weight per unit length 

than a thick beam in another figure. 

For the exact solutions and performance criteria per analysis, the reader is referred to the 

data files: http://doi.org/10.4121/uuid:4e32b29f-6647-4a36-9ea1-8931c88f8864. 

 

  

http://doi.org/10.4121/uuid:4e32b29f-6647-4a36-9ea1-8931c88f8864
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5.4.1 18-bar cantilever truss 

As the 18-bar cantilever truss is a statically determinate structure without displacement 

constraints, no optimisation is required for methods which group member before the 

optimisation starts. Instead, a fully stressed design can find the optimum result, which was 

done in this study. This fully stressed design requires just one finite element evaluation. 

From the results, shown in Table 9, it was found that FSCS1 and UCS gave the lowest 

weight solution with less computational effort than CC. ROT, AF and AF+S converged to a 

structure with a higher weight. Of these methods, AF1 performed best and AF4 worst. Finally, 

all methods converged to the specified number of groups. 

 

Table 9 – Results 18-bar truss 
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NG 1855 Strength 12    1 

ROT 2836 Strength 4    1 

AF1 2704 Strength 4   0.33 1 

AF2 2433 Strength 4   0.31 1 

AF3 2605 Strength 4   0.33 1 

AF4 3113 Strength 4   0.31 1 

AF+S1 2492 Strength 4   0.45 1 

AF+S2 2677 Strength 4   0.46 1 

FSCS1 2201 Strength 4   1.3 1 

CC 2201 Strength 4 15 33  26250 

UCS 2201 Strength 4   0.84 1 
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The optimum grouped solution of FSCS1, CC and UCS, presented in Figure 45i, showed that 

these methods efficiently group member in both tension and compression. For example, while 

the top left member was loaded to a high tensile force, it was grouped to the bottom right 

members in compression. These compressive members were loaded less in absolute sense 

but buckling required additional capacity. For the AF and AF+S methods, compressive and 

tensile members were not combined by these methods, except for AF4. However, AF4 gave a 

heavy solution. 

 

 

(a) - NG 

 

 

(b) - ROT 

 

(c) - AF1 

 

 

(d) - AF2 

 

(e) - AF3 

 

 

(f) - AF4 

 

(g) - AF+S1 

 

 

(h) - AF+S2 

 

(i) - FSCS1, CC and UCS 

Figure 45 – Results groups and weight per unit length 18-bar problem 
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5.4.2 65-bar truss beam 

For the 65-bar truss beam, UCS and CC converged to a solution with a similar weight, as 

shown in Table 10. However, UCS required more time and FEM evaluations because of the 

need of an ungrouped calculation. Besides that, the certainty of NG was low, as shown in 

Figure 46, which indirectly affects the certainty of UCS as well. Similarly, CC had a high chance 

of converging to a high weight. On the other hand, both FSCS2 and FSCS3 provided a decent 

approach of low-weight solution with less FEM evaluations and higher certainty. The effect of 

the dominant global displacement constraint did not seem to cause issues for these methods, 

and the optimum of FSCS2 had a slightly higher weight than FSCS3, but had higher certainty. 

Furthermore, the additional time and number of FEM calculations required for FSCS2 and 

FSCS3 was small but not neglectable to the optimisation itself. The solution of ROT, AF and 

AF+S converged to higher weights than the other methods. Of these methods, AF1 performed 

best and AF+S1 worst. The computational time of these methods was neglectable. 

Furthermore, for AF4, the optimum solution led to three groups in the final solution. 

 

Table 10 – Results 65-bar truss 
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NG 1270 Displacement 20 0.40 160  156024  

ROT 1577 Displacement 4 80 12  5021  

AF1 1429 Displacement 4 77 14 0.88 6743  

AF2 1445 Displacement 4 100 16 0.81 8017  

AF3 1568 Displacement 4 40 17 0.82 9025  

AF4 1491 Displacement 3 100 16 0.82 9718  

AF+S1 1658 Displacement 4 100 18 0.93 8995  

AF+S2 1621 Displacement 4 100 16 0.87 8281  

FSCS2 1395 Displacement 4 80 21 2.6 9803 1.2 

FSCS3 1381 Displacement 4 4.8 20 8.1 7365 1.3 

CC 1375 Displacement 4 0.52 80  96560  

UCS 1374 Displacement 4 45 170 1.6 159015  
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Figure 46 - Estimated density function optimum weight 65-bar truss 

 

As presented in Figure 47, the results of FSCS2, FSCS3, CC and UCS gave an efficient 

grouping, combining compressive members in buckling and tensile member without buckling 

effects in one group. On the other hand, the AF and AF+S methods showed a separate 

grouping of compressive and tensile members, except for AF4. But again, the resulting weight 

of AF4 was high. 

 

 

(a) - NG 

 

 

(b) - ROT 

 

 

(c) - AF1 

 

 

(d) - AF2 

 

 

(e) - AF3 
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(f) - AF4 

 

 

(g) - AF+S1 

 

 

(h) - AF+S2 

 

 

(i) - FSCS2 

 

 

(j) - FSCS3 

 

 

(k) - CC 

 

 

(l) - UCS 

Figure 47 – Results groups and weight per unit length 65-bar problem 
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5.4.3 72-bar truss tower 

For the 72-bar truss tower, of which the results are shown in Table 11, CC, FSCS2 and FSCS3 

converged to the same solution. FSCS2 did that in the least time and number of FEM 

evaluations. The additional calculations in FSCS required a non-neglectable but low amount 

of time and number of FEM evaluations. ROT, AF and AF+S converged to a structure with a 

high weight. Of these methods, AF+S2 performed best and AF4 worst. However, ROT, AF1, 

AF3, AF4 and AF+S2 converged to less than the desired number of groups. 

 

Table 11 – Results 72-bar truss 
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NG 269 Strength 8 38 81  112053  

ROT 401 Strength 3 100 10  3414  

AF1 381 Strength 3 100 15 1.7 5330  

AF2 401 Strength 4 100 14 1.6 5938  

AF3 381 Strength 3 100 14 1.8 4912  

AF4 413 Strength 2 100 17 1.7 5824  

AF+S1 371 Strength 4 100 8.4 0.70 5596  

AF+S2 315 Strength 3 100 9 0.78 5216  

FSCS2 286 Strength 4 100 8.5 1.4 3391 1 

FSCS3 286 Strength 4 79 17 4.6 6271 1.6 

CC 286 Strength 4 100 150  156322  

UCS 301 Strength 4 100 97 1.1 117496  

 

The grouped optimum of FSCS2 and FSCS3 and UCS, shown in Figure 48, revealed an 

unexpected grouping of bracings to resist the horizontal force; the bracings at the bottom had 

a low capacity while bracings at the top had a high capacity. Apparently, this allowed an 

efficient force redistribution which would probably not be thought of by an engineer: an 

engineer might the same capacity at the bottom as at the top, as the horizontal force applied 

at the top-level looks similar to an upright cantilever truss. 

Furthermore, this benchmark problem showed how the force distribution of this statically 

indeterminate structure prevented UCS in finding the lightest grouped design; some members 

of the grouped optimum of FSCS and CC were lighter than the NG design, while UCS was 

only able to increase the weight of members of the NG design. 
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(a) - NG 

 

 

(b) - ROT 

 

(c) - AF1 and AF3 

 

 

(d) - AF2 

 

 

(e) - AF4 

 

(f) - AF+S1 

 

 

(g) - AF+S2 

 

(h) - FSCS2, FSCS3 and CC 

 

(i) - UCS 

Figure 48 – Results groups and weight per unit length 72-bar problem 
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5.4.4 112-bar truss dome 

For the 122-bar truss dome, of which the results are shown in Table 12, CC performed best. 

However, the distribution of the result, shown in Figure 49, indicated that this method found 

many solutions comparable to the results of FSCS3. Furthermore, FSCS2 converged to a 

slightly higher weight, but with high certainty and low computational effort. Again, the 

computational effort of the additional calculations was not neglectable for FSCS2 and FSCS3, 

but low enough to outperform other methods. As in the 65-bar truss beam, both FSCS methods 

found a good solution, although the displacement constraint was dominant. ROT, AF and 

AF+S converged to a structure with a higher weight. Of these methods, AF4 performed best 

and ROT worst. Moreover, ROT and AF3 converged to two instead of three groups. 

 

Table 12 – Results 112-bar truss 
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NG 2163 Displacement 11 0.50 190  62266  

ROT 3595 Displacement 2 50 10  1692  

AF1 2587 Displacement 3 50 19 2.7 2887  

AF2 2713 Displacement 3 75 15 3.4 3036  

AF3 3592 Displacement 2 100 15 2.9 3064  

AF4 2580 Displacement 3 100 14 2.8 2183  

AF+S1 2673 Displacement 3 80 14 0.73 3030  

AF+S2 3536 Displacement 3 100 14 0.69 3264  

FSCS2 2457 Displacement 3 60 22 4.7 4206 2.1 

FSCS3 2413 Displacement 3 1.9 23 4.7 3737 1.9 

CC 2310 Displacement 3 1.0 60  45974  

UCS 2501 Displacement 3 78 210 2.2 63996  

 

 
Figure 49 - Estimated density function optimum weight 112-bar truss 
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The subfigures in Figure 50 show a top view of the 3D-structure. The designs shows an 

unexpected force distribution. An engineer might expect that the vertical load is diverted in a 

radial direction to the supports, in which the diagonals carry a small part of the load. Hoop 

forces might be expected to be taken by the circular beams. However, their relative influence 

differed in the results: for FSCS2 and ROT the circular beams were designed relatively light, 

while in other methods these beams showed an increased relative weight.  

 

 

(a) - NG 

 

 

(b) - ROT 

 

 (c) - AF1  

 

 

(d) - AF2 

 

(e) - AF3 

 

(f) - AF4 
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(g) - AF+S1 

 

 

(h) - AF+S2 

 

(i) – FSCS2 

 

 

(j) - FSCS3 

 

(k) - CC 

 

(l) – UCS 

Figure 50 – Results groups and weight per unit length 112-bar problem 
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5.4.5 160-bar truss tower 

Although the dominant constraint for most methods was the displacement in the 160-bar truss 

tower, FSCS3 was able to converge to the lowest weight, as shown in Table 13. CC became 

second, but FSCS2 converged to only a slightly higher weight with lower computational effort 

and with more certainty, observable in Figure 51. UCS found a slightly higher weight but 

required much more computational effort. ROT, AF and AF+S converged to a structure with a 

higher weight. Of these methods, AF3 performed best and ROT worst. All of these methods, 

except for AF+S2, converged to a solution with less than the desired six groups. 

 

Table 13 – Results 160-bar truss 
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NG 871 Displacement 14 0.58 940  1767347  

ROT 1015 Displacement 4 86 33  37411  

AF1 982 Displacement 5 43 49 4.3 56359  

AF2 982 Displacement 5 55 43 4.4 49218  

AF3 943 Displacement 5 83 42 4.4 47469  

AF4 988 Displacement 4 100 37 4.2 38016  

AF+S1 1164 Displacement 5 60 28 1.2 26432  

AF+S2 975 Displacement 6 67 34 1.3 33069  

FSCS2 883 Strength 6 3.4 310 56 367705 5.6 

FSCS3 878 Displacement 6 0.62 260 54 238505 3.8 

CC 881 Displacement 6 0.37 720  1253812  

UCS 893 Strength 6 50 980 4.8 1813070  

 

 
Figure 51 - Estimated density function optimum weight 160-bar truss 
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Figure 52 shows a side-view of the 3D-structure. The grouping of FSCS2 and FSCS3, CC and 

UCS indicated an efficient grouping of bracings; where forces were introduced from the cables, 

bracings showed a higher capacity. As in the 72-bar truss tower, bracings were dimensioned 

lighter near the base than higher in the structure, disagreeing with general structural intuition.  

 

 

(a) - NG 

 

(b) - ROT 

 

(c) - AF1 and AF2 

 

(d) - AF3 
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(e) - AF4 

 

(f) - AF+S1 

 

 

(g) - AF+S2 

 

(h) - FSCS2 

 

(i) - FSCS3 

 

(j) – CC 

 

(k) – UCS 

Figure 52 – Results groups and weight per unit length 160-bar problem 
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5.4.6 15-bar 3-storey frame 

The results of the 15-bar 3-storey frame in Table 14 showed that the CC performed best with 

low computational effort. FSCS2 and FSCS3 found a slightly heavier solution with more 

certainty and slightly lower computational effort. UCS found a suboptimal solution and required 

more computational effort. ROT gave the worst solution and all methods converged to the 

desired three groups. 

 

Table 14 – Results 15-bar 3-storey frame 
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NG 7699 Strength 8 14 36  28948  

ROT 8124 Strength 3 100 8.4  3122  

FSCS2 8081 Strength 3 100 18 1.9 5998 2 

FSCS3 8053 Strength 3 37 25 3.3 5037 1.6 

CC 8014 Strength 3 21 27  12843  

UCS 8093 Strength 3 57 47 0.24 32230  
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The distribution of steel in the structure by CC, as shown in Figure 53, gave a similar 

megabrace structural configuration as reported by Walls and Elvin (Walls and Elvin 2010b). 

Moreover, the ungrouped optimum suggested a grouped design like UCS in which on a higher 

storey-level the outer columns had a high capacity. However, the results of CC and FSCS 

showed that choosing another grouping allows for another force distribution with a lower 

weight.  
 

 

(a) - NG 

 

(b) - ROT 

 

 

(c) - FSCS2 

 

 

(d) - FSCS3 

 

 

(e) - CC 

 

(f) - UCS 

Figure 53 – Results groups and weight per unit length 15-bar 3-storey frame problem 
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5.4.7 117-bar 9-storey frame 

FSCS2 and FSCS3 found the same and the lightest solution for the 117-bar 9-storey frame, as 

shown in Table 15. These two methods required a low computational effort. CC converged to 

a higher weight, with higher computational effort. Besides that, CC found a wide range of 

weights, as shown in Figure 54. UCS found the seconds best solution in term of weight, but 

required long computational time and many FEM evaluations. Again, ROT found the worst 

solution with six instead of seven groups in the final solution. 

 

 Table 15 – Results 117-bar 9-storey frame  

M
e
th

o
d

 

W
e
ig

h
t 

o
f 

o
p

ti
m

u
m

 

s
o

lu
ti

o
n

 (
k
g

) 

D
o

m
in

a
n

t 

c
o

n
s
tr

a
in

t 
in

 

o
p

ti
m

u
m

 s
o

lu
ti

o
n

 

N
u

m
b

e
r 

o
f 

g
ro

u
p

s
 

in
 o

p
ti

m
u

m
 

s
o

lu
ti

o
n

 (
-)

 

N
u

m
b

e
r 

o
f 

ti
m

e
s
 

o
p

ti
m

u
m

 f
o

u
n

d
 (

%
) 

M
e
a
n

 t
im

e
 

o
p

ti
m

is
a
ti

o
n

 (
s
) 

M
e
a
n

 t
im

e
 

a
d

d
it

io
n

a
l 

c
a
lc

u
la

ti
o

n
 (

s
) 

M
e
a
n

 n
u

m
b

e
r 

o
f 

F
E

M
 e

v
a
lu

a
ti

o
n

s
 (

-)
 

M
e
a
n

 n
u

m
b

e
r 

o
f 

it
e
ra

ti
o

n
s
 (

-)
 

NG 22657 Strength 19 0.98 930  182181  

ROT 26190 Strength 6 100 45 0.40 7251  

FSCS2 24779 Strength 7 100 120 14 21732 3.0 

FSCS3 24779 Strength 7 91 120 13 21533 2.8 

CC 25004 Strength 7 0.72 550  114166  

UCS 24793 Strength 7 100 980 1.4 189099  

 

 
Figure 54 - Estimated density function optimum weight 117-bar 9-storey frame 

 

The solutions of the grouped optima of FSCS2, FSCS3, CC and UCS in Figure 55 showed that 

columns are logically grouped in different column rows. It showed that the side columns on a 

low storey level were loaded less than middle columns at the same storey-level. This caused 

the low storey level columns on the side to be grouped with high storey level columns in the 

middle of the structure. 
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(a) - NG 

 

 

(b) - ROT 

 

 

(c) - FSCS2 and FSCS3 

 

(d) - CC 

 

 

(e) – UCS 

Figure 55 – Results groups and weight per unit length 117-bar 9-storey frame problem 
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5.4.8 147-bar 3-storey frame 

Table 16 shows that CC converged to the lightest solution for the 147-bar 3-storey frame. On 

the other hand, the uncertainty of reaching this solution was high, as shown in Figure 56, and 

a high computational effort was required. In contrast, the computational effort of both FSCS 

methods was much lower than CC, and the full range of possible solution had a low weight. 

UCS found a solution with high certainty during its second step of optimisation, but low 

certainty for NG, which required long computational time and many FEM evaluations as well. 

As in the other frame problems, ROT found the worst solution. UCS found a solution with five 

instead of six groups. 

 

Table 16 – Results 147-bar 3-storey frame 
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NG 24464 Strength 13 0.96 1900  203038  

ROT 30380 Strength 6 67 39  4076  

FSCS2 26020 Strength 6 1.3 390 46 38911 6.0 

FSCS3 26066 Strength 6 2.5 530 30 33615 4.8 

CC 25656 Strength 6 1 1200  122616  

UCS 26976 Strength 5 100 2000 4 207193  

 

 

 
Figure 56 - Estimated density function optimum weight 147-bar 3-storey frame 

 

The solutions of FSCS2, FSCS3, CC and UCS in Figure 57 showed how these grouping 

methods were able to group columns, bracings and beams in different parts of the structure, 

in a way that probably could not be thought of by an engineer. For example, the solution of CC 

grouped bracings on the lowest level with beams on the lowest level and middle level in one 

direction, and beams in both directions on the top level. 
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(a) - NG 

 

(b) - ROT 

 

 

(c) - FSCS2 

 

 

(d) - FSCS3 

 

 

(e) - CC 
 

(f) - UCS 

Figure 57 – Results groups and weight per unit length 147-bar 3-storey frame problem 



 

84 

5.5 Conclusion 
This chapter has numerically investigated a selection of existing grouping methods and the 

potential for a new grouping method, thereby answering subquestion three and four. 

3. How do the grouping methods perform on benchmark problems for 

minimum weight? 

From the numerical experiments it is concluded that grouping methods can group members in 

different part of the structure to their optimal profile. This allows grouping of members to a 

similar profile in a more efficient way than an engineer might be able to do. Furthermore, in 

more complex structure, grouping methods can efficiently group beams, columns and 

bracings. In addition, it generates low diversity solutions with a force distribution which could 

possibly not be thought of by an engineer. 

From the numerical experiments, conclusions can be drawn on the relative performance 

of the grouping methods. The relative performance of all methods is shown in Figure 58. it 

shows the ability to find the lowest-weight grouped optimum, computational ease and certainty 

of finding a good solution. This figure conceptually summarises the numerical results from all 

experiments. If a bar is filled completely, its performance is good and vice versa. Furthermore, 

the green bars represent acceptable, yellow questionable and red poor performance. The 

perfect method has all bars filled completely in green. For the methods UCS, FSCS2 and 

FSCS3, the properties of the search space are shown for each step or iteration. For FSCS, the 

mean number of iterations is shown. The performance of the six procedures of AF and AF+S 

is evaluated jointly. 

 

ROT

AF

AF+S

FSCS2

FSCS3

FSCS1

UCS

CC

+ +

∙  3

∙  4

Low weight Computational 

ease

Certainty

 
Figure 58 – Overview comparison methods numerical experiments 

 

It can be concluded that the grouping method ROT performs worst of all methods, as it results 

in high-weight solutions and easily converges to solutions with less than the desired number 

of groups in the experiments. However, it does not require any additional calculations, and 

because of its small and simple search space the certainty was found to be high. Nonetheless, 

the ability to find a light grouped solution is regarded as more important. 
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Furthermore, AF and AF+S perform slightly better than ROT. These methods prove to find 

lighter solutions than ROT and the computational effort of its additional calculations is 

neglectable. However, as ROT, these methods can easily converge to less than the desired 

number of groups. Furthermore, these methods are only applicable to truss structures and the 

inability of properly grouping tensile and compressive members leads to suboptimal solutions. 

For the different procedures possible on AF and AF+S, none can be identified as the best. 

It should be noted that the convergence to less than the desired number of groups is not 

necessarily bad; the optimisation finds a local optimum which happens to have less groups 

than desired. If an engineer does not want to find the optimum for that specific number of 

groups, this local optimum might be satisfactory. 

From the numerical experiments it can also be concluded that, with higher computational 

effort than the former methods, lighter results can be expected with FSCS, CC and UCS. Of 

these methods, CC was able to identify the lightest solution in five of eight benchmark 

problems. However, it requires high computational effort and the certainty is low for complex 

problems. 

UCS gave the lightest solution in two of eight problems in the numerical experiments. 

However, it requires high computational effort because of the need for an ungrouped 

optimisation. Besides that, as the certainty is low for an ungrouped optimisation, the certainty 

of the UCS method decreases indirectly too; although the certainty of the second step of UCS 

itself is in general high. 

Finally, FSCS found the lightest solution in four out of eight benchmark problems. For two 

problems it had a high certainty of finding the best solution. For the other two benchmark 

problems it performed second best. FSCS1 undoubtedly finds the grouped optimum for 

statically determinate structures without displacement constraint with minimal computation 

effort. FSCS2 can find a proper solution for other problem with high certainty, and the approach 

to handle dominant global displacement constraints of this method seems good enough to find 

light-weight results. Conclusively, this method requires more computational efforts than ROT, 

AF and AF+S, but much less than CC and UCS. FSCS3 can find a slightly better solution than 

FSCS2, but has higher uncertainty. Therefore, I regard the added value of FSCS3 as marginal. 

For both FSCS2 and FSCS3, the number of iterations is limited, keeping the total computational 

effort low.  

4. Do the currently available grouping methods perform well enough for 

application in research and practice? If not, can a new method be 

developed, outperforming current methods? 

For application in research, a grouping method should be able to theoretically find the true 

global grouped optimum, and many trials may be allowed to find it. CC is best method to do 

so. However, the optimisation includes a complex search space, which demands a high 

computational effort to find a light design. Furthermore, the complexity of the search space 

might prevent the optimisation from finding the global grouped optimum. 

To apply grouping methods in practice, a grouping method should be able to find the global 

or a near-global grouped optimum with low computational effort and high certainty. The new 

FSCS method shows to do this, as it can find similar low-weight as CC, requires few 

computations and shows high certainty.  
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6 Application in practice 
In this chapter, the influence of grouping methods on the minimum cost design is investigated 

to answer the final subquestion: 

5. How do grouping methods improve the minimum cost design of a real-

life case-study? 

This question is answered on multiple aspects. First, the basics of cost optimisation and cost 

functions are considered. Subsequently, the procedure of explicit cost optimisation is shown 

in an example, in which the possible difference of cost and weight optimisation is illustrated. 

Finally, explicit cost and weight optimisation is applied to a real-life case-study of Royal 

HaskoningDHV to show the potential cost and weight savings of optimisation with grouping 

methods. 

6.1 Cost models of steel structures 
To model the cost of a structure in an optimisation procedure, all relevant costs have to be 

written in a cost function. This cost function can be inserted as the objective function in the 

standard design optimisation model. However, cost functions do not solely depend on the 

structural design and its weight, but other factors change the costs during the design, 

fabrication, use, and demolition or reuse of a structure, like: 

 

• Raw material costs. These costs are closely linked to the weight of the structure. 

However, the costs of specific profiles and length might not scale linearly to the weight 

of those profiles. 

• Production costs profiles, including the costs for cutting, painting and welding 

• Bulk discount on high quantities of single profiles. 

• Costs of connections, as each connection requires engineering work and material 

• Foundation costs, which is a function of reaction forces at the supports. 

• Costs of fabrication at height. Construction at height may require safety measure and 

other equipment, especially for big and heavy members. 

• Costs of quality checking, which depends on the complexity of the structure. 

• Engineering costs, which is a function of the complexity of the structure and design 

methods used. An optimisation process itself introduces costs as well, like computation 

power, licenses and working hours of engineers. 

• Costs following from scheduling of the project and availability of partners 

• Sustainability costs. The introduction of CO2 taxes increases costs, while reusing and 

recycling of parts of the structure reduce costs 

• Unforeseeable events. The coronavirus is a clear example which influences economy 

and prices of building projects. 

 
As a result of the variety and unpredictability of many cost aspects, it is hard to quantify the 
costs of a design (Tizani et al. 1996).  
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In this study the cost function proposed by Watson et al. (1996) was chosen because it 

provides an estimate for costs in four aspect of construction and as it is applicable to the global 

design. This cost function separates costs in steel supply, fabrication, surface treatment and 

erection costs. These costs are expressed in unit prices and manhours. The steel supply costs 

are linearly related to the weight of the structure. An overview of this cost function is shown in 

Figure 59 and the details of this cost function are listed in Appendix G. 

 

 
Figure 59 – Components cost function Watson et al. (1996) 

 

  

•Costs of profiles based on unit price per 
meter, linearly related to the weight

Steel supply

•Costs of connection based on standard 
connections

•Drawing costs of overall markings and 
members

•Transport costs per member

Fabrication

•Costs of painting based on unit surface 
area

Surface treatment

•Hiring costs of lifting equipment

•Manhours

Erection
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6.2 Difference cost and weight optimisation 
The optimum weight structure might not be the same as the optimum cost structure. The 

difference for the 18-bar truss structure was investigated in this research project. 

Difference for four groups 

For the 18-bar structure, both the optimum weight and costs of the optimal weight and optimal 

cost structure were evaluated. This was done for four groups, using FSCS1 as grouping 

method and the cost function of Watson et al. (1996). 

The results are shown in Table 17, which present the weight, costs, grouping of the beams 

and costs per category for both the weight and cost optimum. The weight optimum was found 

to be more expensive than the cost optimum. For the cost optimum, the weight was higher, 

therefore increasing the supply and surface treatment costs as well. However, fewer beam 

splices and beams were needed as in the bottom truss only one beam splice was needed in 

the cost optimum. The reduced number of beam splices reduced both erection, member 

drawing and transport costs, and costs for the fabrication of connections.  

 

Table 17 – Comparison weight and cost optimisation 18-bar cantilever truss for 4 groups. Weight 

optimum is lighter but has higher costs than cost optimum. 

 Weight optimum 4 groups Cost optimum 4 groups 

Weight 2201 kg 2246 kg 

Total 

costs 

€ 5730 € 5617 

Structure 

  

Costs 

per 

category 

  

  

 

 

 

Supply steel 

Connections 

Marking drawings 

Member drawings 

  

 

 

 

Transport 

Surface treatment 

Erection 
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Optimum number of groups 

The added value of grouping methods in determining the optimum number of groups was also 

investigated in this study for the 18-bar cantilever truss. Figure 60 shows the optimum weight 

and costs of this structure for different number of groups, plus the results of implicit cost 

optimisation. For explicit weight and cost optimisation, the optimum structure for each number 

of groups was calculated. On the other hand, for implicit cost optimisation 96 independent 

optimisations were performed. In these calculations, the number of groups was not fixed by a 

grouping method, but it was a result of the optimisation. 

The explicit cost optimisation showed both a decrease and increase in costs. The resulting 

cost optimum had 10 groups with costs of €5345, respectively. The corresponding structure is 

shown in Figure 61a. 

The explicit weight optimisation showed a decrease in cost for one to five groups, then an 

increase in cost until seven groups and again a decrease for more than seven groups. For one 

to three groups, the supply costs were dominant in the cost function, thus leading to the same 

optimum for weight and cost optimisation. For four or more groups, the weight optimum was 

more expensive than the cost optimum. 

The implicit cost optimisation found many different results, ranging from 7 to 12 groups 

and from €5366 to €5864. The density function of the cost distribution, for all number of groups, 

is shown in Figure 62. The cost of the cheapest solution was €5366. This result was different 

in one beam with the explicit cost optimum, which is marked with a red circle in Figure 61b. 
 

  
 Explicit cost optimisation 

 
Implicit cost 
optimisation 

 Explicit weight optimisation 

Figure 60 - Results analysis on optimum number of groups for 18-bar cantilever truss. Different 

optimum number of groups is found for cost and weight optimisation, and implicit cost optimisation 

finds many suboptimal results. 

 

  

(a) – Explicit cost optimisation (b) – Implicit cost optimisation 

Figure 61 – Results groups and weight per unit length cost optimisation 18-bar cantilever truss. 

Designs are different in one bar, which is marked with a red circle. 
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Figure 62 - Estimated density function optimum implicit cost optimisation 18-bar cantilever truss with a 

wide range of results. 

 

Conclusively, cost and weight optimisation lead to different results if the supply costs are not 

governing in the cost function. Furthermore, explicit cost optimisation, which makes use of the 

new grouping method, can find the global cost optimum with higher certainty than implicit cost 

optimisation. This solution can be found with few computations, as multiple simple grouped 

problems are solved instead of solving the ungrouped problem directly. 

Combinatorial search in cost optimisation 

In a preliminary phase of the cost analysis, it was found the amount of beam splices in potential 

continuous beams is a major influencer of costs. This should be covered by a grouping method. 

Most grouping methods do not consider this influence. CC, AC and MO evaluate a search 

space in which all allowable number of beam splices are included, thus allow for finding the 

global cost optimum. 

FSCS and UCS can include the influence of the number of beam splices by an expansion 

of the combinatorial search. This combinatorial search includes all combinations of grouping 

beam segments to all or some of the adjacent beam segments of a higher weight. As a result, 

this method is applicable to cost models which include the number of beam splices as well. 
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6.3 Real-life case-study 
As a second example of cost optimisation using grouping methods, the roof of the Feyenoord 

stadium was taken as a case-study. Royal HaskoningDHV worked on the structural design for 

this new stadium (Kraaijenbrink et al. 2019). The design of the architect OMA is shown in 

Figure 63 and Figure 64 (OMA 2018). This chapter treats the original design by Royal 

HaskoningDHV, and the improved design using the new grouping method. 

 

 
Figure 63 – Render new Feyenoord stadium from inside 

Image courtesy OMA (2018) 

 

 
Figure 64 – Render new Feyenoord Stadium in aerial view 

Image courtesy OMA (2018) 
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The roof structure of the Feyenoord stadium consists of different substructures, shown with 

different colours in Figure 65. An additional movable roof structure is not shown in the picture. 

The dark blue truss beams are analysed in this structure, as the two identical beams together 

represents 63% of the total weight of the full roof structure. 

The design consists of only statically determinate beams, which allows to optimise the 

substructures separately, following the load path. As this study focussed on optimising just the 

dark blue truss beams, the design of other substructures was copied from the final design of 

Royal HaskoningDHV (2019). 
 

 
Figure 65 – Parts roof structure, dark blue truss beams were analysed in this study. 

Picture from report Royal HaskoningDHV (2019) 

 

This design was originally designed by Royal HaskoningDHV with the Grasshopper plug-in 

Karamba3D and SCIA Engineer. The calculation of Karamba3D included an algorithm which 

automatically selects profiles (Tam 2020). A manual grouping was applied in this process. The 

result of Karamba3D was manually fine-tuned with respect to the Eurocode in SCIA. 

For this case-study, this problem was slightly altered in terms of the available profile 

database, constraint function, load cases and geometry. 

The profile database of the automatic profile selection algorithm in Karamba3D evaluated 

665 German RO-profiles. In this study, a uniform selection of 50 profiles was made, taken from 

the entire weight range of the original profile database. A more optimal result might be found 

when the full database is included. 

The final design of Royal HaskoningDHV was checked on the Eurocode requirements. 

Furthermore, in the unity check some margin was taken for connections in the detailed design, 

and future variations in the design. However, in this study, a simplified check was made on 

yield and buckling stress, and global displacement constraints. It was assumed that this 

simplified constraint function represented the constraints set by the Eurocode adequately. 

Originally, the problem consisted of 29 load cases. The dominant five load cases for the 

curved truss beams were used in this study. However, the result of this study might violate 

constraints in one of the other original load cases. 

Finally, the geometry of the structure was slightly changed, as the original structure 

included some bars which provided stability to elements of other parts of the roof structure. 

Furthermore, the green truss beams in Figure 65 had a torsional-limiting effect on the dark 

blue truss beams. To mimic this behaviour, spring supports were added. 

All properties of the final structure are shown in Appendix F.9 



 

93 

6.3.1 Manual grouped design 

The design with manual grouping from Royal HaskoningDHV divided all 270 beams into 21 

groups. Optimisation to both cost and weight with this grouping, led to a weight of 820 ton and 

costs of €1.26 million in this study. This result is shown in Figure 66 and Figure 67. 

 

 
Figure 66 – Result Feyenoord stadium ROT 

 

 

(a) - bottom view 

 

 

(b) - top view 

 

 

(c) - inside view 

 

 

(d) - outside view 

 

Figure 67 – Result Feyenoord stadium ROT side views 

 

It should be noted that, as the supply cost were dominant in this design with 92% of the total 

costs, weight and cost optimisation gave the same solutions for this case-study. 

Furthermore, this design was not equal to the original design of Royal HaskoningDHV; in 

the actual final design the weight was 944 ton and the costs were €1.46 million. From this 

actual final design of Royal HaskoningDHV, only the grouping of the original design was 

copied, not the choice of profiles. This difference was considerable, because of Royal 

HaskoningDHV did not use an optimisation method in finding these profiles and there were 

differences in modelling, as explained on the previous page. 
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6.3.2 Optimal grouped design 

For the improved design, FSCS2 was applied as a grouping method. It was applied for 1 to 24 

groups, of which the results are shown in Figure 68. In these analyses, the grouped design 

with FSCS2 gave a design with lower weight and costs than the manual grouping of Royal 

HaskoningDHV for 7 groups or more. In comparison with the original design of Royal 

HaskoningDHV, FSCS2 gave an improved design for 4 groups and more. For 21 groups, as 

much as the manual grouping had, the weight and costs were decreased with 63 ton (7.8%) 

and €92.000 (7.3%), respectively. In comparison with the original design of Royal 

HaskoningDHV, the weight and costs decreases were 188 ton (19.8%) and €285000 (19.6%), 

respectively.  

 
 

 
Optimisation with 
FSCS2 

 
Optimisation with manual grouping 
of Royal HaskoningDHV 
 

 
Original design Royal 
HaskoningDHV 

    

Figure 68 – Optimum design using FSCS2 versus design Royal HaskoningDHV. Optimisation with 

grouping method shows significant weight and cost reduction, or reduction of the diversity of profiles in 

the design. 
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Result for seven groups 

With the application of a FSCS2, a design with similar weight and cost as the manual grouped 

design was found, having less groups. This was the case for seven groups, for which the 

improved design gave a weight of 816 ton and cost of €1.256 million. The result is shown in 

Figure 69. These designs resulted in a grouping which would be hard to find from engineering’s 

experience. For example, the curved beams in the outside, as shown in Figure 69d, had the 

same profile as some vertical and diagonals on the inside plane, of which a few are indicated 

with red circles in Figure 69c. 

It should be noted, that in this optimisation problem, a less extensive linking was applied 

than for the other analyses on the case-study: only symmetrical beams and each of the curved 

continuous beams were linked. By doing so, the grouping method evaluated more possible 

groupings. Consequently, this result was slightly lighter and cheaper than the result for 7 

groups in Figure 68 with a difference of 6000 kg and €12000. 

 

 
Figure 69 – Result Feyenoord stadium FSCS2 7 groups 

 

 

(a) - bottom view 

 

 

(b) - top view 

 

 

(c) - inside view 

 

 

 

(d) - outside view 

 

Figure 70 – Result Feyenoord stadium FSCS2 7 groups side views 
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Result for diverse number of groups 

The optimum grouped designs for 4, 6, 10, 15 and 21 groups are shown in Figure 71. Again, 

these solutions contained a grouping which would be hard to design manually. 
 

 

(a) – 4 groups 

 

 

(b) – 6 groups 

 

 

(c) – 10 groups 

 

 

(d) – 15 groups 

 

 

(e) – 21 groups 

Figure 71 - Optimum grouped designs 
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6.4 Conclusion 
This chapter has investigated the added value of grouping methods on a minimum cost design, 

answering the fifth subquestion: 

5. How do grouping methods improve the minimum cost design of a real-

life case-study? 

From the application of cost optimisation for the 18-bar cantilever truss, it is concluded that 

grouping methods ease the process of finding the minimum cost design. Whereas the implicit 

cost optimisation problem is complicated to solve by optimisation, grouping methods solve the 

problem in simpler subproblems. By doing so, the global grouped optimum can be found with 

high certainty. Furthermore, cost and weight optimisation give the same optimum solution if 

the supply costs are dominant in the cost function. This was observed in both the 18-bar 

cantilever truss for one to three groups, and for the Feyenoord stadium for all number of 

groups. 

The cost optimisation of the Feyenoord stadium shows the ability to reduce the costs and 

weight of a design significantly compared to a manual grouping. The use of a grouping 

methods allowed a weight and costs decrease of the analysed truss beam of 7.8% and 7.3%, 

respectively, compared to manual grouping by Royal HaskoningDHV. A decrease of weight 

and costs of 19.8 and 19.6%, respectively, was found when comparing the new method to the 

original design of Royal HaskoningDHV in which no optimisation was performed. 

Finally, application of grouping methods can be used to reduce the diversity of profiles in 

a design significantly. In the Feyenoord roof design, the new grouping methods showed a 

reduction of the number of groups from 21 to 7 groups, while keeping the weight and cost 

approximately the same. 
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7 Discussion 
In this chapter, the limitations of this research project are discussed by evaluating the scope, 

the new grouping method, the comparison of the numerical experiments and application in 

practice. 

7.1 Scope 
In the scope, some limitations on the kind of problems and a certain way of analysing the 

benchmark problems were proposed. Nonetheless, application outside the scope is possible 

as well. Table 18 shows the effect on the optimisation problem, when the problem is applied 

outside the limitations of the scope. Each of these effects, and the resulting performance of 

grouping methods, is described in detail. 

 

Table 18 – Effect on grouping methods when applied outside scope 

 Variable 

geometry 

Custom 

set of 

profiles 

Building 

code 

check 

Detailed 

design 

Nonlinear 

analysis 

Other cost 

function 

Design 

variables 

More 

variables 

Other 

options 

 More 

variables 

  

Objective 

function 

     More 

complex 

Constraint 

function 

  More 

complex 

More 

complex 

More 

complex 

 

Resulting 

performance 

grouping 

methods 

Unknown Similar, 

except for 

PS method 

Dependent 

on method 

Unknown Dependent 

on problem 

Dependent 

on method 

Variable geometry 

In this research project, only problems with a fixed geometry were analysed. Nonetheless, all 

grouping methods are also applicable to problems in which the geometry of the problem is 

allowed to change, although this introduces a much bigger search space and many local 

optima: the coordinates of the nodes, the number of nodes, and the connectivity of the nodes 

are added to the design variables. As this introduces a new optimisation problem, bigger in 

size and complexity, the effectiveness of the grouping methods on these problems is unknown. 

I expect that only the methods which adapt the grouping multiple times are effective, as a 

changing geometry has significant influence on the force distribution. 

Custom set of profiles 

The use of a set of standard steel profiles can be replaced by a custom set of profiles without 

consequences on the performance of the grouping methods. The order of section properties 

of a custom set of profiles might be less smooth than a set of standard steel profiles, but this 

does not affect the grouping methods, only the optimisation process. Therefore, the grouping 

methods are applicable to custom profiles too. The method which manually selects a reduced 

set of profiles is an exception, as it might be more complex to manually select the optimum 

profiles of a custom set. However, in this study, the performance of this grouping method was 

assumed to be poor for a set of standard steel profiles as well. 
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Building code check 

The benchmark problems included a simplified structural check on yield stress, buckling and 

displacement. For the design of real structures, building codes include a check on more 

requirements. These extensive requirements may not be suitable for the optimisation design 

process due to high number of needed calculations. Nonetheless, if all requirements of a 

building code are included in an efficiently programmed constraint function, the optimum result 

probably changes compared to application of simple structural check. 

This new constraint function has no influence on the grouping of the grouping methods 

which are applied before the optimisation starts, only on the optimum profiles of that grouping. 

I expect the resulting designs to be suboptimal, as a building code has many requirements 

which cannot be covered adequately by the simple guidelines of the grouping methods. 

The methods which include grouping during the optimisation process evaluate the 

constraint function. Therefore, these methods can be applied to a building code constraint 

function, with the side note that the constraint function might introduce additional local optima, 

influencing the effectiveness of the optimisation itself. 

For the new fully stressed combinatorial search method, a building code constraint function 

influences the grouping because the fully stressed design is changed. However, as this fully 

stressed design is iteratively changed, I expect this method to adequately cope with the new 

constraints. 

Finally, for the methods which are based on an ungrouped optimisation, I expect the global 

grouped optimum to be less alike with the ungrouped optimum: as more demands on the 

structure are set, I think the optimum of individual members is strongly dependent on other 

members. Therefore, any adaption of the ungrouped design will have a strong effect on the 

feasibility, and therefore optimality, of the final design.  

Detailed design 

The structural design was evaluated on a global level in this study and the detailed design was 

not considered. In current practice, the detailed design is performed after completion of a 

global design with some safety margin. This margin allows for a feasible detailed design, 

without the need for changes in the global design. A similar approach can be adopted with the 

optimisation design process, by including this margin in the optimisation of the global design 

as well. It changes the result of the optimum design, but the relative performance of the 

grouping methods is unaffected. 

The applicability of grouping methods on the detailed design is unknown because the 

detailed design does not only depend on the choice of profiles; details like bolts, welds and 

cuts are added to the design variables as well. Although it is probably beneficial to have a low 

number of distinct bolts and welds as well, the current grouping methods are not directly 

applicable for grouping of other aspect than sizing of beam elements. 

In theory, the global and detailed design can be implemented in one optimisation problem, 

and remove the need of the margin in the global design. However, this will drastically increase 

the size and complexity of the problem, because profiles and details of the entire structure are 

included in one problem. The resulting problem is probably too big to solve in its totality. 

Nonlinear analysis 

Instead of linear analysis, a nonlinear analysis can be adopted, thereby changing the constraint 

function. This increases the calculation time of each structure analysis, but gives a more exact 

evaluation of the structural behaviour, if that is desired. The grouping methods are as 

applicable as to the linear analysis, but the effect of the nonlinearities on the resulting optimum 

design and grouping is strongly dependent on the problem. 
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Cost function 

As the perfect cost function does not exist, I chose a cost function from literature in this study. 

If another cost function would be chosen, another optimum result is found. As was described 

in Chapter 4.2, the grouping is only dependent on the objective function for a few methods 

grouping; the methods which perform grouping before the optimisation starts do not take into 

account the objective function, while the grouping is changed for the methods which are 

applied in a loop, or during or after optimisation. As with the more specific constraint function 

from building code requirements, I expect that only the new method, and the methods which 

change the optimisation process, are able to adequately find the grouped cost optimum. 

Furthermore, as the optimality in cost optimisation is strongly dependent on the cost 

function and the problem itself, the performance of grouping methods can only be evaluated 

with respect to a specific cost function, not to all possible cost functions. Nonetheless, for cost 

functions in which the weight is dominant, as it was for the 18-bar cantilever truss up to three 

groups and for the case-study for all groups, the result of the comparison on weight 

optimisation is representative. 
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7.2 New grouping method 

High computational effort 

The new grouping method uses a fully stressed design and combinatorial search in its grouping 

process. For big problems with many members or a big profile database this can result in many 

computations, reducing the efficiency of this method. However, optimisation methods are 

proposed in literature to prevent evaluation of all combinations of the combinatorial search 

(Reitman and Brent Hall 1990). Similarly, single-variable optimisation methods can be applied 

for each beam in the fully stressed design (Langelaar and van Keulen 2019). Implementation 

of these optimisation can be implemented in the existing framework, as shown in Figure 72. 

 

Estimate initial design

Optimisations of fully 

stressed design

Is grouping unchanged?

Optimisation of profiles 

per group

Stop
yes

Optimisation of 

combinatorial search

Is converged solution 

worse than previous?
Stop

yes

no

no
 

Figure 72 – Framework fully stressed combinatorial search with optimisation of subproblems 

 

It should be noted that the number of combinations was no limitation for the benchmark 

problems. Furthermore, the objective function evaluations in the combinatorial search are 

cheap computational evaluations; for weight optimisation the objective function evaluation only 

involves a summation and multiplication of the weight per unit length of members with their 

lengths. 

Memory issues 

While the time to evaluate a big number of combinations was no limitation in this study, memory 

issues were encountered during the case-study of the Feyenoord stadium. These memory 

issues were solved by a more extensive elementary linking, but this prevented the grouping 

method from finding the optimum grouping. This adapted elementary linking led to a reduced 

number of combinations in the combinatorial search; for 21 and 22 groups, the combinatorial 

search evaluated a maximum of 2.7∙1011 combinations with additional elementary links. For 

more combinations, the size of a single matrix from the algorithm of the combinatorial search 

shown in Appendix A, exceeded the allowed matrix size in MATLAB. If the combinations are 

stored differently, this problem can be solved without compromising on the optimum result. 

It should be noted that the change in elementary linking had a small effect on the optimal 

result in this study; only a difference of 6 ton (on a total of 816 ton) was observed for the result 

with seven groups. 
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Initial design 

Whereas the second implementation of the fully stressed combinatorial search takes the 

heaviest possible profiles as an initial reference design, adapting a different uniform initial 

reference design in the third implementation gave a lighter optimum design in some benchmark 

problems.  Conclusively, although the loop in this method changes the reference design during 

its analysis, the initial reference design has some influence on the final result. This difference 

was found to be marginal in this study, but only uniform designs were regarded as an initial 

reference design. A non-uniform design might result in an even lighter optimum design. 

Perfect grouping method 

The perfect grouping method was not found in this study. This ideal method should require 

little or no additional calculations and is guaranteed to include the grouped in a simple and 

small search space. A possibility of reducing effectively while guaranteeing inclusion of the 

grouped optimum would be to create an optimisation method with two design variables, x1 and 

x2, of which x1 refers to the member grouping and x2 to the profile selection. Therefore, a list of 

all 
 
 
 

n

k
 member groupings has to be created in which the groupings have exactly the required 

k number of groups for all n beams. This list could be generated by ‘Algorithm U’, as proposed 

by Knuth (2014). Secondly, a list should be created of all 
 
 
 

m

k
 combinations of selecting the 

specified k number of profiles from the total profile database of size m. The resulting design 

variable is two-dimensional, with an index 
   

=   
   

1 1,...,
n

x
k

 to one of the possible member 

groupings, and an index
   

=   
   

2 1,...,
m

x
k

 to one of the possible selection of profiles. Such a 

method would reduce the search space into a subspace which guarantees inclusion of the 

grouped optimum, with no overlap with subspaces for other number of groups. In terms of the 

size of the search spaces and inclusion of the grouped optimum, such a method would be 

perfect. However, I expect the resulting optimisation problem to have a complex search space 

with many local optima, as the problem is converted in a two-dimensional problem with an 

order which follows from the two lists of member and profile grouping. Consequently, such a 

method will not be able to find the global grouped solution, as all existing optimisation methods 

are sensitive to local optima. If a similar grouping method would be invented in which the 

number of local optima does not increase, better performance can be achieved. 

Perfect optimisation method 

A generally applicable optimisation method which is less sensitive to local optima is desired. 

However, this is a complex and unsolved mathematical problem. Furthermore, the ‘No free 

lunch theorem’ by D.H. Wolpert and W.G. Macready (1997) states the if the performance of 

an optimisation is elevated for one class of problems, it will be at the cost of the performance 

in another class of problems. Conclusively, no generally applicable optimisation method can 

be found. As the perfect optimisation algorithm does not exist, the combination of the proposed 

new fully stressed combinatorial search method with one of the available existing optimisation 

methods is the best available choice in the practical field of civil engineering.  
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7.3 Numerical comparison 

Manual grouping 

For the manual grouping method, only one grouping possibility per benchmark problem was 

used. These groupings were taken from literature, or I came up with those using my own 

engineering experience. Figure 73 shows the proposed manual grouping in this study, in which 

each group has a different colour. Another engineering might choose to group verticals and 

diagonals in one group, and assigns two groups for the bottom truss. However, as the grouping 

problem has many solutions, I expect the other grouping methods to outperform most 

engineers with this manual method. 

 

 
Figure 73 – Manual grouping 18-bar cantilever truss as it was used in this study. Other manual 

groupings are possible are well. 

Reduction profile database 

Simplifications were made in this study by reducing the available profile database in the 

benchmark problems. This adaption simplified the optimisation problem of all methods, except 

for the profile selection method which reduces the profile database even more as part of its 

grouping approach. A bigger and more diverse profile database would allow for a more optimal 

grouped optimum, but increases the size and complexity of the problem. However, I assume 

that a representative comparison is made for small and big profile database sizes, because of 

the variety in the benchmark problems. 

Elementary linking 

In the benchmark problems, an elementary linking was applied. For the 160-bar truss tower, 

117-bar 9-storey frame and the case-study, this elementary linking did not only include 

symmetry constraints. This was done to reduce the size of the optimisation problem, especially 

for the ungrouped optimisation. However, such a linking might exclude the true global grouped 

optimum. For example, for the 160-bar truss tower, the elementary grouping assumes that all 

four sides of the tower are identical, while on one size two electricity cables are attached, one 

another size one cable, and on the other two size no cables. Therefore, the global grouped 

optimum might not be symmetric, which is enforced by the elementary grouping. Nonetheless, 

this elementary grouping was applied for all grouping methods, so a fair comparison was 

made. 

Dominant constraints 

In the numerical experiments, the dominancy of strength or displacement constraints was 

evaluated as the constraints with the highest value in the final solution. However, multiple 

constraints contribute to the optimum design, and the constraint with the highest value does 

not necessarily indicate that this constraint has a dominant effect. Therefore, this dominancy 

provides an estimation, of which the result should be interpreted with care.  
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Stochastic optimisation methods 

In this study, I made a comparison of grouping methods for which the resulting weight was 

found with a stochastic optimisation method. The variance in the result of this optimisation 

method was judged on their certainty and distribution of the optimum weights. However, the 

realisation of this stochastic process can be interpreted in diverse ways, influencing the 

comparison of the grouping methods. In literature, many different interpretations have been 

used; another option would be to extract the minimum, mean and standard deviation from the 

results. Nonetheless, I think the performance of the grouping methods was representatively 

compared, supported additionally by the comparison on the theoretical performance. This 

theoretical comparison included the complexity of the search space, providing an indication of 

the resulting variance after optimisation. 

Options optimisation method 

The ability to find the optimum value in all grouping methods is strongly influenced by the 

choice of the optimisation method and options for that optimisation method. I chose to use the 

implementation of the genetic algorithm of Deb (2009) and Deep et al. (2009), and varied the 

population size, the elite ratio, and the number of generations to convergence. Another 

optimisation method or change in options changes the results and the performance. However, 

the variety of optimisation methods and variations is endless, and each problem and grouping 

method requires varying the options. This makes it impossible to numerically compare the 

grouping methods independent of the options for the optimisation method. Still, I expect that 

the comparison in this study represented the performance of grouping methods good enough 

because all stochastic optimisation methods are based on the same principles. Furthermore, 

the numerical comparison was supported by a method-independent theoretical performance 

as well. 

Implementation 

Part of the optimisation method and grouping methods were programmed by the author of this 

study. In the implementation of the optimisation, this was done as efficiently as possible to 

reduce computational time. However, for grouping methods which chance the optimisation 

itself, the way of implementing influences the comparison; if the implementation can be made 

more effective, the computational time of these methods reduces. I do not expect that this had 

significant effect on the comparison, as the number of finite element evaluations does not 

change by a more effective implementation of these methods. These finite element evaluations 

showed a similar trend as the computational time in the results. 

For the grouping methods, the computational time is dependent on the implementation as 

well. In this case, I did not focus on developing a fast and efficient code, as these methods are 

only applied one or several times during one analysis. Still, the computational time of the 

additional calculations was low compared to the optimisation. Conclusively, the 

implementation did not influence the comparison. 
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7.4 Application in practice 

Simplification new method 

In practice, most engineers do not have the tools or knowledge to apply optimisation. However, 

the grouping problem could be of valuable use in the conventional design process as well. The 

new method can be applied without an optimisation method, which might lead to satisfactory 

results. In that case, the profiles of the groups should be selected manually in every iteration, 

as shown in Figure 30. As the profiles are not needed to be fully optimal during iterations, and 

selecting only profiles is a simpler task than selecting both profiles and groups, I expect the 

resulting grouping of members to be satisfactory. However, the manual selection of profiles is 

probably not as good as when an optimisation is applied, and it slows down the process. 

 

Estimate initial design

Fully stressed design

Is grouping unchanged?

Manual selection of group 

profiles

Stop
yes

Combinatorial search

Is solution worse than 

previous?
Stop

yes

no

no
 

Figure 74 – Framework fully stressed combinatorial search without optimisation method but with 

manual selection of profiles for member groups. 

Cost function 

In the application of grouping methods to cost optimisation, a cost function from Watson et al. 

(1996) was used. It should be noted that this cost function is only applicable to medium sized 

steel projects, which were defined by Watson et al. (1996) as projects with costs greater than 

a $150,000 steel contract for supply, fabrication and erection. The 18-bar cantilever structure 

does not meet the application requirements of the costs, as the costs were too low. Therefore, 

the result of this analysis should be taken with care. Furthermore, the roof structure of the 

Feyenoord stadium is unique in size and shape. Consequently, although this structure is in the 

scope of the cost function, the costs given by this cost model may deviate from the actual costs 

of the structure. 

Still, a perfect cost function might not be needed for design in practice in which 

requirements change during the process, constantly varying the optimum design. In that case, 

engineers would benefit highly from a cost function which approximates the cost good enough 

so that reasonable decision-making is possible. The cost function of Watson et al. might prove 

well enough in some cases, while another cost function might be more suitable in other cases. 

In order to know that, the scope of cost functions should be precisely defined and validated, in 

terms of structure type, design phase and which cost and sustainability aspects are included.  



 

106 

8 Conclusions 
This chapter presents the conclusions of the research project on the problem of unbuildable 

design resulting from optimisation methods in civil engineering. With the use of grouping 

methods, optimum solutions with a low diversity of profiles can be found. However, the best 

method to do so is not known, which led to the following research question: 

Which method for grouping can find the lightest and cheapest steel 

structure with minimal computational effort? 

This study concludes that the new method, the fully stressed combinatorial search, is the best 

available method to find the optimum grouped design with acceptable computational effort. 

Other main findings of this study are briefly described in the following statements: 

 

1. The cardinality constraints method is the only method which reduces the search space 

while guaranteeing the inclusion of the grouped optimum for all kind of structures. 

However, this is not true for a high number of groups. Furthermore, the search space 

is altered by this method which makes it harder for an optimisation method to find the 

grouped optimum. The methods which do not reduce the search space, make the 

search space more complex as well. On the contrary, the other methods which reduce 

the search space have a simple and small search space, but might exclude the global 

optimum.  

 

2. The number of computations in additional calculations is insignificant to the number of 

computations in optimisation, except for methods which use of the ungrouped optimum 

solution and the neural networks method. For the new fully stressed combinatorial 

search method, the number of additional computations is acceptable if the problem is 

not too big.  

 

3. Manual grouping is the simplest method to apply, but its performance is strongly 

dependent on the experience of the engineer. The methods which group members 

based on axial force perform better but cannot find the global optimum due to the 

inability of combining compressive and tensile members. Lighter designs are found by 

the cardinality constraints method and ungrouped combinatorial search, although these 

methods require many finite element evaluations. Finally, the new method finds similar 

light structures as the previous two methods even though it requires less computational 

effort. 

 

4. The optimum solution, including the optimum number of groups, can be found efficiently 

with the use of grouping method; it is possible to find lighter and cheaper designs with 

less computations if grouping methods are used. When the weight is dominant in the 

cost of a structure, an engineer can use the grouped designs to make a trade-off 

between cost or weight, and the diversity. 

 

5. The costs of a structure can be reduced by applying a grouping method, in comparison 

with a manual grouping. In comparison with the conventional design process, the costs 

reduce even more. Alternatively, with the use of grouping methods the diversity of the 

solution can be decreased, keeping the weight and costs constant.  
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9 Recommendations 
This chapter shows the recommendations for further research and application of grouping 

methods. 

Research on grouping methods 

 

1. Application of proposed optimisation methods to solve the subproblems of the new fully 

stressed combinatorial search method should be investigated. The effectiveness of 

these optimisation techniques may provide improved performance and applicability to 

problems with a bigger profile database and more members. 

 

2. The effect of using a non-uniform initial design in the new fully stressed combinatorial 

search method should be investigated. This might allow for better results. 

 

3. More research is needed on the development of a grouping method which is 

guaranteed to include the global grouped optimum in its search space, while not 

creating too much local optima. Such a method can outperform the available grouping 

methods. 

 

4. Further research is needed on the performance of grouping methods in the case that 

the geometry is allowed to change. This allows for a more optimal generative grouped 

design, in which the engineer does not have to define the geometry manually. 

 

5. The applicability of the available grouping methods to the detailed steel design, 

concrete structures, multi-material structures and composite structures should be 

investigated. Applications beyond civil engineering to the fields of mechanical, 

aerospace and maritime engineering are possible as well. All these applications benefit 

from a cheap, light and sustainable design with a low diversity of its components. 

Application in practice 

 

1. The performance of the new fully stressed combinatorial search method should be 

investigated when the sizing of member groups is performed manually by an engineer 

instead of with the use of optimisation methods. If the performance is good enough, 

the new method is a valuable tool for engineers who do not have the possibility to apply 

optimisation methods, but who desire an optimal grouping in their design. 

 

2. If an engineering firm wishes incorporation of the building codes, it should focus on 

how to implement those codes efficiently so that the computation time can be kept 

minimal. Or, it should be investigated to what extent simple checks on yield stress, 

buckling and displacement, cover the demands from the codes. 

 

3. As in the practical field of engineering the cost and sustainability of a design is of high 

importance, more research is needed on development of cost functions which are 

validated on a well-defined scope. These cost functions should be exact enough to 

allow reasoned decision-making on a design. 
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Appendices 
The appendices include: 

 

Appendix A  Combinatorial search algorithm  

 

Appendix B  Example fully stressed combinatorial search 

 

Appendix C  Animations 

 

Appendix D Mathematical description genetic algorithm 

 

Appendix E  Example genetic algorithm 

 

Appendix F  Description benchmark problems 

 

Appendix G  Cost model steel structures 
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The algorithm for defining the groups in the combinatorial search is shown in Table 19, in which 

the profiles are sorted such that p1 > p2 > … pm. Table 20 shows the corresponding profiles for 

which the objective function is evaluated. These profiles are the heaviest profiles in the 

corresponding group. In these tables, m is the number of distinct profiles, k is the number of 

groups and NCS is the number of combinations following from Equation (2.3). It should be noted 

that one profile can represent multiple beams; the number of unique profiles is equal or less 

than the number of independent beams. The tables are an adaption from the original table 

from Walls and Elvin (2010). 

 

Table 19 - Resulting groups for combinatorial search algorithm of determining NCS possible 

combinations with grouping of m profiles { p1, p2, … pm }  to k groups, with p1>p2>…pm. Adaptation of 

table from Walls and Elvin (2010) 

Combina- 

tion 

 

Profile 

1 2 ∙∙∙ m-k+1 m-k+2 m-k+3 ∙∙∙ NCS 

p1 1 1 ∙∙∙ 1 1 1 ∙∙∙ 1 

p2 2 2 ∙∙∙ 2 2 2 ∙∙∙ 1 

⁝ ⁝ ⁝  ⁝ ⁝ ⁝  ⁝ 

pk-2 k-2 k-2 ∙∙∙ k-2 k-2 k-2 ∙∙∙ 1 

pk-1 k-1 k-1 ∙∙∙ k-1 k-2 k-2 ∙∙∙ 1 

pk k k-1 ∙∙∙ k-1 k-1 k-1 ∙∙∙ 1 

pk+1 k k ∙∙∙ k-1 k k-1 ∙∙∙ 1 

pk+2 k k ∙∙∙ k-1 k k ∙∙∙ 1 

⁝ ⁝ ⁝  ⁝ ⁝ ⁝  ⁝ 

pm-2 k k ∙∙∙ k-1 k k ∙∙∙ k-2 

pm-1 k k ∙∙∙ k-1 k k ∙∙∙ k-1 

pm k k ∙∙∙ k k k ∙∙∙ k 
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Table 20 - Resulting profiles for combinatorial search algorithm of determining NCS possible 

combinations with grouping of m profiles { p1, p2, … pm }  to k groups, with p1>p2>…pm. Adaptation of 

table from Walls and Elvin (2010) 

Combina- 

tion 

 

Profile 

1 2 ∙∙∙ m-k+1 m-k+2 m-k+3 ∙∙∙ NCS 

p1 p1 p1 ∙∙∙ p1 p1 p1 ∙∙∙ p1 

p2 p2 p2 ∙∙∙ p2 p2 p2 ∙∙∙ p1 

⁝ ⁝ ⁝  ⁝ ⁝ ⁝  ⁝ 

pk-2 pk-2 pk-2 ∙∙∙ pk-2 pk-2 pk-2 ∙∙∙ p1 

pk-1 pk-1 pk-1 ∙∙∙ pk-1 pk-2 pk-2 ∙∙∙ p1 

pk pk pk-1 ∙∙∙ pk-1 pk pk ∙∙∙ p1 

pk+1 pk pk+1 ∙∙∙ pk-1 pk+1 pk ∙∙∙ p1 

pk+2 pk pk+1 ∙∙∙ pk-1 pk+1 pk+2 ∙∙∙ p1 

⁝ ⁝ ⁝  ⁝ ⁝ ⁝  ⁝ 

pm-2 pk pk+1 ∙∙∙ pk-1 pk+1 pk+2 ∙∙∙ pm-2 

pm-1 pk pk+1 ∙∙∙ pk-1 pk+1 pk+2 ∙∙∙ pm-1 

pm pk pk+1 ∙∙∙ pm pk+1 pk+2 ∙∙∙ pm 

 

The groups and profiles of the 18-bar cantilever truss are shown in an animation in Appendix 

C.4. 
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As an example of the proposed fully stressed combinatorial search method, the 117-bar 9-

storey frame is analysed by applying FSCS2. Details of this structure are provided in Appendix 

F.7. In this example, only the grouping of the columns is explained in detail. The beams and 

bracings are grouped simultaneously. 

 

 

 

 

 

 

 

 

 

 

 
 

First, for all columns the heaviest profile is chosen as an initial 

reference design, this is shown in Figure 75. For this problem, that is 

UC 305×305×283. The colours in this figure show members with the 

same profiles. For beams, columns and bracings, a separate 

heaviest profile is provided. 

 

 
Figure 75 – Initial reference design 

 

 

 

 

 

 

 

 

 

Based on the reference design, the fully stressed design is found. 

The result is shown in Figure 76. Again, colours represent members 

with the same profile. 

 

 
Figure 76 – Fully stressed design iteration 1 
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The result of the fully stressed design is combined in a combinatorial 

search. This is shown in Figure 77, in which each bar represents a 

column from the fully stressed design. The column colours 

correspond to the colours from Figure 76. The red horizontal lines 

represent the optimal limits of grouping to 3 groups. 

 

 
Figure 77 - Combinatorial search iteration 1 

 

The resulting groups of the combinatorial search are shown in Figure 

78. The thickness of the beams has no meaning in this figure. The 

colour now shows which members are grouped and are forced to the 

same (still unknown) profile. 

 

 
Figure 78 – Result grouping combinatorial search iteration 1 

 

 

 
 

 

During the first iteration the convergence criteria are not checked yet, 

so this step is skipped. 
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The resulting grouping of the combinatorial search is applied in a 

grouped optimisation. This process finds the optimum members for 

each of the 7 groups. This result is shown in Figure 84. It has a weight 

of 25598 kg. 

 

 
Figure 79 – Result grouped optimisation iteration 1 

 

 

 
 

During the first iteration the convergence criteria are not checked yet, 

so this step is skipped. 

 

 

 

The first iteration has finished, now all steps are repeated for the 

second iteration 

 

 

 

 

 

 

 

 
 

The result of the grouped optimisation from the first iteration is taken 

as reference design for the fully stressed design. The result is shown 

in Figure 80 

 

 
Figure 80 – Fully stressed design iteration 2 
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Again, the result of the fully stressed design is combined in a 

combinatorial search, as shown in Figure 81. 

 

 
Figure 81 – Combinatorial search iteration 2 

 

The resulting groups of the combinatorial search are shown in Figure 

44. 

 

 
Figure 82 – Result grouping combinatorial search iteration 2 
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Now, the first convergence criterium is checked. Therefore, the 

grouping of this iteration is compared to the previous grouping. This 

comparison is shown in Figure 83. As these groupings are not similar, 

the analysis continues 

  

 

(a) – Iteration 1 

 

(b) – Iteration 2 

Figure 83 – Comparison grouping iteration 1 and 2 

 

 

 

 

 

 

 

 
 

The resulting grouping of the combinatorial search is applied in a 

grouped optimisation. This result is the structure shown in Figure 89 

with a weight of 25162 kg. 

 

 
Figure 84 – Result grouped optimisation iteration 2 

 

 

 
 

 

 

The second convergence criterium is checked with the result of the 

optimisation. The weight of the optimum solution in the second 

iteration is 25162 kg, which is lighter than 25598 kg of the first 

iteration. Therefore, the analysis has not diverged and can continue. 

 

 

 

The second iteration has finished, now all steps are repeated for the 

third iteration. 
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The result of the grouped optimisation from the second iteration is 

taken as reference design for the fully stressed design. The result is 

shown in Figure 85. 

 

 
Figure 85 – Fully stressed design iteration 3 
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Again, the result of the fully stressed design is combined in a 

combinatorial search, as shown in Figure 86. 

 

 
Figure 86 – Combinatorial search iteration 3 

 

The resulting groups of the combinatorial search are shown in Figure 

100. 

 

 
Figure 87 – Result grouping combinatorial search iteration 3 
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Again, the first convergence criterium is checked. Therefore, the 

grouping of this iteration is compared to the previous grouping. This 

comparison is shown in Figure 101. As these groupings are not 

similar, the analysis continues. 

  

 

(a) - Iteration 2 

 

(b) - Iteration 3 

Figure 88 – Comparison grouping iteration 2 and 3 

 

 

 

 

 

 

 

 

 

The resulting grouping of the combinatorial search is applied in a 

grouped optimisation. This results in the structure shown in Figure 88 

with a weight of 24779 kg. 

 

 
Figure 89 – Result grouped optimisation iteration 3 

 

 

 

 

 

 

The second convergence criterium is checked with the result of the 

optimisation. The weight of the optimum solution in the second 

iteration is 24779 kg, which is lighter than 25162 kg of the first 

iteration. Therefore, the analysis has not diverged and can continue. 

 

 

 

The third iteration has finished, now all steps are repeated for the 

fourth iteration 
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The result of the grouped optimisation from the third iteration is taken 

as reference design for the fully stressed design. The result is shown 

in Figure 90. 

 

 
Figure 90 – Fully stressed design iteration 4 
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Again, the result of the fully stressed design is combined in a 

combinatorial search, as shown in Figure 91. 

 

 
Figure 91– Combinatorial search iteration 4 

 

The resulting groups of the combinatorial search are shown in Figure 

92. 

 

 
Figure 92 – Result grouping combinatorial search iteration 4 
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Now, the first convergence criterium is checked. Therefore, the 

grouping of this iteration is compared to the previous grouping. This 

comparison is shown in Figure 48. The grouping is the same for both 

iterations, so the analysis is finished. 

  

 

(a) - Iteration 3 

 

(b) - Iteration 4 

Figure 93 – Comparison grouping iteration 3 and 4 

 

 

 

 

The result of the third iteration is the optimum result as shown in 

Figure 89. 
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If this file is opened in Acrobat and Flash is installed, the following animations can be opened 

by clicking on the figures. Otherwise, the caption shows a link to the same animation online. 

C.1 Optimisation method 
The animation of Figure 94 shows how the design becomes more optimal during the 

optimisation of the 18-bar cantilever truss. The thicknesses represent the weight per unit length 

of the profiles. When multiple members have the same profile, these members are given the 

same colour. 
 

 

Figure 94 – Animation optimisation without grouping 

This animation is also available at: https://s7.gifyu.com/images/Optimisation.gif 
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C.2 Optimisation with cardinality constraints 
The animation of Figure 95 shows the optimisation process with the cardinality constraints 

method. The thicknesses represent the weight per unit length of the profiles. When multiple 

members have the same profile, these members are given the same colour. For the cardinality 

constraints method, the maximum number of groups is fixed to four in this case, but the 

distribution of these groups is variable. In some steps, multiple groups have the same profile, 

thus in that case, the effective number of groups is less than the desired number of four groups. 
 

 

Figure 95 – Animation optimisation with cardinality constraints 

This animation is also available at: https://s7.gifyu.com/images/CC.gif 

  

https://s7.gifyu.com/images/CC.gif
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C.3 Fully stressed design 
The animation of Figure 96 shows the creation of the fully stressed design for the 18-bar 

cantilever truss. The top figure shows how for each member, the profile is altered from light to 

heavy. When a feasible design is found, it is saved in the bottom figure and the analysis 

continues with the next member. The red structure in the top figure shows the deformed 

structure. 
 
 

Figure 96 – Animation fully stressed design 

Animation also available at https://s7.gifyu.com/images/FullyStressedDesign.gif 

  

https://s7.gifyu.com/images/FullyStressedDesign.gif
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C.4 Combinatorial search 
The animation of Figure 97 shows the procedure of the combinatorial search algorithm for the 

18-bar cantilever truss. The top figure shows the combinations; the colours represent the 

groups, and the thicknesses represent the weight per unit length of the profiles. For each 

combination, the total weight is evaluated, which is shown in the bottom figure. The optimal 

combination is the combination with the minimum total weight, thus the minimum of the bottom 

figure. 
 

 

Figure 97 – Animation combinatorial search 

Animation also available at: https://s7.gifyu.com/images/Combinatorial_search.gif 

 

https://s7.gifyu.com/images/Combinatorial_search.gif
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This chapter includes an in-depth description of the mathematical implementation of the 

genetic algorithm. It covers characteristics of this implementation separately 

Real-valued encoding 

Opposed to the original implementation of binary values in the genetic algorithm by Holland 

(1975), variables were coded in real values in this study. Real-valued encoding shows 

increased efficiency, increased precision and more freedom in crossover and mutation 

functions (Wright 1991). 

Constraint handling in selection operator 

The applied genetic algorithm used a constraint handling technique developed by Kalyanmoy 

Deb (2000). This technique does not make use of (adaptive) penalty parameters, which are 

hard to define, are problem-dependent and influence the objective function. 

The constraint handling technique proposed by Kalyanmoy Deb (2000) compares feasible 

and infeasible solutions when selection individuals from a population. By doing this, the 

algorithm converges to solutions in the feasible domain, while only influencing the objective in 

the infeasible domain. The comparison of solutions is called the tournament selection operator 

and is based on the following criteria, evaluated in this fixed order: 

 

1. Feasible solutions are preferred above infeasible solutions. 

 

2. A smaller fitness function is preferred for two feasible solutions. 

 

3. A smaller fitness function is preferred for two infeasible solutions. 

 

In these criteria, the fitness function F(xi) is defined as: 

 

 ( )


= 
+ max

( ) if all ( ) 0

( ) otherwise

i j i

i

j i

W x g x
F x

W g x
 (D.1) 

 

In which xi is the design expressed in i design variables, W is the weight of the structure and 

gi(xi) is the value of constraint function j. Wmax is the weight of the worst feasible solution, if it 

is not known, this value is 0. 

The tournament selection can be played between more than two solutions. A tournament 

size of 3 was adopted as shown to be effective in literature (Deep et al. 2009). 
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An example of this constraint handling technique is given in Figure 98. These contour plots 

show the objective function W and fitness function F for a two-dimensional problem. The 

feasible domain is indicated with the crescent shape. It shows that the fitness values increase 

in the infeasible region, and the fitness value of the feasible region is equal to the objective 

function (Deb 2000). 

 

 

(a) - Objective function W 

 

(b) - Fitness function F 

 

Figure 98 - Comparison of contour plots objective and fitness function 

Figures taken from literature (Deb 2000) 

Crossover operator 

Crossover was applied by using the technique of Laplace crossover (Deep and Thakur 2007a). 

It generates a new generation with similar properties as the current generation, of which the 

spread is dependent on the diversity of the current generation. Random numbers β, satisfying 

the Laplace distribution are calculated by the following rule: 

 

 
( )
( )


 − 

= 
+ 

ln 0.5

ln 0.5

i i

i

i i

a b u r

a b u r
 (D.2) 

 

In which a and b are location and scaling parameters. a = 0 and b = 0.35 are taken from 

literature (Deep et al. 2009). u and r are two random numbers from a uniform distribution 

between 0 and 1 

A new generation ( )=1 1 1 1

1 2, ,..,y y y y

i ny s s s  and ( )=2 2 2 2

1 2, ,..,y y y y

i ny s s s  is generated from the 

current generation ( )=1 1 1 1

1 2, ,..,x x x x

i nx s s s  and ( )=2 2 2 2

1 2, ,..,x x x x

i nx s s s  as follows: 

 

 




= + −

= + −

1 1 1 2

2 2 1 2

y x x x

i i i i i

y x x x

i i i i i

y x x x

y x x x
 (D.3) 

 

In which the βi  follows from equation (D.2). As these operations can give non-integer results, 

the results are rounded up or down with a probability of 0.5 for both. 
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It should be noted that this crossover operator uses a notion of distance, which is not 

adequately defined in discrete steel profiles as the order of steel profiles is different for surface 

area, moment of inertia and torsional moment. 

An example of the influence of the notion of distance is shown in Figure 99. This graph 

presents the properties of the steel profiles of the American W-section database. This full 

database was used in the 15-bar 3-storey frame problem. The order of profiles on the x-axis 

is as provided by the American Institute of Steel Construction (American Institute of Steel 

Construction 2017). The vertical axis shows the properties of area, second moment of inertia, 

elastic section modulus, radius of gyration around z and y-axis and weight per unit length. 

These properties are normalised with respect to the properties of the first profile. As clearly 

visible, ratios between different properties are not constant. Therefore, crossover of two similar 

solutions might result in a very different solution in the new generation. 

 

 
Figure 99 – Order of properties of steel profiles 

Data taken from AISC database (American Institute of Steel Construction 2017) 

 

The poorly defined order is an issue frequently encountered in optimisation methods for steel 

size optimisation (Alberdi and Khandelwal 2015). The influence of this is mostly implicitly 

neglected in literature (Murren 2011). In this study, only a small portion of the total available 

profiles was taken, or the rest of the problem was kept simple. This limits the number of local 

optima. 

The crossover ratio was set to 0.8, as this value is used primarily in literature and is the 

default option in MATLAB (Deep et al. 2009). This crossover ratio controls the part of the 

generation on which the crossover operator works. A sensitivity analysis on this crossover ratio 

was performed to ensure convergence. 
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Mutation operator 

For mutation of the individuals in a population, power mutation was adopted (Deep and Thakur 

2007b). In this method, a random number s is created following the power distribution: 

 

 ( )= 1

p
s s  (D.4) 

 

In which with s1 is taken randomly from a uniform distribution between 0 and 1. p  is the index 

of mutation. p = 4 is adopted from literature (Deep and Thakur 2007b). 

 

A mutation in a solution ( )=1 1 1 1

1 2, ,..,i nx s s s  and ( )=2 2 2 2

1 2, ,..,i nx s s s  takes places as follows 

 

 
( )

( )

 − − 
= 

+ − 

1 1

2

1 1

lb

i i i

i ub

i i i

x s x x t r
x

x s x x t r
 (D.5) 

 

In which a lower bound lb

ix  and upper bound ub

ix  are defined for each design variable. s 

is taken from equation (D.4), r is taken randomly from a uniform distribution between 0 and 1 

and 
−

=
−

1

1

lb

i i

ub

i i

x x
t

x x
. As with the crossover operator, the mutation operator can give non-integer 

results. These non-integer results are rounded up or down with a probability of 0.5 for both. 

Again, it should be noted that this crossover operator uses a notion of distance, which is 

not adequately defined in discrete steel profiles as the order of steel profiles is different for 

surface area, moment of inertia and torsional moment. Again, this influence is neglected by 

taken only a small portion of the section database. 

The mutation ratio, which defines the probability of a solution to mutate, is set indirectly by 

the crossover-ratio. If the cross-over ratio is increased, the mutation ratio decreases. 

Elite operator 

The elite operator assures that the individuals in the current generation with the best fitness 

value are transferred to the next generation, without being influenced by crossover or mutation 

operator. This makes sure the best solutions are kept in the optimisation process, while the 

rest of the generation explores the search space to find a better solution. 

The elitism ratio, which defines the number of generations to be regarded as elite solutions, 

is problem dependent. As the number of elite solutions must be an integer value, the number 

is rounded up to a whole number of individuals. A sensitivity analysis on the elite operator was 

performed to ensure convergence in a preliminary phase of this study. 

Population size 

The population size is the number of individuals in one generation. A bigger values allows to 

evaluate more diverse solutions, but might prevent the algorithm from converging. As for the 

crossover and elite operators, a sensitivity analysis on the population size was performed to 

ensure convergence for the problems in this study. 
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Convergence criteria 

As all other heuristic search methods, the genetical algorithm has no convergence check which 

guarantees that a local or global optimum is found. Therefore, a popular convergence criterion 

was used in study: to stop the optimisation process after a specified number of successive 

generations in which the best solution is unchanged. A sensitivity analysis on the number of 

successive generations was performed to ensure convergence in this study. 

Parallel computing 

MATLAB allows for parallel computing, which can accelerate the analysis. However, it was 

observed parallel computing extended computation time for simple problems. Therefore, it was 

not adopted. For the problems in which the structural analysis evaluation has a higher impact, 

parallel computing might speed up the process. 
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The procedure of the genetic algorithm is shown for the 18-bar truss problem. For 
completeness, all steps of the optimisation design process are shown as presented in Chapter 
1.1.2. All steps in this example are part of the block optimisation of the flow-chart shown in 
Chapter 5.1, Figure 44. 

 

 

 
 

 

The 18-bar truss problem is described by a fixed geometry, load 

situation and profile database. This data can be found in 

Appendix F 

 

 

 

 

 

 

 

 

 

 

 

 

 The problem is formulated in the standard design optimisation 

model. The objective function is the weight of the structure: 

 

 ( ) 
=

=
18

1

i i i i

i

f x A L  (E.1) 

 

With A the cross-sectional area, L the length and ρ the density 

of a member. 

Each of the 18 members xi can be chosen from the profile 

database S: 

 

 ( )= 1 2 18, ,...,i ix x x x x S  (E.2) 

 

In which the profile set S contains 25 profiles, as prescribed in 

Appendix F.  

For this example, the constraint function is defined as a 

maximal vertical displacement of 500 mm: 

 

 ( ) = − 
max( )

1 0
500

y

i

u
g x  (E.3) 

 

In which uy is the vertical displacement of all nodes. It should be 

noted that this constraint is only taken as an illustrative example. 

In the numerical experiments the constraint is a stress limit. 

A stopping criterion is set on 50 successive generations with 

the same best solution. 

Appendix E Example genetic algorithm 
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 Now the optimisation starts with creating 5 designs with for each 

element a random profile. Figure 100 shows the result. 
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Figure 100 – Creation of 5 random structures 
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 The 5 random structures are evaluated by a structural analysis; 

all internal forces and displacement of the structure are 

calculated. Figure 101 shows the results, the red structures 

shows the displacement ×8. The bar plot shows the internal 

forces. 
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Figure 101 – Evaluate displacement and internal forces 

 

 

 

 

 

 

 

 Now the design options are checked on the constraint and 

objective function, Table 21 shows the results. Design 1 turns 

out to be infeasible as the displacement is too high; the 

constraint function is positive. Design 3 is the best design in this 

generation, as the weight is the lowest and it is feasible. 

 

Table 21 – Constraint and objective function evaluation 

Design Weight 

(kg) 

Maximum 

Displacemen

t (mm) 

Constraint 

function 

1 2024 1006 1.012 

2 2600 377 -0.246 

3 1856 375 -0.250 

4 3849 197 -0.606 

5 3023 214 -0.572 
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During each iteration, the convergence criterion is checked. As 

this is the first generation, this criterion is not met. 

 

 

 

 

 

 

 

 

 

 

 

 

 Now the process of reproduction starts. By random choice, the 

2nd design is mutated, while the 4th and 5th design are mixed. The 

1st design is dropped because it is infeasible and the 3rd design 

is regarded as elite design, so is not affected by mutation or 

crossover. Figure 102 shows the reproduction operators 

mutating the green beams in the 2nd design and swapping the 

yellow and green beams from the 4th and 5th design. 
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Figure 102 – Reproduction 

 

The designs show on the right of Figure 102 are taken as a new 

generation and the loop continues until the convergence 

criterium is met. 

 

In Appendix C.1, the result of the genetic algorithm is shown in an animation. 
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This chapter describes the benchmark problems which were used in this study. All input data 

is available at: http://doi.org/10.4121/uuid:4e32b29f-6647-4a36-9ea1-8931c88f8864 

F.1 18-bar cantilever truss 
The 18-bar cantilever truss is a statically determinate structure, which has been analysed in 

several papers: Salajegheh and Vanderplaats (1993) and Imai and Schmit (1981) considered 

both size and shape variations with ROT. Lee and Geem (2004) used ROT with only size 

variations. Kaveh and Zolghdar (2011) used CC. All researchers used four groups. The 

geometry consists of a cantilever truss beam, loaded on its top nodes. 

Figure 103 shows the geometry, member and nodal numbering, dimensions and support 

conditions of the problem. Table 22 shows the values of the load, density and modulus of 

elasticity of the problem. Table 23 shows the optimisation properties. The buckling stress limit 

represents the Euler buckling stress limit in which the radius of gyration is approximated as 

=r kA . 
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Figure 103 – Geometry 18-bar cantilever truss 

 

Table 22 - Properties problem 18-bar cantilever truss 

Load 89 kN 

Density 2768 kg/m3 

Modulus of elasticity 6.894∙104 MPa 
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Table 23 - Properties optimisation 18-bar cantilever truss 

Options for members 25 cross-sectional areas: 

645, 1290, 1935, 2581, 3226, 3871, 4516, 5161, 5806, 6452, 

7097, 7742, 8387, 9032, 9677, 10323, 10968, 11613, 12258, 

12903, 13548, 14194, 14839, 15484, 16129 mm2 

Allowable stress limit Yield stress limit: ±172 MPa 

And buckling stress limit for members in compression: 

 =
2

i
i

i

kA E

L
 

with k = 4, buckling constant 

Displacement limit n/a 

Number of groups 4 

Grouping ROT 

(Salajegheh and Vanderplaats 

1993; Lee and Geem 2004; Imai 

and Schmit 2010) 

Group Members 

1 1, 4, 8, 12, 16 

2 2, 6, 10, 14, 18 

3 3, 7, 11, 15 

4 5, 9, 13, 17 

 

Table 24 - Properties cost-optimisation 18-bar cantilever truss 

Type of connection All nodes: Truss connection angles 

Web spice plate in case of beam splice 

Web side plate at supports 

Number of marking drawings 1 

Crane Small crane 

Access equipment Mobile scaffolding 
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F.2 65-bar truss beam 
The 65-bar truss beam was analysed by Walls and Elvin (2010a) using ROT and UCS. It 

consists of a statically determinate truss beam supported at both ends.  

Figure 104 shows the geometry, dimensions and support conditions of the problem. Table 

25 shows the values of the load and modulus of elasticity of the problem. Table 26 shows the 

optimisation properties.  

 

2m

16 bays of 1.5m

 
Figure 104 – Geometry 65-bar truss beam 

 

Table 25 – Properties problem 65-bar truss beam 

Load case ULS 23.2 kN 

Load case SLS 16 kN 

Modulus of elasticity  200∙103 MPa 

 

Table 26 – Properties optimisation 65-bar truss beam 

Options for members 42 standardized equal leg angles (Steel Construction Institute 2020) 

Allowable stress limit For the ULS: 

Yield stress limit: ±350 MPa 

And buckling stress limit for members in compression: 


 =
2 2

2

i
i

i

r E

L
 

Displacement limit Span/400 = 60 mm at midspan for SLS 

Number of groups 4 

Elementary symmetry 

grouping 

33 symmetric groups 

Grouping ROT 

(Walls and Elvin 2010a)  

Group Members 

1 Top chords 

2 Bottom chords 

3 Verticals 

4 Diagonals 
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F.3 72-bar truss tower 
The 72-bar truss structure has been a popular benchmark problem in literature used by many 

different studies. It represents a statically indeterminate five-storey structure. 

Figure 105 shows the geometry, dimensions and support conditions of the problem. Table 

27 shows the values of the load and modulus of elasticity of the problem. Table 28 shows the 

optimisation properties. The figure on page F-6 shows the structure in 3D. To enable 3D-

viewing, open this document in Adobe Acrobat, enable 3D content in the taskbar and click on 

the figure. 
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Figure 105 – Geometry 72-bar truss tower 

 

Table 27 - Properties problem 72-bar truss tower 

Load case 1 (kN) Node Fx Fy Fz 

1 22.4 22.4 -22.4 

Load case 2 (kN) Node Fx Fy Fz 

1, 2, 3, 4 0 0 -22.4 

Density 2768 kg/m3 

Modulus of elasticity  6.894∙104 MPa 
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Table 28 - Properties optimisation 72-bar truss tower 

Options for member 25 cross-sectional areas: 

645, 1290, 1935, 2581, 3226, 3871, 4516, 5161, 5806, 6452, 7097, 7742, 

8387, 9032, 9677, 10323, 10968, 11613, 12258, 12903, 13548, 14194, 

14839, 15484, 16129 mm2 

Allowable stress 

limit  

Yield stress limit: ±172 MPa 

And buckling stress limit for members in compression:  =
2

i
i

i

kA E

L
 

with k = 4, buckling constant 

Displacement limit 6.35 mm at top nodes in all directions 

Number of groups 4 

Elementary 

symmetric grouping  

16 grouping, 4 groups per storey:  

All columns, beams, horizontal and vertical bracings per storey (Venkaya et 

al. 1969) 

The elementary grouping is shown in the 3D-figure on the next page as well 

Grouping ROT All columns 

All vertical bracings 

All horizontal bracings 

All beams 
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F.4 112-bar truss dome 
Steel dome structures have appeared frequently in literature, of which this statically 

indeterminate 112-bar truss dome is an example. The complete specification of the dimensions 

can be found in the paper of Saka (1990). 
Figure 107 shows the geometry, dimensions and support conditions of the problem. Table 

29 shows the values of the load and modulus of elasticity of the problem. Table 30 shows the 
optimisation properties. The figure on page F-8 shows the structure in 3D. 
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Figure 107 – Geometry 112-bar truss dome 

 

Table 29 - Properties problem 112-bar truss dome 

Load (kN) Node Downward load 

1 -5 

17, 23, 29, 35 -0.4 

16, 18, 22, 24, 28, 30, 34, 36 -1.2 

Other nodes -2 

Density Not given 

Modulus of elasticity 210∙103 MPa 

 

Table 30 - Properties optimisation 112-bar truss dome 

Options for members 43 pipe sections (Steel Construction Institute 2020) 

Allowable stress limit 

(N/mm2) 

Yield stress limit: ±150 Mpa 

And buckling stress limit for members in compression: 


 =
2 2

2

i
i

i

r E

L
 

Displacement limit (mm) 20 mm in node 1, 17, 23, 29, 35 

Number of groups 3 

Elementary symmetry 

grouping 

The dome consists of 4 symmetric segments, this allows elementary 

grouping to 16 groups. 

The elementary grouping is shown in the 3D-figure on the next page 

as well 

Grouping ROT 3 groups: 

All beams which run directly from a support to node 1 

All horizontal beams 

All diagonal bracings 
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F.5 160-bar truss tower 
The 160-bar truss transmission tower has appeared frequently in literature. This example has 

8 load cases, considering selfweight, wind load, snapping of different cables and end tower 

conditions. The complete specification of the dimensions can be found in the paper of 

Groenwold and Sander (1997).  
Figure 109 shows the geometry, nodal numbering of the relevant nodes and support 

conditions of the problem. Table 31 shows the values of the load and modulus of elasticity of 
the problem. Table 32 shows the optimisation properties. The figure on page F-12 shows the 
structure in 3D. 
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Figure 109 – Geometry 160-bar truss tower  
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Table 31 - Properties problem 160-bar truss tower 

 Node Fx Fy Fz 

Load case 1 (N) 52 -8515 0 -4817 

37 -9771 0 -5356 

25 -10703 0 -5356 

28 -10703 0 -5356 

Load case 2 (N) 52 -4836 12213 -3561 

37 -9771 0 -5356 

25 -10703 0 -5356 

28 -10703 0 -5356 

Load case 3 (N) 52 -8996 0 -4817 

37 -9329 0 -5356 

25 -9957 0 -5356 

28 -9957 0 -5356 

Load case 4 (N) 52 -8996 0 -5356 

37 -5611 12351 -4199 

25 -9957 0 -5356 

28 -9957 0 -5356 

Load case 5 (N) 52 -8996 0 -4817 

37 -9329 0 -5356 

25 -9957 0 -5356 

28 -6239 12351 -4199 

Load case 6 (N) 52 -8996 0 -4817 

37 -5611 12782 -4199 

25 -9957 0 -5356 

28 -9957 0 -5356 

Load case 7 (N) 52 -8996 0 -4817 

37 -9329 0 -5356 

25 -9957 0 -5356 

28 -6239 12782 -4199 

Load case 8 (N) 52 -4885 14323 -3561 

37 -9329 0 -5356 

25 -9957 0 -5356 

28 -9957 0 -5356 

Density 7850 kg/m3 

Modulus of elasticity  201∙103 MPa 
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Table 32 - Properties optimisation 160-bar truss tower 

Number of members 160 

Options for design variables 42 equal leg angles (Steel Construction Institute 2020) 

Allowable stress limit Yield stress limit: ±147.15 Mpa 

And buckling stress limit for members in compression: 


 =
2 2

2

i
i

i

r E

L
 

Displacement limit (mm) 80 mm at node 25, 26, 37, 52 

Number of groups 6 

Elementary symmetry 

grouping 

Symmetric grouping into 38 elementary groups: 

All vertical beams per height 

All bracings per height, from 5th to 8th floor separate for x and y 

direction 

All horizontal bracings per height 

Bottom beam per outrigger 

Top beams per outrigger 

The elementary grouping is shown in the 3D-figure on the next page 

as well 

Grouping ROT All vertical beams up to 6th floor 

All vertical & horizontal beams from 7th to 9th floor 

All vertical & horizontal beams from 10th to 12th floor 

All bracings up to 6th floor 

All vertical and horizontal bracings from 7th to 12th floor 

All beams of the outriggers 
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F.6 15-bar 3-storey frame 
The 15-bar 3-storey frame is a simple unbraced frame structure, used many times in literature. 

Figure 111 shows the geometry, member numbering, dimensions and support conditions 

of the problem. Table 33 shows the loading conditions and modulus of elasticity, while Table 

34 shows the other optimisation properties of the problem.  

11 m

3.1m

11 m

3.1m

3.1m

 
Figure 111 – Geometry 15-bar 3-storey frame 

 

Table 33 - Properties problem 15-bar 3-storey frame 

Load Horizontal load on storey 1 & 2: 22.24 kN 

Horizontal load on storey 3 11.12 kN 

Vertical distributed load on beams: 40.86 kN/m 

Modulus of elasticity  200∙103 MPa 

 

Table 34 - Properties optimisation 15-bar 3-storey frame 

Options for design 

variables 

283 W sections for the beams 

18 W10 section for columns 

Properties of W-sections follow from AISC Shapes Database v15.0 

(American Institute of Steel Construction 2017) 

Number of groups 2 groups for columns, 1 for beams 

Elementary symmetry 

grouping 

Symmetric around middle column in 9 groups 

Grouping ROT Outer columns, inner columns and beams 
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Allowable 

stress limit 

Interaction ratio from AISC-LFRD requirements: 

   

 
+ +   

 
 

8
1 for 0.2

9

uykuk uxk uk

nk b nxk b nyk nk

MP M P

P M M P
 

   

 
+ +   

 
 

8
1 for 0.2

2 9

uykuk uxk uk

nk b nxk b nyk nk

MP M P

P M M P
 

For each member k. uykM  = 0 for this 2D-frame 

With tensile force in member: 
 

ukP  = required axial tensile strength 

 =nk y gkP f A  = nominal tensile strength 

 yf  = 248 MPa = specified yield stress 

 gkA  = gross area of member 

  = = 0.9t
 = tensile strength reduction factor for yielding 

With compressive force in member: 
 

ukP  = required axial compressive strength 

 =nk cr gkP f A  = nominal compressive strength 

 

( ) 




= 

 
=  
 

2

2

0.658 for 1.5

0.877
for 1.5

c

cr y c

cr y c

c

f f

f f

  

 


=
y

c

fKl

r E
 

 K  = effective length factor, approximated by (Dumonteil 1992): 

( )+ + +
=

+ +

1.6 4 7.5

7.5

A B A B

z

A B

G G G G
K

G G
 

=



/

/

c c

A

b b

EI L
G

EI L
 = stiffness ratios of column and girders at two end joints A and 

B. G=1 for fixed supports 

=,

1

6
y beamK  

=, 1y columnK  

With z rotation in plane and y rotation out of plane.  

 l  = laterally unbraced length 

 r  = radius of gyration? 

 = = 0.85c
 = compressive strength reduction factor for yielding 

,uxk uykM M  = required flexural strength 

 = 0.90b
 = flexural resistance reduction factor 

=,nxk nyk y eM M f W  = nominal flexural strength 

We = elastic section modulus 
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F.7 117-bar 9-storey frame  
The 117-bar 9-storey frame is a 2D, framed structure. It is an adaptation from the 195-bar 

structure used by Walls and Elvin (2010a). 

Figure 112 shows the geometry, dimensions and support conditions of the problem. The 

distributed load which is shown on one storey, is applied on all storeys. Table 35 shows the 

loading conditions and modulus of elasticity, while Table 36 shows the other optimisation 

properties of the problem. 

 

5  6m

9 x 3.5m

 
Figure 112 – Geometry 117-bar 9-storey frame  

 

Table 35 - Properties problem 117-bar 9-storey frame 

Load  40 kN horizontal load per storey 

32 kN/m on every floor 

Modulus of elasticity 210∙103 MPa 
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Table 36 – Properties optimisation 117-bar 9-storey frame 

Options for 

members 

45 beams: 20 universal beam sections 

54 columns: 15 universal column sections 

18 bracings: 10 equal leg angle sections 

(Steel Construction Institute 2020) 

Allowable stress 

limit 

Interaction ratio from AISC-LFRD requirements, see constraint function of 

15-bar 3-storey frame in Appendix F.6 

Yield stress limit of 350 MPa 

With effective length factor 

( )+ + +
= =

+ +
, ,

1.6 4 7.5

7.5

A B A B

z beam z column

A B

G G G G
K K

G G
 

In which for the stiffness ratios bracings are not taken into account 

=,

1

6
z bracingK  

= =, ,

1

6
y beam y bracingK K  

=, 1y columnK  

Displacement limit Interstorey drift of 9 mm 

Numbers of groups Beams: 1 

Columns: 3 

Bracings: 3 

Elementary 

symmetry grouping 

Symmetric elementary grouping into 36 groups. 27 columns groups and 9 

bracing groups 

All beams are grouped in 1 additional groups, as the load on each floor is 

the same. 

Grouping ROT Groups for three consecutive stories for bracings, columns. 
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F.8 147-bar 3-storey frame 
The 147-bary 3-storey frame is a realistic 3D medium sized structure, modelled by 

Kazemzadeh Azad and Hassançebi (2015). It is braced in one direction, but unbraced in the 

other direction. 
Figure 113 shows the geometry, dimensions and support conditions of the problem. Table 

37 shows the loading conditions and modulus of elasticity while Table 38 shows the other 
optimisation properties of the problem. The figure on page F-19 shows the structure in 3D. 

4  5m 2  5m

5m

3.5m

3.5m

 
Figure 113 – Geometry 147-bar 3-storey frame  

 

Table 37 - Properties problem 147-bar 3-storey frame 

Beam orientation Columns have strong axis in unbraced direction. 

Beams have strong axis in horizontal direction. 

Bracings have strong axis in vertical direction 

Load Load combination: 1.2D + 1.6L + 1W 

D = dead load = 12 kN/m on floor and 7 kN/m on roof 

L = live load = 20 kN/m on floor and 15 kN/m on roof 

W = Wind load = 15 kN on all nodes of short and long facade 

Modulus of elasticity 200∙103 MPa 
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Table 38 - Properties optimisation 147-bar 3-storey frame 

Options for members Selection of 25 AISC W profiles 

Properties of W-sections follow from AISC Shapes Database v15.0 

(American Institute of Steel Construction 2017) 

Allowable stress limit Interaction ratio from AISC-LFRD requirements, see constraint function of 

15-bar 3-storey frame in Appendix F.6 

Yield stress limit of 248.2 MPa 

With effective length factor 

( )+ + +
=

+ +
,

1.6 4 7.5

7.5

A B A B

z column

A B

G G G G
K

G G
 

In which for the stiffness ratios bracings are not taken into account 

= =, , 1z bracing z beamK K  

=, 1y columnK  

Displacement limit 30 mm at top storey in two directions 

Storey height / 400 for inter-storey drift in two directions 

Number of groups 6 

Elementary 

symmetry grouping 

Symmetric grouping into 36 groups, 12 column groups, 21 beam groups 

and 3 bracing groups. 

The elementary grouping is shown in the 3D-figure on the next page as well 

Grouping ROT 

 

Corner and both sides columns are grouped in first storey and upper two 

storeys. 

Inner columns are grouped are grouped in first storey and upper two 

storeys. 

All beams and bracings are grouped 
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F.9 Feyenoord stadium 
This 3D-truss beam is a statically determinate, used in the design for the roof of the Feyenoord 

stadium (Kraaijenbrink et al. 2019) 
Figure 115 shows the geometry and dimensions of the problem. Table 39 shows the 

loading conditions and modulus of elasticity while Table 40 shows the optimisation properties 
of the problem. The figure on page F-22 shows the structure in 3D. 

 

195 m

20 m10 m

 
Figure 115 – Geometry roof beam Feyenoord stadium  

 

Table 39 - Properties problem roof beam Feyenoord stadium 

Load The loads are described in detail in the report from Royal HaskoningDHV 

(2019). In all load cases the movable roof is closed. 

1. Self-weight according to actual design 

2. Secondary steel load 

3. Architectural finishing load 

4. Solar panels load 

5. Event load of situation 1 from DO September 2019 

6. Up- and downward wind load 

7. Up- and downward internal pressure 

8. Wind suction and pressure in longitudinal direction 

Load cases ULS-1 Permanent downwards load × 1.65 

Variable downwards load × 1.32 

Horizontal wind in positive longitudinal direction 

ULS-2 Permanent downwards load × 1.65 

Variable downwards load × 1.32 

Horizontal wind in negative longitudinal direction 

ULS-3 Permanent downwards load × 0.9 

Variable downwards load × 1.65 

Horizontal wind in positive longitudinal direction 

ULS-4 Permanent downwards load × 0.9 

Variable downwards load × 1.65 

Horizontal wind in negative longitudinal direction 

SLS Upwards wind and pressure on movable roof ×1 

Modulus of elasticity 210∙103 MPa 

Support Support of 4 outer nodes in the bottom trusses. The nodes on the outside 

bottom truss are supported in z-direction. One of the nodes on the inside 

bottom truss is supported in all directions; the other one is supported in z- 

and x-direction. 



 

F-21 

Table 40 – Properties optimisation roof beam Feyenoord stadium 

Options for 

members 

A selection of 50 German RO-profiles 

Allowable stress 

limit 

Yield stress limit: ±460 MPa 

And buckling stress limit for members in compression: 


 =
2 2

2

i
i

i

r E

L
 

Displacement limit 650 mm 

Number of groups 21 

Elementary 

symmetry 

grouping 

Symmetric grouping and bundling of members in adjacent groups has been 

applied. Furthermore, the curved continuous bars are treated as one bar. The 

corresponding linking is shown in the figure on the next page. 

Grouping ROT 

 

1. Horizontal bars in the top plane, except for the outer one 

2. Middle 9 horizontal bars and 8 intermediate diagonals in bottom plane 

and all diagonals in top plane 

3. Middle 7 vertical bars in outside plane 

4. 6 diagonal bars besides middle 8 diagonals in outside plane 

5. 6 vertical bars besides middle 7 verticals in outside plane 

6. Middle 7 verticals bars in inside plane 

7. Middle 8 diagonals in inside plane 

8. 6 vertical bars besides middle 7 verticals in inside plane 

9. 6 diagonal bars besides middle 8 diagonals in inside plane 

10. Both outer diagonals in outside plane 

11. All outer verticals 

12. Upper curved continuous bar in outside plane 

13. Lower curved continuous bar in inside plane 

14. Upper curved continuous bar in inside plane 

15. All horizontal and diagonals in bottom plane except for middle 9 

horizontal bars and 8 intermediate diagonals. 

16. Diagonals and upper horizontals in end planes 

17. Both second outer verticals in outside plane 

18. Both second outside verticals in inside plane 

19. Outer diagonals in outside plane 

20. Bottom curved continuous bar in outside plane 

21. Middle 8 diagonals in outside plane 

 

Table 41 - Properties cost-optimisation 18-bar cantilever truss 

Type of connection All nodes: double truss connection CHS 

Number of marking drawings 4 

Crane Big crane 

Access equipment Booms 
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Because incorporating all possible costs factors in a cost function is not possible, I chose to 

use the models of Watson et al. (1996). In this cost function, four categories are proposed: 

supply costs, fabrication costs, surface treatment costs and erections costs. The costs 

provided by Watson are in dollars, which are converted to euros which a 1-1 exchange rate. 

Furthermore, a manhour rate of €40,- per hour is adopted, including overhead costs and 

margins. According to the original research, this cost function is valid for medium-sized steel 

project in which the costs exceed €150.000,-. In this chapter, the costs in each of the four 

categories are described. 

G.1 Steel supply costs,  
Costs are calculated by a unit price per weight. The unit price is taken from the database of 

Watson et al. (2009). 

G.2 Fabrication costs 
The fabrication costs are separated in connection, detailing and transporting costs. 

Connection costs 

The connection costs are dependent on the geometric type of connection. Furthermore, the 

costs are expressed in manhours. These costs include cutting costs of the beams. Both end 

connections and connections along a beam are considered, as shown in Table 42a and b. 

 

Table 42a – Manhours per connection 

Taken from literature (Watson et al. 1996) 

Section mass 

(kg/m) 

Web side plate 

end connection 

Web splice 

plate 

< 60.5 0.8 1.1 

60.5 tot 160 1.6 2.4 

> 160 3.0 3.5 

Diagram 

 
 

 
  

Appendix G Cost model steel structures 
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Table 42b – Manhours per connection 

Taken from literature (Watson et al. 1996) 

Section mass 

(kg/m) 

Truss 

connection 

angles 

Truss 

connection 

CHS 

< 30 0.4 1.6 

30 to 60.5 0.7 2.9 

60.5 to 120 - 3.3 

Diagram 

  

 

Detailing costs 

Detailing costs include drawing of marking plan and drawings for each unique member. 

Nowadays, drawing can be exported from engineering software. Nonetheless, these costs are 

taken into account as this cost function is verified as a whole and is less valid when altered. 

The marking plans include a fixed number of drawing per structure. For one marking plan, 

20 manhours are needed. 

The drawing for unique members includes drawing costs of connections. It is assumed 

every four hours of fabrication take one hour of drawing. 

Transport cost 

The transport costs are expressed as cost per member, as shown in Table 43. These costs 

are based on a typical travel time of 9 hours per load. 

 

Table 43 – Transport costs 

Taken from literature (Watson et al. 1996) 

Section mass (kg/m) Costs per member (€) 

< 60.5 15 

60.5 to 160 56 

> 160 225 

G.3 Surface treatments costs 
In this study, only the application of an alkyd primer was adopted. The costs per unit area are 

shown in Table 44. 

 

Table 44 – Surface treatment costs 

Taken from literature (Watson et al. 1996) 

Section mass (kg/m) Costs per square meter 

(€) 

< 60.5 6 

60.5 to 160 5 

> 160 4 
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G.4 Erection costs 
Erection costs are calculated by time of unloading and erecting, hire costs of cranes, lifting 

costs per member, hire costs of access equipment and labour costs, as shown in Table 45 and 

Table 46. It is assumed that three men are working at all times. Heavy members have 

increased costs because of the complexity of connecting these elements to other elements. 

 

Table 45 – Time for unloading and erecting per member 

Taken from literature (Watson et al. 1996) 

Section mass (kg/m) Time unload & erect per 

member (minutes) 

< 60.5 20 

60.5 tot 160 20 

> 160 24 

 

Table 46 – Costs cranes and access equipment 

Taken from literature (Watson et al. 1996) 

 Cranes Access equipment 

 Small crane Big crane 2 × mobile 

scaffolding 

2 × scissor 

lifts 

2 × booms 

Capacity 16 t 23 t 6 m 12 m 18 m 

Hire costs per 

hour (€) 

85 110 4 14 50 

Section mass 

(kg/m) 

     

< 60.5 (€) 28 37 3 20 33 

60.5 tot 160 (€) 28 37 3 20 33 

> 160(€) 34 44 3 24 40 
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