
Delft Center for Systems and Control

Modelling of Three-Phase Power
Converters
A fundamental port-Hamiltonian approach

LTZ 3 (TD) S. Krul

M
as

te
ro

fS
cie

nc
e

Th
es

is





Modelling of Three-Phase Power
Converters

A fundamental port-Hamiltonian approach

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

S. Krul
Luitenant-Ter-Zee der Derde Klasse van de Technische Dienst

June 4, 2015

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.



Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Modelling of Three-Phase Power Converters

by
S. Krul

in partial fulfillment of the requirements for the degree of
Master of Science Systems and Control

Dated: June 4, 2015

Supervisor(s):
prof.dr. R. Babuška
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Abstract

The port-Hamiltonian modelling and control of power converters has been the topic of a
number of studies for the past couple years. However, the modelling of three-phase converters
from fundamental port-Hamiltonian principles has been an unexplored direction. This study
focusses on deducing a modelling procedure to model a three-phase rectifier and a three-phase
inverter from a fundamental port-Hamiltonian perspective. Such a perspective involves the
derivation of a model from a mathematical expression of the Dirac structure. Two procedures
are formulated, where either the switches are viewed as virtual elements or as nonlinear
elements. The study concludes that both techniques are equally suitable for the modelling of
the rectifier and the inverter. Furthermore, incorporating non-ideal switches is easier when
regarding them as nonlinear elements, but obtaining a parametrised form (parametrised by
the switch state) is more straightforward when regarding them as virtual elements. Both
methods require us to identify the currents and voltages in the network as efforts and flows
based on the network topology. However, this turns out to be ambiguous for the conjugate
variables of the interconnection ports and switches. To cope with this, two conventions are
proposed.
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Robert Babuška for his effort in the project management. Last but not least, I like to thank
my friends and family for all their support and patience, especially Margareth, who stood by
me during this period. A special thanks goes to my friend Oliver, with whom I shared many
evenings working through fundamental math, testing my knowledge and sharing concepts.
Not to mention learning a thing or two, and talking, about fundamental physics and having
a good laugh.
Although it is perhaps only reserved for PhD theses to append their work with a list of (some
times ironic) epiphanies, I would like to use this preface to share, and end with, one.

Any form of mathematics, a problem, a theory or simply a notation, should al-
ways be approached with the utmost curiosity. Failing to do so, will result in a
fear towards math and will prevent anyone to utilise and recognise its full poten-
tial. Therefore, the tendency of teachers and lectures to step-over or cut-down on
mathematical notation or theory, will only degrade the incentive to understand,
emphasise the fear and rob students of the opportunity to grasp its potential.

Stephan Krul
June 4, 2015

Master of Science Thesis S. Krul



viii Preface

S. Krul Master of Science Thesis



“Get the physics right. The rest is just mathematics.”
— Rudy Kalman





Chapter 1

Introduction

1-1 Background

Today’s society sees an ever growing use of electrical devices and appliances that are in-
creasingly interfaced or interconnected with one another. The power forms at the interfaces
of these devices rarely commute, which requires devices that regulate and process the power
flow between them. For example, laptops work on a direct current (DC) from a battery which
is charged by connecting it to the power grid, but the power supplied from the net is an alter-
nating current (AC). To accommodate energy exchange between these devices systems known
as power converters are connected between the interfaces, which transform the power form
of the power supplier to the form demanded by the power receiver1. In general, the broadest
explanation of the task of power converters is (Mohan [1, Ch.1.1]): to process and control the
flow of electric energy from one form to another in the most suitable manner through control
of the currents and/or voltages. Figure 1-1 gives a schematic representation of this general
power process (power form transformation) and the position of the power converter within
this process.

The power forms vary from a constant or adjustable magnitude DC-voltage/current to an
single or multiple-phase AC-voltage/current with adjustable or constant frequency and/or
magnitude. The transformation of one power form to another is achieved by chopping the
input signal with semiconductor switches in such a way that the resulting output signal is of
(approximates) the desired form. The controller determines the opening and closing of the
switches, which is usually done by a method known as pulse-width-modulation. Thus, the
switches perform the central role in the operation of a power converter, but this also makes
these devices nonlinear in their behaviour.

The hybrid nature of these devices makes modelling and controlling them an interesting
topic [2]. Specifically, control of these devices with nonlinear techniques is still an ongoing
field of research. Together with the development of nonlinear control techniques for power

1In some devices the power sometimes flows in the secondary direction, i.e., from the receiver to the supplier.
For example, in electric drives during regenerative breaking.
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2 Introduction

Figure 1-1: Schematic representation of a power process.

converters, there is also a growing interest in the modelling of power converters with energy-
based methods, such as with the Euler-Lagrange or the Port-Hamiltonian (PH) formalism.
Especially, the PH framework holds some advantages, for it provides a natural foundation for
the application of passivity-based control techniques and allows for an easy interconnection of
multiple (multi-domain) systems.

In general, the PH framework views physical systems as ideal elements, interconnected by
ports, through which they exchange energy. The elements can be categorised into three
types: energy storage elements, energy dissipating elements and energy routing elements. The
energy flow through a port is described by a pair of dual variables, efforts (e) and flows
(f), whose inner product yields the energy flow or power. As a result of this categorisation,
energy sources in systems are not modelled as elements, but as additional (external) ports to
the system. Figure 1-2 gives a graphical representation of this concept, where S denotes the
structure of all storage elements, R the structure of all resistive elements and subscript P the
external ports. The Dirac structure, D, represents the interconnection of the elements and is
consequently power preserving, i.e., the total power entering (or leaving) the Dirac structure
is zero [3, Ch.2.1.2]. Appendix A lists the interpretation of the efforts and flows for different
physical domains.

Although, much work has been done on control of power converters with port-Hamiltonian
or passivity-based techniques, there is little literature on the modelling of power converters
with port-Hamiltonian methods [2]. The research that has been done has been focussed
on the modelling of DC/DC-converters, see for instance [4, 5, 6, 7]. However, three-phase
power converters, which have a power form on either the input or output side (or both) that
consists of three phases, are not yet considered. Therefore, this focus of this thesis is on
the modelling of three-phase power converters from port-Hamiltonian modelling principles.
Concretely, this thesis considers two types of three-phase power converters, the three-phase
AC/DC converter (known as a three-phase rectifier) and the three-phase DC/AC converter
(known as a three-phase inverter). These two power converters are at the core of most three-
phase power processes and are common components in many electrical machines and power

S. Krul Master of Science Thesis



1-2 Research objective 3

Figure 1-2: A port-Hamiltonian system.

generating configurations2, see for instance Wildi [8, Ch.23.1]. For example, these devices
can be found in wind turbines at the interconnection of the electrical generators to the power
grid or between the battery and the power grid in solar panels. Furthermore, these devices
perform a crucial role in regulating the angular velocity of induction motors by regulating the
frequency of the input voltage [8, Ch.23].

1-2 Research objective

Currently, the development of PH models of the three-phase power converters, with the
objective of passivity-based control in mind, is achieved by [2]:

1. expressing the system as a set of explicit differential equations with the Kirchhoff laws;

2. averaging the dynamics to obtain a continuous-time system and subsequently perform-
ing the dq0-transformation to project the phase variables unto an orthogonal frame;

3. rewriting the states in terms of PH variables by introducing the Hamiltonian.

This procedure has two implications: first, step (ii) implies that the systems are always
assumed to be balanced, which is not necessarily always the case and second, step (iii) implies
that the PH model is achieved by transformation, rather than modelling from PH principles,
which is starting from the Dirac structure and Hamiltonian. The objective of this thesis is:

Model the three-phase rectifier and inverter from a fundamental PH viewpoint, which is to
express the Dirac structure and the Hamiltonian and derive the model from thereon, and

evaluate the modelling procedure for effectiveness, efficiency and practicality.

The obtained models of the power converters are compared to the models in the original
papers [9, 10, 11]3.

2The three-phase AC to three-phase AC conversion used for electrical drives is, for example, commonly
achieved by first rectifying and subsequently inverting the electrical signal [2, 8].

3It is the argument of the author that validation by comparison of the obtained models suffices, because
the mathematical models of three-phase inverter and rectifiers are well established in textbooks and papers

Master of Science Thesis S. Krul



4 Introduction

1-3 Structure of the thesis

The structure of this thesis is as follows: Chapter 2 features some required port-Hamiltonian
system theory and modelling theory for (switching) electrical networks. This chapter con-
cludes with the modelling procedure for three-phase power converters used in this thesis.
Subsequently, Chapter 3 deals with the modelling of the three-phase inverter from [10, 11]
with this method. This leads to a differential-algebraic model of the inverter for an unbal-
anced system and an input-state-output model of the inverter for a balanced system. After
that, in Chapter 4, we apply the same modelling procedure to the three-phase rectifier from
[9]. This too, yields a differential-algebraic model and an input-state-output model for, re-
spectively, the unbalanced and balanced case. Finally, Chapter 5 summarises the conclusions
and lists the recommendations for further studies.

1-4 A word on the notation

In this thesis, we adhere to the following convention regarding the mathematical symbols:

• The lower case symbols, e.g., f, e, v, i, representing physical quantities are all assumed
to be time-varying and therefore the arguments of time are omitted.

• To prevent excessive use of conventional vector symbols, all the variables are column
vectors, e.g., w = (w1 w2 . . . wn)T . Moreover, to reduce the use of the transpose
operator, all the partial derivatives are defined to yield a column vector. This means
that, ∇w = ∂

∂w = ( ∂
∂w1

∂
∂w2

. . . ∂
∂wn

)T .

• The subscripts a, b, c refer to the phases a, b and c of an AC-variable. For instance,
va, vb, vc are phase voltages and vab the line-to-line voltage between phases a and b.

• The variables j, k, ` are reserved for counters and indexes.

• The calligraphic symbols are reserved for spaces, e.g., X ,D,F .

• The symbol O denotes a zeromatrix, i.e., a matrix with all elements equal to zero and
the symbol I denotes the identity matrix.

and verified in practise.
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Chapter 2

Modelling theory

This chapter presents the theory and modelling techniques for the modelling of power con-
verters from a fundamental port-Hamiltonian viewpoint. It concludes with two modelling
methods that differ in the way they model the switches. One views these as virtual elements
and the other as nonlinear elements. First, Section 2-1 provides some theoretical details on
the interconnection and representation of PH systems. Second, Section 2-2 deals with the
required network theory, including topics such as the network graph and the incidence ma-
trix. Finally, in Section 2-3, we deduce two methods from literature for the modelling of
power converters from a PH perspective and show that both of the methods – surprisingly
– cannot be applied to the modelling of three-phase power converters in their current form.
The methods are adapted and a new method is proposed to model the three-phase power
converters.

2-1 Port-Hamiltonian system theory

For the modelling of power converter as port-Hamiltonian systems two additional topics need
to be studied in more detail. The first is the interconnection of multiple PH systems, which is
equivalent to interconnecting their Dirac structures. An important feature of PH systems is
the interconnectivity or compositionality of the systems, which means that larger systems can
be described by interconnecting simpler parts. This is an essential advantage in the modelling
of complex and multi-domain systems. The second are the mathematical representations of
PH systems and their Dirac structures. In this section we shall highlight two representations
that are going to be used in this thesis. First, Section 2-1-1 deals with these two represen-
tations. Subsequently, Section 2-1-2 treats the theory regarding the interconnection of Dirac
structures. The theory on the representations is taken from Duindam et al. [3], Van Der
Schaft et al. [12] and the theory on the interconnection of PH systems is taken from Cervera
et al. [13].

Master of Science Thesis S. Krul



6 Modelling theory

2-1-1 Port-Hamiltonian system representations

In this section we present two mathematical representations of PH systems: the matrix kernel
representation of the Dirac structure and the input-state-output (ISO) PH form. The first
is the most general, but the latter more convenient for control, because it forms a set of
explicit differential equations, whose structure closely resembles the more common state-
space notation. We start with the mathematical definition of a finite Dirac structure. Then,
we give the implicit representation, the matrix kernel representation, and subsequently treat
the ISO form, which follows naturally from the matrix kernel representation under certain
conditions. In other words, the ISO representation is a special case of the matrix kernel
representation.

The definition of a finite Dirac structure

A finite Dirac structure on F × E , with E the dual space of F (E = F∗), is a subspace
D ⊂ F × E such that

1. 〈e|f〉 = 0 ∀ (f, e) ∈ D,

2. dimD = dimF .

The first property represents the power conversation principle, where 〈e|f〉 denotes the duality
product. In the case that F = Rn and E = (Rn)∗, the duality product reduces to the inner-
product between two vectors

〈e|f〉 = eT f.

The second property guarantees that the subspace has maximal dimension with respect to the
first property. This means that it is not possible to extend the subspace to a larger subspace
that still has this property.

The matrix kernel representation

Any Dirac structure D ⊂ F ×E can be represented in a matrix kernel representation1 defined
as

D = {(f, e) ∈ F × E | Ff + Ee = 0} . (2-1)

Take a linear space V of the same dimension as F and take linear coordinates v1, . . . , vn for
V, f1, . . . , fn for F and e1, . . . , en for E . Then, the linear maps F : F → V and E : E → V
satisfying

(i) EF T + FET = 0,
(ii) rank[F E] = dimF ,

are n × n matrices that capture the interconnection of the flows and efforts through the
characteristic equation

Ff + Ee = 0. (2-2)
1Simply termed kernel representation henceforth.

S. Krul Master of Science Thesis



2-1 Port-Hamiltonian system theory 7

The linear maps F T : V∗ → F∗ = E and ET : V∗ → (F∗)∗ ∼= F ("∼=" means isomorphic) are
the adjoint maps of F and E. The dimension of the linear space V can be greater than the
dimension of F . In which case, the matrices F and E are of dimension n′×n with n′ > n and
the representation is called a relaxed kernel representation. The relaxed kernel representation
leads to an excess of equations in (2-2), which means that there are multiple rows in (2-2)
denoting the same relation.

Consider the PH system depicted in Figure 1-2. Equation (2-1) defines an implicit PH system
of the form2 (

−ẋ, ∂H
∂x

(x), fR, eR, fP , eP
)
∈ D, (2-3)

where (fR, eR) ∈ R,
−fS = ẋ,

eS = ∂H

∂x
(x),

(2-4)

are substituted and H denotes the Hamiltonian (the energy in the system), see Appendix A.
This can readily be seen by rewriting (2-2) such that (2-1) reads as

D =
{

(−ẋ, ∂H
∂x

, fR, eR, fP , eP) ∈ FS × ES ×FR × ER ×FP × ER

| − FS ẋ+ ES
∂H

∂x
+ FRfR + EReR + FPfP + EPeP = 0

}
,

with ESF TS +FSETS +ERF TR+FRETR+EPF TP +FPETP = 0 and rank[FS ES FR ER FP EP ] =
dim(X × FR × FP). The symbol X denotes the state-space manifold. The characteristic
equation defines a PH system as

FS ẋ = ES
∂H

∂x
+ FRfR + EReR + FPfP + EPeP , (2-5)

which in general forms a set of differential-algebraic equations (DAEs) [13].

The input-state-output (ISO) form

In system theory and control it is common to work with systems of the form

Σ :
{
ẋ = f(x, u),
y = h(x, u), (2-6)

where x ∈ X is the state of the system, u ∈ Rm the input and y ∈ Rp the output. An
implicit port-Hamiltonian system of the form in (2-3) is therefore preferably transformed
into an explicit expression of the form in (2-6). For a PH system such an expression can be
achieved if the matrices F(·) and E(·) in (2-5) are such that they can be transformed to [13] IO

O

 ẋ =

 J(x)
gTR(x)
gT (x)

 ∂H
∂x

(x) +

gR(x)
O
O

 fR +

O−I
O

 eR +

g(x)
O
O

u+

OO
−I

 y,
2The minus sign is to have a consistent power flow convention: ∂T H

∂x
(x)ẋ is the power flowing into the storage

elements and eT
S fS is the power flowing into the Dirac structure. See also the discussion in [12, Ch.2.3-2.4].
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8 Modelling theory

where I denotes the identity matrix, O a zeromatrix of appropriate dimension and J(x) is a
n×n matrix that depends smoothly on x and satisfies J(x) = −JT (x). Hence, the PH system
can be represented by set of explicit equations, where the connection to the resistive structure
is modelled as a separate input-output couple. This ISO form is given by the formulae

ẋ = J(x)∂H
∂x

(x) + gR(x)fR + g(x)u,

eR = gTR(x)∂H
∂x

(x),

y = gT (x)∂H
∂x

(x),

(2-7)

for some resistive relation fR = −D̃eR with D̃ = D̃T , D̃ ≥ 0 [3, Ch.2.2.3].

The resistance structure is often not modelled as a separate input-output port, but included
into the system dynamics. The resistive structure is included by substituting gR(x)fR =
−gR(x)D̃eR = −gR(x)D̃gTR(x)∂H∂x (x), which yields the more common ISO form [12, Ch.10]

ẋ = [J(x)−D(x)]∂H
∂x

(x) + g(x)u,

y = gT (x)∂H
∂x

(x),
(2-8)

where the n× n matrix D(x) depend smoothly on x and satisfies D(x) = DT (x), D(x) ≥ 0.

Thus, the ISO form follows from the kernel representation (2-1) by first defining and substi-
tuting fP , eP with u, y and fS , eS with −ẋ, ∂H∂x (x), respectively. Subsequently solving (2-2)
for ẋ and y leads to the ISO representation of the system conform the structure in (2-8).
Likewise, solving (2-2) for ẋ, y and eR yields an ISO system conform (2-7). Although both
(2-7) and (2-8) are equally suitable, we chose to adhere to the ISO representation of (2-7) for
the rest of this thesis.

2-1-2 Composition and interconnection of Dirac structures

Consider a PH system separated into two subsystems A and B, such that

DA = {(f1, e1, f2, e2) ∈ F1 × E1 ×F2 × E2 | 〈e1|f1〉+ 〈e2|f2〉 = 0} ,
DB =

{
(f ′2, e′2, f3, e3) ∈ F2 × E2 ×F3 × E3 | 〈e′2|f ′2〉+ 〈e3|f3〉 = 0

}
.

Figure 2-1 shows a graphical representation of the division and the two subsystems. The
separation resulted into an additional port (f2, e2) in subsystem A and (f ′2, e′2) in subsystem
B. Logically, both Dirac structures share the same interconnection variables. However, due
to the fact that 〈e2|f2〉 denotes the incoming power in DA and 〈f ′2|e′2〉 denotes the incoming
power in DB, we cannot interconnect the two systems by simply equating the power variables
[13]. Instead, they are related with, for instance, the canonical interconnection

f2 = −f ′2,
e2 = e′2.

(2-9)
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2-1 Port-Hamiltonian system theory 9

Subsequently, the composition of the two Dirac structures reads as3 [13]

DA ◦ DB := {(f1, e1, f3e3) ∈ F1 × E1 ×F3 × E3 | ∃(f2, e2) ∈ F2 × E2

s.t. (f1, e1, f2, e2) ∈ DA and (−f2, e2, f3, e3) ∈ DB} .

Figure 2-1: Graphical representation of a separated Dirac structure.

Note that the canonical interconnection structure, (2-9), in itself defines a Dirac structure DI
on the space of the interconnection variables F2 × E2 given as

DI :=
{
(f2, e2, f

′
2e
′
2) ∈ F2 × E2 | f2 = −f ′2, e2 = e′2

s.t. (f2, e2) ∈ DA and (f ′2, e′2) ∈ DB
}
.

Likewise, the gyrative interconnection [12, Ch.2.2.1],

fAI = βeIB,

βeAI = −fIB,
(2-10)

is another interconnection, that also defines a Dirac structure on the space of the inter-
connection variables. Immediately it follows that, the interconnection of ` Dirac structures
Dk ⊂ Fk×Ek×FIk×EIk, k = 1, . . . , `, with `−1 individual interconnections, can be described
by the interconnection Dirac structure DI ⊂ FI1 × EI1 × . . . × FI` × EI` [13]. Moreover, the
composition of Dirac structures is associative, i.e., (DA ◦ DB) ◦ DC = DA ◦ (DB ◦ DC), which
means that the order of composition does not matter and that the brackets can be omitted.
The theory for the composition of Dirac structures admits a number of ways to obtain and
represent a composed system. We treat the one, where the Dirac structures are represented
in a kernel representation.
Consider two Dirac structures DA and DB defined as

DA = {(fA, eA) ∈ FA × EA | FAfA + EAeA = 0} ,
DB = {(fB, eB) ∈ FB × EB | FBfB + EBeB = 0} ,

3The composition of Dirac structures is more commonly denoted in literature asD1||D2, see [3, 13]. However,
to prevent confusion with the "components in parallel" (e.g. L1||L2) notation in electrical engineering, we opt
to use the notation from [12] to denote a composition.
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10 Modelling theory

which are connected to each other by a set of ports, described by the pairs (fAI , eAI) ∈
FA×EA, (fBI , eBI) ∈ FB×EB. Denote the composed flow and effort vector as f = [fTA fTB ]T ,
e = [eTA eTB]T , respectively, and the interconnection relations as I(fAI , fBI , eAI , eBI). Then,
the interconnection Dirac structure in a kernel representation can be expressed as

DI = {(fA, eA, fB, eB) ∈ FA × EA ×FB × EB | FIf + EIe = 0
s.t. I(fAI , fBI , eAI , eBI), fAI ∈ FA, eAI ∈ EA, fBI ∈ FB, eBI ∈ EB} .

And the kernel representation of the composed Dirac structure is

DA ◦ DB = {(fA, eA, fB, eB) ∈ FA × EA ×FB × EB | Ff + Ee = 0} , (2-11)

where

F =

FA O
O FB
FI

 , E =

EA O
O EB
EI

 .
The representation in (2-11) provides a structured and straightforward way of mathematically
constructing large systems from subsystems. However, the dimensions of the characteristic
equation increase rapidly with every subsystem, because every separation generates inter-
connection variables. These interconnection variables disappear when computing the total
model, which can be shown and done with the following theorem from [13].

Theorem 1. Consider two Dirac structures DA and DB defined as

DA = {(f1, e1, f2, e2) ∈ F1 × E1 ×F2 × E2 | F1f1 + E1e1 + F2Af2 + E2Ae2 = 0} ,
DB =

{
(f ′2, e′2, f3, e3) ∈ F2 × E2 ×F3 × E3 | F2Bf

′
2 + E2Be

′
2 + F3f3 + E3e3 = 0

}
,

where the flows and efforts corresponding to an interconnection port are separated from the
rest of the flows and efforts, and the two Dirac structures are connected with the canonical
connection (2-9). Then, there exists a matrix L = [LA LB] with kerL = im M and im LT =
kerMT , where

M =
[
F2A E2A
−F2B E2B

]
,

such that the composed Dirac structure reads as

DA ◦ DB = {(f1, e1, f3, e3) ∈ F1 × E1 ×F3 × E3 | Ff + Ee = 0} , (2-12)

where f = [fT1 fT3 ]T , e = [eT1 eT3 ]T , F = [LAF1 LBF3] and E = [LAE1 LBE3].

This result can be readily understood by substituting the interconnection constraint of (2-9)
into the characteristic equation of DB, which yields

−F2Bf2 + E2Be2 + F3f3 + E3e3 = 0.

Then, premultiply the equations characterising DA ◦ DB

[
F1 E2 F2A E2A O O
O O −F2B E2B F3 E3

]


f1
e1
f2
e2
f3
e3


= 0,
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2-2 Modelling electrical networks 11

with L. Since, LM = 0, this leads to

LAF1f1 + LAE1e1 + LBF3f3 + LBE3e3 = 0,

which is the equation characterising the composed Dirac structure in (2-12). See [13] for the
proof and more details on this theory. This theorem shows that the interconnection variables
characterising the interconnection port at the separation line are excessive variables in the
sense that they do not manifest themselves to the outside world. They simply intermediate
between the subsystems. Willems refers to these variables as latent variables, see Willems
[14].

2-2 Modelling electrical networks

Electrical systems are often represented by a lumped circuit and subsequently described by
the two fundamental postulates in electrical circuit theory: Kirchhoff’s voltage law (KVL) and
Kirchhoff’s current law (KCL). As far as these laws are concerned, only the interconnection
of the elements of the circuit is required. Therefore, the KVL and KCL can be derived from
the network graph of the circuit. This network graph representation of electrical networks
forms the basis to express the Dirac structure of switching electrical systems. As such,
this section first briefly treats some required definitions from graph theory in Section 2-2-1.
Subsequently, the concept of representing the Kirchhoff laws from the graphs in incidence
matrices is presented in Section 2-2-2. Finally, Section 2-2-3 deals with the methods for
representing the switching elements in graphs and in PH systems.

2-2-1 Graph theory

Graph theory is an effective tool for representing the interconnection of elements in networks,
see for instance Chua et al. [15, Ch.5]. In fact, the graph and the Dirac structure (intercon-
nection structure) are closely related. However, before we start with treating the theory to
express (switching) electrical networks and their Dirac structures on the basis of graphs, it is
convenient to discuss some basic definitions and concepts from graph theory. The definitions
and theory in this section are taken from Diestel [16].

The graph

A graph, G, consists of a set of nodes, N , and a set of branches4, B, and is defined as the
pair G = (N,B) of sets satisfying B ⊂ N2 [16, Ch.1.1]. A branch, b, from the graph connects
two nodes, n, from the graph, i.e., b = {nk, n`}, b ∈ B(G), nk, n` ∈ N(G). For the sake of
simplicity, we write from here on instead of b ∈ B(G) and n ∈ N(G), respectively b ∈ G and
n ∈ G. Moreover, we simply write b = nkn` instead of b = {nk, n`}.

The degree of a node is the number of branches that are connected to it [16, Ch.1.2]. In
directed graphs5, where each branch is given a direction and thus has a starting and end node,

4In graph theory the terms vertices (v) and edges (e) are used instead of nodes and branches, but these
terms will not be used in this thesis to prevent ambiguity in the notation with the variables efforts and voltages.

5Also called oriented graphs or digraphs.
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12 Modelling theory

the degree of a node is further split into an indegree and an outdegree. The indegree of a node
is the number of branches that enter the node, while the outdegree of a node is the number
of branches that leave the node.

Path, cycles and connectivity

A path is a non-empty graph GP = (N,B) of the form [16, Ch.1.3]

N = {n0, n1, . . . , nk}, B = {n0n1, n1n2, . . . , nk−1nk},

where ni are all distinct. Thus, a path in a graph is a subgraph of the graph, GP ⊂ G. The
number of branches in a path is the path length, denoted by ||GP ||.

A cycle is a non-empty graph, GC = (N,B), that consists out of a path GP = n0, . . . , nk−1
with k ≥ 3 and an additional branch b = nk−1n0 [16, Ch.1.3]. Thus, one can write

GC = GP + nk−1n0, k ≥ 3. (2-13)

Similarly to paths the number of branches in a cycle is the length of a cycle and denoted by
||GC ||. Furthermore, a cycle in a graph is a subgraph of the graph, GC ⊂ G. In directed
graphs it is possible to have multiple branches between two nodes and self-loops. Thus, for
directed graphs it is possible to have a cycle with ||GC || = 1 and the restriction in (2-13),
k ≥ 3, reduces to k ≥ 1.

A non-empty graph is called connected if any two of its nodes are linked by a path in G [16,
Ch.1.4]. Similarly, a non-empty graph is cyclically connected if any two of its nodes are part
of a cycle in G.

Dual graphs

Graphs are commonly drawn by denoting the nodes as dots and the branches as lines between
these dots. If a graph can be drawn on a plane without any of its branches crossing each
other, other than in a node, the graph is a plane graph [16, Ch.4.1]. Moreover, abstract graphs
that can be drawn this way are known as planar graphs. Before we formally define these two
concepts two additional terms must be introduced: an arc is a straight line segment in R2 and
the interior of an arc is the point set between the starting and end point of the line segment.

Plane graph: a plane graph6 G is a pair of (N,B) of finite sets with the following properties
[16, Ch.4.2, Ch.4.4]

1. N ⊂ R2;

2. every branch is an arc between two nodes;

3. different, undirected branches have different sets of end points;

4. the interior of an branch contains no node and no point of any other branch.
6The same symbol (G) is used for both plane graphs, planar graphs and graphs.
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2-2 Modelling electrical networks 13

Planar graph: a graph G is planar if it is isomorphic to a plane graph.

An important property of planar graphs is that every planar graph has a dual graph. In
Section 2-2-2 we find that the dual graphs are very convenient in expressing the KVL. To
describe how a dual graph is obtained from a plane graph we must first introduce the term
face [16, Ch.4.2]. A face of G is a region in the set R2\G. Since G is always bounded (i.e.,
G can always be placed within a domain of finite size), there will always be exactly one face
that is unbounded. This one is the outer face of G. The others are the inner faces of G.

The dual graph, G∗, of a planar graph, G, is obtained in the following way [16, Ch.4.6]:

1. place a new node, n∗, in every face of G.

2. link these "dual" nodes by a branch, b∗, for every b that separates two faces and let b∗
cross the corresponding b.

If a branch, b, is adjacent with only one face, then the corresponding dual branch, b∗, creates
a (self-) loop to n∗ of that face, again crossing b. Applying this procedure to the dual graph
yields the original graph. Figure 2-2 gives an example of a graph and its dual graph.

Figure 2-2: Example of a graph (solid lines, closed dotes) and its dual graph (dashed lines, open
dotes).

2-2-2 Representing electrical networks

Modelling electrical networks starts off with applying the two fundamental laws in network
theory, the Kirchhoff laws, to the network. The Kirchhoff laws are formulated in a number
of equivalent ways and can be mathematically represented by the incidence matrix. As men-
tioned earlier, a constructive approach to express the Kirchhoff laws of the network in any
form is to transform the circuit into a network graph. To that end, this section first presents
the transformation from the electrical circuit to the network graph. Subsequently, we deal
with the representations of the Kirchhoff laws and introduce the incidence matrix. Finally, a
procedure to get from the Kirchhoff laws to the kernel representation is given.
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14 Modelling theory

Network graphs

The network graph7 of an electrical circuit suppresses the information on the type of compo-
nent and considers only the voltage (cross variable) and the current (through variable). The
voltage (v) is a cross variable, because it is defined as the difference between the potentials
on the two sides of an element. Similarly, the current (i) is a through variable, because it
goes through the element. The fact that these variables change as a function of time in a
linear or nonlinear way does not affect the geometric interconnection of these variables with
one another. For instance, two components in series share the same current regardless how
this changes as function of time. Hence, a circuit is replaced by a graph where the currents
are the branches and the potentials (λ) are the nodes. In the dual graph, the voltages are
the dual branches (b∗) and the loop currents8 (iL), the dual nodes (n∗). Figure 2-3 gives
an example of an electrical circuit and its network graph and dual network graph. In the
graph the potentials at each interconnection of the elements in the network have become the
nodes and the currents became the branches [15, Ch.1.5]. Likewise, in the dual graph the
loop currents (not depicted in the network) have become the nodes and the voltages became
the branches.

(a) The circuit. (b) The network graph.

Figure 2-3: Example of an electrical circuit and its network graph.

The voltages and currents in an electrical network have a direction depending on the reference
chosen. The directions of the voltages and currents is represented in the network graph by
giving the branches an orientation, indicated by the arrow in the branch (the network graph
is a directed or orientated graph). Henceforth, we mean by graph, a network graph, since in
the following all graphs are network graphs. By definition, the current flows from the higher
potential (+ sign) to the lower potential (- sign) of the element [15, Ch.5.1]. Consequently,
by fixing the direction of the current, the reference direction of the voltage is fixed and vice
versa.

The Kirchhoff laws

Several (equivalent) formulations exist for the Kirchhoff laws. For this thesis the following
formulation is adopted [15, Ch4.1]:

7Also known as the circuit graph or digraph.
8The current in a cycle (loop).
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2-2 Modelling electrical networks 15

Kirchhoff’s voltage law (KVL): For all connected lumped circuits, for all
closed node sequences and for all times t, the algebraic sum of all the node-to-
node voltages around the chosen closed node sequence (loop) is zero.
Kirchhoff’s current law (KCL): For all connected lumped circuits and for all
times t, the algebraic sum of the currents leaving any node is equal to zero.

Sometimes a more general form is advocated for these laws from the perspective of the graph.
Although these forms essentially define the same laws, we treat the generalised form and the
more regular form (above) as two different concepts. The generalised form reads as [5]:

Kirchhoff’s cycle law (CL): The sum of cycle variables (cross variables, node-
to-node variables) along any cycle (i.e., chains of branches with a common start
and end node) in the graph is equal to zero.
Kirchhoff cocycle law (CCL): The sum of cocycle variables (through variables,
branch variables) along any cocycle (set of branches which splits the nodes of the
graph into two disjoint sets) in the graph is equal to zero.

Clearly, the CL is equal to the KVL and the CCL to the KCL for the graph. However, for the
dual graph the CCL yields the KVL and the CL the KCL. We advocate the following point
of view in this thesis: the KVL and KCL are the two fundamental laws that the circuit must
satisfy, while the CL and the CCL are viewed as two methods to obtain these laws from the
graph and dual graph.

This difference in viewpoint becomes apparent in the mathematical formulation of the inter-
connection of the circuit. The interconnection of any connected network graph, which does
not contains a self-loop9 can be represented by a matrix, called the incidence matrix [15,
Ch.6.2]. Both the CL and the CCL yield an incidence matrix, but commonly the matrix is
derived by applying the CCL.

Incidence matrix [15, Ch.6.2]: Let Nb be the number of branches and Nn the number of
nodes in a graph, G. Then, the incidence matrix, A(G) ∈ RNn×Nb , is defined as follows:

ak` =


+1 if branch ` leaves node k,
−1 if branch ` enters node k,
0 otherwise,

(2-14)

for k = 1, 2, . . . , Nn and ` = 1, 2, . . . , Nb.

Consequently, the CCL reads as
A(G)Ccocy = 0, (2-15)

where Ccocy is the vector containing all cocycle variables (branches, dual branches). Since,
the CL the is dual of this equation [15, Ch.6.3], its incidence matrix is related to (2-15) by a
transpose operation, such that

AT (G)N = Ccy,

where N is the vector containing all the nodes and Ccy the vector containing all the node-to-
node variables.

9A self-loop generates a zero row in the incidence matrix and as a result the corresponding current is a free
variable.
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16 Modelling theory

This leads to the following observation: the CL leads to an image representation of a graph,
while the CCL leads to a kernel representation of a graph. Applying the CCL on the graph
of a circuit yields the KCL in kernel formulation and applying the CCL on the dual graph of
a circuit yields the KVL in kernel formulation. Equivalently, applying the CL on the graph
and dual graph yields the KCL and KVL in an image representation. Let I denote the vector
of currents, V the vector of voltages, Λ the vector of potentials and IL the vector of loop
currents. Then, the KVL in image and kernel representation is, respectively,

AT (G)Λ = V, (2-16)
A(G∗)V = 0. (2-17)

And the KCL in image and kernel representation is, respectively,

AT (G∗)IL = I, (2-18)
A(G)I = 0. (2-19)

Thus, (2-17) and (2-19) are the mathematical representations corresponding to the formula-
tion of the KVL and the KCL defined above.

The relationship between Kirchhoff’s laws and Dirac structures

Equations (2-17) and (2-19) capture the interconnection of the electrical network in a kernel
representation, which bears a close resemblance to the kernel representation of the Dirac
structure in (2-1). In fact, (2-17) and (2-19) already form a Dirac structure in the following
manner

D = {(I, V ) | A(G)I = 0, A(G∗)V = 0} . (2-20)
The kernel representation of the Dirac structure, defined by (2-1), follows easily from (2-20).
First, combine (2-17) and (2-19) to form an equation of the same form as (2-2) [6]. This leads
to [

A(G)
O

]
︸ ︷︷ ︸

F̂

I +
[

O
A(G∗)

]
︸ ︷︷ ︸

Ê

V = 0. (2-21)

Clearly, (2-21) is of the same form as (2-2). However, some elements in I and V are efforts
and others are flows depending on the type of element and their location in the network. For
instance, an inductor’s flow is a voltage (φ̇) and a capacitor’s flow a current (q̇), see Table
A-1. Subsequently, transform (2-21) to[

F̂f F̂e
] [If
Ie

]
+
[
Êe Êf

] [Ve
Vf

]
= 0, (2-22)

where the elements of I and V corresponding to flows and efforts are stacked into the vectors
If and Vf , and Ie and Ve, respectively. The columns of the matrices F̂ and Ê are grouped
accordingly. Then, swapping the columns F̂e with the columns Êf and their corresponding
vectors Ie and Vf yields [

F̂f Êf
]

︸ ︷︷ ︸
F

[
If
Vf

]
︸ ︷︷ ︸
f

+
[
Êe F̂e

]
︸ ︷︷ ︸

E

[
Ve
Ie

]
︸ ︷︷ ︸
e

= 0, (2-23)
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2-2 Modelling electrical networks 17

which is (2-2) again. Thus, a Dirac structure in the form of (2-20) can be systematically
transformed into the kernel representation of a generalised port-Hamiltonian system given by
(2-1). Do note that a kernel representation derived with the incidence matrices is non-minimal.
Henceforth, we mean by kernel representation a relaxed kernel representation, because they
are all non-minimal.

It should be noted that the Dirac structure of an electric network can also be expressed in an
image representation or a combination of both the kernel and image representations by using
any combination of (2-16)-(2-19). However, the image representation of either the KVL or
KCL, does not yield the required interconnection of the voltages and currents, i.e., they do
not naturally (directly) yield the sums of efforts and flows that form the dynamical equations
of the system. On the contrary, any combination of the kernel and image representations
does provide enough information to reconstruct the graph, but this is not the objective in
this case. Concluding, only the kernel representation contains all the relations to form the
set of equations describing the dynamical, electrical system.

2-2-3 Representing switching networks

Power converters have hybrid dynamics, because they contain switching elements. This sec-
tion presents the modelling theory for systems with switching elements. There exist two fun-
damental viewpoints to include switching elements in the port-Hamiltonian framework. The
first comes from Escobar et al. [4], where the switches are modelled as non-linear elements.
This leads to an ISO system with additional input-output pairs for the switches. The other
comes from Magos et al. [5] and Valentin et al. [6, 7], where the switches are viewed as vir-
tual elements that change the Dirac structure. This viewpoint leads to a parametrised Dirac
structure and the parametrised incidence matrix. First, the viewpoint from [4] is explained.
Subsequently, we elucidate the method from [5, 6, 7] to parametrise the Dirac structure.

Switches as non-linear elements

Escobar and co-workers model switching systems by considering a fixed graph with the
switches (and diodes) as nonlinear components. This means that the Dirac structure (the
interconnection) does not change with switch state. As the switching elements neither belong
to S or R, they form their own structure W, see Figure 2-4. The switching structure W is
connected to the rest of the system by the Dirac structure through the port (fW , eW). This
explains why the system has an additional input-output couple.

Let (·)W denotes a port variable belonging to a switching element. With this viewpoint the
Dirac structure of a switching system in kernel representation is [12]

D = {(fS , eS , fR, eR, fP , eP , fW , eW) ∈ FS × ES ×FR × ER ×FP × EP ×FW × EW
| FSfS + ESeS + FRfR + EReR + FPfP + EPeP + FWfW + EWeW = 0} .

(2-24)
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18 Modelling theory

Figure 2-4: A port-Hamiltonian system with the switches as nonlinear elements.

The ISO model associated with (2-24) (assuming (2-24) admits this structure) is10 [4]

ẋ = J
∂H

∂x
(x) + gu+ gRfR + gsuW(s), y

eR
yW(s)

 =

gTgTR
gTW

 ∂H
∂x

(x) + Z

 u
uR

uW(s)

 , (2-25)

where Z is the direct feedthrough matrix and s ∈ {0, 1} denotes the switch state. Figure 2-5
gives the constitutive relation of the ideal switch presented in [4]. Substituting the constitutive
relation of the switching elements into the system and computing the dynamical equations
for each switch configuration yields an ISO model, parametrised by the switch state s, of the
form

ẋ = J(s)∂H
∂x

(x) + g(s)u+ gR(s)fR,

y = gT (s)∂H
∂x

(x),

eR = gTR(s)∂H
∂x

(x).

(2-26)

Switches as virtual elements

Valentin, Magos and Maschke [5, 6, 7] propose a different viewpoint in the modelling of
switching elements. They view and model the switches in a switching network as virtual
elements, because, in terms of the graph, these switches merge or disjoin the nodes connected
by their branches. For example, the circuit from Figure 2-3 yields the graph in Figure 2-6a
for s = 1 (closed) and yields the graph in Figure 2-6b for s = 0 (open). As such, the graph of
a switching system Σ consists out of two subgraphs, a virtual graph (Gv ⊂ G) and a reference
graph (Gr ⊂ G). The virtual graph contains all the nodes and branches corresponding to the
switches and the reference graph contains all the nodes and branches corresponding to the

10The LCR networks considered in [4] contain only linear elements and therefore none of the matrices, J , g,
gR, gs depend on the state x.
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(a) The constitutive relation. (b) The ideal switch.

Figure 2-5: The constitutive relation of an ideal switch.

functional elements, which is the same as the graph with all switches open. For example, in
the case of Figure 2-6, the reference graph is the graph in Figure 2-6b and the virtual graph
(which is not shown) consists of the nodes n1, n2 and the branch b2.

(a) Switch closed (s = 1). (b) Switch open (s = 0).

Figure 2-6: The graphs of the electrical network in Figure 2-3 for each switch configuration.

Since, the elements of the virtual graph can only merge or disjoin nodes from the reference
graph, the graph for a specific switch configuration is a transformation of the reference graph.
The incidence matrix corresponding to a switch configuration is obtained by linear trans-
formation of the incidence matrix of the reference graph [5]. To clarify this, consider the
incidence matrices corresponding to the graph in Figure 2-6a,

As=1(G) =


−1 −1 0 0 −1
0 0 0 0 0
1 1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

 ,

and Figure 2-6b,

As=0(G) =


−1 −1 0 0 −1
1 0 0 0 0
0 1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

 .

Master of Science Thesis S. Krul



20 Modelling theory

As=1(G) follows from As=0(G) by multiplying As=0(G) from the left with the transformation
matrix

AT (G) =


1 0 0 0 0
0 0 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

 .
For this network it is easy to see that a transformation matrix can be formulated, parametrised
by the switch state,

AT (G)(S) =


−1 0 0 0 0
0 1− s 0 0 0
0 s 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,
such that As=0(G) = AT (G)(S)As=0(G) for s = 0 and As=1(G) = AT (G)(S)As=0(G) for
s = 1.

Parametrised incidence matrix (PIM) [5]: For a general switching electric network Σ
with Ns number of switches it is possible to obtain a single incidence matrix, parametrised by
S = (s1, . . . , sNs)T ∈ {0, 1}Ns , that yields the incidence matrice of the graph for each switch
configuration through

A(G)(S) = AT (G)(S)A(Gr), (2-27)

where A(G)(S) is the parametrised incidence matrix (PIM), AT (G)(S) the transformation
matrix, which is parametrised by the switch state, A(Gr) the incidence matrix of the reference
graph and S the vector containing all the switch states. Given that Σ satisfies the following
assumptions [5, 6, 7]:

Assumption 1. The graph associated with Σ is planar.

Assumption 2. The graph associated with Σ is cyclically connected.

Assumption 3. The graph associated with Σ has no self-loop.

Assumption 4. The outdegree of each node in Gv is below or equal to one.

Assumption 5. All virtual nodes are indexed such that, in an oriented sequence of virtual
branches, one branch has a index number lower than its predecessor.

Assumption 1 provides that a dual exists, which means that (2-17) can be used and the kernel
representation be derived. Assumption 2 ensures that a closed-loop exists for each element
in the electrical network. Assumption 3 follows from the definition of an incidence matrix.
Assumption 4 grantees that the merging of more than one switch (a sequence of switches or
switches in parallel) realised by a linear transformation, groups all the nodes connected to the
switches. Finally, Assumption 5 ensures that the transformation matrix respects the merging
of the nodes when a sequence of switches is closed.

Parametrised transformation matrix [6]: For each switch sj , j ∈ {1, . . . , Ns} there
exists a virtual branch, bv = (nk, n`), (k, `) ∈ {1, . . . , Nn}2, with a disconnection-reconnection
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matrixMj(G)(sj) of dimension Nn×Nn. The elements within this disconnection-reconnection
matrix are defined by

Mj(G)(sj)m,n =


sj if m = `, n = k and k 6= `,
−sj if m = n = k, and k 6= `,
0 otherwise,

(2-28)

with (m,n) ∈ {1, . . . , Nn}2. The transformation matrix is given by

AT (G)(S) =
Ns∏
j=1

(INn×Nn +Mj(sj)). (2-29)

Substituting (2-29) into (2-27) we find that

A(G)(S) =
Ns∏
j=1

(INn×Nn +Mj(sj))A(Gr). (2-30)

The procedure is the same to find the matrices of the dual graph, denoted by A(G∗)(S∗),
AT (G∗)(S∗), S∗ = {s∗1, . . . , s∗Ns

} etc.

Admissible switch configurations: The method from [5, 6, 7] views each of the switches
as an independent switch, i.e., a switch with a switch state that is independent of all the
other switch states. This viewpoint leads to the result that not all switch configurations are
feasible or admissible in the model. Non-admissible configurations are [5, 17, Ch.1.1.1]

1. A voltage source in short-circuit or several independent voltage sources connected in
parallel.

2. A current source in open-circuit or several independent current sources connected in
series.

In this thesis we include dependency between (some of) the switches, which in many cases
removes the issue of non-admissible configurations. Nonetheless, for completeness, we always
give the admissible configuration set in which the Dirac structure is valid. The set of admissible
configurations is denoted by A(Σ). The non-admissible configurations are easily detected from
the PIM of the graph for voltage sources and from the PIM of the dual graph for the current
sources [5], because a voltage source in short-circuit or a current source in open-circuit makes
the corresponding column in the PIM equal to zero. Moreover, independent voltage sources
in parallel or current sources in series make the corresponding columns equal or opposite of
each other. To conclude, the PIMs together with A(Σ) form a Dirac structure in the form
of (2-20) which is transformed to the kernel representation by following (2-21)-(2-23). This
leads to the Dirac structure of a switching system parametrised by the switch state given as

D(S) = {(f, e) ∈ F × E | F (S)f + E(S)e = 0} , S ∈ A(Σ). (2-31)
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2-3 Modelling power converters

The required theory for the modelling of power converters have been discussed in the previous
two sections. Summarising and combining this theory allow us to postulate two methods to
model power converters from a fundamental PH viewpoint. These two techniques differ in the
way they view and approach the modelling of the switches. One uses the approach from [4],
in which the switches are modelled as nonlinear elements and is referred to as the nonlinear
element method (NEM). The other uses the theory from [5, 6, 7], in which the switches are
modelled as virtual elements and is referred to as the virtual element method (VEM). First,
Section 2-3-1 presents the VEM. Subsequently, Section 2-3-2 presents the NEM. Finally,
Section 2-3-3 further adapts these methods to be suitable for the modelling of three-phase
power converters.

2-3-1 The virtual element method

The modelling of power converters with the VEM consists of the following procedure:

1. Express the electrical network in a graph and dual graph. Consider the switches to be
virtual elements that merge or separate nodes in the graph and the dual graph. Split
both graphs into two subgraphs: a virtual graph with all the virtual branches and corre-
sponding nodes, and a reference graph with the functional branches and corresponding
nodes.

2. Apply the Kirchhoff cocycle law to the reference graph of the graph and the dual graph,
in order to obtain the reference incidence matrix with (2-14) for both the graph and
dual graph. Furthermore, define the transformation matrix parametrised by the switch
state with (2-28) and (2-29) for G and Gv. Then, combine the reference matrix and
the disconnection-reconnection matrix with (2-27) to find the parametrised incidence
matrices of the network.

3. Use the PIMs of the graph and the dual graph to express the Dirac structure in a kernel
representation (2-31) by using (2-20)-(2-23).

4. Convert the implicit PH system in (2-31) into a set of DAEs of the form (2-5) or when
possible into ISO form (2-7) by solving (2-2) for the states and outputs.

The advantage of this method is that the parametrisation is achieved in an algorithmic and
structured way. However, this algorithmic approach can lead to complex and incomprehen-
sible parametrisations, which means that the change of the Dirac structure as a function of
the switch state can be difficult to interpret and that the resulting parametrised model might
not be one that is expected.

2-3-2 The nonlinear element method

The modelling of PH, switching systems with the NEM consists of the following procedure:

S. Krul Master of Science Thesis



2-3 Modelling power converters 23

1. Transform the electrical network into its graph and dual graph. Consider the switches
to be nonlinear elements with their own current and voltage.

2. Apply the Kirchhoff cocycle law to find the incidence matrix of both the graph and the
dual graph.

3. Use the incidence matrices to express the Dirac structure of the system in a kernel
representation conform (2-31) by using (2-20)-(2-23).

4. Convert the implicit PH system in (2-3) into a set of DAEs (2-5) and if possible to
an ISO model (2-25) by solving (2-2) for the states and outputs (the switch ports are
also an input-output pair). Do note that the switches will lead to a direct feedthrough
matrix.

5. Compute the model for each switch state to find the parametrised (in terms of the
switch state) representation.

Technically speaking, using the graphs and dual graphs is not obligatory to obtain the KVL
and KCL, and thereby the E and F matrices. For simple networks, the correct KVL and
KCL equations are easily deducted from the network directly, but working with the graphs
provides a structured approach to find the incidence matrices that works for every general
network, however complicated. The advantage should become obvious when modelling multi-
phase power converters with large and complex loads (for instance, multi-level converters [17]
or cyclo-converters with detailed load models [8, Ch.21, 23.4] and [18].).

The advantage of this method is that the graph only needs to satisfy Assumptions 1-3. On the
other hand, the characteristic equation is not parametrised by the switch state. To get a model
parametrised by the switch state the dynamical behaviour must be computed for each switch
state and the parametrisation deduced from the results. Although it lacks the algorithmic
parametrisation of the equations, this method can accommodate non-ideal switches without
any adjustment, because the constitutive relation is not predefined. In the VEM the switches
are automatically assumed to be ideal.

2-3-3 The augmentation for three-phase power converters

This section shows that the two modelling methods formulated in the previous two sections
cannot be applied in their current form for the modelling of three-phase inverter and the
three-phase rectifier. Hence, an augmentation to the methods is proposed.

The problem with three-phase power converters

The most important assumption for the two modelling methods is that the graph is planar.
However, both the three-phase rectifier and inverter are not planar. Consider the general
three-phase inverter in Figure 2-7a with an unspecified DC source and an unspecified load
in ∆-(delta-)connection. A direct transformation of the network in Figure 3-1 to its graph
yields the graph in Figure 2-7b11. The switches are modelled as virtual elements (denoted

11Obviously, the topology and graph of a general three-phase rectifier are essentially the same. Therefore,
the conclusions also apply to the rectifier.
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by blue branches), but the conclusions also apply if they are viewed as nonlinear elements.
Clearly, the graph is not planar and therefore the dual graph does not exist. This has to

(a) Topology of a general three-phase inverter.

(b) The graph of a general three-phase inverter.

Figure 2-7: The topology and graph of a general three-phase inverter to show the non-planarity
of the system.

do with the fact that the interconnection of the DC-source with a three-phase output, ∆-
or Y-(star-)connected, cannot be achieved such that the connection is planar. Consequently,
the KVL (2-17) cannot be obtained. Apart form violating Assumption 1, the virtual graph
also violates Assumptions 4 and 5. The later observation is not important if the switches
are modelled as nonlinear elements. In the original papers that consider the PH modelling
of DC/DC converters this problem does not arise, because these power converters are always
planar. This problem does not occur for DC/DC converter, because their graphs are always
planar.

The adaptation for the modelling of three-phase power converters

A solution to the violation of Assumption 1 is to adapt the method such that it can cope
with non-planar graphs. A intuitive first attempt is to draw the graphs in three dimensions
and thereby avoid any crossing of the branches. Expressing the interconnection of a higher
dimensional graph could potentially be done with tensors. Tensors are - in simple terms -
the generalisation of vectors and matrices [19, Ch.10] and might be used to express three
dimensional graphs. However, a different and more straightforward solution is already avail-
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able within the PH framework. This solution involves exploiting the compositionality of PH
systems. In specific, a non-planar system can divided into individual planar subsystems. The
combined model can then be represented using the theory discussed in Section 2-1. We arrive
at the following proposition.

Proposition 1. Consider an electrical switching system Σ with a non-planar network graph,
G, and Ns number of switches. Decompose the system into k subsystems, Σ1, . . . ,Σk, such that
their corresponding graphs GΣ1 , . . . , GΣk

are planar and satisfy the additional assumptions
(Assumption 2-5 for the VEM or Assumption 2-3 for the NEM). Each separation of the
system results in a port in the two created subsystems, which is represented by a branch and
a node-to-node variable in the associated graphs of which the interconnection is represented
by an interconnection Dirac structure, DI . Then, the Dirac structure of the total system in
kernel representation is described by

D(S) = {(f, e) ∈ F × E | F (S)f + E(S)e = 0} , S ∈ A(Σ), (2-32)

where F (S) = [F̃ T (S) F TI ]T and E(S) = [ẼT (S)T ETI ]T ,

F̃ (S) =


FΣ1(S1) O · · · O

O FΣ2(S2) · · · O
...

... . . . ...
O O · · · FΣk

(Sk)

 ,

Ẽ(S) =


EΣ1(S1) O · · · O

O EΣ2(S2) · · · O
...

... . . . ...
O O · · · EΣk

(Sk)

 ,

with S = [ST1 , . . . , STk ]T ∈ {0, 1}Ns (which is empty in case of the NEM, because the switches
have an effort and flow) and FI , EI are the matrices of the characteristic equation of DI
containing the interconnection the subsystems. The effort and flow vectors are composed of
the effort and flow vectors of the subsystems. The matrices F(·)(S) and E(·)(S) are composed of
the columns of the corresponding (parametrised) incidence matrices A(G(·)(S) and A(G∗(·)(S)
associated with flows and efforts respectively, i.e.,

F(·)(S) =
[
Af (G(·))(S)
Af (G∗(·))(S)

]
, and E(·)(S) =

[
Ae(G(·))(S)
Ae(G∗(·))(S)

]
,

where the subscripts f and e denote that the matrix is composed of columns associated with
flows and efforts, respectively.
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Chapter 3

Modelling the three-phase inverter

This Chapter deals with deriving the model of a three-phase inverter. As presented in the
previous Chapter, there are two methods to model the power converter, the VEM and the
NEM. The primary difference being the viewpoint taken to model the switches. Both these
methods are used to model the power converter in this chapter. In general, the methods
summarise to the following: (i) determining the subsystems and their graphs, (ii) expressing
the Dirac structure of the system in a kernel representation with the (parametrised) incidence
matrices of the graphs, (iii) solving the characteristic equation of the kernel representation to
obtain the system as a set of differential algebraic equations (DAEs), (iv) rewrite the set of
DAE into a set of explicit differential equations; the input-state-output (ISO) representation.
First, the reference model of the inverter is introduced in Section 3-1. Second, the modelling
of the three-phase inverter with the VEM is presented in Section 3-2. Finally, Section 3-3
deals with the modelling of the three-phase inverter with the NEM.

3-1 The reference model for the three-phase inverter

This section presents the reference (PH) model of a three-phase inverter. Both the model
of general three-phase inverter and a three-phase inverter with a load are included in this
section. The mathematical model for the general three-phase inverter in Figure 2-7a is

idc = saia + sbib + scic,

vab = (sa − sb)vdc,
vbc = (sb − sc)vdc,
vca = (sc − sa)vdc,

(3-1)

where sa, sb, sc ∈ {0, 1}, which are 0 when the lower switch is in the leg is closed and 1 when
the upper switch in the leg is closed1. This general model of an inverter is taken from Holmes
et al. [17]. For its derivation and further details see Appendix B-1.

1This definition for sa, sb, sc shall be used for the rest of the thesis.
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Figure 3-1: The three-phase inverter topology.

Figure 3-1 depicts the network of the three-phase inverter from Mu et al. [10, 11], see
Appendix B-2 for further details. The subscript L denotes the load and the network is
assumed to be balanced, i.e., Ra = Rb = Rc = R, La = Lb = Lc = R and Ca = Cb = Cc = C.
The corresponding Hamiltonian of the system is

H(q, φ) =
∑

j=a,b,c,

(
1
2
φ2
j

L
+ 1

2
q2
j

C

)
, (3-2)

where φ = (φa φb φc)T denotes the flux-linkage across the inductors and q = (qa qb qc)T the
charge in the capacitors. The PH-ISO model reads as

[
q̇

φ̇

]
=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 −R 0 0
0 −1 0 0 −R 0
0 0 −1 0 0 −R



∂H

∂q
(q, φ)

∂H

∂φ
(q, φ)

+


O3×1

ŝa
ŝb
ŝc

 vdc

+
[
−I3×3

O3×3

]iLaiLb
iLc

 ,

idc =
[
O1×3 ŝa ŝb ŝc

] 
∂H

∂q
(q, φ)

∂H

∂φ
(q, φ)

 ,
vaovbo
vco

 =
[
−I3×3 O3×3

] 
∂H

∂q
(q, φ)

∂H

∂φ
(q, φ)

 ,

(3-3)

where ŝj = sj− 1
3
∑

k=a,b,c
sk, j ∈ {a, b, c}. Although the reference model is given for a balanced

system, we start with modelling this system for the unbalanced case to start with as least
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assumptions as possible. From this general model we subsequently derive the model for a
balanced system. For the sake of simplicity, the elements are assumed to be linear and the
load connected in ∆-connection.

3-2 Modelling the inverter with the vitual element method

This section features the modelling of the three-phase inverter with the switches viewed as
virtual elements. First, we discuss the separation of the system into planar subsystems and
their representations in Section 3-2-1. Subsequently, the Dirac structure is formulated and
analysed in Section 3-2-2. Next, Section 3-2-3 deals with solving the characteristic equation
of the Dirac structure. This leads to a set of DAEs. Finally, this differential-algebraic model
(DAM) is transformed into an ISO system by assuming a balanced load in Section 3-2-4.

3-2-1 Separating the system into planar subsystems

We divide the system into three planar subsystems, Σ1, Σ2 and Σ3, see Figure 3-2. The
separation of Σ1 and Σ2 removed the non-planar interconnection. As a result, the single
voltage source is now modelled as three independent voltage sources from the perspective
of Σ2. Subsystem Σ1 couples these three independent ports to a single DC source. The
separation into Σ1,Σ2,Σ3 underpins the modularity of this approach, because the DC (Σ1)
or AC (Σ3) side can simply be replaced.

Subsystems Σ1 and Σ3 do not contain any switches and, therefore their graphs need to satisfy
Assumptions 1-3. Figures 3-3 and 3-6 depict the resulting graph and dual graph for Σ1 and
Σ3, respectively. For clarity, the branches corresponding to an interconnection port have the
additional subscript p. From observation of Σ2 follows that Σ2 is symmetrical for every DC to
line-to-line AC output jk with jk ∈ {ab, bc, ca}. Splitting Σ2 provides three identical, smaller
subsystems, which are easier to model. Figure 3-4 shows the identical networks in the network
of Σ2 and Figure 3-5 gives the graph and the dual graph of the identical networks. The (dual)
branches for the virtual elements are denoted with the blue lines and the (dual) branches for
the functional elements with black lines. Furthermore, the branches bs1 and bs2 resemble the
upper switches S1, S2, S3 and the branches bs3 and bs4 resemble the lower switches S4, S5, S6.

Subsystem Σ2 contains switching elements and therefore needs to satisfy Assumption 1-5, but
on close inspection of the graph in Figure 3-5 we find that it violates Assumption 5. Recall
that Assumption 5’s purpose is to guarantee the validity of the transformation matrix in the
case that a sequence of switches is closed. This violation can be circumvented by introducing
the coupling between the switch states in each switch leg. Hence, the switch states s1, . . . , s6
are replaced with a switch state per phase leg, sa, sb, sc, such that

sa = s1, s4 = 1− sa,
sb = s2, s5 = 1− sb,
sc = s3, s6 = 1− sc.

(3-4)

Consequently, the branches, bs1, bs2, bs3, bs4, are a function of the switch states, which are
respectively, sj , sk, 1 − sk, 1 − sj for every leg jk ∈ {ab, bc, ca}. In other words, closing
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(a) Subsystem Σ1. (b) Subsystem Σ2.

(c) Subsystem Σ3.

Figure 3-2: The subsystems of the three-phase inverter.

the sequence bs4,bs1 never occurs and the PIM properly describes the graphs in each switch
configuration. The orientation of the branches is chosen in accordance with Assumptions 4
and 5.

(a) Graph of Σ1. (b) Dual graph of Σ1.

Figure 3-3: The graph and dual graph of Σ1.
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Figure 3-4: The identical subnetworks of Σ2.

(a) Graph of Σ2. (b) Dual graph of Σ2.

Figure 3-5: The simplified graph and dual graph of Σ2 with the switches as virtual elements.

Having defined the subsystems and their graphs, we continue with formulating the subsystems
in matrix formulation by using the CCL (2-15). Thereby, obtaining the KVL and KCL in
kernel representation, see (2-17) and (2-19) for the matrix formulation of the Kirchhoff laws.

Subsystem Σ1: applying (2-14) to the graph in Figure 3-3a leads to the incidence matrix

A(GΣ1) =
[
−1 −1 −1 −1
1 1 1 1

]
,

with BΣ1 = [b1 bp1 bp2 bp3]T . Similarly, applying (2-14) to the dual graph in Figure 3-3b gives

A(G∗Σ1) =


1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1

 ,

with B∗Σ1
= [b∗1 b∗p1 b∗p2 b∗p3]T .
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(a) Graph of Σ3.

(b) Dual graph Σ3.

Figure 3-6: The graph and dual graph of Σ3.

Subsystem Σ2: the subsystem contains switching elements and therefore has a reference
graph and a virtual graph. First consider the graph in Figure 3-5a. The incidence matrix
corresponding to the reference graph reads as

A(Gr)


−1 0
1 0
0 1
0 −1

 .
The virtual graph leads to four disconnection-reconnection matrices defined by (2-28). Also,
substituting (3-4) into the disconnection-reconnection matrices gives

M1(GΣ2)(sj) =


0 0 0 0
0 −sj 0 0
0 sj 0 0
0 0 0 0

 , M2(GΣ2)(sk) =


0 0 0 0
0 0 0 sk
0 0 0 0
0 0 0 −sk

 ,

M3(GΣ2)(sk) =


−(1− sk) 0 0 0

0 0 0 0
0 0 0 0

(1− sk) 0 0 0

 , M4(GΣ2)(sj) =


0 0 (1− sj) 0
0 0 0 0
0 0 −(1− sj) 0
0 0 0 0

 ,
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with jk ∈ {ab, bc, ca} and sj , sk ∈ {0, 1}. Applying (2-30) and simplifying the result yields
the PIM of the simplified graph2

Ajk(GΣ2)(Sjk) =


−sk −sk(sj − 1)

1− sj sk(sj − 1)
sj sj(1− sk)

sk − 1 sj(sk − 1)

 , (3-5)

with Sjk = [sj sk]T ∈ {0, 1}2. The PIM denoting the KCL for Σ2 is thus

A(GΣ2)(S) =

Aab(GΣ2)(S) O4×2 O4×2

O4×2 Abc(GΣ2)(S) O4×2

O4×2 O4×2 Aca(GΣ2)(S)

 , (3-6)

with S = [sa sb sc]T ∈ {0, 1}3 and BΣ2 = [bp4 bp7 bp5 bp8 bp6 bp9]T . Then, focus on the dual
graph in Figure 3-5b. We have the reference matrix

A(G∗r) =


0 1
1 0
−1 0
0 1

 ,
and the four disconnection-reconnection matrices

M1(G∗Σ2)(s∗j ) =


0 0 0 0
0 0 0 s∗j
0 0 0 0
0 0 0 −s∗j

 , M2(G∗Σ2)(s∗k) =


0 0 0 0
0 0 0 0
0 0 −s∗k 0
0 0 s∗k 0

 ,

M3(G∗Σ2)(s∗k) =


−(1− s∗k) 0 0 0

0 0 0 0
(1− s∗k) 0 0 0

0 0 0 0

 , M4(G∗Σ2)(s∗j ) =


0 (1− s∗j ) 0 0
0 −(1− s∗j ) 0 0
0 0 0 0
0 0 0 0

 ,
with s∗j , s∗k ∈ {0, 1}. Subsequently, computing (2-30), substituting s∗j = 1 − sj , s∗k = 1 − sk
and simplifying the result, yields

Ajk(G∗Σ2)(Sjk) =


−sj(sk − 1) sk − 1
−sk(sj − 1) 1− sj
sk(sjsk − 1) −sk
sj(sk − 1) sj

 , (3-7)

which defines Aab(G∗Σ2
)(Sab), Abc(G∗Σ2

)(Sbc) and Aca(G∗Σ2
)(Sca). Hence, the PIM denoting

the KVL for Σ2 is

A(G∗Σ2)(S) =

Aab(G∗Σ2
)(S) O4×2 O4×2

O4×2 Abc(G∗Σ2
)(S) O4×2

O4×2 O4×2 Aca(G∗Σ2
)(S)

 , (3-8)

2Computing the PIM yields large expressions in terms of the switch states. The result presented here has
been simplified. For example, the following relations have been identified and substituted s(s − 1) := 0 ∀s ∈
{0, 1} and sk − (sj − 1)(1− sk)− 1 = sj(sk − 1) ∀(sj , sk) ∈ {0, 1}2.
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with B∗Σ2
= [b∗p4 b∗p7 b∗p5 b∗p8 b∗p6 b∗p9]T .

Subsystem Σ3: the graph in Figure 3-6a gives the incidence matrix

A(GΣ3) =



1 0 −1 1 0 0 0 0 0
−1 1 0 0 1 0 0 0 0
0 −1 1 0 0 1 0 0 0 O6×6

0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1

−1 0 0 1 0 0 1 0 −1
0 −1 0 0 1 0 −1 1 0

O4×6 0 0 −1 0 0 1 0 −1 1
0 0 0 −1 −1 −1 0 0 0


,

with the corresponding vector BΣ3 = [bp10 bp11 bp12 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13]T .
Moreover, the incidence matrix corresponding to the dual graph in Figure 3-6b is

A(G∗Σ3) =



0 0 1 1 0 −1 1 0 −1 0 0 0 0 0 −1
−1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 −1 1 0 −1 1 0 0 0 0 −1 0 0
0 1 0 0 −1 1 0 −1 1 0 0 0 0 −1 0

1 −1 0 −1 0 0
O3×9 0 1 −1 0 −1 0

−1 0 1 0 0 −1


,

with B∗Σ3
= [b∗p10 b

∗
p11 b

∗
p12 b

∗
2 b
∗
3 b
∗
4 b
∗
5 b
∗
6 b
∗
7 b
∗
8 b
∗
9 b
∗
10 b

∗
11 b

∗
12 b

∗
13]T .

The subsystems are not stand alone systems and have a port that connects them to one
another at the points where they are separated. The interconnection of Σ1 and Σ2 is given
by the relations

b` = −b`+3,

b∗` = b∗`+3,
(3-9)

with ` = 1, 2, 3. The first equation denotes the interconnection of the currents and the second
the interconnection between the voltages. Likewise, the interconnection of Σ2 and Σ3 is given
by

bp`+6 = −bp`+9,

b∗p`+6 = b∗p`+9.
(3-10)

3-2-2 Formulating the Dirac structure

Following the theory from Section 2-2 and Section 2-3, the Dirac structure is methodically
obtained by rearranging the incidence matrices and rewriting the interconnection constraints
in (3-9) and (3-10) to form the matrices E and F . This results into a Dirac structure conform
Proposition 1. However, doing this requires us to identify the currents and voltages as efforts
and flows at this stage. The currents and voltages for the storage elements are defined by
(2-4) (see Appendix A), but this raises the question: how to identify the remaining voltages
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3-2 Modelling the inverter with the vitual element method 35

and currents as efforts and flows? The answer to this question is not as simple as it may
seen and is intimately related to the notion of causality within the PH framework. Therefore,
before continuing, it is convenient to discuss the notion of causality and the efforts and flows
in more detail.

Breedveld discusses causality in the PH framework in [20] and in [3, Ch.1.4, Ch.1.7]. He
concludes that, although it is physically speaking impossible to speak of causality among
conjugate variables, i.e., the one causes the other, from a control and computational viewpoint
such a definition is required, because we actuate only one of the variables and solve accordingly.
Indeed, the notion of causality underlines the general constitutive relation for the storage
elements in (2-4) (in this case integrative causality is also physically more correct, see [3,
Ch.1.7.2] for more details). The flow is input, effort is output viewpoint is also present in
the general constitutive relation for the resistive elements eR = D̂fR [12, 3], which implies
that the flow is again an input and the effort and an output. This causal definition has three
consequences. One, the framework formally distinguishes between voltage-driven resistors,
conductors, and current-driven resistors, resistors. Although such separation seems trivial for
linear resistors, it is not so for nonlinear resistors and conductors, where D̂ : FR → ER may
not be bijective3, see [15, Ch.1.2]. Two, the mappings in the ISO structures with respect to
their domains and co-domains are: J : E → F , g : F → F and gT : E → E (Z : F → E in the
case of direct feedthrough). Three, fP = u and eP = y. The latter observation also follows
form the second.

Based on the above observations, the obvious answer to the question would be to assign the
voltages and currents as efforts and flows, such that after computing the ISO model from the
Dirac structure, the assignment matches with the mappings of the ISO structure. However,
there is a problem with this answer. The objective is to use the kernel representation of
the Dirac structure and the Hamiltonian to arrive at the ISO. It makes no sense to use
the resulting ISO form to find the E and F matrix a posteriori. We need to identity the
generalised efforts and flows a priori with the information available, which is the network
topology and the Kirchhoff laws. Fortunately, through observation of the structure of the
Kirchhoff laws and the resulting ISO forms, it is possible to determine which elements are
voltage-driven and which are current-driven based on their position in the network.

Realising that the equations in the ISO structure are nothing else but the Kirchhoff laws, i.e.,
the sums of currents and voltages within the network, we arrive at the following observations:
equations belonging to loops or equivalently dual nodes (sums of voltages) always form a state
equation if one of the elements is an inductor. This implies that an inductor dominates over
a capacitor in terms of the state equation when they are both in a loop. This in turn implies
that all elements in a loop with an inductor are voltage-driven (voltage is input). Likewise,
loops with a capacitor contain current-driven elements (current is input). In the same sense,
a voltage source is a source for an inductor and a current source is a source for a capacitor
and consequently, a source in a loop with an inductor must be a voltage source and a source
in a loop with only a capacitor must be a current source. Thus, by analysing the topology of
the network, the elements and sources can be categorised as voltage- or current-driven and
thereby as flows (inputs) and efforts (outputs).

This leaves the assignment of the interconnection variables as efforts and flows. In a subsys-
3This automatically implies that, transforming the ISO representation from (2-7) to (2-8) and vice versa,

may not be possible.
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tem with storage elements these can be determined by replacing the connection to another
subsystem by a voltage-driven or current-driven impedance or a source. However, for a sub-
system without functional elements the correct type of causality is determined by the other
subsystems. For instance, the ports in Σ2 to Σ1 and to Σ3 are entirely determined by Σ1 and
Σ3 and cannot be determined only based on Σ2. From this we infer that it might be a tedious
solution for more complex systems with more subsystems. Although, for the present scenario,
the three-phase inverter, this solution would be applicable and manageable. Moreover, the
correct assignment of the currents and voltages as efforts and flows only makes sense if one
would compute the ISO of an individual subsystem, because, in the end, these ports are latent
variables that disappear after computing the total mathematical model (shown with Theo-
rem 1). The only real reason for the identification of the interconnection variables is thus to
determine what type of interconnection constraint (canonical or gyrative) the interconnection
relations between the subsystems are. Hence, the issue of the identification of the correct
causal relations feels rather pointless.

Willems debates such issues in [14], where he concludes and arguments that: the intercon-
nection of subsystems must not be analysed or described as input-output processes, but as
ports sharing variables. Witness the following quote from Willems [14]:

"Properties and representations of systems refer to the behaviour."

Indeed, whatever the choice for the assignment of the efforts and flows of the interconnection
ports and the consequent interconnection type, does not change the behaviour of the system.
In terms of Theorem 1 only the structure of the matrix M changes. This argument does not
count for the other elements, for instance the sources, because they also need to respect the
ISO structure. We assimilate the viewpoint from Willems regarding the interconnection of the
subsystems, which leads us to the following proposition for the modelling of interconnected
systems:

Proposition 2. The separation of a system into two subsystems results in an interconnection
port in both subsystems, described by a voltage and a current, who are respectively assigned
as effort and flow, and are related to the port variables of the associated subsystem by the
canonical interconnection (2-9).

In light of this, the voltages and currents of the three-phase inverter are identified as follows.
For Σ1, with the exception of b1, all the branches (currents) are flows. Conversely, with the
exception of b∗1, all the dual branches (voltages) are efforts. For Σ2 all the branches are flows
and all the dual branches are efforts. For Σ3, the branches b2, . . . , b7 are efforts and the rest
are flows. Notice that the resistors are voltage-driven due to the inductors. Likewise, the
dual branches, b∗2, . . . , b∗7 are flows and the rest are efforts. Subsequently, grouping the efforts
and flows together in an effort and flow vector for each subsystem leads to the total flow and
effort vectors

f =
[
fTΣ1

fTΣ2
fTΣ3

]T
, (3-11)

e =
[
eTΣ1

eTΣ2
eTΣ3

]T
, (3-12)
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where

fΣ1 =
[
udc f1 f2 f3

]T
,

eΣ1 =
[
ydc e1 e2 e3

]T
,

fΣ2 =
[
f4 f7 f5 f8 f6 f9

]T
,

eΣ2 =
[
e4 e7 e5 e8 e6 e9

]T
,

fΣ3 =
[
f10 f11 f12 fRa fRb fRc −φ̇a −φ̇b −φ̇c −q̇a −q̇b −q̇c uab ubc uca

]T
,

eΣ3 =
[
e10 e11 e12 eRa eRb eRc

∂H
∂φa

∂H
∂φb

∂H
∂φc

∂H
∂qa

∂H
∂qb

∂H
∂qc

yab ybc yca
]T
,

φ is the flux-linkage across the inductor, q the charge in the capacitor, ydc the current on the
DC side, udc the voltage on the DC side, yab, ybc, yca the line-to-line voltages and uab, ubc,
uca the line-to-line currents of the ∆-connected load. The efforts and flows corresponding to
ports are denotes with an index number, where the index corresponds to the index in the
branch variable (fj = bpj , ej = b∗pj). Furthermore, the Hamiltonian H(q, φ) for the inverter is
given by (3-2). For simplicity, we write the state vector x = (x1 x2)T , where x1 = (qa qb qc)
and x2 = (φa φb φc).

Subsequently, grouping the columns of the (parametrised) incidence matrices corresponding
to flows and to efforts, yields a Dirac structure in accordance with Proposition 1, where the
matrices F ∈ R36×25 and E ∈ R36×25 are composed of FΣ1 , EΣ1 , . . . , FΣ3 , EΣ3 and FI , EI .
The matrices FΣ1 , EΣ1 , . . . , FΣ3 , EΣ3 are in turn given as

FΣ1 =
[
Af (GΣ1)
Af (G∗Σ1

)

]
, FΣ2 =

[
Af (GΣ2)(S)

O

]
, FΣ3 =

[
Af (GΣ3)
Af (G∗Σ3

)

]
, (3-13)

EΣ1 =
[
Ae(GΣ1)
Ae(G∗Σ1

)

]
, EΣ2 =

[
O

Ae(G∗Σ2
)(S)

]
, EΣ3 =

[
Ae(GΣ3)
Ae(G∗Σ3

)

]
, (3-14)

where S = [sa sb sc]T ∈ {0, 1}3. Observe that there are no non-admissible switch configura-
tions. This means that

A(Σ) = {0, 1}6.

In conclusion, the Dirac structure of the system is now represented in the kernel representation
of (2-32). This Dirac structure admits an implicit PH system denoted as4(

−ẋ, ∂H
∂x

(x), fR, eR, udc, ydc, uAC , yAC
)
∈ D(S), S ∈ A(Σ),

where fR = [fRa fRb fRc]T , eR = [eRa eRb eRc]T , uAC = [uab ubc uca]T and yAC = [yab ybc yca]T .

3-2-3 Deriving the differential-algebraic model

This section shows how the mathematical model of the inverter follows form solving the
characteristic equation of the Dirac structure. For the inverter this leads to a set of DAEs,

4For convenience and clarity, the inputs and outputs are separated for the DC and AC side.
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of the form in (2-5). The DAM is the result of modelling the system without assuming a
balanced load, because this couples the voltages in the inductors in the phase legs. First, we
rewrite the parametrisation of Σ2 into a more convenient and comprehensible form. Then,
we show that computing the model corresponding to D1 ◦D2 (the composition of subsystems
Σ1 and Σ2) is the mathematical model of a basic inverter given by (3-1). Finally, we give the
DAM model of three-phase inverter from Figure 3-1.

The simplified parametrisation of Σ2

Before deriving the models of the basic three-phase inverter and the inverter in Figure 3-1, it
is convenient to rewrite the parametrisation of Σ2. The matrices EΣ2(S) and FΣ2(S) (which
are equal to (3-6) and (3-8), respectively) are first simplified by computing the equations
for every switch configuration, (sa, sb, sc) ∈ {0, 1}3. Computing the characteristic equation
with the matrices (3-5) and (3-7) with the flow vector [f` f`+3]T and effort vector [e` e`+3]T
provides the following results.
For (sj , sk) = (0, 0):

f` = 0,
e`+3 = 0.

For (sj , sk) = (1, 0):
f` = −f`+3,

e`+3 = e`+3.

For (sj , sk) = (0, 1):
f` = f`+3,

e`+3 = −e`+3.

For (sj , sk) = (1, 1):
f` = 0,

e`+3 = 0.

Rewriting the result into a simplified parametrised form leads to the matrices

FΣ2(S) =

I3×3
(sa − sb) 0 0

0 (sb − sc) 0
0 0 (sc − sa)

O3×6

 ,

EΣ2(S) =


O3×6

(sa − sb) 0 0
0 (sb − sc) 0
0 0 (sc − sa)

−I3×3

 ,
(3-15)

where S = [sa sb sc]T and the corresponding effort and flow vector fΣ2 and eΣ2 are defined
in (3-11) and (3-12).
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The basic three-phase inverter model

Consider the models of Σ1 and Σ2. Denoting f7, f8, f9 as inputs and e7, e8, e9 as outputs and
composing Σ1 and Σ2 with Theorem 1 yields

ydc = −f7(sa − sb)− f8(sb − sc)− f9(sc − sa),
e7 = udc(sa − sb),
e8 = udc(sb − sc),
e9 = udc(sc − sa).

(3-16)

The equations in (3-16) represent the model of a general three-phase inverter with a DC
source and with a unspecified ∆-connected output. Observe that ydc is defined in the opposite
direction of the current in Figure 2-7a, which causes the minus sign difference when comparing
the output equation of (3-16) and the one in (3-1). Furthermore, the DC current is expressed
as a function of the line-to-line current as opposed to the phase currents in (3-1).

The DAM of the three-phase inverter

Computing the composed system matrices of D1 ◦ D2 ◦ D3 and solving the characteristic
equation for ẋ, y and eR leads to the DAM5:

I3×3 O3×3

1 −1 0
O3×3 0 1 −1

−1 0 1

 ẋ =


O3×3 I3×3

1 −1 0
0 1 −1 O3×3

−1 0 1

 ∂H∂x (x)+


O3×3

1 −1 0
0 1 −1
−1 0 1

 fR −


O3×1

sa − sb
sb − sc
sc − sa

udc+


1 0 −1
−1 1 0
0 −1 1

O3×3

uAC ,
s.t. q̇a + q̇b + q̇c = 0,

eR =
[
O3×3 I3×3

] ∂H
∂x

(x),

ydc =
[
O1×3 −sa −sb −sc

] ∂H
∂x

(x),

yAC =

 1 −1 0
0 1 −1
−1 0 1

O3×3


︸ ︷︷ ︸

gT
AC

∂H

∂x
(x),

(3-17)

5The detailed derivation is included in Appendix C-1.
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with sa, sb, sc ∈ {0, 1}, the Hamiltonian given by (3-2) and the resistive relation6

eR =

−
1
Ra

0 0
0 − 1

Rb
0

0 0 − 1
Rc

 fR.
Concluding, a DAM is obtained when starting form the interconnection of the efforts and flows
(or similarly, voltages and currents), because the voltages in the phases a, b, c always depend
on the voltages in the loops ab, bc, ca and are therefore not independent. To obtain explicit
equations some additional insight and rewriting of the equations is needed. The derivation of
the explicit equations is treated in the next section. Furthermore, we showed that following
this PH modelling procedure yields a model of a three-phase inverter in a structured and
systematic way, which is valid for any load, unbalanced or balanced, linear or nonlinear.

3-2-4 Deriving the input-state-output model

This section shows how the coupling of the voltages can be removed and the DAM model
transformed into an ISO model of the structure in (2-7) by assuming a balanced system
(La = Lb = Lc = L), Ca = Cb = Cc = C and Ra = Rb = Rc = R). The assumption of
a balanced system is widely applied in the modelling of three-phase systems and in practise
most systems can be regarded as balanced [2], [21, Ch.3].

Focus on the equations in (3-17) that relate to ẋ2. If we consider the potentials in the inverter
circuit (see Figure 3-2) a certain structure in these equations becomes apparent:

∂H

∂qa
(x) + fRa − φ̇a︸ ︷︷ ︸
λ2a−λ6

−
(
∂H

∂qc
(x) + fRc − φ̇c

)
︸ ︷︷ ︸

λ2c−λ6

+ (sc − sa)udc︸ ︷︷ ︸
λ2c−λ2a

= 0, (3-18)

∂H

∂qb
(x) + fRb − φ̇b︸ ︷︷ ︸
λ2b−λ6

−
(
∂H

∂qa
(x) + fRa − φ̇a

)
︸ ︷︷ ︸

λ2a−λ6

+ (sa − sb)udc︸ ︷︷ ︸
λ2a−λ2b

= 0, (3-19)

∂H

∂qc
(x) + fRc − φ̇c︸ ︷︷ ︸
λ2c−λ6

−
(
∂H

∂qb
(x) + fRb − φ̇b

)
︸ ︷︷ ︸

λ2b−λ6

+ (sb − sc)udc︸ ︷︷ ︸
λ2b−λ2c

= 0. (3-20)

In a balanced system the input (line-to-line voltage) term in the above equations can be
divided into two phase voltages, each expressed with respect to potential λ6, as

(sj − sk)udc︸ ︷︷ ︸
λ2j−λ2k

= udc

(2
3sj −

1
3sk −

1
3s`
)

︸ ︷︷ ︸
λ2j−λ6

−udc
(2

3sk −
1
3sj −

1
3s`
)

︸ ︷︷ ︸
λ2k−λ6

. (3-21)

where jk ∈ {ab, bc, ca}, ` ∈ {a, b, c} and j 6= k 6= `. In other words, λ6 has become the datum

6The minus sign is because 〈eR|fR〉 denotes incoming power into the Dirac structure.
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node of the system. Substituting (3-21) into (3-18)-(3-20) yields

∂H

∂qa
(x) + fRa − φ̇a︸ ︷︷ ︸
λ2a−λ6

−
(
∂H

∂qc
(x) + fRc − φ̇c

)
︸ ︷︷ ︸

λ2c−λ6

+udc

(2
3sc −

1
3sa −

1
3sb

)
︸ ︷︷ ︸

λ2c−λ6

−udc
(2

3sa −
1
3sc −

1
3sb

)
︸ ︷︷ ︸

λ2a−λ6

= 0,

∂H

∂qb
(x) + fRb − φ̇b︸ ︷︷ ︸
λ2b−λ6

−
(
∂H

∂qa
(x) + fRa − φ̇a

)
︸ ︷︷ ︸

λ2a−λ6

+udc

(2
3sa −

1
3sb −

1
3sc

)
︸ ︷︷ ︸

λ2a−λ6

−udc
(2

3sb −
1
3sa −

1
3sc

)
︸ ︷︷ ︸

λ2b−λ6

= 0,

∂H

∂qc
(x) + fRc − φ̇c︸ ︷︷ ︸
λ2c−λ6

−
(
∂H

∂qb
(x) + fRb − φ̇b

)
︸ ︷︷ ︸

λ2b−λ6

+udc

(2
3sb −

1
3sc −

1
3sa

)
︸ ︷︷ ︸

λ2b−λ6

−udc
(2

3sc −
1
3sb −

1
3sa

)
︸ ︷︷ ︸

λ2cλ6

= 0.

Denote the potential differences with respect to λ6 as voltages with the subscript o (λ`−λ6 =
v`o). Then, the above equations in terms of phase voltages reads as

vao − vco + vco − vao = 0,
vbo − vao + vao − vbo = 0,
vco − vbo + vbo − vco = 0.

From this we infer that the following formulae must hold

∂H

∂qa
(x) + fRa − φ̇a − udc

(2
3sa −

1
3sb −

1
3sc

)
= 0,

∂H

∂qb
(x) + fRb − φ̇b − udc

(2
3sb −

1
3sa −

1
3sc

)
= 0,

∂H

∂qc
(x) + fRc − φ̇c − udc

(2
3sc −

1
3sa −

1
3sb

)
= 0.

Thus, the differential equations for x2 can be explicitly written as

ẋ1 =

1 0 0
0 1 0
0 0 1

 ∂H
∂x1

(x) +

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

gR

fR −

2
3sa −

1
3sb −

1
3sc

2
3sb −

1
3sa −

1
3sc

2
3sc −

1
3sa −

1
3sb


︸ ︷︷ ︸

gdc(S)

udc.

The expression of the DC current in (3-17) does not seem to be equal to gTdc(S) ∂H∂x1
(x). How-

ever, the output matrix in (3-17) can be replaced by the transpose of the input matrix gdc(S),
because the mappings are equivalent.
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Proof.

ydc =−

2
3sa −

1
3sb −

1
3sc

2
3sb −

1
3sa −

1
3sc

2
3sc −

1
3sa −

1
3sb


T

∂H

∂x1
(x),

=−
(
sa −

1
3sa −

1
3sb −

1
3sc

)
∂H

∂φa
(x)−

(
sb −

1
3sa −

1
3sb −

1
3sc

)
∂H

∂φb
(x)−(

sc −
1
3sa −

1
3sb −

1
3sc

)
∂H

∂φc
(x),

=− sa
∂H

∂φa
(x)− sb

∂H

∂φb
(x)− sc

∂H

∂φc
(x) + 1

3

(
∂H

∂φa
(x) + ∂H

∂φb
(x) + ∂H

∂φc
(x)
)
sa+

1
3

(
∂H

∂φa
(x) + ∂H

∂φb
(x) + ∂H

∂φc
(x)
)
sb + 1

3

(
∂H

∂φa
(x) + ∂H

∂φb
(x) + ∂H

∂φc
(x)
)
sc.

In a balanced system the term ∂H
∂φa

(x)+ ∂H
∂φb

(x)+ ∂H
∂φc

(x) is per definition zero and the expression
reduces to

ydc = −sa
∂H

∂φa
(x)− sb

∂H

∂φb
(x)− sc

∂H

∂φc
(x).

Thereby recovering the DC output equation in (3-17).

Combining the results leads to the ISO-PH model for a three-phase inverter with a balanced
load

ẋ =
[
O3×3 −I3×3

I3×3 O3×3

]
∂H

∂x
(x) +

[
O3×3

gR

]
fR −

[
O3×1

gdc(S)

]
udc + gACuAC ,

eR =
[
O3×3 gTR

] ∂H
∂x

(x),

ydc = −
[
O1×3 gTdc(S)

] ∂H
∂x

(x),

yAC = gTAC
∂H

∂x
(x),

(3-22)

with the Hamiltonian in (3-2) and the resistance relation

eR = − 1
R
· I3×3fR.

In conclusion, the resulting model in (3-22) is the same model as the one in (3-3), but with the
AC-side input and output given for a ∆-connection7 and the resistive structure is expressed
as an additional input-output port. There is a sign difference between the models in (3-3)
and (3-22), due to the power flow convention for Dirac structures. This difference is omitted
in the procedure to derive the PH system in [10, 11], because Mu et al. equate vL = φ̇L,
while in this derivation fS = −vL = −φ̇L, because we define the power flow into the Dirac
structure as positive. The same holds for the resistive relation.

7Obviously, for a Y-connected load, such as in [10, 11], the input-output matrix, gAC , reduces to the
input-output mapping in (3-3), where the inputs are the phase currents and the outputs the phase voltages.
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3-3 Modelling the inverter with nonlinear element method

This section presents the derivation of the PH model with NEM, where the switches are
viewed as nonlinear elements. First, the separation of the system into subsystems and their
mathematical representations are discussed (Section 3-3-1). Subsequently, the Dirac structure
is formulated (Section 3-3-2). Finally, the DAM and the ISO model are derived by solving
the characteristic equation (Section 3-3-3).

3-3-1 Separating the system into planar subsystems

The advantage of this technique over the previous one is that the graphs of the systems only
need to satisfy Assumption 1-3. Hence, the system is divided into the same three planar
subsystems, see Figures 3-2. As a result, the graphs of subsystems Σ1 and Σ3 are the same,
see Figure 3-3 and Figure 3-6. The graph of Σ2 in Figure 3-5 changes to the graph in
Figure 3-7, where the switching elements are now functional branches. The branches bsj and
bsk represent the upper switches S1, S2, S3, and the branches b̂sj and b̂sk represent the lower
switches S4, S5, S6. In terms of the switch state, the conduction of the branches bsj , bsk, b̂sj , b̂sk
corresponds to sj , sk, 1− sj , 1− sk, respectively.

(a) Graph of Σ2. (b) Dual graph of Σ2.

Figure 3-7: The simplified graph and dual graph of Σ2 with the switches as nonlinear elements.

Because the graphs and dual graphs for Σ1 and Σ3 are the same their incidence matrices are
too. The incidence matrix for Σ2 does change, because of the addition of functional branches.
The incidence matrix corresponding to the graph and dual graph in Figure 3-7 are given by

Ajk(GΣ2) =


−1 0 0 1 −1 0
1 1 −1 0 0 0
0 −1 0 0 1 1
0 0 1 −1 0 −1

 ,

Ajk(G∗Σ2) =


0 0 0 1 −1 −1
1 −1 0 0 1 0
−1 0 1 −1 0 0
0 1 −1 0 0 1

 .
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with BΣ2 = [bp` bsj bsk b̂sk b̂sj bp(`+3)]T and B∗Σ2
= [b∗p` b∗sj b∗sk b̂∗sk b̂∗sj b∗p(`+3)]T ,

where jk = ab, bc, ca and ` = 4, 5, 6. These matrices describe the interconnection of a DC to
line-to-line terminal loop. By slightly rearranging the matrices and combining them together
the total incidence matrices describing Σ2 can be expressed as

A(GΣ2) =



−1 0 0 0 0 0 −1 1 0 0 0 0
1 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 −1 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 −1 0 −1 0 0
0 −1 0 0 0 0 0 −1 1 0 0 0
0 1 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 −1 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 −1 0 −1 0
0 0 −1 0 0 0 1 0 −1 0 0 0
0 0 1 −1 0 1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 1 0 0 1
0 0 0 1 0 0 −1 0 0 0 0 −1



, (3-23)

with BΣ2 = [bp4 bp5 bp6 bsa bsb bsc b̂sa b̂sb b̂sc bp7 bp8 bp9]T , and

A(G∗Σ2) =



0 0 0 0 0 0 −1 1 0 −1 0 0
1 0 0 −1 0 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 −1 0 0 0 0
0 0 0 1 −1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 1 0 −1 0
0 1 0 0 −1 0 0 1 0 0 0 0
0 −1 0 0 0 1 0 0 −1 0 0 0
0 0 0 0 1 −1 0 0 0 0 1 0
0 0 0 0 0 0 1 0 −1 0 0 −1
0 0 1 0 0 −1 0 0 1 0 0 0
0 0 −1 1 0 0 −1 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0 0 1



, (3-24)

with B∗Σ2
= [b∗p4 b∗p5 b∗p6 b∗sa b∗sb b∗sc b̂∗sa b̂∗sb b̂∗sc b∗p7 b∗p8 b∗p9]T . To conclude, the interconnection

of the subsystems are again given by (3-9) and (3-10).

3-3-2 Formulating the Dirac structure

To formulate the Dirac structure with Proposition 1, the branches and dual branches of the
switches must be assigned as efforts and flows (the assignment of the other branches is the
same the one Section 3-2-2). The assignment of the currents and voltages of the switches
to the efforts and flows boils down to the question: are the switches, which are nonlinear
elements, current- or voltage-driven? It turns out that for the switches such a viewpoint
not correct and their assignment is ambiguous. The choice for their causal relation does not
depend on their place in the network topology, like the place of the position of the resistive
element makes it either a conductor or resistor. This statement will be shown in the next
section. For now we propose to assign the efforts and flows of the switches with the following
proposition.
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Proposition 3. When regarding the switches as nonlinear, resistive-type elements, assign
their currents as flows and their voltages as efforts.

Note that a direct consequence of Proposition 3 is that the ISO form can have flows as outputs
and efforts as inputs.
By Proposition 2 and Proposition 3 all branches corresponding to A(GΣ2) are flows and all
dual branches corresponding to A(G∗Σ2

) are efforts. Hence, with the incidence matrices, the
interconnection and the efforts and flows defined, the Dirac structure of the total system can
be formulated with Proposition 1. The flow and effort vectors of the total system are given
by (3-11) and (3-12), where fΣ1 , eΣ1 , fΣ3 and eΣ3 are the same, but for Σ2 the flow and effort
vectors become8

fΣ2 =
[
f4 f5 f6 fsa fsb fsc f̂sa f̂sb f̂sc f7 f8 f9

]T
,

eΣ2 =
[
e4 e5 e6 esa esb esc êsa êsb êsc e7 e8 e9

]T
.

This results in a kernel representation with the matrices, F ∈ R36×31, E ∈ R36×31 composed
of the matrices FΣ1 , EΣ1 , . . . , FΣ3 , EΣ3 , which are now

FΣ1 =
[
Af (GΣ1)
Af (G∗Σ1

)

]
, FΣ2 =

[
Af (GΣ2)

O

]
, FΣ3 =

[
Af (GΣ3)
Af (G∗Σ3

)

]
, (3-25)

EΣ1 =
[
Ae(GΣ1)
Ae(G∗Σ1

)

]
, EΣ2 =

[
O

Ae(G∗Σ2
)

]
, EΣ3 =

[
Ae(GΣ3)
Ae(G∗Σ3

)

]
. (3-26)

3-3-3 Deriving the differential-algebraic model and input-state-output model

Solving the characteristic equation of the kernel representation yields the mathematical model
of the system. In this case, the PH model has additional inputs and outputs, because the
switches are modelled as nonlinear elements. Nonetheless, parametrising this model in terms
of the switch states, by computing the equations for each switch state, should yield the same
model as with the VEM. We shall show this in the two ways: first, by showing that the
representations for Σ2 are equivalent (Σ2 is the only subsystem that changed). The purpose
of this is to provide insight and arguments for Proposition 2 and 3. Second, by parametrising
the resulting ISO system and thereby showing that the ISO representations are equivalent.

Analysing the mathematical representation of Σ2

Consider the general mathematical expression for the DC (f`, e`) to AC terminal (f`+3, e`+3)
loop in Σ2, where ` = 4, 5, 6. Rewriting

FΣ2fΣ2 + EΣ2eΣ2 = 0,

leads to the mathematical input-output model

f` = f`+3 − fsj + f̂sk,

e`+3 = −e` + esk − êsj ,
(3-27)

8For convenience, the arguments of the switch state fW(s), eW(s) are omitted in the switch variables.
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f̂sj = fsj − f`+3,

fsk = f`+3 + f̂sk,

êsk = esk − e`,
esj = e` + êsj ,

(3-28)

where jk ∈ {ab, bc, ca}. It is apparent that this is only one of many input-output representa-
tions, e.g. [f` e`]T or [f`+3 e`+3]T qualify just as well as outputs of Σ2. Therefore, based solely
on analyses of Σ2, the correct ("causal") input-output model cannot be chosen. The correct
causality for Σ2 is dictated by Σ1 and Σ3 and although this correct causal definition is easily
uncovered in this case, it might not be necessarily the case for any kind of interconnected
subsystem (this arguments for Proposition 2). Furthermore, one would expect that, based
on the positions within the network, the voltages of the switches are flows (inputs) and the
currents efforts (outputs). However, this is clearly not true based from the resulting equa-
tions (3-27) and (3-28). In fact, some of the switches have currents as inputs or outputs and
some have voltages. Defining which of the switches have currents and which ones voltages
is a matter of choice, e.g, fsj , f̂sk could also have been chosen as the inputs. Therefore, the
correct effort and flow for the switches are ambiguous and potentially are a matter of choice.
(for this reason Proposition 3 is constructed).

Computing (3-28) for every switch configuration and substituting the result in (3-27) yields

sj = 0, sk = 0⇒
{
fsj = fsk = 0⇒ f̂sj = −f`+3, f̂sk = −f`+3 ⇒ f` = 0,
êsj = êsk = 0⇒ esk = e`, esj = e` ⇒ e`+3 = 0.

sj = 1, sk = 1⇒
{
f̂sj = f̂sk = 0⇒ fsj = f`+3, fsk = f`+3 ⇒ f` = 0,
esj = esk = 0⇒ êsk = −e`, êsj = −e` ⇒ e`+3 = 0.

sj = 1, sk = 0⇒
{
f̂sj = fsk = 0⇒ fsj = f`+3, f̂sk = −f`+3 ⇒ f` = −f`+3,

esj = êsk = 0⇒ esk = e`, êsj = −e` ⇒ e`+3 = e`.

sj = 0, sk = 1⇒
{
fsj = f̂sk = 0⇒ f̂sj = −f`+3, fsk = f`+3 ⇒ f` = f`+3,

êsj = esk = 0⇒ êsk = −e`, esj = e` ⇒ e`+3 = −e`.

This reduces to the following input-output model, parametrised by the switch states sj , sk ∈
{0, 1},

f` = −f`+3(sj − sk),
e`+3 = e`(sj − sk),

with jk ∈ {ab, bc, ca} and ` = 4, 5, 6. This model coincides with the parametrised kernel
representation in (3-15). Therefore, both representations are equivalent.

Parametrising the resulting differential-algebraic model

The DAM model of the system with the switches modelled as input-output ports reads as
I3×3 O3×3

1 −1 0
O3×3 0 1 −1

−1 0 1

 ẋ =


O3×3 I3×3

1 −1 0
0 1 −1 O3×3

−1 0 1

 ∂H∂x (x) +


O3×3

1 −1 0
0 1 −1
−1 0 1

 fR−
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
O3×1

1
1
1

udc −


O3×3

0 1 0
0 0 1
1 0 0


esa

esb

esc

+
[
O3×3

I3×3

]f̂ea

êsb

êsc

+ gACuAC ,

s.t. q̇a + q̇b + q̇c = 0,

eR =
[
O3×3 I3×3

] ∂H
∂x

(x),

ydc =f10 − fsa + f̂sb + f11 − fsb + f̂sc + f12 − fsc + f̂sa,

f̂sa =fsa − f10,

fsb =f10 + f̂sb,

f̂sb =fsb − f11,

fsc =f11 + f̂sc,

f̂sc =fsc − f12,

fsa =f12 + f̂sa,

s.t.

−f10 + f11
f10 − f11
f11 − f12

 = ∂H

∂x
(x),

êsb =esb − udc,
esa =udc + êsa,

êsc =esc − udc,
esb =udc + êsb,

êsa =esa − udc,
esc =udc + êsc,

yAC =gTAC
∂H

∂x
(x),

with sa, sb, sc ∈ {0, 1}, the Hamiltonian given by (3-2) and the resistive relation

eR =

−
1
Ra

0 0
0 − 1

Rb
0

0 0 − 1
Rc

 fR.
Computing the DC output and input matrix for each switch configuration in the same manner
as we parametrised the input-output model of Σ2 leads to the DAM model, parametrised by
the switch state, in (3-17). The details of the derivation are given in Appendix C-2. Since
the parametrised DAMs are the same, assuming a balanced systems leads to the ISO model
of the three-phase converter described by (3-22). Thus, both the NEM and the VEM lead to
the same model.

Observe that it is not possible to write the non-parametrised DAM in such a way that the
latent interconnection variables, f10, f11, f12 are removed. Moreover, because the structure
in the non-parametrised DAM does not seem to be PH at all. This result is unexpected
and seems wrong for a number of reasons. For instance, Theorem 1 proves that composing
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Dirac structures always removes the latent variables whose proof is considered watertight,
and it seems odd we can start with a PH system and end with one, but have a intermediate
result that is not a PH system. On the other hand ,there are some arguments that make
this result seem logical. For one, the E and F matrices consist of the incidence matrices
that correspond to the graph and dual graph. We separated the system into subsystems for
the exact reason that a dual graph did not exits of the total system. The non-existence of a
dual graph advocates that we should not be able to find a E and a F matrix of the complete
system, because having these would imply we can deduce A(G∗) and be able to draw the dual
graph of the system. Clearly, this conflicts with the original premisses of the non-existence
of the dual graph. Subsequently, one would counter argument that it should therefore also
not be possible to remove all latent variables in the DAM obtained with the VEM. However,
there is an important difference. Indeed, the VEM requires us to split the system into planar
subsystem, but the non-planarity is entirely contained within the virtual graph. The reference
graph is planar the graphs for each switch configuration are also planar. Therefore, E(S) and
F (S) always correspond to a planar system. This is clearly not the case in the NEM, where
the switches are elements and the Dirac structure non-planar. Unfortunately, which of the
two viewpoint are right remains unclear and an exact and satisfying answer still eludes the
author.

Concluding, both methods yield the same mathematical models, but the VEM provides a
more structured approach for finding the parametrised mathematical model. However, as
seen in the previous section, the VEM can yield inconvenient and complex parametrisations,
which must be simplified in order to make sense and be comprehensible. Two advantages
of the NEM are that it does not change if the switches are no longer ideal, provided that
only the constitutive relation changes, and that gets the parametrisation that is expected.
On the other hand, the DAM obtained with the NEM seems to point to some deficiency in
the model procedure or in the model itself. Furthermore, the assignment of the generalised
efforts and flows beforehand can become a tedious, complicated and unintuitive problem with
regard to the switching elements and interconnection ports. These problems are avoided by
introducing Proposition 2 and Proposition 3, which, in essence is the non-generalised effort
and flow definitions for electrical systems9. The identification of voltages and currents as
efforts and flows in electrical systems are worth to be given more thought.

9In the non-generalised port-Hamiltonian framework, the efforts and flows for electrical systems are defined
as voltages and currents, respectively, see [20, 22].
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Chapter 4

Modelling the three-phase rectifier

This chapter features the modelling of the three-phase rectifier using the two methods pre-
sented in Chapter 2. In short, the procedure for both methods comes down to: (i) determine
the subsystems and corresponding subgraphs, (ii) express the Dirac structure of the system
in a kernel representation with the (parametrised) incidence matrices, (iii) solve the charac-
teristic equation of the kernel representation to find the differential-algebraic model (DAM)
and (iv) derive the input-state-output (ISO) model from the DAM by assuming a balanced
system. The structure of this chapter is as follows. First, Section 4-1 presents the reference
model of the rectifier from literature, which is used for validation and comparison. Then,
Section 4-2 shows the derivation of the models by using the VEM. Subsequently, Section 4-3
deals with the modelling of the power converter with the NEM. Last, Section 4-4 is dedicated
to modelling a rectifier with the inverter model from the previous chapter.

4-1 The reference model of the three-phase rectifier

Figure 4-1 presents the three-phase rectifier from Tang et al. [9]. The DC side load is
represented as a resistance RL. The network of the three-phase rectifier is assumed to be
balanced (La = Lb = Lc = L, Ra = Rb = Rc = R). The Hamiltonian corresponding to the
rectifier in Figure 4-1 is

H(φ, q) =
∑

k=a,b,c

(1
2
φk
L

)
+ 1

2
q

C
, (4-1)

where φ = (φa φb φc)T denotes the flux-linkage of the inductors, and q denotes the charge in
the capacitor. The corresponding ISO model is1
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Figure 4-1: Three-phase voltage soure rectifier with resistive load.

[
φ̇
q̇

]
=


−R 0 0 −ŝa
0 −R 0 −ŝb
0 0 −R −ŝc
ŝa ŝb ŝc − 1

RL



∂H

∂φ
∂H

∂q

+


1 0 0
0 1 0
0 0 1
0 0 0


uaub
uc

 ,
yayb
yc

 =

1 0 0 0
0 1 0 0
0 0 1 0



∂H

∂φ
∂H

∂q

 ,
(4-2)

where uj = vj , yj = ij and ŝj = sj − 1
3
∑

k=a,b,c
sk, j ∈ {a, b, c}.

4-2 Modelling the rectifier with the virtual element method

This section presents the modelling of the three-phase rectifier with the VEM. First, in Section
4-2-1 we discuss the separation of the network into planar subsystems. Second, in Section
4-2-2 the Dirac structure of the system is formulated. Then, in Section 4-2-3 the DAM is
derived by solving the characteristic equation. Finally, Section 4-2-4 shows how the DAM is
transformed into an ISO model by assuming a balanced system.

4-2-1 Separating the system into planar subsystems

Clearly, the graph of the network in Figure 4-1 is not planar. Hence, the system is separated
into three planar subsystems by separating the AC input side, the switching structure and the
DC output side, see Figure 4-2. Observe the similarity between the division of the rectifier
and the inverter. Indeed, both Σ2’s have the same structure, but with the input and output
swapped.

1Additional details can be found in Appendix B-3.
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(a) Subsystem Σ1. (b) Subsystem Σ2.

(c) Subsystem Σ3.

Figure 4-2: The three-phase rectifier split into three subsystems, Σ1, Σ2 and Σ3.

The graphs representing the subsystems are given in Figure 4-3 for Σ1, Figure 4-4 for Σ2
and Figure 4-5 for Σ3. Again, we can identify three identical graphs in Σ2. This allows
us to represent Σ2 by a single graph for each line-to-line-AC to DC loop, see Section 3-2-1.
The branches denoting the terminals interconnecting the subsystems are given the additional
subscript p. For the sake of simplicity the structure of the graphs of Σ2 for the rectifier and
inverter are kept the same and only the port branches swap positions in the vectors. This
corresponds to a reversed direction of the power flow. To satisfy Assumption 5, the switch
states s1, . . . , s6 are coupled through (3-4), which implies that the switch states corresponding
to the branches bs1, bs2, bs3, bs4 are sj , sk, 1−sj and 1−sk, respectively, where jk ∈ {ab, bc, ca}.
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Capturing the interconnection of the branches in the incidence matrices with the CCL yields

A(GΣ1) =



−1 −1 −1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0 O4×6

0 0 1 0 0 1
−1 0 0 1 0 0

O3×3 0 −1 0 0 1 0 O3×3

0 0 −1 0 0 1
−1 0 0 1 0 −1

O3×6 0 −1 0 −1 1 0
0 0 −1 0 −1 1


,

for the graph of Σ1. Likewise, the dual graph of Σ1 yields the incidence matrix

A(G∗Σ1) =


−1 0 1 1 0 −1 1 −1 0 0 0 −1
0 1 −1 0 −1 1 0 −1 1 0 −1 0
1 −1 0 −1 1 0 −1 1 0 −1 0 0
0 0 0 0 0 0 0 0 0 1 1 1

 ,
and the corresponding vectors for these matrices are, respectively,

BΣ1 =
[
b1 b2 b3 b4 b5 b6 b7 b8 b9 bp1 bp2 bp3

]T
,

B∗Σ1 =
[
b∗1 b∗2 b∗3 b∗4 b∗5 b∗6 b∗7 b∗8 b∗9 b∗p1 b∗p2 b∗p3

]T
.

The PIMs are the same, because the structure of the graphs of Σ2 for the inverter and the
rectifier are the same. Thus, (3-5) is the PIM of the graph in Figure 3-5a and (3-7) is the
PIM of the dual graph of in Figure 3-5b. Consequently, the PIMs for the KCL and KVL are
given by (3-6) and (3-8), respectively, with the vectors

BΣ2 =
[
bp7 bp4 bp8 bp5 bp9 bp6

]T
,

B∗Σ2 =
[
b∗p7 b∗p4 b∗p8 b∗p5 b∗p9 b∗p6

]T
.

Expressing the last subsystem. The incidence matrix for the graph of Σ3 is

A(GΣ3) =
[

1 1 1 1 1
−1 −1 −1 −1 −1

]
,

with the vector BΣ3 = [bp10 bp11 bp12 b10 b11 b12]T . The incidence matrix for the dual
graph of Σ3 is

A(G∗Σ3) =


1 0 0 0 −1
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

 ,
with B∗Σ3

= [b∗p10 b∗p11 b∗p12 b∗10 b∗11 b12]T . Lastly, the interconnection of the subsystem
is achieved by relating the voltages and currents of the interconnection ports. The intercon-
nection between the Σ1 and Σ2 is given by (3-9) and the interconnection between Σ2 and Σ3
by (3-10).
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(a) Graph of Σ1.

(b) Dual graph of Σ1.

Figure 4-3: The graph and dual graph of Σ1.

(a) Graph of Σ2. (b) Dual graph of Σ2.

Figure 4-4: The simplified graph and dual graph of Σ2.
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(a) Graph of Σ3. (b) Dual graph Σ3.

Figure 4-5: The graph and dual graph of Σ3.

4-2-2 Formulating the Dirac structure

Proposition 2 defines that the branches of the port variables are flows and the dual branches of
the port variables are efforts. The voltages in the inductors and the current in the capacitor are
flows due to the definition of efforts and flows for storage elements (2-4). The other voltages
and currents are identified by analysing the network in Figure 4-1. The AC voltage sources are
inputs and hence also flows. The resistors Ra, Rb, Rc are in series with the inductors, which
means that their voltages are flows (voltage-driven). RL’s current is a flow (current-driven).
Thus, for Σ1 the branches b1, . . . , b9 and dual branches b∗p1, b∗p2, b∗p3 are efforts, while the dual
branches b∗1, . . . , b9 and the branches bp1, bp2, bp3 are flows. For Σ2 and Σ3 all branches are
flows and all dual branches are efforts. Subsequently, compiling the flows and efforts into one
flow and one effort vector and substituting fS , eS by −ẋ, ∂H∂x , fP , eP by u, y yields the vectors

f =
[
fTΣ1

fTΣ2
fTΣ3

]T
, (4-3)

e =
[
eTΣ1

eTΣ2
eTΣ3

]T
, (4-4)

where

fΣ1 =
[
ua ub uc −φ̇a −φ̇b −φ̇c fRa fRb fRc f1 f2 f3

]T
,

eΣ1 =
[
ya yb yc

∂H
∂φa

∂H
∂φb

∂H
∂φc

eRa eRb eRc e1 e2 e3
]T
,

fΣ2 =
[
f7 f4 f8 f5 f9 f6

]T
,

eΣ2 =
[
e7 e4 e8 e5 e9 e6

]T
,

fΣ3 =
[
f10 f11 f12 −q̇ fR

]T
,

eΣ3 =
[
e10 e11 e12

∂H
∂q eR

]T
.

The efforts and flows denoting an interconnection between two subsystems are indexed, where
the index ej , fj corresponds with the index of the port branch bpj , b

∗
pj . The corresponding

F ∈ R33×23, E ∈ R33×23 matrices are composed of the matrices FΣ1 , EΣ1 , . . . , FΣ3 , EΣ3 defined
in (3-13) and (3-14) and FI and EI , which are the canonical interconnection rewritten in
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a matrix form. Notice that there are no non-admissible switch configurations due to the
dependency of the switch states, which means that A(Σ) = {0, 1}3. As a result, the Dirac
structure defines an implicit PH system as

[
−φ̇
−q̇

]
,


∂H

∂φ
∂H

∂q

 , fR, eR, fRL
, eRL

, u, y

 ∈ D(S), S ∈ A(Σ),

where y = [ya yb yc]T , u = [ua ub uc]T , φ = [φa φb φc]T , fR = [fRa fRb fRc]T and eR =
[eRa eRb eRc]T .

4-2-3 Deriving the differential-algebraic model

Solving the characteristic equation of the kernel representation yields a differential-algebraic-
model (DAM), because the voltages (and therefore the flux-linkages) in every inductor are
dependent. In this section we show the derivation of the DAM model by solving the char-
acteristic equation for φ̇, q̇, y, eR and eRL

. First, simplifying the parametrisation of Σ2 by
computing the characteristic equation for each switch configuration, which yields the more
convenient model

f`+3 = −f`(sj − sk),
e` = e`+3(sj − sk),

(4-5)

where ` = 4, 5, 6 and jk ∈ {ab, bc, ca}. The model in (4-5) is the reversed equivalent of (3-15).
Then, computing the composed kernel representation for ẋ, y, eR and eRL

yields the DAM2
1 −1 0 0
0 1 −1 0
−1 0 1 0
0 0 0 1

 ẋ =


0 0 0 (sa − sb)
0 0 0 (sb − sc)
0 0 0 (sc − sa)
−sa −sb −sc 0

 ∂H∂x +


1 −1 0 0
0 1 −1 0
−1 0 1 0
0 0 0 1


[
fR
fRL

]
+


−1 1 0 0
0 −1 1 0
1 0 −1 0
0 0 0 0

u,
[
eR
eRL

]
=
[
I4×4

] ∂H
∂x

,

y =
[
−I3×3 O3×1

] ∂H
∂x

,

s.t. ya + yb + yc = 0,

(4-6)

where x = [φa φb φc q]T , the Hamiltonian in (4-1) and the resistive relation given by

[
eR
eRL

]
=


− 1
Ra

0 0 0
0 − 1

Rb
0 0

0 0 − 1
Rc

0
0 0 0 −RL


[
fR
fRL

]
.

2For the complete derivation see Appendix C-3.
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4-2-4 Deriving the input-state-output model

The DAM in (4-6) can be subsequently transformed into a set of explicit differential equations
(the ISO structure) by assuming that the system is balanced (La = Lb = Lc = L, Ra = Rb =
Rc = R). Subsequently, the line-to-line voltages in (4-6) can be expressed in terms of the phase
voltages with respect to the common potential3 λ1. This yields the independent differential
equations

φ̇a = eRa +
(2

3sa −
1
3sb −

1
3sc

)
∂H

∂q
− ua,

φ̇b = eRb +
(2

3sb −
1
3sa −

1
3sc

)
∂H

∂q
− ub,

φ̇c = eRc +
(2

3sc −
1
3sa −

1
3sb

)
∂H

∂q
− uc.

Likewise, the current through the capacitor can be rewritten in terms of the phase currents by
assuming a balanced load. This is easiest to see in the following way. Consider the following
equations of D2 ◦ D3

q̇ = fRL
− f1(sa − sb)− f2(sb − sc)− f3(sc − sa), (4-7)

and the following equations of D1

f1 − f3 = ∂H

∂φa
,

f2 − f1 = ∂H

∂φb
,

f3 − f2 = ∂H

∂φc
.

(4-8)

First, rewrite (4-7) to

q̇ =fRL
−
(
f1

(2
3sa −

1
3sb −

1
3sc

)
− f1

(2
3sb −

1
3sa −

1
3sc

)
+ f2

(2
3sb −

1
3sa −

1
3sc

)
−

f2

(2
3sc −

1
3sa −

1
3sb

)
+ f3

(2
3sc −

1
3sa −

1
3sb

)
− f3

(2
3sa −

1
3sb −

1
3sc

))
,

=fRL
−
(

(f1 − f3)
(2

3sa −
1
3sb −

1
3sc

)
+ (f2 − f1)

(2
3sb −

1
3sa −

1
3sc

)
+

(f3 − f2)
(2

3sc −
1
3sa −

1
3sb

))
.

Then, substituting (4-8) gives the expression for q̇ in terms of the phase currents

q̇ = fRL
−
(2

3sa −
1
3sb −

1
3sc

)
∂H

∂φa
−
(2

3sb −
1
3sa −

1
3sc

)
∂H

∂φb
−
(2

3sc −
1
3sa −

1
3sb

)
∂H

∂φc
.

3This procedure is the same as the one applied to the inverter, see Section 3-2-4.
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The resulting ISO model for the balanced system is

ẋ =


0 0 0 ŝa
0 0 0 ŝb
0 0 0 ŝc
−ŝa −ŝb −ŝc 0

 ∂H∂x +
[
I4×4

] [ fR
fRL

]
+
[
−I3×3

O1×3

]
u,

[
eR
eRL

]
=
[
I4×4

] ∂H
∂x

,

y =
[
−I3×3 O3×1

] ∂H
∂x

,

(4-9)

where ŝj = sj − 1
3
∑

k=a,b,c
sk, j ∈ {a, b, c}, the Hamiltonian is given in (4-1) and the resistive

relation is [
eR
eRL

]
=


− 1
Ra

0 0 0
0 − 1

Rb
0 0

0 0 − 1
Rc

0
0 0 0 −RL


[
fR
fRL

]
.

The model in (4-9) is the same as the reference model in (4-2), but again with some sign
differences, because the direction of the power flow from the perspective of the Dirac structure
is not taken into account [9].

4-3 Modelling the rectifier with the nonlinear element method

This section features the modelling of the three-phase rectifier with the NEM. First, Section
4-3-1 presents the separation of the system into the planar subsystems. Subsequently, Section
4-3-2 deals with the formulation of the Dirac structure. Finally, Section 4-3-3 presents the
derivation of the DAM and ISO model.

4-3-1 Separating the system into planar subsystems

Just as in Section 4-2-1 the system is divided into the three planar subsystems in Figure
4-2. With the exception of Σ2 the graphs (and dual graphs) corresponding to the subsystems
are the same, see Figure 4-3 and Figure 4-5. The graph and dual graph of Σ2 are depicted
in Figure 4-6, where the branches bsj , bsk represent the upper switches S1, S2, S3 and the
branches b̂sj , b̂sk represent the lower switches S4, S5, S6.

The structure of the graphs is the same as the structure shown in Figure 4-4, but the port
branches have swapped position. Consequently, the incidence matrices describing the graphs
in Figure 4-6 are given by (3-23) and (3-24) and the corresponding vectors are given by

BΣ2 =
[
bp7 bp8 bp9 bsa bsb bsc b̂sa b̂sb b̂sc bp4 bp5 bp6

]T
,

B∗Σ2 =
[
b∗p7 b∗p8 b∗p9 b∗sa b∗sb b∗sc b̂∗sa b̂∗sb b̂∗sc b∗p4 b∗p5 b∗p6

]T
.

Furthermore, the interconnections between the subsystems is given by (3-9) and (3-10).
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(a) Graph of Σ2. (b) Dual graph of Σ2.

Figure 4-6: The simplified graph and dual graph of Σ2 with the switches as nonlinear elements.

4-3-2 Formulating the Dirac structure

The additional variables introduced by viewing the switches as functional elements are as-
signed with Proposition 3, i.e., the branches belonging to the switching elements are flows and
the dual branches belonging to switching elements are efforts. The assignment of the other
branches and dual branches, as efforts and flows, is the same as the one in Section 4-2-2. As
such, the flow and effort vector of the whole system are given by (4-3) and (4-4), respectively,
but the flow and effort vector for Σ2 are replaced by

fΣ2 =
[
f7 f8 f9 fsa fsb fsc f̂sa f̂sb f̂sc f4 f5 f6

]T
,

eΣ2 =
[
e7 e8 e9 esa esb esc êsa êsb êsc e4 e5 e6

]T
.

Thus, the Dirac structure of the three-phase rectifier with the switches modelled as nonlin-
ear elements is given by (2-32) with a F ∈ R33×29, E ∈ R33×29 composed of the matrices
FΣ1 , EΣ1 , . . . , FΣ3 , EΣ3 . These latter matrices are given by (3-25) and (3-26), and they are in
turn composed of the incidence matrices defined in the previous section.

4-3-3 Deriving the differential-algebraic model and input-state-output model

Rewriting the characteristic equation of the kernel representation leads to a DAM model

 1 −1 0
0 1 −1
−1 0 1

 φ̇ =−

1
1
1

 ∂H
∂q

+

0 1 0
0 0 1
1 0 0


esaesb
esc

− I3×3

êsaêsb
êsc

+

 1 −1 0
0 1 −1
−1 0 1

 fR −
 1 −1 0

0 1 −1
−1 0 1

u,
q̇ =fRL

+ f1 + fsa − f̂sb + f2 + fsb − f̂sc + f3 + fsc − f̂sa,
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êsb =esb −
∂H

∂q
,

esa =∂H

∂q
+ êsa,

êsc =esc −
∂H

∂q
,

esb =∂H

∂q
+ êsb,

êsa =esa −
∂H

∂q
,

esc =∂H

∂q
+ êsc,

f̂sa =fsa + f1,

fsb =− f1 + f̂sb,

f̂sb =fsb + f2,

fsc =− f2 + f̂sc,

f̂sc =fsc + f3,

fsa =− f3 + f̂sa,

s.t.

f1 − f3
f2 − f1
f3 − f2

 = ∂H

∂x
,

[
eR
eRL

]
=I4×4∂H

∂x
,

y =
[
−I3×3 O3×1

] ∂H
∂x

,

s.t. ya + yb + yc = 0,

with the Hamiltonian in (4-1) and the resistive relation

[
eR
eRL

]
=


− 1
Ra

0 0 0
0 − 1

Rb
0 0

0 0 − 1
Rc

0
0 0 0 −RL


[
fR
fRL

]
.

Computing the model for each switch state and parametrising the result accordingly yields
the DAM parametrised by the switch state in (4-6). See Appendix C-4 for further details
of the parametrisation. Consequently, the DAM model reduces to the ISO model in (4-9)
after assuming a balanced load, see Section 4-2-4 for the derivation. This means that both
the methods yield the same model. Furthermore, we again encounter the problem that not
all the latent variables are removed during the interconnection. Recall the final discussion in
Section 3-3-3.
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4-4 Modelling a rectifier with the inverter model

The essential difference between a rectifier and an inverter is the primary direction of the
power flow. Thus, in the inverter’s case we view the power flowing from the DC-side to the
AC-side and in the rectifier’s case from the AC-side to the DC-side. These viewpoints have
lead us to implicitly define a direction for the relations of the currents and voltages in Σ2.
For the inverter we express the DC-side current as a function of the current on the AC-side
and the AC-side voltage as a function of the voltage on the DC-side, see (3-15). Likewise,
for the rectifier the AC-side current is expressed as a function of the DC-side current and
the DC-side voltage as a function of the AC-side voltage, see (4-5). However, the relations in
(3-15) and (4-5) are not invertible. This raises the question: is a model of a power converter
modelled as an inverter also suitable as a rectifier and vice versa? Logically, this should be
the case, because the inverter model has inputs and outputs for both the DC- and AC-side.
In this section we show that this is the true by using the inverter’s ISO model to derive a
model of a rectifier.

Consider the network in Figure 4-7, whose ISO model reads as

q̇L = fRL
− uL,

eRL
= ∂HL

∂qL
,

yL = −∂HL

∂qL
,

(4-10)

where the Hamiltonian is HL = 1
2CL

q2
L and the resistive relation is

eRL
= − 1

RL
fRL

.

Figure 4-7: The network of the DC-load.

Subsequently, composing the ISO model of the inverter in (3-22) with the model in (4-10)
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with the gyrative interconnection (2-10), yL = −udc, uL = ydc, yields the combined model

[
ẋ
q̇L

]
=

O3×3 −I3×3 O3×1

I3×3 O3×3 −gdc(S)
O1×3 gTdc(S) 0



∂H ′

∂x
∂H ′

∂qL

+
[
O4×4

I4×4

] [
fR
fRL

]
+
[
gAC
O4×3

]
uAC ,

[
eR
eRL

]
=
[
O4×4 I4×4

] 
∂H ′

∂x
∂H ′

∂qL

 ,

yAC =
[
gTAC O3×4

] 
∂H ′

∂x
∂H ′

∂qL

 ,
where S = [sa sb sc]T , H ′ = H +HL and the resistive relation is[

eR
eRL

]
=
[
−R · I3×3 O3×1

O1×3 − 1
RL

] [
fR
fRL

]
.

This shows that the ISO model of the inverter also functions as a rectifier. Thus, modelling
Σ2 with a predefined direction does not yield a model that is only valid for this predefined
direction. The model of the inverter in (3-17) and (3-22) can work as both a rectifier and
an inverter. The inputs to this rectifier are currents and the outputs are voltages due to the
topology of the inverter in Figure 3-1. Likewise, modelling the rectifier in Figure 4-1 without
the DC load yields a PH model that also functions as a three-phase inverter with the DC
current as input and a DC voltage as output.
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Chapter 5

Conclusions and recommendations

5-1 Conclusions

The port-Hamiltonian modelling of power converters has been an ongoing research for the
past couple of years. However, the focus of most of the research has been on the modelling of
DC/DC converters, such as the Buck, Boost and Ćuk-converters and little attention is given
to the modelling of three-phase power converters, such as the three-phase rectifier and three-
phase inverter. The research that is available on port-Hamiltonian models of the three-phase
converters do not treat the modelling part from a port-Hamiltonian viewpoint, but rewrite
conventional models by substituting port-Hamiltonian variables. Therefore, the modelling of
a three-phase rectifier and three-phase inverter in the generalised port-Hamiltonian frame-
work is investigated in this thesis. Modelling the power converters from a port-Hamiltonian
viewpoint starts with expressing their Dirac structures together with their Hamiltonians and
deriving their mathematical models from these mathematical expressions. The research has
lead to the following conclusions:

• Modelling a system from a fundamental port-Hamiltonian viewpoint requires a mathe-
matical expression of the Dirac structure and the Hamiltonian. The Dirac structure of
a switching electrical system is methodically represented in a matrix kernel represen-
tation by using the network graph and dual network graph of the system. Following
the literature on the subject, the switching elements are either represented as virtual
elements in the graph (virtual element method), who connect and disconnect nodes, or
as nonlinear elements (nonlinear element method), whose efforts and flows depend on
the switch state. The mathematical models are then derived by solving the character-
istic equation of the kernel representation for the time-derivatives of the state and the
outputs. This leads to a differential-algebraic model for the three-phase inverter and
rectifier, because the voltages in the phases are coupled. For the three-phase power con-
verters the explicit input-state-output models from literature are recovered by assuming
a balanced network.
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• It has been shown that the network graphs of the three-phase DC/AC and AC/DC
converters are not planar, which means that a dual graph does not exist. To overcome
this issue the systems are divided into planar subsystems, such that each subsystem can
be represented in a matrix kernel representation together with their interconnections.
Thereby we exploit a fundamental feature of port-Hamiltonian system theory, which is
that the interconnection of multiple port-Hamiltonian systems is relatively straightfor-
ward.

• A key issue to derive the models from the mathematical expression of the Dirac structure
is the identification or assignment of the voltages and currents in the network as efforts
and flows a priori, i.e., without referring to the final mathematical model. It has been
reasoned that, because the assignment of voltages and currents of the storage elements
are predefined, they define the assignment of the resistive and source elements. From
this we infer a way to analyse the network topology to determine the assignment of the
voltages and currents a priori. However, the assignment of currents and voltages of the
interconnection ports turned out to be a problem, because the casual relation is difficult
to identify. Moreover, it seems pointless to do so, since these variables disappear after
interconnection. Hence, we can assign them ad libitum. Additionally, we showed that
for switches modelled as nonlinear elements this causality is ambiguous. For both these
situations the currents are taken as flows and the voltages as efforts.

• The two modelling methods, the nonlinear element method (NEM) and the virtual
element method (VEM), are both capable of yielding the correct mathematical models
of the three-phase converters. In terms of the efficiency, effectiveness and practicality
the VEM method yields a parametrised model in a more efficient way. However, the
parametrisation of the model in terms of the switch state can become incomprehensible.
Apart from this, the VEM requires the graphs to satisfy more requirements, which might
prove restrictive for the modelling of larger systems. The NEM is less efficient for finding
the parametrisation, but poses less constraints on the graph, its parametrisation is easier
to interpret and naturally allows for the modelling of non-ideal switches. However, there
remains the question, why the modelling with the NEM delivers a non-parametrised
DAM that seems to be non-port-Hamiltonian.

• Although modelling switching electrical systems with the NEM or VEM is not neces-
sarily the fastest or the most efficient in obtaining the correct mathematical models.
The modelling procedures have the advantage that they are not influenced by the size
or complexity of the system and are by nature modular. Replacing certain parts of the
network, like the load or the input source, is easily achieved in this framework. Further-
more, systems from other domains should be straightforward to incorporate, because we
use the generalised effort and flow definitions. For instance, the inverter model can be
coupled to a port-Hamiltonian model of an squirl-cage motor and its mechanical load.

5-2 Recommendations

As mentioned, the goal of this thesis is to model two three-phase power converters from a port-
Hamiltonian perspective, with which it complements the research from literature that consider
the modelling of various DC/DC-converters. However, it does not exhausts or completes the
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topic. There are many further developments to explore in further studies. Based on this
research we formulate the following recommendations:

• To cope with the non-planarity of the three-phase converters the system is separated into
planar subsystems. Such an approach might not be the most optimal solution for larger
and more complex switching networks, where the number of subsystems becomes large
and the interconnections potentially complex. Although it seems feasible that a planar
subsystem can always be found, the dimensions of the representation grow quickly with
each separation. Furthermore, there is no guarantee that there always exist graphs that
satisfy Assumption 1-5 for the VEM. Ideally one would like to extent the modelling
theories – especially the theory from [5, 6, 7] – to cope with non-planar graphs. We
suggested that using elements from tensor theory might provide a foundation to deal
with these situations.

• In this thesis we encountered the issue of identifying the voltages and currents of individ-
ual elements as efforts and flows – which in the generalised port-Hamiltonian framework
are regarded as a type of inputs and outputs – without having to refer to the final math-
ematical model. We propose to identify the efforts and flows of the resistive elements
and sources based on the network topology (the efforts and flows of the storage ele-
ments fixed [3, 12, 20] and form the foundation to do this). However, identifying the
efforts and flows for the interconnection ports and switches remains unclear. To over-
come this problem, the currents are fixed as flows and the voltages as efforts based on
arguments from [14]. However, both these proposals are heuristic and it is worth giving
the identification of generalised efforts and flows in networks (systems) some additional
thought.

• The switches are assumed ideal in most literature concerning power converters, in-
cluding this thesis, but in practise the switches are semiconductors and are not ideal.
Researching the incorporation of such elements into the port-Hamiltonian modelling
theory would be an interesting topic for future studies and an important development
to analyse and produce more detailed models of power converters. We already men-
tioned that including non-ideal models of switches is possible with the NEM. Moreover,
the port-Hamiltonian theory might provide a solid foundation for researching controllers
that take the non-ideal behaviour of the switches into account.

• The focus of the research has been the modelling of two multi-phase power converters:
the three-phase rectifier and three-phase inverter. Although these are two fundamental
power converters in multi-phase networks, they are not the only ones. Hence, further
research could consider the modelling of matrix converters, cyclo-converters and multi-
level inverters. We suspect that it is possible to model these systems with the theory
provided in this thesis.
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Appendix A

Additional information on efforts, flows
and states

This appendix features some additional port-Hamiltonian theory regarding the relation be-
tween states (x), efforts (e) and flows (f), and their physical interpretation. The information
within this appendix is entirely taken from [12, Ch.B].

In the PH framework the dynamics of systems are determined by the combination of the stor-
age and resistive elements of which the storage elements define the states of the system. The
total energy storage of the system is defined by a state-space X , together with a Hamiltonian
H : X → R denoting the total energy [12, Ch.2.3]. The state-space X is in general a smooth
manifold in Euclidean space. The states of the system (x ∈ X ) can be seen as "accumulation
variables", which are related to the efforts and flows of the storage elements through

ẋ = fS , (A-1)

eS = ∂H

∂x
(x). (A-2)

Figure A-1 gives a schematic representation of this relationship and Table A-1 lists the physical
interpretation of the states, efforts and flows for the different physical domains.

Figure A-1: Schematic representation of the relation between flows, states and efforts.

The Hamiltonian H of a storage element is formally given by

H(x) =
∫

Φ(x)dx, (A-3)
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Table A-1: Classification of the states, efforts and flows for several (sub)domains.

(Sub)domain Flow f ∈ F Effort e ∈ E storage state x ∈ X
Electric Current Voltage Charge
Magnetic Voltage Current Flux linkage

Potential translation Velocity Force Displacement
Kinetic translation Force Velocity Momentum
Potential rotation Angular velocity Torque Angular displacement
Kinetic rotation Torque Angular velocity Angular momentum

Potential hydraulic Volume flow Pressure Volume
Kinetic hydraulic Pressure Volume flow flow tube momentum

Chemical Molar flow Chemical potential Number of moles
Thermal Entropy flow Temperature Entropy

where Φ(x) represents the constitutive relation of the storage element. In other words, the
Hamiltonian represents the area underneath the curve in the (e, x)-plane. For example, for
a linear inductor Φ(x) = φ

L , where φ is the flux-linkage and L the inductance. The total
Hamiltonian of a system Σ with m storage elements is simply the sum of all the Hamiltonians

HΣ =
m∑
k=1

Hk(x). (A-4)

Finally, the resistive elements are modelled by the constitutive relations between the effort
and flows of the form R(eR, fR) = 0. For instance, the constitutive relation for an linear
electric (Ohmic) resistor is given as eR = −RfR, where R is the resistance.
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Appendix B

Mathematical models of the power
converters in literature

This appendix contains the mathematical reference models of power converters from literature.
Section B-1 contains the derivation of the basic switching function representation of an inverter
from Holmes et al. [17, Ch.1.3], which is used for additional validation. This appendix also
contains the transformation of the models in [9, 10, 11] to a form suitable for this thesis. The
models are not directly suitable, because they are averaged and given in dq0-coordinates. The
desired, hybrid representation of these models follows easily from the models in the papers.
Section B-2 contains the transformation of the inverter model and Section B-3 deals with the
rectifier model.

B-1 The switching function representation of a three-phase in-
verter

Consider the inverter in Figure B-1 [17, Ch.1.2]. Let s1, . . . , s6 denote the switch states of
the switches S1, . . . , S6 in Figure B-1, where s = 0 when the switch is open and s = 1 when
the switch is closed. Inspection of the network reveals that

vao = vdcs1, vao = vao(1− s4),
vbo = vdcs2, vao = vao(1− s5),
vco = vdcs3, vao = vao(1− s6).

(B-1)

Considering the constraints imposed by the circuit, i.e., short-cutting the voltage source is
not allowed, leads to the observation that the bottom and top switch can never be closed at
the same time. Furthermore, for continuity considerations in each phase leg [17, Ch.1.3]

s1 + s4 = 1,
s2 + s5 = 1,
s3 + s6 = 1.

(B-2)
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Figure B-1: A basic three-phase voltage source inverter circuit.

The above equations imply that (B-1) can be rewritten into a simplified form. Introducing
the new variables sa = s1 = s4, sb = s2 = s5 and sc = s3 = s6 yields the simplified equations

vao = vdcsa,

vbo = vdcsb,

vco = vdcsc,

(B-3)

where sa, sb, sc ∈ {0, 1}. Hence, the switch states of the two switches of each leg are now
expressed by a single switch state for the whole leg. Subsequently, the line-to-line voltages
are given by

vab = vao − vbo = vdc(sa − sb),
vbc = vbo − vco = vdc(sb − sc),
vca = vco − vao = vdc(sc − sa).

(B-4)

The DC link current can be expressed in terms of the phase currents as

idc = iasa + ibsb + icsc, (B-5)

or in terms of the line-to-line currents (B-5) as

idc = iab(sa − sb) + ibc(sb − sc) + ica(sc − sa). (B-6)

In case of a Y-connected load the voltages can be expressed with respect to the neutral point
in the load denoted by subscript n. If the loads are balanced, i.e., the impedances are the
same in each phase of the load. Their phase voltages are [17, Ch.1.3]

van = vdc

(2
3sa −

1
3sb −

1
3sc

)
,

vbn = vdc

(2
3sb −

1
3sa −

1
3sc

)
,

vcn = vdc

(2
3sc −

1
3sa −

1
3sb

)
.

(B-7)

The DC current for a Y-connected load is described by (B-5).
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Figure B-2: The three-phase inverter topology.

B-2 The reference model of the three-phase inverter

Consider the three-phase inverter from Mu et al. [10, 11] in Figure B-2, where the subscript L
denotes the load. Assume a balanced system such that the inductances L1 = L2 = L3 = L, the
capacitances C1 = C2 = C3 = C and the resistances R1 = R2 = R3 = R. The corresponding
mathematical model reads as [10]

L
dia
dt

= −Ria +

sa − 1
3
∑

k=a,b,c
sk

 vdc − vao,
L
dib
dt

= −Rib +

sb − 1
3
∑

k=a,b,c
sk

 vdc − vbo,
L
dic
dt

= −Ric +

sc − 1
3
∑

k=a,b,c
sk

 vdc − vco,
C
dvao
dt

= ia − iLa, C
dvbo
dt

= ib − iLb, C
dvbo
dt

= ib − iLb.

(B-8)

Observe that the expression in the parenthesis coincide with the one in (B-7). The Hamilto-
nian of the system, which denotes the total energy, is given by

H(q, φ) =
∑

j=a,b,c,

(
1
2
φ2
j

L
+ 1

2
q2
j

C

)
, (B-9)

where φ = (φa φb φc)T is the flux linkage across the inductors and q = (qa qb qc)T the
charge in the capacitors. The Hamiltonian and the constitutive relations for an inductor and
a capacitor [22],

φL = L
dqL
dt

, (B-10)

qC = C
dφC
dt

, (B-11)
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allow us to rewrite (B-8) in terms of φ, q and the Hamiltonian. Ergo, the currents flowing
through the inductors, ia, ib and ic, in terms of the Hamiltonian are expressed as

ij = φj
L

= ∂H

∂φj
(q, φ), j = a, b, c.

Furthermore, the voltages across the capacitors vao, vbo and vco in terms of the Hamiltonian
are

vjo = qj
C

= ∂H

∂qj
(q, φ).

Hence, the mathematical model of the three-phase inverter of Figure B-2 in PH terms reads
as1

[
q̇

φ̇

]
=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 −R 0 0
0 −1 0 0 −R 0
0 0 −1 0 0 −R



∂H

∂q
(q, φ)

∂H

∂φ
(q, φ)

+


O3×1

ŝa
ŝb
ŝc

 vdc

+
[
−I3×3

O3×3

]iLaiLb
iLc

 ,

idc =
[
O1×3 ŝa ŝb ŝc

] 
∂H

∂q
(q, φ)

∂H

∂φ
(q, φ)

 ,
vaovbo
vco

 =
[
−I3×3 O3×3

] 
∂H

∂q
(q, φ)

∂H

∂φ
(q, φ)

 ,

(B-12)

where ŝj = sj − 1
3
∑

k=a,b,c
sk, j ∈ {a, b, c}. In the original work [10, 11] the output equations

are omitted. They are added here for completeness.

B-3 The reference model of the three-phase rectifier

Consider the three-phase rectifier from Tang et al. [9] in Figure B-3 with Ra = Rb = Rc = R,
La = Lb = Lc = L and that the voltage sources producing a sinusoidal output voltage each
phase shifted by 120◦ with respect to one another. The mathematical model corresponding
to this network is [9]

1The output equation is originally not given in [10, 11] and added in this thesis for completeness.
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Figure B-3: Three-phase rectifier topology.

L
dia
dt

= va −Ria − savdc + vdc
3

∑
j=a,b,c

sj ,

L
dib
dt

= vb −Rib − sbvdc + vdc
3

∑
j=a,b,c

sj ,

L
dic
dt

= vc −Ric − scvdc + vdc
3

∑
j=a,b,c

sj ,

C
dvdc
dt

= saia + sbib + scic −
vdc
RL

.

(B-13)

Subsequently introducing the Hamiltonian of this system

H(φ, q) =
∑

j=a,b,c

(1
2
φk
L

)
+ 1

2
q

C
, (B-14)

where φ = (φa φb φc)T , and expressing the constitutive relations for the inductor and capacitor
given by (B-10) and (B-11) in terms of the Hamiltonian, leads to the ISO-PH model2

[
φ̇
q̇

]
=


−R 0 0 −ŝa
0 −R 0 −ŝb
0 0 −R −ŝc
ŝa ŝb ŝc − 1

RL


[
∂H
∂φ
∂H
∂q

]
+


1 0 0
0 1 0
0 0 1
0 0 0


uaub
uc

 ,
yayb
yc

 =

1 0 0 0
0 1 0 0
0 0 1 0

[∂H∂φ∂H
∂q

]
,

(B-15)

where uj = vj , yj = ij and ŝj = sj − 1
3
∑
k=a,b,c sk, j ∈ {a, b, c}.

2In contrast to the PH model of the inverter given in [10, 11], [9] does give the output of the system.
However, this output does not follow directly from the modelling method. The passive output is determined
afterwards.
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Appendix C

Additional modelling details and
derivations

This appendix contains additional information on the modelling steps for the three-phase
inverter and rectifier, which are omitted in Chapters 3 and 4. Section C-1 contains complete
derivation of the differential-algebraic model of the inverter. Section C-2 reveals the details
of the parametrisation of the differential-algebraic model of the inverter in case of the NEM
for Section 3-3-3. Section C-3 contains the complete derivation of the differential-algebraic
model of the rectifier. Finally, Section C-4 features the parametrisation of the rectifier DAM
model in case of the NEM for Section 4-3-3.

C-1 The derivation of the inverter’s differential-algebraic model

Subsystem Σ1 provides the following equations

ydc = −f1 − f2 − f3,

udc = e1 = e2 = e3.
(C-1)

Using the simplified result for the equations of Σ2 from Section 3-2-31

f4 = −f7(sa − sb),
f5 = −f8(sb − sc),
f6 = −f9(sc − sa),
e7 = e4(sa − sb),
e8 = e5(sb − sc),
e9 = e6(sc − sa).

(C-2)

1The derivation of the differential-algebraic model with the switches as nonlinear elements is the same, but
where these equations replaced with (3-27) and (3-28).
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Combining the formulae in (C-1) and (C-2) through f1 = −f4, f2 = −f5, f3 = −f6 and
e1 = e4, e2 = e5, e3 = e6 leads to the equations

ydc = −f7(sa − sb)− f8(sb − sc)− f9(sc − sa),
e7 = udc(sa − sb),
e8 = udc(sb − sc),
e9 = udc(sc − sa).

(C-3)

Next, consider the sets of equations describing Σ3

eRa − e10 + f12 = 0,
eRb + e10 − f11 = 0,
eRc + e11 − f12 = 0,

(C-4)

∂H

∂φk
(x)− eRk = 0, k = a, b, c, (C-5)

−q̇a −
∂H

∂φa
(x) + uab − uca = 0,

−q̇b −
∂H

∂φb
(x) + ubc − uab = 0,

−q̇c −
∂H

∂φc
(x) + uca − ubc = 0,

(C-6)

∂H

∂qa
(x)− ∂H

∂qb
(x)− yab = 0,

∂H

∂qb
(x)− ∂H

∂qc
(x)− ybc = 0,

∂H

∂qc
(x)− ∂H

∂qa
(x)− yca = 0,

(C-7)

q̇a + q̇b + q̇c = 0, (C-8)

fRa − fRc − φ̇a + φ̇c + e12 − yca = 0,
fRb − fRa − φ̇b + φ̇a + e10 − yab = 0,
fRc − fRb − φ̇c + φ̇b + e11 − ybc = 0,

(C-9)

f10 + f11 + f12 = 0. (C-10)

Substituting (C-5) into (C-4) and the result into (C-3) with f7 = −f10, f8 = −f11, f9 = −f12
yields the expression for the DC current

ydc = −sa
∂H

∂φa
(x)− sb

∂H

∂φb
(x)− sc

∂H

∂φc
(x). (C-11)
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Rewriting the set of (C-6) into a matrix form and similarly for (C-7) provides the equations
for q̇ and the AC outputs:

q̇ =

−1 0 0
0 −1 0
0 0 −1

 ∂H
∂φ

(x) +

 1 0 −1
−1 1 0
0 −1 1


︸ ︷︷ ︸

gAC

uAC ,

s.t. q̇a + q̇b + q̇c = 0,

yAC =

 1 −1 0
0 1 −1
−1 0 1


︸ ︷︷ ︸

gT
AC

∂H

∂q
(x).

(C-12)

Substituting (C-7) into (C-9) and combining the formulae with the ones in (C-3) through
e7 = e10, e8 = e11, e9 = e12 results in the equations for φ̇: 1 −1 0

0 1 −1
−1 0 1

 ẋ2 =

 1 −1 0
0 1 −1
−1 0 1

 ∂H
∂φ

(x) +

 1 −1 0
0 1 −1
−1 0 1

 fR −
sa − sbsb − sc
sc − sa

udc. (C-13)

Observe that the constraint equation (C-10) has disappeared due to the interconnection of
the two subsystems. Subsequently, combining (C-5), (C-11), (C-12) and (C-13) leads to the
differential-algebraic model in (3-17).

C-2 The parametrisation of the inverter for the nonlinear element
method

In order to keep this derivation clear we separate the derivation for the parametrised input
matrix and the output equation. First, consider the parametrisation of the output equation
for which we use the formulae

ydc =f10 − fsa + f̂sb + f11 − fsb + f̂sc + f12 − fsc + f̂sa,

f̂sa =fsa − f10,

fsb =f10 + f̂sb,

f̂sb =fsb − f11,

fsc =f11 + f̂sc,

f̂sc =fsc − f12,

fsa =f12 + f̂sa,

s.t.

−f10 + f11
f10 − f11
f11 − f12

 = ∂H

∂x
(x).

In the following we proof that the above formulae lead to the parametrisation of the output
equation in (3-17).
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Proof. Computing the results for every switch configuration (sa sb sc) ∈ {0, 1}3 yields:

(sa, sb, sc) = (0, 0, 0)⇒ fsa = fsb
= fsc = 0⇒ f̂sa = −f10, f̂sb = −f11, f̂sc = −f12

⇒ y = f10 − f11 + f11 − f12 + f12 = 0.

(sa, sb, sc) = (1, 0, 0)⇒ f̂sa = fsb
= fsc = 0⇒ fsa = f12, f̂sb = −f11, f̂sc = −f12

⇒ y = f10 − f12 + f11 − f11 − f12 + f12 = − ∂H
∂φa

.

(sa, sb, sc) = (0, 1, 0)⇒ fsa = f̂sb
= fsc = 0⇒ f̂sa = −f10, fsb = f10, f̂sc = −f12

⇒ y = f10 + f11 − f10 − f12 + f12 − f10 = −∂H
∂φb

.

(sa, sb, sc) = (0, 0, 1)⇒ fsa = fsb
= f̂sc = 0⇒ f̂sa = −f10, f̂sb = −f11, fsc = f11

⇒ y = f10 − f11 + f11 + f12 − f11 − f10 = −∂H
∂φc

.

(sa, sb, sc) = (1, 1, 0)⇒ f̂sa = f̂sb
= fsc = 0⇒ fsa = f12, fsb = f10, f̂sc = −f12

⇒ y = f10 − f12 + f11 − f10 − f12 + f12 = ∂H

∂φc
= − ∂H

∂φa
− ∂H

∂φb
.

(sa, sb, sc) = (1, 0, 1)⇒ f̂sa = fsb
= f̂sc = 0⇒ fsa = f12, f̂sb = −f11, fsc = f11

⇒ y = f10 − f12 − f11 + f11 + f12 − f11 = ∂H

∂φb
= − ∂H

∂φa
− ∂H

∂φc
.

(sa, sb, sc) = (0, 1, 1)⇒ fsa = f̂sb
= f̂sc = 0⇒ f̂sa = −f10, fsb = f10, fsc = f11

⇒ y = f10 + f11 − f10 + f12 − f11 − f10 = ∂H

∂φa
= −∂H

∂φb
− ∂H

∂φc
.

(sa, sb, sc) = (1, 1, 1)⇒ f̂sa = f̂sb
= f̂sc = 0⇒ fsa = f12, fsb = f10, fsc = f11

⇒ y = f10 − f12 + f11 − f10 + f12 − f11 = 0.
Concluding,

y = −sa
∂H

∂φa
− sb

∂H

∂φb
− sc

∂H

∂φc
.

Now consider the parametrisation of the input matrix for which we use the formulae:

ξab − uab + esb − êsa = 0,
ξbc − ubc + esc − êsb = 0,
ξca − uca + esa − êsc = 0,
êsb = esb − udc,
esa = udc + êsa,

êsc = esc − udc,
esb = udc + êsb,

êsa = esa − udc,
esc = udc + êsc,
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where ξjk = fRk − fRj − φ̇k + φ̇c − yjk, jk = ab, bc, ca. These equations are equivalent with
the parametrised equations for φ̇ in (3-17).

Proof. Computing the resulting equations for every switch configuration produces

(sa, sb, sc) = (0, 0, 0)⇒ êsa = êsb
= êsc = 0⇒ esa = udc, esb = udc, esc = udc

⇒ ξab = 0,
⇒ ξbc = 0,
⇒ ξca = 0.

(sa, sb, sc) = (1, 0, 0)⇒ esa = êsb
= êsc = 0⇒ êsa = −udc, esb = udc, esc = udc

⇒ ξab + udc = 0,
⇒ ξbc = 0,
⇒ ξca − udc = 0.

(sa, sb, sc) = (0, 1, 0)⇒ êsa = esb
= êsc = 0⇒ esa = udc, êsb = −udc, esc = udc

⇒ ξab − udc = 0,
⇒ ξbc + udc = 0,
⇒ ξca = 0.

(sa, sb, sc) = (0, 0, 1)⇒ êsa = êsb
= esc = 0⇒ esa = udc, esb = udc, êsc = −udc

⇒ ξab = 0,
⇒ ξbc − udc = 0,
⇒ ξca + udc = 0.

(sa, sb, sc) = (1, 1, 0)⇒ esa = esb
= êsc = 0⇒ êsa = −udc, êsb = −udc, esc = udc

⇒ ξab = 0,
⇒ ξbc + udc = 0,
⇒ ξca − udc = 0.

(sa, sb, sc) = (1, 0, 1)⇒ esa = êsb
= esc = 0⇒ êsa = −udc, esb = udc, êsc = −udc

⇒ ξab + udc = 0,
⇒ ξbc − udc = 0,
⇒ ξca = 0.

(sa, sb, sc) = (0, 1, 1)⇒ êsa = esb
= esc = 0⇒ esa = udc, êsb = −udc, êsc = −udc

⇒ ξab − udc = 0,
⇒ ξbc = 0,
⇒ ξca + udc = 0.

(sa, sb, sc) = (1, 1, 1)⇒ esa = esb
= esc = 0⇒ êsa = −udc, êsb = −udc, êsc = −udc

⇒ ξab = 0,
⇒ ξbc = 0,
⇒ ξca = 0.
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Concluding ξabξbc
ξca

+

sa − sbsb − sc
sc − sa

udc = 0.

C-3 The derivation of the rectifier’s differential-algebraic model

For Σ1 we have the following sets of equations

y =− I3×3∂H

∂φ
,

s.t.ya + yb + yc = 0,
(C-14)

eR = I3×3∂H

∂φ
, (C-15)

f1 − f3 = ∂H

∂φa
,

f2 − f1 = ∂H

∂φb
,

f3 − f2 = ∂H

∂φc
,

(C-16)

fRb − φ̇b − ub − fRa + φ̇a + ua − e1 = 0,
fRc − φ̇c − uc − fRb + φ̇b + ub − e2 = 0,
fRa − φ̇a − ua − fRc + φ̇c + uc − e3 = 0,

e1 + e2 + e3 = 0.

(C-17)

For Σ2 the simplified, parametrised relations from Section 4-2-3 are

f7 = −f4(sa − sb),
f8 = −f5(sb − sc),
f9 = −f6(sc − sa),
e4 = e7(sa − sb),
e5 = e8(sb − sc),
e6 = e9(sc − sa).

(C-18)

The equations describing Σ3 are

q̇ = fRL
+ f10 + f11 + f12,

eRL
= ∂H

∂q
,

e10 = e11 = e12 = ∂H

∂q
.

(C-19)
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Combining (C-17) with the voltage equations in (C-18) through e1 = e4, e2 = e5, e3 = e6
and subsequently substituting e10, e11, e12 into the results through e7 = e10, e8 = e11, e9 = e12
leads to

fRb − φ̇b − ub − fRa + φ̇a + ua − (sa − sb)
∂H

∂q
= 0,

fRc − φ̇c − uc − fRb + φ̇b + ub − (sb − sc)
∂H

∂q
= 0,

fRa − φ̇a − ua − fRc + φ̇c + uc − (sc − sa)
∂H

∂q
= 0.

(C-20)

Furthermore, combining the equation for the current in the capacitor in (C-19) with the
equations of the currents in (C-18), through f7 = −f10, f8 = −f11, f9 = −f12 leads to

q̇ = fRL
+ f4(sa − sb) + f5(sb − sc) + f6(sc − sa).

Subsequently, substituting (C-16) given that f1 = −f4, f2 = −f5, f3 = −f6 yields

q̇ = fRL
− sa

∂H

∂φa
− sb

∂H

∂φb
− sc

∂H

∂φc
. (C-21)

Finally, combining (C-14), (C-15), (C-20), (C-21) and the equation for the load resistance in
(C-19) leads to the differential-algebraic model in (4-6).

C-4 The parametrisation of the rectifier for the nonlinear element
method

The proof of the parametrisation of the rectifier model with the switches as nonlinear elements
will be given in two ways. First, the equivalence of the parametrised equations of the graph of
Σ2, (C-18), and the equations corresponding to the graph of Σ2 with the switches as nonlinear
elements, which are

f`+3 = f` − fsj + f̂sk,

e` = −e`+3 + esk − êsj ,
f̂sj = fsj − f`,
fsk = f` + f̂sk,

êsk = esk − e`+3,

esj = e`+3 + êsj .

(C-22)

Proof.
(sj , sk) = (0, 0)⇒ fsj = fsk = 0⇒ f̂sj = f̂sk = −f`

⇒ f`+3 = 0.
(sj , sk) = (0, 0)⇒ êsj = êsk = 0⇒ esj = esk = e`+3

⇒ e` = 0.

(sj , sk) = (1, 0)⇒ f̂sj = fsk = 0⇒ fsj = f`, f̂sk = −f`
⇒ f`+3 = −f`.

(sj , sk) = (1, 0)⇒ esj = êsk = 0⇒ êsj = −e`+3, esk = e`+3

⇒ e` = e`+3.
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(sj , sk) = (0, 1)⇒ fsj = f̂sk = 0⇒ f̂sj = −f`, fsk = f`

⇒ f`+3 = f`.

(sj , sk) = (0, 1)⇒ êsj = esk = 0⇒ esj = e`+3, êsk = −e`+3

⇒ e` = −e`+3.

(sj , sk) = (1, 1)⇒ f̂sj = f̂sk = 0⇒ fsj = fsk = f`

⇒ f`+3 = 0.
(sj , sk) = (1, 1)⇒ esj = esk = 0⇒ êsj = êsk = −e`+3

⇒ e` = 0.

Concluding, the mathematical representation with the switches as nonlinear elements (C-22) is
equivalent to the parametrised representation (C-18) and therefore lead to the same differential-
algebraic model in (3-22).

Second, we proof that parametrising the complete differential-algebraic model in (4-6) leads
to the model in (3-22).

Proof. First consider the parametrisation of the equation for q̇

(sa, sb, sc) = (0, 0, 0)⇒ fsa = fsb = fsc = 0⇒ f̂sa = f3, f̂sb = f1, f̂sc = f2

⇒ q̇ = fRL
+ f1 − f1 + f2 − f2 + f3 − f3 = fRL

.

(sa, sb, sc) = (1, 0, 0)⇒ f̂sa = fsb = fsc = 0⇒ fsa = −f1, f̂sb = f1, f̂sc = f2

⇒ q̇ = fRL
+ f1 − f1 − f1 + f2 − f2 + f3 = fRL

− ∂H

∂φa
.

(sa, sb, sc) = (0, 1, 0)⇒ fsa = f̂sb = fsc = 0⇒ f̂sa = f3, fsb = −f2, f̂sc = f2

⇒ q̇ = fRL
+ f1 + f2 − f2 − f2 + f3 − f3 = fRL

− ∂H

∂φb
.

(sa, sb, sc) = (0, 0, 1)⇒ fsa = fsb = f̂sc = 0⇒ f̂sa = f3, f̂sb = f1, fsc = −f3

⇒ q̇ = fRL
+ f1 − f1 + f2 − f3 + f3 − f3 = fRL

− ∂H

∂φc
.

(sa, sb, sc) = (1, 1, 0)⇒ f̂sa = f̂sb = fsc = 0⇒ fsa = −f1, fsb = −f2, f̂sc = f2

⇒ q̇ = fRL
+ f1 − f1 + f2 − f2 − f2 + f3 = fRL

+ ∂H

∂φc
= fRL

− ∂H

∂φa
− ∂H

∂φb
.

(sa, sb, sc) = (1, 0, 1)⇒ f̂sa = fsb = f̂sc = 0⇒ fsa = −f1, f̂sb = f1, fsc = −f3

⇒ q̇ = fRL
+ f1 − f1 − f1 + f2 + f3 − f3 = fRL

+ ∂H

∂φb
= fRL

− ∂H

∂φc
− ∂H

∂φa
.

(sa, sb, sc) = (0, 1, 1)⇒ fsa = f̂sb = f̂sc = 0⇒ f̂sa = f3, fsb = −f2, fsc = −f3

⇒ q̇ = fRL
+ f1 + f2 − f2 + f3 − f3 − f3 = fRL

+ ∂H

∂φa
= fRL

− ∂H

∂φb
− ∂H

∂φc
.

(sa, sb, sc) = (1, 1, 1)⇒ f̂sa = f̂sb = f̂sc = 0⇒ fsa = −f1, fsb = −f2, fsc = −f3

⇒ q̇ = fRL
+ f1 − f1 + f2 − f2 + f3 − f3 = fRL

.
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This indeed leads to the parametrised equation in (C-21). Likewise, consider the parametri-
sation of the equations fRk − φ̇k − uk − fRj + φ̇j + uj − e`. For the sake of simplicity denote
ζjk = fRk − φ̇k − uk − fRj + φ̇j + uj .

(sa, sb, sc) = (0, 0, 0)⇒ êsa = êsb = êsc = 0⇒ esa = esb = esc = udc

⇒ ζab = ζbc = ζca = 0.

(sa, sb, sc) = (1, 0, 0)⇒ esa = êsb = êsc = 0⇒ êsa = −udc, esb = udc, esc = udc

⇒ ζab − udc = 0,
⇒ ζbc = 0,
⇒ ζca + udc = 0.

(sa, sb, sc) = (0, 1, 0)⇒ êsa = esb = êsc = 0⇒ esa = udc, êsb = −udc, esc = udc

⇒ ζab + udc = 0,
⇒ ζbc − udc = 0,
⇒ ζca = 0.

(sa, sb, sc) = (0, 0, 1)⇒ êsa = êsb = esc = 0⇒ esa = udc, esb = udc, êsc = −udc
⇒ ζab = 0,
⇒ ζbc + udc = 0,
⇒ ζca − udc = 0.

(sa, sb, sc) = (1, 1, 0)⇒ esa = esb = êsc = 0⇒ êsa = −udc, êsb = −udc, esc = udc

⇒ ζab = 0,
⇒ ζbc − udc = 0,
⇒ ζca + udc = 0.

(sa, sb, sc) = (1, 0, 1)⇒ esa = êsb = esc = 0⇒ êsa = −udc, esb = udc, êsc = −udc
⇒ ζab − udc = 0,
⇒ ζbc + udc = 0,
⇒ ζca0 = 0.

(sa, sb, sc) = (0, 1, 1)⇒ êsa = esb = esc = 0⇒ esa = udc, êsb = −udc, êsc = −udc
⇒ ζab + udc = 0,
⇒ ζbc = 0,
⇒ ζca − udc = 0.

(sa, sb, sc) = (1, 1, 1)⇒ esa = esb = esc = 0⇒ êsa = êsb = êsc = −udc
⇒ ζab = ζbc = ζca = 0.

This leads to the parametrised equations in (C-20) and hence the differential-algebraic model
in (3-22) is equivalent with the one in (4-6).
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Glossary

List of Acronyms

AC Alternating Current
CL Cycle Law
CCL Co-Cycle Law
DAE Differential-Algebraic Equation
DAM Differential-Algebraic Model
DC Direct Current
ISO Input-State-Output
KCL Kirchhoff’s Current Law
KVL Kirchhoff’s Voltage Law
NEM Nonlinear Element Method
PH Port-Hamiltonian
VEM Virtual Element Method

List of Symbols

Symbol Description

Greek
λ Electrical potential
φ Flux-linkage
Λ Vector of electrical potentials
Σ (Sub)system
Φ Constitutive relation

Roman
b Branch
e Effort
f Flow
g Input mapping (matrix)
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gT Output mapping (matrix)
i Current
iL Loop current
n Node
q Charge
s Switch state
u Input
v Voltage
x State
y Output

A Incidence matrix
B Set of branches
C Capacitance
Ccy Cycle variables
Ccocy Co-cycle variables
D Dissipation matrix
D̂, D̃ Dissipative relation
E Effort interconnection matrix
F Flow interconnection matrix
G Graph
Gr Reference graph
Gv Virtual graph
H Hamiltonian
I Vector of currents
IL Vector of loop currents
J Interconnection matrix
L Inductance
M Disconnection-reconnection matrix
N Set of nodes
Nb Number of branches
Nn Number of nodes
Ns Number of switches
R Resistance
S Vector of switch states
V Vector of voltages
Z Direct feedthrough matrix

Calligraphic symbols
A Set of admissible configurations
D Dirac structure
E Space of efforts
F Space of flows
P Set of (external) ports
R Set of resistive elements
S Set of storage elements
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W Set of switching elements
X State-space

Miscellaneous
(·)∗ Dual
〈·|·〉 Duality product
˙(·) Derivative with respect to time

(·)T Transpose operator
|| · || Length of a path or cycle
(·)a,b,c Refers to the phases, a, b, c
(·)j,k,` Counters and indexes
(·)L Variable corresponding to a load
I Identity matrix
O Matrix of only zeros
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