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Learning Stable Evolutionary PDE Dynamics: A Scalable System

Identification Approach
Diyou Liu and Mohammad Khosravi

Abstract—In this paper, we discuss the learning and discovery
problem for the dynamical systems described through stable
evolutionary Partial Differential Equations (PDEs). The main
idea is to employ a suitable learning approach for creating a
map from boundary conditions to the corresponding output.
More precisely, in order to accurately uncover the evolutionary
PDE dynamics, we propose a scheme that employs large-
scale system identification to construct such a map using
sufficiently informative measurements. Accordingly, we first
develop a scalable implementation for the subspace identifi-
cation method, enforcing stability on the identified system. To
this end, numerical optimization techniques such as coordinate
descent, randomized singular value decomposition, and large-
scale semidefinite programming are employed. The performance
and complexity of the resulting scheme are discussed and
demonstrated through numerical experiments on generic identi-
fication examples. Following this, we validate the effectiveness of
the proposed approach on an example of a stable evolutionary
partial differential equation. The numerical results confirm the
efficacy of the proposed learning scheme.

I. INTRODUCTION

Partial Differential Equations (PDEs) are ubiquitous in
science and technology [1], serving as fundamental tools
for understanding, analyzing, and predicting complicated
real-world phenomena, such as fluid dynamics [2], thermo-
dynamics [3], and electrodynamics [4]. Accordingly, their
theory and techniques have been extensively studied, and
various methods have been developed for the related forward
problems, i.e., deriving the corresponding solution given the
PDE dynamics and other required conditions [1]. While
traditional methods focus on solving the forward problems
analytically [5], due to the diverse classes of partial differ-
ential equations, establishing a general analytical approach
encompassing all PDEs is challenging [6]. Additionally, the
complicated nature of PDEs describing complex physical
systems presents significant limitations in obtaining ana-
lytical solutions, prompting the use of numerical methods
[7], including finite difference [7], finite element [8], and
finite volume [9] methods. Nonetheless, these methods are
prone to major issues such as numerical instability, slow
computational efficiency, and sensitivity to grid dependence,
requiring ongoing improvements.

Due to the complexity of deriving PDE dynamics phys-
ically, the inverse problems associated with PDEs, i.e., uti-
lizing data-driven modeling techniques to recover either the
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PDE itself, partially or entirely, or its solution from synthetic
or measurement data, have received significant attention in
recent years [10–12]. To this end, various methodologies
are proposed, e.g., using kernel-based learning [13, 14],
Koopman operator theory [15, 16], and deep learning [11].
Some of the research focus on recovering PDE directly. For
example, PDE-FIND, proposed in [10], employs a dictio-
nary of possible derivative terms and represents the PDE
parametrically in terms of dictionary elements, where the
parameters are subsequently determined through a regression
problem minimizing the L2-norm error of fitting data to
the estimated forward model result. Moreover, in [12], the
problem is formulated through an adjoint method, where a
constraint is introduced to enforce the estimation results as
a solution to a parameterized PDE. However, these meth-
ods have several limitations. First, one needs knowledge
of the underlying PDE and a suitable parameterization to
obtain an accurate solution, which may not be available.
Furthermore, when the initial condition, boundary condition,
or external forcing change, the PDE solution needs to be
recomputed from the obtained PDE dynamics, which can be
computationally intensive. Instead of recovering PDE, some
research papers focus on recovering the PDE solution. For
instance, in [11], physics-informed neural networks (PINN)
are proposed, which uses a fully connected neural network
to train supervised learning tasks. The loss function is built
based on physical laws (PDE dynamics, initial and boundary
conditions). Furthermore, in [17], based on PINN, the author
proposed to use forward neural network and residual neural
network to improve the performance. However, in order to
build a loss function, these methods require the knowledge
of structure of PDE dynamics, which may not be available
in some scenarios. Additionally, the neural network needs to
be retrained if the initial or boundary conditions change.

This paper focuses on recovering and learning a stable
evolutionary PDE. The goal is to learn a mapping be-
tween the boundary conditions and the PDE solution at the
specified region. Thus, we can ensure that no additional
training is required when the boundary conditions change.
To this end, we treat PDE as a system to be identified,
and subsequently, we employ a system identification scheme
suitable for handling vast amount of data. To this end, we
propose a scalable implementation of a subspace state space
system identification method with enforced stability [18–
20], which belongs to the general domain of identification
techniques incorporating side-information [21–24]. Note that,
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Figure 1. One dimensional heat conduction in rod with initial and boundary
conditions.

given sufficient measurement data, we first estimate impulse
response by solving a least squares problem. The resulting
estimates can be used to establish the extended observability
and extended controllability matrices using singular value
decomposition (SVD). Subsequently, from the observability
matrix, an optimization problem is formulated to find an
estimate of system matrices, where a linear matrix inequality
constraint is introduced to ensure stability of the estimated
system. We utilize the proposed scheme to learn stable
linear evolutionary PDEs and solve them numerically. Given
a linear stable evolutionary PDE, the boundary conditions
can be seen as the input and the PDE solution at the
specified region as the output. To identify the system, we
first sample the boundary conditions and the solution over
the region of interest to collect data. Then, the proposed
system identification method is used to learn the mapping
as a system. Having found the estimated system matrix, one
can easily obtain the output for any given input.

II. DISCOVERY PROBLEM FOR STABLE EVOLUTIONARY
PDE DYNAMICS

Consider a stable dynamical system described through an
evolutionary PDE dynamics as

∂

∂t
z(ξ, t) = F

(
z(ξ, t)

)
, ∀ (ξ, t) ∈ Ω× [0,∞), (1)

where Ω is a simply connected closed subset of Rn with
boundary ∂Ω, and F is a linear differential operator charac-
terizing the spatial evolution in (1). For the ease of discussion,
assume the system is initially at rest, i.e., z(ξ, 0) = 0, for all
ξ ∈ Ω. Let ν : ∂Ω× [0,∞)→ R be a function characterizing
an external actuation applied to the boundary of system ∂Ω,
and we have no additional input on Ω\∂Ω. Moreover, let
ζ : Ξ× [0,∞)→ R be the respective response of the system
on Ξ ⊆ Ω\∂Ω. In this paper, our motivating example is the
one dimensional heat conduction over a thin rod shown in
Figure 1.

When system dynamics (1) is completely known and ν is
given, one may obtain ζ through numerical methods solving
the above-mentioned PDE. However, introducing a new ex-
ternal actuation requires repeating the numerical procedure
to determine the updated response, which can be compu-
tationally intensive. Furthermore, in various situations, the
PDE dynamics (1) may not be known exactly. Following the
above discussion and considering the dependency between
the external actuation and response, we pose the problem of
Learning Stable Evolutionary PDE Dynamics as below.

Problem (Learning Stable Evolutionary PDE Dynamics). Let
ν : ∂Ω × [0,∞) → R and ζ : Ξ × [0,∞) → R be a given
pair of external actuation on the boundary and response
with respect to PDE (1), which is possibly unknown. Find
a suitable operator mapping the external actuations to the
corresponding response.

III. DISCRETE DYNAMIC MODEL FOR STABLE
EVOLUTIONARY PDE

In order to solve the problem introduced in Section II, we
treat PDE as a dynamic system. Assume {ωi|i = 1, . . . , nu}
and {ξi|i = 1, . . . , ny} are respectively sets of grid points
in ∂Ω and Ξ. Accordingly, we define discrete-time signals
u : [0,∞) → Rn

u and y : [0,∞) → Rn
y respectively as

uk = [z(ωi, k∆T )]
nu
i=1 and yk = [z(ξi, k∆T )]

ny

i=1, for k ∈
Z+, where ∆T > 0 is a small sampling time. Accordingly,
the introduced problem boils down to find a stable linear
dynamical system S, which accurately estimates the dynamic
from input to output, and described as

xk+1 = Axk +Buk,

yk = Cxk +Duk +wk,
∀ k ∈ Z, (2)

where vectors xk ∈ Rnx , uk ∈ Rnu , and yk ∈ Rny ,
respectively correspond to the state, input and output of the
system at time k ∈ Z, matrices A ∈ Rnx×nx , B ∈ Rnx×nu ,
C ∈ Rny×nx , and D ∈ Rny×nu characterize the system, and,(
wk)k∈Z is a zero-mean white noise process affecting the

output measurements of the system.
To find unknown system S, sufficiently informative mea-

surement data is required. Accordingly, we assume that the
system is actuated with a persistently exciting input signal of
suitable length, and the output of the system is then measured
at time instants t = 0, 1, . . . , nD − 1. Thus, we are provided
with the following set of data

D :=
{
(uk, yk)

∣∣ k = 0, 1, . . . , nD − 1
}
, (3)

which contains nD ∈ Z+ input-output measurement pairs.
For accurate estimation, a dense mesh is required for dis-
cretization. Thus, S is a large-scale system. More precisely,
the dimensions of the state, input, or output vectors can
be considerably large, i.e., nx, nu, ny ≫ 1. Therefore, the
sufficient informativity of the measurements data leads to
employing a substantially small ∆T , which leads to consider-
ably large nD and dealing with a massive set of measurement
data. Furthermore, since S is a stable system, the stability
constraint needs to be imposed on to be identified model.

IV. SCALABLE STABLE SUBSPACE IDENTIFICATION

In this section, we introduce a scalable algorithm for sub-
space state space system identification (N4SID) to identify
(2). The algorithm is summarized in Algorithm 1.

For system (2), the output, at time instant k ∈ Z, is

yk =

nG−1∑
s=0

Gsuk−s +CAnGxk−nG+1 +wk, (4)
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where G0 = D and Gs = CAs−1B, s ≥ 1. For stable systems
and large enough nG, we can assume CAnGxk−nG+1 ≈
0. This is valid assumption also when the system is ini-
tially at rest. Define Y = [y⊺0 , y

⊺
1 , ..., y

⊺
nD−1]

⊺ and G =
[G0,G1, ...,GnG−1]. Thus, equation (4) can be re-written as

Y = TuG
⊺ +W, (5)

where W = [w⊺
0 ,w

⊺
1 , ...,w

⊺
nD−1]

⊺ and Tu is a lower block
triangular Toeplitz matrix defined as

Tu =


u⊺0 0 . . . 0
u⊺1 u⊺0 . . . 0
...,

...
...

...
u⊺nD−1 u⊺nD−2 . . . u⊺nD−nG

 .
With sufficiently informative measurements, impulse re-
sponse Ĝ can be estimated by solving a linear least squares
problem as

Ĝ = argminG∈Rny×nGnu∥Y − TuG
⊺∥2. (6)

To reduce the computational complexity, we split matrix Y
and G⊺ into nbatch blocks, i.e. Y = [Y1,Y2, ...,Ynbatch ], G

⊺ =
[H1,H2, ...,Hnbatch ], where Yi ∈ RnD×bi , Hi ∈ RnGnu×bi and∑nbatch

i=1 bi = ny. With the split matrices, (6) can be solved by
nbatch linear least squares as

min
Hi∈RnGnu×bi

∥Yi − TuHi∥2, ∀i = 1, . . . , nbatch. (7)

Note that Yi gathers the output of the all channels in the
ith block across the entire dataset, while Hi represents the
impulse response of all input channels to all output channels
in the ith block during the initial nD time steps. Given that
D is a sufficient data set and nD is large, solving (7) may
still lead to memory issues. Accordingly, we implement block
coordinate descent method [25].

To realize the extended observability matrix, the Ho-
Kalman method and eigensystem realization algorithm (ERA)
are used [18]. Specifically, let nH = ⌊nG/2⌋ and define block
Hankel matrix HG ∈ RnHny×nHnu as

HG =


G1 G2 . . . GnH

G2 G3 . . . GnH+1

...
...

...
...

GnH GnH+1 . . . G2nH−1

 . (8)

By substituting Markov parameters Gs = CAs−1B, s ≥ 1,
we can re-write the block Hankel matrix HG as

HG =


C
CA

...
CAnH−1

 [
B AB . . . AnH−1B

]
. (9)

In the above equation, the last line is the product of extended
observability matrix and extended controllability matrix. As-
sume nG is chosen large enough such that we have nx ≤
nHnu, nHny. Since the system is stable, rank(HG) = nx.
we can factorize HG using SVD, i.e. HG = USV⊺, where
rank(S) = nx.

The block Hankel matrix HG is unknown, but an es-
timation HĜ can be constructed using the solution Ĝ of
(6). This estimation matrix can also be factorized and we
keep the largest nx singular values with its corresponding
left and right singular vectors, i.e. HĜ = ÛŜV̂⊺, where
Û ∈ RnHny×nx , Ŝ ∈ Rnx×nx and V̂ ∈ RnHnu×nx . We
can write HĜ as ÛŜ

1
2 Ŝ

1
2 V̂⊺, where ÔnH

:= ÛŜ
1
2 and

ĈnH
:= Ŝ

1
2 V̂⊺ are the estimation of extended observability

matrix and extended controllability matrix, respectively, up
to a linear transformation.

Remark 1. Note that for large scale systems, storing HĜ

is resource intensive. We use Python package DASK [26]
to enable our system utilizing disk space as an extension of
memory and to perform parallel computation. Additionally,
Randomized SVD [27] can be used when HĜ is of large size.

From the estimation of extended observability matrix ÔnH

and extended controllability matrix ĈnH
, one can easily

extract the realization of matrices B̂ and Ĉ as the first nu
columns of ĈnH

and the first ny rows of ÔnH
, respectively.

Thus, we only need to find stable matrix Â as an estimation of
matrix A. Define Γ and Γ respectively as the first and the last
(nH−1)ny rows of ÔnH

. Therefore, Γ and Γ are estimations
of OnH−1 and OnH−1A, respectively. Accordingly, given
ÔnH

, one can estimate A by solving the following program:

(Â, P̂) := argmin
A,P∈Rnx×nx

∥∥W2(Γ− ΓA)W1

∥∥2
F
,

s.t. APA⊺ − P ⪯ −Inx
,

P ⪰ Inx
,

(10)

where W1 and W2 are suitably chosen weight matrices. The
constraints ensure stability of matrix Â.

Note that (10) is a non-convex problem. To solve this
problem efficiently and accurately, we convert it to a convex
problem [19]. From Schur complements, one can see that if
(A,P) satisfies the constraints in (10), then we have[

P− Inx
AP

PA⊺ P

]
⪰ 02nx

. (11)

Define matrix W3 = P−1W1 and Q = AP. One can re-write
the estimation problem (10) as

(P̂, Q̂) := argmin
P,Q∈Rnx×nx

∥∥W2(ΓP− ΓQ)W3

∥∥2
F
,

s.t.

[
P− Inx

Q
Q⊺ P

]
⪰ 02nx

,
(12)

and estimate A as Â = QP−1. To further simplify the
problem, let W2 and W3 be identity matrices. Define ma-

trices R =
[
−Γ Γ

]
, S =

[
0nx

Inx

]
, T =

[
Inx

0nx

]
, and

X =

[
P− Inx Q
Q⊺ P

]
. Accordingly, we can re-write (12) as

X̂ := argmin
X∈R2nx×2nx

∥∥RXS
∥∥2
F
,

s.t. X ⪰ 02nx
,

S⊺XS− T⊺XT = Inx
.

(13)
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Remark 2. The introduced optimization problem is convex
and can be solved using Semidefinite Programming (SDP)
techniques. However, it would become challenging for the
large scale systems, as nH, nx and ny can have significantly
large values. For high values of nx, the extensive size of X
poses memory issues. Furthermore, with large values for ny
and nH, the cost function is a summation of numerous terms,
resulting in significant complexity and high computation
effort.

Regarding the potential memory issues, we use the interior-
point method [28] to convert (13) to an unconstrained op-
timization problem and solve it through Limited-memory
BFGS algorithm [29]. Define cost function

Jρ(X) :=
1

2
(
∥∥RXS

∥∥2
F
+
∥∥S⊺XR⊺

∥∥2
F
)

− 1

ρ
b(X) + ρ

∥∥S⊺XS− T⊺XT− Inx

∥∥2
F
,

(14)

where ρ > 0 is a weight parameter, and b : R2nx×2nx →
R ∪ {∞} is the logarithmic barrier function defined as

b(X) =

{
log(det(X)), if X ⪰ 02nx ,

∞, else.
(15)

As ρ goes to infinity, the minmum of Jρ(X) converges
to a solution of (13). Moreover,

∥∥RXS
∥∥2
F

is re-written as
1/2(

∥∥RXS∥∥2
F
+
∥∥S⊺XR⊺

∥∥2
F
), so that the ∇XJρ(X) becomes

symmetric when X is symmetric and positive definite

∇XJρ(X)=R⊺RXSS⊺+SS⊺XR⊺R− 1

ρ
X−1+2ρ[S(S⊺XS

−T⊺XT)S⊺+T(T⊺XT−S⊺XS)T⊺−SS⊺+TT⊺].

For each ρ, gradient descent can be used to find the optimal
X̂, which can be described by the sequence

vec(Xk+1) = vec(Xk)− αkHk vec(∇XJρ(Xk)), (16)

where αk is the stepsize and Hk is the inverse Hessian matrix.
To avoid computing inverse matrix of large Hessian matrix,
which is computationally complex, the inverse Hessian ma-
trix Hk is recursively updated using L-BFGS method [29,
Algorithm 2.1].

V. PROCEDURE AND MEMORY COMPLEXITY

A. Subspace Identification

In this section, the performance of the proposed scheme is
demonstrated. We consider a system with 30 states, 2 outputs
and 3 inputs. The systems are randomly generated with poles
having magnitudes less than 0.7786. We generate random
inputs for the system with a maximal infinity norm of 2.
Three datasets with different sizes are generated. We compare
the performance of three different methods, namely MOESP
[30], N4SID, and N4SID with stability. The evaluation is
based on the average relative impulse response error over
M = 100 Monte-Carlo trials. All simulations are tested on
DelftBlue with a maximum memory limit of 100GB.

Note that systems identified by N4SID and MOESP are
not guaranteed to be stable, which might lead to an infinite

Algorithm 1 Stable N4SID for Large Scale Systems Identification
Input: D.
Output: Â, B̂ and Ĉ.
BCD Least Squares:
Build Tu from D

1: for k ← 1 to nbatch do
2: M← Tu, b← Yk, z ← 0nGnu

3: Pre Computation:
pi := (M⊺

i Mi)
−1M⊺

i b
Qi,j := (M⊺

i Mi)
−1M⊺

i Mj ,∀i, j ∈ Rn, i ̸= j
4: while 1 do
5: zi ← pi −

∑n
j=1,j ̸=iQi,jzj , i← i+ 1

6: if z converged then
7: break
8: [Ĝ⊺]i ← z
9: Build block Hankel matrix HĜ

Randomized SVD:
10: choose q, l
11: Generate Gaussian matrix Ω
12: Y ← (HĜH

∗
Ĝ
)qHĜΩ

13: QR factorization Y = QYRY

14: B← Q∗
YHĜ

15: SVD decomposition B = ŨŜV̂∗

16: Compute Û = QYŨ
17: ÔnH

← ÛŜ
1
2 and ĈnH

← Ŝ
1
2 V̂∗

State Space Realization:
18: Build Γ and Γ from ÔnH

19: R←
[
−Γ Γ

]
, S←

[
0nx

Inx

]
, T←

[
Inx

0nx

]
20: Define X =

[
P− Inx

Q
Q⊺ P

]
21: for k ← 1 to K do
22: Define cost function (14)
23: ρ← µρ, µ > 1
24: while 1 do
25: Update Hk through [29, Algorithm 2.1]
26: vec(X)← vec(X)− αkHk vec(∇XJρ(X))
27: if X converged then
28: break
29: Â← QP−1, B̂ as the first nu columns of ĈnH and Ĉ as

the first ny rows of ÔnH
.

H2 norm. In order to compare the performance, we use the
impulse response error for the first K time steps, which is
defined as

error =
1

M

M∑
i=1

∑K
j=1∥ŷij − y∗j ∥2F∑K

j=1∥y∗j ∥2F
, (17)

where ŷij is the identified impulse response at time step j for
the ith Monte-Carlo trial and y∗j is the true impulse response
at time step j. Table I compares the performance of the
mentioned methods for different SNR levels and amounts
of data. The table shows that the fitting error for models
generated by the N4SID approach is larger than that of both
stable N4SID and MOESP for the same SNR and data size,
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Figure 2. The impulse response error of three different methods with respect
to time steps.

which is potentially due to the frequent instances of unstable
systems identified by N4SID. In those cases, as time index
increases, the impulse response tends to infinity, resulting in
substantial impulse response error (17) for large values of
K. Furthermore, due to potential instability, increasing data
size and SNR do not lead to significant improvements in
the performance of N4SID. Conversely, for stable N4SID
and MOESP, the performance improves as data size and
SNR increase. MOESP also identifies instances of unstable
systems, albeit less frequently than N4SID. Consequently, the
corresponding mean errors fall between those of the other
two methods across all trials. Finally, MOESP reaches the
memory usage limit for datasets with the size of one million.
Therefore, it is computationally more complex than N4SID,
which is one of the reasons we do not select it for large-
scale systems identification. Figure 2 illustrates the impulse
response error over time steps. Let µ and σ denote the mean
error and standard deviation across all realizations, respec-
tively. The solid line shows the mean error over time steps,
while the shaded region covers region (µ−σ, µ+σ). Notably,
N4SID exhibits the largest standard deviation due to unstable
identification, leading to a diverging mean error. Across
all realizations, the maximal eigenvalue of A obtained by
N4SID has a mean of 1.03 and a standard deviation of 0.03.
Conversely, MOESP and stable N4SID exhibit relatively
lower standard deviations. Finally, the results also indicate
that stable N4SID outperforms the other two methods in
terms of both mean error and standard deviation.

B. Memory Complexity

In this section, we demonstrate the memory complexity
of the proposed scheme. In the experiment, we examine the
memory usage for various data sizes across five different
scenarios. These five scenarios differ in terms of state, input
and output sizes. For the sake of a fair comparison, all
scenarios have the same maximal eigenvalue 0.8 for the
system matrix A. Thus, the truncation parameter nG is set to
45 so that ∥AnG∥ is close to zero and can be ignored.

Figure 3 illustrates the memory complexity with respect
to the size of dataset. The figure shows that memory usage
exhibits an approximate linear relationship with the amount
of data, particularly for large datasets. However, in complex
systems with numerous state variables and relatively small
datasets, memory usage tends to be more influenced by

10
2

10
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10
4

10
5

10
6

10
5

10
6

10
7

10
8

10
9

10
10

Figure 3. The computational complexity of stable N4SID for different data
sizes under five scenarios with different system parameters (nu, ny, nx).

the number of state variables. Nevertheless, as the dataset
size increases, memory usage converges to a more linear
relationship with data size.

VI. DISCOVERY OF PDES

In this section, we show the proposed scheme can be used
to discover PDEs. Accordingly, we consider an augmented
heat PDE as

∂

∂t
z(ξ, t) = α(ξ)

∂2

∂ξ2
z(ξ, t) + β(ξ)z(ξ, t), (18)

where α, β : R+ → R are nonlinear functions. Note
that when β(ξ) = 0, (18) is the heat equation. Let the
PDE be initially at rest and the boundary condition be as
z(0, t) = u(t), for t ∈ R+. Define output as y(t) = z(L, t),
for t ∈ R+, where L is a positive real scalar. We employ the
proposed scheme to learn a mapping between input u and
output y. More precisely, to identify the system described
above, we initially consider a uniform grid on the [0, L] with
nξ + 1 points {ξ0, ..., ξnξ

}, where ξ0 = 0 and ξnξ
= L.

Define zi(t) = z(ξi, t), for i = 0, . . . , nξ. Then, we have
z0(t) = u(t), znξ(t) = y(t), and the approximate dynamics

żi(t) ≈ α(ξi)
zi+1(t)− 2zi(t) + zi−1(t)

(∆ξ)2
+ β(ξi)z

i(t), (19)

for i = 1, . . . , nξ−1. The resulting dynamics can be regarded
as a linear time-invariant (LTI) system. Therefore, we use
stable N4SID to identify this LTI system.

For this numerical experiment, we set α(ξ) = 0.5ξ2 −
Lξ + 1 and β(ξ) = −0.2ξ2. Additionally, we set L = 1 and
discretize it into 100 points. The discretized system is stable
with all poles having magnitudes less than 0.9. Given input
u(t) = sin(t)+1, we solve the system using an ODE solver.
We consider ∆t = 0.01s and collect the first nD = 1000
input and output data points as dataset D. Figure 4 shows the
performance comparison of stable N4SID with ODE solver
or finite difference method under four different external
inputs. In the first three scenarios, the input u are nonlinear
functions and (19) can be analytically solved. Therefore, the
performance is compared to the analytical solution. However,
for the last scenario, random input is applied to the system
so that we compare stable N4SID with the finite difference

83

Authorized licensed use limited to: TU Delft Library. Downloaded on October 02,2024 at 13:01:35 UTC from IEEE Xplore.  Restrictions apply. 



Table I
ERROR OF THREE METHODS WITH RESPECT TO SNR AND DATA SIZE.

data size
method N4SID stable N4SID MOESP

5dB 10dB 20dB 5dB 10dB 20dB 5dB 10dB 20dB
1e4 0.83 0.67 0.60 0.14 0.08 0.05 0.48 0.26 0.13
1e5 2.85 0.92 1.53 0.05 0.03 0.02 0.22 0.11 0.05
1e6 0.73 3.42 0.81 0.02 0.01 0.005 Out of Memory
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Figure 4. Output of the identified system for the augmented heat equation
compared to ODE solver or finite difference method under four distinct
input sequences. A: u(t) = tsin(t), B: u(t) = 0.1t3 −2t2 + t−2, C:
u(t) = 10 sinc(t), D: random input.

method. Across all scenarios, the output obtained from the
identified system closely aligns with the ground truth and
the relative error is approximately 1%. The results show that
the systems identified by stable N4SID exhibit behaviors that
closely match those of the real systems.

VII. CONCLUSION

In this work, we have proposed a scalable system identi-
fication approach applicable to large-scale systems. Through
numerical experiments, we have compared the proposed
approach with existing methods and verified its memory
efficiency. Furthermore, we have demonstrated that the pro-
posed scheme can be utilized for PDE learning and inverse
PDE problems. Future work will focus on discovering more
complex PDEs and analyzing noisy systems.
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