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Abstract

Traditional electric power systems with large centralized base load power plants have a limited
ability to react rapidly to the high supply variability associated with the increasing deploy-
ment of variable and intermittent renewable energy sources (RESs) [1, 2]. Furthermore, with
current power distribution networks primarily designed for unidirectional power flow, the
introduction of reverse power flows by renewable feed-in strategies has been shown to negat-
ively impact grid stability, security and system protection [3, 4]. For residential grid-connected
microgrids (MGs) wishing to increase their renewable generation, these issues along with eco-
nomic considerations often highlight that optimal operation can only be achieved through
an increased self-consumption of locally generated renewable energy [5]. Recently, research-
ers have highlighted that these issues can be addressed by the application of demand side
management (DSM). Broadly speaking, these DSM strategies can be considered as programs
which attempt to modify flexible user demands in order to achieve objectives such as reduced
energy costs or increased RES utilization.

To achieve these optimal energy management goals, this thesis focuses its efforts on the
application of hybrid economic model predictive control (EMPC) strategies for the DSM of
small to medium sized grid-connected residential MGs, containing both local photovoltaic
(PV) generation capabilities and thermal energy storage (TES) devices. In particular, the
investigation exploits thermal energy storage properties of switched domestic electric water
heaters (DEWHs) to optimally schedule energy demand for the minimization of MG operating
costs. By considering the time varying electricity tariffs, it is shown that the implementation
of EMPC is able to simultaneously target reduced electricity costs while also encouraging the
self-consumption of local PV generation.

Finally, to address the unavoidable presence of uncertainty in domestic hot water (DHW) user
demand, the thesis additionally explores the use of stochastic and robust variants of EMPC.
By explicitly considering uncertainty, these control frameworks are able to provide more robust
system operation. Specifically, the work implements min-max and stochastic scenario-based
frameworks, which were shown to drastically reduce the violation of user comfort constraints
when compared with their deterministic counterparts.
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Chapter 1

Introduction

In developing countries such as South Africa, there are little to no renewable generation feed-
in incentives in the energy market. Consequently, an increased deployment of photovoltaic
(PV) energy generation at the residential microgrid (MG) level is only economically viable
provided that close to 100% of the generated energy is self-consumed1. Due to the uncertain,
intermittent and time varying nature of PV energy generation, the problem of optimizing
self-consumption and economic operation remains far from trivial, particularly when coupled
with uncertain user demand profiles [6]. Current research on smart grids (SGs) and MGs has
shown that the use of demand side management (DSM) and smart energy storage systems can
contribute to the development of economically optimal energy management systems (EMSs)
with increased renewable energy source (RES) self-consumption [7].

This thesis expands on current research through the development of optimal DSM strategies
for a case-study residential MG, which is located in a residential complex near Johannesburg,
South Africa. The complex consists of a number of households, each containing a controllable
150L domestic electric water heater (DEWH), with all households making use of shared roof-
top PV generation. Due to the shared nature of the local PV generation, the proposed EMS
is required to consider the community as a co-operative collection of energy users, all working
to minimize the combined community energy operating cost.

1-1 Smart grid (SG) vision

A key enabling concept behind modern DSM strategies is the notion of the SG, which is an
enhancement of the 20th century power grid. Where traditional power grids largely focused
on top-down unidirectional power flows from central utilities to a large number of customers;
the SG aims to make use of two-way flows of electricity and communication to create an
automated and distributed energy network [8]. Table 1-1 provides a brief comparison between
the existing power grid and the SG.
1 In this work, ‘self-consumption’ is defined as the share of total renewable energy generation directly con-

sumed (or locally stored and later consumed) by the producer, which often is the RES owner [5].
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2 Introduction

Table 1-1: A brief comparison between the existing power grid and the SG [9]

Existing Grid Smart Grid

Electromechanical Digital
One-way communication Two-way communication
Centralized generation Distributed generation
Manual monitoring Self-monitoring
Manual restoration Self-healing
Failures and blackouts Adaptive and islanding
Limited control Pervasive control
Few customer choices Many customer choices

More specifically, SGs have been described by Gharavi et al. as:

“...an electric system that uses information, two-way, cyber-secure communica-
tion technologies, and computational intelligence in an integrated fashion across
electricity generation, transmission, substations, distribution and consumption to
achieve a system that is clean, safe, secure, reliable, resilient, efficient, and sus-
tainable. This definition covers the entire spectrum of the energy system from the
generation to the end points of consumption of the electricity.” [10]

They continue to describe the ultimate SG as a ‘vision’ rather than a system which must
meet an exact specification list. In this way, a grid can be considered ‘smart’ even if it does
not fully incorporate all the proposed features. Given the vast scope of the SG vision, it is
useful to categorise the SG in to a series of separate, but interacting subsystems. To this end,
this thesis briefly introduces three major subsystems of the SG as presented by Fang et. al
in their extensive SG survey [8]. Namely, the:

• Smart infrastructure system: the energy, information, and communication infrastructure
underlying of the SG that supports 1) advanced electricity generation, delivery, and
consumption; 2) advanced information metering, monitoring, and management; and 3)
advanced communication technologies.

• Smart management system: a subsystem that provides advanced management and con-
trol services.

• Smart protection system: a subsystem that provides advanced grid reliability analysis,
failure protection, and security and privacy protection services.

This thesis is primarily concerned with the ‘smart management’ subsystem, wherein DSM
plays a crucial role. The subsystem shows great promise to better realise management ob-
jectives such as energy efficiency improvements, supply and demand balance, emission control,
operation cost reduction, and utility maximization. However, it is important to recognise that
the degree to which these objectives can be achieved relies heavily on the capabilities of the
underlying smart infrastructure system. To a large extent, the SG’s ability to revolutionize
power system management is a result of the significantly enhanced capabilities of information
and communication technology (ICT) infrastructure [8].

Christopher Jan Michalak Master of Science Thesis



1-2 Motivation for demand side management (DSM) 3

1-2 Motivation for demand side management (DSM)

The power systems of today have historically been designed with the primary system objective
of ensuring sufficient and stable energy supply to meet the worst case demand. While relatively
simple to implement, this operating framework typically provides lower energy efficiencies and
often leads to increased operating costs. This is due to uncertainty in the power demand of
the users which fluctuates rapidly throughout the day, thereby necessitating the requirement
for large standby generation and spinning reserves. These flexible grid resources result in
increased costs, where the final 10% of generation capacity may only be required for 1% of
the time [8]. Mitigating these issues, along with the desire to better integrate intermittent
RESs with variable and uncertain generation, which further exacerbate the problem, has led
to the recent surge in research focusing on so-called DSM.

Broadly speaking, DSM refers to any control system or program which attempts to modify
consumer energy consumption on the customer side of the meter [11, 12]. It plays a key role
in the SG vision and forms a primary component of the aforementioned ‘smart management
system’, one of the three major SG subsystems categorised by Fang et al. in [8]. In general, the
purpose of DSM is to target specific management objectives such as cost minimization, energy
efficiency, emissions reduction, and/or energy security. To enact such a DSM scheme, an EMS
is designed to target these desired objectives by modifying flexible user demands through
mechanisms such as load shifting, peak clipping, valley filling, etc. This thesis explores the
use of optimal control techniques for the implementation of DSM schemes that optimally
schedule flexible energy demand in order to reduce user energy costs.

Current literature and further details on DSM are covered in the Background chapter, Sec-
tion 2-1.

1-3 Residential microgrids (MGs)

This work limits its scope to the DSM of moderately sized co-operative residential com-
munities. In this respect, it is useful to introduce the recently proposed concept of the
microgrid (MG) [13]. Seen as one of the ‘cornerstones’ of the future SG, the organic evolution
of the SG is expected to develop through the plug-and-play interaction of MGs [8].

MGs are generally defined as a localized grouping of interconnected loads and distributed
energy resource (DER) units. These operate as a single controllable system that provides
electricity and/or heat to its local area [13]. DERs include both distributed generation (DG)
(e.g. PV, wind, diesel) and distributed storage (DS) units (e.g. battery banks, hot water
tanks), all with potentially different capacities and characteristics. In principle, MGs can
operate in two operating modes, namely grid-connected or islanded modes. In the majority
of cases, a MG remains connected to the external utility grid (macro-grid) allowing for the
import/export of excess demand/supply. In islanded mode the MG becomes disconnected
from the utility grid at the single point of common coupling (PCC). It is then expected
to remain operational as an autonomous entity, providing sufficient generation capacity and
controls to supply at least a portion of the load [14]. Figure 1-1 provides an example of a
MG containing these elements, which serves a variety of customers, e.g. residential buildings,
commercial entities, and industrial parks.
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4 Introduction

Figure 1-1: A typical MG structure including loads and DER units serviced by a distribution
system [14]

For the purpose of this investigation, the aforementioned co-operative residential communities
may therefore be considered as residential MGs incorporating distributed PV generation, con-
trollable thermal energy storage (TES) (i.e. DEWH systems) and measurable uncontrollable
loads. Furthermore, while general MGs can operate in islanded or grid-connected modes, this
work assumes that the residential MG operates exclusively in a grid-connected mode.

1-4 Hierarchical control in power systems

In their entirety, electrical power grids arguably represent one of the largest most complex
man-made systems on earth. Similar to other large-scale systems, the power grid naturally
lends itself to a hierarchical operating structure. An example of this has already been dis-
cussed; through the introduction of MGs one large grid is divided into a more manageable
set of sub-grids. The use of hierarchical structures is not only limited to the delineation of
physical system components, it also plays a significant role in the structuring of power system
controls. The principal role of MG control structures is to provide:

• Voltage and frequency regulation for both operating modes (grid-connected or islanded
mode).

• Synchronization of the MG with the external utility grid.

• Power flow control within the MG as well as between the MG and the utility grid.

• Capabilities for targeting optimal economic operation.

These requirements operate within various time-scales and levels of significance, and are thus
well suited to a hierarchical control structure [15]. Typically, the hierarchy consists of three
levels, namely the primary, secondary and tertiary level controls, as shown in Figure 1-2. The
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1-4 Hierarchical control in power systems 5

primary control maintains voltage and frequency stability, the secondary layer compensates
for any voltage and frequency deviations introduced by the primary layer. Finally, a tertiary
control layer manages high level power flows and ensures optimal economic operation of the
MG.

The DSM strategies investigated in this work are located in the tertiary control layer. Thus,
the work will not explicitly cover the primary and secondary layer controls, under the as-
sumption that these will be enacted elsewhere (e.g. by the external utility grid and within
the PV DC-AC inverters).

Figure 1-2: Hierarchical control levels of a microgrid [15]

Master of Science Thesis Christopher Jan Michalak



6 Introduction

1-5 Research objectives

The purpose of this thesis is to investigate the use of develop, and apply economic optimal con-
trol techniques to target the reduced economic operating costs of medium-scale grid-connected
co-operative residential microgrids (MGs). Furthermore, the work explores whether the imple-
mentation of such controllers would allow for the increased deployment of local PV generation
capacity by encouraging RES self-consumption.

This work focused its efforts on the development of co-operative demand side management
(DSM) schemes that exploit the thermal energy storage properties of a multi-agent network
of switched DEWHs. Operating under a Time-of-Use (ToU) electricity pricing, the scheme
attempts to optimally schedule the heating cycles of these domestic hot water (DHW) storage
units. This is done in order to shift demand to lower cost supply points, or to periods with
excess PV generation. To implement these DSM schemes, this thesis makes use of model
predictive control (MPC) frameworks which have recently shown great potential for directly
optimizing economic performance objectives. These frameworks fall under a new subset of
MPC commonly referred to as economic model predictive control (EMPC) [16, 17].

Due to the highly uncertain nature of DHW user demand, the work further explores the use
of stochastic and robust variants of the aforementioned EMPC controllers. By explicitly in-
corporating uncertainty, these controllers are known to provide more robust system operation
and, in the case of the considered MG, can be used to help ensure that DHW temperatures
are maintained within acceptable operating bounds. To verify any performance gains, all the
developed controllers are compared against a benchmark mechanical thermostatic controller,
which represents the currently used control methodology.

1-6 Thesis contribution

The main contributions of this thesis are highlighted below:

1. Developed, implemented and tested state-of-the-art EMPC strategies on a simulated
case-study MG. The case-study MG was modelled on an existing residential complex
located in South Africa and represents an application not fully explored in literature. In
particular, while several works have applied EMPC for the DSM of DHW storage devices
(e.g. [18–23]); none of these works consider the application of stochastic MPC control
frameworks in a co-operative multi-agent setting. Therefore, this work contributes to
the state-of-the-art by considering an extended application of EMPC to a multi-agent
system of DEWHs, with explicit consideration of user demand uncertainty.

2. Proposed, developed and evaluated the performance of a modified scenario-based EMPC
formulation, herein referred to as ‘scenario-based reduced horizon EMPC’. Instead of
incorporating uncertainty scenarios over the entire prediction horizon, the proposed
controller attempts to reduce conservatism by only considering uncertainty for a subset
of the full prediction horizon (cf. Section 4-3-7).

3. Developed an open-source Python based software package which allows for the synthesis
and simulation of MPC/EMPC for general multi-agent hybrid dynamic systems using
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1-7 Thesis outline 7

the mixed logical dynamical (MLD) modelling framework. The majority of time spent
on this thesis was attributed to software development. It is hoped that future research
efforts on MPC will continue to develop and distribute open-source software to reduce
implementation times and to allow for validation of published results.

1-7 Thesis outline

This thesis consists of six chapters including this Introduction chapter. The remainder of the
report is structured as follows:

Chapter 2 further introduces the topic of DSM and presents the reader with fundamental
background knowledge to aid in the understanding of subsequent chapters. The chapter
begins with a literature survey on DSM, followed by a brief coverage of the control methods
applicable for its implementation, including MPC. Finally, an introduction to hybrid dynamic
system modelling is presented, which describes the general MLD modelling framework used
for all system models considered in this work.

Chapter 3 details the hybrid system modelling of the considered residential MG. The chapter
concludes with a description of a compact MLD model that captures all MG dynamics.

Chapter 4 begins with an introduction to the recently defined EMPC control framework.
Following this, it presents the components required to formulate an EMPC controller for
the DSM of a case-study MG. It continues by detailing various applicable EMPC solution
methodologies including deterministic, min-max and scenario-based frameworks.

Chapter 5 provides an illustrative simulation study of all the EMPC controllers presented
in Chapter 4. The controllers are evaluated using various performance metrics and compared
to a benchmark thermostatic rule-based (TSRB) control law.

Chapter 6 summarizes the thesis with a concluding discussion before outlining possible
directions for future work.
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Chapter 2

Background

In this chapter preliminary background concepts are covered to further introduce the topic.
Additionally, the chapter provides readers with fundamental background knowledge to aid in
the understanding of subsequent chapters. First, a broad coverage of the relevant literature on
demand side management (DSM) schemes, and their classification, is presented in Section 2-1.
Following this, in Section 2-2 the thesis highlights various control frameworks applicable to
DSM. This section includes a preliminary introduction to model predictive control (MPC),
the primary control methodology considered in this work. In Section 2-3, a brief overview
of hybrid dynamic systems is presented. Importantly, the section introduces the widely ap-
plicable mixed logical dynamical (MLD) hybrid modelling class that was used to model the
case-study residential microgrid (MG) and all its components. The chapter concludes with a
summary discussion in Section 2-4.

2-1 Literature on demand side management (DSM)

A great deal of research has been undertaken in the area of DSM, and it is beyond the scope
of this report to provide a detailed survey of all aspects and research directions currently
under investigation. For detailed coverage and related references, the reader is referred to
comprehensive surveys and reviews undertaken in [6, 8, 24–26]. This high level introduction
to DSM is largely based on those reviews.

2-1-1 Defining DSM

While compiling this thesis it was noted that various terms have been used in literature when
referring to DSM and associated programs, with some authors even suggesting that the terms
are misused [25]. The most notable case of this ‘misuse’ is found with use of the term demand
response (DR), which many authors treat as synonymous with the term DSM. For example
in [6], the authors make a point to state that the terms demand response (DR), demand
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management, demand response management, demand side management (DSM), load control,
load scheduling, and energy consumption scheduling, are all equivalent within their text.

To minimize confusion, the definitions of DR and DSM as suggested by Barbato et al. in
[25] are provided as follows. In their paper the authors propose that demand management
mechanisms can be separated in to two main categories, namely DR and DSM. They suggest
that DR is categorised by reactive short term solutions which are designed to encourage users
to shift or curtail their demand in response to signals provided by the power utility (e.g.
dynamic pricing signals or emergency condition requests). Typically, the desired objective of
DR is to reduce peak demand and to ensure grid stability by avoiding blackouts/brownouts
during adverse operating conditions. Subsequently, they define DSM as proactive strategies in
which users modify their demand profiles to achieve long term energy efficiency improvements.
Ultimately, they conclude that DR and DSM are two different strategies that can be used in
conjunction with each other.

In a strict sense, this thesis subscribes to the definitions of DSM and DR as proposed in [25],
but only where the distinctions provide additional insight. In the majority of cases demand
management mechanisms combine elements from both DSM and DR. Therefore, to simplify
discussions the survey will in general refer to all demand management mechanisms as DSM,
in essence branding DR as a subset of DSM (e.g. refer to Figure 2-1).

Figure 2-1: Example classification of DSM [27]

2-1-2 Management objectives of DSM

The term ‘management’ in DSM implies that these programs are designed to achieve some
benefit or objective. These objectives can be targeted from an optimization based framework,
but heuristic or sub-optimal methods are also often used. The objectives of DSM programs
most widely observed in the literature, primarily focus on several key areas. These include
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targeting energy efficiency, cost minimization, utility maximization, emission reduction, and
energy security. The objectives can complement each other but often result in conflicting
targets which may be more or less desired depending on whether the objective is viewed
from the utility or consumer’s perspective. A brief explanation of the objectives may be
summarised as follows:

• Energy efficiency: generally refers to programs that aim to reduce the overall system
power consumption [26]. This is often achieved by so-called demand profile shaping,
where demand is shifted, scheduled or reduced to achieve a flatter demand profile with
less fluctuation and a lower peak-to-average ratio (PAR) [8]. Greater energy efficiency
is also achieved by minimizing energy losses associated with generation, transmission,
distribution, and the operation of consumer loads.

• Cost minimization: from the consumer perspective this translates to energy bill
minimization, where all users wish to minimize the sum total cost of their energy usage.
This can be achieved by reducing demand or shifting it to periods of lower energy
prices [25]. The introduction of local and renewable energy generation can also reduce
operating costs, either through self-consumption, temporary storage, or by selling excess
capacity back to the grid. From the power utility’s perspective, cost minimization would
entail reducing the total cost of generating and distributing power, while meeting the
demand of all consumers [6].

• Utility maximization: viewed from a high level social perspective, this strategy re-
duces the total cost of running the utility network while maximizing the sum comfort
of all users [6]. Making reference to [28], an example is mentioned in [6], where the
grid’s social welfare is maximised by optimizing the sum total consumer utility func-
tions minus the cost function of the power utility, all subject to the capacity constraints
of the power network.

• Emission reduction: motivated by the desire for more sustainable energy systems,
DSM strategies which target emission reduction are becoming increasingly important.
As noted in [8], programs which target maximum efficiency or minimum costs will not
necessarily lead to reduced emissions. Achieving significant reductions often requires an
increased use of renewable energy sources (RESs), which can be more costly.

• Energy security: due to the increasing integration of intermittent RESs with uncertain
variable generation, the task of ensuring network stability and continuity of supply has
become increasingly difficult. To reduce the costs of maintaining standby generation
capacity, DSM strategies can be implemented to effectively match demand with available
supply and thereby minimize potential overload conditions [6, 26].

2-1-3 Classification of DSM programs

Apart from the varying target objectives which may differentiate DSM programs, other fea-
tures of the program architectures have been used to classify and categorise different schemes.
A number of classifications have been proposed in literature (e.g. [1, 24–26, 29]), with each
dependent on the author’s research focus area, and to some extent their subscribed definition
of DSM/DR.
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This report takes a broad view of DSM and outlines a classification based primarily on that
made by Vardakas et al. in [26], but modified with components from other cited authors.
Vardakas et al. propose three high level classification categories. The first category classifies
DSM according to the motivation offered to consumers to participate in the program. The
second classifies programs based on the operating control architecture. Finally, in the third
category programs are classified by the decision variable used to implement the scheme.

DSM based on the Offered Motivation

The motivation methods offered to consumers typically fall within two subcategories, namely
time-based or incentive-based schemes. In time-based DSM (also referred to as price-based
DSM) consumers are offered time varying prices to reflect the time varying cost of supply.
The intent being to motivate users to reduce or shift their demand from higher to lower
priced periods. Several time-based pricing programs have been implemented in practice, or
suggested in literature, and are briefly outlined below:

Flat pricing: represents the standard traditional pricing scheme, where users are charged
a flat rate (e.g. $/kWh) for each unit of energy consumed. The scheme offers little
motivation to modify energy consumption patterns as users can only reduce their energy
costs by reducing their total consumption [26].

Time-of-Use (ToU) pricing: marginally extends on the flat pricing scheme by introducing
flat prices that change at different time intervals of a day, days of a week, or seasons of
a year. The scheme coarsely reflects the cost of supply, with prices higher during peak
periods and lower at off-peak periods. The prices for each supply period are usually
released far in advance and are typically not frequently updated [6].

Critical-peak pricing (CPP): is largely based on ToU pricing in that prices are normally
fixed for different time periods [26]. However, the scheme introduces the option to
change the price at critical periods where it is predicted that grid reliability will be
jeopardised. By temporarily increasing prices, the utility can motivate users to curtail
their demand to guarantee system stability [6].

Real-Time pricing (RTP): provides the greatest system flexibility and represents a
fully dynamic pricing scheme in which prices vary continuously at discrete intervals
throughout the day (e.g. every 15 minutes or hourly) [6]. RTP schemes release prices
before the start of each interval, typically with a pre-determined lead time, or in
some cases on a day-ahead basis (then being referred to as Day-Ahead Real-Time
pricing (DA-RTP)) [26]. RTP programs allow for the most efficient and competitive
energy markets as decision makers are able to act on information that most accurately
reflects the current system state [29]. However, this pricing system relies heavily on the
effective two-way communication capabilities of the smart grid (SG) and requires users
to adopt advanced control mechanisms to enable active and mutually beneficial parti-
cipation. Thus, while RTP has been successfully implemented for large industrial and
commercial customers, implementation for residential customers has been limited [26].

Conversely, in incentive based (or event-based) programs, consumers are provided with
fixed or time-varying payments to motivate users to modify their demand, maintain system
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stability, or increase operating efficiency. Enrolment in these types of programs is often
voluntary, but users may be encouraged to participate through the application of penalties
for non-participation [26]. Incentive based programs are further divided into classical and
market based categories [29], each is briefly described as follows:

Classical: denote incentive-based programs in which consumers receive participation pay-
ments, typically in the form of bill credits or rate reductions. Examples of classical
programs include:

(a) Direct load control (DLC), a commonly implemented program which enables the
power utility to remotely control consumer loads, through power cycling or set-
point adjustment, to achieve DSM objectives. Typical examples of controllable
loads include water heaters, building heating systems or air-conditioners.

(b) Interruptible/Curtailable load programs which provide upfront incentive payments
to consumers for agreeing to curtail specific loads or reduce demand to pre-defined
level, upon the receipt of utility emergency reduction requests. Penalties are often
imposed for non-conformance [26].

Market based: describes schemes where participants receive economic payments based on
their level of performance, contributing to the achievement of DSM objectives. Market
based programs include:

(a) Demand bidding is a program usually only applied to large consumers which allows
a user to place curtailment capacity bids in the wholesale market. If a bid is
accepted by the market, the user must curtail their demand in accordance with
the bid capacity, or otherwise risk facing penalties.

(b) Emergency DR provides participants with incentive payments for measured load
reductions during emergency grid conditions where the stability of the grid is jeop-
ardised. Consumers can choose not to curtail their loads and forgo the incentive
payments [26].

(c) Capacity market programs function in a similar fashion to the emergency DR
schemes, but are not implemented with the primary function of mitigating emer-
gency grid conditions. Instead, the program aims to provide participants with pay-
ments for pre-defined load reductions to replace the need for conventional standby
generation and spinning reserves [29].

DSM based on the Control Architecture

Vardakas et al. [26] further classify DSM methods based on their control architecture. In
their paper the authors use this category to classify programs as either centralised or distrib-
uted in nature. This thesis extends the classification through the consideration of additional
characteristics of the control architecture, as outlined by Barbato et al. in [25].

Before presenting the classification extensions, the control architectures are first considered
based on whether control actions are determined using a centralised or distributed controller
structure, here referred to as the control topology.

Master of Science Thesis Christopher Jan Michalak



14 Background

Centralised topology: signifies a control system where the control actions of all users or
agents are computed by a single central controller. Centralised control topologies require
all sensor and state information to be collected and transmitted to a central location to
enable globally optimal decision making. With a growing number of users, this topology
increases the demand on centralised computational resources, and presents the need for
networks with higher bandwidths and lower latencies. In addition to the scalability
issues, these large networks introduce security and privacy concerns as sensitive user
information is shared with the central controllers [25].

Distributed topology: presents an alternative to traditional centralised topologies and
instead allows agents to make local control decisions based on externally provided in-
formation indicating the overall system state [26]. The topology allows for increased
scalability while limiting the requirement to centrally collect sensitive user information.
However, the distributed nature of the system often reduces the ability for the system
to achieve global optimum performance because decisions made by individual agents
based on limited information may not positively contribute to the global system object-
ives [25]. Hence, efficiently achieving global optimal (or near optimal) performance in
a distributed setting remains an active research area.

Extending on this is a related characteristic as discussed by Barbato et al. in [25], where
DSM control architectures are classified by the nature of their users’ interactions. Here
the distinction is made between schemes with selfish individual users vs co-operative users:

Individual users: define programs where each user or agent is individually and separately
managed. From an optimization perspective, this results in agents which optimize their
own objectives without co-operating with other agents, or considering their impact on
the overall system performance.

Co-operative users: here users communicate and collaborate with one another by defining
control actions to optimize a shared utility function. This can lead to increased global
performance as users are able ensure that their actions do not negatively impact global
system objectives.

Next, the authors go on to further classify DSMmethods by the characteristics of their optim-
ization approach [25]. While many features could be used to classify various optimization
approaches, the authors focus primarily on whether the proposed programs consider problem
data in a stochastic or deterministic manner.

Deterministic optimization: classifies DSM control methods which treat all model para-
meters, system measurements, exogenous signals and predicted signals, as deterministic
quantities. These methods ignore any uncertainty, such as those inherent to user de-
mand and RES generation predictions, and instead make an assumption that these
values will exactly match the predictions. Consequently, deterministic approaches may
lead to poor or infeasible solutions if signals deviate significantly from their expected
values.
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Stochastic/Robust optimization: where deterministic approaches ignore prediction and
model errors, stochastic methods attempt to capture these uncertainties by representing
data as random variables. By explicitly considering these unavoidable uncertainties, the
optimization methods lead to more robust solutions, which in theory are able to im-
prove average long term performance. Stochastic methods are typically separated into
two categories, namely stochastic or robust optimization. In stochastic optimization
uncertain data is represented through a probabilistic model with known or estimated
statistical properties; the optimization problem is formulated such that the expected
value of the cost function is optimized. On the other hand, robust optimization is more
suited to problems where the uncertainty does not have a well-defined statistical distri-
bution or cannot be modelled by probabilistic model. In robust optimization uncertain
data is typically modelled by a (in)finite deterministic uncertainty set, with the optim-
ization objective to guaranty solution feasibility for all uncertainty realisations, while
achieving some measure of robust solution performance.

Finally, Barabato et al. categorise DSM control architectures based on the time scale con-
sidered for determining control actions. Here the authors distinguish between real-time and
day-ahead methods:

Day-ahead: refers to DSM frameworks where users’ control actions or operating plans are
determined and fixed for a finite future time horizon. In the day-ahead case this would
be 24 hours, but other time horizons are also possible. From a control theory perspect-
ive these scheduling methods typically correspond to open-loop constrained finite time
optimal control problems, which obtain optimal performance under the assumption that
all data and predictions are deterministic without any uncertainty [30].

Real-time: specifies methods which update users’ control actions on a (near) real-time
basis. These methods enable the control system to react to real-time events and data
which may not have been accurately predicted when the operating plans were initially
computed. Real-time DSM strategies often resemble MPC or receding horizon control
frameworks [30]. Alternatively, real-time strategies can be implemented using classical
control theory or rule-based control, which do not rely on data predictions [31].

DSM based on the Decision Variable

The third and final category explored by Vardakas et al. [26] was to classify DSM programs
by the characteristics of the decision variable used for determining control actions. The
authors identify two main groups, the first schedules loads by determining when these should
be activated (either on or off), and the second makes control decisions by determining the
amount of energy to be allocated to each load during each time period. Respectively these
are referred to as task based or energy based DSM methods.

Task based: describe DSM schemes where the controller is responsible for scheduling the
activation time of controllable loads. Task based methods consider two types of loads:
fixed must-run loads which are non-manageable (e.g. TV, lights), and schedulable loads
which may either be shifted to other time slots (e.g. dishwashers, washing machines)
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and/or interrupted (e.g. pool pumps). From an optimization perspective the decision
variable for task based scheduling is time rather than load energy.

Energy based: represent methods that allow for the control of devices with controllable
energy demand/supply (e.g. water heaters, space heating, air conditioners, battery stor-
age systems). Energy based methods formulate the problem with the decision variable
representing the quantity of energy consumed/supplied at each time instant.

Remark 2.1: It should be noted that problems suited to a task based framework can be
reformulated in an energy based framework to allow for the consideration of both time
scheduled loads and energy controllable loads.

2-2 Control methods for DSM

A high level overview of the fundamental characteristics of DSM programs was outlined in
Section 2-1. The purpose of this section is to provide an introduction to the control methods
that are typically applied in DSM systems. It does not intend to exhaustively cover the details
of all DSM control frameworks, but rather aims to provide the reader a general appreciation
of the overarching operating principles. Chapter 4 provides a detailed description of economic
model predictive control (EMPC) based methods for DSM, which form the primary focus of
this thesis research. For a detailed review of other methods mentioned below, the reader is
referred to comprehensive surveys and related references found in [6, 8, 26, 31–33].

2-2-1 Rule-based and classical control

Rule-based and classical control techniques are currently the most widely used methods for
the control of consumer loads and storage devices. These controllers rely on "if-then" type
decision logic and proportional-integral-derivative (PID) type control loops, allowing system
designers to define static decision mappings which determine control actions based on the
current system state [31].

For example, in the case of domestic hot water (DHW) heaters, the traditional thermostatic
control switch can be taken as the most basic implementation of a rule-based controller. Here
the control actions are governed by a simple hybrid systems model (see (3-7)) where the
heating element is activated when the temperature drops below a minimum set-point and
is deactivated after reaching a maximum set-point [34]. From a DSM objectives perspect-
ive, a thermostatic switch with fixed set-points offers limited control flexibility for targeting
cost minimization or energy efficiency [31]. The same can be said for well-known classical
techniques such as PID control for temperature set-point tracking.

Many power utilities around the world use rule-based control methods to implement simple
load shifting DSM schemes. For example, Australian utilities offer a ToU rate based DSM
service where the power supply to loads such as water heaters and pool pumps are only
activated at off-peak times. The method can only be applied to flexible interruptible loads
and in the case of domestic electric water heaters (DEWHs), the storage tank must be of
sufficient capacity to allow for hot water delivery during on-peak hours.
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2-2-2 Optimization based control

In recent times, researchers and practitioners have turned to optimization based control meth-
ods to allow for more flexible systems which are better able to realize DSM performance
objectives. Optimization based controllers often incorporate predictions of controllable state
trajectories along with forecasts of exogenous system signals (e.g. photovoltaic (PV) gener-
ation, energy demand, weather, etc.). Then, by defining a performance cost which reflects
the management objective, the controller is able to determine optimal control actions to
minimize this cost through the application of various mathematical optimization techniques.
Optimization based controllers for DSM can either operate in a single or co-operative multi-
agent MPC based framework, where agents work co-operatively to optimize a global system
objective. Or alternatively, they can operate in a framework of non-cooperative game the-
oretic control where selfish agents compete with each other to optimize their own individual
objectives while possibly neglecting global system performance [33].

Model predictive control (MPC)

MPC, also known as receding-horizon control (RHC), has a long development and application
history, with origins dating back to the introduction of linear-quadratic-Gaussian (LQG)
controllers in the early 1960’s. Coupled with the ever advancing capabilities and reduced
costs of information and communication technologies (ICTs), increasing interest in applying
MPC for DSM has been motivated by its extensive successful deployment in industrial process
control applications [35].

In addition to incorporating dynamic system predictions in the optimal decision making
process; a key strength of MPC is its ability to explicitly consider real-world system state and
input constraints [36]. In principal, MPC therefore provides a well suited control methodology
for maximizing DSM performance objectives. The most basic form of MPC is implemented
by repeatedly solving a shifting finite horizon open-loop optimal control problem. At each
sampling time, the problem is re-solved using updated system state information with the
optimal control signal only applied during the next time interval. The solution process is
repeated indefinitely with a constantly receding or rolling finite optimization horizon [30, 36].

The constrained open-loop optimal control problem that underpins MPC1 is compactly cap-
tured by [17]:

min
˜
u(k)

s.t.

J(k) =
Np−1∑
k=0

l(k, x(k), u(k), w(k)) (2-1a)

x(k + 1) = f(x(k), u(k), w(k)) (2-1b)
x(k) ∈ X , u(k) ∈ U , w(k) ∈ Ω (2-1c)
x(0) = x(t), ω(0) = ω(t), (2-1d)

where ũ(k) is the optimal control input sequence2 that minimizes the cumulative perform-
ance cost J(k) over the set of future time instants included in the optimization horizon, Np.
1 MPC mathematical framework is further explored in Chapter 4.
2 Refer to (4-5) for definition of tilde notation.
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Performance cost J(k) is composed of stage costs l(·) which represent a positive deviation
from a desired objective at each time instant k. The optimization problem is undertaken
subject to the system dynamics (2-1b), and state, input and disturbance constraints (2-1c),
with descriptions given in (2-2) and (2-3).

In Chapter 4 a detailed description of MPC is presented from an economic DSM perspective.
Interested readers who desire further coverage of details related to classical MPC are referred
to extensive and highly cited surveys undertaken by Mayne et al. in [36], and by Qin et al.
in [35].

Game theoretic control

Game theory is the study of rational decision makers operating in an interactive environment,
each with the desire to maximize a desired strategic outcome. The well-established field has
lead to the development of a broad reaching analytical and conceptual framework, which
together with a set of mathematical tools, enable the analysis of complex multi-agent systems.
The systems are said to be comprised of ‘players’, each of which are required to determine
and deploy strategies, often with partially or fully conflicting objectives [33].

The application of game theory to multi-agent control systems often results in a problem
formulation that is solved through the use of distributed optimization techniques [37]. Thus,
while the study of game theory is not primarily concerned with optimization based control;
it has been shown that concepts arising from game theory can be used to analyse multi-agent
systems and design controllers for use in DSM. In particular, dynamic and/or differential game
theory has received an increasing interest for application in DSM and power system control
[38]. Dynamic games offer an alternative modelling and analysis framework for the optimal
control of complex systems and share many conceptual similarities with classical optimal
control and MPC. However, where classical optimal control and MPC have traditionally only
been studied for single agent systems or a system of fully co-operative agents; game theory
provides analytical frameworks well suited to studying non-cooperative multi-agent systems
with partially or fully conflicting interests and restricted information exchange [39, Section
1.1].

In general all games consist of three fundamental components:

1. Individual player’s i, belonging to the set of players N .

2. Strategies xi belonging to the set of strategies {Xi}i∈N .

3. Utilities ui belonging to the utility set {ui}i∈N .

Non-cooperative games denote a class of problems where each selfish player i ∈ N independ-
ently selects a strategy xi ∈ Xi to maximize their utility ui(xi,x−i), which is also dependent
on the other players’ strategies x−i [6]. In non-cooperative games players wish not to share
their decision strategies or other private information, but are sometimes persuaded to ‘co-
operate’ with other players through self-enforcing incentive mechanisms. These incentives can
be used to encourage selfish players to deploy strategies which, while continuing to maximize
the player’s own utility, also contributes to improved global system performance [33].
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A key concept in the analysis of non-cooperative games is the notion of the Nash equilibrium.
Named after J. Nash, the foundational solution concept characterises a stable state in a non-
cooperative game where no player i ∈ N is able to unilaterally improve their strategy xi, given
the strategies of all other players x−i [33]. Making use of this solution concept, Mohsenian-
Rad et al. propose a game theoretic control scheme for optimal DSM [12]. By adopting a
suitable adaptive real-time pricing scheme, they show that a utility can incentivise selfish
players to individually adopt cost optimal consumption schedules, which in turn converge to
a global optimum cost at the Nash equilibrium.

While game theoretic control offers an extensive analysis and design framework for DSM, it
was not further explored for the research problem under consideration. This work investigates
a residential MG where all agents cooperate fully to achieve a globally defined management
objective. From a game-theoretic perspective the problem would therefore be considered
as a cooperative, as opposed to a non-cooperative game; and as stated by Basar et al. in
[39, Ch. 1.2], “cooperative games can, in general be reduced to optimal control problems
by determining a single cost function to be optimized by all players, which suppresses the
‘game’ aspects of the problem”. Therefore, instead of turning to game theory, the problem is
approached using tools from optimal control and MPC.

For a detailed coverage on the theory of dynamic non-cooperative game theory, the reader is
referred to the book by Basar et al. [39]. For surveys and related references on game theory
applied to DSM and power system control, refer to works [6, 33, 38].

2-3 Hybrid system modelling

Dynamic system models form a central component in almost all control frameworks, they are
required both for controller synthesis and system simulation. These models can take on a
wide variety of forms with various structures, and incorporate a number of simplifying as-
sumptions. The choice of modelling structure is primarily influenced by the physical system
properties and dynamic behaviour, coupled with consideration of the intended control ap-
plication. Many components in the MG contain switched or hybrid system dynamics, which
need to be explicitly considered to achieve high performance control outcomes. As such,
it is important to briefly introduce several modelling concepts from hybrid systems theory,
which can provide further structure to the control problem formulation and allow for the
application of more general solution frameworks. The hybrid system models described in
this section, in particular MLD models, form the base modelling framework for the control
problem formulations investigated in this thesis.

Hybrid systems: denote a class of dynamic systems that contain both time-driven and
event-driven dynamics [40, Section 1.3.5]. In other words, they are dynamic processes
of a mixed continuous and discrete nature, that evolve both according to dynamic
equations (i.e. differential or difference equations), and according to logic rules (e.g.
if/else statements) [30].

Hybrid systems theory presents one of the broadest modelling frameworks for real-world
dynamic processes. Therefore, it is no surprise that research into these systems has generated
numerous model structures, each with different properties and areas of application. The choice

Master of Science Thesis Christopher Jan Michalak



20 Background

of suitable modelling structure is characterised by a trade-off between two conflicting criteria:
the so-called ‘modelling power’ and ‘decisive power’ [41]. Broad-based frameworks, such as the
hybrid automata3, provide an extremely general modelling structure for hybrid systems and
are thus said to have a high modelling power. Unfortunately, modelling structures that are
too broad almost certainly have a low decisive power, making it difficult to prove quantitative
and qualitative properties of individual systems in the framework [41]. Roughly speaking, the
use of models with low decisive power translates into control problem formulations that are
likely undecidable or intractable.

Given the modelling trade-offs and characteristics of the MG devices under consideration, it
was decided to limit the discussion to the relevant subclasses of hybrid systems. In particular,
it is worth exploring two specific subclasses, namely piecewise affine (PWA) and MLD sys-
tems. These frameworks provide formal modelling structures which can accurately capture
the dynamics and constraints of these switched DEWHs. More importantly, a considerable
amount of research has been undertaken for the optimal control of systems described by these
models, with the MLD model initially proposed with this exact objective in mind [42].

2-3-1 Dynamic system models

Before introducing specific hybrid system modelling frameworks, it is useful to introduce
generic dynamic models that are able to compactly represent the dynamic state evolution of
the systems treated in this work. These generic models will be used as stand-in representations
of the specific detailed component models, to allow for simplified mathematical descriptions of
the control methods under discussion. The work will primarily be concerned with state-space
based models with time invariant dynamics captured either by continuous-time differential or
discrete-time difference equations.

The generic continuous-time state-space model is given by:

ẋ(t) = f(x(t), u(t), ω(t)) (2-2a)
y(t) = g(x(t), u(t), ω(t)), (2-2b)

where x(t) ∈ X ⊆ Rnx is the system state vector, y(t) ∈ Y ⊆ Rny is the output vector,
u(t) ∈ U ⊂ Rnu is the manipulated input vector, ω(t) ∈ Ω ⊂ Rnω is the disturbance vector,
and the notation ẋ denotes the time derivative of the state. The set X denotes the set of
admissible system states. The input vector u(t) is typically constrained by the available
control energy with bounds governed by the admissible input set U . The disturbance vector
may include uncontrollable exogenous inputs, unknown external forces and modelling errors,
which may be subject to uncertainty. The disturbance vector is assumed to be bounded in
the disturbance set Ω [17].

Real-world physical systems are almost always governed by continuous time dynamics, oper-
ating within a continuous and/or discrete state-space. However, given that computer-based
control systems are now ubiquitously deployed and form the primary tool for complex sys-
tem control, it is often more useful to consider discrete-time system models. The generic

3 For a detailed description of hybrid automata refer to [40]
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discrete-time state-space model is governed by general difference equations of the form:

x(k + 1) = f(x(k), u(k), ω(k)) (2-3a)
y(k) = g(x(k), u(k), ω(k))), (2-3b)

where x(k) ∈ X ⊆ Rnx , y(k) ∈ Y ⊆ Rny , u(k) ∈ U ⊂ Rnu and ω(k) ∈ Ω ⊂ Rnω , denote the
discrete-time equivalents of the continuous-time states, outputs, inputs and disturbances as
described in (2-2). Additionally, k ∈ Z is introduced to represent the current discrete time
instant, typically incremented with a constant sampling interval, ts.
Remark 2.2: The thesis exclusively considers digital control techniques, where all continuous-

time models are first discretized, in this case by a zero-order hold (ZOH), before being
used by the computer-based control system. The main reason for focusing on discrete-
time models stems from the need to solve optimal control or scheduling problems, for
which the continuous-time counterpart would be intractable or very difficult to solve [30].
Continuous-time differential equations can be discretized using ZOH sampling or differen-
tiation approximations, with procedures detailed in e.g. [43, Chapter 2 and 8].

2-3-2 Piecewise affine (PWA) systems

PWA systems [44] provide a general modelling framework for a subclass of hybrid dynamical
systems that are capable of describing a large number of physical processes. Among others,
these include discrete-time linear systems with static piecewise linearities, or switching sys-
tems where the dynamics can be described by a finite number of discrete-time linear models
with switching governed by a set of logic rules [45].
The PWA framework has received considerable research interest as it provides the “simplest”
extension of linear systems that in addition to capturing hybrid phenomena, is able to model
many non-linear and non-smooth processes with arbitrary accuracy [46]. A system can be
considered as PWA, provided that the dynamics may be described by region specific affine dy-
namics for each defined polyhedral partition of the state/input/disturbance space. A general
formulation of the discrete-time PWA model structure, similar to that described in [41, 45],
is given by:

x(k + 1) = Aqx(k) +B1,qu(k) +B4,qω(k) + b5,q (2-4a)
y(k) = Cqx(k) +D1,qu(k) +D4,qω(k) + d5,q (2-4b)

for, 
x(k)
u(k)
ω(k)

 ∈ Πq,

where the state and output vectors x(k) ∈ Rnx,c × {0, 1}nx,l and y(k) ∈ Rny,c × {0, 1}ny,l

can contain both real and binary variables. Similarly for the input and disturbance vectors,
u(k) ∈ Rnu,c×{0, 1}nu,l and ω(k) ∈ Rnω,c×{0, 1}nω,l respectively. The system of equations are
defined for operation modes q = 1, . . . , nq, where Πq are convex polyhedra (i.e. defined by a
finite number of linear inequalities) in the state/input/disturbance space with non-overlapping
interiors. Aq, B[·],q, Cq and D[·],q are region specific matrices with appropriate dimensions,
and b5,q and d5,q are region specific real vectors.
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2-3-3 Mixed logical dynamical (MLD) systems

The MLD system modelling framework was initially proposed by Bemporad et al. in their
seminal work for the control of hybrid systems integrating logic, dynamics and constraints [42].
The modelling framework is able to capture the evolution of a number of hybrid system
subclasses, including:

• Linear hybrid systems.

• Sequential logical systems (Finite state machines and Automata).

• Nonlinear dynamic systems, where the nonlinearity can be expressed through combin-
ational logic.

• Some classes of discrete event systems.

• Constrained linear systems.

• Linear systems.

The modelling approach results in the following system description:

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) +B4ω(k) + b5 (2-5a)
y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) +D4ω(k) + d5 (2-5b)

Ex(k) + F1u(k) + F2δ(k) + F3z(k) + F4ω(k) +Gy(k) ≤ f5 + Ψµ(k), (2-5c)

where x(k) ∈ Rnx,c×{0, 1}nx,l , u(k) ∈ Rnu,c×{0, 1}nu,l and ω(k) ∈ Rnω,c×{0, 1}nω,l are defined
with a similar structure to PWA systems in (2-4). In addition, the model utilizes binary
and continuous auxiliary variables, respectively δ(k) ∈ {0, 1}nδ and z(k) ∈ Rnz , which are
introduced to capture logic relations as mixed-integer linear inequalities. Finally, non-negative
slack variables µ(k) ∈ Rnµ≥0 may be included to allow constraints to be relaxed (i.e. soft-
constraints), subject to a slack penalty function. {A, B1−4}, {C, D1−4} and {E, F1−4, G, Ψ}
are state, output and constraint equation matrices respectively, and b5, d5 and f5 are vectors,
all of appropriate dimensions. The inequalities in (2-5c) are interpreted component-wise and
may be subject to time-varying constraint matrices and vectors (not explicitly shown).

Remark 2.3: The slack variables, µ(k) ∈ Rnµ≥0, have been explicitly added to the MLD
model description because it provides designers with a clear insight of where slack has
been introduced. These slack variables can always be removed or constrained to µ(k) ≡ 0,
in order to enforce hard-constraints.

The MLD framework is characterised by the key notion of embedding propositional or Boolean
logic within the state equations. This is achieved by transforming Boolean variables into 0-
1 integers, and expressing the relations as mixed-integer linear inequalities [30]. The exact
mechanics of this transformation are explicitly covered in [30, 42, 47], and for the sake of
brevity will not be expanded on here.
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2-3-4 Equivalence of hybrid dynamic models

After the development of PWA, MLD and several other4 hybrid modelling classes, it was
later proven that under mild assumptions the discrete-time versions of these systems are all
equivalent [46, 47]. Proving the equivalence of these models was extremely useful as each
of these modelling frameworks has its own advantages and areas of applicability. Thus,
the equivalence proofs allow one to easily transfer properties and tools from one modelling
framework to another [30].

The equivalence of certain hybrid dynamic models is particularly relevant for the application
of optimization based control to residential MGs. For example, the dynamics of the switched
DEWH ((3-2) with (3-7)) can naturally be captured using a constrained PWA model. Yet,
while the PWA structure is suitable for accurately capturing system dynamics, it is difficult
to directly incorporate PWA models into compact optimization based control formulations.
On the other hand, the MLD framework has been developed with this specific purpose in
mind; through equivalence it has been shown that MLD models can be used to recast hybrid
dynamical optimization problems into mixed-integer linear (MILP) and quadratic (MIQP)
programs, solvable using branch and bound techniques [30].

2-4 Summary discussion

This chapter provides a broad-based introduction to DSM concepts and operating principles,
all of which are applicable to residential MGs. Subsequent chapters investigate the application
of these concepts to a specific case-study MG. In particular, this thesis develops suitable
centralised DSM strategies for the optimal co-operative control of small to medium-sized
residential MGs. To allow for an economical integration of uncertain renewable PV generation,
the strategies need to consider the dynamics and constraints of controllable DEWHs together
with uncertain user energy demands. Of all the control methods discussed in Section 2-2, the
optimization based MPC schemes show the greatest potential to incorporate these aspects
and achieve the desired MG operating objectives. As a result, the remainder of thesis will be
used to provide a detailed account on the application of MPC schemes, within the context of
optimal economic control for DSM.

4 i.e. linear complementarity (LC) systems, extended linear complementarity (ELC) systems, max-min-plus-
scaling (MMPS) systems - refer to [46] for their descriptions.
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Chapter 3

Modelling Residential Microgrids

In this chapter the report outlines the system modelling structures that were used to model the
case-study residential microgrid (MG). First, a high-level description of the case-study MG
is presented in Section 3-1. Next, Section 3-2 outlines the modelling of the domestic electric
water heaters (DEWHs). Following this, Section 3-3 describes the modelling and forecasting
methodologies used for exogenous system signals, including photovoltaic (PV) generation,
uncontrollable electrical loads, and domestic hot water (DHW) demand. Finally, Section 3-4
combines all system components to form a compact mixed logical dynamical (MLD) model
of the overall MG.

The application of model predictive control (MPC) schemes for the demand side manage-
ment (DSM) of residential MGs requires the development of problem specific dynamic system
models. Within the MPC framework, these models allow the controller to predict future
system states for the determination of state dependent optimal control input sequences. The
selection of suitable system models directly influences the computational complexity of the
resultant optimal control problems. While elaborate non-linear system models may provide
more accurate state predictions, these models are often not suitable for MPC. Consequently,
this thesis limits its scope to the development simplified hybrid MLD models, for which solv-
able MPC problems can be developed.

3-1 Case-study residential microgrid (MG)

In general, residential MGs may include any number of devices, likely of different types, and
each subject to device specific dynamics and constraints. This work only considers a simpli-
fied MG model based on an actual residential community located near Johannesburg, South
Africa. The community grid-connected MG consists of a number of individual households
each containing one controllable thermal energy storage (TES) unit (i.e. a DEWH), all with
shared access to a communal renewable energy source (RES) (i.e. rooftop PV generation).

Figure 3-1 depicts such a MG, where:
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26 Modelling Residential Microgrids

• Nh - number of DEWHs for households i ∈ {1, . . . , Nh} with,

– Ph,i(k) [W] - DEWH electric input power

– ωh,i(k) [L/s] - household DEWH hot water demand

• Pg(k) [W] - the utility grid import/export power (Pg(k) ≥ 0⇒ power imported)

• Ppv(k) [W] - aggregate shared communal rooftop PV generation power

• Pr(k) [W] - aggregate residual (uncontrollable) electrical power demand

Remark 3.1: The specific MG configuration considered in this work only represents a very
simple example of a residential MG (i.e. only one controllable device type). Even though
this may seem restrictive, readers should note that the MPC control methodologies dis-
cussed in Chapter 4 are equally applicable to more complex configurations and can be
easily expanded to incorporate devices such as battery energy storage (BESS) systems,
heating, ventilation, and air conditioning (HVAC) systems, diesel generators, etc. In fact,
the exact same control structure and tool-set may be applied, provided that the devices
can be modelled by the widely applicable MLD modelling framework (2-5).

��

�pv

Roof top PV

Uncontrollable
Residual
Demand

��

Utility Grid

�ℎ,1 �ℎ, �ℎ

� ℎ,1 � ℎ, �ℎ

Electrical Power
Hot Water

Figure 3-1: Diagram of MG considered in this thesis.
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3-2 Domestic electric water heater (DEWH) modelling

Modelling of TES devices for control by energy management systems (EMSs), and in par-
ticular modelling of tank based DEWHs, has been covered extensively in literature [19, 23,
34, 48–52]. The physically based storage models are formulated by making various simplify-
ing assumptions to enable the development of models that are suitable for computationally
efficient simulation and tractable control problem formulations. These models are typically
formulated based on thermal and electric energy balance as outlined in [19, 48];

Q̇tank = Q̇inflow + Q̇heater − Q̇demand − Q̇loss, (3-1)

where Q̇j [W] represents the heat flow rate attributed to component j.

3-2-1 Fully mixed DEWH model

The fully mixed (FM) storage or homogeneous thermal capacity model provides one of
the most widely used and simple models for application in optimization based control for
DSM [51]. The one-dimensional model assumes a homogeneously distributed temperature
profile exists within the tank and that all water entering the tank mixes perfectly with the
existing tank contents [51, 52]. Thus, the model ignores thermal stratification and other non-
linear fluid/thermal dynamic effects. This allows the DEWH to be modelled with a single
temperature variable (i.e. state), as presented in Figure 3-2.

Figure 3-2: Diagram of a DEWH

Based on the energy balance given in (3-1), the continuous-state dynamics for the FM model
are given by a simple first order differential equation [23, 50],

mh,i · Cw
dTh,i(t)
dt︸ ︷︷ ︸

Q̇tank

= ωh,i(t) · Cw(Twh,i − Th,i(t))︸ ︷︷ ︸
Q̇inflow−Q̇demand

+P nom
h,i uh,i(t)︸ ︷︷ ︸
Q̇heater

−Uh,iAsh,i(Th,i(t)− T∞h,i)︸ ︷︷ ︸
Q̇loss

, (3-2)

wheremh,i [kg] is the total mass of water in the tank and Cw [J/(kg K)] is the thermal capacity
of water, both assumed to be constant1. Th,i(t) [◦C] is the average water temperature in the
1 Assuming constant mh,i and Cw, implies that the stored energy in the tank is directly proportional to the

average tank temperature, Th,i(t).
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28 Modelling Residential Microgrids

heater, ωh,i(t) [L/s] is the water demand mass flow rate at the inlet, Twh,i [◦C] is the inlet water
temperature, P nom

h,i [W] is the nominal electric power of the resistive heating element, uh,i(t)
is the on-off (binary) switched heating element input, Uh,i [W/(m2 K)] is the overall standing
heat loss co-efficient across the tank insulation, Ash,i [m2] is the surface area of the tank, and
T∞h,i [◦C] is the ambient temperature surrounding the tank.

Linear parameter-varying (LPV) model

Notice that (3-2) is not a linear system due to the ‘Dh,i(t)Th,i(t)’ term. However, it can be
considered as a linear parameter-varying (LPV) system [53], re-written in a standard form as
follows:

ẋh,i(t) = Ach,i(ωh,i(t))xh,i(t) +Bc
h1,iuh,i(t) +Bc

h4,iωh,i(t) + bch5,i, (3-3)

with the state and disturbance input defined respectively as tank temperature and hot-water
demand, i.e.:

xh,i(t) := Th,i(t), ωh,i(t) := Dh,i(t),

and,

Ach,i(ωh,i(t)) =
−Uh,iAsh,i − Cwωh,i(t)

mh,iCw
, Bc

h1,i =
P nom
h,i

mh,iCw
,

Bc
h4,i =

CwT
w
h,i

mh,iCw
, bch5,i =

Uh,iA
s
h,iT

∞
h,i

mh,iCw
.

Written in this form it is clear that the continuous state matrix, Ach,i(·), is dependent on the
time-varying hot-water disturbance variable (or parameter), ωh,i(t).

3-2-2 Linearised DEWH model

Directly using the DEWH LPV model (3-3) for controller synthesis would lead to increased
complexity of the resultant controllers. This is especially true for the stochastic or scenario
based controllers, which are investigated in subsequent chapters to better handle the uncertain
DHW demands, ωh,i(t). Consequently, it was decided that the MPC controllers developed in
this work would be designed using a linearised control model. Thus, the work makes use of two
separate models, a linearised model (3-4) for computing control actions and the LPV model
(3-3) for closed-loop simulation. The linearised continuous-time DEWH model is computed
by Taylor expansion of (3-3) about the operating point (xh,i, uh,i, ωh,i) = (T nom

h,i , 0, 0), leading
to the following linear system approximation:

ẋh,i(t) ≈ Āch,ixh,i(t) + B̄c
h1,iuh,i(t) + B̄c

h4,iω
nom
h,i (t) + b̄ch5,i, (3-4)

with T nom
h,i [◦C] the nominal DEWH tank and hot-water demand withdrawal temperature and,

Āch,i =
−Uh,iAsh,i
mh,iCw

, B̄c
h1,i =

P nom
h,i

mh,iCw
,

B̄c
h4,i =

Cw(Twh,i − T nom
h,i )

mh,iCw
, b̄ch5,i =

Uh,iA
s
h,iT

∞
h,i

mh,iCw
.
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3-2 Domestic electric water heater (DEWH) modelling 29

To enable the use of the linearised system model (3-4), it is assumed that all DHW volume
demand sequences, ωh,i(t), are scaled for withdrawal at a constant temperature, T nom

h,i . In
other words, rather than assuming that users demand a certain volume of hot-water at the
current tank temperature, it is assumed that the users will demand a certain amount of
heat energy with the volume of water determined by the required heat demand. Therefore,
ωnom
h,i (t) [L/s] is the DHW demand volume required to deliver the requested heat demand at

temperature, T nom
h,i .

However, as mentioned, the controllers designed using the linearised control model (3-4) are
later simulated with the LPV model (3-3) in closed-loop. The LPV model does not assume
that the water demand is extracted at a constant temperature. Thus, in order to compute the
physical volume of water that is extracted when using the LPV model, ωh,i(t), it is necessary
to make use of the following relation:

ωh,i(t) =
[
T nom
h,i − Twh,i

xh,i(t)− Twh,i

]
ωnom
h,i (t). (3-5)

3-2-3 Control inputs and switched dynamics

DEWHs have historically been actuated using mechanical thermostatic (rule-based) control-
lers, which introduce switched hybrid system dynamics. A discrete-time model representing
the classic thermostatic control law is given by [34]:

Ph,i(k) = P nom
h,i · uh,i(k), uh,i(k) ∈ {0, 1}, (3-6)

with,

uh,i(k) =


1, if xh,i(k) ≤ T on

h,i (heating element on)
0, if xh,i(k) ≥ T off

h,i (heating element off)
uh,i(k − 1), if T on

h,i < xh,i(k) < T off
h,i (maintain previous input),

(3-7)

where for each DEWH agent i ∈ {1, . . . , Nh}, Ph,i(k) [W] is the electrical input power and
(T on
h,i, T

off
h,i) are the minimum and maximum temperature set-points respectively. Implement-

ing this classical control approach only requires the use of very simple and inexpensive ac-
tuation hardware, with binary control input uh(k) ∈ {0, 1} dictating the on-off switching
dynamics.

To reduce costs and maintain the simplicity of the actuation hardware, it is often a require-
ment that advanced management schemes continue to utilise switched on-off control laws,
as opposed to the use of a continuously variable input power. While reducing hardware
costs, this requirement complicates the application of optimization based control with binary
decision variables leading to an increased computation complexity. Fortunately, significant
advances in integer based optimization algorithms and hybrid control theory continue to in-
crease the number of tractable applications, with promising results obtained for similar system
configurations (e.g. [23, 54–57]).
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3-2-4 DEWH MLD model

In a domestic residential setting, the average tank temperatures are normally bounded within
an operating range for system safety and to ensure consumer comfort. These temperature
constraints can be captured by the following inequalities:

Tmin
h ≤ xh(t) ≤ Tmax

h . (3-8)

Then, considering the linearised continuous-time FM DEWH model (3-4), subject to switched
control inputs (3-6), and state/input constraints (3-8). For each individual DEWH agent,
i ∈ {1, . . . , Nh}, this model can be discretized, using zero-order hold (ZOH) (cf. Remark 2.2),
and by following reference procedures in [42], recast into the standard MLD framework (2-5),
resulting in:

xh,i(k + 1) = Ah,ixh,i(k) +Bh1,iuh,i(k) +Bh4,iω
nom
h,i (k) + bh5,i (3-9a)

yh,i(k) = xh,i(k) (3-9b)
Eh1,ixh,i(k) ≤ fh5,i + Ψh,iµh,i(k), (3-9c)

with tank temperature state xh,i(k) ∈ R, binary power switching input signal uh,i(k) ∈ {0, 1},
DHW demand ωnom

h,i (k) ∈ R, and temperature constraint slack variable µh,i(k) ∈ R2
≥0. Ah,i,

Bh1,i, Bh4,i, Eh1,i, and Ψh,i are DEWH state equation and constraint matrices, bh5,i and fh5,i
are vectors, all of appropriate dimensions. Refer to Appendix A-1 for a detailed description.

3-3 Exogenous RES generation and demand modelling

To successfully implement MPC for DSM, in addition to utilizing dynamic models of the
controllable DEWHs, the EMS is also required to compute predictions of all exogenous un-
controllable inputs (or disturbances). For the MG under consideration, this includes the
prediction of DHW demand for all DEWH agents, ω̂h,i(k), the aggregate uncontrollable re-
sidual electrical power demand, P̂r(k), and the aggregate PV power generation, P̂pv(k) (ref.
Figure 3-1). The accuracy of these forecasts directly impacts the feasibility and optimality of
optimization based predictive control techniques. Controllers making use of predictions with
large errors or uncertainties often have to accept reduced or poor close-loop system perform-
ance. Fortunately, many techniques have been proposed for the forecasting of RES generation
and user demand profiles, with the development and improvement of such methods remaining
a topic of continued research interest.

Before detailing the disturbance forecast and modelling framework utilised for this thesis
investigation, Section 3-3-1 provides an overview of forecasting for DSM.

3-3-1 Background on generation and demand forecasting

Predictive control strategies for DSM typically operate with prediction horizons in the order
of hours to days, with sampling times of minutes to hours (e.g. [19, 55, 58]) Consequently,
the forecast methods used for these strategies should be optimized for similar horizons and
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sampling resolutions. In literature, relevant methods are commonly referred to as ‘short term
forecasts’ with forecast horizons of 1 h to 1 day/week, ahead [59].

The underlying mathematical and computational methods for the forecasting of generation
and demand signals are often very similar, if not exactly the same. This is clearly seen when
comparing for example [60] and [61]. In all cases, the forecasting models rely on input signals
and/or model training data to make predictions of future signal values. Models can make use
of endogenous (internal) input data, typically formed as current and/or lagged (i.e. historical)
time-series records of the generation/demand, or they can use exogenous (external) input data
such as local environment measurements (temperature, humidity, wind speed, etc.), satellite
images, or Numerical Weather Predictions (NWPs) (temperature, irradiance, cloud cover,
wind speed, etc.) [60].

In general the approaches for forecasting generation and demand can be broadly classified
into four categories [60–62]:

Statistical approach: denote data-driven methods that are able to extract relations in past
data to predict future behaviour. They generally base predictions solely on historical
measured data, but may make use of exogenous input signals. Among others, statistical
approaches include the use of:

• Persistence models: simple and naive predictors that assume future signal realiza-
tions remain equal to the latest measurement.
• Linear stationary models: used to predict time series that fluctuate around a static
mean, including;

- Auto-Regressive (AR) models
- Moving Average (MA) models
- Auto-Regressive Moving Average (ARMA) models
- Auto-Regressive eXogenous (ARX) models
- Auto-Regressive Moving Average with eXogenous variables (ARMAX) models

• Linear non-stationary models: used to predict time series that do not exhibit a
static mean, including;

- Auto-Regressive Integrated Moving Average (ARIMA) models
- Seasonal ARIMA (SARIMA) models

• Non-linear stationary models: such as the Non-linear AR-eXogenous (NARMAX)
model.

Artificial Intelligence (AI) approach: make use of AI techniques such as artificial neural
networks (ANNs) to forecast generation and demand signals.

Physical approach: while technically not a stand-alone forecasting technique, these ap-
proaches make use of external forecasts such as NWPs to make predictions using phys-
ical system models. An example would be the use solar irradiation and temperature
predictions to determine PV generation forecasts by using PV model (3-11).

Hybrid approach: includes any combination of the aforementioned approaches.
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Each of these methods have their own merits and drawbacks. Ultimately, the selection of
suitable forecasting techniques needs to consider many factors such as the required forecasting
accuracy, the available input data, the development budget (time and cost), and the associated
computational resources.

Relevant forecasting literature for DSM

A detailed coverage, or implementation, of the numerous applicable forecasting methods is
beyond the scope of this thesis. Further information on how each of these approaches have
been applied to the forecasting of PV generation, residual load and DHW demand, can be
found in the surveys and reviews referenced below:

• PV generation: for a recent and detailed coverage of techniques for the forecasting
of PV power generation, refer to the reviews undertaken by Antonanzas et al. [60],
Wan et al. [62], and Inman et al. [63]. These provide details on all the aforementioned
forecasting approaches applicable to PV generation.

• Electrical demand: literature reviews on electrical load forecasting have been under-
taken by Khan et al. [61] and Suganthi et al. [64]. For a detailed overview of AI based
techniques, readers are referred to the work by Raza et al. [59].

• DHW demand: extensive reviews specifically related to DHW demand forecasting
do not exist, but readers may refer to a paper by Gelažanskas et al. [65] which briefly
outlines relevant works before implementing and comparing forecasting techniques for
the DHW demand of residential houses.

3-3-2 Persistence forecasting

Although many forecasting methodologies and frameworks exist, all with varying levels of
accuracy and implementation complexity, it was decided that this work would only make use
of a very simple naive persistence forecast. To capture temporal trends, the forecasts are
made by assuming that today’s forecast is equal to a 24 h lagged historical measurement (i.e.
assume “today will be the same as yesterday”):

ω̂(k) = ω

(
k − 24 h

ts

)
, (3-10)

where ts [s] is the discrete control system sampling time.

Remark 3.2: The decision to limit the scope to the use of naive persistence based forecasting
was made as it represents the most basic methodology that could be implemented for
controller simulation. Even though more advanced forecasting methodologies may likely
lead to reduced prediction errors, and potentially increased controller performance; their
implementation was not required to show the feasibility and benefits of MPC strategies
for DSM. Incorporating more advanced forecasting methodologies (e.g. building on works
referenced in Section 3-3-1) is left as an exercise to be considered for future work.
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3-3-3 PV generation and residual electrical demand modelling

To enable DSM strategies which optimize the economic utilization of PV generation, it was
necessary to incorporate predictions (or forecasts) of future generation capacity and residual
electrical demand into the decision making process [62, 66]. These forecasts can be generated
in a number of ways as highlighted in Section 3-3-1. Some of these methods incorporate
physical system models while others are primarily formulated using data-driven techniques.
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Figure 3-3: 10 day normalized subset of historical data for PV generation, PPV(k), and residual
MG electrical demand, Pr(k), obtained from a site managed by Solar Africa R©. Top
plot: PV generation normalized to maximum capacity of 1W. Bottom plot: MG
aggregate residual uncontrollable load power normalised to long-term mean of 1W.

PV generation

The output power of PV generation is affected by a wide variety of factors, such as the local
solar irradiance, reflectivity, PV cell temperatures, and inverter efficiency. An example of a
highly simplified PV model similar to that described in [67]:

Ppv(k) = ηpv(k) ·Apv ·Gc(k)
[
1− αpv(T cpv(k)− T STC

pv )
]
, (3-11)

where Ppv(k) [W] is the aggregate system PV generation2, ηpv(k) [%] denotes the conversion
efficiency of the PV cell array, Apv [m2] is the array surface area, Gc(k) [W/m2] is the incident
solar irradiance acting on the array, αpv is a power temperature co-efficient, T cpv [◦C] solar cell
operating temperature, and T STC

pv [◦C] is the cell array reference temperature under standard
test conditions.
2 Here, Ppv(k) > 0 reflects the power generated by the array. Henceforth, unless otherwise stated a convention

is adopted such that P[·] ≥ 0 implies a load power, and P[·] < 0 implies a generated power.
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While making use of such models may allow for more accurate forecasts; as mentioned in
Remark 3.2, the use of such models or advanced forecasting techniques is beyond the scope this
work. Instead, the PV generation predictions, P̂pv(k), were determined using the previously
stated naive data-driven persistence forecast method (3-10). To enable this, representative
historical PV generation data was obtained from Solar Africa R© for use in simulations. For
reference, the first 10 days of the normalized PV generation data are presented in the upper
plot of Figure 3-3. The normalized PV data was scaled depending on the maximum PV
generation capacity selected for the case-study simulations.

Residual electrical demand

In the same manner, residual electrical demand sequences Pr(k), are also based on historical
data recordings from Solar Africa R©, with required predictions, P̂r(k), again made using a
persistence forecast (3-10). The historical demand sequences were obtained from a community
MG with several hundred households. The data was normalized with unity mean and scaled
depending on the number of households considered in the case-study simulation. The first
10 days of the normalized historical residual demand data are presented in the lower plot of
Figure 3-3.

3-3-4 Domestic hot water (DHW) demand modelling

In an ideal case the thesis would also have made use of actual historical DHW demand data
for forecasting, scenario generation (cf. Section 4-3-6) and control simulation. Unfortunately,
it was not possible to reliably extract realistic DHW demand profiles from the data provided
by Solar Africa R©. Consequently, this thesis makes use of stochastic synthetically generated
DHW demand data based on the work of Jordan and Vajen in [68].

In [68], the authors describe a software tool, DHWcalc, which they developed to generate real-
istic DHW demand profiles for both single and multi-user scenarios. The software considers
several different draw-off categories (showers, baths, etc.) and distributes these through-
out the year with user-defined statistical means, according to an associated daily draw-off
probability distribution function. The draw-off categories are each defined by minimum and
maximum draw-off flow rates, which vary around a provided mean according to a Gaussian
distribution. The software ensures that for each household, a long term user defined daily
mean DHW demand rate is maintained. Additionally, users are able to apportion the demands
to vary based on seasonal changes (e.g. weekday vs weekend, winter vs summer).

For the thesis work, the DHWcalc tool was used to generate demand profiles with the following
main characteristics and assumptions:

• A long-term daily mean DHW usage, E
[
ωNom
h,i

]
= 200L/d, per household (the software

default).

• All seasonal variations were ignored. Thus, the DHW demand profiles were generated
by assuming equal probability distributions for all days of the year. This was done
to simplify the simulation implementation, particularly when applying scenario-based
MPC (cf. Section 4-3-6).
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• The DHW draw-off categories were apportioned as follows:

– 75% for showers
– 19% for small and medium ancillary draw-offs
– 6% for baths.

Figure 3-4 provides an illustration of example daily DHW demand scenarios, along with a box
and whisker plot to demonstrate how demand is distributed throughout a day. The box plot
was created by generating synthetic data for 22,000 days and highlights that the majority of
demand occurs in the mornings and evenings. The ends of the whiskers depict upper and
lower limits of the demand across all 22,000 daily realizations.
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Figure 3-4: Synthetic data for DHW demand, ωnom
h,i (k). Top plot: depicts a synthetic actual

DHW demand realization surrounded by 20 possible predicted stochastic daily scen-
arios. Bottom plot: hourly distribution of demand over 22,000 daily synthetic de-
mand scenarios.

3-4 Combined overall MG system dynamics

Having discussed physically based system models for individual DEWHs, the ability to fore-
cast uncertain exogenous system inputs, and the generic MLD hybrid modelling structure; it
is now possible to briefly describe the combined overall MG model which forms the basis of
this work’s optimal control problem formulations. The thesis limits its scope to the control
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of grid connected residential MGs with shared RESs, where each household contains a con-
trollable DEWH. To this end, the following subsection presents the overall MG model with
Nh DEWHs (see Figure 3-1).

3-4-1 Interaction with the utility grid

The problems considered in this work assume that the MG operates exclusively in a grid
connected mode, thus it will always be possible to exchange energy with the external utility
grid. Moreover, for all practical purposes it is assumed that this utility can be considered
as a ‘quasi-infinite’ bus which is always able to supply all future MG demand, even without
the support of local RES capacity. Under a general modelling framework, such a connection
allows deficit electric demand energy to be bought from the utility, and vice versa excess
generation can be sold back for profit. To capture these dynamics, and to allow for different
import and export tariffs, required the construction of a logic constrained model similar to
that described in [58].
First, auxiliary variables δg(k) ∈ {0, 1} and zg(k) ∈ R are defined such that:

zg(k) := Pg,imp(k) = Pg(k)δg(k), (3-12)

and that the following logic relations hold,
[Pg(k) ≥ 0]⇔ [δg(k) = 1]
[δg(k) = 1] ⇒ [zg(k) = Pg(k)]
[δg(k) = 0] ⇒ [zg(k) = 0],

(3-13)

where Pg(k) >= 0 [W] denotes the power imported from the utility grid, Pg,imp(k) [W].
If these logic statements are satisfied, the power exported from the grid Pg,exp(k) [W] is
computed as:

Pg,exp(k) = Pg(k)− zg(k). (3-14)

Logic statements (3-13) cannot be directly incorporated into the optimal control problems.
However, by using transformational procedures outlined in [42], they can be equivalently
expressed by standard form MLD mixed-integer linear inequalities. By applying these pro-
cedures, (3-13) is equivalent to:

Fg2δg(k) + Fg3zg(k) +GgPg(k) ≤ fg5, (3-15)

with,

Fg2 =



−Pmin
g

−Pmax
g − ε
−Pmax

g

Pmin
g

−Pmin
g

Pmax
g


, Fg3 =



0
0
1
−1
1
−1


, Gg =



−1
1
0
0
−1
1


, fg5 =



−Pmin
g

−ε
0
0

−Pmin
g

Pmax
g


,

where Pmin
g [W] and Pmax

g [W] are the minimum and maximum MG export/import operating
power bounds, and ε a properly small scalar tolerance (typically the machine precision) which
is introduced to allow strict inequalities to be approximated as non-strict inequalities.
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Power balance in the MG

To ensure stable MG operation, a balance between energy supply and demand must be met
at each time instant k. This requirement is enforced by introducing the following equality
constraint:

Pg(k) =
Nh∑
i=1

Ph,i(k)︸ ︷︷ ︸
controllable

+ Pr(k) + Ppv(k)︸ ︷︷ ︸
uncontrollable

∀k, (3-16)

where Pr(k) is the aggregate residual power demand (i.e. all uncontrollable loads) in the MG,
Ph,i(k) reflects the electrical input power of the ith DEWH agent, and Ppv(k) the aggregate
PV generation in the MG.

To capture the power balance constraint (3-16) in a standard compact MLD form, it is re-
written as:

yg(k) := Pg(k) = Dg4ωg(k), (3-17)

where,

ωg(k) =

 ωcon
g (k)

ωexo
g (k)

 =



Ph,1(k)
...

Ph,Nh(k)

Pr(k)

Ppv(k)


, Dg4 = 1> :=



1
...

1

1

1



>

.

For later descriptions, note that ωg(k) has been partitioned with ωcon
g (k) the deterministic

controllable DEWH power inputs and ωexo
g (k) the uncertain exogenous residual demand and

PV generation.

3-4-2 Overall system MLD model

By combining all the grid device models and grid interaction dynamics, it is possible to present
a compact overall MLD model representation of the case-study MG (cf. Figure 3-1). For time
step, k, the system is defined by3:

DEWH dynamics
and constraints
∀i ∈ {1, . . . , Nh}



xk+1
h,i = Ah,ix

k
h,i +Bh1,iu

k
h,i +Bh4,iω

nom,k
h,i + bh5,i ,

Eh,ix
k
h,i ≤ fh5,i + Ψh,iµ

k
h,i ,

µkh,i ≥ 0,
xh,i(0) = xh,i(t), ωnom

h,i (0) = ωnom
h,i (t),

(3-18aa)

(3-18ab)
(3-18ac)
(3-18ad)

3 The superscript time index, k, is used reduce notational clutter, e.g. xk is therefore equivalent to x(k).
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Grid power
balance and
constraints



P kg = Dg4ω
k
g ,

P kg,imp = zkg , P kg,exp = P kg − zkg ,
Fg2δ

k
g + Fg3z

k
g +GgP

k
g ≤ fg5,

Pr(0) = Pr(t), Ppv(0) = Ppv(t).

(3-18ba)
(3-18bb)
(3-18bc)
(3-18bd)

The overall system MLD model collectively captures the dynamics and constraints of Nh

DEWHs (3-9), along with the grid power balance (3-17) and logic constraints (3-15).

The development of the overall MG system model marks the end of the system modelling
chapter. With all system dynamics compactly captured using the MLD modelling framework,
it is then possible to explore the associated MPC control problem formulations. In Chapter 4,
this thesis details the MPC frameworks that were developed to optimize the economic oper-
ation of the overall MG model (3-18).
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Chapter 4

Economic Model Predictive Control
for Demand Side Management

Various high level concepts and control methods for demand side management (DSM) were
presented in Chapter 2. Of particular interest is the application of model predictive control
(MPC), briefly introduced in Section 2-2. Applying MPC and associated control techniques
to DSM has so far shown promising results, with many studies (e.g. [23, 58]) indicating an
improved operating performance over more traditional DSM implementations. This chapter
expands on the initial introduction by providing a detailed coverage of the MPC problem
formulations, within the context of economic optimal control for DSM. All control problem
formulations presented in this chapter are developed for the overall residential microgrid
(MG) model as defined in Section 3-4. In Chapter 5 these formulations are simulated in an
illustrative study to evaluate their performance on the considered case-study MG.

First, Section 4-1 provides a broad introduction to the recently coined MPC control frame-
work, ‘economic model predictive control (EMPC)’. Section 4-2 then presents the components
required to formulate an EMPC controller for the DSM of a case-study MG. Following this,
Section 4-3 details various EMPC solution frameworks developed and applied in this work;
including, deterministic, stochastic and robust methodologies. The chapter concludes with a
brief analysis of optimization methods and complexity considerations, followed by a conclud-
ing discussion.

4-1 Introducing economic model predictive control (EMPC)

The development of so-called standard MPC has primarily been driven by its application
in large scale industrial process industries. As with any other component of a commercial
enterprise, the ultimate high level objective of control systems incorporating MPC, is to pos-
itively contribute to the attainment of optimal economic performance. In the process control
industry this goal has traditionally been targeted by deploying a multi-level hierarchical con-
trol architecture, typically partitioned into two distinct layers. The first layer, referred to as
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the real-time optimization (RTO) layer, is responsible for optimizing an operating economic
performance metric by determining the optimal steady-state process set-points of continu-
ously updated steady-state operating models. Updating on the time scale of hours to days,
the RTO passes these optimal set-points to the second control layer commonly referred to as
the advanced process control system. This lower layer is responsible for driving the physical
system states to the provided optimal set-points, and upon reaching these, reject any dynamic
disturbances that enter the system. Reacting in the order of seconds to minutes, this layer is
often implemented using a reference tracking MPC framework, here referred to as standard
MPC. Recently, researchers have found that this classical two-layer approach may not always
be suitable when targeting optimal economic performance. Consequently, this has led to
the development of a newly defined optimal control framework referred to as economic MPC
(EMPC) [16, 17]. This section provides a brief overview of the classic two-layer hierarchical
control structure followed by a formal introduction to EMPC.

Classic two-layer hierarchical control

To formalise the aforementioned two-layer hierarchical structure, simplified high-level problem
formulations for the RTO and standard MPC are briefly introduced below:

RTO problem: real-time optimization typically operates with a much longer sampling
period than the lower level control layers, and is primarily concerned with solving op-
timization problems of the form shown in (4-1) [17]:

min
xs, us

s.t.

le(xs, us) (4-1a)

x(k + 1) = f(xs, us) = xs, (4-1b)
xs ∈ X , us ∈ U , (4-1c)

where the objective function le(·), referred to as the economic cost function (or economic
stage cost), is constructed to reflect the cumulative instantaneous process operating costs
and is often based on metrics such as the net instantaneous operating profit or deviation
from the desired production rates. As previously mentioned, RTO is traditionally only
concerned with the optimization of economic performance under the condition that the
plant must operate at a steady-state. Thus, in addition to process state and input
constraints denoted in (4-1c); the problem is formulated subject to the steady-state
system evolution constraint given by (4-1b).
Without loss of generality, the optimal steady-state solution of the RTO problem (4-1),
denoted by (x∗s, u∗s), is assumed to be unique and located at the origin of (2-3)1 (i.e.,
f(x∗s, u∗s) = f(0, 0) = 0) [17]. This simplifies the definition of lower level control layers,
in that they need only target the system origin as the reference set-point to reach the
economic optimum.

Standard MPC problem: operating within the second control layer as part of the ad-
vanced process control system, the standard MPC is deployed to asymptotically track
the optimal steady-state set-points, (x∗s, u∗s), as determined by the RTO layer [16].

1 To simplify the explanation, here the disturbance vector ω(k) is neglected, i.e. ω(k) ≡ 0.
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Recapping on the initial overview given in Section 2-2-2, MPC attempts to approximate
infinite horizon optimal control by, at each time instant, solving a constrained finite
horizon open-loop optimal control problem of the form given by:

min
˜
u(k)

s.t.

JMPC =
Np−1∑
k=0

lm(x(k), u(k)) (4-2a)

x(k + 1) = f(x(k), u(k)), (4-2b)
x(k) ∈ X , u(k) ∈ U , (4-2c)
x(0) = x(t), (4-2d)

with an objective function JMPC, the sum of MPC stage costs lm(·) over the finite
horizon N . The objective is optimised subject to system dynamics (4-2b), and state/in-
put constraints given by (4-2c) with (X ,U), the set of admissible states and inputs
respectively.
Ensuring asymptotic stability of the targeted steady-states is the primary objective of
the standard MPC framework. To accomplish this, the stage cost lm(·), typically a
quadratic performance criterion, is chosen as a non-negative real valued function such
that the minimum value is realised at the optimal/desired set-points, (x∗s, u∗s) [16], i.e.
it is assumed that:

0 = lm(x∗s, u∗s) ≤ lm(x(k), u(k)), ∀(x(k), u(k)). (4-3)

Using the system’s current state x(t) as the initial state, problem (4-2) is solved in a
receding horizon fashion with only the first control action of the determined optimal
control sequence,

˜
u(k), applied to the plant. This on-line solution process is repeated

indefinitely with a constantly shifting prediction horizon, leading to a so-called implicit
optimal control law. The requirement for on-line optimization constitutes the main
distinguishing feature of MPC, as opposed to conventional controllers, which use pre-
computed control laws that directly map a current system state to a required control
action [36].

Remark 4.1: Although the notion of stability forms an overriding requirement of MPC
frameworks and control systems in general, early versions of MPC were implemented
without any stability guarantees. Instead practitioners resorted to the tuning of cost
and horizon parameters, and thorough testing regimes to provide stability assurances.
With increasing deployment, researchers devoted considerable attention to the topic,
and the theory of MPC stability has now reached a relatively mature stage. Subject to
further conditions, such as minimum prediction horizons, or the addition of terminal
constraints and/or terminal penalties; the standard MPC formulation has guaranteed
stability properties, with proofs mainly based on Lyapunov stability theory. Detail
coverage on the stability of MPC is beyond the scope of this thesis, instead interested
readers are referred to a seminal review undertaken by Mayne et al. in [36].

Economic model predictive control

While the classical hierarchical two-layer approach forms the backbone of many industrial
process control systems and often achieves good performance; the separation of economic
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optimization and dynamic process control has been shown to be inefficient or inappropriate
for many processes where dynamic economic performance is crucial. In these instances, re-
searchers have turned their attention to control frameworks where the MPC layer is modified
to directly and dynamically optimize an economic performance criteria without reference to
an economically optimized steady-state. In effect this renders the RTO layer redundant, with
economic optimization now directly captured in the plant control layer. This modified control
framework, referred to as economic MPC, is no longer subject to the assumption that optimal
economic performance is realised at a steady-state. Thus, (4-3) does not hold in general and
it may happen that le(x(k), u(k)) < le(x∗s, u∗s) for some feasible pair (x(k), u(k)) that is not a
steady-state [16].
In contrast with the two-layer hierarchical approach, the general problem formulation for
EMPC is provided below:

EMPC problem: specifies a dynamic receding horizon model predictive control methodo-
logy that directly optimizes an economic performance criteria. The problem formulation
closely resembles that of standard MPC with the tracking stage cost, lm(·) replaced by
an economic stage cost, le(·), similar to that used in RTO. The optimal control problem
underpinning EMPC takes the form given in (4-4).

min
˜
u(k)

s.t.

JEMPC =
Np−1∑
k=0

le(x(k), u(k)) (4-4a)

x(k + 1) = f(x(k), u(k)), (4-4b)
x(k) ∈ X , u(k) ∈ U , (4-4c)
x(0) = x(t), (4-4d)

with an objective function JEMPC, the sum of EMPC stage costs le(·) over the finite
horizon Np. The objective is optimised subject to constraints which remain the same
as, or at least very similar to, those defined for the standard MPC problem (4-2).

Remark 4.2: In general, the stability proofs for standard MPC formulations, referred
to in Remark 4.1, do not apply to EMPC. For one, the Lyapunov arguments used
to prove asymptotic stability of standard MPC often rely on the assumption that
(4-3) holds, which as discussed earlier is not necessarily true for EMPC [16]. More
importantly, because the EMPC framework can be applied to non-linear systems,
or objectives which result in feasible pairs (x(k), u(k)) with costs less than the best
steady-state, i.e. le(x(k), u(k)) < le(x∗s, u∗s), asymptotic stability of an equilibrium
state cannot be expected in general [69]. As a result of these differences, researchers
have devised alternative stability analysis frameworks for EMPC. Similar to stand-
ard MPC, these methods typically rely on the addition of terminal penalties, stabil-
ity constraints or sufficiently large prediction horizons, in order to provide stability
guarantees [16, 17, 69]. However, as with many other practical implementations of
MPC/EMPC, this work does not aim to provide formal stability guarantees. Instead,
the presented controllers rely on simulation based validation, where stable operation
is managed through the selection of sufficiently large prediction horizons.

This section provides only a general introduction to EMPC, a framework which shows great
potential for the optimal economic control of residential MGs. Research on EMPC and model
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based predictive control in general is extensive and continues to be developed. For further in-
depth theoretical coverage of EMPC research from a global perspective, readers are referred
to excellent reviews recently undertaken in [16, 17]. The sections that follow will instead
extend on this brief introduction to EMPC by focusing on the specific formulations that were
applied for the DSM of residential MGs.

4-2 EMPC problem formulation for DSM

Having introduced the general EMPC methodology in Section 4-1, the following sections aim
to detail various mathematical components and solution frameworks that are required to
effectively apply EMPC for the DSM of residential MGs. Here the discussions are partic-
ularly concerned with EMPC schemes that target operating cost minimization through the
optimization-based predictive control of residential loads (e.g. domestic electric water heat-
ers (DEWHs)). Later in Chapter 5, these control problem formulations are simulated and
compared with the standard mechanical thermostatic rule-based (TSRB) controller (3-7),
currently used for temperature control.

Notational simplification

Before continuing, it is useful to introduce a simplifying mathematical notation, similar to
that in [55, 70]. Any bold variable with a tilde accent underneath represents the stacked
version of that variable in the prediction horizon, e.g.:

˜
uh(k) :=

[
u>h (k) . . . u>h (k +Np)

]>
. (4-5)

To enable compact representations when using this notation, time index k may also be dis-
carded (unless required), i.e.

˜
uh ≡ ˜

uh(k).

Furthermore, note that (4-5) includes a terminal horizon element (e.g. uh(k+Np) in
˜
uh(k)),

for all system variables, including inputs. It is included here, because for general mixed logical
dynamical (MLD) systems the state constraints at time k may depend on the input at time
k. Therefore, to ensure that terminal state-constraints are satisfied a feasible terminal input
would need to exist. The terminal input can be excluded if not required for this purpose.

4-2-1 Decision variables

The decision variables for the MG EMPC problem include all controllable device inputs,
constraint slack variables and auxiliary MLD logic variables, of the overall MG system model
(3-18). By defining V[·](k) as the stacked version of an MLD model’s decision variables, for
all k, the variables specific to the case-study are given by:

Vh,i(k) =
[
u>h,i(k) µ>h,i(k)

]>
∀i ∈ {1, · · · , Nh} (4-6)

Vg(k) =
[
δ>g (k) z>g (k)

]>
. (4-7)
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4-2-2 System constraints

For optimal economic control of the MG, the selected EMPC objective is optimized subject
to the MG system dynamics and state/input/logic constraints. For this work, these evolution
dynamics were captured in the combined overall MG model (3-18). Direct utilisation of this
model structure for the EMPC optimization problem formulation is not always convenient due
to the implicit iterative nature of the state evolution equations (cf. (3-18ab)). This implicit
structure requires the optimization problem to optimize over not only the system inputs, but
also the state predictions. To accomplish this requires the use of additional optimization vari-
ables for each state, which are then subject to evolution equality constraints. Alternatively, it
is possible to reformulate the implicit model to allow for an EMPC formulation which makes
use of explicit state predictions, thus removing the requirement for equality constraints.

The evolution of MG model (3-18) over the prediction horizon, is given in the explicit form:

DEWH dynamics
and constraints
∀i ∈ {1, . . . , Nh}


˜
xh,i = Φhx,ixh,i(0) + Γhv,i˜

Vh,i + Γhω,i˜
ωnom
h,i + Γh5,i ,

Hhv,i˜
Vh,i ≤ Hhx,ixh,i(0) +Hhω,i˜

ωnom
h,i +Hh5,i ,

˜
µh,i ≥ 0,
xh,i(0) = xh,i(t), ωnom

h,i (0) = ωnom
h,i (t),

(4-8aa)
(4-8ab)
(4-8ac)
(4-8ad)

Grid power
balance and
constraints



˜
Pg = Lg4˜

ωg, ωg =

ωcon,k
g

ωexo,k
g

 ,
˜
Pg,imp =

˜
zg, ˜

Pg,exp =
˜
Pg − ˜

zg,

Hgv˜
Vg ≤ Hg4˜

ωg +Hg5,

Pr(0) = Pr(t), Ppv(0) = Ppv(t),

(4-8ba)

(4-8bb)
(4-8bc)
(4-8bd)

where matrices/vectors Φ[·], Γ[·], L[·] and H[·] are appropriately defined2 by iterating the
system model over Np. Notice that in contrast with (3-18a), the explicit DEWH state (4-8aa)
and constraint (4-8ab) equations are no longer iteratively defined. They are only dependent
on the system inputs and known initial states, xh,i(0), thus removing the need for additional
state prediction decision variables. Moreover, if the objective function does not penalise the
state (e.g. (4-10)), then the state evolution equations (4-8aa) need not be evaluated because
the constraints no longer depend on this evolution.

Soft-constraints

Before discussing soft-constraints, it is useful to introduce here an MPC concept often referred
to as ‘recursive feasibility’. In broad terms, it is defined as follows:

Recursive feasibility: an MPC controller is considered recursively feasible if and only if
for all initial states, x(0), and all sequences of optimal control inputs, the optimal MPC
control problem remains feasible for all time [71].

2 Detailed descriptions of the evolution matrices for general MLD model (2-5) are presented in Appendix A-2
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If recursive feasibility cannot be guaranteed, then it is possible that at certain time instants
the MPC controller will not be able to compute a control input. In this case it would be
necessary to implement a fall back solution, such as a rule-based control law, which could
then supply valid control inputs in place of the MPC controller. To avoid reliance on such a
fall back solution, methods exist to help ensure recursive feasibility. The use of soft-constraints
represents such a method and is briefly discussed below.

MPC controllers subject to hard-constraints (i.e. must be satisfied), may often lead to optim-
ization problem infeasibility, meaning that no solution is available that satisfies all constraints.
This is especially the case when the system under control is subject to unknown disturbances.
Consequently, in order to help ensure a recursively feasible solution, designers often replace
hard-constraints with soft-constraints which allow some form of constraint violation subject to
additional objective penalties [36]. These soft-constraints are typically incorporated into the
optimization problem by introducing penalised slack variables, where the size of the variables
correspond to the magnitude of the associated constraint violation [72, 73].

Referring to the general MLD model (2-5) presented in the Background chapter; Remark 2.3
indicates that non-negative slack variables µ[·](k) ∈ R≥0 can be added to implement the
aforementioned soft-constraints. Fortunately, for a grid connected MG the power balance
constraint typically does not pose infeasibility issues, provided that one assumes the utility
grid is represented by an ‘quasi-infinite’ bus, which is able to supply/absorb any excess MG
demand/generation. By ensuring sufficient bounds on the maximum import/export power
of the utility grid, soft-constraints are not required for grid constraints (4-8bc). However,
hard-constraints on system states such as minimum DEWH tank temperatures, can easily
lead to infeasibility, as the hot water demand ωnom

h,i (k) may exceed the physical capacity for
supply. As a result, for the case-study MG penalized slack variables µh,i(k) were included for
all DEWH temperature bound state constraints (4-8ab).

The selection of a suitable soft-constraint penalty function represents the final element neces-
sary to implement soft-constraints. The penalty function is added to the EMPC objective to
ensure that constraint violations captured in the slack variable µh,i(k) are minimized where
possible. Without a suitable penalty function the constraints can be violated without con-
sequence, thereby permitting undesired uncontrolled system trajectories. Examples of penalty
functions include the use of l1-norms (‖·‖1), l∞-norms (‖·‖∞) or quadratic penalty functions.

The penalty function adopted for the case-study MG is given by:

Jsoft,i(k) = ρh,i(k)
∥∥∥qµh,i � µh,i(k)

∥∥∥
1
∀i ∈ {1, . . . , Nh}, (4-9)

where ‘�’ indicates the Hadamard element-wise product, ρh,i(k) ∈ R is an overall soft-
constraint weighting parameter and qµh,i ≥ 1 ∈ R2 governs the relative weight between the
soft-constraints. In this case, the preference of violating the upper or lower temperature
bounds of the DEWH. An l1-norm was used because the resultant optimization problem can
then be solved as a mixed-integer linear program (MILP), for which efficient solvers exist.

The selection of a suitable soft constraint weighing parameters is governed by the theory
of ‘exact penalty functions’. Broadly speaking, an exact penalty function is obtained when
the solution to an optimal control problem subject to soft-constraints produces the same
solution as the original hard-constrained problem, if the latter is feasible [72]. Attaining an
exact penalty function is desirable as it helps to ensure that constraints are only violated if
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absolutely necessary. An exact penalty is attained by setting ρh,i(k) to a sufficiently large
value. Determining the minimum required value for an exact penalty weight is far from trivial
and remains the subject of continued research (e.g. [72, 74]). The application of such methods
is beyond the scope of this thesis. Instead, a heuristic methodology is used as described and
simulated in Section 5-4-1.

4-2-3 Objective/cost function

This work investigates the optimal economic control of a co-operative residential community
MG (Section 3-1) operating within a traditional macro-grid utility network (i.e. Eskom -
South Africa’s national electric power utility). Comparable with many global utilities, Eskom
currently offers a Time-of-Use (ToU) pricing structure for the majority of residential con-
sumers [75]. For optimal economic performance, in addition to increasing renewable energy
source (RES) self-consumption, it is desired that the controllers minimize electricity costs
by considering the deterministic time varying energy rates associated with the ToU pricing
structure.

Bill minimization

To target bill minimization, the investigated EMPC strategies can be designed to minimize
the following operational cost:

Jbill =
Np−1∑
k=0

le,bill(·) =
Np−1∑
k=0

[cg,imp(k)Pg,imp(k) + cg,exp(k)Pg,exp(k)] · αbill, (4-10)

with αbill = ts ·
(
602 × 103)−1, where cg,imp(k) [R/kWh] is the price paid for importing energy

and cg,exp(k) [R/kWh] is the profit gained by exporting energy back to the grid3, both of
which are time-varying but known. Note that this objective only considers the economics of
the interaction with the utility grid. From an economic perspective, it is therefore assumed
that additional operational costs for RESs or loads can be neglected. For the case-study MG
this is a reasonable assumption as any additional operational costs for both the DEWHs and
photovoltaic (PV) generation units are negligible or fixed, and cannot be modified by the
chosen control policy. This assumption does not hold for all other possible MG configura-
tions, thus, in some cases it will be necessary to directly consider additional device specific
operational costs (e.g. fuel costs for local diesel generators).

Maximizing PV self-consumption

It is possible that the community may only be interested in maximizing PV self-consumption
without consideration of the energy bill. One method that has been suggested is to maximize
the so called solar fraction [25], which for any time interval k ∈ [0, N ], is defined as [4]:

φs(·) =
∑N
k=0 [min {0, Pl(k) + Ppv(k)} − Ppv(k)]∑N

k=0 Pl(k)
, (4-11)

3 R is the symbol for the ‘Rand’, which is the local South African currency.
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with,

Pl(k) = Pr(k) +
Nh∑
i=1

Ph(k),

where by design φs ∈ [0, 1], indicates the percentage of total MG load, Pl(k) ∈ R≥0, supplied
by local PV generation, Ppv(k) ∈ R≤0, over a given time interval. In an MPC framework,
maximising the solar fraction could then be targeted by minimizing the MPC cost,

Jsolar = −φs(·)|k∈[0,Np−1]. (4-12)

However, from the outset it is clear that optimizing this metric may not necessarily lead to
the desired outcome of maximized self-consumption. Under the assumption that exporting
power to the grid is permitted, the objective does not have a unique optimum. With the solar
fraction capped at 100%, it will not penalise the export of power to the grid as long as the
minimum demand levels are met. Alternatively, to avoid the introduction of hard-constraints
to restrict export of power to the grid, one may adopt the MPC objective function:

Jself =
Np−1∑
k=0

lself(·) =
Np−1∑
k=0
‖Pg(k)‖1, (4-13)

which attempts to minimize the energy entering or exiting the MG over the prediction horizon,
thereby maximizing the local use of PV generation.
Remark 4.3: While using (4-13) to target PV self-consumption directly may help to en-

sure maximum utilization of local PV generation, it does not guarantee optimal economic
operation. For this reason, some works (e.g. [76, 77]) have indirectly targeted increased
self-consumption by applying a bill minimization objective, as in (4-10), which favours
the use of PV generation. This indirect approach has the added benefit of responding to
grid pricing signals when importing external grid energy is unavoidable. Consequently,
it was decided that the controllers implemented in this work would primarily make use
of the bill minimization cost function (4-10). This was done in the hope that RES self-
utilization would increase because it directly contributes to a reduced energy bill when
cg,exp(k) < cg,imp(k).

Minimizing consumer discomfort

The successful adoption of a DSM scheme almost always relies on the willingness of consumers
to participate in the program. Thus, while users may appreciate the cost savings obtained
when targeting bill minimization objectives, they will likely reject a program if it does not
sufficiently manage consumer comfort. In the case of DEWHs, consumer comfort is tradition-
ally ensured by introducing temperature constraints for the maximum and minimum water
temperatures (cf. (3-8)). The final desired user demand temperature can then be managed
manually at the point of use or automatically by using a thermostatic mixing valve. This is
the approach that was followed for this thesis.
However, another possibility may be to introduce a weighted performance penalty which
penalises the deviation from a desired temperature set-point (i.e. standard MPC), e.g.:

Jcd =
Np−1∑
k=0

lcd(·) =
Np−1∑
k=0

Nh∑
i=1

qxh,i ·
∥∥∥xh,i(k)− xrefh,i(k)

∥∥∥
1
, (4-14)
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where qxh,i is a cost weighing factor.4 This type of performance cost is most often used for
the control of space heating and cooling systems (e.g. [77, 78]), where maintaining a constant
temperature helps to ensure consumer comfort. Similar to [77], in future work it may be
interesting to investigate whether it would be beneficial to combine such a discomfort cost
with an economic objective to determine the relationship of any economic/discomfort trade-
offs.

Multi-objective cost function

In the case where the DSM scheme targets multiple management objectives, it then becomes
necessary to simultaneously optimize multiple cost functions. Such a problem falls within the
scope of multi-objective optimization which can further complicate control problem formula-
tions, especially when attempting to optimize conflicting objectives. The simplest approach
to such problems involves the formation of a combined cost function composed of the scalar
weighted sum of the conflicting objectives. Through the introduction of user defined weighting
factors, designers can control the trade-offs between the objectives [25]. Alternative methods
are based on the generation of Pareto-optimal sets, as detailed in [79].

Chosen case-study MG cost function

As mentioned in Remark 4.3, it was decided that the proposed EMPC controllers would all be
designed to primarily make use of bill minimization cost function (4-10). Optimizing this cost
will result in reduced energy bills while simultaneously enabling the MG target increase RES
self-utilization. The overall MG objective for all EMPC controllers is compactly captured
in (4-15). It is composed of two costs, the overall economic operating cost (4-10), along
soft-constraint penalty terms (4-9):

JMG(k,
˜
V (k),

˜
ωexo
g (k)) = Jbill(k, ˜

V (k),
˜
ωexo
g (k)) +

Nh∑
i=1

Jsoft,i (˜
Vh,i(k))

= q>v (k,
˜
ωexo
g (k)) ·

˜
V (k) + q>ω (k) ·

˜
ωexo
g (k),

(4-15)

with,

V (k) =
[
V >g (k) V >h,1(k) · · · V >h,Nh(k)

]>
,

where qv(k, ˜
ωexo
g (k)) and qω(k) are appropriately defined time-varying vectors. These can be

easily derived based on the cost components of JMG(k,
˜
V (k),

˜
ωexo
g (k)).

4-2-4 Uncertainty

Modelling and control of complex real-world systems is always subject to some form of uncer-
tainty. Optimization-based DSM approaches, such as EMPC, can either be undertaken in a
deterministic or stochastic setting. The former ignores uncertainty, which may result in poor
4 Note that instead of using a l1-norm, ‖·‖1, one could also use l∞-norm, ‖·‖∞, or a quadratic cost.
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performance or solution infeasibility, especially if optimization signals deviate significantly
from their expected values.

Uncertainty is introduced due to modelling inaccuracies, measurement noise, and is inher-
ently present in all signal forecasts. Accurately capturing all these uncertainty sources and
formulating tractable problem formulations is not a trivial task. Several methods have been
proposed to capture uncertainty for robust control (refer to e.g. [25, 36, 73, 80]). Later, in
Section 4-3-3, the thesis presents details of stochastic/robust solution frameworks investigated
in this work. For simplicity, as presented in [55, 79], the discussed solution frameworks only
consider uncertainty in the prediction of exogenous MG disturbances inputs of (4-8). Thus,
any device modelling or state measurement uncertainty is ignored.

The actual exogenous input disturbances acting on the MG are captured in
˜
ωnom
h,i (k) for the

uncertain DEWH domestic hot water (DHW) demands, and in
˜
ωexo
g (k) for the exogenous

uncertain PV generation and residual electrical demand. For further discussion it is useful to
decompose these vectors as:

˜
ωnom
h,i (k) =

˜
ω̂nom
h,i (k) +

˜
ω̆nom
h,i (k) (4-16)

˜
ωexo
g (k) =

˜
ω̂exo
g (k) +

˜
ω̆exo
g (k), (4-17)

where ω̂(k) is the disturbance prediction5 and ω̆(k) is the stochastic prediction error. It is
common for ω̆(k) to be modelled as a continuous/discrete random variable with an assumed,
possibly unknown probability distribution [79]. Additionally, to simplify the application of
robust solution methodologies, all disturbances are assumed to be bounded as in [70], i.e.:

¯
ω(k) ≤ ω(k) ≤ ω̄(k) ∀k, (4-18)

where
¯
ω(k) and ω̄(k) denote the minimum and maximum disturbance bounds respectively.

Consequently, all disturbance prediction errors, ω̆(k), are also bounded. This bounding as-
sumption may seem restrictive, but in general it is justified for most practical systems. For
the case-study this is clearly the case; DHW demands are bounded by the maximum house-
hold water flow rates, PV generation is limited to the installed capacity and residual electrical
demand cannot exceed the circuit breaker protection levels.

4-3 EMPC solution frameworks

With the required EMPC components discussed in the previous section, it is now pos-
sible to outline the various solution frameworks that were investigated for the application
of EMPC. The thesis considers both deterministic frameworks with ignore uncertainty as
well as stochastic and robust techniques, which explicitly manage uncertainty.

4-3-1 Performance bound EMPC (PB-EMPC)

In order to provide a simulated ‘optimal’ performance reference for the investigated EMPC
controllers, it is useful to introduce the notion of PB-EMPC. The PB-EMPC problem formu-
lation investigates the application of EMPC with perfect knowledge of all system dynamics
5 For this work given by the persistence forecast, cf. Section 3-3-2
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and future disturbances [81]. The performance bound (PB) concept is not realizable in prac-
tice due to unavoidable uncertainty in system modelling and disturbance predictions of real
world systems. However, it does allow one to simulate a given controller structure on histor-
ical or synthetic disturbance signal predictions to obtain a theoretical bound on achievable
performance. The PB-EMPC controller may be formulated as:

PB-EMPC : min
{

˜
Vh,i}Nhi=1 , ˜

Vg

s.t.

JPB = JMG(k,
˜
V (k),

˜
ωexo
g (k)) (4-19a)

MG dynamics/constraints (4-8). (4-19b)

4-3-2 Certainty equivalent EMPC (CE-EMPC)

While explicitly incorporating uncertainty into EMPC formulations is appealing and can
theoretically lead to increased control performance, or at least a higher probability of solution
feasibility, in practice it is often neglected. Instead, researchers and practitioners make the
assumption that all uncertain optimization signals are represented by their expected value,
resulting in deterministic or so-called certainty equivalent EMPC (CE-EMPC) [81]. Such
methods have been effectively applied in literature, by relying on the inherent robustness
provided by the receding horizon MPC feedback mechanism [58].

Under the CE framework the EMPC problem is solved by assuming that the disturbances are
given by their forecast values, in other words the optimization problem is solved assuming that
forecast error, ω̆(k) ≡ 0, ∀k. Consequently,

˜
ωnom
h,i (k) and

˜
ωexo
g (k) of the PB-EMPC problem

(4-19) are replaced by their expected (i.e. predicted) values:

E[
˜
ωnom
h,i (k)] ≡

˜
ω̂nom
h,i (k) (4-20)

E[
˜
ωexo
g (k)] ≡

˜
ω̂exo
g (k). (4-21)

With this, the CE-EMPC problem formulation is compactly described by the following con-
strained finite horizon open-loop optimal control problem:

CE-EMPC : min
{

˜
Vh,i}Nhi=1 , ˜

Vg

s.t.

JCE = JMG(k,
˜
V (k),

˜
ω̂exo
g (k)) (4-22a)


MG dynamics/constraints (4-8), with:

˜
ωnom
h,i :=

˜
ω̂nom
h,i ,

˜
ωexo
g :=

˜
ω̂exo
g ,

(4-22b)

where the redefinitions, indicated by ‘:=’, in (4-22b) imply that the CE problem makes use
of predicted disturbances which include uncertainty.

CE-EMPC has been employed in several works for DSM in a residential MG setting. In [58],
the authors applied a MILP based EMPC strategy to a small-scale MG, with experimental
results indicating significant economic savings (∼ 30%) over base-line control methods. Kep-
plinger et al. [23] proposed a controller based on integer linear programming for the optimal
economic control of an individual household’s switched DEWH, subject to day-ahead real-time
electricity pricing and DHW demand forecasts. In [19], Halvagaard et al. present a similar

Christopher Jan Michalak Master of Science Thesis



4-3 EMPC solution frameworks 51

control strategy for individual solar collector hot water heaters with continuously variable sup-
plementary electric heating elements. The work incorporated both solar energy and DHW
demand predictions. Other relevant works include [20, 78, 82] which employ CE-EMPC for
the economically optimal control of building energy systems.

4-3-3 Overview of stochastic and robust EMPC

In applications where disturbance forecast uncertainty leads to unacceptable performance de-
gradation, or where robust solution feasibility is paramount; system designers may opt to ex-
plicitly consider uncertainty within the optimal control problem formulation. For this reason
researchers have extended stochastic and robust optimization techniques for application in
MPC. Similar to the extensive research effort that has been applied to the CE approaches,
MPC incorporating uncertainty has attracted significant research interest. A full and detailed
coverage of stochastic and robust MPC is beyond the scope of this thesis. Interested readers
are referred to [83, 84] for a detailed coverage of stochastic MPC and optimization under un-
certainty, and to [73, 85–87] for robust MPC. Instead, the thesis will provide a brief overview
of the topic and highlight the solution frameworks that were formulated for application of
EMPC to the case-study MG.

Remark 4.4: The stochastic/robust formulations for the case-study MG were devised by
only directly considering uncertainty in the DHW demand of each DEWH,

˜
ωnom
h,i (k).

Thus, the chosen formulations neglect the prediction uncertainty of the disturbances con-
tained in

˜
ωexo
g (k) (the uncertain PV generation and residual MG demand). Instead, for

these disturbances the problems are again optimized assuming certainty equivalence, i.e.

˜
ωexo
g (k) ≡

˜
ω̂exo
g (k). The decision to neglect these uncertainties was made because, for

all practically realisable operation conditions, it was assumed that the utility grid could
supply any energy imbalance (see Section 3-4-1), therefore ensuring power balance con-
straints are always satisfied. Conversely, it will later be shown that adopting the certainty
equivalence assumption for the DHW demand leads to significant temperature constraint
violations, and that these can be successfully mitigated through the application of robust
techniques.

4-3-4 Robust min-max EMPC (MM-EMPC)

Broadly speaking, a control system is considered robust if it maintains stable system operation
and ensures that performance specifications are met for a specified range of model and dis-
turbance uncertainties [85]. In the case of EMPC for DSM, robust operation can be achieved
by ensuring that optimal control problem remains feasible for all possible realisations of the
bounded disturbance inputs. To achieve such a robust operation, researchers introduced the
notion of min-max MPC (MM-MPC), which optimizes a performance objective assuming the
application of a worst-case disturbance realisation [88].

Similar to the formulation presented by Alavi et al. in [55], an open-loop robust MM-EMPC
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problem for economic MG operation may be defined as :

MM-EMPC : min
{

˜
Vh,i}Nhi=1

˜
V kg

max{
˜
ωnomh,i

}Nh
i=1

s.t.

JMM = JMG(k,
˜
V (k),

˜
ω̂exo
g (k)) (4-23a)

{
MG dynamics/constraints (4-8), with:

˜
ωexo
g :=

˜
ω̂exo
g ,

(4-23b)

¯
ωnom,k
h,i ≤ ωnom,k

h,i ≤ ω̄nom,k
h,i k = 0, . . . , Np, (4-23c)

where in contrast to the CE-EMPC problem (4-22), the disturbance vector
˜
ωnom
h,i (k) is no

longer assumed to take on its predicted value, but instead is represented by any value within
the defined error bounds (4-23c). The formulation minimizes the worst-case performance cost,
which is determined by maximizing JMM with respect to the bounded uncertainty. While the
ability to manage all uncertain disturbances is desirable, it is commonly accepted that the
requirement can be restrictive, and often leads to overly conservative control actions [73].

Remark 4.5: Care has been taken to identify problem (4-23) as a so-called open-loop MM-
EMPC formulation. In fact, all the stochastic and robust formulations considered in this
work are of the open-loop variety. The commonly used open-loop approach optimizes a
single input sequence over the optimization horizon and therefore does not take into ac-
count that future control iterations will be undertaken with state feedback updates (i.e.
receding horizon) [73]. This open-loop characterization was made by Lee et al. in [88],
where they describe a close-loop alternative which uses dynamic programming to optimize
a sequence of input feed-back control laws (or policies) instead of single input sequences.
Unfortunately, this closed-loop formulation requires the solution of a very high dimensional
multi-stage dynamic programming problem which limits its practical applicability. How-
ever, simplified sub-optimal close-loop approaches have been proposed (e.g. [85, 87]) which
make use of parametrised feed-back laws or close-loop predictions. These are implemen-
ted by optimizing control correction efforts to a predetermined linear stabilising feedback
law [89].

MILP reformulation

Min-max optimization problems are in general difficult to solve, often involving a significantly
increased computational complexity compared to their CE counterpart. Fortunately, the
structure of the EMPC problems considered in this work allow (4-23) to be recast as a
standard MILP program.

First, defining ∀i ∈ {1, . . . , Nh}:

˜
ωnom
h,i,min(k) =

[
¯
ωnom
h,i (k) · · ·

¯
ωnom
h,i (k +Np)

]
(4-24a)

˜
ωnom
h,i,max(k) =

[
ω̄nom
h,i (k) · · · ω̄nom

h,i (k +Np)
]
, (4-24b)

as the minimum and maximum bounds on disturbance
˜
ωnom
h,i over the prediction horizon. It

can be shown that DEWH state constraints (4-8ab) will hold for all disturbances satisfying
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disturbance bounds (4-23c), provided the following inequalities hold for all DEWH agents
i ∈ {1, . . . , Nh}:

Hhv,i˜
Vh,i ≤ Hhx,ixh,i(0) +Hhω,i˜

ωnom
h,i,min +Hh5,i (4-25a)

Hhv,i˜
Vh,i ≤ Hhx,ixh,i(0) +Hhω,i˜

ωnom
h,i,max +Hh5,i. (4-25b)

The proof of this result follows in a straight forward manner using the same arguments
presented by Alavi F. in [90, Lemma §4.5.1.].

With this, MM-EMPC problem (4-23) is equivalent to:

MM-EMPC (MILP) : min
{

˜
Vh,i}Nhi=1 , ˜

Vg

s.t.

JMM = JMG(k,
˜
V (k),

˜
ω̂exo
g (k)) (4-26a)


MG dynamics/constraints (4-8), with:

˜
ωexo
g :=

˜
ω̂exo
g ,

(4-8ab) replaced by (4-25),
(4-26b)

¯
ωnom,k
h,i ≤ ωnom,k

h,i ≤ ω̄nom,k
h,i k = 0, . . . , Np. (4-26c)

For the case-study simulations undertaken in Chapter 5,
˜
ωnom
h,i,min(k) and

˜
ωnom
h,i,max(k) were

determined by computing the element-wise minimum and maximum of all 22,000 day-long
DHW scenarios generated in Section 3-3-4. They are represented by the upper and lower
bounds of the box plot in Figure 3-4. These same scenarios were used for the scenario-based
EMPC methods later discussed in Section 4-3-6.

Applications in literature

The application of MM-EMPC for DSM and the optimal economic control of MGs has been
quite limited, with most works instead focusing on the related power system unit-commitment
problem (e.g. [91, 92]). With that said, Hans et al. [93] proposed an open-loop MM-EMPC
strategy for the robust operational control of islanded MGs containing loads, energy storage,
uncertain RESs, and traditional thermal generation. Where a certainty equivalent approach
exhibited constraint violations, the min-max scheme ensured robust operation by explicitly
considering load demand and renewable generation uncertainties. Similarly, Alavi et al. [55]
presented an open-loop MM-EMPC strategy for the robust economic control of grid-connected
MGs with fuel-cell generation and battery storage, subject to uncertain residual load demand.
In both works the authors were able to recast the initial min-max formulation (4-23) as a
standard MILP problem.

4-3-5 Stochastic EMPC (ST-EMPC)

An alternative to the classical notion of robust MPC, targeted through the min-max formu-
lations, is the class of problems denoted as stochastic MPC. Here, instead of considering un-
known bounded uncertainties and minimizing the worst-case performance cost, uncertainties
are modelled as random variables and the expected value of the cost function is minimized [83].
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Stochastic bounded support (STBS) formulation

Under the assumption that the uncertainty realisations fall within a probability distribution
with bounded support, i.e.

˜
ωnom
h,i (k) ∈ ΩST

h,i ⊂ Rnωh ·Np , a STBS-EMPC, alternative to (4-23),
is formulated as:

STBS-EMPC : min
{

˜
Vh,i}Nhi=1 , ˜

Vg

s.t.

JSTBS = E
[
JMG(k,

˜
V (k),

˜
ω̂exo
g (k))

]
(4-27a)

{
MG dynamics/constraints (4-8), with:

˜
ωexo
g :=

˜
ω̂exo,
g

(4-27b)

∀
˜
ωnom
h,i ∈ ΩST

h,i ⊂ Rn
ω
h ·Np , (4-27c)

where the expected or average cost is minimized subject to constraints which must hold for
every possible realization of the uncertain disturbance,

˜
ωnom
h,i (k). In general, STBS-EMPC

formulations belong to the class of ‘semi-infinite’ programming problems, which consist of a
finite number of decision variables and an infinite number of constraints. Except for special
cases, problems belonging to this class are in general hard to solve [94]. Fortunately, if ΩST

h,i

is bounded in a polytopic set, as is implied by (4-18), then the infinite set of constraints
can be compactly captured by a finite set. Furthermore, because the work assumes certainty
equivalence for exogenous disturbance

˜
ωexo
g (k) (cf. Remark 4.4), the cost does not depend on

any uncertain variables, thus the expected cost is evaluated as:

JSTBS = E
[
JMG(k,

˜
V (k),

˜
ω̂exo
g (k))

]
= JMG(k,

˜
V (k),

˜
ω̂exo
g (k)). (4-28)

As a result, for the case-study MG with cost JSTBS, the STBS-EMPC formulation (4-27) is
equivalent to the MM-EMPC problem (4-23). Both formulations minimize a deterministic
cost subject to dynamic constraints which must hold for all realizations (i.e. including the
worst-case) of the bounded uncertain disturbance,

˜
ωnom
h,i (k).

Stochastic chance-constrained (STCC) formulation

The STBS formulation in (4-27) assumes the presence of uncertainties with bounded support.
Only under this assumption is it possible to provide guarantees of robust constraint fulfilment
[94]. In the case that one assumes the presence of disturbances with unbounded support,
constraint satisfaction can only be guaranteed to hold with a certain probability through
the introduction of probabilistic constraints [95]. These so-called chance-constraints can be
used replace constraints which dependent on an uncertain disturbance, with a probabilistic
counterpart. It is no longer necessary to satisfy these constraints for all possible uncertainty
realizations, but rather they need only be satisfied with a specified probability, (1−α). For the
case-study MG, a chance-constrained reformulation of the DEWH state constraints (4-8ab)
is given by:

P
˜
ωh,i

[
Hhv,i˜

Vh,i ≤ Hhx,ixh,i(0) +Hhω,i˜
ωnom
h,i +Hh5,i

]
≥ 1− α ∀i ∈ {1, . . . , Nh}, (4-29)

where P
˜
ωh,i [·] indicates probability that the constraint holds and α ∈ (0, 1) is the admissible

constraint violation parameter, indicating the maximum allowed probability that a constraint
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may be violated [96]. Note that if α could be set to 0, it would imply that the constraints
need to be satisfied with certainty, meaning it would again be considered a hard-constraint
and would not be solvable for distributions with unbounded support.

Remark 4.6: The fact that chance-constraints need only be satisfied with a specified prob-
ability can be exploited even when one assumes the presence of uncertainties with bounded
support. By using chance-constraints it is possible to reduce the conservatism of robust
techniques, because it is no longer necessary to satisfy constraints for the scenario of a
worst-case disturbance realization. This is particularly useful when the worst-case only
occurs with very low probability. With that said, this only applies to systems which are
able and willing to tolerate some form of constraint violation, otherwise the use of a MM
approach may be warranted.

With chance-constraints (4-29), the STCC-EMPC alternative to STBS-EMPC, (4-27), can
be formulated as:

STCC-EMPC : min
{

˜
Vh,i}Nhi=1 , ˜

Vg

s.t.

JSTCC = E
[
JMG(k,

˜
V (k),

˜
ω̂exo
g (k))

]
(4-30a)

CE constraints (4-22b),
DEWH chance-constraints (4-29),

˜
ωnom
h,i ∈ ΩST

h,i ⊂ Rn
ω
h ·Np . (4-30b)

Notice that this particular formulation of STCC-EMPC includes all CE constraints (4-22b),
which implies the inclusion of a CE version of the DEWH state constraints (4-8ab). For
a pure chance-constrained formulation, these CE DEWH not required and could be fully
replaced by chance-constraints (4-29). They remain included here for use in later scenario-
based formulations (cf. Section 4-3-7).

In general, STCC-EMPC frameworks requires the solution to a non-trivial, non-convex op-
timization problems, which are for the most part are intractable to solve. However, through
the use of deterministic approximations and scenario-based techniques tractable formulations
do exists (e.g. [95, 97–103]). In the next section, the thesis explores one such framework, the
so-called scenario-based approach.

4-3-6 Scenario-based EMPC (SB-EMPC): A tractable stochastic approach

To obtain tractable stochastic problem formulations researchers have turned to approxim-
ate solutions of the STCC problem, (4-30), by introducing so-called scenario-based MPC
[95, 100–103]. Instead of directly considering uncertainties with continuous probability distri-
butions; the approach approximates the stochastic uncertainty distribution, ΩST

h,i , by randomly
extracting a finite set, S˜

ω
h,i, of Ns representative independent and identically distributed un-

certainty realizations, i.e. scenarios.

Consider a system where each scenario realization
˜
ω
nom,[γ]
h,i (k) ∈ S˜

ω
h,i with γ = 1, 2, . . . , Ns.
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Then the SB-EMPC approximation of STCC problem (4-30) can be formulated as:

SB-EMPC : min
{

˜
Vh,i}Nhi=1 , ˜

Vg

s.t.

JSB = JMG(k,
˜
V (k),

˜
ω̂exo
g (k)) (4-31a)

CE constraints (4-22b),

˜
x

[γ]
h,i = Φhx,ixh,i(0) + Γhv,i˜

Vh,i + Γhω,i˜
ω
nom,[γ]
h,i + Γh5,i , (4-31b)

Hhv,i˜
Vh,i ≤ Hhx,ixh,i(0) +Hhω,i˜

ω
nom,[γ]
h,i +Hh5,i , (4-31c)

∀
˜
ω
nom,[γ]
h,i ∈ S˜

ω
h,i γ = 1, . . . , Ns, (4-31d)

with problem constraints holding for all uncertainty scenarios γ = 1, . . . , Ns. Note that the
scenario-based state evolutions, (4-31b), need not be evaluated as the DEWH states are not
penalised in the considered objective function JSB. Moreover, by inspecting the structure of
the scenario-based DEWH constraints (4-31c), it is evident that many of these are redundant.
In order to reduce the number of constraints passed to the solver, a simplification by Parisio
et al. in [103] highlights that for each DEWH agent i, (4-31c) can be replaced by:

Hhv,i˜
Vh,i ≤ Hhx,ixh,i(0) +

[
max

γ=1,...,Ns
Hhω,i˜

ω
nom,[γ]
h,i

]
+Hh5,i , (4-32)

where the max applies element-wise to Hhω,i˜
ω
nom,[γ]
h,i .

Determining a sufficient number of scenarios

Intuitively, it is apparent that the extent to which the scenario-based formulation (4-31)
sufficiently approximates the original STCC problem (4-30), is related to the number of
scenarios considered, Ns. While an increased number of scenarios may lead to an improved
approximation of the uncertainty space, it inevitably results in an additional computational
burden. Therefore, it is of great interest to select the smallest number of scenarios that
ensures the chance-constraints (4-29) will be satisfied with at least probability 1− α.

Several works have been published to provide guidance on the selection of a sufficient number
of scenarios. In [100], Campi et al. provide a theorem that ensures that a chance-constraint
will be satisfied with at least confidence probability level β ∈ (0, 1) provided that the number
of scenarios Ns, meets the following inequality:

Ns ≥
1
α

(
ln 1
β

+Nd

)
, (4-33)

where Nd represents the number optimization variables which for EMPC problems grows
linearly with the optimization horizon. For example, each DEWH agent’s chance-constraint
(4-29) would contain Nd = nuhNh input decision variables. In practice it has been found that
using (4-33) can be overly conservative when applied to MPC [103, 104]. The result was
derived to provide probabilistic violation guarantees for the open-loop optimization problem
solved at a single time instant. Thus, conservatism is introduced because it does not consider
the close-loop feedback mechanisms provided by the use of a receding horizon approach [105].

Recently, in [104] Schildbach et al. explored a different approach to reduce the aforementioned
conservatism. Their work shows that by interpreting chance-constraints as a ‘average-in-time’,
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rather than ’pointwise-in-time’ it is possible to drastically reduce the theoretically required
number of samples. However, in practice unless strict probabilistic guarantees are desired, it
can be useful to treat Ns as a tuning variable which allows a trade-off between the close-loop
cost and constraint violations [105]. Thus, for the purpose of this work these theoretical
bounds are only used as a guide to select the required number of samples.

Scenario generation

To apply SB-EMPC it is necessary to generate Ns disturbance scenarios which hopefully
allow for a reasonable approximation of the underlying stochastic uncertainty distribution.
Methods for scenario generation and reduction remain an active area of research (e.g. [106–
108]). However, to reduce implementation time it was decided that the use of advanced
scenario generation methods would not be considered in this work. Consequently, in order to
generate representative scenarios for the uncertain water demand, the thesis again made use
of the stochastic DHW profile generation software, presented in Section 3-3-4.
To ensure valid results during the simulation study two independent sets of stochastic syn-
thetic DHW demand scenarios were generated. The first set of data represents the actual
DHW profiles that were applied to the DEWHs for close-loop simulation. The second in-
dependently generated set of data was used to enable the random extraction of scenarios
for the solution of the SB-EMPC problems. In essence, the second set of scenarios can be
considered as a large database of historical demand data. As mentioned in Section 3-3-4,
each daily demand scenario was generated by assuming equal probability distributions for all
days of the year. In total, the scenario data set contained 22,000 independent and identically
distributed day long demand realizations. Furthermore, note that the second set of scenarios
were also used to determine the upper and lower bounds for the MM-EMPC formulation (cf.
Section 4-3-4). The distribution of these scenarios is depicted in the bottom plot of Figure 3-4.

Applications in Literature

Research into the application of stochastic and scenario-based MPC continues to expand.
Several works have been undertaken to apply stochastic control schemes for the DSM and
optimal control of MGs. In [79], Parisio et al. present a two-stage scenario-based stochastic
MPC scheme for the optimal economic/environmental control of MGs with uncertain PV
generation and energy demand. The strategy was experimentally tested on a small scale
grid-connected MG (1 load, 2 battery storage units, 2 PV generators, 1 fuel cell), and showed
improved performance over deterministic controllers. Hans et al. [109] apply a scenario-based
stochastic MPC control scheme to an islanded MG with uncertain load and wind generation.
The stochastic approach was compared to a min-max robust counterpart, with the former
realising increased economic performance. However, this improvement could only be achieved
by accepting several minor constraint violations. Hovgaard et al. [110], Oldewurtel et al. [81]
and Gulin et al. [111] apply chance-constrained stochastic MPC schemes to their respective
power management application areas. The latter works all assume that uncertainties are
modelled by Gaussian distributions, which allow the chance-constraints to be reformulated
as deterministic constraints, thus avoiding the need for scenario-based formulations. While
this may seem attractive, in practice limiting uncertainties to Gaussian distributions can be
extremely restrictive.
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4-3-7 Scenario-based reduced horizon EMPC (SBR-EMPC)

The standard SB-EMPC problem (4-31), requires satisfaction of all scenario-based system
evolution constraints (4-31c) over the entire prediction horizon Np. In an attempt to reduce
the conservatism associated with this requirement a modified approach has been proposed
here as an original contribution.

This modified approach, here referred to as ‘scenario-based reduced horizon EMPC’ (SBR-
EMPC), no longer requires that the scenario-based system constraints hold over the entire
prediction horizon. Instead, these constraints are now only required to hold for a subset
of the prediction horizon, NSBR < Np. Thereafter, for the remainder of the horizon (i.e.
k = NSBR+1, . . . , Np) only the CE constraints shall remain active. The SBR-EMPC problem
is formally proposed here as:

SBR-EMPC : min
{

˜
Vh,i}Nhi=1 , ˜

Vg

s.t.

JSBR = JMG(k,
˜
V (k),

˜
ω̂exo
g (k)) (4-34a)

CE constraints (4-22b),

Hhv,i˜
Vh,i ≤ Hhx,ix

0
h,i +Hhω,i˜

ω
nom,[γ]
h,i +Hh5,i

}NSBR

k=0
, (4-34b)

∀
˜
ω
nom,[γ]
h,i ∈ S˜

ω
h,i

}NSBR

k=0
γ = 1, . . . , Ns, (4-34c)

NSBR < Np, (4-34d)

where ·}NSBR
k=0 indicates that for the associated constraints; H[·], stacked vectors

˜
Vh,i and

scenarios
˜
ω
nom,[γ]
h,i , are redefined over reduced horizon NSBR instead of over the prediction

horizon Np. CE constraints (4-22b) are included and remain active for all k = 0, . . . , Np.

The SBR-EMPC formulation was proposed with the hope that it would allow designers to
target increased cost performance when compared with the standard SB approach. By only
considering uncertainty for a reduced horizon, it was reasoned that the controller may be
able to provide more optimistic input sequences. It was envisaged that the reduced scenario
horizon NSBR would act as a tuning parameter to allow a trade-off between reduced cost
and constraint violation. It is thought that the risk of constraint violation can be effectively
mitigated, provided sufficient controllable input capacity is available over the reduced horizon.

The effectiveness of the proposed modification is tested via simulations on a case-study MG
in Chapter 5.

4-4 Optimization methods and complexity considerations

MPC schemes require the formulation of optimal control problems that can be solved ef-
ficiently on a real-time basis (i.e. online). To avoid the use of sub-optimal and heuristic
optimization methods, which cannot guarantee optimal problem solutions, this thesis limited
its focus to problem formulations for which efficient optimal solution methods exist.

For hybrid systems such as the considered residential MG, optimal solution methods are in
general only available if one restricts the problem formulation to linear or quadratic cost
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functions, subject to discrete linear or piecewise affine (PWA) system dynamics. In such
cases, the optimal control problem can be cast as a MILP or mixed-integer quadratic pro-
grams (MIQPs), which for medium-scale problems can be efficiently solved using a number of
commercial and open-source solvers. Consequently, all of the EMPC problems developed in
this work have been formulated as MILPs. Nevertheless, it is well known that such MILP and
MIQP problems are NP-complete, meaning that in the worst case, the solution time grows
exponentially with the problem size [42]. Consequently, for the case-study MG it becomes
evident that for an increasing prediction horizon Np or a large number of agents, Nh, the cent-
ralized control strategy eventually cannot be solved to optimality within a single sampling
interval. For the purpose of this thesis, these issues are mitigated by only considering MGs
of sufficiently small dimension that optimal solutions can be found in a small fraction of the
sampling interval.

4-5 Discussion

This chapter presented a detailed overview of EMPC and developed several control problem
formulations for the optimal control and DSM of residential MGs. The subject has been
extensively covered in current literature and yet it remains an area of continuous active
research. Despite significant efforts to advance the field, many research issues remain open.
With almost all works exclusively implemented in simulation, the real-world performance
of the proposed schemes remains to be proven. Consequently, concerns have been raised
that some works appear too focused on mathematical formalisms, resulting in unrealistic
simplifying assumptions, with limited applicability to real world scenarios [25]. In conclusion,
research investigations which simply attempt to apply, test and evaluate proposed methods on
real-world systems, have the potential to deliver significant and valuable academic findings.
In the next chapter, the thesis implements and simulates the proposed EMPC controllers on
a MG closely modelled on real world community and compares them to the currently used
TSRB control method. It is hoped that this study, brings the research a step closer to being
applied in reality.
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Chapter 5

Case-study: EMPC Applied to a
Residential Microgrid

The hybrid system modelling structures relevant to the case-study microgrid (MG) were
presented in Chapter 3. Following this, Chapter 4 outlined the economic model predictive
control (EMPC) formulations and solution frameworks that were constructed to enable the
optimal control of such a MG. In this chapter, the thesis combines all of these components
for an illustrative simulation based comparison of the developed controllers. As a point
of reference, the EMPC controllers were evaluated against the currently used benchmark
thermostatic rule-based (TSRB) control law.
First, Section 5-1 provides a brief overview of the software package that was developed to
enable the implementation and simulation of the hybrid MPC/EMPC controllers. Next, Sec-
tion 5-2 and 5-3 detail the case-study MG and controller parameters used for the simulation
set-up. The case-study results for both a single agent and multi-agent cases are then respect-
ively presented in Section 5-4 and 5-5. The chapter closes with the case-study conclusions in
Section 5-6.

5-1 Simulation and control software environment

All controllers were implemented and simulated using a custom open-source Python based
software package, PyHybridControl, developed during this thesis. The software makes use
of CVXPY, a Python embedded modelling language for convex optimization [112]. CVXPY acts
as an interface between PyHybridControl’s control problem formulations and a variety of
optimization problem solvers (e.g. Gurobi, CPLEX, GLPK, etc.). In this case-study, all optimal
control problems were solved using Gurobi [113].
PyHybridControl was designed using an object-oriented programming framework. This en-
abled the development of a modular software package that provides users with the flexibility
to construct and simulate hybrid MPC/EMPC controllers for general mixed logical dynam-
ical (MLD) systems. In other words, PyHybridControl was not only developed for this
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specific case-study. It was also created to provide researchers with a base framework for
future implementation and development of hybrid optimal control.

At this early stage, PyHybridControl provides the following main features, it enables users
to:

• Generate symbolic and numerical models of hybrid systems using the general MLD
model structure defined in (2-5).

• Simulate generic hybrid MLD models.

• Construct independent system agents which can then be combined for multi-agent con-
trol.

• Generate and simulate hybrid model predictive control (MPC) controllers with custom
convex cost functions.

The PyHybridControl source code is distributed under the permissive MIT licence and can
be accessed at: https://github.com/michchr/pyhybridcontrol.

5-2 Case-study MG parameters

Table 5-1 outlines the MG parameters used for all simulations undertaken in this case-study
chapter. For all cases the controllers were simulated with both Tmax

h,i = 65◦C and Tmax
h,i = 80◦C.

The physical MG on which this case-study is based currently limits Tmax
h,i to 65◦C, a maximum

operating limit specified by the DEWH manufacturer. The increased temperature bound is
included in this study to test a hypothesis that additional heat storage capacity would allow
for greater cost savings. To implement the higher temperature limit in reality will require
DEWHs with greater operating ranges along with thermostatic mixing valves to ensure over
temperature water is not supplied to the user.

5-2-1 Utility grid Time-of-Use (ToU) pricing and regulations

As mentioned in Section 4-2-3, the case-study MG operates in a location where the local energy
utility, Eskom, provides residential customers with a ToU payment structure [75]. Under this
structure, the price of electricity in the future is known well in advance and remains constant
during given time intervals. Figure 5-1 shows Eskom’s ToU price for electricity imports over a
two week period. In general, the price curve repeats on a weekly cycle with some modification
based on the season of the year or presence of a public holiday1.

Furthermore, in many locations Eskom currently does not provide feed-in rates for the ex-
cess generation of electricity by residential customers. The case-study MG operates un-
der the regulation that energy export to the grid is not permitted. All EMPC controllers
were therefore set to optimize the chosen MG objective (4-15) under that assumption that
cg,exp = 0.00 R/kWh. By not encouraging exports, it was expected that the controllers would
increase the self-utilization of local renewable energy source (RES) generation.
1 For simplicity public holiday prices were neglected in this study.
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Table 5-1: Simulation system parameters for the case-study MG containing Nh domestic electric
water heater (DEWH) agents i ∈ {1, . . . , Nh}.

Parameter Description Value Unit

DEWH agent physical parameters
Ash,i Surface area of water tank 2.35 [m2]
Cw Thermal capacity of water 4181.6 [J/(kg K)]
mh,i Total mass of water in tank 150.0 [kg]
PNom
h,i Heating element power 3000.0 [W]
TNom
h,i Nominal hot water withdrawal temperature 45.0 [◦C]
T∞h,i Ambient temperature surrounding tank 25.0 [◦C]
Twh,i Tank inlet water temperature 15.0 [◦C]
Uh,i Standing heat loss co-efficient 0.88 [W/(m2 K)]

DEWH agent operating parameters
Tmax
h,i Maximum tank temperature bound 65.0 or 80.0 [◦C]
Tmin
h,i Minimum tank temperature bound 50.0 [◦C]

E
[
ωNom
h,i

]
Long term mean daily hot water demand 200.0 [L/d]

MG demand and generation parameters
Pmax
pv Maximum PV generation capacity 2000 ·Nh [W]

E[Pr] Long term mean residual MG power demand 1200 ·Nh [W]
Utility grid parameters

cg,imp(k) Grid import power price ToU
(Section 5-2-1) [R/kWh]

cg,exp(k) Grid export power price 0.00 [R/kWh]
Pmax
g Maximum grid import power bound (1× 104) ·Nh [W]
Pmin
g Maximum grid export power bound −(1× 104) ·Nh [W]

Remark 5.1: Even though power export is not physically permitted for the case-study MG;
for simulation purposes the controllers are allowed to export electricity to the grid, but do
so with no cost benefit. In practice this export would be curtailed to zero by lower-level
photovoltaic (PV) inverter controls to avoid export to the grid. In other words, Pg,exp(k)
represents the available PV generation capacity that is not locally utilized and that needs
to be curtailed. The simulated export power is used to compute the PV generation self-
utilization. Moreover, note that the PV generation capacity of 2000W per household (cf.
Table 5-1) was deliberately set higher than necessary. If this was not done, it would not
have been possible to evaluate whether controllers improved self-utilization because the
base MG load would always utilize all available capacity. In practice, designers would
need to consider the level of self-utilization that can be achieved for a given controller
when determining the economically optimal sizing of PV generation.
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Figure 5-1: Eskom’s ToU electricity import price provided to residential customers in South
Africa [75]

5-2-2 Simulation data and scenarios

To enable the simulation of the case-study MG, it was necessary to make use of various
data sources to emulate the uncontrollable exogenous inputs. For both the PV generation
and MG residual demand, the simulations make use of actual historical data obtained from
Solar Africa R©, as outlined in Section 3-3-3. For the simulation of applied domestic hot
water (DHW) profiles the case-study relies on the ‘DHWcalc’ synthetic demand generation
software package, discussed in Section 3-3-4. The generation of stochastic scenarios for the
scenario-based controllers was also made using this software, with the exact methodology
discussed in Section 4-3-6.

5-3 Case-study controllers: parameters and performance metrics

This section lists the considered controllers and details the user defined control or ‘tuning’
parameters that are available to modify system performance. It concludes by defining the
close-loop performance metrics that were used to compare the considered controllers.

5-3-1 Economic model predictive controllers (EMPCs)

With reference to Chapter 4, the case-study implemented and evaluated the following EMPC
controllers:

• PB-EMPC (Performance bound) - given by problem (4-19)

• CE-EMPC (Certainty equivalent) - given by problem (4-22)

• MM-EMPC (Min-max) - given by problem (4-23)

• SB-EMPC (Scenario-based) - given by problem (4-31)

• SBR-EMPC (Scenario-based reduced) - given by problem (4-34).
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All EMPC controllers were optimized subject to MG objective (4-15). Furthermore, while they
all utilize linearised DEWH MLD model (3-9) for control action computation; a discretized
version of the linear parameter-varying (LPV) DEWH model (3-3) was used for close-loop
simulation (cf. Section 3-2-2).

EMPC parameters

Given the physical system parameters in Table 5-1, the above mentioned EMPC controller
formulations, and the chosen MG cost function (4-15); the only remaining ‘tunable’ EMPC
control parameters are (where applicable):

• Np - prediction horizon for each controller.

• qµh,i - the soft constraint penalty weights for DEWH temperature bounds.

• NSBR - reduced scenario horizon (for SBR-EMPC controller).

• Ns - number of stochastic scenarios (for SB controller types).

• ts - discrete sampling time.

This illustrative simulation study provides a preliminary investigation of the effects of varying
some of these parameters, while others remain fixed. The fixed parameters are shown in
Table 5-2.

Table 5-2: Fixed EMPC controller parameters.

Parameter Value

ts 15 min
Ns 20

The sampling time ts was fixed to 15 minutes as this provides a sufficiently high sampling
frequency to capture the DEWH dynamics while not requiring excessively large prediction ho-
rizons. Moreover, the maximum available input switching frequency is given by the sampling
time. If this is too high it can lead to the premature failure of actuation hardware. While
excessive switching can be mitigated by adding additional switching constraints, this leads to
increased problem complexity. For the chosen sampling time, excessive switching frequency
does not pose an issue.

The investigated scenario-based controllers also make use of a fixed number of scenarios, Ns.
The literature for selecting a suitable number of scenarios was presented in Section 4-3-6.
However, as mentioned therein, the theoretically suggested required number of samples have
often been found to be conservative in practice. By treating Ns as a tuning parameter, it
was found that Ns = 20, provided sufficiently robust operation while still allowing the work
to highlight a cost/constraint violation trade-off.
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5-3-2 Thermostatic rule-based (TSRB) benchmark controller

A thermostatic rule-based controller is simulated as a performance benchmark against which
the EMPC controllers can be compared. The thermostatic control law for each DEWH agent,
presented in (3-7) is restated below:

TSRB :

uh,i(k) =


1, if xh,i(k) ≤ T on

h,i (heating element on)
0, if xh,i(k) ≥ T off

h,i (heating element off)
uh,i(k − 1), if T on

h,i < xh,i(k) < T off
h,i (maintain previous input).

Thermostatic controller parameters

Table 5-3: TSRB controller set points.

Parameter Value

T off
h,i Tmax

h,i − 4 ◦C
T on
h,i Tmax

h,i − 12 ◦C

For the simulation study T on
h,i and T off

h,i were set as shown in Table 5-3.

5-3-3 Closed-loop performance metrics

Many metrics can be used in order to compare the performance of the different controllers.
The metrics considered during this study are briefly outlined below. Each metric is evaluated
over the entire simulation duration, Nt. All close-loop performance metrics stated in this
chapter are computed over a simulation period of 3 weeks.

Total electricity bill

The primary metric considered is the closed-loop economic performance, Jcl
bill. This cost

represents the actual energy bill that would need to be paid by the residential community.
Therefore, it excludes any soft-constraint penalty costs. The close-loop electricity bill is
derived from (4-10) with cg,exp(k) ≡ 0:

Jcl
bill =

Nt∑
k=0

[cg,imp(k)Pg,imp(k)] · αbill. (5-1)

DEWH temperature bound violations

The energy bill cannot be considered in isolation. If this were the case, the optimal solution
would be to switch-off all devices and use no electricity. To ensure that consumer comfort
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is maintained, minimum energy requirements must be met. For the case-study MG these
requirements are assured by maintaining the DEWH temperatures within certain bounds.
If the tank temperatures drop too low, users will not have access to hot water. A metric
to capture this performance is the sum total violation of temperature constraints over the
simulation horizon:

 T over
vio

T under
vio

 =
Np∑
k=0

Nh∑
i=1

µh,i(k), (5-2)

where T over
vio and T under

vio are the summation of temperature violations over Tmax
h,i and below

Tmin
h,i respectively. These are computed using the DEWH slack variables, µh,i(k).

RES self-consumption

The final considered metric is the self-consumption of local RES generation, in this case PV.
Because MG export is prohibited in the case-study (see Remark 5.1), it is desired that the
self-consumption be as high as possible. Self-consumption, νclself ∈ [0, 1], is computed as the
fraction of local generation not exported to the grid:

νclself =
∑Nt
k=0 Ppv(k)−

∑Nt
k=0 Pg,exp(k)∑Nt

k=0 Ppv(k)
. (5-3)

5-4 Single agent case

In this section, the thesis investigates the application of a suite of controllers for a MG
containing a single DEWH, i.e. Nh = 1. By considering only one agent, this allowed for more
rapid testing and simplified analysis. An assumption is made that performance trade-offs
observed for the single agent case will likely manifest in a similar manner for a multi-agent
case. For the single agent case, simulations are run to illustrate the effects of varying the
control parameters not listed in Table 5-2. Furthermore, as mentioned in Section 5-2, the
simulations are run for two different DEWH upper temperature bounds.

5-4-1 Varying temperature bound soft-constraint penalties

To limit the remaining number of free control parameters, it was further decided to fix the
temperature bound soft-constraint penalties. The fixed penalty weights were determined after
performing the following guiding simulation.

All the EMPC controllers investigated make use of soft-constraint penalty function (4-9),
restated below2:

Jsoft,i(k) = ρh,i(k)
∥∥∥qµh,i � µh,i(k)

∥∥∥
1
∀i ∈ {1, . . . , Nh},

2 ‘�’ indicates the Hadamard element-wise product.
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Figure 5-2: Single agent: closed-loop simulation of PB-EMPC controller to demonstrate the
effects of various relative soft-constraint penalties qµh . Top plot: temperature tra-
jectories; Bottom plot: actual applied DHW demand profile.

In an attempt to ensure that this penalty function was exact, the following heuristic was used
to set the over-all weighting parameter ρh,i(k):

ρh,i(k) =
Np−1∑
k=0

[
αbillP

nom
h,i · cg,imp(k)

]
, (5-4)

with αbill = ts ·
(
602 × 103)−1. The idea behind this heuristic, is that ρh,i(k) will always be

greater that the maximum open-loop economic cost per agent, if the combined sum violation
of any agent’s temperature bounds exceeds an amount greater than 1◦C over the prediction
horizon.

Table 5-4: Parameter cases for the relative soft-constraint penalty qµh .

Parameter Case Description

qµh

[1 1]> Equal weight on upper and lower bound violation

[10 1]> Increased weight on upper bound violation

[1 10]> Increased weight on lower bound violation

Using penalty function (4-9) with ρh,i(k) governed by (5-4), the EMPC controllers were sim-
ulated with the relative weighting factor qµh shown in Table 5-4. For clarity, these parameters
were only simulated using the PB-EMPC controller with prediction horizon, Np = 48. The
resultant output trajectories for the varying relative penalties are shown in Figure 5-2. From
the plot it can be seen that at approximately 06:00 on 15th December the bounds needed to
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be violated due to a large DHW demand disturbance ωnom
h . Given that the tank capacity

is only 150L, this violation could not be avoided. However, as expected it can be seen that
the relative penalties exhibit their intended effect. With equal weights the violation is shared
approximately equally between the upper and lower bounds. Alternatively, by applying ad-
ditional weight to the upper or lower bound, one is able to shift the violation to the opposite
bound.

The upper temperature bounds are normally dictated by physical limitations which ensure
safe operation as well as reducing the risk of over-temperature water being supplied to users.
Therefore, it was decided that an increased penalty would be applied to the upper bound.
Consequently, for all subsequent simulations qµh,i was fixed at:

qµh,i =
[
10 1

]>
. (5-5)

5-4-2 Controller performance comparison

With the majority of EMPC controller parameters fixed, it was possible to perform a single
agent simulation campaign to compare the controllers and investigate the impacts of changing
prediction and reduced scenario horizons, Np and NSBR, respectively. The horizons and
maximum temperature bounds were varied as shown in Table 5-5.

Table 5-5: Varying parameter cases for single agent EMPC simulations.

Parameter Cases Description

Np {12, 24, 48} 3, 6 or 12 hour control prediction horizon

NSBR {4, 6, 8} 1, 1.5 or 2 hour reduced scenario horizon
for SBR controller (see Section 4-3-7)

Tmax
h {65◦C, 80◦C} Maximum temperature bounds

The controllers were all simulated with a simulation duration of 3 weeks (Nt = 2016 steps).
For each varied parameter the controllers were simulated with 10 different DHW demand
profiles, with the final results presented as an average of these. Note that the same 10
demand profiles were applied to each controller. The mean control problem solution times
per time step across all EMPC controllers are shown in Table 5-6. These times are negligible
compared to the 15min sampling time.

The performance metrics outlined in Section 5-3-3 were evaluated and plotted in Figure 5-
3 and Figure 5-4. For the energy bill savings and self-consumption metrics the results are
presented as a percentage increase/decrease relative to the performance of the associated
thermostatic rule-based (TSRB) controller. As previously mentioned, the simulations were
undertaken for two different maximum DEWH temperature bounds, Tmax

h = 65 or 80◦C,
with the latter implying increased heat storage capacity. Before discussing the results, it is
important to note that the savings indicated in the plots for Tmax

h = 80◦C are with respect
to a TSRB controller with increased set-points (i.e. as per Table 5-3). Due to increased
thermal losses with the higher set-point, the absolute costs of the controller also increase.
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Consequently, care must be taken when interpreting the savings achieved with the higher
temperature bound. The same applies to the multi-agent case.

Table 5-6: Single agent mean computation times across all EMPC controllers.

Prediction horizon Np Mean solver time per step

12 2.1ms
24 5.7ms
48 52.7ms

5-4-3 Results discussion

The following discussion relates to the single agent controller performance results presented
in Figure 5-3 and Figure 5-4. As expected, in all cases the PB-EMPC controller outperforms
all other controllers. However, this performance is not attainable in practice as it assumes
perfect knowledge of all disturbances and can only be viewed as representing a theoretical limit
on performance. Hence, it is not discussed further. In almost all cases the EMPC controllers
outperform the TSRB controller in terms of cost savings, particularly when considering the
increased temperature bound. Furthermore, with the exception of CE-EMPC and other minor
cases, the EMPC controllers result in reduced constraint violations.

In terms of cost savings, CE-EMPC provides the greatest realizable savings of 4% and 9% for
the respective considered temperature bounds. However, as the controller does not directly
account for disturbance uncertainty, it attains by far the greatest temperature constraint
violations (note the log scale). These violations may not be acceptable in practice. In Figure 5-
5, examples of the magnitude of these violations are shown for the multi-agent case.

It was observed that MM-EMPC attains the worst cost performance, this was to be expected
as it represents the most conservative approach to EMPC. In terms of constraint violations,
MM-EMPC in general performs very well. It does exhibit some over-temperature violations,
but inspection of the data finds that these violations are minor at any time instant. It is
thought that these violations are due to the extreme nature of the disturbance cases considered
by the MM approach. They force the controller to find a compromised state of violation
between the upper and lower temperature bounds. Overall the controller exhibits the lowest
realizable under temperature violations.

The SB-EMPC controller achieves modest cost savings. Interestingly, these savings are largest
for the shortest prediction horizon. It is reasoned that larger horizons require the control-
ler to consider increased uncertainty which may lead to the unnecessary expansion of state
trajectories over the prediction horizon. A method to combat this expansion is presented by
Alavi F. in [90]. By using an affine disturbance feedback policy parametrization, his work
showed significantly increased cost performance when compared with the ‘open-loop’ EMPC
approach. The application of such a feedback parametrization is suggested as a possible area
for future work.

In this work, a heuristic to tackle the loss of performance by the standard SB-EMPC approach,
was to implement the proposed SBR-EMPC controller. For a minor increase in constraint
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Figure 5-3: Single agent: closed-loop performance comparison of the simulated EMPC con-
trollers relative to the associated thermostatic rule-based (TSRB) controller (i.e.
Tmax
h is set as indicated). Performance is compared for various prediction horizons,
Np, and reduced scenario horizons, NSBR (for the SBR controller). Each metric
is obtained as the average of 10 simulations over a simulation horizon of 3 weeks
(Nt = 2016 steps), each with different actual DHW demand profiles. Top row:
cost savings relative to TSRB; Bottom row: increase in self-consumption relative to
TSRB; Left column: Tmax

h = 65◦C, Right column: Tmax
h = 80◦C.
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Figure 5-4: Single agent: comparison of the simulated EMPC controller’s constraint violations
in closed-loop when compared with the associated thermostatic rule-based (TSRB)
controller (i.e. Tmax

h is set as indicated). Sum total violations are compared for
various prediction horizons, Np, and reduced scenario horizons, NSBR (for the SBR
controller). Each metric is obtained as the average of 10 simulations over a simula-
tion horizon of 3 weeks (Nt = 2016 steps), each with different actual DHW demand
profiles. Top row: sum violation over Tmax

h ; Bottom row: sum violation under Tmin
h ;

Left column: Tmax
h = 65◦C; Right column: Tmax

h = 80◦C.
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violations, the cost performance of SB-EMPC was improved (if only marginally) by making
use of a reduced uncertainty scenario horizon. It was found that shorter reduced scenario
horizons, NSBR, in general provided marginal cost improvements, although sometimes with
the trade-off of increased constraint violations.

As a final point of discussion, it is noted that the EMPC controllers all make some marginal
improvement in the level of self-consumption of PV generation when compared to the TSRB
controller. However, with a realizable increase of at most 1-2%, it has to be questioned
whether the current setup would provide sufficient justification to increase the capacity of
local PV generation. Especially given that exporting power to the grid is not permitted.

5-5 Multi-agent case

Applying EMPC for the demand side management (DSM) of a multi-agent MG represents the
overarching objective of this thesis. After successfully simulating the controllers in a single
agent setting, application to a multi-agent case followed in a straight forward manner. To
maintain acceptable simulation times, a case-study MG with Nh = 20 agents was considered.
All fixed parameters used for the single agent case remained fixed at the same, constant
values. The only change in parameters was an increase in PV generation and residual MG
power demand, as well as the maximum and minimum utility grid power bounds. These
parameters are all scaled linearly with Nh as outlined in Table 5-1.

5-5-1 Controller performance comparison

For the multi-agent case a limited set of simulations were undertaken. The parameters used
for the multi-agent simulations are shown in Table 5-7. All parameters not explicitly noted
remain fixed as indicated in previous sections.

Table 5-7: Parameter cases for multi-agent EMPC simulations.

Parameter Cases Description

Nh 20 Number of DEWHs/households

Np 48 12 hour control prediction horizon

NSBR 8 2 hour reduced scenario horizon
for SBR controller (cf. Section 4-3-7)

Tmax
h,i {65◦C, 80◦C} Maximum temperature bounds

As with the single agent case, all controllers were simulated over a simulation horizon of 3
weeks (Nt = 2016 steps). For both simulation cases the same actual DHW demand disturb-
ances were applied, along with the same PV generation and residual demand profiles. The
state trajectories for all agents corresponding to cases Tmax

h,i = 65◦C and Tmax
h,i = 80◦C, are

plotted in Figure 5-5 and Figure 5-6 respectively. The corresponding close-loop performance
metrics for both cases, computed over the entire simulation horizon, can be found in Table 5-8.
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5-5-2 Results discussion

Table 5-8: Multi-agent Nh = 20: closed-loop performance comparison of the simulated EMPC
controllers relative to the associated thermostatic rule-based (TSRB) controller (i.e.
Tmax
h is set as indicated). Performance metrics are computed over a 3 week simulation

horizon (Nt = 2016 steps).

PB CE MM SB SBR TSRB

Np = 48, NSBR = 8, and thermal upper bound Tmax
h,i = 65◦C

Total bill Jcl
bill [R] 5688.45 6080.36 6419.07 6407.83 6328.54 6485.39

Cost savings [%] 12.29 6.25 1.02 1.20 2.42 -
Self-consumption νclself 0.84 0.77 0.75 0.74 0.74 0.72
Self-consumption increase [%] 12.64 5.51 3.01 2.46 2.90 -
Violation over T over

vio [◦C h] 1.76 1013.18 82.40 8.63 7.41 0.97
Violation under T under

vio [◦C h] 37.20 819.90 369.26 265.60 233.99 874.28
Mean solver time per step [s] 2.41 1.44 0.28 2.67 1.19 -

Np = 48, NSBR = 8, and thermal upper bound Tmax
h,i = 80◦C

Total bill Jcl
bill [R] 5434.45 5907.28 6571.54 6411.11 6147.72 6746.48

Cost savings [%] 19.45 12.44 2.59 4.97 8.88 -
Self-consumption νclself 0.92 0.83 0.76 0.79 0.80 0.72
Self-consumption increase [%] 19.33 10.68 3.84 6.68 7.32 -
Violation over T over

vio [◦C h] 0.09 142.40 7.46 1.43 0.00 0.91
Violation under T under

vio [◦C h] 0.00 497.71 12.45 9.42 18.51 11.67
Mean solver time per step [s] 1.62 0.98 0.34 11.99 0.71 -

This discussion is based on the multi-agent simulation results presented in Figures 5-5 and 5-
6, and Table 5-8. It is noted that a majority of the discussion points made for the single agent
case in Section 5-4-3 are equally applicable for the multi-agent case. To minimize repetition
they will not be restated here. Further discussion will focus on differences or points not
previously addressed.
In general, for the multi-agent case it appears that all controllers achieve marginally improved
cost and self-consumption performance when compared with the single agent case. This is
likely due to the increased available decision space, now that all agents are able to share access
to a larger pool of PV generation capacity. However, it could also be due to the differences
in DHW demand profiles between the single and multi-agent cases. Furthermore, the cost
performance of the scenario-based controllers is based on random sampling which means that
the performance itself is also a random variable. Thus, the observation is not conclusive and
would require further testing.
The CE-EMPC controller retains the greatest physically realizable cost and self-consumption
improvement. However, the temperature state-trajectory plots clearly indicate that there are
significant constraint violations associated with a controller which does not explicitly consider
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Figure 5-5: Multi-agent Nh = 20: simulation of DEWH state trajectories for the various EMPC
controllers as compared to a TSRB controller. Performance metrics are computed
over a 3 week simulation horizon (Nt = 2016 steps). Only 10 days shown in plot
for clarity. Parameters: Np = 48, NSBR = 8, Tmax

h,i = 65◦C. Corresponding
performance metrics given in upper half of Table 5-8.
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Figure 5-6: Multi-agent Nh = 20: simulation of DEWH state trajectories for the various EMPC
controllers as compared to a TSRB controller. Performance metrics are computed
over a 3 week simulation horizon (Nt = 2016 steps). Only 10 days shown in plot
for clarity. Parameters: Np = 48, NSBR = 8, Tmax

h,i = 80◦C. Corresponding
performance metrics given in lower half of Table 5-8.
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uncertainty. Conversely, while all stochastic and robust control variants continue to only show
a marginally increased cost and self-consumption performance when compared to the TSRB
controller; when Tmax

h,i = 65◦C, all controllers outperform the benchmark with significantly
reduced lower bound constraint violations.

When comparing the SB-EMPC and SBR-EMPC controllers, it is clear that given a prediction
horizon of Np = 48, the reduced scenario-horizon leads to significantly increased performance
across almost all metrics. However, for the single agent case, SB-EMPC exhibited increased
performance for lower prediction horizons (e.g. Np = 12 in Figure 5-3). Thus, the increased
performance of SBR-EMPC may not be as significant when applied with a lower prediction
horizon. Related to this comparison, an interesting observation can be made based on Fig-
ure 5-6. The state-trajectories for the SBR-EMPC controller are seen to make far greater
use of the available feasible operating region than the SB-EMPC controller. This mode of
operation more closely matches the PB case and likely leads to reduced costs, because water
is not kept at unnecessarily high temperatures.

As a final note, it is useful to briefly discuss the computation times of the associated multi-
agent controllers. For the multi-agent case it was found that solutions were not converging in
reasonable time. To reduce solution computation times, the "MIP gap" termination tolerance
was increased from 10−4 to 10−2. In addition to this, a computational time limit of 20s was
set for each solution step. Consequently, the problems were not always solved to optimality.
The times shown in Table 5-8 correspond to the increased termination tolerance and were
subject to the solution time limit. Even with the relaxed termination conditions, it is clear
that solution times have in general increased significantly compared to the single agent case.
The growth in computation times was to be expected and highlights that with an increasing
number of agents the problem will eventually not be solvable within a single sampling in-
stance. To combat this increasing complexity, researchers have turned to alternative solution
frameworks such as distributed optimization. Distributed techniques allow certain large scale
problems to be decomposed into smaller sub-problems which, when solved in parallel, can
lead to reduced computation times. While distributed frameworks are beyond the scope of
this thesis, they present an interesting direction for future work.

5-6 Case-study conclusions

In this chapter the thesis presented the results obtained when applying the range of EMPC
controllers formulated in Chapter 4 to the case-study residential MG. Each of the proposed
controllers was simulated subject to various control parameters and compared against the
currently used TSRB control strategy. Overall, it can be concluded that the EMPC controllers
are able to outperform the TSRB controller both in terms of energy costs and RES self-
consumption. However, while CE-EMPC was able to obtain the greatest cost savings of all
physically realisable controllers, it did so subject to significant constraint violations, as clearly
demonstrated in Figures 5-5 and 5-6. These constraint violations are likely not tolerable in
practice as they present conditions where either consumer comfort or safe system operation
is not maintained. Consequently, from a holistic perspective SB-EMPC and SBR-EMPC
present the best performing controllers, by effectively managing a trade-off between cost and
constraint violations. Moreover, for the multi-agent case the proposed SBR-EMPC controller
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was shown to outperform standard SB-EMPC, even if only marginally. However, the single-
agent case highlighted that the performance of the standard SB-EMPC controller is highly
dependent on the prediction horizon Np. Therefore, it is not possible to conclude that SBR-
EMPC unequivocally outperforms SB-EMPC.

Finally, under the assumption that CE-EMPC is excluded due to unacceptable constraint
violations, the best performing multi-agent controller for Tmax

h,i = 65◦C, is SBR-EMPC. How-
ever, for this particular case-study MG it only achieves a marginal cost improvement of 2.42%
and a self-consumption increase of 2.90%. Therefore, it remains debatable whether the im-
plementation of such a controller would present a valid economic business case.
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Chapter 6

Conclusions and Future Work

6-1 Summary

The purpose of this thesis was to explore the use of demand side management (DSM) schemes
to optimize the economic and sustainable operation of a case-study residential microgrid
(MG). To realise these objectives, the work developed, implemented and tested the perform-
ance of several state-of-the-art economic model predictive controllers (EMPCs). To validate
the benefits of the proposed controllers, the work evaluated their performance against a
benchmark rule-based controller which represents the currently utilized control methodology.
The investigation and development process undertaken in this work is briefly summarized as
follows.

EMPC controllers require the use of a case specific system model. The model is required for
the prediction of future state evolutions which, when optimized subject to a given objective,
may be used to determine state dependent optimal control input sequences. Consequently, as
detailed in Chapter 3, the first thesis objective was to develop a residential MG model suitable
for system control. All system modelling was based on a specific case-study residential com-
munity, where each household contains a controllable domestic electric water heater (DEWH)
and all users share access to a communal roof-top photovoltaic (PV) supply. To ensure tract-
able optimal control problem formulations, it was decided that the work would make use of
simple mixed logical dynamical (MLD) models for all case-study MG components. The use
of the MLD modelling framework enabled the development of control problem formulations
which could be solved using mixed-integer linear programming (MILP), for which increasingly
efficient solvers exist.

By making use of an overall MG MLD system model (3-18), Chapter 4 detailed the invest-
igated EMPC control problem formulations. All the controllers were formulated to optimize
an economic objective which simultaneously targeted reduced energy bills, while also encour-
aging the self-utilization of local renewable energy source (RES) generation. In an ideal world,
it would be possible to formulate controllers which are able to perfectly predict the system
evolution along with the impact of any disturbances acting on the system. This would allow
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designers to implement high performance optimal controllers without considering uncertainty,
i.e. certainty equivalent EMPC (CE-EMPC). Unfortunately, reality dictates that all predic-
tions are subject to uncertainty and in the case of domestic hot water (DHW) demand, the
uncertainty at an individual household level is significant. Consequently, the work investig-
ated the implementation of stochastic and robust EMPC frameworks, which explicitly manage
uncertainty. As a primary focus, the work formulated stochastic scenario-based EMPC con-
trollers which attempt to approximate solutions of stochastic chance-constrained (STCC)
control problems that are generally intractable to solve. Moreover, in order to ensure recurs-
ive solution feasibility, the investigated controllers all make use of soft-constraints which allow
for some constraint violation, subject to an objective penalty. Soft-constraints were required
even in the case of perfect predictions because it was not possible to guarantee that user
demand would not exceed the maximum DHW storage capacity of a DEWH.

Lastly, in Chapter 5 the thesis presented an illustrative MG application case-study to evaluate
the performance of the investigated controllers. The simulations were all undertaken by
making use of the open-source, Python based, software package developed as part of this
thesis. Final conclusions and recommendations resulting from the thesis work are outlined in
the following section.

6-2 Conclusions and recommendations

Through an illustrative case-study it was shown that all developed EMPC controllers were, in
most cases, able to outperform the currently used benchmark thermostatic rule-based (TSRB)
strategy. Performance improvements were realised across three close-loop metrics, including
lower energy bills, increased RES self-consumption, and reduced DEWH temperature con-
straint violations. The results clearly indicate that while CE-EMPC was able to produce
the greatest cost savings and self-consumption improvements, of all physically realizable con-
trollers; it did so while permitting significant and likely unacceptable temperature bound
constraint violations. Therefore, even though the robust and stochastic formulations provide
lower cost performance, they drastically reduce the realised constraint violations, and likely
represent the most suitable choice when considered in a holistic sense. In particular, the
newly proposed ‘scenario-based reduced horizon EMPC’ (SBR-EMPC) controller showed the
greatest robust performance across all considered metrics; albeit only marginally when com-
pared to the traditional SB-EMPC controller.

With that said, it remains clear that all physically realisable EMPC controllers considered in
this work, still exhibit a significant performance gap when compared to the theoretical per-
formance bound EMPC (PB-EMPC) formulation. While this gap can never be completely
eliminated due to the inherent uncertainty associated with real-world predictions, it is ex-
pected that additional improvements are still achievable. These include the development of
improved forecasting and scenario generation/removal methods, along with structural changes
to the controller such as the possible implementation of disturbance feedback as implemented
in [90]. Moreover, the current physical specifications of the case-study MG are likely not
optimally designed for the attainment of an optimal DSM scheme. For example, it is possible
that higher capacity DEWH units may allow for increased savings. However, this remains
to be proven as larger tanks may also lead to increased standing heat losses, thus requiring
improved insulation.

Christopher Jan Michalak Master of Science Thesis



6-3 Future work 81

To conclude, the thesis returns its attention to the specific South African residential com-
munity on which the case-study MG was formulated. Presently, each household only has
access to a 150L DEWH with a maximum operating temperature bound of Tmax

h,i = 65◦C.
Under these conditions, and assuming that the CE-EMPC controller is excluded due to ex-
cessive constraint violations, it would be recommended that the community implement the
SBR-EMPC controller. However, as indicated in Table 5-8 for Tmax

h,i = 65◦C, SBR-EMPC
achieved only marginal performance improvements, when compared to the currently used
TSRB controller. Therefore, it remains debatable whether an energy bill saving of 2.42% and
self-utilization increase of 2.90%, would warrant the significant complexity associated with the
implementation of the developed controller in its current state. Consequently, while EMPC
for the DSM of residential MGs shows great promise, it can be concluded that the optimal
control of MGs still presents a complex, multi-faceted problem with considerable scope for
improvement.

6-3 Future work

The final section of this thesis presents a collection of possible opportunities that were iden-
tified for further consideration and future work:

1. System modelling and validation:

The dynamic system models developed for this thesis were all generated subject to
various simplifying assumptions (e.g. constant ambient and DEWH inlet temperatures,
etc.), with all system parameters selected based on manufacturers’ design specifications.
To ensure that the results generated in this work accurately represent the actual per-
formance that could be achieved in physical application, further work is required to
validate the relevant system models to ensure that they adequately capture the real-
world system dynamics. As a specific example, this work neglected DEWH thermal
stratification effects along with other non-linear fluid dynamics. It would be prudent
to investigate any impacts this has on performance. Even though more sophisticated
models (e.g. [23, 34]) may not be suitable for optimization based controllers, they could
provide useful insights in close-loop simulation. That said, the ultimate test would be
to apply the controllers via physical experimentation.

2. Forecasting and scenario generation:

Related to improved system modelling, this thesis only made use of rudimentary fore-
casting (i.e. persistence forecast) and scenario generation methods. Through the de-
velopment of more accurate forecasting techniques with reduced errors and uncertainty,
it is highly likely that the performance of the EMPC controllers could be further im-
proved. As for scenario generation, future work should be undertaken to generate more
realistic scenarios based on actual historical data (e.g. [79, 106, 107]). Moreover, recent
studies (e.g. [104, 108, 114]) have also highlighted that performance of scenario-based
EMPC may be improved through the application of suitable scenario removal/reduc-
tion algorithms. The use of such algorithms may further enhance the business case for
applying scenario-based EMPC to the case-study MG.
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3. ‘Closed-loop’ EMPC:

As discussed in Remark 4.5, all stochastic and robust EMPC methods investigated in
this thesis were of the so-called ‘open-loop’ variety. This means that the controllers
only optimize a single open-loop input sequence over the control horizon, instead of
optimizing over a closed-loop feedback policy. Consequently, the open-loop approach
does not capture the true nature of receding horizon control because it fails to consider
that future model predictive control (MPC) iterations will have access to additional
measurement information. While complete closed-loop approaches are often intractable,
researchers have shown that the use of parametrised feedback laws can help to reduce
the often conservative performance of open-loop methods. By extending the EMPC
formulations developed in this work, increased performance could be attained through
the inclusion of feedback mechanisms such as the disturbance feedback approach applied
in [90].

4. EMPC scalability:

The EMPC controllers developed in this work were only implemented and tested on
small to medium-scale residential MGs. Moreover, all control actions were exclusively
determined using a centralised control topology. These centralised topologies require
all sensor and state information to be collected and transmitted to a central location,
to enable globally optimal decision by a single computing agent. As discussed in Sec-
tion 4-4, for the case-study MG it becomes evident that for an increasing prediction
horizon Np or a large number of agents, Nh, the centralized control strategy eventu-
ally cannot be solved to optimality within a single sampling interval. To address this
issue researchers have turned to distributed and multi-level hierarchical control topolo-
gies. Distributed techniques allow certain large scale problems to be decomposed into
smaller sub-problems which, when solved in parallel, can lead to reduced computation
times. Examples of these techniques include methods such as dual decomposition or
the alternating direction method of multipliers (ADMM). To combat scalability issues,
future work may look to extend the centralised methods using similar techniques to
those explored in, e.g. [90, 115].

5. Continued open-source software development:

A final recommendation is made for future work to continue the development of open-
source collaborative software packages for the implementation of future proposed meth-
ods. While research on the mathematical formulations and fundamental theoretical de-
velopment of MPC and EMPC continue to progress, it is important that work continues
to make these techniques more accessible for real-world application. The development
of these packages would also significantly reduce the re-work required when attempting
to implement improvements, as well as allowing for validation of published results.
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Appendix A

Detailed System Matrices

A-1 Discrete DEWH MLD model details

The discrete linearized domestic electric water heater (DEWH) mixed logical dynamical
(MLD) model given in (3-9), is rewritten below with full descriptions of the system matrices:

xh,i(k + 1) = Ah,ixh,i(k) +Bh1,iuh,i(k) +Bh4,iω
nom
h,i (k) + bh5,i

yh,i(k) = xh,i(k)
Eh1,ixh,i(k) ≤ fh5,i + Ψh,iµ(k),

with,

Ah,i = eĀ
c
h,its , Bh1,i = Υh,iB̄

c
h1,i, Bh4,i = Υh,iB̄

c
h4,i, bh5,i = Υh,ib̄

c
h5,i,

Eh,i = I2×2, fh5,i =

Tmax
h,i

Tmin
h,i

 , Psih,i = I2×2,

and,

Υh,i = Āch,i
−1(

eĀ
c
h,its − 1

)
.

A-2 Explicit MLD model evolution

Given the general MLD model (2-5), restated bellow:

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) +B4ω(k) + b5

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) +D4ω(k) + d5

Ex(k) + F1u(k) + F2δ(k) + F3z(k) + F4ω(k) +Gy(k) ≤ f5 + Ψµ(k),
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the system evolution in the prediction horizon Np can be explicitly computed as:

˜
x(k) = Φxx(0) + Γv˜

V (k) + Γω˜
ω(k) + Γ5

˜
y(k) = Lxx(0) + Lv˜

V (k) + Lω˜
ω(k) + L5

Hv˜
V (k) ≤ Hxx(0) +Hω˜

ω(k) +H5,

with V (k) =
[
u>(k) δ>(k) z>(k) µ>(k)

]>
∈ Rnv , and,

˜
x(k) =


x(k)

x(k + 1)
...

x(k +Np)

 , ˜
V (k) =


V (k)

V (k + 1)
...

V (k +Np)

 , ˜
ω(k) =


ω(k)

ω(k + 1)
...

ω(k +Np)

 ,

where the state evolution matrices are defined by:

Φx =


A0

A1

...
ANp

 , Γv =


0 0 0 · · · 0nx×nv

ABv Bv 0 · · · 0
...

...
... . . . ...

ANp−1Bv ANp−2Bv ANp−3Bv · · · 0

 ,

Bv =
[
B1 B2 B3 0nx×nµ

]
,

Γω =


0 0 0 · · · 0nx×nω

AB4 B4 0 · · · 0
...

...
... . . . ...

ANp−1B4 ANp−2B4 ANp−3B4 · · · 0

 ,

Γ5 =



0nx×1

b5
Ab5 + b5

...
ANp−1b5 +ANp−2b5 + · · ·+ b5


,

the output evolution matrices are:

Lx =
˜
CΦx, Lv =

˜
CΓv +

˜
Dv, Lω =

˜
CΓω +

˜
D4, L5 =

˜
CΓ5 +

˜
d5,
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with,

˜
C =


C 0 0 · · · 0
0 C 0 · · · 0
...

...
... . . . ...

0 0 0 · · · C

 , ˜
Dv =


Dv 0 0 · · · 0
0 Dv 0 · · · 0
...

...
... . . . ...

0 0 0 · · · Dv

 ,

Dv =
[
D1 D2 D3 0ny×nµ

]
,

˜
D4 =


D4 0 0 · · · 0
0 D4 0 · · · 0
s

0 0 0 · · · D4

 , ˜
d5 =


d5
d5
...
d5

 ,

and the constraint evolution matrices are:

Hx = −(
˜
EΦx +

˜
GLx), Hv =

˜
EΓv +

˜
Fv +

˜
GLv,

Hω = −(
˜
EΓω +

˜
F4 +

˜
GLω), H5 =

˜
f5 − (

˜
EΓ5 +

˜
GL5),

with,

˜
E =


E 0 0 · · · 0
0 E 0 · · · 0
...

...
... . . . ...

0 0 0 · · · E

 , ˜
G =


G 0 0 · · · 0
0 G 0 · · · 0
...

...
... . . . ...

0 0 0 · · · G

 ,

˜
Fv =


Fv 0 0 · · · 0
0 Fv 0 · · · 0
...

...
... . . . ...

0 0 0 · · · Fv

 , Fv =
[
F1 F2 F3 −Ψ

]
,

˜
F4 =


F4 0 0 · · · 0
0 F4 0 · · · 0
...

...
... . . . ...

0 0 0 · · · F4

 , ˜
f5 =


f5

f5
...
f5

 .
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Glossary

List of Acronyms

AI artificial intelligence

ANN artificial neural network

CE certainty equivalent

CPP Critical-peak pricing

DA-RTP Day-Ahead Real-Time pricing

DER distributed energy resource

DEWH domestic electric water heater

DG distributed generation

DHW domestic hot water

DLC direct load control

DR demand response

DS distributed storage

DSM demand side management

EMPC economic model predictive control

EMS energy management system

FM fully mixed

ICT information and communication
technology

LPV linear parameter-varying

LQG linear-quadratic-Gaussian

MG microgrid

MILP mixed-integer linear program

MIQP mixed-integer quadratic program

MLD mixed logical dynamical

MM min-max

MPC model predictive control

NWP Numerical Weather Prediction

PAR peak-to-average ratio

PB performance bound

PCC point of common coupling

PID proportional-integral-derivative

PV photovoltaic

PWA piecewise affine

RES renewable energy source

RHC receding-horizon control

RTO real-time optimization

RTP Real-Time pricing

SB scenario-based

SBR scenario-based reduced (utilizes
reduced scenario horizon)
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96 Glossary

SG smart grid

ST stochastic

STBS stochastic bounded support

STCC stochastic chance-constrained

TES thermal energy storage

ToU Time-of-Use

TSRB thermostatic rule-based

ZOH zero-order hold

List of Symbols

Apv PV array surface area [m2]
Ash,i Surface area of the DEWH tank [m2]
Cw Thermal capacity of water [J/(kg K)]
Gc(k) Incident solar irradiance acting on the PV array [W/m2]
NSBR Reduced scenario horizon for SBR-EMPC
Nh Number of DEWHs in the MG
Np MPC/EMPC prediction horizon
Ns Number of stochastic scenarios
Nt Closed-loop simulation horizon (i.e. duration of simulation)
Ppv(k) Aggregate microgrid (MG) photovoltaic (PV) generation power [W]
Pg,exp(k) Power exported from the utility grid [W]
Pg,imp(k) Power imported from the utility grid. [W]
Pg(k) Power imported/exported from/to the utility grid [W]
Ph,i(k) Electrical input power for DEWH [W]
P nom
h,i Nominal electric power of the DEWH resistive heating element [W]
Pr(k) Aggregate residual (uncontrollable) electrical power demand in the MG [W]
Q̇j Heat flow rate attributed to component j [W]
T STC
pv PV cell array reference temperature under standard test conditions [◦C]
T cpv PV array solar cell operating temperature [◦C]
Th,i(t) Average water temperature in the DEWH [◦C]
T∞h,i Ambient temperature surrounding the DEWH [◦C]
T nom
h,i Nominal DEWH tank and hot-water demand withdrawal temperature [◦C]
Twh,i DEWH inlet water temperature [◦C]
U Feasible input constraint set
Uh,i Standing heat loss rate across the DEWH tank insulation [W/(m2 K)]
Ω Disturbance set
X Feasible state constraint set
Y Feasible output constraint set
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αpv PV array power temperature co-efficient
cg,exp(k) Price in South African Rand for exporting electric energy (profit) [R/kWh]
cg,imp(k) Price in South African Rand of importing electric energy (cost) [R/kWh]
δ(k) General MLD binary auxiliary variable/s
δg(k) Grid MLD model binary auxiliary variable
ηpv(k) Conversion efficiency of the PV cell array [%]
k Discrete time instance
µh,i(k) DEWH temperature constraint slack variables [◦C]
mh,i Total mass of water in the DEWH tank [kg]
ts Discrete control system sampling time [s]
u(k) General system input/s
uh,i(k) DEWH on-off binary switching input
ωg(k) Stacked vector of grid device powers [W]
ωcon
g (k) Stacked vector of controllable grid device powers [W]
ωexo
g (k) Stacked vector of exogenous uncontrollable grid device powers [W]

ω(k) General system disturbance/s
ωh,i(k) DEWH hot water demand [L/s]
ωnom
h,i (k) Scaled DEWH hot water demand at nominal temperature T nom

h,i [L/s]
x(k) General system state/s
xh,i(k) Average water temperature in the DEWH, equivalent to Th,i(k) [◦C]
y(k) General system output/s
z(k) General MLD continous auxiliary variable/s
zg(k) Grid MLD model continuous auxiliary variable [W]
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