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Abstract

Graph Neural Networks (GNN5s) are an effective ar-
chitecture for implementing collaborative filtering-
based recommender systems. This paper evalu-
ates the performance and computational complex-
ity of precision matrix-based VNNS as a collabora-
tive filter on the MovieLens-100K dataset. Results
show the estimated precision matrix contains a high
amount of noise when calculated from sparse data,
which impacts the performance of the model. After
sparsifying the precision matrix, the performance
and computational complexity improved signifi-
cantly.

1 Introduction

Recommender systems [1] are an essential part of many mod-
ern applications, such as social media apps, media stream-
ing services, e-commerce, and many more. One of the most
successful approaches when building recommender systems
is Collaborative Filtering (CF) [2]. CF utilizes known fea-
tures from similar users to predict unknown features for a tar-
get user. Due to the high-dimensional and sparse nature of
many user-preference datasets, model-based CF implemen-
tations are preferred, as they reduce the data dimensionality
to meet memory and computational constraints. Traditional
dimensionality reduction techniques such as Principal Com-
ponent Analysis (PCA) [3] fail to capture non-linear relation-
ships and are unstable when the eigenvalues of the compo-
nents are close. Graph Neural Networks (GNNs) [4] mitigate
these problems by using a neural network approach for mod-
eling non-linear relationships on graph data. With the mod-
eled GNN, a Collaborative Filter can be created by gathering
information from neighboring nodes (users) and using this
information when making new predictions. One approach
to building such a GNN is by using the precision matrix to
model relationships between users. The precision matrix de-
fines the conditional interdependence between users, which is
a crucial metric for determining user relationships. This paper
will examine the performance and computational complexity
of this precision matrix approach, and how sparsifying this
matrix affects both metrics.

2 Background
2.1 Graph Neural Networks

Most social behavior can be represented as graphs naturally,
where nodes (users) are clustered by adding edges between
similar nodes. GNNs are a Deep Learning (DL) [5] archi-
tecture designed to operate as a neural network on graph-
structured data. GNNs are extensively used in CF appli-
cations [6]. Popular user-item CF models are GC-MC [7],
LightGCN [8], NGCF [9] and PinSage [10]. One common
implementation approach for CF-based GNNs is to use a
Graph Convolution Network (GCN) [11]. GCNss take a simi-
lar approach to Convolutional Neural Networks (CNNs) [12],
by aggregating features from a node’s k-distant neighbors.
GCNs are very effective in CF contexts, due to their ability
to learn features diffused throughout the network structure,

instead of local features only [13]. A GCN can be formally
defined as:
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Here, HU+D ig the feature matrix at the next layer, o is a
non-linear activation function, A is the normalized adjacency
matrix of the graph, H( is the feature matrix at the current
layer, WO is a learnable weight matrix, and K is the number
of filter taps. Choosing an appropriate adjacency matrix Ais
critical, as it defines the graph connectivity. The adjacency
matrix should be chosen carefully such that it correctly re-
flects the relationships of the underlying data. One proposed
method is to use the sample covariance matrix as A, which
forms the basis of coVariance Neural Networks (VNNs) [14].

2.2 Covariance Neural Networks

VNNs are a GNN architecture that operates on the sample co-

variance matrix C as the graph adjacency matrix A. VNNs
have been shown to overcome the two main problems of
PCA: failing to capture nonlinearities and instability when
the eigenvalues are close [14]. VNNSs have also shown better
transferability to the underlying data than PCA. This property
is critical for CF applications because it reduces the need to
retrain the model as the underlying data evolves. VNN use,
just like PCA, the sample covariance matrix defined as
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to capture relationships in the data. Here, x; is an observation
vector, and X is the sample mean vector.

Using the covariance matrix to determine graph relation-
ships can pose problems in the context of CF. Since the co-
variance matrix is often a dense matrix with high dimension-
ality (number of users or number of items), meeting memory
and computational constraints when computing graph con-
volutions can be challenging. Additionally, because the co-
variance matrix captures marginal correlations, it can intro-
duce spurious relationships between users who follow global
trends, rather than identifying direct user-to-user similarities.
One way to overcome these problems is by using the pre-
cision matrix, which measures conditional interdependence
between users by taking global relations into account.

2.3 Precision Matrix

The precision matrix is the inverse of the sample covariance
matrix defined as

e=0C"1

and measures the conditional independence between vari-
ables. That is, for two variables A and B, how much A and
B depend on each other given all other variables in the sys-
tem. Zero entries in the precision matrix mean that two vari-
ables are completely independent. This conditional indepen-
dence eliminates spurious relations caused by two variables



that both follow the same global trend, and captures only di-
rect dependency between the variables. Because of this, pre-
cision matrices are typically much sparser than their corre-
sponding covariance matrices. In the context of CF, this is
particularly useful since it reduces noise in the graph caused
by global trends, and reduces overall computational complex-
ity. However, computing the inverse C~! can be numeri-
cally challenging, particularly for high-dimensional covari-
ance matrices, which is often the case in CF. Because many
user-preference datasets are naturally sparse, the covariance
matrix often becomes singular or ill-conditioned, making di-
rect inversion unstable or impossible. Regularization tech-
niques such as Ridge Regularization address this issue by
adding a small constant A > 0 to the diagonal entries, so
the regularized covariance matrix becomes:

Cregularized = C + A

However, introducing a regularization constant A introduces
bias and may lead to incorrect statistical inferences, lead-
ing to a larger difference between ®r_eg1ularized and C, where
@:eglularized is the precision matrix of Cregulmzed. Additionally,
by adding the same constant ) to all features uniformly, it can
lead to over-regularization or under-regularization of certain
features. Since A > 0, the precision matrix of the regularized
covariance matrix becomes dense, and thus loses the sparsi-
fication property that the precision matrix can benefit from.
Furthermore, selecting an appropriate regularization constant
A can be challenging, as a too large A over-regularize cer-
tain features, but a too small A lead to numerical instability.
Because of these issues, more advanced regularization tech-
niques are often preferred [15]. One such popular technique
is Graphical Lasso [16].

Graphical Lasso

Graphical Least Absolute Shrinkage and Selection Operator
(GLASSO) is a regression-based L1-regularization technique
for estimating the precision matrix that promotes sparsifica-
tion and per-feature regularization. Unlike Ridge Regular-
ization, Graphical Lasso learns the optimal estimation of the
precision matrix ®* by using a regression-based model. This
allows for learning the optimal regularization feature-wise,
instead of adding the same constant to all features. The mini-
mization objective function of Graphical Lasso is defined as:

min { —logdet(®*) +tr(CO*) + )||O*||;
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Here ®* > 0 denotes that the estimated precision matrix
must be positive definite, which ensures that the resulting co-
variance matrix estimate remains valid. Each term in the ob-
jective function serves a specific purpose:

The log-determinant term acts as a barrier function that pre-
vents the eigenvalues of ®* from becoming too small, which
can make the precision matrix ill-conditioned.

The data fitting term measures how well the estimated pre-
cision matrix fits the observed data. Since ideally CO* ~ I,

the trace of the matrix (sum of diagonals) should approximate
n. Thus, the smaller this term is, the better the fit of the pre-
cision matrix

The sparsity penalty term controls the sparsity of the esti-
mated precision matrix. The L1 norm (sum of non-diagonal
elements) is penalized by A. Higher values of A\ will reduce
the L1 norm during the minimization objective, thus encour-
aging non-diagonal entries to become exactly zero.

Since the objective function is convex, the optimization prob-
lem can be solved efficiently using a gradient descent algo-
rithm.

3 Methodology

This section outlines the experimental methodology, encom-
passing data preparation, model architecture design, training
procedures, and evaluation metrics. The conducted experi-
ment aims to evaluate the performance of precision VNNs
with different levels of sparsification in the context of CF. A
matrix reconstruction approach is used to predict user prefer-
ences using a user-user and item-item precision VNN archi-
tecture.

3.1 Dataset

The dataset used in the experiment is MovieLens-100K [17],
which contains approximately 100,000 movie ratings (rang-
ing from 1 to 5 stars) for 1682 movies by 943 users, with
an average of 106 ratings per user. Users and movies are
anonymized in the dataset by only revealing their correspond-
ing IDs. For the experiment, only the user_id, movie_id and
rating fields are used, excluding genres and timestamps.

3.2 Methods

Before using the MovieLens dataset, the ratings are centered
and scaled from values in the range [1, 5] to [-1, 1]. Using
these normalized movie ratings, the user-user and item-item
sample covariance matrices Cuser and Cilem are constructed,
where undefined values are set to 0. Then the estimated pre-
cision matrices @}, and ®;_  are calculated using Graphi-
cal Lasso with hyperparameter A\ for controlling the amount
of sparsification. Next, the GNN is constructed using ®* as
the graph adjacency matrix A. For the implementation of
the GNN, the SelectionGNN [18] architecture is used. As
the non-linear activation function o, ReLLU [19] is used. The
only feature used in the model is the movie rating given by a
user. Before the training process, the data is split into training
/ validation / testing sets with respective ratios 80% / 10% /
10%. The training process uses a matrix reconstruction ap-
proach, in which some ratings are masked and the model is
tasked with accurately predicting these masked ratings. The
mask ratio o defines the ratio of ratings to be masked ran-
domly in the training data, which will be set to 0 to indicate
unknown values. The input is then split into batches of size
B. Each batch is used as input x to the GNN, which outputs
predicted batch ratings . Finally, the MSE loss is computed
over the masked ratings only of § and true ratings y. The
hyperparameters of the model are described in Table 1.



Parameter Description

A Amount of sparsification in the estimated
precision matrix

o} Mask ratio of the ratings for matrix
reconstruction

B Batch size

k Number of filter taps

n Learning rate

Table 1: Hyperparameters of the model

3.3 Evaluation metrics

As the evaluation metric, the RMSE is used to measure the
accuracy of the predicted movie ratings by the model. The
RMSE is particularly suitable in the context of recommender
systems, as it penalizes larger prediction errors, which can
lead to poor recommendations, more heavily. The RMSE is
calculated as

RMSE =

where g; represents the predicted rating and y; the true rating
for a sample 7. Lower RMSE values indicate better model
performance.

4 Results

This section presents the chosen hyperparameters and the out-
come of the conducted experiments.

4.1 Hyperparameters

Through experimenting with different hyperparameters, the
optimal combination that achieved the lowest RMSE on the
dense precision matrix was found to be: o = 0.3, § = 5,
k = 2,n = 0.01, and X for controlling sparsification in the
experiments. The parameters « and § are optimized using a
search matrix, which can be found in Appendix A.

4.2 Sparsifying the precision matrix

Figure 1 shows the relationship between the Graphical Lasso
sparsification level ), the number of non-zero entries in the
estimated precision matrix ®*, and the cost. The result is
based on the top 200 users with the most ratings, and the
number of iterations for the regression task is set to 100. The
cost is defined as the difference between the estimated co-
variance matrix ®*~! and the sample covariance matrix C.
As visible in the graph, the number of non-zero entries in
the precision matrix drops drastically with higher levels of
sparsification. With higher levels of sparsification, the num-
ber of non-zero entries converges to only diagonal elements
(200 in this case). Furthermore, the cost shows a clear inverse
relationship with the number of non-zero entries. Graphical
Lasso with A < 0.0005 did not converge, as the matrix be-
came too ill-conditioned.
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Figure 1: The relation between the Graphical Lasso sparsification
level, the number of non-zero entries in the estimated precision ma-
trix, and the cost.

4.3 Performance of the sparsified precision matrix

In Figure 2, the relationship between the Train/Test RMSE
and the sparsification level of the precision matrix is plotted.
Noticeable is an almost linear increase in the Train RMSE
with higher levels of sparsification. The Test RMSE is rela-
tively high with low levels of sparsification, but stabilizes at a
minimum in the range 0.0050 < A < 0.0100, with an RMSE
of around 1.010.
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Figure 2: The relation between the Graphical Lasso sparsification
level, the Test RMSE, and the Train RMSE of the last epoch.

4.4 Computational complexity

To evaluate computational performance, we measured the
training time for 100 epochs at different sparsification lev-
els. In Figure 3 the resulting graph is plotted. Noticeable is
that the training time maps almost directly to the number of
non-zero entries in the precision matrix, as shown in Figure 1.



Training time of 100 epochs vs Sparsification level of the precision matrix
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Figure 3: The relation between the training time of 100 epochs, and
the sparsification level of the precision matrix.

4.5 Covariance matrix performance

When running the model on the dense sample covariance
matrix, the model achieves an RMSE of 0.975. This is
13.7% better than densest precision matrix, which achieved
an RMSE of 1.109.

5 Discussion
5.1 Results

As shown in Figure 1, the estimation accuracy of the preci-
sion matrix degrades as the level of sparsification increases.
This result is expected, as Graphical Lasso has fewer data
points from which to learn, making the optimization more
challenging. Lower amounts of sparsification thus lead to a
more accurate precision matrix, which is better able to cap-
ture conditional independence between users. In Figure 2, the
increase in Train RMSE confirms this. Since the precision
matrix is derived from the training data, more accurate preci-
sion matrices (from lower amounts of sparsification) lead to
lower RMSE values.

However, a large gap is noticeable between the Test and
Train RMSE with lower levels of sparsification. This obser-
vation indicates overfitting of the model on the training data.
When the precision matrix is dense, and the data it’s based on
is sparse, the conditional dependencies estimated are mostly
noise. A general rule of thumb for an accurate representa-
tion of the precision matrix is to use n > p, where n is the
number of samples, and p the number of features [20]. In the
case of MovieLens-100K dataset, the number of features per
user corresponds to the total number of movies (1682), while
the average number of ratings per user (106) is much lower.
So in this case p > n, and thus the relations the precision
matrix captures are mostly noise. When the level of sparsifi-
cation increases, this noise gets filtered out and performance
improves. This explains the drop in Test RMSE visible in
Figure 2. When the precision matrix becomes too sparse, the
model performance degrades again, as it loses too much valu-
able relationship data between the users.

Since the Sample Covariance Matrix captures marginal re-
lations instead of conditional relations, it’s easier to create
a more accurate estimation on sparse data. This explains
the higher performance of the covariance matrix. The mea-
sured RMSE performance of the Covariance Matrix model

(0.975) is comparable to other inductive learning models on
the MovieLens-100K dataset [21].

When considering computational complexity, the training
time significantly reduces as the precision matrix becomes
more sparse, visible in Figure 3. The training time corre-
sponds almost directly to the number of non-zero entries in
the precision matrix, meaning the training time improves lin-
early as the number of non-zero entries decreases.

5.2 Limitations

All the experiments are performed on a single dataset which
is naturally sparse and high-dimensional. Results can po-
tentially differ when evaluating on different, possibly denser
user-item interaction datasets.

Due to computational constraints, the hyperparameter
search grid only consists of 2 parameters. The performance
of the model could potentially improve by adjusting the other
parameters.

6 Conclusions and Future Work

In this paper, we evaluated the performance of sparsified
precision VNNs as a graph collaborative filter, using the
MovieLens-100K dataset, primarily focusing on the RMSE
performance and computational complexity under different
levels of sparsification.

Due to the sparse and high-dimensional nature of many
collaborative user-preference datasets (such as MovieLens),
the estimated precision matrix contained high levels of noise,
which resulted in poor performance when using the dense
precision matrix. After filtering out some of this noise by
using sparsification, the model performance increased and
reached a minimum RMSE of 1.010. This is still subpar com-
pared to using the sample covariance matrix as GSO, which
achieved an RMSE of 0.975. When measuring computa-
tional complexity, the training time reduces significantly with
higher levels of sparsification. The results showed a linear re-
lation between the number of non-zero edges in the precision
matrix and the training time.

Since this research only evaluated the performance on the
MovieLens-100K dataset, for a full understanding of the per-
formance, it’s necessary to evaluate the model on different
datasets. This dataset should preferably have a higher density
than MovieLens-100K, such that the estimated precision ma-
trix becomes more accurate. However, finding such datasets
is challenging due to the sparse nature of user-item interaction
datasets.

7 Responsible Research

Just like any other machine learning model, GNN recom-
mender systems can pose a risk when incorporating harmful
biases in the training process. In the case of the MovieLens-
100K, all users and movies are anonymized, keeping only
their corresponding numeric ID as identifier. The only fea-
ture used for training the model is the movie rating given by
a user. This minimizes the risk of explicit demographic bias
like age, gender, or ethnicity. However, the implicit rating
patterns may reinforce existing user biases and create filter



bubbles that limit item diversity. This should be taken into ac-
count when using the model in a real-world application, and
potentially calibrate it by taking diversity evaluation metrics
into account.

All experiments can be reproduced by running the source
code published on GitHub [22].
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A Hyperparameter optimization

B\a] 01 | 02 | 03 | 04 | 05
5

1.109 | 1.105 | 1.098 | 1.102 | 1.107
10 1.139 | 1.135 | 1.124 | 1.132 | 1.137
20 1.193 | 1.188 | 1.176 | 1.185 | 1.190
50 1.218 | 1.214 | 1.202 | 1.211 | 1.216

Table 2: Hyperparameter optimization search matrix of the mask
ratio o and the batch size S (RMSE test performance on the dense
precision matrix with A = 0.0005).

B Use of AI

A Large Language Model (ChatGPT) is used to give relevant
context and improve understanding of topics related to this
research. All code, training procedures, and the paper itself,
are created from scratch without any assistance of a LLM.
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