Genetic Algorithm Optimization of Aircraft Hangar Maintenance
Planning Under Uncertainty

Tles Hollander

e
= "
E Lttt Aty

=\ T

_—— '

S, ) Je

R
i







Alrcraftt Mantenance
~lanning

Genetic Algorithm Optimization of Aircraft Hangar
Maintenance Planning Under Uncertainty

Thesis report

by

Tles Hollander

to obtain the degree of Master of Science
at the Delft University of Technology
to be defended publicly on July 23, 2025 at 13:30.

Thesis committee:
Chair: Dr.ir. M.F.M. Hoogreef
Supervisors: Dr.ir. M.J. Ribeiro

Ir. M.M.D. Witteman
External examiner:  Dr.ir. M. Popovi¢

Place: Faculty of Aerospace Engineering, Delft
Project Duration: September, 2024 - July, 2025
Student name: T.J.A. Hollander

Student number: 4850939

An electronic version of this thesis is available at https://repository.tudelft.nl/.

Cover image by Jinally
(https://mydecorative.com/5-tips-for-aircraft-hangar-maintenance/)

Faculty of Aerospace Engineering - Delft University of Technology


https://repository.tudelft.nl/

T Delft

U D e I ft University of
Technology

Copyright © Ties Hollander, 2025

All rights reserved.



Preface

Handing in this report means the end of a seven-year adventure in Delft. It was an adventure that has
shaped me not only academically but also personally. One memory that stands out during the thesis is
my visit to an aircraft hangar, where | had the opportunity to observe aircraft maintenance up close. This
experience helped me connect my thesis work to real-world practice and strengthened my motivation for
the field.

The process of this thesis began over a year ago, when | met for the first time with my supervisor, Marta
Ribeiro, to discuss a topic. We quickly decided to work on hangar maintenance planning. | want to thank
my daily supervisors, Marta Ribeiro and Max Witteman, for their continuous support throughout the project.
You were always available when | had questions or needed to discuss ideas. Your quick replies, whether
by e-mail or Microsoft Teams, made a real difference. Your clear and concrete feedback was very valuable
and | have learnt a lot from it.

In addition to my supervisors, | want to thank my friends who were also working on their theses at the
same time. The shared experiences helped to make the process enjoyable. | also grateful to my fellow
board members of the VSV, and the study society as a whole, for the warm environment and the support
| received. Finally, | would like to thank my parents and sisters for their support and love from home. And
a special mention goes to the university library of the TU Delft: without that building, | doubt | would have
made it past the first year.

To conclude, | would like to continue a small personal tradition by ending with a limerick:

This thesis took a year,

With guidance kind and clear.
Through effort and stride,

With peers by my side,

We've reached the end we hold so dear.

Ties Hollander
Delft, July 2025



Preface

Nomenclature

List of Figures

List of Tables
1 Introduction
| Literature Review & Research Definition
2 Problem Definition
2.1 Typesof Maintenance . . .. .. .. ............
2.2 Preventive Maintenance . . . . . .. ... ... ... ...
2.3 MaintenancePlanning . . . . .. ... ... ... .. ...
3 Literature Review
3.1 State-of-the-art . . . . . . ... ... ... ... ...
3.2 Uncertainties and Disruptions . . . . . ... ... ... ..
3.3 Methods used for scheduling . . . ... ... .......
3.4 Scale and Planning Horizon . . . . . .. ... ... ....
4 Research Proposal
41 ResearchGap . .. .. .. .. ... .. . . ........
4.2 Research Objective . . .. ... ... ...........
4.3 ResearchQuestions . . . . .. ... ... .........
5 Methodology
51 ResearchPlanning. . . ... ... .. ...........
52 DataManagement . . . . . ... ... ... ... ... ..
Il Scientific Paper
Il Closure
References

Contents

18

45
49



List of Abbreviations

AMOS Aircraft Maintenance Operations Simula-

AMP
cs
DP
EASA
ETA
FAA
FC
FH
GA

tion

Aircraft Maintenance Program

Change Score

Dynamic Programming

European Union Aviation Safety Agency
Estimated Time of Arrival

Federal Aviation Administration

Flight Cycles

Flight Hours

Genetic Algorithm

H-AMCS Hangar Aircraft Maintenance Schedul-

HMP
P
KPI

ing
Hangar Maintenance Planning
Integer Programming

Key Performance Indicator

LLN

MCS

MILP

MIP

ML

MP

MPD

MRO

RL

RUL

RWS

SI

SSS

SuUS

DY

Nomenclature

Law of Large Numbers

Monte Carlo Simulation
Mixed-integer Linear Programming
Mixed Integer Programming
Machine Learning

Mathematical Programming
Maintenance Planning Document
Maintenance, Repair, and Overhaul
Reinforcement Learning
Remaining-Useful-Life
Roulette-wheel Selection
Similarity Index

Steady-state Selection

Stochastic Universal Selection

Calendar Days



List of Figures

Figure number

Figure description

Part |

Figure 2.1
Figure 2.2
Figure 5.1

Part Il

Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

10
11
12
13
14

15

Literature Review & Research Definition
Simplified hangar maintenance flow.
Overview of Aircraft Maintenance Planning
Flowchart of research planning.

Scientific Paper
Visualisation of knock-on delay.
Overview of the optimisation-simulation framework.

Genetic Algorithm fitness evolution and planning for scenario with highest fit-
ness, season 2024 - 2025.

Box plots of number of conflicts.

Gantt chart heat maps of the probability of conflicts with o = 5%, season 2024-
2025.

Gantt chart heat maps of the probability of knock-on conflicts with o = 5%,
season 2024-2025.

Gantt chart heat maps of the probability of groundings with o = 5%, season
2024-2025.

Correlation matrix for season 2024-2025.
Correlation matrix for season 2025-2026.

Appendix of Scientific Paper

Fitness evolution plots for season 2025-2026.

Genetic Algorithm plannings for season '24 - ’25.

Genetic Algorithm plannings for season '25 - ’26.

Influence of standard deviation on percentage of checks with conflicts.

Influence of standard deviation on percentage of checks with knock-on con-
flicts.

Influence of standard deviation on percentage of checks with a grounding.




List of Tables

Table number

Table description

Part |

Table 2.1
Table 2.2
Table 2.3
Table 3.1
Table 5.1
Table 5.2

Part Il

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6

Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13

Table 14

Literature Review & Research Definition

Formulation of 4M requirements within the analysis.

Taxonomy for aircraft maintenance.

Aircraft letter check and corresponding inspection interval.
Uncertainties in stochastic aircraft maintenance planning research.
Time planning of thesis.

Useful data for research.

Scientific Paper

Uncertainties in stochastic aircraft maintenance planning research.
Sets.

Parameters.

Decision Variables.

Genetic Algorithm parameter selection.

Different tested scenarios, where L=Light, H=Heavy, E=EOL and P=Paint for
the check types.

Key Performance Indicators (KPIs) for the Genetic Algorithm schedule.
Parameter selection results.

KPI comparison MILP and GA optimisation, season 2024-2025.

KPI comparison MILP and GA optimisation, season 2025-2026.

Man-hour capacity reduction results.

Results re-optimisation with different configurations.

Changes in knock-on and grounding probabilities after re-optimisation of GA
traded-off (HMP24-25, o = 5%).

Similarity index of adapted schedules, as compared to initial schedule of
traded-off GA (season '24 -’25).

vi



Introduction

Aviation is one of the safest modes of travel in the world, due to strict regulations. One of the important
factors in aviation safety is maintenance. On average, aircraft maintenance forms around 10% of an
airline’s operational cost [1]. Heavy maintenance, or maintenance that is executed in the hangar, is a
significant part of that. It can account for more than 70% of the maintenance costs and requires a large
amount of resources [2]. In present days, airlines operate in environments with small margins and it is
beneficial for them to keep the costs low by improving their maintenance scheduling and efficiency.

Initially, maintenance started as a simple and straightforward process. However, due to a more dy-
namic environment where both costs and the complexity of aircraft continued to increase, manual main-
tenance planning became more and more impracticable [3]. This resulted in airlines organizing their
maintenance in a more systematic way to save costs and achieve a higher efficiency, with Air Canada
being one of the first in 1977 [4]. Nowadays, maintenance is usually planned by maintenance planners
aided by computer tools.

This thesis proposes a stochastic optimisation-simulation model, where a Genetic Algorithm (GA) is
applied to generate an initial maintenance schedule for aircraft maintenance. The planning is subjected to
a Monte Carlo simulation to analyse feasibility across different scenarios to improve its robustness. The
model is validated in a case study of a European airline with a large, heterogeneous fleet. The framework
can be used in the maintenance planner decision process to evaluate various schedules with a feasibility
assessment, giving insight into the performance of the planning and possibilities for robust improvement.

This thesis report is divided into three parts. Part | provides an introduction to the topics treated in
this work; the principles of aircraft maintenance are introduced, a literature review is performed and the
research scope is defined. In Part I, the work performed in this research is presented in the form of a
scientific paper, where the appendix is included. Finally Part Ill, provides the bibliography used for this
work.
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Problem Definition

The proper execution of aircraft maintenance is important for three reasons: safety, time, and costs.
Firstly, the aviation industry adheres to very high safety standards. Aircraft need regular maintenance
to ensure compliance with safety and airworthiness requirements from institutions such as the European
Union Aviation Safety Agency (EASA) and the Federal Aviation Administration (FAA). These are aviation
safety institutions with the mission of ensuring safe air operations by formulating rules, standards, and
guidance and by certifying aircraft, parts, and equipment. An example of such a regulation is that a cer-
tificate of release of an aircraft to service after maintenance can only be issued by a subcontractor who
has received a certification authorisation from the Part-145 organisation. Next to that, the Maintenance
Planning Document (MPD) exists. These documents are provided by aircraft manufacturers to explain the
repetitive tasks that are required to maintain their aircraft. Maintenance planning engineers use the MPD
information to develop operator maintenance programs that are then submitted to the relevant aviation
authority for approval.

Secondly, aircraft maintenance is labour- and material-intensive. It is constrained by the availability of
material, machinery, method, and manpower (4M). These are explained in Table 2.1. This requires a lot
of planning, and maintenance planners can take up to several weeks to create an annual schedule.

Combining all the time and labour spent to adhere to safety regulations, it is not surprising that mainte-
nance expenses are a major contributor to the total operational costs of an airline. In 2022, airlines spent
around 10.9% of all operational expenses on Maintenance, Repair, and Overhaul (MRO) [6]. This chapter
first discusses different types of maintenance in Section 2.1, then goes more into one of those types in
Section 2.2 and lastly, maintenance planning is discussed in Section 2.3.

2.1. Types of Maintenance

Aircraft maintenance comprises all aspects of keeping an aircraft airworthy and in serviceable condition
at a minimum cost. This is similar for both civil and military aircraft. It involves overhaul, repair, inspection

Table 2.1: Formulation of 4M requirements within the analysis [5].

4M’s Explanation

Method The estimated execution duration of a task needs to fit
within the scheduled duration of a maintenance slot.

Machinery  The scheduled execution date needs to be after the
ETA of the required machinery.

Material The scheduled execution date needs to be after the
ETA of the required material.

Manpower Workforce which satisfy the skill requirements of the task,
need to be scheduled to the corresponding maintenance slot
for the required amount of workforce hours.
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or modification of aircraft and aircraft components [7].

Maintenance is usually classified into three categories:

» Corrective maintenance: Maintenance tasks are performed after failure to restore a component to
a satisfactory condition by providing correction of a known or suspected malfunction and/or defect
[7].

* Predictive maintenance: Maintenance tasks are performed shortly before when data-driven ana-
lytics predict equipment failures, by direct monitoring of the condition of the equipment in service
[8].

* Preventive or scheduled maintenance: Maintenance tasks are performed at defined intervals to
retain an item in a serviceable condition by systematic inspection, detection, replacement of worn-
out items, adjustment, calibration, cleaning, etc. [7].

Figure 2.1 shows a simplified flowchart of the steps an aircraft goes through in hangar maintenance. It
starts in the green box on the left at operation. Then, depending on the airline, a positioning flight might be
necessary to bring the aircraft to the maintenance facility, where it goes to the hangar. They are coloured
in orange, as this step is not always necessary. For some checks, access panels need to be opened on
the aircraft. These panels allow access for maintenance or inspection of specific aircraft systems and
structures. Simultaneously, they protect underneath parts and components when closed [9]. When the
right panels are open, the actual maintenance operation can take place, such as lubrication, repair, or
visual inspection. After successful maintenance execution, the panels can be closed, and the aircraft
can leave the hangar and fly back to its base to continue operations. As said before, it is desired that
this cycle be as efficient as possible so that the aircraft has maximum time in operation and can create
revenue for the airline by carrying passengers. At the same time, it is beneficial to maximize the number
of maintenance slots to have as many opportunities to plan maintenance as possible. This creates a
conflict in optimisation and should be balanced: enough time on the ground to execute the necessary
maintenance checks, while having enough operational availability for the aircraft to generate revenue by
carrying cargo and passengers.

Positioning .
% flight to ﬁ Aircraft goes

Aircraft
to hanaar access panels
MRO facility 9 are opened

Aircraft
in operation

\ Maintenance
checks are
\ executed

Positioning Aircraft Aircraft
flight to ﬁ leaves a access panels
base airport hangar are closed

Figure 2.1: Simplified hangar maintenance flow.

Growth of Predictive Maintenance

Predictive maintenance is a growing research topic, with several companies offering products that can
give insight into sensor data, such as Prognos from Airfrance-KLM and Aviatar from Lufthansa Technik.
However, the implementation into practice is still small. There are several reasons for that. Examples are
safety considerations in a conservative industry, insufficiently formalized decision-making processes and
methods and the extensive list of different aircraft systems and failure modes requiring a specialized and
dedicated approach [10]. Hence, preventive maintenance remains the dominant and standardized method
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of planning maintenance. Thus, it also remains relevant to investigate the optimization of preventive
maintenance schedules. This will be discussed in the following section.

2.2. Preventive Maintenance

Many different requirements need to be met to execute preventive aircraft maintenance. The requirements
state that different maintenance tasks must be carried out after a certain interval, which can be a number of
Flight Hours (FH), Flight Cycles (FC), or Calendar Days (DY). The interval that is exceeded first determines
the due date of this specific check. All three parameters are set back to zero once the task is executed. Ifa
task exceeds the due date, an aircraft will lose its airworthiness, resulting in an Aircraft-on-Ground (AOG)
scenario. This is not desired by airlines, as it is very expensive. A rough estimate for the daily potential
revenue from a wide body aircraft in commercial operations equals around €18,000 [5]. The MPD or
maintenance programme contains the maintenance information: the intervals and all maintenance tasks
to be carried out for each aircraft type, approved by the competent authority [11]. This strategy takes care
of the safety and reliability of aviation today, but because of the statistical generalizations on which those
intervals are based, it can lead to component replacements long before their actual due date is reached or
to component failures before the assigned maintenance date. In both cases, additional operational costs
are caused [12].

The maintenance can be performed at either line or base maintenance, depending on the amount of
maintenance and type of tasks to be executed. Line maintenance means it can be done at the gate or
apron. Base maintenance is executed at a hangar, and they are traditionally divided into different letter
checks named A, B, C, and D. Table 2.2 categorises the different aircraft maintenance tasks. An A-check
is conducted every 400-600 flying hours and lasts no more than 24 hours for a narrow-body aircraft,
while the B-check should be conducted every 6-8 months. C- and D-checks are carried out much less
frequently, as these take an aircraft out of flight service for several weeks and are more extensive and
complex [13]. The overview can be seen in Table 2.3, which also indicates the type of maintenance tasks
executed per letter check.

Table 2.2: Taxonomy for aircraft maintenance (Modified from: [3]).

Lay-over or light maintenance Heavy maintenance
Line maintenance Line or hangar maintenance Hangar maintenance
Preventive or Short-term Mid-term or regular checks Long-term
routine Pre-flight, transit, daily checks | A-check B-check C-check D-check
Unscheduled Predictive. or on-condition Predictivet or on-condition Predictive. or on-condition
or maintenance maintenance maintenance
non-routine Corrective or emergency Corrective or emergency Corrective or emergency
maintenance maintenance maintenance

2.3. Maintenance Planning

Maintenance planning is considered to consist of all activities required to ensure maintenance can be
executed. This ranges from determining the work to be planned and estimating the required manhours
to the development of schedules for the planned maintenance jobs, bays, equipment, aircraft, etc. In
this document, maintenance planning and maintenance scheduling are used interchangeably. Figure 2.2

Table 2.3: Aircraft letter check and corresponding inspection interval [14].

Check Maintenance Type Interval Maintenance Tasks

A-check Light maintenance 2-3 months External visual inspection, filter replacement, lubrication etc.
B-check Light maintenance Rarely mentioned Tasks are commonly incorporated into successive A-checks
C-check Heavy maintenance 18-24 months Thorough inspection of the individual systems and components

D-check Heavy maintenance 6-10 years Thorough inspection of most structurally significant items
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shows an overview of the most important steps in planning. It flows from left to right getting closer to the
maintenance execution in time and more detailed in planning. Of the 4M (Manpower, Machine, Mate-
rial and Method), three are present in this figure. These are the important building blocks for maintenance.

Light checks: A/B checks

—»
or equivalent check elements

Base
Regulations [— ~—| (Hangar) —>
Maintenance

S Time unil maintenance execution —
Aircraft L >‘ Heavy checks: C/D checks

Crew
rostering

planning planning

Material
scheduling
Hangar Skills and
plzﬁzrng }>> and bay }»> certifications
Ma}'{gs{;:gce or equivalent check elements i

Mamtengnce Line Equipment
prediction ! "|Maintenance " scheduling
(RUL)

Figure 2.2: Overview of Aircraft Maintenance Planning.

According to Samaranayake and Kiridena (2012) [15], there are two large streams of literature re-
garding the heavy maintenance problem. One focuses on the overall scheduling of a fleet of aircraft at
specific hangars and the other on more detailed planning aspects, such as tasks, materials, resources,
and personnel. The first stream can be found more on the left side of Figure 2.2, whereas the second
stream is merely found on the right side. The first stream is more extensive and uses approaches such
as linear programming, heuristics, integer programming, etc. to optimise the overall performance. The
second stream is more sparse and uses mathematical models, decision support systems, and expert
systems focusing mostly on workforce allocation.

Going through Figure 2.2, one would first encounter regulations and maintenance prediction, or the
prediction of the Remaining-Useful-Life (RUL). Regulations, as described earlier, are mandated by avia-
tion authorities and determine when maintenance should take place. At the same time, the prediction of
the RUL is used in predictive maintenance to determine when an aircraft would need service. Following,
the aircraft maintenance routing problem aims to determine the assignment of available aircraft to cover
all the flights in an airline network with the objective of maximizing aircraft utilisation with full coverage
of the necessary maintenance. Many of the studied aircraft maintenance optimization problems concern
this optimization (see, e.g., Sriram and Haghani, (2003) [16]) [17].

The overview then splits into base or hangar maintenance and line maintenance. The focus of this
research is on hangar maintenance, hence this was further investigated and divided into light and heavy
checks as described earlier in Section 2.2. The following blocks are discussed in Chapter 3 to go into
more detail on the literature. This is however not done for skills and certifications planning, which is why
it is explained underneath.

Skills and Certifications

Skills and certifications are also important in aircraft maintenance, as they help to ensure the quality and
traceability of the maintenance performed. Personnel and engineers need to have valid licenses to work.
When the maintenance is finished and the airplane is approved to fly again, it can only be released by
licensed personnel. In an ideal scenario, every engineer has a certificate for every aircraft type. The
regulations per country and airline where the maintenance is performed, however, determine how many
licenses the engineers and technicians may have [3]. For example, KLM'’s internal safety rules prohibit
engineers from holding licenses for more than two aircraft types and one skill [18]. Engineers in Taiwan,
on the other hand, can obtain licences for three aircraft types [19].
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The maintenance planning problem examined in literature rarely includes certification, despite its im-
portance. Although required for technicians before they may perform maintenance, it varies greatly across
different countries and airlines. That can be a reason why certification may be frequently mentioned in
operations research studies but it is seldom used as a constraint in the workforce scheduling problems
for maintenance. Skill levels are more often included in planning problems. Usually, this skill requirement
is merely integrated via manpower or other constraints. Some do mention specific skill constraints of the
personnel, such as Dijkstra et al. [18] did. In general, many different skills are mentioned in research. All
of those specific skills, however, are not incorporated in workforce scheduling or planning problems. This
could be explored further and connected to particular training procedures and costs [3].

To conclude, it is clear that it is important to plan aircraft maintenance well. Airlines spend a lot of effort
to properly schedule all their maintenance tasks to adhere to safety regulations while staying within the
limits of their resource availability, providing high aircraft availability, and keeping costs as low as possible.
An optimization model that can create an efficient and realistic maintenance schedule is desired.



Literature Review

Extensive research has already been done on maintenance and aircraft maintenance planning and
scheduling specifically. They comprise many different approaches aimed at improving the operations
around aircraft maintenance. The problem is complex due to many factors, including resource limita-
tions, compliance with regulations, and the need to minimize disruptions and delays while maintaining
operational safety. This chapter discusses the state-of-the-art, an overview of the methodologies used in
maintenance planning, which also assesses how uncertainty is incorporated in literature.

3.1. State-of-the-art

Scheduling of airline maintenance has a long history, which started in 1977 with the development of Air-
craft Maintenance Operations Simulation (AMOS) [4]. Over time, aircraft maintenance scheduling has
changed significantly. Deterministic methods for scheduling maintenance checks were the main focus of
early research. For example, a complete model for maintenance scheduling was developed by Sriram
and Haghani (2003) [16] and solved heuristically. Later researches improved this by using dynamic pro-
gramming to optimise long-term check schedules for heterogeneous fleets, such as Deng, Santos and
Curran (2020) [20].

Recent studies, such as Van Kessel et al. (2023) [5] and Tseremoglou et al. (2023) [12], examine dis-
ruption management and condition-based maintenance, addressing the challenges of task arrival unpre-
dictability and resource allocation. This section goes into the developments in task scheduling, resource
allocation and crew scheduling.

3.1.1. Task Scheduling

Task planning in aircraft maintenance scheduling involves organising and prioritising maintenance activi-
ties to ensure aircraft readiness while minimising operational disruptions. This process requires aligning
scheduled tasks, such as routine checks, with unscheduled or non-routine tasks that arise during inspec-
tions or due to unexpected failures. Effective task planning accounts for resource constraints, such as
manpower, bays, and materials, while adhering to strict regulatory requirements. Tasks must be sched-
uled in the correct sequences [21].

3.1.2. Resource Allocation: Material and Equipment

Robust aircraft maintenance planning also depends on efficient scheduling of materials and equipment.
Spare parts can be unavailable, with high lead times leading to delays in maintenance. However, having a
large inventory can be expensive and space-inefficient. Qin et al. (2020) [22] and Oenzil and Ishak (2021)
[23] provide two examples of stochastic models that optimise spare parts inventory by forecasting demand
using probabilistic scenarios and the reliability of components. This can minimise excess inventory costs
and guarantee timely resource availability, reducing disruptions and leading to better maintenance perfor-
mance. Further research in this area can focus on the extension of uncertainties or integration of other
planning components to increase the quality of the model [22] or review the optimal cost analysis for parts
procurement [23].
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3.1.3. Crew Scheduling

With crew scheduling for aircraft maintenance, one has to make sure that sufficient staffing levels are main-
tained while minimising costs. De Bruecker et al. (2015) [17] used a heuristic approach to Mixed-Integer-
Linear Programming (MILP) creating robust rosters, handling stochastic aircraft arrival times based on
simulation results. Pereira et al. (2021) [24] proposed a support information system for the planning of
aircraft maintenance teams. They allocate, using nonlinear integer programming and Monte Carlo simula-
tion, available technicians by skills to maintenance teams under the uncertainty of workload. De Bruecker
etal. (2015) [17] recommend future work on extending models to include uncertainty in workforce capacity
and workload. Next to that, they suggest improving the diversification strategy, by for example using a
metaheuristic mechanism.

3.2. Uncertainties and Disruptions

Hangar Aircraft Maintenance Scheduling (H-AMCS) has multiple sources of uncertainty that influence the
execution and creation of a maintenance schedule. Because of that, it is essential for H-AMCS to identify
these uncertainties and their effect on the maintenance planning [2].

The consideration of uncertainties in research has been increasing in the last few years. Where first
mostly deterministic models were created, more and more stochasticity is taken into account. An older
paper mentioning uncertainty in maintenance scheduling is Vassiliadis & Pistikopoulos (2001) [25], which
describes an optimization framework for determining the best maintenance policies in continuous process
operations in the presence of parametric uncertainty and assessing and measuring how uncertainty affects
optimal maintenance schedules. This research has not yet been applied to aircraft maintenance.

There are many uncertainties that can occur in aircraft maintenance A list of examples is shown below.
It must be noted that some uncertainties are far more significant and impactful for an airline than others,
e.g., access panels have less impact than available manhours.

« Aircraft utilization * Available bays
* Failure rates + Available manhours
* Duration of routine tasks + Available skills and certificates
* Number of findings and/or non-routine tasks + Availability of material: spare parts (inventory)
 Duration of non-routine tasks or repair times + Delivery time of spare parts
+ Duration of opening and closing of access pan- + Availability of equipment
els

« Aircraft availability or flight arrival

The uncertainty in duration can increase the duration of maintenance checks and cause delays. These
delays affect the start and due dates of subsequent maintenance checks, which leads to adjustments to
the initial schedule. This effect can cause a prolongation in the long term as small deviations accumulate.

There are several researches that have looked at uncertainty and robustness in aircraft maintenance
planning. These papers are listed in Table 3.1. The most common uncertainty is the duration or workload
of maintenance. Of those, failure rate or failure times were the most common. Aircraft utilization, available
skills, or material and equipment are however little covered.

3.2.1. Robust Planning

The robustness of a planning is usually defined as a plan that is prepared for the uncertainties of future
unknown events. This is useful in dynamic and stochastic environments. The uncertainties may be from
changes in the environment or from inaccurate execution of the solution itself. This can, however, be very
broadly interpreted. This makes it hard to measure or define the concept of robustness [35].

Robust plans have multiple advantages [14], [2]:

+ Stable resource allocation: as the planning is revised less often or with minimal changes, the re-
sources and crew can also be planned consistently.

» Costreduction: robust planning can minimise disruptions during operational peaks, thereby reducing
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Table 3.1: Uncertainties in stochastic aircraft maintenance planning research.

Author

Uncertainty

Method or Framework

Masmoudi and Hait (2012) [26]
Samaranayake and Kiridena (2012) [15]
Rosales et al. (2014) [21]

De Bruecker et al. (2015) [17]

Dinis et al. (2019a) [27]

Dinis et al. (2019b) [28]

Semaan and Yehia (2019) [29]

Qin et al. (2020) [22]

Oenzil and Ishak (2021) [23]

Pereira et al. (2021) [24]
Shahmoradi-Moghadam et al. (2021) [30]
Deng and Santos (2022) [14]

Hu et al. (2022) [31]

Van der Weide et al. (2022) [2]
He et al. (2023) [13]
Tseremoglou et al. (2023) [12]
Van Kessel et al. (2023) [5]

Zhang et al. (2023) [32]
Li et al. (2024) [33]
Tseremoglou et al. (2024) [34]

Task duration, procurement delays

Unplanned maintenance activities

Non-routine task variability

Flight arrivals

Workloads

Unscheduled workloads

Task duration and probability of breakdown

Spare parts demand

Demand of spare parts

Workloads

Task duration

Aircraft daily utilization, Maintenance elapsed time
Maintenance performance and system degradation

Check duration, aircraft utilisation rates
Task duration

RUL prediction

Stochastic task arrival, resource availability,
flight arrivals

Check duration, personnel transfer
Non-routine task Workloads

RUL prediction, task arrival

Fuzzy GA

Unitary Structuring Technique

System Dynamics

MILP with heuristic enhancement

Bayesian networks with Expectation-Maximization algorithm
Space-time-skill coordinate system

Monte Carlo Simulation with cyclic operation network
Benders decomposition

Component Reliability Analysis

Non-linear integer programming, Monte Carlo Simulation
e-Conservative, Monte Carlo Simulation

Approximate Dynamic Programming, Monte Carlo Simulation
Markov Decision Process, Reinforcement Learning,

Linear Programming

GA, Monte Carlo Simulation

Column generation, integer programming

MILP, Deep Reinforcement Learning

MILP

Non-dominated sorting GA
Supervised learning
Support Vector Regression, Rolling horizon,

Deep Reinforcement Learning

labour and inventory costs and increasing revenue (i.e., by not having to execute maintenance in
summer periods).

» Operational efficiency: the increased reliability can reduce the buildup of maintenance delays over
time and avoid 'contamination’ of other delayed aircraft due to excessive rescheduling.

3.3. Methods used for scheduling

Often, research on maintenance scheduling uses methodologies to tackle specific difficulties, such as
resource allocation, workforce allocation, or the arrival of ad hoc maintenance. These solution methods
can generally be categorised into four main categories [3]:

» Mathematical Programming (MP): These methods use mathematical models to solve decision
problems optimally, usually within a set of constraints [36]. Examples are Mixed-integer Linear Pro-
gramming (MILP) and Dynamic Programming (DP).

* (Meta)heuristics: Heuristic methods are procedures that can probably discover a very good feasible
solution, but not necessarily the optimal one. They do so in a computer-efficient manner, suitable for
very large problems. Metaheuristics are general solution methods that provide a set of guidelines to
develop heuristic optimization algorithms [37] [38]. Examples are Genetic Algorithm (GA), Simulated
Annealing or Tabu Search.

« Simulation: Simulation-based approaches analyse and refine scheduling strategies by modelling
real-world events, which frequently take into account stochastic components such as demand vari-
ations or equipment failures. A common example is the use of Monte Carlo Simulation.

* Machine Learning (ML): Machine learning is a subset of artificial intelligence and refers to the ability
of machines to learn without explicitly being programmed. A common example is Reinforcement
Learning (RL).

Van den Bergh et al. (2013) [3] has created a more elaborate overview of the state-of-art and goes into
the different solution methods for both airline scheduling and maintenance planning. It can be noted
that the majority of research used mathematical programming methods, such as IP or MILP. These are
often used, because they can generate optimal solutions for deterministic problems and they are easy
to set up, with commercial solvers, like Gurobi, widely available. Several other papers use heuristics or
metaheuristics, of which GA is the most common one. Simulated annealing and tabu search are only
addressed once, according to [3]. The paper that uses simulated annealing is a deterministic model, but
the tabu search incorporates uncertainty in the timing of the workload.
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The use of simulation is common as well, as one can generate many scenarios. It has the ability to
show the different possibilities of a model or tool and can visualise the results of all simulations well. This
can be especially interesting for testing robustness by simulating many different disruptions. Machine
learning is currently a growing topic, with RL being applied more and more in optimisation frameworks.
RL can reach very good results in a short time but is heavily dependent on the training it is subjected
to. Metaheuristics, as stated by Hillier and Lieberman (2015) [37], are good at combining the heuristic
procedure of discovering a nearly optimal solution while remaining sufficiently efficient in large problems
with higher-level strategies. They can thereby escape local optima and perform a robust search of a
feasible region.

In Table 3.1, the models or the framework applied in the research have also been indicated. It can be
seen that the Genetic Algorithm, Mixed-integer Linear Programming, Monte Carlo simulations, and Rein-
forcement Learning are recurring multiple times. Some other methods or frameworks are only mentioned
once and have thus not been explained in detail in this proposal.

Ma et al. (2022) [39] also discussed the emerging technologies that tackle uncertainties but do so in
the context of aircraft maintenance routing. The advantages and disadvantages of these methods should
be investigated to determine what is best for robust aircraft maintenance planning. This could also be
taken from other industries that do maintenance planning, but was however not yet done in this research
proposal.

3.4. Scale and Planning Horizon

The papers reviewed usually include a case study with an airline with heterogeneous fleets of around 40 to
70 aircraft. The planning horizon varies a lot. Van der Weide et al. (2022) [2] creates a long-term schedule
around four years into the future, only focusing on C-checks. This is similar to Deng and Santos (2022)
[14], although they focus on all letter checks with a heterogenous Airbus A320 fleet of 40-50 aircraft. Van
Kessel et al. (2023) [5] has a horizon of both 10 and 120 days, but includes reactive scheduling, just like
Silva et al. (2023) [40]. However, the latter also has a planning horizon of only one month. It depends on
the paper whether or not the processing time of the model is mentioned. The numbers found can range
from just a couple of seconds ([14]), to 15-30 minutes ([2]). De Bruecker et al. (2015) [17] limits the MILP
optimisation to only one minute, but allows fifteen iterations of the model enhancement heuristic. They
plan only one week into the future. The scale was unfortunately not found in this paper.



Research Proposal

This chapter discusses the research proposal that follows from the problem definition as presented in
Chapter 2 and the literature review as presented in Chapter 3. It first discusses the research gap in
Section 4.1, then the objective in Section 4.2 and lastly the research questions in Section 4.3.

4.1. Research Gap

As written in Chapter 3, there is a lot of research already done in the field of airline maintenance planning.
Many different components can be investigated and optimized via multiple optimization methods.

Uncertainty in maintenance is investigated quite often, but there are only few papers available that in-
clude itin a scheduling optimisation framework and apply it to aircraft maintenance. Of those, maintenance
duration is the most investigated type of uncertainty, but manhour, material, or equipment availability is
less common. The use of prognostics of the RUL is growing in research but is mostly useful for predictive
maintenance only, whereas this research will focus on preventive maintenance. The papers that discuss
an optimisation framework only sometimes incorporate rescheduling, such as [40], [5] and [32].

The common approach to hangar maintenance planning is using the four different letter checks and
allocating them to predetermined maintenance slots for certain aircraft types. Several papers schedule
full checks, such as Van der Weide (2022) [2], and apply a probabilistic distribution of maintenance dura-
tion on the full check as well to include uncertainty. Witteman et al. (2021) [41] also mentioned that the
task allocation problem could be expanded by considering stochasticity or exploring uncertainty related
to aircraft utilization or the emergence of non-routine tasks.

From the literature, it appears that genetic algorithms are relatively often used, but the use of other
metaheuristics is scarce. Besides that, although metaheuristic methods provide the opportunity to include
uncertainties and find a solution that is good enough in a computing time that is small enough, they are, to
the best of my knowledge, not applied to stochastic airline maintenance planning scenarios considering
uncertainty in repair times/task durations [3] [38]. Hence, it is concluded that there is a gap in the liter-
ature where metaheuristics other than GA are hardly applied to stochastic airline maintenance planning
scenarios. It should be investigated why this is the case. Other often used methods are mathematical
programming and simulations. There is a growth in the use of machine learning, specifically of RL. The
methods have different advantages; hence, their performance depends on the type of problem that needs
to be optimised.

To my knowledge, there has not yet been a study that optimises a maintenance schedule incorpo-
rating uncertainty in check duration and assesses feasibility. This could be investigated further in this
master’s thesis. However, if combined with a large heterogeneous fleet of around 120 aircraft, this might
be computationally too expensive, which should be taken into account when selecting the optimisation
framework.

12
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4.2. Research Objective

The research objective of this thesis project is defined to be:

To develop a stochastic optimization model for the planning of hangar maintenance, that
optimizes aircraft bay assignment, interval usage and feasibility, under uncertainty of
non-routine tasks.

The research objective will focus on these three aspects (optimized bay assignmeent, interval usage,
and feasibility) to create an efficient and stable schedule. The interval usage for preventive maintenance
should be maximized to make as much use as possible of the three intervals DY, FH, and FC, which
can save one or more maintenance checks over the lifetime of an aircraft and thus save costs. Feasibility
should be high, to be able to complete maintenance schedules with as little schedule changes as possible
due to disruptions. Schedule changes need to be replanned manually, and shifts workforce and resources,
costing time and money. Robust planning can avoid this as it needs fewer changes in case of disruptions
as explained in Section 3.2.1. Hence, feasibility is desired.

4.3. Research Questions

The research objective as presented in Section 4.2 can be transformed into the following research ques-
tion:

How does a stochastic maintenance planning model perform taking into account uncertain
non-routine tasks considering bay assignment, interval usage and feasibility?

Uncertainty in task durations was chosen as the uncertain parameter, as it was indicated that this is
the most important factor for the airline to cause delays in their maintenance schedule. As described
by Rosales et al. (2014) [21], this uncertainty mainly stems from unplanned and unscheduled events,
such as discrepancies, damages or something broken. This is around 40 to 60% of all maintenance
activities. The discrepancies and damages are usually found during the inspection stage that need to be
corrected by programming non-routine activities. Unscheduled tasks might require additional resources
and activities, forcing to adjust and change an initial plan, causing delays and disruptions within a whole
process, again for which a robust planning can be a solution.

Several subquestions were determined to together answer this research question and grouped in four
topics. They are presented below:

1. Uncertainty in non-routine maintenance tasks:
How can non-routine tasks be incorporated into the maintenance planning?

(a) How can the arrival of non-routine tasks be defined?
(b) How can the durations of non-routine tasks be defined?

* An answer to this question will be formulated using the data provided by the stakeholder airline,
using historical data to determine probability distribution for the arrival and duration of non-
routine tasks, per aircraft type and if possible also by aircraft age and task card type.

2. Maintenance model:
How can the stochastic maintenance model be built?

(a) What optimisation method is applicable to create an optimized maintenance schedule under
uncertainty?

(b) What are the desired capabilities of the model?
(c) What constraints should be adhered to?

» These questions will be answered using articles that give an overview of the used methods,
such as Van den Bergh et al. (2013) [3], as well as research online about capabilities of different
optimisation methods. The advantages and drawbacks of the methods described in Section 3.3
should be compared and see which methods can best incorporate uncertainty while satisfying
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other demands. The second and third subquestion will be answered in coordination with the
stakeholder airline as well as the academics to determine capabilities both useful to academia
and the stakeholder.

3. Definitions and performance:
How can the performance of the model be analysed?

(a) How can ground time, interval usage, and feasibility be defined?

(b) How does the model’s performance compare to an exact method regarding aircraft ground time,
interval usage, feasibility, and required planning time?

(c) How can simulation be applied to examine the feasibility of a planning?

» The first subquestion can be answered by using definitions from articles such as Silva et al.
(2023) [40]. The other two questions can be answered in two steps. The first step is to compare
the planning of the optimization with an adapted version of the deterministic, exact method from
the stakeholder airline that is created in Gurobi. Secondly, different simulation scenarios can
be generated to determine how feasible the created planning will be. This can be fed back to
the Genetic Algorithm to increase the confidence intervals.

4. Validation:
How can the validity and practical applicability of the model be assessed?

(a) What is the model’s sensitivity to changes in the input variables and the objective function?
(b) Does the model produce the required output for the case study?

(c) Are the model’s outcomes satisfactory when considering computation time, assumptions valid-
ity, and optimization quality?

» This question serves as validation to see if the model responds as expected to, for example,
longer maintenance durations. It can be answered by following the same steps for assessing
the performance but changing the inputs in the model and looking how the created planning
shifts. The last question discusses whether the created model is actually useful for its intended
use.



Methodology

In this chapter, the research as proposed in Chapter 4 is transformed into a planning and explained.
Section 5.1 discusses the planning of the thesis and Section 5.2 briefly addresses the data used during
the project.

5.1. Research Planning

The overall research planning is shown in Figure 5.1 and is explained afterwards. The weeks added to
the diagram correspond to the duration of the thesis, which was started on the 23rd of September. This
is referred to as week 1.
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Figure 5.1: Flowchart of research planning.

Determination of Definitions

In this phase, the key definitions for the hangar maintenance planning will be defined, such as the mea-
surement of ground time, interval usage and schedule changes as well as robustness. This gives an
answer to research subquestions 1 and 2.

Data Gathering

In this phase, the necessary data, including historical maintenance records, task durations, and current
maintenance schedules will be gathered.

15
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Uncertainty and Probability Distribution Definition

This phase analyses the uncertainty in task durations and determines what probability distribution the data
follows. Here, it is also determined which checks exactly will be used in the model, so only distributions
need to be found for those. This gives an answer to research subquestion 3.

Set up Baseline Model

This phase sets up the baseline model. The first important step here is to determine which (metaheuristic)
optimisation method will be used to answer research subquestion 4. Then, a simple first model that
optimises the hangar maintenance planning will be created that adheres to the following constraints:

» Operator constraint: the operator decides on a maximum number of aircraft that can have mainte-
nance per period of time

+ Black-out window: no hangar checks are scheduled during the summer period
* Number of manhours available

* Number of bays available

» Due date of the task cards/check

A first analysis of the results will be done to get an idea of the answer to research subquestion 5. After
this phase, the midterm review will take place on the 7th of March, 2025.

Maintenance Planning Simulations

After that, the following phase performs robustness simulations to test how the baseline model handles
uncertainty and in how many cases the planning needs rescheduling or can remain the same by changing
input variables and the probability distribution of uncertain parameters. The robustness will be evaluated
based on the number of feasible cases and the number of schedule changes necessary to return to a
feasible solution. This will answer research subquestion 2 and 6.

If that works well, other constraints and implications can be added to the model to make it more realistic.
These additions include at least increasing the number of bays, addressing bay limitations at the aircraft
type level, and adding multiple hangars. Other constraints can be added as well if time allows.

Results Analysis

This phase will analyse the planning and simulation results to understand the impact of uncertainty on
aircraft ground time, interval usage, and schedule changes. If possible and time allows, the results will be
compared with an exact MILP method that has the same operating conditions and constraints. This will
complete the answers to questions 5 and 6.

Model Validation and Comparison

This phase will validate the model by comparing the results to a case study of current maintenance prac-
tices. It is compared on ground time, interval usage and the time needed to create the plan. This will
answer question 7.

Writing the Thesis
Lastly, the methodology, findings, simulations and analyses will be documented. The thesis is concluded
with a defence mid- to end-July.

The time planning with dates is shown in Table 5.1. The midterm review is planned for the 7th of March
2025, and the green light review is planned for the 27th of June 2025. The gathering of data is excluded
from the planning as it will be provided by the airline.
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Table 5.1: Time planning of thesis.

Research Phase 1 Start Date | End Date | Duration (working days)
Review research proposal 27-11-24 06-12-24 | 6

Determination of definitions 09-12-24 13-12-24 | 4

Definition of probability distribution 16-12-24 20-12-24 | 4

Christmas holiday 23-12-24 03-01-25 | -

Set up baseline model 06-01-25 31-01-25 | 16

Skiing holiday 03-02-25 08-02-25 | -

Perform m|d-te.rm results gnaIyS|s 10-02-25 21-02-25 | 8

and prepare mid-term deliverable

Set up simulations 24-02-25 28-02-25 | 4

Research Phase 2 Start Date | End Date | Duration (working days)
Implement additional constraints 03-03-25 21-03-25 | 12

Perform simulations 24-03-25 04-04-25 | 8

Results analysis 07-04-25 02-05-25 | 16

Validation 05-05-25 30-05-25 | 16

Writing draft thesis 02-06-25 13-06-25 | 8

Research Dissemination Start Date | End Date | Duration (working days)
Work on final thesis 16-06-25 27-06-25 | 8

Implement feedback green light review | 02-07-25 11-07-25 | 6

Prepare thesis defence 14-07-25 25-07-25 | 8

5.2. Data Management

This section briefly touches upon the data that will be used during the thesis. Table 5.2 lists data that is
required from the airline to include that in the model. Some of the entries in the table will only be used
if time allows, such as the opening and closing times of access panels. It must be noted that this table
is very similar to the list provided in Section 3.2, but now, deterministic values will be used for the other
parameters apart from task duration.

The data will be provided anonymously by the company supervisor, i.e. the aircraft ID is unknown to

the author to make publication of the master thesis possible at the end of the research. All data will not
be stored locally but only on cloud-based platforms such as Snowflake or Gitlab. During the project, only

the thesis student and the two supervisors will have access to the data.

Table 5.2: Useful data for research

Data

Aircraft fleet

Aircraft checks (elements) with
due dates, task cards, tail registration

# of findings and non-routine tasks

Predicted duration per routine task

Actual duration of routine tasks

Actual duration of non-routine tasks

Access panels that need to be opened per task and time it takes

Available manhours
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ABSTRACT

Aircraft maintenance planning plays a large role in ensuring operational efficiency and safety while minimising
costs. Hangar maintenance scheduling can be trivial due to various uncertainties, such as non-routine tasks,
resource availability, and unforeseen delays. Deterministic methods might struggle to account for these complexities
and do not scale well with large, heterogeneous fleets, causing frequent and costly adjustments to the schedule.
Previous research has focused on incorporating different uncertainties using robust scheduling methods. This
research aims to develop and assess a stochastic and scalable aircraft hangar maintenance planning model that
can provide insight in the robustness of the planning, next to incorporated uncertainties, to reduce the need for
frequent planning revisions.

The proposed method creates a schedule using a Genetic Algorithm (GA) that minimises maintenance costs
and interval losses while adhering to operational constraints. After that, a Monte Carlo simulation is applied to
assess the feasibility of the schedule under randomly generated check duration scenarios. Critical checks that can
cause grounding of aircraft due to exceeded due dates are modified in a feedback loop to improve the robustness of
the schedule. The maintenance optimisation is tested in a case study, provided by a European airline and discusses
the trade-off between maintenance cost, interval loss, run time, and feasibility in hangar maintenance planning
under uncertainty.

The schedule is compared to a Mixed-Integer Linear Programming (MILP) benchmark model. Results show
that the MILP outperforms the MILP in terms of cost and run time, but the GA might be useful in more
complex scenarios. The simulations give insight in the robustness of the planning and show that delay propagation
and grounding probabilities can be decreased by adjusting critical checks during re-optimisation. The overall
grounding probability can go down by 9 to 40%, with 5 to 10% of checks fixed in time, respectively. This can lead
to a more robust schedule, minimising revisions. An airline can use this framework as a decision-support tool to
create variations on the planning and assess the impact of its decisions on the robustness of the schedule.

Keywords: Genetic Algorithm, Monte Carlo Simulation, Maintenance Scheduling, Aircraft Maintenance, Robust-

ness

1. Introduction

Aviation is one of the safest modes of travel in the world,
due to strict regulations. One of the most important factors
in aviation safety is maintenance. On average, aircraft main-
tenance forms around 10% of an airline’s operational cost
[1]. Heavy maintenance, or maintenance that is executed in
the hangar, is a significant part of that. It can account for
more than 70% of the maintenance costs and requires a large
amount of resources [2]. In present days, airlines operate
in environments with small margins and it is beneficial for
them to keep the costs low by improving their maintenance
scheduling and efficiency.

Initially, maintenance started as a simple and straightfor-
ward process. However, due to a more dynamic environment
where both costs and the complexity of aircraft continued to
increase, manual maintenance planning became more and
more impracticable [3]. This resulted in airlines organising
their maintenance in a more systematic way to save costs
and achieve a higher efficiency, with Air Canada being one
of the first in 1977 [4]. Nowadays, maintenance is usually
planned by maintenance planners aided by computer tools.

This paper proposes a stochastic optimisation-
simulation model, where a Genetic Algorithm (GA) is used
to generate an initial maintenance schedule for aircraft main-
tenance. The planning is subjected to a Monte Carlo simu-
lation to analyse feasibility across different scenarios to im-
prove its robustness. The model is validated in a case study
of a European airline with a large, heterogeneous fleet.

The framework can be used in the maintenance planner
decision process to evaluate various schedules with a feasi-
bility assessment, giving insight into the performance of the
planning and possibilities for robust improvement.

This article is structured as follows. Section 2 gives
more background information on aircraft maintenance plan-
ning and the problem with uncertainty. Section 3 gives an
overview of related work, uncertainties in aircraft mainte-
nance and the use of metaheuristics in maintenance research.
Next, methodology with assumptions, mathematical model
and constraints for the maintenance scheduling problem are
introduced Section 4. The Genetic Algorithm and Monte
Carlo simulation framework are also explained in this sec-
tion. The airline case study and hypotheses are introduced
in Section 5 and Section 6, respectively. They are followed



by the results in Section 7 and validation in Section 8. The
results, the validation, and the framework are discussed with
recommendations for future work in Section 9. The paper
is concluded in Section 10.

2. Problem Definition

This section discusses what aircraft maintenance entails
and how the aircraft hangar maintenance check scheduling
problem can be described. Aircraft maintenance is reg-
ulated strictly to ensure safety. It is usually executed as
preventive maintenance, meaning tasks are performed on an
interval-basis to prevent failure.

Despite the rise of Predictive Maintenance (PdM) in lit-
erature, preventive maintenance remains the dominant form
of maintenance in aviation due to regulatory requirements
[5]. This makes it still a relevant and important area of
investigation. Airlines generally divide their maintenance
into line maintenance and base maintenance. This research
focuses on base maintenance, which is also known as hangar
maintenance. Base maintenance is often divided into dif-
ferent letter checks: A-, B-, C- and D-checks [3]. A- and
B-checks are considered light maintenance taking usually a
couple of days, while C- and D-checks are heavy mainte-
nance events, taking multiple days to several weeks to com-
plete [2]. They require severe planning and coordination of
parts, tools, bays and certified personnel [6].

The Maintenance Planning Document (MPD) defines
maximum allowed intervals for scheduled tasks based on
Flight Hours (FH), Flight Cycles (FC) or Calendar Days
(DY). These intervals are determined by the manufacturer
[7]. Maintenance must be completed before any of these
parameters is exceeded. After execution, the parameters are
set back to zero. If a task exceeds its deadline, an aircraft
loses its airworthiness and must be grounded. This leads
to revenue losses for airlines. According to Knotts (1999)
[8], there are two goals in maintenance scheduling: max-
imising fleet availability and minimising maintenance cost.
These goals translate into minimising interval loss or slack,
the unused lifespan between required checks. Performing
checks prematurely wastes usable interval, reduces overall
utilisation and increases indirect costs [9]. Proper aircraft
maintenance scheduling can avoid grounding and avoid lost
interval, hence saving costs. Airlines also aim to plan main-
tenance outside of commercial peak periods to provide more
revenue. These periods are called black-out windows. No
hangar maintenance can take place as all aircraft are needed
for operation or the hangar is closed. This might be dur-
ing the summer holiday or during Christmas [2]. However,
there are many other factors that can play a role in the plan-
ning of maintenance. Aircraft maintenance is labour- and
material-intensive and is constrained by the availability of
Material, Machinery, Methods and Manpower, also known
as the 4Ms [10]. Planning must take into account the nec-
essary spare parts and equipment, hangar bay availability
and technicians with appropriate certifications to execute
the maintenance. Dinis et al. (2019) [11] described that the
maintenance workload can be divided into scheduled and
unscheduled tasks. The first component is the deterministic
part and the second is the stochastic part resulting from the

execution of scheduled tasks and depending on probabilistic
failure patterns [12]. These non-routine tasks resultin a high
degree of uncertainty [13]. It is unknown when something
is expected to occur, or what technical skills non-routine
tasks will require [11]. It can cause planned resources to be
insufficient, or excessive.

The uncertainty in workload due to unscheduled mainte-
nance tasks or activities might prolong maintenance checks,
cause delay propagation and compromise the efficiency and
feasibility of the initial maintenance schedule [10]. Devi-
ations in aircraft utilisation can also impact the due dates
of upcoming maintenance checks. Despite having an effi-
cient maintenance schedule before operations have started,
it is very common to have disruptions that result in fre-
quent adjustments to the initial schedule. The rescheduling
is often done manually, which can last up to a few days or a
week, and impacts maintenance costs and quality of service.
Robust schedules that require fewer adjustments under dis-
ruptions can reduce costs and inefficiencies in maintenance
execution. [2]

It can be concluded that an optimal schedule on paper,
i.e. one with minimal maintenance cost or lost interval,
might not actually be optimal in practice when uncertainty
comes into play. The additional costs associated with dis-
ruptions and adjustments can outweigh the initial benefits
and highlight the value of incorporating uncertainty into the
scheduling process. By doing so, airlines can reduce the
likelihood of groundings or large modifications, resulting
in plans that are not only efficient but also resilient across
different scenarios.

3. Literature Review

Aircraft maintenance is a complex part of airline op-
erations, with multiple layers of planning, such as routing,
scheduling, crew rostering and resource allocation. As it
takes place in a dynamic environment with strong cost pres-
sures, extensive research has been done on aircraft main-
tenance. This section reviews the historical development
of maintenance scheduling, optimisation objectives (cost
and wasted interval), non-routine tasks, uncertainty, and
approaches for robust scheduling.

While Aircraft Maintenance Routing (AMR) is a critical
aspect of airline operations and closely connected to Hangar
Maintenance Planning (HMP) and has been widely studied,
(e.g. He et al. (2023) [14] or Es Yurek (2024) [15]), this
research focuses specifically on HMP. AMR is assumed to
be resolved separately and is hence not discussed here.

3.1. Historical development

Historically, aircraft maintenance scheduling has relied
on manual scheduling based on the experience of mainte-
nance planners taking weeks of planning [2]). One of the
earliest attempts to improve this was Air Canada’s Aircraft
Maintenance Operations Simulations model (AMOS), de-
veloped in the 1970s to generate an accurate maintenance
schedule in a short time (Boere (1977) [4]). Currently, sev-
eral planning tools exist and are used by airlines to create a
computer-aided maintenance planning, but final schedules
still rely on the experience of maintenance planners [16].



Early approaches to aircraft maintenance scheduling of-
ten focused on deterministic problems, minimising costs
or wasted interval. Sriram and Haghani (2003) [17] ap-
plied heuristic optimisation to minimise maintenance cost
on maintenance routing problems. Later, in 2012, Jiang
(2012) [18] minimised aircraft-on-ground losses with an
Artificial Bee Colony algorithm. Qin et al. (2019) [19] ex-
panded aircraft maintenance scheduling with hangar layout
planning. Lastly, Deng et al. (2020) [9] used dynamic pro-
gramming to optimise long-term maintenance check sched-
ules by reducing wasted interval time.

Over time, the literature has shifted toward stochastic
models, simulation, and hybrid approaches that account for
real-world uncertainties as described before in Section 2.

3.2. Uncertainty in Aircraft Maintenance

Samaranayake (2006) [6] recognised that this uncer-
tainty mainly comes from non-routine and unscheduled
maintenance. It was found that approximately 50% of the
maintenance workload is unplanned and identified during
inspection. Dinis et al. (2019) [1 1] found that the unsched-
uled maintenance can even be up to 198% of the sched-
uled workload, increasing with aircraft age. This creates
significant uncertainty in workload, resource needs, and
duration, often leading to cascading delays and resource
conflicts. Hence, recent studies have focused on predicting
non-routine tasks. The authors proposed a framework to
characterise maintenance work to manage uncertainty and
improve capacity planning. Li et al. (2024) [20] applied
supervised learning to forecast future non-routine task work-
loads. To handle uncertainty, recent research turned to ma-
chine learning and metaheuristics. Reinforcement Learning
(RL) has been used by Andrade et al. (2021) [21] to opti-
mise long-term maintenance scheduling and compare it to
a dynamic programming (DP) based approach, minimising
interval loss. RL is also applied by Lee and Mitici (2023)
[22] to trigger predictive maintenance actions based on
Remaining-Useful Life (RUL) distributions. Metaheuris-
tics, such as Genetic Algorithms (GA), have been proven
effective in discovering nearly optimal solutions while re-
maining sufficiently efficient in large problems [23]. It has
often been used for scheduling problems, such as by Klee-
man and Lamont (2005) [24] who solved the multi-objective
scheduling problem for aircraft engine maintenance using a
genetic algorithm.

3.3. Robust Scheduling

To mitigate the impact of uncertainty, recent studies have
introduced robust scheduling methods, creating more stable
schedules [10]. Zhang et al. (2023) [25] applied a non-
sorted dominating GA to optimise personnel and equipment
allocation under uncertain conditions. Deng and Santos
(2022) proposed approximate dynamic programming, con-
sidering uncertainty of aircraft daily utilisation and mainte-
nance check elapsed time, minimising wasted interval.

Monte Carlo simulation (MCS) is often used to model
and evaluate stochastic maintenance plans, for example by
Semaan and Yehia (2019) [26] and Pereira et al. (2021)
[27]. Shahmoradi-Moghadam et al. (2021) [28] combined
simulation and optimisation to generate robust solutions for

a fighter aircraft fleet for different conservatism levels. Van
der Weide et al. (2022) [2] integrated a GA with MCS to
create robust long-term heavy check schedules, incorporat-
ing uncertainty in check duration and aircraft utilisation.
Marseguerra and Zio (2000) [29] used a similar approach
to optimise maintenance and repair strategies of an indus-
trial plant. Later, Van Kessel et al. (2023) [10] addressed
disruption management by developing a reactive reschedul-
ing tool to ensure plan stability when disruptions occur.
An overview of research that discusses uncertainties in a
stochastic aircraft maintenance planning context is shown
in Table 1. Several uncertainties are investigated using dif-
ferent methods or frameworks.

3.4. Research Gap

Despite growing interest in robust and stochastic main-

tenance planning, several research gaps remain in literature.

1. Feasibility assessment under disruption: While Van

der Weide et al. (2022) [2] used MCS to assess fea-

sible schedules and Van Kessel et al. (2023) [10]

developed rescheduling tool, there is no research that

evaluates the feasibility and stability of a schedule

by analysing knock-on effects, delay propagation and
maintenance bay conflicts.

2. Full-year planning for large, heterogeneous fleets:
Most studies apply their framework to case studies
of European airlines with small-to-medium fleet sizes
(typically 30-60 aircraft) and focus on a single check
type (e.g. C-checks). Larger, more complex planning
problems for a full annual cycle are under-represented.

3. Confidence-based robustness: Few models incorpo-
rate confidence levels on the on-time execution of
maintenance checks under uncertainty. Combining
feasibility analysis with optimisation allows planners
to quantify the robustness of schedules.

Given this context, this research addresses the follow-
ing question: How does a stochastic maintenance planning
model perform taking into account uncertain task durations
considering aircraft maintenance cost, interval usage and
feasibility?

To answer this question, this research develops an
optimisation-simulation approach that:

* Uses a Genetic Algorithm to optimise hangar main-
tenance planning divided over internal and external
hangars,

* Applies Monte Carlo simulation to assess the feasi-
bility of the schedule under uncertainty,

 Evaluates knock-on conflicts and grounding and ap-
plies that to the confidence interval of planning the
checks,

The approach is validated on a full-year planning of a large,
heterogeneous airline fleet.

4. Methodology

In this section, the methodology is explained for the de-
velopment and analysis of an aircraft hangar maintenance
planning under uncertainty for a heterogeneous fleet, using
optimisation and simulation models. To begin, the assump-
tions used in this research are listed in Section 4.1. It con-
tinues with the explanation of the mathematical formulation



Table 1. Uncertainties in stochastic aircraft maintenance planning research.

Author

Uncertainty

Method or Framework

De Bruecker et al. (2015) [30]
Deng and Santos (2022) [31]
Dinis et al. (2019a) [11]
Dinis et al. (2019b) [32]

Hu et al. (2022) [33]

Van Kessel et al. (2023) [10]

Li et al. (2024) [20]

Masmoudi and Hait (2012) [34]

Mattila and Virtanen (2011) [35]
Oenzil and Ishak (2021) [36]

Pereira et al. (2021) [27]

Qin et al. (2020) [37]

Rosales et al. (2014) [38]
Samaranayake and Kiridena (2012) [39]
Semaan and Yehia (2019) [26]
Shahmoradi-Moghadam et al. (2021) [28]
Sohn and Yoon (2010) [40]

Tseremoglou et al. (2024) [41]
Tseremoglou et al. (2023) [42]

Van der Weide et al. (2022) [2]
Zhang et al. (2023) [25]

Flight arrivals

Aircraft daily utilisation, Maintenance elapsed time

Unscheduled workloads
Workloads

Maintenance performance and system degradation

Stochastic task arrival, resource availability,
flight arrivals

Non-routine task Workloads

Task duration, procurement delays

Failure rates and maintenance duration
Demand of spare parts

‘Workloads

Spare parts demand

Non-routine task variability

Unplanned maintenance activities

Task duration and probability of breakdown
Task duration

Mean time between failure (MTBF) and
mean time between repair (MTTR)

RUL prediction, task arrival

RUL prediction
Check duration, aircraft utilisation rates
Check duration, personnel transfer

MILP with heuristic enhancement

Approximate Dynamic Programming, Monte Carlo Simulation

Space-time-skill coordinate system

Bayesian networks with Expectation-Maximisation algorithm

Markov Decision Process, Reinforcement Learning,
Linear Programming
MILP

Supervised learning

Fuzzy GA

Gamma distribution and Reinforcement Learning
Component Reliability Analysis

Non-linear integer programming, Monte Carlo Simulation
Benders decomposition

System Dynamics

Unitary Structuring Technique

Monte Carlo Simulation with cyclic operation network
e-Conservative, Monte Carlo Simulation

Random effects Weibull regression model

Support Vector Regression, Rolling horizon,
Deep Reinforcement Learning

MILP, Deep Reinforcement Learning

GA, Monte Carlo Simulation
Non-dominated sorting GA

of the problem in Section 4.2. After that, the working and
design of the genetic algorithm is explained in Section 4.3.
Next, the approach and use of the Monte Carlo simulations
is discussed in Section 4.4.

4.1. Assumptions

Several assumptions were made during this research.
They are written in A.1 - A.10 and are based on Van der
Weide et al. (2022) [2], Deng et al. (2020) [9] and on
real-life practice from the case study.

A.1 Only the Calendar Day maintenance interval is taken into
account. Itis assumed that the Flight Hours (FH) and Flight
Cycles (FC) will not be exceeded.

A.2 The minimum time step in the maintenance schedule is one
calendar day.

A.3 Due dates and interval losses of check elements inside work
packages are not considered. Only the due date of the en-
tire work package will be used for the calculation of interval
loss.

A.4 Both internal and external hangars are assumed to be fully
flexible and no predetermined slots for specific check types
are assigned.

A.5 The daily man-hour capacity CAP;, per bay is assumed to
be constant every day, including weekends.

A.6 The employees in the hangar are assumed to have the nec-
essary skills to execute every task planned for the aircraft
and check type.

A.7 The location of a hangar does not influence check possibil-
ity. It is assumed that aircraft routing is flexible.

A.8 The checks that need to be planned are assumed to not have
a maximum number of lost interval days.

A.9 It is assumed that delays or problems in one bay do not
affect other bays. The bays are assumed to be independent
from each other, even if they are in the same hangar.

A.10 Itis assumed that the actual maintenance duration follows a
normal distribution with a standard deviation between 5%
- 20% of the estimated mean.

These assumptions were made to simplify the problem
and to focus on only one uncertainty. A.l and A.4 are spe-
cific to the airline of the case study and can thus be different
for other airlines.

Next to these, the research scope is limited to MPD
tasks only. Ad hoc checks and airworthiness directives are
not considered as part of the maintenance planning.

4.2. Mathematical Model

This subsection shows the mathematical model formu-
lation of the Aircraft Hangar Maintenance Planning. Firstly,
the sets, parameters and decision variables are introduced.
Secondly, the objective function and constraints are de-
scribed.

4.2.1. Nomenclature

In the following tables, the  sets, pa-
rameters and decision variables are presented
that will be wused in the mathematical model.

Table 2. Sets

w Set of work packages

B Set of bays

T Time planning period

Tolackout  Black-out time periods (subset of T)




Table 3. Parameters

CAP;, Capacity in man-hours per day for bay

b.

Cost per man-hour for executing a
maintenance work package in an in-
ternal hangar.

Cimernal

Cost per man-hour for executing a
maintenance work package in an ex-
ternal hangar.

Cexternal

D, Deadline to start maintenance check

for work package w.

Equal to 1 if aircraft type of work pack-
age w can be handled by bay b; 0 oth-
erwise.

€a/c type(w),b

Jw.b Equal to 1 if check type of work pack-
age w can be handled by bay b; 0 oth-
erwise.

My, Number of required man-hours for
work package w.

Weround Weight of cost of man-hours on the
objective function.

Winterval Weight of anticipating a maintenance

work package one day (i.e., lost from
not using the full interval).

Table 4. Decision Variables

Sy Starting time of maintenance work package
w

Xw.b,r Equal to 1 if work package w is being exe-
cuted in bay b at time ¢; 0 otherwise.

Yw.b,s Equal to 1 if work package w is planned in
bay b, starting at time ¢; 0 otherwise. y,, p
can only be equal to 1 for one time step.

iw.b Equal to 1 if work package w is allocated to
an internal bay b; 0 otherwise.

€w.b Equal to 1 if work package w is allocated to

an external bay b; 0 otherwise.

4.2.2.
The objective function is defined as follows:

Objective Function (Fitness Function)

Minimise

2,

[mw : (Cinternal “Ayw.p; T Cexternal * aw,bg) . Wground
weW

Maintenance Cost

+ (Dw - sw) - Winterval (Obj)

Loss of Interval

This objective function is also used as the fitness func-
tion for the Genetic Algorithm (GA). It consists of two parts,
maintenance cost and lost interval. The first part looks at
the man-hours of checks that are planned in an internal bay
(i.e. property of the airline) or if it the check is outsourced
to an external MRO. External MROs are more expensive

than the internal hangars, which is reflected in the cost fac-
tors Cinternal and Cexernal- Hence, it is desired that as many
checks are planned internally to minimise this part of the
objective function. The second part is the minimisation of
the lost interval, which was discussed in Section 1. It is
desired to plan as close as possible to the due date and min-
imise the lost interval, because that might save the airline
an additional check over the lifespan of the aircraft, hence
the operational time of the aircraft increases and the cost de-
crease which is desirable. This part of the objective function
tries to obtain that. The weights Wyround and Winervar can
be used to determine the importance of the two parts of the
objective function and depends on the airline’s preferences.

4.2.3. Constraints

The optimisation problem is subject to eight constraints,
that are described here. First, constraint C1 ensures that ev-
ery work package is planned exactly once in one bay and
starts at one time step ¢. It is required that every work pack-
age starts before they exceed their interval, as explained
before. C2 ensures that by constraining the start date to be
equal or lower than the due date. As an aircraft covers a
full bay, there cannot be multiple work packages and thus
aircraft assigned to a certain bay at a certain time step as
dictated by C3. When a maintenance check starts, all tasks
must be finished. Hence, the bay should be occupied by
that check for the entire duration. The duration is dependent
on the capacity in the bay and the number of required man-
hours for the check as also explained later in Section 4.3. C5
and C6 ensure that only aircraft types and check types are
planned in bays that have the skills, space and capacity to do
so, respectively. C7 ensures that nothing is planned during
black-out windows. Lastly, constraint C8 ensures that the
correct weighting of internal or external bays is used in the
objective function.

* C1: Plan all work packages with a unique start time

Z Zyw,b,t =1

beBteT

vV weW (1)

C2: Plan all work packages on or before their due
date
sw <D, wew

(@)

C3: Only one work package per bay per moment of

time
> xwpi<1l ¥V beBreT  (3)
wew
* C4: Duration enforcement
Xwbr ZYwbe ¥V weW,beB,teT,
m
t e[t t+ CAVIZ;, -1 @

CS5: Aircraft type

Y weW,beB,teT
&)

Xw,b,t < €aircraft type(w),b
C6: Check type

V weW,beB,teT (6)

Xw,b,t < fw.b



¢ C7: Black-out windows

YV weW,beB,t € Thackour (7)

Xw,b,t = 0

e C8: Mutual exclusivity of internal and external bay
assignments

V weW,beB (8)

aw.p; + Ay p, = 1

Sw = 2peB Drert Yw.bit
XwbitsYwbs € [0,1] V w e W,b € B,t € T and
Ay b Aw. b, € [O, 1] YV weW

4.3. Genetic Algorithm

In this section, it is explained why the GA was chosen for
the optimisation, how the mathematical model is created in
the Genetic Algorithm and how a Genetic Algorithm works.

4.3.1.

Genetic algorithm (GA) is an evolutionary algorithm in-
spired by natural selection and the reproduction of the fittest
individuals [43]. It was chosen from seven techniques in-
cluding Mixed-Integer Linear Programming, Reinforcement
Learning, Simulated Annealing, Particle Swarm Optimisa-
tion, Ant Colony Optimisation and Tabu Search.

Compared to these methods, GA offers a promising bal-
ance of advantages. For instance, while Mixed-Integer Lin-
ear Programming provides exact solutions, it struggles with
scalability [42]. Reinforcement Learning, although pow-
erful in dynamic environments, often requires extensive
training data and tuning [33]. The ease of implementation,
low reliance on training data, ability to handle uncertainty,
and relatively fast computing times made GA particularly
well-suited to this context. Despite other methods showing
strengths in specific areas, GA provided the best combina-
tion of advantages for this optimisation problem.

Albadr et al. (2020) [44] described the steps of a GA.
First, an initial population is generated consisting of a certain
number of candidate solutions for the aircraft maintenance
planning. The fitness of every individual is calculated us-
ing the fitness function. Using a parent-selection technique,
parents are chosen for mating to form a new generation.
New individuals are created with the combination of par-
ents and through crossover and mutation. The fitness of the
new population is assessed and the cycle will start again un-
til a termination criterion is satisfied, for example a certain
fitness value that is reached.

The following subsections explain how the different
components of GA are used in this optimisation model.

Trade-off Different Optimisation Techniques

4.3.2.

The maintenance schedules have to be represented in
such a way that they can be implemented into the GA. Hence,
they have to be encoded into a chromosome. In this model,
every work package is represented by two genes: the bay
assigned and the priority ranking. Both genes are integers.
An example can be: [6, 77]. The specific work package is
assigned to bay 6 and has a priority of 77. All checks that
are in the same bay with a priority ranking lower than 77
will be planned earlier than this check and hence will have a
higher chance to be planned close to their due date. The gene
space for the bay assignment is restricted by the capacity of

Chromosome Representation

every hangar and bay. If the work package involves a check
or aircraft type that the hangar cannot support, this bay is
excluded in the gene space. The priority ranking is limited
only by the number of work packages requiring scheduling.

All the work packages together form a candidate solu-
tion (individual), which is a possible maintenance schedule.
All candidate solutions form the population.

By trying different bay assignments for the work pack-
ages that need to be planned, the model aims to minimise
the cost of maintenance by allocating as many checks as
possible to internal hangars. This corresponds to the first
term in the objective function (Obj). The priority ranking
supports the minimisation of lost interval, which is the sec-
ond part in the objective function. Additionally, it prevents
conflicts in bay usage, in line with constraint 3. For each
bay, the model starts with placing the black-out windows
in the schedule. It then plans the work packages, starting
with the highest priority checks (i.e. those with the lowest
numbers) of assigned to that bay. The duration of each work
package, expressed in days, is calculated by dividing the
required man-hours by the number of man-hours available
per day in the assigned bay, as defined in Equation 9.

my,

e = [ CAP, } ®
The algorithm initially tries to schedule the work package to
start on its due date. It then verifies if this placement creates
a conflict with a black-out window or another work package
already planned in that time frame. If a conflict is detected,
the work package will be shifted one day earlier and re-
evaluated. This process repeats until a valid, conflict-free
time slot is found. This procedure continues sequentially
for all work packages, following their priority ranking.

4.3.3.

The initial population can have a large impact on the per-
formance of the GA, as it determines the starting point in the
solution space. Its quality depends on the size and diversity
of the population. A diverse population enables exploration
and can prevent premature convergence. A small population
may also limit performance as it quickly loses diversity, but
an overly large population can become computationally in-
efficient [43]. The initial population can be turned off or on.
When disabled, the population is randomly generated based
on the gene space of every work package. When enabled,
a custom initial population can be implemented. In this
case, an initial population was created by strongly favouring
internal and high-capacity bays (i.e. a high number of avail-
able man-hours per day). To amplify differences, bays were
weighted using a power-weighting method. Priority rank-
ings were assigned randomly. The approach can be found in
Appendix A, Algorithm 1. The preference for internal bays
may be too strong, leading to too many work packages being
assigned to internal bays and resulting in infeasible sched-
ules. These infeasible schedules are heavily penalised in the
fitness function with a conflict penalty, which discourages
the algorithm to use these further in evolution.

Initial Population

4.3.4. Parent Selection

The population is assessed using the fitness function,
where the fitness of every schedule is calculated using Equa-



tion Obj. Based on these fitness scores, schedules are se-
lected as parents to produce offspring for the next generation.
Parent selection plays a critical role in the convergence rate
of the GA as fit parents tend to produce fitter individuals,
speeding up convergence. However, it is also important to
maintain diversity in the population. Without it, the GA
risks premature convergence. It occurs when a single very
fit solution dominates the population in an early stage, pre-
venting the discovery of better alternatives [45].

Multiple parent selection methods were tested in this re-
search, which were steady state, rank, random, tournament
(for n = 2,3,4,5), roulette wheel, and stochastic univer-
sal selection, to see which gave the best convergence and
computational time [43]. Steady-state selection (sss) and
tournament-2 led to the most optimal results. The parame-
ter selection is further explained in Subsection 4.3.7.

4.3.5. Crossover and Mutation

Crossover is the process of recombination of the genes
of two parents to create offspring. The most common meth-
ods are single-point, two-point, and uniform crossover [45].
All three were tested and the uniform crossover led to the
best result, as discussed later in Subsection 4.3.7.

After generating a new offspring population, mutation
is applied to maintain diversity. It can affect both bay as-
signments and priority rankings and its influence depends
on the mutation rate. Two mutation strategies were explored
in this study: inversion and a custom method. The custom
mutation followed the same power-weighting logic used in
the initial population (Subsection 4.3.3). It is important that
the bay assignments of the mutated individual still comply
with the gene space. The results of the mutation parameter
selection are provided in Subsection 4.3.7.

4.3.6. Termination

The process described above is repeated until the termi-
nation criterion is met: if the fitness value remains constant
for 50 generations, the optimisation terminates, assuming
convergence. The chromosome representation is translated
into a Gantt chart of the schedule, and evaluated. Verifi-
cation checks confirmed that no schedule overlaps occurred
and that bays were only assigned aircraft and check types
matching their capabilities.

4.3.7. Parameter Selection

After setting up the model, the GA parameters were se-
lected. This was done for two maintenance seasons (’24-’25
and ’25-°26). The different parameters are summarised in
Table 5, for parent selection, crossover, mutation and muta-
tion percentage. Combined, 320 parameter configurations
were tested, both with and without a custom initial pop-
ulation. Runs without the initial population consistently
generated less optimal results and are therefore excluded
from further discussion.

4.4. Maintenance Planning with Uncertainty

As discussed in Section 2, it is important to develop
robust schedules, that can withstand different sources of un-
certainty. This section introduces a framework to assess
the feasibility and robustness of the schedules created by
the GA. A feasible schedule is defined as one that can be

executed without any changes.

These insights allow for a trade-off between having of a
schedule that remains feasible across various scenarios, and
keeping the optimality of the initial plan in terms of mini-
mal maintenance costs or minimal wasted interval. Feasi-
bility might ask for more buffers and gaps to absorb delays,
whereas optimality is expected to prefer a tightly packed
planning to maximise the internal hangar usage and the
maintenance intervals.

Monte Carlo simulations (MCS) can give insight into
this. A Monte Carlo simulation uses random sampling and
statistical modelling to predict a range of possible outcomes
for uncertain variables, providing probabilities for each re-
sult. It can help to predict the impact of uncertainty in
scheduling problems. [46]

4.4.1. Scenario Generation

The first step in simulating the behaviour and uncertainty
in the maintenance schedule is the generation of scenarios.
The planning of the GA was created assuming a fixed main-
tenance workload. Inthe simulation, uncertainty must be in-
corporated to be able to assess the feasibility across various
scenarios. This means that the total number of man-hours
needed per aircraft check should fluctuate following proba-
bility distributions. Ideally, these distributions are based on
historical maintenance data and expertise.

By generating a diverse and large set of scenarios based
on the uncertainty in maintenance duration, the simulation
provides an insight of how the schedule might perform under
different conditions. This can help maintenance planners to
identify potential bottlenecks or risk of infeasibility. The
generation of different scenarios is an important first step
for a robust assessment of the maintenance planning cre-
ated.

In this research, the distributions were not based on
historical maintenance data. It was assumed that the proba-
bility distributions would follow a normal distribution with
the mean being the estimated number of required man-hours
and the standard deviation a percentage of this value. Stan-
dard deviations from 5% to 20% were tested, with steps of
5% to be able to compare the differences and influences of
the magnitude of the standard deviation on the feasibility of
the maintenance planning. It is assumed that real standard
deviations would lie in this range.

4.4.2. Conflicts

In the simulation, four things are interesting regarding
feasibility: the number of conflicts, knock-on conflicts, the
cascade length of the knock-on conflicts, and the grounding
of aircraft. First, conflicts are explained.

Conflicts are defined as an overlap of one check with
another check or a black-out window. This occurs if the
previous check experiences a delay and the next check or
black-out window is starting shortly behind the previous
check. If an overlap occurs in the maintenance duration, a
conflict is raised. This is the first part of the simulation.
After the generation of scenarios, the new duration for each
work package is calculated with the same formula as before,
Equation 9. Due to the variation of the maintenance work-
load, it might happen that some checks take additional days,



Table 5. Genetic Algorithm parameter selection.

Parent Selection Crossover Mutation Mutation Percentage
Steady-state selection (sss) Single-point Paired inversion 5%
Tournament (n = 2,3,4) Two-points Custom mutation 10%
Stochastic universal sampling (sus) Uniform 15%
Roulette wheel selection (rws) Scattered 20%

Rank

Paired two-points

Random

whereas others are finished earlier than planned.

4.4.3.  Knock-on Delays and Cascading Lengths

Subsequently, the knock-on delays and cascading
lengths play a key role in the feasibility of a schedule. These
delays occur when a conflict causes one check to be post-
poned, forcing subsequent checks to start and finish later,
even if they were not directly delayed themselves. When
checks are scheduled closely together, this effect can am-
plify the knock-on delay and it is propagates further in the
schedule, . A visual example of knock-on delays is shown in
Figure 1. In this scenario, three checks (C-1, C-3, and C-5)
are delayed, shown with the red elongations. The checks
C-2 to C-5 suffer from the propagation of these delays. This
is made visible with the orange marks. Checks C-6 and C-7,
however, are unaffected due to the sufficiently large gap in
the schedule. The cascading length, or knock-on length,
can also be derived from this picture: the delay from check
C-1 propagates through four additional checks, despite the
gap between C-4 and C-5. The delay in C-3 affects only
two additional checks and the delay in C-5 does not affect
later checks. This makes the delay of C-1 the most disrup-
tive. Analysing these patterns can help determine which
checks are critical and should receive extra care to maintain
schedule stability.

The probabilities for conflicts and knock-on delays were
calculated by dividing the number of conflicts and knock-on
delays per check by the number of simulations run.

4.4.4. Grounding

The knock-on delays might cause some work packages
to start after their due date. If this is the case, an aircraft
has to be grounded. Grounding of an aircraft occurs when
a maintenance task is due before the task starts and must be
avoided as explained before in Section 2, which is why the
probability of occurrence for grounding is also investigated
with this simulation.

4.4.5.  Number of Simulations

The law of large numbers (LLN) states that the aver-
age of observations gets closer to the expected value as
the number of observations or simulations increases. The
average values obtained should converge to certain values
when the number of simulations increases [47]. This law is
considered when determining a suitable number of simula-
tions, such that the outcomes have a converging result. For
this, the average number of conflicts per scenario and the
average number of knock-on conflicts were analysed. Sim-
ulations were run for maintenance season 2024-2025, with

a standard deviation of 5%, with the number of simulations
ranging from 100 to 10,000. Although the outcomes did
not show large variations, it was concluded that the values
for average number of conflicts and knock-on conflicts were
converging after around 9,000 simulations. This was based
on a trendline of a two-point moving average and the devi-
ation from the total average at 9,000 simulations being less
than 0.5% and 0.2% for the average number of conflicts and
knock-on conflicts, respectively.

4.4.6. Robust Optimisation

Insights from the feasibility assessment can be used in
a second optimisation of the maintenance schedule with the
GA to create a more robust schedule. Critical checks, those
causing knock-on conflicts and groundings, were identified
and fed back into the genetic algorithm planner, with two
important differences:

1. The current best solution from the previous run of the
GA, is now included in the initial population of the
re-optimisation,

2. The estimated number of required man-hours of the
selected critical checks will be increased by one stan-
dard deviation in the re-optimisation and are fixed in
time and bay allocation.

With the increase of the hours with one standard devia-
tion, the confidence interval (the certainty that the mainte-
nance check can be executed within the assigned time) rises
from 50% to 84.1%. In the initial planning, the number
of man-hours that is planned for was equal to the mean u.
Because of the assumed normal distribution, increasing to
a value of u + o adds 34.1% of possibilities to fall within
the confidence interval of the check. It was decided to in-
crease by only one standard deviation length, because this
has the highest impact on the confidence interval. Further
increasing the interval by another standard deviation length,
would increase the confidence interval with only 13.6%,
which does not weigh up to the increase in maintenance
time. If critical checks are still causing a lot of conflicts and
grounding, this might be reconsidered.

A new solution will be generated by the Genetic Algo-
rithm, with the updated parameters. By including the previ-
ous optimal solution in the initial population, it is expected
that the optimisation will be very fast and the outcome will
be close to the first schedule.

With that, the approach followed in this research comes
to an end. The complete framework of the model can be
revisited in Figure 2. It shows the inputs for the optimisation
and simulation models, the intermediate and final outputs
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as well as the feedback loop from the Monte Carlo simula-
tion to the genetic algorithm. In the following sections, this
is applied to a case study and its results are analysed and
discussed.

5. Case Study

To analyse the performance of the created model and ap-
ply the Monte Carlo simulations, a case study is performed
with maintenance data from a European airline, that partially
performs her own maintenance and partially outsources it
to external MROs. The GA model will be compared with
an exact Mixed-Integer Linear Programming model. This
model was developed in-house by the airline.

This MILP model can function as a good benchmark for
determining the optimality gap of the genetic algorithm. It
has the same objective function and is set to adhere to the
same constraints as the genetic algorithm model. It was also
run on the same online platform, to allow for a fair com-
parison in computational time too. The KPIs and the heat
maps from the simulation are compared for both models, as
the exact method will be subjected to the same simulation
scenarios.

5.1. Scope and Season Scenarios

The scope of the case study is to create a planning for
a complete maintenance season, with heterogeneous checks
and aircraft types about four to six months before the start
of the season. The model was tested on maintenance sea-
sons 2024-2025 and 2025-2026. The number of checks per
dataset is presented in Table 6, together with the number of
aircraft types and check types. The check types are broken
down using the abbreviations as mentioned in the caption.
All GA parameter combinations are tested for both seasons

to see how sensitive the selection of GA parameters is to the
input scenario.

Table 6. Different tested scenarios, where L=Light,
H=Heavy, E=EOL and P=Paint for the check types.

Scenario # of #of | A/C Chock types
checks | A/C | types
2024-2025 | 193 122 |5 4 (L: 107, H: 73,
E:2,P: 11)
2025-2026 | 145 121 | 5 4 (L: 91, H: 45,
E:7,P:2)

5.2. Determining Uncertainty

Throughout the research, multiple methods for deter-
mining uncertainty in maintenance duration and non-routine
tasks were tried. Due to scarce data, this could not be put to
practice and the scope was refined to focus on the creation
of the genetic algorithm model.

Hence, it was decided to assume that the maintenance
durations follow a normal distribution, with the mean being
the estimated required man-hours and the standard deviation
expressed as a percentage of the mean.

6. Hypotheses

Before the execution of the research, several hypotheses
were set regarding the optimisation and the optimisation-
simulation framework. They describe the expected compar-
isons between the GA and MILP planning.

6.1. Optimisation

* Hp,: The Genetic Algorithm will have a lower compu-
tation time than the MILP in large scenarios. In smaller
scenarios, it is expected to be similar or reversed. This
is expected because MILP solvers are very fast in small



scenarios but can explode for larger scenarios when it is
difficult to find the optimum. The GA is not expected to
explode as much, because it will create small iterations to
every planning and can be stopped at multiple moments
without an optimal solution.

Hp,: The Genetic Algorithm will find a less optimal so-
lution than the MILP in large scenarios. By design, MILP
solvers will return the optimal solution or be infeasible. The
larger the scenario, the more likely the GA gets stuck in a
local optimum and returns that as the best solution.

Hop,: The optimality gap between GA and MILP will
increase when the scenario size increases. This from the
previous hypothesis that GA gets stuck in a local optimum
more easily in a larger scenario, hence also the optimality
gap will increase.

6.2. Combined Optimisation-Simulation

Hops,: The loss of interval and maintenance cost will
increase when the confidence interval is raised for critical
checks. This is expected as elongating the time for critical
checks will create a tighter planning, causing some checks
to be replanned to external hangars or with more interval
loss.

Hos,: Feasibility will increase when the confidence in-
terval is raised for critical checks. This is expected as
the critical checks will have more on-time execution, due to
more time per check, and thus lead to less grounding events.

7. Results

In this section, the results of the research are presented.
Firstly, Section 7.1 discusses the outcomes of the GA optimi-
sation. Secondly, the results of the Monte Carlo simulations
are discussed in Section 7.2. Lastly, the re-optimisation
with fixed critical checks is presented in Section 7.3.

7.1. Genetic Algorithm Optimisation

This section discusses the outcomes of the genetic al-
gorithm for both seasons. They are assessed using several
KPIs, which are shown in Table 7. They are set in priority
order. The maintenance cost is the largest contributor to
fitness value, hence it is considered the most important.

Table 7. Key Performance Indicators (KPIs) for the
Genetic Algorithm schedule.

Key Performance Indicators

Estimated maintenance cost
Run time

Total lost interval

Average lost interval
Number of internal checks
Number of external checks

Before evaluating the outcomes, the results of the param-
eter selection are presented in Table 8. For both maintenance
seasons, two combinations were chosen: one with the high-
est fitness score, and another with a trade-off that provides a
better balance between fitness score and computation time.

7.1.1.

The optimisation is run on an online cloud-based plat-
form in a Kubernetes cluster, with the limits set on 7 CPU

Comparison with MILP
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cores and a maximum RAM memory of 20 GB, for both the
MILP and the GA. The optimisation resulted in a Gantt chart
with the planning, a fitness evolution over the generations,
and the KPIs. The fitness evolution for both GA-scenarios
of season 2024-2025 is shown in Figure 3a, where it can
be seen that the fitness value is rising and eventually stag-
nates. The outcome of the highest fitness scenario is shown
in Figure 3b, which shows all the internal and external bays
with planned checks as coloured boxes. The other fitness
evolution plot and maintenance schedules can be found in
Appendix A, in Section A.2.

The KPIs of both models were compared with each other.
They are shown in Table 9 and Table 10 for seasons ’24 -
’25 and ’25 - °26, respectively. For season ’24 - ’25, the
genetic algorithm performs usually worse than the MILP
for all KPIs. The only exception is the run time. Although
the best fitness scenario of the GA has a longer run time
than the MILP, the run time for the traded-off scenario is
only 246.1 seconds. The GA plans more checks externally,
which indicates that the MILP makes better use of the space
available in the internal hangars, which reduces costs.

For season ’25 - ’26, the genetic algorithm does reach
the same estimated maintenance cost as the MILP and a
similar division of internally and externally planned checks.
On the other KPIs, the GA performs worse than the MILP.
Especially the computational time is a lot higher in these
runs.

7.1.2.  Scalability

Based on the results above, the MILP would outperform
the GA. Hence, scalability is assessed. To do so, the number
of man-hours available per bay was reduced using a capacity
factor. The results, shown in Table 11, focus on the differ-
ences in run time and maintenance cost. Other KPIs were
considered less relevant.

The MILP consistently outperforms the GA in mainte-
nance cost, as expected from an exact optimisation approach.
Regarding feasibility, the GA began returning infeasible so-
lutions from a man-hour capacity reduction factor of 0.4,
whereas the MILP only became infeasible below 0.3. While
the GA remains relatively constant in computational time,
the MILP run time explodes for factors 0.8 and 0.9. Inter-
estingly, the computational time recovers at lower reduction
factors, eventually outperforming the GA again from 0.7 for
the highest fitness solution, and from 0.5 for the traded-off
solution.

It was expected that the computation time for the MILP
would continue to increase at lower reduction factors be-
cause the problem becomes more complex, but it seems that
this is actually only the case for factors 0.8 and 0.9 and after
that the problem becomes easier again.

7.2. Feasibility Analysis

The schedules created by the two models are subjected
to Monte Carlo simulations to analyse their feasibility.
7.2.1.

Many different statistics could be defined from the fea-
sibility analysis, but the most important ones were average
number of conflicts, knock-on delays and groundings.

In season 2024 - 2025, the MILP tends to have more

Average number of conflicts



Table 8. Parameter selection results.

Season Variant Parent selection Crossover Mutation Mutation Run time
percentage | (s)
2024-2025 | Best solution Tournament (n = 2) Uniform Paired inversion | 20% 1791.5
Traded-off solution | Steady-state selection | Uniform Paired inversion | 15% 246.1
2025-2026 | Best solution Steady-state selection | Paired two-points | Custom 5% 678.6
Traded-off solution | Steady-state selection | Two-points Custom 5% 442.9

Fitness Evolution

-135M

-14M

Fitness

~14.5M

~15.5M

600
Generation

—— GAbest solution

~——— GAtraded-off solution

800

(a) Fitness evolution plot of season 2024 - 2025.
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(b) Planning with highest fitness (tournament-2, uniform crossover, paired inversion mutation, 20% mutation percentage).

Fig. 3. Genetic Algorithm fitness evolution and planning for scenario with highest fitness, season 2024 - 2025.
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Table 9. KPI comparison MILP and GA optimisation, season 2024-2025.

. ESt: cos.t Run time Rm_l tirr{e Total slack Sla?k . Avg slack | # of internal | # of external
Scenario optimality optimality optimality
(seconds) (days) (days) checks checks
gap gap gap
MILP - 1060.4 - 2,064 - 11 175 18
GA (best 6.1% 17571 | 65.1% 2323 12.5% 12 162 31
fitness)
GA (trade-off
fitness-computation | 7.2% 246.1 -76.8% 2,955 43.2% 12 159 34
time)
Table 10. KPI comparison MILP and GA optimisation, season 2025-2026.
Scenario OE;:;I;ziitty Run time oR[;ltIilntl:::y Total slack ::)Ti::mlity Avg slack | # of internal | # of external
(seconds) (days) (days) checks checks
gap gap gap
MILP - 7.056 - 1,612 - 11 130 15
GA (best 0% 678.6 9517.3% | 2,010 24.7% 14 130 15
fitness)
GA (trade-off
fitness-computation | 0% 442.9 6176.9% 2,407 49.3% 17 130 15
time)
Table 11. Man-hour capacity reduction results.
Capacity | GA Run time | Run time | Run time Run time | Maintenance cost | Maintenance cost
factor variant GA (s) MILP (s) | difference (s) | gap difference optimality gap
Traded-off solution | 425.6 2237.1 84.0% -891243 -7.2%
1 Best solution 2982.2 2662.7 -319.5 -12.0% -763420 -6.1%
Traded-off solution | 580.6 29092.8 98.0% -1165617 -9.2%
0.9 Best solution 3451.1 29673.4 26222.3 88.4% -1108701 -8.7%
Traded-off solution | 228 35780.2 99.4% -1456998 -11.0%
0.8 Best solution 2826.3 36008.2 33181.9 92.2% -797840 -6.0%
Traded-off solution | 517.2 530.9 50.7% -828176 -6.0%
0.7 Best solution 35114 1048.1 -2463.3 -235.0% -575250 -4.1%
Traded-off solution | 1033.3 830.9 44.6% -460492 -3.2%
0.6 Best solution 3849.2 1864.2 -1985.0 -106.5% -405361 -2.8%
Traded-off solution | 633.1 -288.8 -83.9% -412322 -2.7%
0.5 Best solution 2323.1 344.3 -1978.8 -574.7% | -341381 -2.3%
Traded-off solution | 940.8 -868.3 -1197.7% | -10.00 x 10° Infeasible GA
0.4 Best solution 3815.1 72.5 -3742.6 -5162.2% | -3.000 x 10° Infeasible GA
Traded-off solution | 1442.3 -881.2 -157.0% -40.00 x 10° Infeasible GA
0.3 Best solution 6075.8 561.1 -5514.7 -982.8% -9.000 x 10° Infeasible GA
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conflicts than the GA plannings, which can be seen in Fig-
ure 4a. The box plots show the three planning variants on
the x-axis and the occurring number of conflicts per scenario
on the y-axis. The best fitness GA and MILP schedules are
also visualised by the coloured heat maps in Figure 5. It
can be observed that the GA schedule is less tightly packed
than the MILP, with more checks being allocated to external
hangars, which could be a logical cause of the difference in
conflicts.

For season 2025-2026, the outcomes were almost simi-
lar, as shown in Figure 4b. This was also checked for other
standard deviation percentages, where similar results were
observed. More information on the influence of standard
deviation percentages can be found in Appendix A.

7.2.2.  Knock-on Conflicts and Groundings

Next, the knock-on conflicts were simulated. On aver-
age, for season *24-°25, 21% of the checks cause a knock-on
conflict in the best-fitness GA, versus 44% in the MILP with
o = 5%. The average length of the knock-on delay in days
is also higher for the MILP. The difference in the proba-
bility of occurrence of knock-on conflicts is well illustrated
by Figure 6. The MILP creates a cascading effect due to
the back-to-back scheduling which increases the probability
of knock-on conflicts. The GA is influenced less by that
cascading effect, because of more gaps. This also has an
effect on the grounding, illustrated in the heat maps in Fig-
ure 7, where the checks causing groundings of aircraft are
coloured based on their probabilities. Here, it can be seen
that there are more checks in the MILP that have a high
probability to cause grounding, visible from the red blocks
in the Gantt chart. The performance of the models is further
discussed in Section 9. All three average parameters tend to
increase when the standard deviation percentage increases.
Interestingly however, the probability of a knock-on conflict
becomes more spread across all checks, instead of a few
checks that severely suffer from knock-on conflicts. A prob-
able cause for this is that a higher standard deviation also
allows for earlier completion, mitigating severe knock-on
conflicts that propagate far in the schedule. This is not usual
in practice hence it is addressed in Section 9.

For season 2025-2026, the results are very similar be-
tween the three schedules. This happens because there is
no optimality gap in maintenance cost in this scenario as
discussed in Section 7.1.

Based on the above results, it can be concluded that the
Genetic Algorithm causes less grounding in season 2024-
2025 than the MILP, because of fewer and smaller conflicts
and knock-on conflicts, but differences are small in season
2025-2026. This result is further discussed in Section 9.

7.3. Feedback Monte Carlo simulations to Genetic Al-
gorithm

To create a feedback loop to the Genetic Algorithm, the
checks that endanger the feasibility of the schedule must be
identified. These critical checks were selected based on the
probability of grounding, since this was considered to be
the most costly impact for an airline.

It was decided to test 5% and 10% of the total number
of work packages being marked as critical, based on their
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grounding probability. This was deemed a relatively small
number for which the confidence intervals need to be raised,
hence not stepping too far from the Monte Carlo simulation
on the Genetic Algorithm. Hence, for season 2024-2025,
this resulted in 10 and 19 checks, respectively. The traded-
off solution of the GA was used in this case. The reason for
that being that the optimisation of the best fitness variant
was not saturated but ran until the cut-off number of gen-
erations. During re-optimisation, this scenario would just
continue its initial optimisation, which makes it unsuitable
for testing the feedback framework and re-optimisation. The
results of four different configurations is shown in Table 12.
It can be observed that for the first three configurations, the
run time is short and that the results do not change that
much from the original optimisation. When we change the
standard deviation to a higher percentage, and thus the allo-
cation of extra time as well, the run time goes up. Note that
the termination criterion is still set at 50 generations, which
is a large share of the total number of generations run, while
the improvement from the original is small.

Now, these configurations must run through the exact
same simulation scenarios to analyse if the grounding prob-
abilities have decreased and by how much. If so, the sched-
ule is more robust, being able to remain feasible in more
scenarios. The results for the first three configurations are
shown in Table 13 and compared with the scenario where no
checks are fixed. For every configuration, the sum is taken
for the knock-on and grounding probabilities and the number
of work packages that cause knock-on conflicts or ground-
ings are counted. The fraction is determined by dividing
the value by the total number of checks in the season. It can
be observed that the overall probability of grounding goes
down with around 9 to 40% when more checks are fixed
and receive additional time, but the number of knock-on
conflicts goes up in the scenario with 5% fixed checks, and
for 5% fixed checks with 10% extra time with around 3-4%.
This could be due to the schedule becoming tighter when the
checks are elongated and remain in the same bay. This is not
posing a problem for the configuration where 10% of checks
are fixed, as the knock-on probability is lowered by 7.3%.
When the fixed checks are inspected individually, it can be
observed that the probability of grounding other checks goes
down in all cases. There is an exception if a fixed checks is
planned right before a black-out window. The check cannot
propagate a knock-on conflict and cannot ground another
check because of this, but it can be grounded itself. This
probability also goes down when checks receive additional
time. These results indicate that the number of fixed checks
has a higher influence on the knock-on and grounding prob-
abilities than the amount of time added, as the first and third
configuration obtained very similar values. The configura-
tion with different standard deviation is omitted here as it
must be compared to a different base scenario.

The adapted planning can be compared with the initial
planning as the new schedule might come with changes. As
it is desirable to keep these as changes as small as possibles,
it is interesting to quantify them using a change score (CS)
or a similarity index (SI), where SI = 100% — CS. The
Change Score represents the proportion of altered checks
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Fig. 6. Gantt chart heat maps of the probability of knock-on conflicts with o= = 5%, season 2024-2025.
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Aircraft Maintenance Grounding Chart: HMP24-25 best fitness GA (0 = 5%)
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Fig. 7. Gantt chart heat maps of the probability of groundings with o = 5%, season 2024-2025.

Table 12. Results re-optimisation with different configurations.

Standard Extra Percentual maintenance ) Percentual lost
. .. # of fixed # of Run time . .
Season Variant deviation allocated | cost change . Lost interval | interval change
checks ) L generations | (seconds) .
percentage time from original from original
HMP24-25 | Traded-off | 5% 10 (5%) 5% -0.00% 119 59.2 2910 -1.52%
HMP24-25 | Traded-off | 5% 19 (10%) | 5% +0.48% 99 59.6 3261 +10.36%
HMP24-25 | Traded-off | 5% 10 (5%) 10% +0.00% 119 59.7 2957 +0.07%
HMP24-25 | Traded-off | 20% 10 (5%) 20% +1.18% 384 273.0 3110 +5.25%

Table 13. Changes in knock-on and grounding probabilities after re-optimisation of GA traded-off (HMP24-25, o = 5%)

Configuration Parameter Value | Fraction of all checks | % difference
Sum knock-on probabilities 4483 | 0.23 -
0% fixed checks Count checks causing knock-on 117 0.61 -
Sum grounding probabilities 21.39 | 0.11 -
Count checks causing grounding | 54 0.28 -
Sum knock-on probabilities 46.66 | 0.24 4.08%
5% fixed checks Count checks causing knock-on 112 0.58 -4.27%
Sum grounding probabilities 19.36 | 0.10 -9.49%
Count checks causing grounding | 51 0.26 -5.56%
Sum knock-on probabilities 41.54 | 0.22 -7.34%
10% fixed checks Count checks causing knock-on | 112 0.58 -4.27%
Sum grounding probabilities 12.93 | 0.07 -39.55%
Count checks causing grounding | 43 0.22 -20.37%
Sum knock-on probabilities 46.45 | 0.24 3.47%
5% fixed checks | Count checks causing knock-on | 111 0.58 -5.36%
10% extra time Sum grounding probabilities 19.03 | 0.10 -12.19%
Count checks causing grounding | 51 0.26 -5.88%
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out of the total checks in the schedule. This metric can
quantify different types of change:

» Percentage of checks with changed man-hours (input)

 Percentage of checks with a changed duration

» Percentage of checks with a changed bay assignment

 Percentage of checks with a changed location type

(internal or external hangar)

* Percentage of checks with a changed start or end date

* Percentage of checks with changed slack

Note that the percentages indicate the number of checks
that remain the same, not, for example, the percentage
change of the total duration or slack. The percentages can be
combined to a composite similarity score. Table 14 shows
the similarity index for three configurations compared to the
original planning. The allocating 10% extra time to checks,
instead of 5%, gives fewer changes than fixing more checks.
Again, the configuration with changed standard deviation is
omitted.

8. Validation

In this section, the approach of validating the genetic
algorithm model is explained. The goal is to assess whether
the hangar maintenance optimisation produces credible out-
comes. Firstly, a sensitivity analysis of the parameter se-
lection is discussed in Section 8.1. Secondly, a sensitivity
analysis of the fitness function is discussed in Section 8.2.

8.1. Sensitivity Analysis - Parameter Selection

The GA-parameter selection sensitivity is analysed us-
ing a correlation matrix, to see which parameters have the
largest influence on the outcomes of the algorithm. The
matrices are shown in Figure 8 and Figure 9. It can be seen
that the parent selection type is in both seasons the most
influential on the fitness score. This happens especially
because four selection types, namely rank, rws, sus and ran-
dom, performed very badly in the optimisation. In the ten
best parameter combinations of both seasons, tournament
and sss occurred equally often. Of the other parameters,
the mutation type was the most influential but results were
mixed. In season *24-’25, the inversion mutation was more
frequent and in season ’25-°26, the custom mutation was
dominant in the top 10. The results of the crossover type
and mutation percentage were very mixed, with every pos-
sibility occurring frequently. This is reflected in the very
low correlation scores of the crossover type.

It can be concluded that the parameter configuration
strongly influences the result of the GA and is not always
the same, based on the two tested seasons. However, tour-
nament and sss usually give the most promising results.
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Correlation: Hyperparameters vs Outcomes - GA HMP24-25 Planning
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Fig. 8. Correlation matrix for season 2024-2025.
Correlation: Hyperparameters vs Outcomes - GA HMP25-26 Planning
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Fig. 9. Correlation matrix for season 2025-2026.

8.2. Sensitivity Analysis - Fitness Function

For the fitness function, several tests were executed to
assess how it would influence the final solution. Firstly,
the cost parameters for internal and external hangars were
changed and made equal to each other. This resulted in a
scattered planning with even use of internal and external
hangars, as expected. With the cost parameters, an airline
can influence how much they want to favour their internal
hangars over external ones. Secondly, the weight of the lost
interval component of the fitness function was increased. If
increased with a factor of 1,000, the model sacrifices inter-
nal bay allocation for interval usage. In season ’24 - °25,
this change resulted in a contribution growth of wasted in-
terval to the fitness function from 0.2% to 8.2%. It led to a
maintenance cost increase of 7.2% and a decrease in wasted
interval of 57.0%. For season ’25 - ’26, the contribution
grew from 0.2% to 11.1%. The maintenance cost increased
with 4.6% and the wasted interval decreased by 26.4%%.

Next to these two sensitivity analyses, the MILP model
functions as a benchmark for the GA. The 0% optimality
gap in season 2025-2026 for maintenance cost shows that
the MILP and GA get to similar results. Smaller subsets of
the scenarios were tested too. With half the checks in the
data set but equal hangar availability, the GA will reach a
completely optimal solution with multiple parameter com-
binations. Its run time decreases to less than two minutes.

The genetic algorithm can produce credible and near-



Table 14. Similarity index of adapted schedules, as compared to initial schedule of traded-off GA (season "24 - °25).

Similarity Index 5% fixed checks | 10% fixed checks | 10% extra time
# of checks with same man-hours 94.82% 90.16% 94.82%

# of checks with same duration 94.82% 93.26% 94.30%

# of checks with same start and end date | 80.83% 67.36% 79.79%

# of checks with same bay 97.41% 97.93% 97.41%

# of checks with same location type 100.00% 98.45% 100.00%

# of checks with same slack 82.90% 72.54% 81.87%
Composite similarity 91.19% 85.91% 90.67%

optimal solutions, especially when parameters are well-
tuned. The analyses demonstrate that the genetic algo-
rithm’s performance is sensitive to parameter configuration
and the design of the fitness function, but the results show
strong similarity with the MILP model. This makes the
algorithm a suitable method for the optimisation of hangar
maintenance planning.

9. Discussion

This section discusses the three components of this re-
search: the optimisation of the maintenance planning using a
Genetic Algorithm in Section 9.1, the feasibility assessment
through simulation in Section 9.2, and the incorporation
fo robustness improvements via the feedback framework in
Section 9.3. If applicable, the parts include a validation of
the relevant hypotheses.

9.1. Optimisation Performance

The comparison of the optimisation performance be-
tween the GA and MILP model showed multiple insights.
While GAs are generally considered to have fast run times
and better scalability in complex problems, these benefits
were not consistently observed. In three of the four scenar-
ios tested, the MILP outperformed the GA in both speed
and solution quality. An important contributor to the longer
run time of the GA is its termination criterion, which re-
quires a large number of additional generations to confirm
convergence. Lowering this criterion can reduce run time
but increases the risk of premature convergence and subop-
timal results. Airlines may need to balance this depending
on their preferences.

The sensitivity of the GA to parameter tuning is also
challenging, as the configurations varied between the two
maintenance seasons, indicating that a universally optimal
parameter combination may not exist. Looking at optimal-
ity, the GA showed a clear gap compared to the MILP. At this
stage, the MILP delivers more optimal results with shorter
runtimes in most tested scenarios. However, the GA may
become more relevant in larger or more constrained prob-
lem settings where MILP models struggle to scale. This
could be the case, for instance, with very large fleets, ex-
panded planning horizons, or non-linear constraints. This
was partly observed in the man-hour capacity reduction test,
where GA outperformed the MILP for the scenarios where
the complexity was increased, but the potential has not yet
been conclusively demonstrated.
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9.1.1.

The results confirm hypothesis Hp,. The GA achieved
stable and decent results, but not optimal in larger scenarios.
Hop, cannot be confirmed as the MILP was faster in most
cases. Although it is backed up by little diversity in the data
sets, it could be that Hp, can be confirmed too. The opti-
mality gap is larger for the more complex season ’24-°25,
containing 193 work packages, than season ’25-’26 contain-
ing 145 work packages. Statistical validation is needed to
confirm this hypothesis.

Hypothesis Validation - Optimisation

9.2. Feasibility Assessment via Simulation

The feasibility of the created schedules was evaluated
using Monte Carlo simulations to assess the plans per-
formed under different scenarios. The results showed that
schedules, which are more tightly packed, experienced more
knock-on conflicts and grounded checks. This was the case
for the exact planning in season 2024-2025. A more tightly
packed schedule, with more checks in the internal hangars
and closer to their due dates, leaves less room for poten-
tial disruptions. This aligns with the conclusion of Clarke
(1998) [48], who noted the increasing severity of disrup-
tions due to airline scheduling having increasingly less slack
nowadays.

While the GA might appear to perform better in the
simulation, this is not what the GA was designed for. Its
initial shortcomings; reduced optimality and leaving more
gaps in the schedule, actually prove beneficial by provid-
ing buffers. However, this robustness is not a feature of
the GA, as it results from poor initial planning rather than
a designated strategy. This is indeed observed in season
2025-2026, where the GA has a slightly higher probability
for groundings than the MILP. An approach that might work
as well in that case is systematically planning checks at least
two days before its due date or black-out window to avoid
groundings. In terms of robustness, it is unlikely that the
current GA outperforms the MILP but we can investigate
how we can accurately determine the checks that could ben-
efit from additional time and for which checks it would be
less useful.

9.3. Feedback Framework for Robustness Improve-
ment

The final part of this study focuses on how adjustments
could be fed back into the optimisation. This was done by
fixing critical checks in time and adjusting man-hour capac-
ity before re-running the GA. The potential benefit of the



GA lies in its ability to improve the initial planning in the
optimiser. By reintroducing the previous schedule as part of
the new initial population, we might decrease the run time,
improve robustness, and keep the updated planning close to
the original.

This feedback framework showed promising results for
the different configurations proposed in Section 7.3. The
new planning that was created had little changes, improved
robustness and a short run time, thanks to the initial pop-
ulation approach. This framework might be useful as a
quick decision-support tool for maintenance planners. Al-
ternative planning options can be explored with parts of the
planning fixed in time and with extra man-hours assigned to
investigate the influence on robustness. For practical appli-
cation, however, the feasibility assessment should be done
quickly. The Monte Carlo simulations are currently very
time-consuming.

Based on the findings of this study, the MILP model
remains the preferred method for generating efficient and
consistent maintenance plans, especially in cases with mod-
erate complexity. The GA can however provide additional
value when it that might outperform the MILP in complex
scenarios and its feedback framework can be helpful as a
quick decision support tool for a maintenance planner to as-
sess and improve the robustness of maintenance schedules
with alternative plannings while staying close to the original
schedule.

9.3.1. Hypothesis Validation

Hypothesis Hps, is rejected. In the re-optimisation, one
variant achieved a lower maintenance cost than the original
optimisation. This can happen if the original optimisation
did not find the optimal solution and the re-optimisation
can find a solution that is cheaper. The lost interval also
went down for this configuration. For the other configura-
tions, the hypothesis could be confirmed, but it will not al-
ways be true. Hypothesis Hpg, can be supported, since the
grounding probabilities decreased in all re-optimisations.
A statistical analysis should show whether these results are
significant.

9.4. Limitations

There are several limitations to the current algorithm,
that could be improved in future research.

* Maintenance is assumed to occur every day, includ-
ing weekends, and every day has the same man-hour
capacity. This may not be true in reality.

No maximum lost interval was enforced. This allowed
some checks to be planned with extremely large slack,
up to 180 days, including annual checks. Such early
scheduling can cause unnecessary extra checks.
Maintenance durations were modelled with a normal
distribution, while a right-skewed distribution might
better reflect real-world variability. This tends to only
extend tasks, while now work package can also be fin-
ished early.

The combined framework and feasibility assessment
were only evaluated in two maintenance seasons.
To generalise the conclusions, broader application is
needed.
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9.5. Recommendations for Future Work

Further research should try to address the limitations
discussed above and improve applicability on real-world
environments.

* Include uncertainty from historical data to replace
the assumed probability distributions for maintenance
task durations with statistical distributions based on
historical maintenance data. This would improve the
practicality and accuracy of the Monte Carlo simula-
tions.

Develop a real-time rescheduling tool to create a
dynamic rescheduling framework that can adjust the
maintenance plan throughout the maintenance season
in response to disruptions.

Explore combinations of multiple objectives to
look at different trade-offs, such as the benefit of
shorter aircraft ground time versus cheaper internal
maintenance.

10. Conclusion

This study investigated the development and analysis of a
stochastic maintenance planning model, taking into account
uncertainty of non-routine tasks. In effective maintenance
planning, it is important to address potential disruptions to
avoid additional costs and rescheduling. To do so, a stochas-
tic optimisation framework was developed. A genetic algo-
rithm was created to optimise he maintenance planning,
and its outcomes were compared to an deterministic MILP
model. A feedback framework was introduced to implement
observations from a feasibility analysis through Monte Carlo
simulations back into the optimisation with adjusted inputs.
It was expected that the combination of these methods would
improve the robustness of maintenance schedules, reducing
the need for schedule changes due to disruptions.

Although the GA demonstrated potential in optimisa-
tion, with small optimality gaps for maintenance costs, the
MILP model generally provides better and faster solutions.
However, the GA could be useful in more complex sce-
narios. Next to that, the feedback mechanism showed that
the robustness can be improved with limited run time and
changes to the original schedule. This allows for a decision-
support tool for maintenance planners to explore alternative
schedules.

Overall, the framework gives insight into feasibility of
schedules and provides an opportunity to improve the ro-
bustness of an aircraft hangar maintenance planning subject
to uncertainties.
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A. Appendix
A.1. Algorithm for Initial Population

Algorithm 1 shows the algorithm used to generate the initial population of the genetic algorithm. It favours internal
hangars and high-capacity bays. Each bay is assigned a base score equal to its daily man-hour capacity, with internal bays
receiving an additional bonus of 1,000 hours. These scores are then used to sort the bays. A power-weighting selection
is applied to randomly assign the work package to a bays in the initial population, increasing the probability of selecting
options with higher scores.

Algorithm 1: Algorithm for initial population with internal and high-capacity bay preference

Input: Population size P, work packages W, bay capacity B, random seed s
Output: Initialised population matrix

1 Set random seed to s

2 Initialise empty population list

3 fori «— 1toPdo

4 Initialise empty individual

5 for work package w in W do

6 Get aircraft type a,, and check type c,, from w

7 Initialise empty list of compatible bays

8 foreach bay b in B do

9 if a,, € b.aircraft types and ¢ € b.check_types then

10 L L Add (b.number, b.location_type, b.capacity) to compatible bays
11 Sort compatible bays: Internal bays first, then by descending man-hour capacity
12 Select a bay from the list using power-weighted selection

13 Append selected bay and a random sequence priority to individual
14 Add individual to population

15 return population

A.2. Results Genetic Algorithm

In this section, the outcomes of the genetic algorithm can be found for the two different seasons, with two variants per
season: one with the highest fitness and another where a relatively high fitness is combined with reasonable computation
time. Tthe fitness evolution plot of season 2025-2026 is shown in Figure 10 in addition to the plot shown in the article.
The plannings are shown in Figure 11 and Figure 12.

Fitness Evolution

—— GAbest solution

GA traded-off solution

Fig. 10. Fitness evolution plots for season 2025-2026.

22



Aircraft Maintenance Gantt Chart (Genetic Algorithm Planning, HMP_24_25)
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(b) Planning with high fitness combined with reasonable computation time (steady-state selection, uniform crossover, paired inversion mutation, 20%
mutation percentage.

Fig. 11. Genetic Algorithm plannings for season ’24 - *25.
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Aircraft Maintenance Gantt Chart (Genetic Algorithm Planning, HMP_25_26)
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Fig. 12. Genetic Algorithm plannings for season ’25 - 2
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A.3. Influence standard deviation percentage on simulations

In Figure 13 - Figure 15, the influence of the standard deviation on the three indicators is presented for both seasons.
The percentage is calculated by dividing the number of conflicts by the number of simulations and by the number of
checks in the schedule to normalise the values. The trend observed is relatively linear, with the MILP 2024-2025 having
the highest probabilities in every graph. The three different variants for season 2025-2026 are very close to each other.
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