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Semitransparent mirrors are standard elements in light optics for splitting light beams or creating two versions
of the same image. Such mirrors do not exist in electron optics, although they could be beneficial in existing
techniques such as electron interferometry and holography and could enable alternative electron imaging and
spectroscopy techniques. We propose a design for an electron beam splitter using the concept of quantum
interaction-free measurement (IFM). The design combines an electron resonator with a weak phase grating.
Fast switching gates allow electrons to enter and exit the resonator. While in the resonator, the phase grating
transfers intensity from the direct beam into one of the weakly diffracted beams at each pass. To make the beam
splitter an efficient two-port splitter, the intensity in all other diffracted beams is blocked by an aperture. The
IFM principle minimizes the loss of total intensity by this aperture. We use a scattering matrix method to analyze
the performance of the beam splitter, including the effects of inelastic scattering in the phase grating. This design
can be generalized to beam splitters for not only electrons, but also photons, neutrons, atoms, and other quantum
mechanical systems.

DOI: 10.1103/PhysRevA.98.043621

I. INTRODUCTION

Electron beam splitters are used in many applications
such as electron interferometry [1], holography [2], imaging
[3], and spectroscopy [4,5]. These applications benefit from
the short de Broglie wavelength of electrons and a strong
electron-matter interaction. However, many of these applica-
tions require a coherent and efficient two-port beam splitter,
which cannot be readily provided by existing electron beam
splitters. In light optics, efficient two-port beam splitting can
be achieved by using either a half-silvered mirror, a waveguide
coupler, or a fiber switch. Unfortunately, all of these tech-
niques are difficult to implement for electron beams. In this
work, we propose a two-port electron beam splitter that uses
quantum interference to realize near-ideal efficiency.

Several types of electron beam splitters have been devel-
oped previously: biprisms [6], crystals [7], optical standing
waves [8], and nanofabricated gratings [5,9–13]. The most
commonly used electron beam splitters are biprisms, which
split the incoming electron beam into two output beams by the
electrostatic force of a charged wire. A biprism placed in the
electron beam inevitably blocks a certain portion of the beam
and causes diffraction effects due to the wire edges, leading to
intensity loss. Additionally, a biprism is a wave-front-division
beam splitter, which divides the wave front of the incoming
electron beam. Wave-front-division beam splitters usually
require a highly coherent point electron source [14]. This class
of beam splitters also cannot split a wave with a pattern in it
and hence cannot be easily applied to emerging electron beam
technologies that use quantum mechanical effects [3,15]. Al-
ternatively, thin crystals have been used as amplitude-division
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electron beam splitters. These beam splitters have a less
stringent requirement on illumination coherence, leading to
higher intensities by using extended sources, and a larger
interference field [14]. However, electron diffraction from a
crystal typically results in multiple diffracted beams. In order
to make a two-port beam splitter, high-order diffracted beams
need to be blocked, which leads to intensity loss. Electron
beams can also be diffracted with optical standing waves by
using the Kapitza-Dirac (KD) effect [8]. The advantage of the
KD effect is that electrons do not need to go through or near
materials, thus minimizing decoherence caused by inelastic
scattering. However, the KD effect requires high-quality laser
beams and good alignment, and it still suffers from finite
intensity loss due to high-order diffraction. Recently, nanofab-
ricated gratings have been proposed as electron beam splitters
[9–12]. These beam splitters are also amplitude-division beam
splitters, and have a less stringent requirement on the coher-
ence condition of illumination. Nanofabrication also enables
the production of arbitrary patterns to modulate the incoming
electron beam, inspiring new applications such as electron
vortex beam generation [5,11,12,16]. For the typical electron
energies used in an electron microscope, thin membrane
nanofabricated gratings are fairly transparent and there is only
a small intensity loss due to inelastic scattering. For example,
a 30-nm-thick silicon nitride membrane inelastically scatters
roughly 20% of a 300-keV incident electron beam [12]. Thin-
ner membranes result in even less intensity loss. However,
similar to crystal beam splitters, intensity loss due to high-
order diffraction remains as a problem for nanofabricated
gratings. For example, a grating patterned into a 30-nm-thick
silicon nitride membrane shows ∼34% maximum first-order
diffraction efficiency (with respect to the transmitted beam)
[12].
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There have been some attempts to increase the efficiency of
electron beam splitters. For biprisms, selecting a wire with a
small diameter helps to reduce intensity loss [10]. For crystals
and optical standing waves, a “two-beam” condition, or Bragg
regime, can be achieved by tilting the beam splitters so that
only one diffracted beam is strongly excited. However, even
in this situation, there is still finite intensity in high-order
diffracted beams. For example, in a previous work showing
electron diffraction from an optical standing wave, even in
the Bragg regime of (+1)-order diffraction, the (–1)-order
and (+2)-order diffracted beams are clearly visible in both
theory and experiment, with the peak diffraction intensity
of the (–1) order half as high as that of the (+1) order
[17]. For nanofabricated gratings, diffraction efficiency can be
improved by moving from amplitude gratings (e.g., a grating
made from a 1-μm-thick platinum foil) to phase gratings (e.g.,
a grating made from a 30-nm-thick silicon nitride membrane),
and carefully controlling the surface profile of the grating
[12]. All these efforts improved the efficiency of various types
of electron beam splitters, but intensity loss has never been
completely eliminated.

Quantum mechanical “interaction-free measurement”
(IFM) was proposed by Elitzur and Vaidman as a means
of detecting the presence of an object without interacting
with it [18]. In the concept of quantum IFM, a single probe
particle, such as a single photon, is sent to a Mach-Zehnder
interferometer. The object to be detected is placed in one
of the two paths of the interferometer and fully blocks
the probe particle if the particle hits the object. The
presence of the object can change the output state of the
interferometer, and it is possible in principle to detect the
object without interaction between the probe particle and
the object. The quantum IFM concept has been further
developed by incorporating the quantum Zeno effect [19].
Efficient quantum IFM was realized by cascading multiple
stages of Mach-Zehnder interferometers and using highly
asymmetric beam splitters. The efficiency of quantum IFM
can approach unity by repeated interrogations of the object
with a small fraction of the probe-particle wave function,
while the interaction probability between the probe particle
and the object simultaneously tends to zero. While early
development of quantum IFM chose photons as the probe
particles, recent works have proposed to perform quantum
IFM with electrons, which holds potential to reduce sample
damage in electron microscopy [3,15]. Here, we use the
concept of quantum IFM incorporated with quantum Zeno
effect to suppress spurious coupling to undesired modes in a
quantum mechanical system (in our case, an electron beam
splitter). We call this quantum “interaction-free suppression”
(IFS).

In this paper, we propose a highly efficient two-port elec-
tron beam splitter that utilizes quantum IFS. The theoretical
efficiency can be made arbitrarily close to unity. The beam
splitter consists of a weak phase grating, such as a nanopat-
terned membrane, and a resonator. Beam splitting is achieved
by passing the electron beam through the weak phase grating
multiple times within the resonator. The beam-splitting ratio
is controlled by the number of passes through the grating.
Higher-order diffraction can be suppressed by inserting an
aperture that simply blocks unwanted diffracted beams. The

FIG. 1. (a) Schematic of the beam-splitter design. The two-port
beam splitter has one input port and two output ports. The input
electron enters a resonator in which a weak phase grating is placed.
The electron is diffracted by the grating. After a certain number of
round trips (and passes through the grating in the resonator), the
electron leaves the resonator. The output ports 1 and 2 correspond
to the direct (blue solid arrow) and diffracted (red dashed arrow)
beams, respectively. In the schematic, we focus on the fundamental
operating principles and leave out details of the electron source,
lenses, deflectors, and detectors. (b) Calculated intensities of direct
and diffracted beams as a function of number of passes through a
crystal beam splitter, of which the thickness is 1% of the extinction
distance. Beam-splitting ratio, i.e., the relative intensity between the
two output beams, can be tuned by changing the number of passes
through the crystal.

loss introduced by this aperture can be arbitrarily close to zero
according to quantum IFS.

The paper is organized as follows. In Sec. II, we introduce
the scattering matrix method for theoretical calculation, and
analyze the working principle of the beam splitter under the
simplest scenario—the two-beam condition—by considering
only two beams. In Sec. III, we analyze the beam splitter by
taking into account high-order diffracted beams, and propose
to reduce the intensity loss due to high-order beams with a
beam-blocking aperture. In Sec. IV, we discuss the effect of
electron inelastic scattering. In Sec. V, we show the aperture
performs quantum IFM on the electron, and evaluate the total
intensity loss of the beam splitter. Finally, Sec. VI summarizes
our results.

II. TWO-BEAM CONDITION OF A CRYSTAL BEAM
SPLITTER: SCATTERING MATRIX METHOD

Our beam-splitter design consists of a weak phase grating
and a resonator. Figure 1(a) shows the schematic of the design.
The beam splitter is a two-port system with one input port and
two output ports. The input and output ports have gates that
control the entrance and exit of the electron. The beam splitter
works with a pulsed electron beam. The incident electron
enters the resonator through the input port gate, the gate
is then closed, and the electron starts to bounce back and
forth in the resonator. A weak phase grating is placed in the
resonator. We assume, for the purpose of explaining the basic
operation of the beam splitter, that the grating imposes a pure
phase modulation onto the electron beam without amplitude
modulation caused by inelastic scattering. The electron goes
through the grating multiple times when it is resonating, and is
diffracted by the grating. For now, we assume there is only one
diffracted beam. The electron is in the direct beam with unity
probability prior to its first interaction with the diffraction
grating. After each diffraction event, a small fraction of the
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electron wave function is diffracted (the fraction is small as
a weak phase grating is used). Hence, as the electron passes
through the grating multiple times, the probability of the elec-
tron occupying the diffracted beam builds up coherently. The
beam-splitting ratio, i.e., the relative intensity of the direct and
diffracted beams, depends on the number of passes through
the grating. If the output gates open after a certain number
of passes and the direct and diffracted beams go to output
ports 1 and 2 respectively, a corresponding splitting ratio can
be achieved by the beam splitter. Here we want to mention
the resonator mirror forms an image with -1 magnification. In
order to impose the same phase modulation to both forward-
going and backward-going electron beams, the grating should
be symmetric with respect to the optical axis. Otherwise, one
would need a beam deflection or rotation device to make sure
the same phase modulation is imposed every time the electron
passes through the grating. Furthermore, the complete design
involves several other electron-optics components, such as
electron sources for the input beam, electron detectors for the
output beams, and lenses for transforming between focused
beams at the input and output ports and plane waves illu-
minating the weak phase grating. However, we focus on the
fundamental operating principles and leave out details of the
electron source, lenses, deflectors, and detectors, as shown in
Fig. 1(a).

We adopt a scattering matrix method to analyze the beam
splitter. We first introduce the method for a thin crystal as
the weak phase grating in a two-beam condition, as shown
in Fig. 1(a). The crystal is tilted with respect to the incident
beam, so that only one diffracted beam is strongly excited.
In a realistic two-beam condition, other diffraction orders still
exist, and we will discuss this in Sec. III. Here, we model the
direct beam and the diffracted beam in free space as two plane
waves with different momentum vectors: e2πik0·r (the direct
beam) and e2πikg ·r (the diffracted beam). Before entering the
crystal, the electron wave function is a superposition of the
two plane waves:

�in = a1e
2πik0·r + a2e

2πikg ·r . (1)

After exiting the crystal, the electron wave function is also
a superposition of the plane waves:

�out = b1e
2πik0·r + b2e

2πikg ·r . (2)

The crystal diffraction modulates the amplitudes of the
two plane waves, and can be mathematically modeled as a
scattering matrix S in the following input-output relation:[

b1

b2

]
= S

[
a1

a2

]
, (3)

which relates the amplitudes of the direct and diffracted beams
at the input and output of the crystal. The scattering matrix S
for a thin crystal is shown to be [20,21]

S =
[

cos
(
πt/ξg

)
i sin

(
πt/ξg

)
i sin

(
πt/ξg

)
cos

(
πt/ξg

) ]
, (4)

where t is the crystal thickness and ξg is the crystal extinc-
tion distance for electron diffraction. The scattering matrix
S is unitary and the total intensity of the electron beam is
conserved, as expected. As described previously, the electron

beam will pass through the crystal multiple times, hence

�OUTPUT = SN�INPUT, (5)

with � being the vector representation of the electron wave
function where the first (second) element is the amplitude
coefficient of the plane wave e2πik0·r (e2πikg ·r ).

Assuming the electron starts in the direct beam, namely,

�INPUT =
[

1
0

]
, (6)

we can calculate the final intensities of the direct and
diffracted beams after the electron passes through the beam
splitter N times,

I0 = |�OUTPUT(1)|2, (7)

Ig = |�OUTPUT(2)|2, (8)

where the index 1(2) is referring to the first (second) element
of the wave-function vector. The intensities are calculated for
a crystal with a thickness t that is 1% of the extinction distance
ξg , and the results are shown in Fig. 1(b). The incident electron
is originally in the direct beam. As the electron passes through
the crystal, a small fraction of the beam intensity will be
split into the diffracted beam via electron diffraction. With an
increasing number of passes through the crystal, intensity in
the diffracted beam will coherently build up. When a certain
number of passes is reached [N = 50 in Fig. 1(b)], the beam
intensity is completely transferred from the direct beam to
the diffracted beam. We call this number of passes the switch
point. This switch point depends on the phase modulation of
the weak phase grating. The weaker the phase modulation of
the grating is, the larger the switch point. In this example
where the weak phase grating is a thin crystal, changing
the phase modulation can be achieved by varying the crystal
thickness t , thus varying the πt/ξg term in the scattering
matrix. As a result, if the output port gates are opened after
the electron passes through the crystal a certain number of
times, a corresponding splitting ratio between output port 1
(the direct beam) and output port 2 (the diffracted beam) can
be achieved. This splitting ratio is tunable between zero and
unity by controlling the number of passes. Thus, it can be
seen that our electron beam splitter works very similarly to
a microwave or photonic directional coupler [22,23].

III. MULTIBEAM CONDITION OF A NANOFABRICATED
GRATING BEAM SPLITTER: BLOCKING HIGH-ORDER

DIFFRACTION

Electron diffraction from a periodic structure (a crystal
or a nanofabricated grating) will inevitably produce multiple
diffraction orders, which render the analysis in the two-beam
condition questionable. Here, we consider a beam-splitter
configuration [Fig. 2(a)] similar to the design discussed in
the previous section. This time we choose a nanofabricated
grating as the weak phase grating, and include high-order
diffraction in our analyses. The same analysis can also apply
for other types of phase gratings.
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FIG. 2. (a) Schematic of the beam-splitter design considering
high-order diffraction. The two-port beam splitter has one input port
and two output ports. The input electron enters a resonator in which
a weak phase grating is placed. The electron is diffracted by the
grating. After a certain number of round trips and passes through
the grating in the resonator, the electron leaves the resonator. The
output ports 1 and 2 correspond to the direct (blue solid arrow)
and diffracted (red dashed arrow) beams, respectively. High-order
diffracted beams are also shown (light blue dotted arrows), but they
do not contribute to the output beams. (b) Calculated intensities of
direct (0th order) and diffracted [(+1)-st order] beams as a function
of number of passes through a weak sinusoidal phase grating, of
which the phase amplitude is 0.02π . Beam-splitting ratio, i.e., the
relative intensity between the two output beams, can be tuned by
changing the number of passes through the grating.

The scattering matrix method is again used to analyze the
beam splitter, while taking high-order diffracted beams into
consideration. Due to the existence of high-order diffraction,
the dimension of the scattering matrix is now larger than
2. To include all possible diffraction orders, M , the matrix
dimension, would be infinite. In our calculation, we choose
a sufficiently large number for M so that a finite-dimensional
scattering matrix can still give accurate results (we chose M =
100). This is because beam intensities for very-high-order
diffraction beams are weak and thus negligible.

We assume the weak phase grating is a one-dimensional
sinusoidal phase grating; namely, the grating modulation of
the transmission has the following form (for one period):

g0(x) = exp

[
i
A

2
sin

(
2π

x

P

)]
, |x| � P

2
. (9)

Here A is the phase amplitude of the grating, P is the grat-
ing pitch, and the periodic profile is along the x axis. Hence,
the transmission modulation function of the full grating is the
convolution between g0(x) and a delta pulse train,

g(x) = g0(x)
∑

n

δ(x − nP ). (10)

This function can be cast into a Fourier series,

g(x) =
∞∑

n=−∞
Jn

(
A

2

)
exp

(
i
2πn

P
x

)
. (11)

For periodic, sinusoidal phase modulation, the Fourier
series coefficients are Bessel functions of the first kind. There-
fore, the scattering matrix S describing the weak sinusoidal
phase grating is a (2M + 1) × (2M + 1) matrix with ele-
ments

Sij = J(j−i )

(
A

2

)
. (12)

Note that if the order (j − i ) is odd and negative, the Bessel
function J(j−i )( A

2 ) is negative (for small phase amplitude A).
Depending on the exact form of the phase modulation (e.g.,
sinusoidal wave, square wave, sawtooth wave, etc.) and the
grating type (e.g., nanograting, thin crystal, KD effect, etc.),
the derived scattering matrix might be different; however, the
rest of the analysis still applies. Again, if �INPUT and �OUTPUT

are (2M + 1)-dimensional vectors representing the input and
output electron wave functions including all diffraction orders
[from (−M ) order to M order], the input-output relation is

�OUTPUT = SN�INPUT, (13)

for an electron passing through the grating N times. The
intensity of each diffraction order can be obtained by taking
the square of the magnitude of the corresponding element in
the vector representation of the wave functions. The intensities
were calculated for a beam splitter using a weak sinusoidal
phase grating with a phase amplitude A = 0.02π (assuming
electron energy is 200 keV, this phase modulation can be
achieved by a nanofabricated grating made from a 1-nm-
thick amorphous carbon film), and the results for 0th and
(+1)-st order beams are shown in Fig. 2(b). These are the
two beams exiting from the output ports. Intensity transfer
between the direct (0th order) and diffracted [(+1)-st order]
beams is still observed. However, in contrast to the two-
beam condition, when the intensity of the direct beam drops
to zero, the intensity of the diffracted beam is not unity;
namely, a complete intensity transfer between the direct and
diffracted beams cannot be achieved at the switch point.
Moreover, the sum of the intensities of the two output beams
is always below unity for any number of passes greater
than zero. If used as a two-port beam splitter, this less-than-
unity intensity sum means imperfect efficiency, or intensity
loss, associated with the beam splitter. The intensity loss
is due to the existence of high-order diffraction. There is
a probability that the electron is in a high-order diffracted
beam rather than the direct or (+1)-st order diffracted beam;
hence the intensity sum of the two output beams is less than
unity.

We use quantum IFS to reduce the intensity loss of the
beam splitter. The idea is shown schematically in Fig. 3(a).
Compared to Fig. 2(a), only one additional component, a
beam-limiting aperture, is added. This aperture is placed at
a plane, in which the high-order diffracted beams are clearly
separated from the direct (0th order) and diffracted [(+1)-st
order] beams. This could be achieved by using a lens that
transforms the diffracted beams into diffraction spots in the
back focal plane, and placing the aperture at that plane.
The aperture allows the direct and diffracted beams to pass
through, while completely blocking high-order diffraction.
Each time the electron passes through the grating, it will be
diffracted and a fraction of the intensity will go to high-order
diffraction. However, the presence of the aperture within the
resonator acts on high-order diffraction in every round trip and
prevents intensity build-up in high-order diffraction.

We use the scattering matrix method similar to the above-
mentioned procedure to analyze the beam splitter with high-
order diffraction and a limiting aperture. The scattering matrix
S associated with the weak phase grating will remain the
same. Operation of the limiting aperture can be represented
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FIG. 3. (a) Schematic of the beam-splitter design using quantum
IFS effect to remove intensity loss in high-order diffraction. The
input electron enters a resonator in which a weak phase grating is
placed. The electron is diffracted by the grating. After a certain
number of round trips and passes through the grating in the res-
onator, the electron leaves the resonator. The output ports 1 and
2 correspond to the direct (blue solid arrow) and diffracted (red
dashed arrow) beams, respectively. High-order diffracted beams are
also shown (light blue dotted arrows). A limiting aperture (black)
placed within the resonator allows the direct and diffracted beams
to pass through, while completely blocking high-order diffraction.
(b) Calculated intensities of direct (0th order) and diffracted [(+1)-st
order] beams as a function of number of passes through a weak
sinusoidal phase grating, of which the phase amplitude is 0.02π ,
followed by a limiting aperture. Beam-splitting ratio, i.e., the relative
intensity between the two output beams, can be tuned by changing
the number of passes through the grating.

by the following scattering matrix:

Saper = diag(· · · , 0, 1, 1, 0, · · ·). (14)

This is a diagonal matrix with only two nonzero elements
corresponding to the direct and diffracted beams that are not
blocked by the aperture. The total effective scattering matrix
is the multiplication of S and Saper, so that the input-output
relation becomes

�OUTPUT = (
SSaper

)N
�INPUT, (15)

for an electron passing through the grating N times. Again,
the beam intensities were calculated for a beam splitter using
a weak sinusoidal phase grating with a phase amplitude
A = 0.02π , and the results for 0th and (+1)-st order beams
are shown in Fig. 3(b). Unlike the case where high-order
diffraction is not blocked, the beam splitter with a limiting
aperture achieves almost complete intensity transfer between
the direct and diffracted beams at the switch point, and
the sum of the intensities of the two output beams is near
unity. This unity intensity sum is almost the same as in the
two-beam condition [Fig. 1(b)], even though higher-order
diffracted beams are included. Despite the existence of high-
order diffracted beams, the limiting aperture prevents intensity
build-up in these beams, thus minimizing intensity loss. With
minimal intensity loss, a highly efficient, two-port electron
beam splitter based on electron diffraction from a nanofab-
ricated grating or a crystal can be achieved.

IV. EFFECT OF INELASTIC SCATTERING

In the beam-splitter design, loss can be caused by not only
the undesired diffraction modes, but also inelastic scattering
when the electron passes through the weak phase grating. The
inelastic intensity loss depends on the type of weak phase

FIG. 4. The effect of inelastic scattering on the performance of
the beam splitter. (a) Calculated intensities of direct (0th order) and
diffracted [(+1)-st order] beams as a function of number of passes
through a weak sinusoidal phase grating made from a 1-nm-thick
amorphous carbon film. Electron energy is 200 keV. Phase amplitude
of the grating is 0.02π , and electron mean free path is 160 nm.
Quantum IFS is used to suppress high-order diffraction. At the switch
point, the efficiency is ∼55%. (b) Calculated intensities of direct (0th
order) and diffracted [(+1)-st order] beams as a function of number
of passes through a weak sinusoidal phase grating made from a
1-nm-thick gold foil. Electron energy is 200 keV. Phase amplitude
of the grating is 0.058π , and electron mean free path is 84 nm.
Quantum IFS is used to suppress high-order diffraction. At the switch
point, the efficiency is ∼63%. (c) Reported MIP and MFP values
for several materials [24–29]. Red dashed lines are contours with
constant MIP-MFP product (VMIPλ).

grating. In this section, we focus on the situation where a
nanofabricated grating is used as the weak phase grating. We
consider the schematic shown in Fig. 3(a), with a nanofab-
ricated grating as the weak phase grating. This time, the
grating imposes both phase and amplitude modulations onto
the electron beam, with the amplitude modulation introduced
by inelastic scattering. We model the inelastic scattering by as-
signing the following intensity transmission probability when
the electron passes through the grating:

T = e−t/λ. (16)

Here, t is the material thickness of the grating, and λ is
the inelastic scattering mean free path (MFP) of the material.
We modified the scattering matrix method by considering
this transmission probability, and calculated beam intensities
for a beam splitter using a weak sinusoidal phase grating
with a phase amplitude A = 0.02π . For 200 keV electron
energy, we chose 1-nm-thick amorphous carbon film as the
grating material, which has an inelastic MFP of 160 nm [24].
Figure 4(a) shows the calculated -0th order and (+1)-st order
beam intensities. As expected, inelastic scattering leads to
a nonideal efficiency, with the sum of 0th order and (+1)-
st order beam intensities below unity. At the switch point,
the efficiency is ∼55%. To investigate the effect of grating
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materials, we also considered another nanofabricated grating
made from 1-nm-thick gold foil. For 200 keV electron energy,
this grating imposes a phase modulation with amplitude A =
0.058π , and the inelastic MFP for gold is 84 nm. Figure
4(b) shows the calculated 0th order and (+1)-st order beam
intensities for this grating. Similar to Fig. 4(a), intensity loss
is caused by inelastic scattering. At the switch point, the effi-
ciency is ∼63%. It can be seen that the choice of the grating
material has an effect on the beam-splitter efficiency. For
a nanofabricated grating, a periodically structured material
presents a periodic potential to the electron beam, causing
electron diffraction and beam splitting. This potential is the
mean inner potential (MIP) of the material. To achieve a
certain beam-splitting ratio, the grating needs to impose a
certain phase shift �φ0 to the electron beam, which requires
a certain material thickness t0 according to the following
equation:

�φ0 = C0VMIPt0. (17)

Here, VMIP is the material MIP, and C0 is a constant.
The beam-splitter efficiency can be estimated by the intensity
transmission probability:

T0 = e−t0/λ = e
− �φ0

C0VMIPλ . (18)

Hence, materials with a large MIP (VMIP) and a large
MFP (λ) are preferred for a high-efficiency beam splitter.
Figure 4(c) surveys reported MIP and MFP values for several
materials [24–29]. Different data points on the MIP-MFP plot
represent different materials with the corresponding MIP and
MFP values. Gratings made from materials with the same
MIP-MFP product (VMIPλ) should lead to a similar beam-
splitter efficiency. The three red dashed lines in Fig. 4(c)
indicate three contours of constant VMIPλ value: 1200, 1600,
and 2000 nm V.

The above analysis on inelastic scattering applies to the
beam-splitter design with a nanofabricated grating as the
weak phase grating. The calculated efficiency also applies to
this specific design only. Similar analysis can be performed
for other types of weak phase gratings, such as crystalline
materials and optical standing waves. We will not present
detailed analysis here as it is beyond the scope of this paper.

V. DISCUSSION

It may appear paradoxical that intensity loss due to higher-
order diffracted beams can be reduced simply by blocking
these beams with an aperture. When a beam is blocked, its
intensity, or the probability that the electron is in this beam,
is lost permanently. Therefore, one would naively expect the
loss to remain the same, if not increase, when high-order
diffraction is blocked. However, the combination of quantum
IFM with the quantum Zeno effect provides a counterintuitive
route to reduce loss due to high-order diffraction. In quantum
IFM, a perfectly opaque object can be detected by a probe
particle without losing the particle, as the probe particle
repeatedly interrogates the object with a small fraction of
the particle wave function obtained via an asymmetric beam
splitter. To draw an analogy, the efficient, two-port electron
beam splitter proposed here performs a quantum IFM: The

electron is analogous to the probe particle, the weak phase
grating acts as the asymmetric beam splitter, the high-order
diffraction is analogous to the small fraction of the particle,
the limiting aperture is the opaque object, and the resonator
performs the repeated interrogation. As a result, intensity loss
due to high-order diffraction is eliminated, as with the loss of
the particle in quantum IFM.

Here, we want to point out that after introducing the lim-
iting aperture, the intensity loss due to high-order diffraction
is not exactly zero, although its value can be made arbitrarily
low. This finite intensity loss can be observed in Fig. 3(b). At
the switch point, the direct beam intensity drops to zero, and
the diffracted beam intensity approaches but never achieves
unity. Hence, there is a finite intensity loss. We calculated this
intensity loss at the switch point for beam-splitter designs with
different switch points. The results shown in Fig. 5 demon-
strate that intensity loss drops with increasing switch point.
Below 1% intensity loss due to high-order diffraction can be
achieved for a switch point greater than ∼230. As mentioned
before, the switch point can be increased by reducing the
phase modulation of the grating. Theoretically there is no
upper limit to the switch point. As a result, the beam splitter
can be designed so that arbitrarily low intensity is lost. In
practice, the switch point could be limited by the weak phase
grating. If a nanofabricated grating is used as the weak phase
grating, the minimum achievable phase modulation can be
limited by the electron energy and the minimum achievable
material thickness, thus imposing an upper limit to the switch
point. For instance, for an electron with 60 keV energy, a
nanofabricated grating made from monolayer graphene im-
poses the minimum achievable phase modulation, which is
∼0.01π (considering graphene as a uniform film with atomic
scale thickness). This phase modulation leads to the maximum
achievable switch point, which is 193, at this electron energy.
However, if an optical standing wave is used as the weak phase
grating, a weak phase modulation can be achieved by lowering
the light intensity, and there is no upper limit to the switch
point. For instance, a laser beam with a 1064-nm wavelength
and a 5-mm beam waist is used to make the optical standing

FIG. 5. Beam-splitter intensity loss at the switch point for de-
signs with different switch points (log-log scale). Inelastic scattering
is neglected in this calculation. The intensity loss decreases mono-
tonically with increasing switch point and approaches zero. Inset:
the same plot with a linear scale.
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wave. It forms a Kapitza-Dirac diffraction grating for elec-
trons with 2 × 106 m/s velocity or 12 eV energy. To obtain
a similar phase modulation as above (0.01π ), the required
laser intensity is estimated to be about 3 GW/m2. If the laser
intensity is reduced, a smaller phase modulation, and a larger
switch point, can be achieved. For Kapitza-Dirac diffraction,
in theory there is no upper limit to the switch point, and hence
the intensity loss due to high-order diffraction can be made
arbitrarily small.

Despite the fact that intensity loss due to high-order diffrac-
tion can be made arbitrarily close to zero, there is still finite
intensity loss caused by inelastic scattering when the electron
passes through the weak phase grating. Inelastic scattering is
a nonunitary evolution described by a non-Hermitian Hamil-
tonian, and hence cannot be reduced by a combination of
quantum IFM with quantum Zeno effect that successfully
suppresses the loss due to high-order diffraction [30,31]. It
should be noted that this intensity loss is independent of the
choice of switch point. To minimize the impact of inelastic
scattering, higher electron energy and materials with lower
inelastic scattering cross sections are preferred. Alternatively,
choosing a different implementation of the weak phase grating
(e.g., using optical standing waves) can also reduce inelastic
scattering.

To experimentally implement the proposed device, sev-
eral practical issues need further consideration. Firstly, the
electron-optical system should have a good alignment. In the
proposed beam splitter, the electron beam passes through the
grating multiple times. For each pass, the phase modulation
of the electron beam has to be aligned with the grating
structure, so that the phase modulation can be enhanced by
passing through the grating. In experimental implementation,
misalignment should be kept below a tiny fraction of the
grating period, so that alignment error is small even after
multiple passes. Secondly, the proposed device works with
pulsed electron beams by using switchable gates. These gates
can switch between an aperture state that passes the electron
into and out of the resonator, and a mirror state that reflects the
electron beams. Such an electron-optical component requires
further development. Thirdly, the requirement on the spatial
and temporal coherence of the electron beam, as well as
aberrations introduced by the electron-optical components,
need future investigation.

VI. CONCLUSION

We present a design for a highly efficient, two-port electron
beam splitter. The beam splitter consists of a resonator and a
weak phase grating. The input electron enters the resonator
and bounces back and forth while passing through the weak
phase grating multiple times. Depending on the targeted
beam-splitting ratio, the electron exits via the two output
ports after some number of round trips. We demonstrated a
scattering matrix method to analyze the performance of the
beam splitter, and showed its working principle in the two-
beam condition. However, we found that the efficiency of the
beam splitter was compromised, because higher diffraction
orders were generated when the electron passed through the
weak phase grating. This issue can be solved by introducing a
limiting aperture that fully blocks the high-order diffraction in

each round trip. This technique utilizes quantum interaction-
free measurement, and intensity loss can be made arbitrarily
low, or equivalently, the efficiency of the beam splitter can
be made arbitrarily close to unity. In practice, nearly all com-
ponents (electron sources, mirrors, phase gratings, apertures,
and detectors) required to build such a beam splitter are well
developed. Meanwhile, a gate that has two states, a mirror
state and an aperture state, is under active development [3].
Therefore, experimental implementation of the beam splitter
is feasible. This efficient, two-port beam splitter can find vari-
ous applications in electron beam technologies, especially the
emerging methods that bear a great resemblance to quantum
optics experiments [3,15].

Additionally, our beam-splitter design can be used to gen-
erate electron vortex beams with high efficiency. An electron
vortex beam is a free-electron beam that carries an orbital
angular momentum (OAM) lh̄, with l the so-called topolog-
ical charge. The electron vortex beams have been generated
mainly by passing an electron beam through a nanofabricated
diffraction hologram [11]. The pattern of the hologram is a
grating with a fork defect, as illustrated in Fig. 6(a). Diffracted
beams from this hologram carry different OAM depending
on the diffraction order. Our beam-splitter design enables
the selection of one electron vortex beam carrying a specific
OAM, without suffering intensity loss in other diffracted
beams. Figure 6(b) shows an example of selecting an electron
vortex beam with topological charge l = 2. In our beam-
splitter design, if the weak phase grating is replaced by a weak
phase hologram with the pattern in Fig. 6(a), each diffracted
beam will carry an OAM with its topological charge the same
as its diffraction order. To select the vortex beam with topo-
logical charge l = 2, the aperture placed in the resonator lets
through the direct beam and the second-order diffracted beam,
while blocking all other beams. Quantum IFS ensures that,
with the right number of passes through the hologram, beam
intensity can be concentrated in the second-order diffracted
beam, with minimal intensity loss in the direct beam and other
diffracted vortex beams. Hence, our scheme can generate a
clean electron vortex beam carrying one specific OAM, like
transforming a plane-wave beam to a vortex beam, without
sacrificing the beam intensity. Here we want to mention

FIG. 6. Efficient generation of an electron vortex beam with a
specific orbital angular momentum. (a) Diffraction hologram for
vortex beam generation. The pattern is a grating with a fork defect.
(b) Generation of an electron vortex beam with topological charge
l = 2. The weak phase hologram uses the pattern in (a). The aperture
lets through the direct beam (blue solid arrow) and the second-order
diffracted beam (red dashed arrow), while blocking all other beams
(light blue dotted arrows).
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that this scheme requires a pulsed electron source with high
transverse coherence. Previous reports demonstrated highly
coherent pulsed electron sources for imaging and diffraction
[32–34]. To get a fully coherent vortex beam, we would need
a high degree of coherence, namely, a transverse coherence
length on the scale of the beam diameter.

Finally, we want to emphasize that this design can be
applied to beam splitters for not only electrons, but also
photons, neutrons, atoms, and any other quantum mechanical
systems. A simple diffraction phase grating, combined with
a resonator and an aperture, can be used to build two-port
beam splitters for these systems with high efficiency. This

design is effectively a method to convert a multiport system
to a two-port system with minimal loss.
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